xref: /linux/fs/xfs/xfs_fsmap.c (revision b477ff98d903618a1ab8247861f2ea6e70c0f0f8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtbitmap.h"
27 #include "xfs_ag.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_rtrmap_btree.h"
30 #include "xfs_rtrefcount_btree.h"
31 
32 /* Convert an xfs_fsmap to an fsmap. */
33 static void
xfs_fsmap_from_internal(struct fsmap * dest,struct xfs_fsmap * src)34 xfs_fsmap_from_internal(
35 	struct fsmap		*dest,
36 	struct xfs_fsmap	*src)
37 {
38 	dest->fmr_device = src->fmr_device;
39 	dest->fmr_flags = src->fmr_flags;
40 	dest->fmr_physical = BBTOB(src->fmr_physical);
41 	dest->fmr_owner = src->fmr_owner;
42 	dest->fmr_offset = BBTOB(src->fmr_offset);
43 	dest->fmr_length = BBTOB(src->fmr_length);
44 	dest->fmr_reserved[0] = 0;
45 	dest->fmr_reserved[1] = 0;
46 	dest->fmr_reserved[2] = 0;
47 }
48 
49 /* Convert an fsmap to an xfs_fsmap. */
50 static void
xfs_fsmap_to_internal(struct xfs_fsmap * dest,struct fsmap * src)51 xfs_fsmap_to_internal(
52 	struct xfs_fsmap	*dest,
53 	struct fsmap		*src)
54 {
55 	dest->fmr_device = src->fmr_device;
56 	dest->fmr_flags = src->fmr_flags;
57 	dest->fmr_physical = BTOBBT(src->fmr_physical);
58 	dest->fmr_owner = src->fmr_owner;
59 	dest->fmr_offset = BTOBBT(src->fmr_offset);
60 	dest->fmr_length = BTOBBT(src->fmr_length);
61 }
62 
63 /* Convert an fsmap owner into an rmapbt owner. */
64 static int
xfs_fsmap_owner_to_rmap(struct xfs_rmap_irec * dest,const struct xfs_fsmap * src)65 xfs_fsmap_owner_to_rmap(
66 	struct xfs_rmap_irec	*dest,
67 	const struct xfs_fsmap	*src)
68 {
69 	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
70 		dest->rm_owner = src->fmr_owner;
71 		return 0;
72 	}
73 
74 	switch (src->fmr_owner) {
75 	case 0:			/* "lowest owner id possible" */
76 	case -1ULL:		/* "highest owner id possible" */
77 		dest->rm_owner = src->fmr_owner;
78 		break;
79 	case XFS_FMR_OWN_FREE:
80 		dest->rm_owner = XFS_RMAP_OWN_NULL;
81 		break;
82 	case XFS_FMR_OWN_UNKNOWN:
83 		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
84 		break;
85 	case XFS_FMR_OWN_FS:
86 		dest->rm_owner = XFS_RMAP_OWN_FS;
87 		break;
88 	case XFS_FMR_OWN_LOG:
89 		dest->rm_owner = XFS_RMAP_OWN_LOG;
90 		break;
91 	case XFS_FMR_OWN_AG:
92 		dest->rm_owner = XFS_RMAP_OWN_AG;
93 		break;
94 	case XFS_FMR_OWN_INOBT:
95 		dest->rm_owner = XFS_RMAP_OWN_INOBT;
96 		break;
97 	case XFS_FMR_OWN_INODES:
98 		dest->rm_owner = XFS_RMAP_OWN_INODES;
99 		break;
100 	case XFS_FMR_OWN_REFC:
101 		dest->rm_owner = XFS_RMAP_OWN_REFC;
102 		break;
103 	case XFS_FMR_OWN_COW:
104 		dest->rm_owner = XFS_RMAP_OWN_COW;
105 		break;
106 	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
107 		/* fall through */
108 	default:
109 		return -EINVAL;
110 	}
111 	return 0;
112 }
113 
114 /* Convert an rmapbt owner into an fsmap owner. */
115 static int
xfs_fsmap_owner_from_frec(struct xfs_fsmap * dest,const struct xfs_fsmap_irec * frec)116 xfs_fsmap_owner_from_frec(
117 	struct xfs_fsmap		*dest,
118 	const struct xfs_fsmap_irec	*frec)
119 {
120 	dest->fmr_flags = 0;
121 	if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
122 		dest->fmr_owner = frec->owner;
123 		return 0;
124 	}
125 	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
126 
127 	switch (frec->owner) {
128 	case XFS_RMAP_OWN_FS:
129 		dest->fmr_owner = XFS_FMR_OWN_FS;
130 		break;
131 	case XFS_RMAP_OWN_LOG:
132 		dest->fmr_owner = XFS_FMR_OWN_LOG;
133 		break;
134 	case XFS_RMAP_OWN_AG:
135 		dest->fmr_owner = XFS_FMR_OWN_AG;
136 		break;
137 	case XFS_RMAP_OWN_INOBT:
138 		dest->fmr_owner = XFS_FMR_OWN_INOBT;
139 		break;
140 	case XFS_RMAP_OWN_INODES:
141 		dest->fmr_owner = XFS_FMR_OWN_INODES;
142 		break;
143 	case XFS_RMAP_OWN_REFC:
144 		dest->fmr_owner = XFS_FMR_OWN_REFC;
145 		break;
146 	case XFS_RMAP_OWN_COW:
147 		dest->fmr_owner = XFS_FMR_OWN_COW;
148 		break;
149 	case XFS_RMAP_OWN_NULL:	/* "free" */
150 		dest->fmr_owner = XFS_FMR_OWN_FREE;
151 		break;
152 	default:
153 		ASSERT(0);
154 		return -EFSCORRUPTED;
155 	}
156 	return 0;
157 }
158 
159 /* getfsmap query state */
160 struct xfs_getfsmap_info {
161 	struct xfs_fsmap_head	*head;
162 	struct fsmap		*fsmap_recs;	/* mapping records */
163 	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
164 	struct xfs_group	*group;		/* group info, if applicable */
165 	xfs_daddr_t		next_daddr;	/* next daddr we expect */
166 	/* daddr of low fsmap key when we're using the rtbitmap */
167 	xfs_daddr_t		low_daddr;
168 	/* daddr of high fsmap key, or the last daddr on the device */
169 	xfs_daddr_t		end_daddr;
170 	u64			missing_owner;	/* owner of holes */
171 	u32			dev;		/* device id */
172 	/*
173 	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
174 	 * is the second (or later) call to retrieve the recordset in pieces.
175 	 * xfs_getfsmap_rec_before_start will compare all records retrieved
176 	 * by the rmapbt query to filter out any records that start before
177 	 * the last record.
178 	 */
179 	struct xfs_rmap_irec	low;
180 	struct xfs_rmap_irec	high;		/* high rmap key */
181 	bool			last;		/* last extent? */
182 };
183 
184 /* Associate a device with a getfsmap handler. */
185 struct xfs_getfsmap_dev {
186 	u32			dev;
187 	int			(*fn)(struct xfs_trans *tp,
188 				      const struct xfs_fsmap *keys,
189 				      struct xfs_getfsmap_info *info);
190 	sector_t		nr_sectors;
191 };
192 
193 /* Compare two getfsmap device handlers. */
194 static int
xfs_getfsmap_dev_compare(const void * p1,const void * p2)195 xfs_getfsmap_dev_compare(
196 	const void			*p1,
197 	const void			*p2)
198 {
199 	const struct xfs_getfsmap_dev	*d1 = p1;
200 	const struct xfs_getfsmap_dev	*d2 = p2;
201 
202 	return d1->dev - d2->dev;
203 }
204 
205 /* Decide if this mapping is shared. */
206 STATIC int
xfs_getfsmap_is_shared(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec,bool * stat)207 xfs_getfsmap_is_shared(
208 	struct xfs_trans		*tp,
209 	struct xfs_getfsmap_info	*info,
210 	const struct xfs_fsmap_irec	*frec,
211 	bool				*stat)
212 {
213 	struct xfs_mount		*mp = tp->t_mountp;
214 	struct xfs_btree_cur		*cur;
215 	xfs_agblock_t			fbno;
216 	xfs_extlen_t			flen = 0;
217 	int				error;
218 
219 	*stat = false;
220 	if (!xfs_has_reflink(mp) || !info->group)
221 		return 0;
222 
223 	if (info->group->xg_type == XG_TYPE_RTG)
224 		cur = xfs_rtrefcountbt_init_cursor(tp, to_rtg(info->group));
225 	else
226 		cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
227 				to_perag(info->group));
228 
229 	/* Are there any shared blocks here? */
230 	error = xfs_refcount_find_shared(cur, frec->rec_key,
231 			XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
232 			false);
233 
234 	xfs_btree_del_cursor(cur, error);
235 	if (error)
236 		return error;
237 
238 	*stat = flen > 0;
239 	return 0;
240 }
241 
242 static inline void
xfs_getfsmap_format(struct xfs_mount * mp,struct xfs_fsmap * xfm,struct xfs_getfsmap_info * info)243 xfs_getfsmap_format(
244 	struct xfs_mount		*mp,
245 	struct xfs_fsmap		*xfm,
246 	struct xfs_getfsmap_info	*info)
247 {
248 	struct fsmap			*rec;
249 
250 	trace_xfs_getfsmap_mapping(mp, xfm);
251 
252 	rec = &info->fsmap_recs[info->head->fmh_entries++];
253 	xfs_fsmap_from_internal(rec, xfm);
254 }
255 
256 static inline bool
xfs_getfsmap_frec_before_start(struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec)257 xfs_getfsmap_frec_before_start(
258 	struct xfs_getfsmap_info	*info,
259 	const struct xfs_fsmap_irec	*frec)
260 {
261 	if (info->low_daddr != XFS_BUF_DADDR_NULL)
262 		return frec->start_daddr < info->low_daddr;
263 	if (info->low.rm_blockcount) {
264 		struct xfs_rmap_irec	rec = {
265 			.rm_startblock	= frec->rec_key,
266 			.rm_owner	= frec->owner,
267 			.rm_flags	= frec->rm_flags,
268 		};
269 
270 		return xfs_rmap_compare(&rec, &info->low) < 0;
271 	}
272 
273 	return false;
274 }
275 
276 /*
277  * Format a reverse mapping for getfsmap, having translated rm_startblock
278  * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
279  * length could be larger than rm_blockcount in struct xfs_rmap_irec.
280  */
281 STATIC int
xfs_getfsmap_helper(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec)282 xfs_getfsmap_helper(
283 	struct xfs_trans		*tp,
284 	struct xfs_getfsmap_info	*info,
285 	const struct xfs_fsmap_irec	*frec)
286 {
287 	struct xfs_fsmap		fmr;
288 	struct xfs_mount		*mp = tp->t_mountp;
289 	bool				shared;
290 	int				error = 0;
291 
292 	if (fatal_signal_pending(current))
293 		return -EINTR;
294 
295 	/*
296 	 * Filter out records that start before our startpoint, if the
297 	 * caller requested that.
298 	 */
299 	if (xfs_getfsmap_frec_before_start(info, frec))
300 		goto out;
301 
302 	/* Are we just counting mappings? */
303 	if (info->head->fmh_count == 0) {
304 		if (info->head->fmh_entries == UINT_MAX)
305 			return -ECANCELED;
306 
307 		if (frec->start_daddr > info->next_daddr)
308 			info->head->fmh_entries++;
309 
310 		if (info->last)
311 			return 0;
312 
313 		info->head->fmh_entries++;
314 		goto out;
315 	}
316 
317 	/*
318 	 * If the record starts past the last physical block we saw,
319 	 * then we've found a gap.  Report the gap as being owned by
320 	 * whatever the caller specified is the missing owner.
321 	 */
322 	if (frec->start_daddr > info->next_daddr) {
323 		if (info->head->fmh_entries >= info->head->fmh_count)
324 			return -ECANCELED;
325 
326 		fmr.fmr_device = info->dev;
327 		fmr.fmr_physical = info->next_daddr;
328 		fmr.fmr_owner = info->missing_owner;
329 		fmr.fmr_offset = 0;
330 		fmr.fmr_length = frec->start_daddr - info->next_daddr;
331 		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
332 		xfs_getfsmap_format(mp, &fmr, info);
333 	}
334 
335 	if (info->last)
336 		goto out;
337 
338 	/* Fill out the extent we found */
339 	if (info->head->fmh_entries >= info->head->fmh_count)
340 		return -ECANCELED;
341 
342 	trace_xfs_fsmap_mapping(mp, info->dev,
343 			info->group ? info->group->xg_gno : NULLAGNUMBER,
344 			frec);
345 
346 	fmr.fmr_device = info->dev;
347 	fmr.fmr_physical = frec->start_daddr;
348 	error = xfs_fsmap_owner_from_frec(&fmr, frec);
349 	if (error)
350 		return error;
351 	fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
352 	fmr.fmr_length = frec->len_daddr;
353 	if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
354 		fmr.fmr_flags |= FMR_OF_PREALLOC;
355 	if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
356 		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
357 	if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
358 		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
359 	if (fmr.fmr_flags == 0) {
360 		error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
361 		if (error)
362 			return error;
363 		if (shared)
364 			fmr.fmr_flags |= FMR_OF_SHARED;
365 	}
366 
367 	xfs_getfsmap_format(mp, &fmr, info);
368 out:
369 	info->next_daddr = max(info->next_daddr,
370 			       frec->start_daddr + frec->len_daddr);
371 	return 0;
372 }
373 
374 static inline int
xfs_getfsmap_group_helper(struct xfs_getfsmap_info * info,struct xfs_trans * tp,struct xfs_group * xg,xfs_agblock_t startblock,xfs_extlen_t blockcount,struct xfs_fsmap_irec * frec)375 xfs_getfsmap_group_helper(
376 	struct xfs_getfsmap_info	*info,
377 	struct xfs_trans		*tp,
378 	struct xfs_group		*xg,
379 	xfs_agblock_t			startblock,
380 	xfs_extlen_t			blockcount,
381 	struct xfs_fsmap_irec		*frec)
382 {
383 	/*
384 	 * For an info->last query, we're looking for a gap between the last
385 	 * mapping emitted and the high key specified by userspace.  If the
386 	 * user's query spans less than 1 fsblock, then info->high and
387 	 * info->low will have the same rm_startblock, which causes rec_daddr
388 	 * and next_daddr to be the same.  Therefore, use the end_daddr that
389 	 * we calculated from userspace's high key to synthesize the record.
390 	 * Note that if the btree query found a mapping, there won't be a gap.
391 	 */
392 	if (info->last)
393 		frec->start_daddr = info->end_daddr + 1;
394 	else
395 		frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
396 
397 	frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
398 	return xfs_getfsmap_helper(tp, info, frec);
399 }
400 
401 /* Transform a rmapbt irec into a fsmap */
402 STATIC int
xfs_getfsmap_rmapbt_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)403 xfs_getfsmap_rmapbt_helper(
404 	struct xfs_btree_cur		*cur,
405 	const struct xfs_rmap_irec	*rec,
406 	void				*priv)
407 {
408 	struct xfs_fsmap_irec		frec = {
409 		.owner			= rec->rm_owner,
410 		.offset			= rec->rm_offset,
411 		.rm_flags		= rec->rm_flags,
412 		.rec_key		= rec->rm_startblock,
413 	};
414 	struct xfs_getfsmap_info	*info = priv;
415 
416 	return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
417 			rec->rm_startblock, rec->rm_blockcount, &frec);
418 }
419 
420 /* Transform a bnobt irec into a fsmap */
421 STATIC int
xfs_getfsmap_datadev_bnobt_helper(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * rec,void * priv)422 xfs_getfsmap_datadev_bnobt_helper(
423 	struct xfs_btree_cur		*cur,
424 	const struct xfs_alloc_rec_incore *rec,
425 	void				*priv)
426 {
427 	struct xfs_fsmap_irec		frec = {
428 		.owner			= XFS_RMAP_OWN_NULL, /* "free" */
429 		.rec_key		= rec->ar_startblock,
430 	};
431 	struct xfs_getfsmap_info	*info = priv;
432 
433 	return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
434 			rec->ar_startblock, rec->ar_blockcount, &frec);
435 }
436 
437 /* Set rmap flags based on the getfsmap flags */
438 static void
xfs_getfsmap_set_irec_flags(struct xfs_rmap_irec * irec,const struct xfs_fsmap * fmr)439 xfs_getfsmap_set_irec_flags(
440 	struct xfs_rmap_irec	*irec,
441 	const struct xfs_fsmap	*fmr)
442 {
443 	irec->rm_flags = 0;
444 	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
445 		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
446 	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
447 		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
448 	if (fmr->fmr_flags & FMR_OF_PREALLOC)
449 		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
450 }
451 
452 static inline bool
rmap_not_shareable(struct xfs_mount * mp,const struct xfs_rmap_irec * r)453 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
454 {
455 	if (!xfs_has_reflink(mp))
456 		return true;
457 	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
458 		return true;
459 	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
460 			   XFS_RMAP_UNWRITTEN))
461 		return true;
462 	return false;
463 }
464 
465 /* Execute a getfsmap query against the regular data device. */
466 STATIC int
__xfs_getfsmap_datadev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info,int (* query_fn)(struct xfs_trans *,struct xfs_getfsmap_info *,struct xfs_btree_cur **,void *),void * priv)467 __xfs_getfsmap_datadev(
468 	struct xfs_trans		*tp,
469 	const struct xfs_fsmap		*keys,
470 	struct xfs_getfsmap_info	*info,
471 	int				(*query_fn)(struct xfs_trans *,
472 						    struct xfs_getfsmap_info *,
473 						    struct xfs_btree_cur **,
474 						    void *),
475 	void				*priv)
476 {
477 	struct xfs_mount		*mp = tp->t_mountp;
478 	struct xfs_perag		*pag = NULL;
479 	struct xfs_btree_cur		*bt_cur = NULL;
480 	xfs_fsblock_t			start_fsb;
481 	xfs_fsblock_t			end_fsb;
482 	xfs_agnumber_t			start_ag, end_ag;
483 	uint64_t			eofs;
484 	int				error = 0;
485 
486 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
487 	if (keys[0].fmr_physical >= eofs)
488 		return 0;
489 	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
490 	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
491 
492 	/*
493 	 * Convert the fsmap low/high keys to AG based keys.  Initialize
494 	 * low to the fsmap low key and max out the high key to the end
495 	 * of the AG.
496 	 */
497 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
498 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
499 	if (error)
500 		return error;
501 	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
502 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
503 
504 	/* Adjust the low key if we are continuing from where we left off. */
505 	if (info->low.rm_blockcount == 0) {
506 		/* No previous record from which to continue */
507 	} else if (rmap_not_shareable(mp, &info->low)) {
508 		/* Last record seen was an unshareable extent */
509 		info->low.rm_owner = 0;
510 		info->low.rm_offset = 0;
511 
512 		start_fsb += info->low.rm_blockcount;
513 		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
514 			return 0;
515 	} else {
516 		/* Last record seen was a shareable file data extent */
517 		info->low.rm_offset += info->low.rm_blockcount;
518 	}
519 	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
520 
521 	info->high.rm_startblock = -1U;
522 	info->high.rm_owner = ULLONG_MAX;
523 	info->high.rm_offset = ULLONG_MAX;
524 	info->high.rm_blockcount = 0;
525 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
526 
527 	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
528 	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
529 
530 	while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
531 		/*
532 		 * Set the AG high key from the fsmap high key if this
533 		 * is the last AG that we're querying.
534 		 */
535 		info->group = pag_group(pag);
536 		if (pag_agno(pag) == end_ag) {
537 			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
538 					end_fsb);
539 			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
540 					keys[1].fmr_offset);
541 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
542 			if (error)
543 				break;
544 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
545 		}
546 
547 		if (bt_cur) {
548 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
549 			bt_cur = NULL;
550 			xfs_trans_brelse(tp, info->agf_bp);
551 			info->agf_bp = NULL;
552 		}
553 
554 		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
555 		if (error)
556 			break;
557 
558 		trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
559 				&info->low);
560 		trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
561 				&info->high);
562 
563 		error = query_fn(tp, info, &bt_cur, priv);
564 		if (error)
565 			break;
566 
567 		/*
568 		 * Set the AG low key to the start of the AG prior to
569 		 * moving on to the next AG.
570 		 */
571 		if (pag_agno(pag) == start_ag)
572 			memset(&info->low, 0, sizeof(info->low));
573 
574 		/*
575 		 * If this is the last AG, report any gap at the end of it
576 		 * before we drop the reference to the perag when the loop
577 		 * terminates.
578 		 */
579 		if (pag_agno(pag) == end_ag) {
580 			info->last = true;
581 			error = query_fn(tp, info, &bt_cur, priv);
582 			if (error)
583 				break;
584 		}
585 		info->group = NULL;
586 	}
587 
588 	if (bt_cur)
589 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
590 							 XFS_BTREE_NOERROR);
591 	if (info->agf_bp) {
592 		xfs_trans_brelse(tp, info->agf_bp);
593 		info->agf_bp = NULL;
594 	}
595 	if (info->group) {
596 		xfs_perag_rele(pag);
597 		info->group = NULL;
598 	} else if (pag) {
599 		/* loop termination case */
600 		xfs_perag_rele(pag);
601 	}
602 
603 	return error;
604 }
605 
606 /* Actually query the rmap btree. */
607 STATIC int
xfs_getfsmap_datadev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)608 xfs_getfsmap_datadev_rmapbt_query(
609 	struct xfs_trans		*tp,
610 	struct xfs_getfsmap_info	*info,
611 	struct xfs_btree_cur		**curpp,
612 	void				*priv)
613 {
614 	/* Report any gap at the end of the last AG. */
615 	if (info->last)
616 		return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
617 
618 	/* Allocate cursor for this AG and query_range it. */
619 	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
620 			to_perag(info->group));
621 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
622 			xfs_getfsmap_rmapbt_helper, info);
623 }
624 
625 /* Execute a getfsmap query against the regular data device rmapbt. */
626 STATIC int
xfs_getfsmap_datadev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)627 xfs_getfsmap_datadev_rmapbt(
628 	struct xfs_trans		*tp,
629 	const struct xfs_fsmap		*keys,
630 	struct xfs_getfsmap_info	*info)
631 {
632 	info->missing_owner = XFS_FMR_OWN_FREE;
633 	return __xfs_getfsmap_datadev(tp, keys, info,
634 			xfs_getfsmap_datadev_rmapbt_query, NULL);
635 }
636 
637 /* Actually query the bno btree. */
638 STATIC int
xfs_getfsmap_datadev_bnobt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)639 xfs_getfsmap_datadev_bnobt_query(
640 	struct xfs_trans		*tp,
641 	struct xfs_getfsmap_info	*info,
642 	struct xfs_btree_cur		**curpp,
643 	void				*priv)
644 {
645 	struct xfs_alloc_rec_incore	*key = priv;
646 
647 	/* Report any gap at the end of the last AG. */
648 	if (info->last)
649 		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
650 
651 	/* Allocate cursor for this AG and query_range it. */
652 	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
653 			to_perag(info->group));
654 	key->ar_startblock = info->low.rm_startblock;
655 	key[1].ar_startblock = info->high.rm_startblock;
656 	return xfs_alloc_query_range(*curpp, key, &key[1],
657 			xfs_getfsmap_datadev_bnobt_helper, info);
658 }
659 
660 /* Execute a getfsmap query against the regular data device's bnobt. */
661 STATIC int
xfs_getfsmap_datadev_bnobt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)662 xfs_getfsmap_datadev_bnobt(
663 	struct xfs_trans		*tp,
664 	const struct xfs_fsmap		*keys,
665 	struct xfs_getfsmap_info	*info)
666 {
667 	struct xfs_alloc_rec_incore	akeys[2];
668 
669 	memset(akeys, 0, sizeof(akeys));
670 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
671 	return __xfs_getfsmap_datadev(tp, keys, info,
672 			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
673 }
674 
675 /* Execute a getfsmap query against the log device. */
676 STATIC int
xfs_getfsmap_logdev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)677 xfs_getfsmap_logdev(
678 	struct xfs_trans		*tp,
679 	const struct xfs_fsmap		*keys,
680 	struct xfs_getfsmap_info	*info)
681 {
682 	struct xfs_fsmap_irec		frec = {
683 		.start_daddr		= 0,
684 		.rec_key		= 0,
685 		.owner			= XFS_RMAP_OWN_LOG,
686 	};
687 	struct xfs_mount		*mp = tp->t_mountp;
688 	xfs_fsblock_t			start_fsb, end_fsb;
689 	uint64_t			eofs;
690 
691 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
692 	if (keys[0].fmr_physical >= eofs)
693 		return 0;
694 	start_fsb = XFS_BB_TO_FSBT(mp,
695 				keys[0].fmr_physical + keys[0].fmr_length);
696 	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
697 
698 	/* Adjust the low key if we are continuing from where we left off. */
699 	if (keys[0].fmr_length > 0)
700 		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
701 
702 	trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
703 	trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
704 
705 	if (start_fsb > 0)
706 		return 0;
707 
708 	/* Fabricate an rmap entry for the external log device. */
709 	frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
710 	return xfs_getfsmap_helper(tp, info, &frec);
711 }
712 
713 #ifdef CONFIG_XFS_RT
714 /* Transform a rtbitmap "record" into a fsmap */
715 STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(struct xfs_rtgroup * rtg,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)716 xfs_getfsmap_rtdev_rtbitmap_helper(
717 	struct xfs_rtgroup		*rtg,
718 	struct xfs_trans		*tp,
719 	const struct xfs_rtalloc_rec	*rec,
720 	void				*priv)
721 {
722 	struct xfs_fsmap_irec		frec = {
723 		.owner			= XFS_RMAP_OWN_NULL, /* "free" */
724 	};
725 	struct xfs_mount		*mp = rtg_mount(rtg);
726 	struct xfs_getfsmap_info	*info = priv;
727 	xfs_rtblock_t			start_rtb =
728 				xfs_rtx_to_rtb(rtg, rec->ar_startext);
729 	uint64_t			rtbcount =
730 				xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
731 
732 	/*
733 	 * For an info->last query, we're looking for a gap between the last
734 	 * mapping emitted and the high key specified by userspace.  If the
735 	 * user's query spans less than 1 fsblock, then info->high and
736 	 * info->low will have the same rm_startblock, which causes rec_daddr
737 	 * and next_daddr to be the same.  Therefore, use the end_daddr that
738 	 * we calculated from userspace's high key to synthesize the record.
739 	 * Note that if the btree query found a mapping, there won't be a gap.
740 	 */
741 	if (info->last)
742 		frec.start_daddr = info->end_daddr + 1;
743 	else
744 		frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
745 
746 	frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
747 	return xfs_getfsmap_helper(tp, info, &frec);
748 }
749 
750 /* Execute a getfsmap query against the realtime device rtbitmap. */
751 STATIC int
xfs_getfsmap_rtdev_rtbitmap(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)752 xfs_getfsmap_rtdev_rtbitmap(
753 	struct xfs_trans		*tp,
754 	const struct xfs_fsmap		*keys,
755 	struct xfs_getfsmap_info	*info)
756 {
757 	struct xfs_mount		*mp = tp->t_mountp;
758 	xfs_rtblock_t			start_rtbno, end_rtbno;
759 	xfs_rtxnum_t			start_rtx, end_rtx;
760 	xfs_rgnumber_t			start_rgno, end_rgno;
761 	struct xfs_rtgroup		*rtg = NULL;
762 	uint64_t			eofs;
763 	int				error;
764 
765 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
766 	if (keys[0].fmr_physical >= eofs)
767 		return 0;
768 
769 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
770 
771 	/* Adjust the low key if we are continuing from where we left off. */
772 	start_rtbno = xfs_daddr_to_rtb(mp,
773 			keys[0].fmr_physical + keys[0].fmr_length);
774 	if (keys[0].fmr_length > 0) {
775 		info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
776 		if (info->low_daddr >= eofs)
777 			return 0;
778 	}
779 	start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
780 	start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
781 
782 	end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
783 	end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
784 
785 	trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
786 	trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
787 
788 	end_rtx = -1ULL;
789 
790 	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
791 		if (rtg_rgno(rtg) == end_rgno)
792 			end_rtx = xfs_rtb_to_rtx(mp,
793 					end_rtbno + mp->m_sb.sb_rextsize - 1);
794 
795 		info->group = rtg_group(rtg);
796 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
797 		error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
798 				xfs_getfsmap_rtdev_rtbitmap_helper, info);
799 		if (error)
800 			break;
801 
802 		/*
803 		 * Report any gaps at the end of the rtbitmap by simulating a
804 		 * zero-length free extent starting at the rtx after the end
805 		 * of the query range.
806 		 */
807 		if (rtg_rgno(rtg) == end_rgno) {
808 			struct xfs_rtalloc_rec	ahigh = {
809 				.ar_startext	= min(end_rtx + 1,
810 						      rtg->rtg_extents),
811 			};
812 
813 			info->last = true;
814 			error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
815 					&ahigh, info);
816 			if (error)
817 				break;
818 		}
819 
820 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
821 		info->group = NULL;
822 		start_rtx = 0;
823 	}
824 
825 	/* loop termination case */
826 	if (rtg) {
827 		if (info->group) {
828 			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
829 			info->group = NULL;
830 		}
831 		xfs_rtgroup_rele(rtg);
832 	}
833 
834 	return error;
835 }
836 
837 /* Transform a realtime rmapbt record into a fsmap */
838 STATIC int
xfs_getfsmap_rtdev_rmapbt_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)839 xfs_getfsmap_rtdev_rmapbt_helper(
840 	struct xfs_btree_cur		*cur,
841 	const struct xfs_rmap_irec	*rec,
842 	void				*priv)
843 {
844 	struct xfs_fsmap_irec		frec = {
845 		.owner			= rec->rm_owner,
846 		.offset			= rec->rm_offset,
847 		.rm_flags		= rec->rm_flags,
848 		.rec_key		= rec->rm_startblock,
849 	};
850 	struct xfs_getfsmap_info	*info = priv;
851 
852 	return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
853 			rec->rm_startblock, rec->rm_blockcount, &frec);
854 }
855 
856 /* Actually query the rtrmap btree. */
857 STATIC int
xfs_getfsmap_rtdev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp)858 xfs_getfsmap_rtdev_rmapbt_query(
859 	struct xfs_trans		*tp,
860 	struct xfs_getfsmap_info	*info,
861 	struct xfs_btree_cur		**curpp)
862 {
863 	struct xfs_rtgroup		*rtg = to_rtg(info->group);
864 
865 	/* Query the rtrmapbt */
866 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
867 	*curpp = xfs_rtrmapbt_init_cursor(tp, rtg);
868 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
869 			xfs_getfsmap_rtdev_rmapbt_helper, info);
870 }
871 
872 /* Execute a getfsmap query against the realtime device rmapbt. */
873 STATIC int
xfs_getfsmap_rtdev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)874 xfs_getfsmap_rtdev_rmapbt(
875 	struct xfs_trans		*tp,
876 	const struct xfs_fsmap		*keys,
877 	struct xfs_getfsmap_info	*info)
878 {
879 	struct xfs_mount		*mp = tp->t_mountp;
880 	struct xfs_rtgroup		*rtg = NULL;
881 	struct xfs_btree_cur		*bt_cur = NULL;
882 	xfs_rtblock_t			start_rtb;
883 	xfs_rtblock_t			end_rtb;
884 	xfs_rgnumber_t			start_rg, end_rg;
885 	uint64_t			eofs;
886 	int				error = 0;
887 
888 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
889 	if (keys[0].fmr_physical >= eofs)
890 		return 0;
891 	start_rtb = xfs_daddr_to_rtb(mp, keys[0].fmr_physical);
892 	end_rtb = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
893 
894 	info->missing_owner = XFS_FMR_OWN_FREE;
895 
896 	/*
897 	 * Convert the fsmap low/high keys to rtgroup based keys.  Initialize
898 	 * low to the fsmap low key and max out the high key to the end
899 	 * of the rtgroup.
900 	 */
901 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
902 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
903 	if (error)
904 		return error;
905 	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
906 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
907 
908 	/* Adjust the low key if we are continuing from where we left off. */
909 	if (info->low.rm_blockcount == 0) {
910 		/* No previous record from which to continue */
911 	} else if (rmap_not_shareable(mp, &info->low)) {
912 		/* Last record seen was an unshareable extent */
913 		info->low.rm_owner = 0;
914 		info->low.rm_offset = 0;
915 
916 		start_rtb += info->low.rm_blockcount;
917 		if (xfs_rtb_to_daddr(mp, start_rtb) >= eofs)
918 			return 0;
919 	} else {
920 		/* Last record seen was a shareable file data extent */
921 		info->low.rm_offset += info->low.rm_blockcount;
922 	}
923 	info->low.rm_startblock = xfs_rtb_to_rgbno(mp, start_rtb);
924 
925 	info->high.rm_startblock = -1U;
926 	info->high.rm_owner = ULLONG_MAX;
927 	info->high.rm_offset = ULLONG_MAX;
928 	info->high.rm_blockcount = 0;
929 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
930 
931 	start_rg = xfs_rtb_to_rgno(mp, start_rtb);
932 	end_rg = xfs_rtb_to_rgno(mp, end_rtb);
933 
934 	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rg, end_rg))) {
935 		/*
936 		 * Set the rtgroup high key from the fsmap high key if this
937 		 * is the last rtgroup that we're querying.
938 		 */
939 		info->group = rtg_group(rtg);
940 		if (rtg_rgno(rtg) == end_rg) {
941 			info->high.rm_startblock =
942 				xfs_rtb_to_rgbno(mp, end_rtb);
943 			info->high.rm_offset =
944 				XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
945 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
946 			if (error)
947 				break;
948 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
949 		}
950 
951 		if (bt_cur) {
952 			xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
953 					XFS_RTGLOCK_RMAP |
954 					XFS_RTGLOCK_REFCOUNT);
955 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
956 			bt_cur = NULL;
957 		}
958 
959 		trace_xfs_fsmap_low_group_key(mp, info->dev, rtg_rgno(rtg),
960 				&info->low);
961 		trace_xfs_fsmap_high_group_key(mp, info->dev, rtg_rgno(rtg),
962 				&info->high);
963 
964 		error = xfs_getfsmap_rtdev_rmapbt_query(tp, info, &bt_cur);
965 		if (error)
966 			break;
967 
968 		/*
969 		 * Set the rtgroup low key to the start of the rtgroup prior to
970 		 * moving on to the next rtgroup.
971 		 */
972 		if (rtg_rgno(rtg) == start_rg)
973 			memset(&info->low, 0, sizeof(info->low));
974 
975 		/*
976 		 * If this is the last rtgroup, report any gap at the end of it
977 		 * before we drop the reference to the perag when the loop
978 		 * terminates.
979 		 */
980 		if (rtg_rgno(rtg) == end_rg) {
981 			info->last = true;
982 			error = xfs_getfsmap_rtdev_rmapbt_helper(bt_cur,
983 					&info->high, info);
984 			if (error)
985 				break;
986 		}
987 		info->group = NULL;
988 	}
989 
990 	if (bt_cur) {
991 		xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
992 				XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
993 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
994 							 XFS_BTREE_NOERROR);
995 	}
996 
997 	/* loop termination case */
998 	if (rtg) {
999 		info->group = NULL;
1000 		xfs_rtgroup_rele(rtg);
1001 	}
1002 
1003 	return error;
1004 }
1005 #endif /* CONFIG_XFS_RT */
1006 
1007 /* Do we recognize the device? */
1008 STATIC bool
xfs_getfsmap_is_valid_device(struct xfs_mount * mp,struct xfs_fsmap * fm)1009 xfs_getfsmap_is_valid_device(
1010 	struct xfs_mount	*mp,
1011 	struct xfs_fsmap	*fm)
1012 {
1013 	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
1014 	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
1015 		return true;
1016 	if (mp->m_logdev_targp &&
1017 	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
1018 		return true;
1019 	if (mp->m_rtdev_targp &&
1020 	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
1021 		return true;
1022 	return false;
1023 }
1024 
1025 /* Ensure that the low key is less than the high key. */
1026 STATIC bool
xfs_getfsmap_check_keys(struct xfs_fsmap * low_key,struct xfs_fsmap * high_key)1027 xfs_getfsmap_check_keys(
1028 	struct xfs_fsmap		*low_key,
1029 	struct xfs_fsmap		*high_key)
1030 {
1031 	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
1032 		if (low_key->fmr_offset)
1033 			return false;
1034 	}
1035 	if (high_key->fmr_flags != -1U &&
1036 	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
1037 				    FMR_OF_EXTENT_MAP))) {
1038 		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
1039 			return false;
1040 	}
1041 	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
1042 		return false;
1043 
1044 	if (low_key->fmr_device > high_key->fmr_device)
1045 		return false;
1046 	if (low_key->fmr_device < high_key->fmr_device)
1047 		return true;
1048 
1049 	if (low_key->fmr_physical > high_key->fmr_physical)
1050 		return false;
1051 	if (low_key->fmr_physical < high_key->fmr_physical)
1052 		return true;
1053 
1054 	if (low_key->fmr_owner > high_key->fmr_owner)
1055 		return false;
1056 	if (low_key->fmr_owner < high_key->fmr_owner)
1057 		return true;
1058 
1059 	if (low_key->fmr_offset > high_key->fmr_offset)
1060 		return false;
1061 	if (low_key->fmr_offset < high_key->fmr_offset)
1062 		return true;
1063 
1064 	return false;
1065 }
1066 
1067 /*
1068  * There are only two devices if we didn't configure RT devices at build time.
1069  */
1070 #ifdef CONFIG_XFS_RT
1071 #define XFS_GETFSMAP_DEVS	3
1072 #else
1073 #define XFS_GETFSMAP_DEVS	2
1074 #endif /* CONFIG_XFS_RT */
1075 
1076 /*
1077  * Get filesystem's extents as described in head, and format for output. Fills
1078  * in the supplied records array until there are no more reverse mappings to
1079  * return or head.fmh_entries == head.fmh_count.  In the second case, this
1080  * function returns -ECANCELED to indicate that more records would have been
1081  * returned.
1082  *
1083  * Key to Confusion
1084  * ----------------
1085  * There are multiple levels of keys and counters at work here:
1086  * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
1087  *				   these reflect fs-wide sector addrs.
1088  * dkeys			-- fmh_keys used to query each device;
1089  *				   these are fmh_keys but w/ the low key
1090  *				   bumped up by fmr_length.
1091  * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
1092  *				   is how we detect gaps in the fsmap
1093 				   records and report them.
1094  * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
1095  *				   dkeys; used to query the metadata.
1096  */
1097 STATIC int
xfs_getfsmap(struct xfs_mount * mp,struct xfs_fsmap_head * head,struct fsmap * fsmap_recs)1098 xfs_getfsmap(
1099 	struct xfs_mount		*mp,
1100 	struct xfs_fsmap_head		*head,
1101 	struct fsmap			*fsmap_recs)
1102 {
1103 	struct xfs_trans		*tp = NULL;
1104 	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
1105 	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
1106 	struct xfs_getfsmap_info	info = {
1107 		.fsmap_recs		= fsmap_recs,
1108 		.head			= head,
1109 	};
1110 	bool				use_rmap;
1111 	int				i;
1112 	int				error = 0;
1113 
1114 	if (head->fmh_iflags & ~FMH_IF_VALID)
1115 		return -EINVAL;
1116 	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
1117 	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
1118 		return -EINVAL;
1119 	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
1120 		return -EINVAL;
1121 
1122 	use_rmap = xfs_has_rmapbt(mp) &&
1123 		   has_capability_noaudit(current, CAP_SYS_ADMIN);
1124 	head->fmh_entries = 0;
1125 
1126 	/* Set up our device handlers. */
1127 	memset(handlers, 0, sizeof(handlers));
1128 	handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1129 	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
1130 	if (use_rmap)
1131 		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
1132 	else
1133 		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
1134 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1135 		handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
1136 						       mp->m_sb.sb_logblocks);
1137 		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
1138 		handlers[1].fn = xfs_getfsmap_logdev;
1139 	}
1140 #ifdef CONFIG_XFS_RT
1141 	if (mp->m_rtdev_targp) {
1142 		handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
1143 		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
1144 		if (use_rmap)
1145 			handlers[2].fn = xfs_getfsmap_rtdev_rmapbt;
1146 		else
1147 			handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
1148 	}
1149 #endif /* CONFIG_XFS_RT */
1150 
1151 	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
1152 			xfs_getfsmap_dev_compare);
1153 
1154 	/*
1155 	 * To continue where we left off, we allow userspace to use the
1156 	 * last mapping from a previous call as the low key of the next.
1157 	 * This is identified by a non-zero length in the low key. We
1158 	 * have to increment the low key in this scenario to ensure we
1159 	 * don't return the same mapping again, and instead return the
1160 	 * very next mapping.
1161 	 *
1162 	 * If the low key mapping refers to file data, the same physical
1163 	 * blocks could be mapped to several other files/offsets.
1164 	 * According to rmapbt record ordering, the minimal next
1165 	 * possible record for the block range is the next starting
1166 	 * offset in the same inode. Therefore, each fsmap backend bumps
1167 	 * the file offset to continue the search appropriately.  For
1168 	 * all other low key mapping types (attr blocks, metadata), each
1169 	 * fsmap backend bumps the physical offset as there can be no
1170 	 * other mapping for the same physical block range.
1171 	 */
1172 	dkeys[0] = head->fmh_keys[0];
1173 	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
1174 
1175 	info.next_daddr = head->fmh_keys[0].fmr_physical +
1176 			  head->fmh_keys[0].fmr_length;
1177 
1178 	/* For each device we support... */
1179 	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
1180 		/* Is this device within the range the user asked for? */
1181 		if (!handlers[i].fn)
1182 			continue;
1183 		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
1184 			continue;
1185 		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
1186 			break;
1187 
1188 		/*
1189 		 * If this device number matches the high key, we have to pass
1190 		 * the high key to the handler to limit the query results, and
1191 		 * set the end_daddr so that we can synthesize records at the
1192 		 * end of the query range or device.
1193 		 */
1194 		if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
1195 			dkeys[1] = head->fmh_keys[1];
1196 			info.end_daddr = min(handlers[i].nr_sectors - 1,
1197 					     dkeys[1].fmr_physical);
1198 		} else {
1199 			info.end_daddr = handlers[i].nr_sectors - 1;
1200 		}
1201 
1202 		/*
1203 		 * If the device number exceeds the low key, zero out the low
1204 		 * key so that we get everything from the beginning.
1205 		 */
1206 		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
1207 			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
1208 
1209 		/*
1210 		 * Grab an empty transaction so that we can use its recursive
1211 		 * buffer locking abilities to detect cycles in the rmapbt
1212 		 * without deadlocking.
1213 		 */
1214 		error = xfs_trans_alloc_empty(mp, &tp);
1215 		if (error)
1216 			break;
1217 
1218 		info.dev = handlers[i].dev;
1219 		info.last = false;
1220 		info.group = NULL;
1221 		info.low_daddr = XFS_BUF_DADDR_NULL;
1222 		info.low.rm_blockcount = 0;
1223 		error = handlers[i].fn(tp, dkeys, &info);
1224 		if (error)
1225 			break;
1226 		xfs_trans_cancel(tp);
1227 		tp = NULL;
1228 		info.next_daddr = 0;
1229 	}
1230 
1231 	if (tp)
1232 		xfs_trans_cancel(tp);
1233 	head->fmh_oflags = FMH_OF_DEV_T;
1234 	return error;
1235 }
1236 
1237 int
xfs_ioc_getfsmap(struct xfs_inode * ip,struct fsmap_head __user * arg)1238 xfs_ioc_getfsmap(
1239 	struct xfs_inode	*ip,
1240 	struct fsmap_head	__user *arg)
1241 {
1242 	struct xfs_fsmap_head	xhead = {0};
1243 	struct fsmap_head	head;
1244 	struct fsmap		*recs;
1245 	unsigned int		count;
1246 	__u32			last_flags = 0;
1247 	bool			done = false;
1248 	int			error;
1249 
1250 	if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1251 		return -EFAULT;
1252 	if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1253 	    memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1254 		       sizeof(head.fmh_keys[0].fmr_reserved)) ||
1255 	    memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1256 		       sizeof(head.fmh_keys[1].fmr_reserved)))
1257 		return -EINVAL;
1258 
1259 	/*
1260 	 * Use an internal memory buffer so that we don't have to copy fsmap
1261 	 * data to userspace while holding locks.  Start by trying to allocate
1262 	 * up to 128k for the buffer, but fall back to a single page if needed.
1263 	 */
1264 	count = min_t(unsigned int, head.fmh_count,
1265 			131072 / sizeof(struct fsmap));
1266 	recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1267 	if (!recs) {
1268 		count = min_t(unsigned int, head.fmh_count,
1269 				PAGE_SIZE / sizeof(struct fsmap));
1270 		recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1271 		if (!recs)
1272 			return -ENOMEM;
1273 	}
1274 
1275 	xhead.fmh_iflags = head.fmh_iflags;
1276 	xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1277 	xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1278 
1279 	trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1280 	trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1281 
1282 	head.fmh_entries = 0;
1283 	do {
1284 		struct fsmap __user	*user_recs;
1285 		struct fsmap		*last_rec;
1286 
1287 		user_recs = &arg->fmh_recs[head.fmh_entries];
1288 		xhead.fmh_entries = 0;
1289 		xhead.fmh_count = min_t(unsigned int, count,
1290 					head.fmh_count - head.fmh_entries);
1291 
1292 		/* Run query, record how many entries we got. */
1293 		error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1294 		switch (error) {
1295 		case 0:
1296 			/*
1297 			 * There are no more records in the result set.  Copy
1298 			 * whatever we got to userspace and break out.
1299 			 */
1300 			done = true;
1301 			break;
1302 		case -ECANCELED:
1303 			/*
1304 			 * The internal memory buffer is full.  Copy whatever
1305 			 * records we got to userspace and go again if we have
1306 			 * not yet filled the userspace buffer.
1307 			 */
1308 			error = 0;
1309 			break;
1310 		default:
1311 			goto out_free;
1312 		}
1313 		head.fmh_entries += xhead.fmh_entries;
1314 		head.fmh_oflags = xhead.fmh_oflags;
1315 
1316 		/*
1317 		 * If the caller wanted a record count or there aren't any
1318 		 * new records to return, we're done.
1319 		 */
1320 		if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1321 			break;
1322 
1323 		/* Copy all the records we got out to userspace. */
1324 		if (copy_to_user(user_recs, recs,
1325 				 xhead.fmh_entries * sizeof(struct fsmap))) {
1326 			error = -EFAULT;
1327 			goto out_free;
1328 		}
1329 
1330 		/* Remember the last record flags we copied to userspace. */
1331 		last_rec = &recs[xhead.fmh_entries - 1];
1332 		last_flags = last_rec->fmr_flags;
1333 
1334 		/* Set up the low key for the next iteration. */
1335 		xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1336 		trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1337 	} while (!done && head.fmh_entries < head.fmh_count);
1338 
1339 	/*
1340 	 * If there are no more records in the query result set and we're not
1341 	 * in counting mode, mark the last record returned with the LAST flag.
1342 	 */
1343 	if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1344 		struct fsmap __user	*user_rec;
1345 
1346 		last_flags |= FMR_OF_LAST;
1347 		user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1348 
1349 		if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1350 					sizeof(last_flags))) {
1351 			error = -EFAULT;
1352 			goto out_free;
1353 		}
1354 	}
1355 
1356 	/* copy back header */
1357 	if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1358 		error = -EFAULT;
1359 		goto out_free;
1360 	}
1361 
1362 out_free:
1363 	kvfree(recs);
1364 	return error;
1365 }
1366