xref: /linux/fs/afs/file.c (revision ca56a74a31e26d81a481304ed2f631e65883372b)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* AFS filesystem file handling
3   *
4   * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5   * Written by David Howells (dhowells@redhat.com)
6   */
7  
8  #include <linux/kernel.h>
9  #include <linux/module.h>
10  #include <linux/init.h>
11  #include <linux/fs.h>
12  #include <linux/pagemap.h>
13  #include <linux/writeback.h>
14  #include <linux/gfp.h>
15  #include <linux/task_io_accounting_ops.h>
16  #include <linux/mm.h>
17  #include <linux/swap.h>
18  #include <linux/netfs.h>
19  #include <trace/events/netfs.h>
20  #include "internal.h"
21  
22  static int afs_file_mmap(struct file *file, struct vm_area_struct *vma);
23  
24  static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter);
25  static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos,
26  				    struct pipe_inode_info *pipe,
27  				    size_t len, unsigned int flags);
28  static void afs_vm_open(struct vm_area_struct *area);
29  static void afs_vm_close(struct vm_area_struct *area);
30  static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
31  
32  const struct file_operations afs_file_operations = {
33  	.open		= afs_open,
34  	.release	= afs_release,
35  	.llseek		= generic_file_llseek,
36  	.read_iter	= afs_file_read_iter,
37  	.write_iter	= netfs_file_write_iter,
38  	.mmap		= afs_file_mmap,
39  	.splice_read	= afs_file_splice_read,
40  	.splice_write	= iter_file_splice_write,
41  	.fsync		= afs_fsync,
42  	.lock		= afs_lock,
43  	.flock		= afs_flock,
44  };
45  
46  const struct inode_operations afs_file_inode_operations = {
47  	.getattr	= afs_getattr,
48  	.setattr	= afs_setattr,
49  	.permission	= afs_permission,
50  };
51  
52  const struct address_space_operations afs_file_aops = {
53  	.direct_IO	= noop_direct_IO,
54  	.read_folio	= netfs_read_folio,
55  	.readahead	= netfs_readahead,
56  	.dirty_folio	= netfs_dirty_folio,
57  	.release_folio	= netfs_release_folio,
58  	.invalidate_folio = netfs_invalidate_folio,
59  	.migrate_folio	= filemap_migrate_folio,
60  	.writepages	= afs_writepages,
61  };
62  
63  static const struct vm_operations_struct afs_vm_ops = {
64  	.open		= afs_vm_open,
65  	.close		= afs_vm_close,
66  	.fault		= filemap_fault,
67  	.map_pages	= afs_vm_map_pages,
68  	.page_mkwrite	= afs_page_mkwrite,
69  };
70  
71  /*
72   * Discard a pin on a writeback key.
73   */
afs_put_wb_key(struct afs_wb_key * wbk)74  void afs_put_wb_key(struct afs_wb_key *wbk)
75  {
76  	if (wbk && refcount_dec_and_test(&wbk->usage)) {
77  		key_put(wbk->key);
78  		kfree(wbk);
79  	}
80  }
81  
82  /*
83   * Cache key for writeback.
84   */
afs_cache_wb_key(struct afs_vnode * vnode,struct afs_file * af)85  int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af)
86  {
87  	struct afs_wb_key *wbk, *p;
88  
89  	wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL);
90  	if (!wbk)
91  		return -ENOMEM;
92  	refcount_set(&wbk->usage, 2);
93  	wbk->key = af->key;
94  
95  	spin_lock(&vnode->wb_lock);
96  	list_for_each_entry(p, &vnode->wb_keys, vnode_link) {
97  		if (p->key == wbk->key)
98  			goto found;
99  	}
100  
101  	key_get(wbk->key);
102  	list_add_tail(&wbk->vnode_link, &vnode->wb_keys);
103  	spin_unlock(&vnode->wb_lock);
104  	af->wb = wbk;
105  	return 0;
106  
107  found:
108  	refcount_inc(&p->usage);
109  	spin_unlock(&vnode->wb_lock);
110  	af->wb = p;
111  	kfree(wbk);
112  	return 0;
113  }
114  
115  /*
116   * open an AFS file or directory and attach a key to it
117   */
afs_open(struct inode * inode,struct file * file)118  int afs_open(struct inode *inode, struct file *file)
119  {
120  	struct afs_vnode *vnode = AFS_FS_I(inode);
121  	struct afs_file *af;
122  	struct key *key;
123  	int ret;
124  
125  	_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
126  
127  	key = afs_request_key(vnode->volume->cell);
128  	if (IS_ERR(key)) {
129  		ret = PTR_ERR(key);
130  		goto error;
131  	}
132  
133  	af = kzalloc(sizeof(*af), GFP_KERNEL);
134  	if (!af) {
135  		ret = -ENOMEM;
136  		goto error_key;
137  	}
138  	af->key = key;
139  
140  	ret = afs_validate(vnode, key);
141  	if (ret < 0)
142  		goto error_af;
143  
144  	if (file->f_mode & FMODE_WRITE) {
145  		ret = afs_cache_wb_key(vnode, af);
146  		if (ret < 0)
147  			goto error_af;
148  	}
149  
150  	if (file->f_flags & O_TRUNC)
151  		set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
152  
153  	fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE);
154  
155  	file->private_data = af;
156  	_leave(" = 0");
157  	return 0;
158  
159  error_af:
160  	kfree(af);
161  error_key:
162  	key_put(key);
163  error:
164  	_leave(" = %d", ret);
165  	return ret;
166  }
167  
168  /*
169   * release an AFS file or directory and discard its key
170   */
afs_release(struct inode * inode,struct file * file)171  int afs_release(struct inode *inode, struct file *file)
172  {
173  	struct afs_vnode_cache_aux aux;
174  	struct afs_vnode *vnode = AFS_FS_I(inode);
175  	struct afs_file *af = file->private_data;
176  	loff_t i_size;
177  	int ret = 0;
178  
179  	_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
180  
181  	if ((file->f_mode & FMODE_WRITE))
182  		ret = vfs_fsync(file, 0);
183  
184  	file->private_data = NULL;
185  	if (af->wb)
186  		afs_put_wb_key(af->wb);
187  
188  	if ((file->f_mode & FMODE_WRITE)) {
189  		i_size = i_size_read(&vnode->netfs.inode);
190  		afs_set_cache_aux(vnode, &aux);
191  		fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size);
192  	} else {
193  		fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL);
194  	}
195  
196  	key_put(af->key);
197  	kfree(af);
198  	afs_prune_wb_keys(vnode);
199  	_leave(" = %d", ret);
200  	return ret;
201  }
202  
afs_fetch_data_notify(struct afs_operation * op)203  static void afs_fetch_data_notify(struct afs_operation *op)
204  {
205  	struct netfs_io_subrequest *subreq = op->fetch.subreq;
206  
207  	subreq->error = afs_op_error(op);
208  	netfs_read_subreq_terminated(subreq);
209  }
210  
afs_fetch_data_success(struct afs_operation * op)211  static void afs_fetch_data_success(struct afs_operation *op)
212  {
213  	struct afs_vnode *vnode = op->file[0].vnode;
214  
215  	_enter("op=%08x", op->debug_id);
216  	afs_vnode_commit_status(op, &op->file[0]);
217  	afs_stat_v(vnode, n_fetches);
218  	atomic_long_add(op->fetch.subreq->transferred, &op->net->n_fetch_bytes);
219  	afs_fetch_data_notify(op);
220  }
221  
afs_fetch_data_aborted(struct afs_operation * op)222  static void afs_fetch_data_aborted(struct afs_operation *op)
223  {
224  	afs_check_for_remote_deletion(op);
225  	afs_fetch_data_notify(op);
226  }
227  
228  const struct afs_operation_ops afs_fetch_data_operation = {
229  	.issue_afs_rpc	= afs_fs_fetch_data,
230  	.issue_yfs_rpc	= yfs_fs_fetch_data,
231  	.success	= afs_fetch_data_success,
232  	.aborted	= afs_fetch_data_aborted,
233  	.failed		= afs_fetch_data_notify,
234  };
235  
afs_issue_read_call(struct afs_operation * op)236  static void afs_issue_read_call(struct afs_operation *op)
237  {
238  	op->call_responded = false;
239  	op->call_error = 0;
240  	op->call_abort_code = 0;
241  	if (test_bit(AFS_SERVER_FL_IS_YFS, &op->server->flags))
242  		yfs_fs_fetch_data(op);
243  	else
244  		afs_fs_fetch_data(op);
245  }
246  
afs_end_read(struct afs_operation * op)247  static void afs_end_read(struct afs_operation *op)
248  {
249  	if (op->call_responded && op->server)
250  		set_bit(AFS_SERVER_FL_RESPONDING, &op->server->flags);
251  
252  	if (!afs_op_error(op))
253  		afs_fetch_data_success(op);
254  	else if (op->cumul_error.aborted)
255  		afs_fetch_data_aborted(op);
256  	else
257  		afs_fetch_data_notify(op);
258  
259  	afs_end_vnode_operation(op);
260  	afs_put_operation(op);
261  }
262  
263  /*
264   * Perform I/O processing on an asynchronous call.  The work item carries a ref
265   * to the call struct that we either need to release or to pass on.
266   */
afs_read_receive(struct afs_call * call)267  static void afs_read_receive(struct afs_call *call)
268  {
269  	struct afs_operation *op = call->op;
270  	enum afs_call_state state;
271  
272  	_enter("");
273  
274  	state = READ_ONCE(call->state);
275  	if (state == AFS_CALL_COMPLETE)
276  		return;
277  	trace_afs_read_recv(op, call);
278  
279  	while (state < AFS_CALL_COMPLETE && READ_ONCE(call->need_attention)) {
280  		WRITE_ONCE(call->need_attention, false);
281  		afs_deliver_to_call(call);
282  		state = READ_ONCE(call->state);
283  	}
284  
285  	if (state < AFS_CALL_COMPLETE) {
286  		netfs_read_subreq_progress(op->fetch.subreq);
287  		if (rxrpc_kernel_check_life(call->net->socket, call->rxcall))
288  			return;
289  		/* rxrpc terminated the call. */
290  		afs_set_call_complete(call, call->error, call->abort_code);
291  	}
292  
293  	op->call_abort_code	= call->abort_code;
294  	op->call_error		= call->error;
295  	op->call_responded	= call->responded;
296  	op->call		= NULL;
297  	call->op		= NULL;
298  	afs_put_call(call);
299  
300  	/* If the call failed, then we need to crank the server rotation
301  	 * handle and try the next.
302  	 */
303  	if (afs_select_fileserver(op)) {
304  		afs_issue_read_call(op);
305  		return;
306  	}
307  
308  	afs_end_read(op);
309  }
310  
afs_fetch_data_async_rx(struct work_struct * work)311  void afs_fetch_data_async_rx(struct work_struct *work)
312  {
313  	struct afs_call *call = container_of(work, struct afs_call, async_work);
314  
315  	afs_read_receive(call);
316  	afs_put_call(call);
317  }
318  
afs_fetch_data_immediate_cancel(struct afs_call * call)319  void afs_fetch_data_immediate_cancel(struct afs_call *call)
320  {
321  	if (call->async) {
322  		afs_get_call(call, afs_call_trace_wake);
323  		if (!queue_work(afs_async_calls, &call->async_work))
324  			afs_deferred_put_call(call);
325  		flush_work(&call->async_work);
326  	}
327  }
328  
329  /*
330   * Fetch file data from the volume.
331   */
afs_issue_read(struct netfs_io_subrequest * subreq)332  static void afs_issue_read(struct netfs_io_subrequest *subreq)
333  {
334  	struct afs_operation *op;
335  	struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
336  	struct key *key = subreq->rreq->netfs_priv;
337  
338  	_enter("%s{%llx:%llu.%u},%x,,,",
339  	       vnode->volume->name,
340  	       vnode->fid.vid,
341  	       vnode->fid.vnode,
342  	       vnode->fid.unique,
343  	       key_serial(key));
344  
345  	op = afs_alloc_operation(key, vnode->volume);
346  	if (IS_ERR(op)) {
347  		subreq->error = PTR_ERR(op);
348  		netfs_read_subreq_terminated(subreq);
349  		return;
350  	}
351  
352  	afs_op_set_vnode(op, 0, vnode);
353  
354  	op->fetch.subreq = subreq;
355  	op->ops		= &afs_fetch_data_operation;
356  
357  	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
358  
359  	if (subreq->rreq->origin == NETFS_READAHEAD ||
360  	    subreq->rreq->iocb) {
361  		op->flags |= AFS_OPERATION_ASYNC;
362  
363  		if (!afs_begin_vnode_operation(op)) {
364  			subreq->error = afs_put_operation(op);
365  			netfs_read_subreq_terminated(subreq);
366  			return;
367  		}
368  
369  		if (!afs_select_fileserver(op)) {
370  			afs_end_read(op);
371  			return;
372  		}
373  
374  		afs_issue_read_call(op);
375  	} else {
376  		afs_do_sync_operation(op);
377  	}
378  }
379  
afs_init_request(struct netfs_io_request * rreq,struct file * file)380  static int afs_init_request(struct netfs_io_request *rreq, struct file *file)
381  {
382  	struct afs_vnode *vnode = AFS_FS_I(rreq->inode);
383  
384  	if (file)
385  		rreq->netfs_priv = key_get(afs_file_key(file));
386  	rreq->rsize = 256 * 1024;
387  	rreq->wsize = 256 * 1024 * 1024;
388  
389  	switch (rreq->origin) {
390  	case NETFS_READ_SINGLE:
391  		if (!file) {
392  			struct key *key = afs_request_key(vnode->volume->cell);
393  
394  			if (IS_ERR(key))
395  				return PTR_ERR(key);
396  			rreq->netfs_priv = key;
397  		}
398  		break;
399  	case NETFS_WRITEBACK:
400  	case NETFS_WRITETHROUGH:
401  	case NETFS_UNBUFFERED_WRITE:
402  	case NETFS_DIO_WRITE:
403  		if (S_ISREG(rreq->inode->i_mode))
404  			rreq->io_streams[0].avail = true;
405  		break;
406  	case NETFS_WRITEBACK_SINGLE:
407  	default:
408  		break;
409  	}
410  	return 0;
411  }
412  
afs_check_write_begin(struct file * file,loff_t pos,unsigned len,struct folio ** foliop,void ** _fsdata)413  static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len,
414  				 struct folio **foliop, void **_fsdata)
415  {
416  	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
417  
418  	return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0;
419  }
420  
afs_free_request(struct netfs_io_request * rreq)421  static void afs_free_request(struct netfs_io_request *rreq)
422  {
423  	key_put(rreq->netfs_priv);
424  	afs_put_wb_key(rreq->netfs_priv2);
425  }
426  
afs_update_i_size(struct inode * inode,loff_t new_i_size)427  static void afs_update_i_size(struct inode *inode, loff_t new_i_size)
428  {
429  	struct afs_vnode *vnode = AFS_FS_I(inode);
430  	loff_t i_size;
431  
432  	write_seqlock(&vnode->cb_lock);
433  	i_size = i_size_read(&vnode->netfs.inode);
434  	if (new_i_size > i_size) {
435  		i_size_write(&vnode->netfs.inode, new_i_size);
436  		inode_set_bytes(&vnode->netfs.inode, new_i_size);
437  	}
438  	write_sequnlock(&vnode->cb_lock);
439  	fscache_update_cookie(afs_vnode_cache(vnode), NULL, &new_i_size);
440  }
441  
afs_netfs_invalidate_cache(struct netfs_io_request * wreq)442  static void afs_netfs_invalidate_cache(struct netfs_io_request *wreq)
443  {
444  	struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
445  
446  	afs_invalidate_cache(vnode, 0);
447  }
448  
449  const struct netfs_request_ops afs_req_ops = {
450  	.init_request		= afs_init_request,
451  	.free_request		= afs_free_request,
452  	.check_write_begin	= afs_check_write_begin,
453  	.issue_read		= afs_issue_read,
454  	.update_i_size		= afs_update_i_size,
455  	.invalidate_cache	= afs_netfs_invalidate_cache,
456  	.begin_writeback	= afs_begin_writeback,
457  	.prepare_write		= afs_prepare_write,
458  	.issue_write		= afs_issue_write,
459  	.retry_request		= afs_retry_request,
460  };
461  
afs_add_open_mmap(struct afs_vnode * vnode)462  static void afs_add_open_mmap(struct afs_vnode *vnode)
463  {
464  	if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) {
465  		down_write(&vnode->volume->open_mmaps_lock);
466  
467  		if (list_empty(&vnode->cb_mmap_link))
468  			list_add_tail(&vnode->cb_mmap_link, &vnode->volume->open_mmaps);
469  
470  		up_write(&vnode->volume->open_mmaps_lock);
471  	}
472  }
473  
afs_drop_open_mmap(struct afs_vnode * vnode)474  static void afs_drop_open_mmap(struct afs_vnode *vnode)
475  {
476  	if (atomic_add_unless(&vnode->cb_nr_mmap, -1, 1))
477  		return;
478  
479  	down_write(&vnode->volume->open_mmaps_lock);
480  
481  	read_seqlock_excl(&vnode->cb_lock);
482  	// the only place where ->cb_nr_mmap may hit 0
483  	// see __afs_break_callback() for the other side...
484  	if (atomic_dec_and_test(&vnode->cb_nr_mmap))
485  		list_del_init(&vnode->cb_mmap_link);
486  	read_sequnlock_excl(&vnode->cb_lock);
487  
488  	up_write(&vnode->volume->open_mmaps_lock);
489  	flush_work(&vnode->cb_work);
490  }
491  
492  /*
493   * Handle setting up a memory mapping on an AFS file.
494   */
afs_file_mmap(struct file * file,struct vm_area_struct * vma)495  static int afs_file_mmap(struct file *file, struct vm_area_struct *vma)
496  {
497  	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
498  	int ret;
499  
500  	afs_add_open_mmap(vnode);
501  
502  	ret = generic_file_mmap(file, vma);
503  	if (ret == 0)
504  		vma->vm_ops = &afs_vm_ops;
505  	else
506  		afs_drop_open_mmap(vnode);
507  	return ret;
508  }
509  
afs_vm_open(struct vm_area_struct * vma)510  static void afs_vm_open(struct vm_area_struct *vma)
511  {
512  	afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
513  }
514  
afs_vm_close(struct vm_area_struct * vma)515  static void afs_vm_close(struct vm_area_struct *vma)
516  {
517  	afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
518  }
519  
afs_vm_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)520  static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff)
521  {
522  	struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file));
523  
524  	if (afs_check_validity(vnode))
525  		return filemap_map_pages(vmf, start_pgoff, end_pgoff);
526  	return 0;
527  }
528  
afs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)529  static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
530  {
531  	struct inode *inode = file_inode(iocb->ki_filp);
532  	struct afs_vnode *vnode = AFS_FS_I(inode);
533  	struct afs_file *af = iocb->ki_filp->private_data;
534  	ssize_t ret;
535  
536  	if (iocb->ki_flags & IOCB_DIRECT)
537  		return netfs_unbuffered_read_iter(iocb, iter);
538  
539  	ret = netfs_start_io_read(inode);
540  	if (ret < 0)
541  		return ret;
542  	ret = afs_validate(vnode, af->key);
543  	if (ret == 0)
544  		ret = filemap_read(iocb, iter, 0);
545  	netfs_end_io_read(inode);
546  	return ret;
547  }
548  
afs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)549  static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos,
550  				    struct pipe_inode_info *pipe,
551  				    size_t len, unsigned int flags)
552  {
553  	struct inode *inode = file_inode(in);
554  	struct afs_vnode *vnode = AFS_FS_I(inode);
555  	struct afs_file *af = in->private_data;
556  	ssize_t ret;
557  
558  	ret = netfs_start_io_read(inode);
559  	if (ret < 0)
560  		return ret;
561  	ret = afs_validate(vnode, af->key);
562  	if (ret == 0)
563  		ret = filemap_splice_read(in, ppos, pipe, len, flags);
564  	netfs_end_io_read(inode);
565  	return ret;
566  }
567