xref: /linux/drivers/rtc/rtc-s5m.c (revision c70aee3dd85482c67720eb642d59ebbb9433faa5)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
4 //	http://www.samsung.com
5 //
6 //  Copyright (C) 2013 Google, Inc
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/bcd.h>
13 #include <linux/reboot.h>
14 #include <linux/regmap.h>
15 #include <linux/rtc.h>
16 #include <linux/platform_device.h>
17 #include <linux/mfd/samsung/core.h>
18 #include <linux/mfd/samsung/rtc.h>
19 #include <linux/mfd/samsung/s2mps14.h>
20 
21 /*
22  * Maximum number of retries for checking changes in UDR field
23  * of S5M_RTC_UDR_CON register (to limit possible endless loop).
24  *
25  * After writing to RTC registers (setting time or alarm) read the UDR field
26  * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
27  * been transferred.
28  */
29 #define UDR_READ_RETRY_CNT	5
30 
31 enum {
32 	RTC_SEC = 0,
33 	RTC_MIN,
34 	RTC_HOUR,
35 	RTC_WEEKDAY,
36 	RTC_DATE,
37 	RTC_MONTH,
38 	RTC_YEAR1,
39 	RTC_YEAR2,
40 	/* Make sure this is always the last enum name. */
41 	RTC_MAX_NUM_TIME_REGS
42 };
43 
44 /*
45  * Registers used by the driver which are different between chipsets.
46  *
47  * Operations like read time and write alarm/time require updating
48  * specific fields in UDR register. These fields usually are auto-cleared
49  * (with some exceptions).
50  *
51  * Table of operations per device:
52  *
53  * Device     | Write time | Read time | Write alarm
54  * =================================================
55  * S5M8767    | UDR + TIME |           | UDR
56  * S2MPG10    | WUDR       | RUDR      | AUDR
57  * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
58  * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
59  * S2MPS15    | WUDR       | RUDR      | AUDR
60  */
61 struct s5m_rtc_reg_config {
62 	/* Number of registers used for setting time/alarm0/alarm1 */
63 	unsigned int regs_count;
64 	/* First register for time, seconds */
65 	unsigned int time;
66 	/* RTC control register */
67 	unsigned int ctrl;
68 	/* First register for alarm 0, seconds */
69 	unsigned int alarm0;
70 	/* First register for alarm 1, seconds */
71 	unsigned int alarm1;
72 	/*
73 	 * Register for update flag (UDR). Typically setting UDR field to 1
74 	 * will enable update of time or alarm register. Then it will be
75 	 * auto-cleared after successful update.
76 	 */
77 	unsigned int udr_update;
78 	/* Auto-cleared mask in UDR field for writing time and alarm */
79 	unsigned int autoclear_udr_mask;
80 	/*
81 	 * Masks in UDR field for time and alarm operations.
82 	 * The read time mask can be 0. Rest should not.
83 	 */
84 	unsigned int read_time_udr_mask;
85 	unsigned int write_time_udr_mask;
86 	unsigned int write_alarm_udr_mask;
87 };
88 
89 /* Register map for S5M8767 */
90 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
91 	.regs_count		= 8,
92 	.time			= S5M_RTC_SEC,
93 	.ctrl			= S5M_ALARM1_CONF,
94 	.alarm0			= S5M_ALARM0_SEC,
95 	.alarm1			= S5M_ALARM1_SEC,
96 	.udr_update		= S5M_RTC_UDR_CON,
97 	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
98 	.read_time_udr_mask	= 0, /* Not needed */
99 	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
100 	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
101 };
102 
103 /* Register map for S2MPG10 */
104 static const struct s5m_rtc_reg_config s2mpg10_rtc_regs = {
105 	.regs_count		= 7,
106 	.time			= S2MPG10_RTC_SEC,
107 	.ctrl			= S2MPG10_RTC_CTRL,
108 	.alarm0			= S2MPG10_RTC_A0SEC,
109 	.alarm1			= S2MPG10_RTC_A1SEC,
110 	.udr_update		= S2MPG10_RTC_UPDATE,
111 	.autoclear_udr_mask	= S2MPS15_RTC_WUDR_MASK | S2MPS15_RTC_AUDR_MASK,
112 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
113 	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
114 	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
115 };
116 
117 /* Register map for S2MPS13 */
118 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
119 	.regs_count		= 7,
120 	.time			= S2MPS_RTC_SEC,
121 	.ctrl			= S2MPS_RTC_CTRL,
122 	.alarm0			= S2MPS_ALARM0_SEC,
123 	.alarm1			= S2MPS_ALARM1_SEC,
124 	.udr_update		= S2MPS_RTC_UDR_CON,
125 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
126 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
127 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
128 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
129 };
130 
131 /* Register map for S2MPS11/14 */
132 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
133 	.regs_count		= 7,
134 	.time			= S2MPS_RTC_SEC,
135 	.ctrl			= S2MPS_RTC_CTRL,
136 	.alarm0			= S2MPS_ALARM0_SEC,
137 	.alarm1			= S2MPS_ALARM1_SEC,
138 	.udr_update		= S2MPS_RTC_UDR_CON,
139 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
140 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
141 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
142 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
143 };
144 
145 /*
146  * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
147  * are swapped.
148  */
149 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
150 	.regs_count		= 7,
151 	.time			= S2MPS_RTC_SEC,
152 	.ctrl			= S2MPS_RTC_CTRL,
153 	.alarm0			= S2MPS_ALARM0_SEC,
154 	.alarm1			= S2MPS_ALARM1_SEC,
155 	.udr_update		= S2MPS_RTC_UDR_CON,
156 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
157 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
158 	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
159 	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
160 };
161 
162 struct s5m_rtc_info {
163 	struct device *dev;
164 	struct sec_pmic_dev *s5m87xx;
165 	struct regmap *regmap;
166 	struct rtc_device *rtc_dev;
167 	int irq;
168 	enum sec_device_type device_type;
169 	int rtc_24hr_mode;
170 	const struct s5m_rtc_reg_config	*regs;
171 };
172 
173 static const struct regmap_config s5m_rtc_regmap_config = {
174 	.reg_bits = 8,
175 	.val_bits = 8,
176 
177 	.max_register = S5M_RTC_REG_MAX,
178 };
179 
180 static const struct regmap_config s2mps14_rtc_regmap_config = {
181 	.reg_bits = 8,
182 	.val_bits = 8,
183 
184 	.max_register = S2MPS_RTC_REG_MAX,
185 };
186 
187 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
188 			       int rtc_24hr_mode)
189 {
190 	tm->tm_sec = data[RTC_SEC] & 0x7f;
191 	tm->tm_min = data[RTC_MIN] & 0x7f;
192 	if (rtc_24hr_mode) {
193 		tm->tm_hour = data[RTC_HOUR] & 0x1f;
194 	} else {
195 		tm->tm_hour = data[RTC_HOUR] & 0x0f;
196 		if (data[RTC_HOUR] & HOUR_PM_MASK)
197 			tm->tm_hour += 12;
198 	}
199 
200 	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
201 	tm->tm_mday = data[RTC_DATE] & 0x1f;
202 	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
203 	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
204 	tm->tm_yday = 0;
205 	tm->tm_isdst = 0;
206 }
207 
208 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
209 {
210 	data[RTC_SEC] = tm->tm_sec;
211 	data[RTC_MIN] = tm->tm_min;
212 
213 	if (tm->tm_hour >= 12)
214 		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
215 	else
216 		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
217 
218 	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
219 	data[RTC_DATE] = tm->tm_mday;
220 	data[RTC_MONTH] = tm->tm_mon + 1;
221 	data[RTC_YEAR1] = tm->tm_year - 100;
222 
223 	return 0;
224 }
225 
226 /*
227  * Read RTC_UDR_CON register and wait till UDR field is cleared.
228  * This indicates that time/alarm update ended.
229  */
230 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
231 {
232 	int ret, retry = UDR_READ_RETRY_CNT;
233 	unsigned int data;
234 
235 	do {
236 		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
237 	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
238 
239 	if (!retry)
240 		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
241 
242 	return ret;
243 }
244 
245 static int s5m_check_pending_alarm_interrupt(struct s5m_rtc_info *info,
246 					     struct rtc_wkalrm *alarm)
247 {
248 	int ret;
249 	unsigned int val;
250 
251 	switch (info->device_type) {
252 	case S5M8767X:
253 		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
254 		val &= S5M_ALARM0_STATUS;
255 		break;
256 	case S2MPG10:
257 	case S2MPS15X:
258 	case S2MPS14X:
259 	case S2MPS13X:
260 		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
261 				&val);
262 		val &= S2MPS_ALARM0_STATUS;
263 		break;
264 	default:
265 		return -EINVAL;
266 	}
267 	if (ret < 0)
268 		return ret;
269 
270 	if (val)
271 		alarm->pending = 1;
272 	else
273 		alarm->pending = 0;
274 
275 	return 0;
276 }
277 
278 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
279 {
280 	int ret;
281 
282 	ret = regmap_set_bits(info->regmap, info->regs->udr_update,
283 			      info->regs->write_time_udr_mask);
284 	if (ret < 0) {
285 		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
286 		return ret;
287 	}
288 
289 	ret = s5m8767_wait_for_udr_update(info);
290 
291 	return ret;
292 }
293 
294 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
295 {
296 	int ret;
297 	unsigned int udr_mask;
298 
299 	udr_mask = info->regs->write_alarm_udr_mask;
300 	switch (info->device_type) {
301 	case S5M8767X:
302 		udr_mask |= S5M_RTC_TIME_EN_MASK;
303 		break;
304 	case S2MPG10:
305 	case S2MPS15X:
306 	case S2MPS14X:
307 	case S2MPS13X:
308 		/* No exceptions needed */
309 		break;
310 	default:
311 		return -EINVAL;
312 	}
313 
314 	ret = regmap_update_bits(info->regmap, info->regs->udr_update,
315 				 udr_mask, info->regs->write_alarm_udr_mask);
316 	if (ret < 0) {
317 		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
318 			__func__, ret);
319 		return ret;
320 	}
321 
322 	ret = s5m8767_wait_for_udr_update(info);
323 
324 	/* On S2MPS13 the AUDR is not auto-cleared */
325 	if (info->device_type == S2MPS13X)
326 		regmap_clear_bits(info->regmap, info->regs->udr_update,
327 				  S2MPS13_RTC_AUDR_MASK);
328 
329 	return ret;
330 }
331 
332 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
333 {
334 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
335 	u8 data[RTC_MAX_NUM_TIME_REGS];
336 	int ret;
337 
338 	if (info->regs->read_time_udr_mask) {
339 		ret = regmap_set_bits(info->regmap, info->regs->udr_update,
340 				      info->regs->read_time_udr_mask);
341 		if (ret) {
342 			dev_err(dev,
343 				"Failed to prepare registers for time reading: %d\n",
344 				ret);
345 			return ret;
346 		}
347 	}
348 	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
349 			info->regs->regs_count);
350 	if (ret < 0)
351 		return ret;
352 
353 	switch (info->device_type) {
354 	case S5M8767X:
355 	case S2MPG10:
356 	case S2MPS15X:
357 	case S2MPS14X:
358 	case S2MPS13X:
359 		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
360 		break;
361 
362 	default:
363 		return -EINVAL;
364 	}
365 
366 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
367 
368 	return 0;
369 }
370 
371 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
372 {
373 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
374 	u8 data[RTC_MAX_NUM_TIME_REGS];
375 	int ret = 0;
376 
377 	switch (info->device_type) {
378 	case S5M8767X:
379 	case S2MPG10:
380 	case S2MPS15X:
381 	case S2MPS14X:
382 	case S2MPS13X:
383 		ret = s5m8767_tm_to_data(tm, data);
384 		break;
385 	default:
386 		return -EINVAL;
387 	}
388 
389 	if (ret < 0)
390 		return ret;
391 
392 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
393 
394 	ret = regmap_raw_write(info->regmap, info->regs->time, data,
395 			info->regs->regs_count);
396 	if (ret < 0)
397 		return ret;
398 
399 	ret = s5m8767_rtc_set_time_reg(info);
400 
401 	return ret;
402 }
403 
404 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
405 {
406 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
407 	u8 data[RTC_MAX_NUM_TIME_REGS];
408 	int ret, i;
409 
410 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
411 			info->regs->regs_count);
412 	if (ret < 0)
413 		return ret;
414 
415 	switch (info->device_type) {
416 	case S5M8767X:
417 	case S2MPG10:
418 	case S2MPS15X:
419 	case S2MPS14X:
420 	case S2MPS13X:
421 		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
422 		alrm->enabled = 0;
423 		for (i = 0; i < info->regs->regs_count; i++) {
424 			if (data[i] & ALARM_ENABLE_MASK) {
425 				alrm->enabled = 1;
426 				break;
427 			}
428 		}
429 		break;
430 
431 	default:
432 		return -EINVAL;
433 	}
434 
435 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
436 
437 	return s5m_check_pending_alarm_interrupt(info, alrm);
438 }
439 
440 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
441 {
442 	u8 data[RTC_MAX_NUM_TIME_REGS];
443 	int ret, i;
444 	struct rtc_time tm;
445 
446 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
447 			info->regs->regs_count);
448 	if (ret < 0)
449 		return ret;
450 
451 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
452 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
453 
454 	switch (info->device_type) {
455 	case S5M8767X:
456 	case S2MPG10:
457 	case S2MPS15X:
458 	case S2MPS14X:
459 	case S2MPS13X:
460 		for (i = 0; i < info->regs->regs_count; i++)
461 			data[i] &= ~ALARM_ENABLE_MASK;
462 
463 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
464 				info->regs->regs_count);
465 		if (ret < 0)
466 			return ret;
467 
468 		ret = s5m8767_rtc_set_alarm_reg(info);
469 
470 		break;
471 
472 	default:
473 		return -EINVAL;
474 	}
475 
476 	return ret;
477 }
478 
479 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
480 {
481 	int ret;
482 	u8 data[RTC_MAX_NUM_TIME_REGS];
483 	struct rtc_time tm;
484 
485 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
486 			info->regs->regs_count);
487 	if (ret < 0)
488 		return ret;
489 
490 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
491 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
492 
493 	switch (info->device_type) {
494 	case S5M8767X:
495 	case S2MPG10:
496 	case S2MPS15X:
497 	case S2MPS14X:
498 	case S2MPS13X:
499 		data[RTC_SEC] |= ALARM_ENABLE_MASK;
500 		data[RTC_MIN] |= ALARM_ENABLE_MASK;
501 		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
502 		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
503 		if (data[RTC_DATE] & 0x1f)
504 			data[RTC_DATE] |= ALARM_ENABLE_MASK;
505 		if (data[RTC_MONTH] & 0xf)
506 			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
507 		if (data[RTC_YEAR1] & 0x7f)
508 			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
509 
510 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
511 				info->regs->regs_count);
512 		if (ret < 0)
513 			return ret;
514 		ret = s5m8767_rtc_set_alarm_reg(info);
515 
516 		break;
517 
518 	default:
519 		return -EINVAL;
520 	}
521 
522 	return ret;
523 }
524 
525 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
526 {
527 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
528 	u8 data[RTC_MAX_NUM_TIME_REGS];
529 	int ret;
530 
531 	switch (info->device_type) {
532 	case S5M8767X:
533 	case S2MPG10:
534 	case S2MPS15X:
535 	case S2MPS14X:
536 	case S2MPS13X:
537 		s5m8767_tm_to_data(&alrm->time, data);
538 		break;
539 
540 	default:
541 		return -EINVAL;
542 	}
543 
544 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
545 
546 	ret = s5m_rtc_stop_alarm(info);
547 	if (ret < 0)
548 		return ret;
549 
550 	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
551 			info->regs->regs_count);
552 	if (ret < 0)
553 		return ret;
554 
555 	ret = s5m8767_rtc_set_alarm_reg(info);
556 	if (ret < 0)
557 		return ret;
558 
559 	if (alrm->enabled)
560 		ret = s5m_rtc_start_alarm(info);
561 
562 	return ret;
563 }
564 
565 static int s5m_rtc_alarm_irq_enable(struct device *dev,
566 				    unsigned int enabled)
567 {
568 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
569 
570 	if (enabled)
571 		return s5m_rtc_start_alarm(info);
572 	else
573 		return s5m_rtc_stop_alarm(info);
574 }
575 
576 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
577 {
578 	struct s5m_rtc_info *info = data;
579 
580 	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
581 
582 	return IRQ_HANDLED;
583 }
584 
585 static const struct rtc_class_ops s5m_rtc_ops = {
586 	.read_time = s5m_rtc_read_time,
587 	.set_time = s5m_rtc_set_time,
588 	.read_alarm = s5m_rtc_read_alarm,
589 	.set_alarm = s5m_rtc_set_alarm,
590 	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
591 };
592 
593 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
594 {
595 	u8 data[2];
596 	int ret;
597 
598 	switch (info->device_type) {
599 	case S5M8767X:
600 		/* UDR update time. Default of 7.32 ms is too long. */
601 		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
602 				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
603 		if (ret < 0)
604 			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
605 					__func__, ret);
606 
607 		/* Set RTC control register : Binary mode, 24hour mode */
608 		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
609 		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
610 
611 		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
612 		break;
613 
614 	case S2MPG10:
615 	case S2MPS15X:
616 	case S2MPS14X:
617 	case S2MPS13X:
618 		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
619 		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
620 		if (ret < 0)
621 			break;
622 
623 		/*
624 		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
625 		 * RTC_CTRL register like writing Alarm registers. We can't find
626 		 * the description from datasheet but vendor code does that
627 		 * really.
628 		 */
629 		ret = s5m8767_rtc_set_alarm_reg(info);
630 		break;
631 
632 	default:
633 		return -EINVAL;
634 	}
635 
636 	info->rtc_24hr_mode = 1;
637 	if (ret < 0)
638 		return dev_err_probe(info->dev, ret,
639 				     "%s: fail to write controlm reg\n",
640 				     __func__);
641 
642 	return ret;
643 }
644 
645 static int s5m_rtc_restart_s2mpg10(struct sys_off_data *data)
646 {
647 	struct s5m_rtc_info *info = data->cb_data;
648 	int ret;
649 
650 	if (data->mode != REBOOT_COLD && data->mode != REBOOT_HARD)
651 		return NOTIFY_DONE;
652 
653 	/*
654 	 * Arm watchdog with maximum timeout (2 seconds), and perform full reset
655 	 * on expiry.
656 	 */
657 	ret = regmap_set_bits(info->regmap, S2MPG10_RTC_WTSR,
658 			      (S2MPG10_WTSR_COLDTIMER | S2MPG10_WTSR_COLDRST
659 			       | S2MPG10_WTSR_WTSRT | S2MPG10_WTSR_WTSR_EN));
660 
661 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
662 }
663 
664 static int s5m_rtc_probe(struct platform_device *pdev)
665 {
666 	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
667 	enum sec_device_type device_type =
668 		platform_get_device_id(pdev)->driver_data;
669 	struct s5m_rtc_info *info;
670 	int ret, alarm_irq;
671 
672 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
673 	if (!info)
674 		return -ENOMEM;
675 
676 	info->regmap = dev_get_regmap(pdev->dev.parent, "rtc");
677 	if (!info->regmap) {
678 		const struct regmap_config *regmap_cfg;
679 		struct i2c_client *i2c;
680 
681 		switch (device_type) {
682 		case S2MPS15X:
683 			regmap_cfg = &s2mps14_rtc_regmap_config;
684 			info->regs = &s2mps15_rtc_regs;
685 			break;
686 		case S2MPS14X:
687 			regmap_cfg = &s2mps14_rtc_regmap_config;
688 			info->regs = &s2mps14_rtc_regs;
689 			break;
690 		case S2MPS13X:
691 			regmap_cfg = &s2mps14_rtc_regmap_config;
692 			info->regs = &s2mps13_rtc_regs;
693 			break;
694 		case S5M8767X:
695 			regmap_cfg = &s5m_rtc_regmap_config;
696 			info->regs = &s5m_rtc_regs;
697 			break;
698 		default:
699 			return dev_err_probe(&pdev->dev, -ENODEV,
700 					     "Unsupported device type %d\n",
701 					     device_type);
702 		}
703 
704 		i2c = devm_i2c_new_dummy_device(&pdev->dev,
705 						s5m87xx->i2c->adapter,
706 						RTC_I2C_ADDR);
707 		if (IS_ERR(i2c))
708 			return dev_err_probe(&pdev->dev, PTR_ERR(i2c),
709 					     "Failed to allocate I2C\n");
710 
711 		info->regmap = devm_regmap_init_i2c(i2c, regmap_cfg);
712 		if (IS_ERR(info->regmap))
713 			return dev_err_probe(&pdev->dev, PTR_ERR(info->regmap),
714 					     "Failed to allocate regmap\n");
715 	} else if (device_type == S2MPG10) {
716 		info->regs = &s2mpg10_rtc_regs;
717 	} else {
718 		return dev_err_probe(&pdev->dev, -ENODEV,
719 				     "Unsupported device type %d\n",
720 				     device_type);
721 	}
722 
723 	info->dev = &pdev->dev;
724 	info->s5m87xx = s5m87xx;
725 	info->device_type = device_type;
726 
727 	alarm_irq = platform_get_irq_byname_optional(pdev, "alarm");
728 	if (alarm_irq > 0)
729 		info->irq = alarm_irq;
730 	else if (alarm_irq == -ENXIO)
731 		info->irq = 0;
732 	else
733 		return dev_err_probe(&pdev->dev, alarm_irq ? : -EINVAL,
734 				     "IRQ 'alarm' not found\n");
735 
736 	platform_set_drvdata(pdev, info);
737 
738 	ret = s5m8767_rtc_init_reg(info);
739 	if (ret)
740 		return ret;
741 
742 	info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
743 	if (IS_ERR(info->rtc_dev))
744 		return PTR_ERR(info->rtc_dev);
745 
746 	info->rtc_dev->ops = &s5m_rtc_ops;
747 
748 	info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
749 	info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
750 
751 	if (!info->irq) {
752 		clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
753 	} else {
754 		ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
755 						s5m_rtc_alarm_irq, 0, "rtc-alarm0",
756 						info);
757 		if (ret < 0)
758 			return dev_err_probe(&pdev->dev, ret,
759 					     "Failed to request alarm IRQ %d\n",
760 					     info->irq);
761 
762 		ret = devm_device_init_wakeup(&pdev->dev);
763 		if (ret < 0)
764 			return dev_err_probe(&pdev->dev, ret,
765 					     "Failed to init wakeup\n");
766 	}
767 
768 	if (of_device_is_system_power_controller(pdev->dev.parent->of_node) &&
769 	    info->device_type == S2MPG10) {
770 		ret = devm_register_sys_off_handler(&pdev->dev,
771 						    SYS_OFF_MODE_RESTART,
772 						    SYS_OFF_PRIO_HIGH + 1,
773 						    s5m_rtc_restart_s2mpg10,
774 						    info);
775 		if (ret)
776 			return dev_err_probe(&pdev->dev, ret,
777 				       "Failed to register restart handler\n");
778 	}
779 
780 	return devm_rtc_register_device(info->rtc_dev);
781 }
782 
783 #ifdef CONFIG_PM_SLEEP
784 static int s5m_rtc_resume(struct device *dev)
785 {
786 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
787 	int ret = 0;
788 
789 	if (info->irq && device_may_wakeup(dev))
790 		ret = disable_irq_wake(info->irq);
791 
792 	return ret;
793 }
794 
795 static int s5m_rtc_suspend(struct device *dev)
796 {
797 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
798 	int ret = 0;
799 
800 	if (info->irq && device_may_wakeup(dev))
801 		ret = enable_irq_wake(info->irq);
802 
803 	return ret;
804 }
805 #endif /* CONFIG_PM_SLEEP */
806 
807 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
808 
809 static const struct platform_device_id s5m_rtc_id[] = {
810 	{ "s5m-rtc",		S5M8767X },
811 	{ "s2mpg10-rtc",	S2MPG10 },
812 	{ "s2mps13-rtc",	S2MPS13X },
813 	{ "s2mps14-rtc",	S2MPS14X },
814 	{ "s2mps15-rtc",	S2MPS15X },
815 	{ },
816 };
817 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
818 
819 static struct platform_driver s5m_rtc_driver = {
820 	.driver		= {
821 		.name	= "s5m-rtc",
822 		.pm	= &s5m_rtc_pm_ops,
823 	},
824 	.probe		= s5m_rtc_probe,
825 	.id_table	= s5m_rtc_id,
826 };
827 
828 module_platform_driver(s5m_rtc_driver);
829 
830 /* Module information */
831 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
832 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
833 MODULE_LICENSE("GPL");
834