xref: /linux/mm/ksm.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 typedef u8 rmap_age_t;
60 
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120 
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127 	struct mm_slot slot;
128 	struct ksm_rmap_item *rmap_list;
129 };
130 
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141 	struct ksm_mm_slot *mm_slot;
142 	unsigned long address;
143 	struct ksm_rmap_item **rmap_list;
144 	unsigned long seqnr;
145 };
146 
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160 	union {
161 		struct rb_node node;	/* when node of stable tree */
162 		struct {		/* when listed for migration */
163 			struct list_head *head;
164 			struct {
165 				struct hlist_node hlist_dup;
166 				struct list_head list;
167 			};
168 		};
169 	};
170 	struct hlist_head hlist;
171 	union {
172 		unsigned long kpfn;
173 		unsigned long chain_prune_time;
174 	};
175 	/*
176 	 * STABLE_NODE_CHAIN can be any negative number in
177 	 * rmap_hlist_len negative range, but better not -1 to be able
178 	 * to reliably detect underflows.
179 	 */
180 #define STABLE_NODE_CHAIN -1024
181 	int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 	int nid;
184 #endif
185 };
186 
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202 	struct ksm_rmap_item *rmap_list;
203 	union {
204 		struct anon_vma *anon_vma;	/* when stable */
205 #ifdef CONFIG_NUMA
206 		int nid;		/* when node of unstable tree */
207 #endif
208 	};
209 	struct mm_struct *mm;
210 	unsigned long address;		/* + low bits used for flags below */
211 	unsigned int oldchecksum;	/* when unstable */
212 	rmap_age_t age;
213 	rmap_age_t remaining_skips;
214 	union {
215 		struct rb_node node;	/* when node of unstable tree */
216 		struct {		/* when listed from stable tree */
217 			struct ksm_stable_node *head;
218 			struct hlist_node hlist;
219 		};
220 	};
221 };
222 
223 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
225 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
226 
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232 
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236 
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239 
240 static struct ksm_mm_slot ksm_mm_head = {
241 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 	.mm_slot = &ksm_mm_head,
245 };
246 
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250 
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253 
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256 
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259 
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262 
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265 
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268 
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271 
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274 
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277 
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280 
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283 
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286 
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289 
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292 
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296 
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299 
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302 
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305 
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308 
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu =  70;
311 
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314 
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317 
318 /**
319  * struct advisor_ctx - metadata for KSM advisor
320  * @start_scan: start time of the current scan
321  * @scan_time: scan time of previous scan
322  * @change: change in percent to pages_to_scan parameter
323  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324  */
325 struct advisor_ctx {
326 	ktime_t start_scan;
327 	unsigned long scan_time;
328 	unsigned long change;
329 	unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332 
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 	KSM_ADVISOR_NONE,
336 	KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339 
340 #ifdef CONFIG_SYSFS
341 /*
342  * Only called through the sysfs control interface:
343  */
344 
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347 
set_advisor_defaults(void)348 static void set_advisor_defaults(void)
349 {
350 	if (ksm_advisor == KSM_ADVISOR_NONE) {
351 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 		advisor_ctx = (const struct advisor_ctx){ 0 };
354 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 	}
356 }
357 #endif /* CONFIG_SYSFS */
358 
advisor_start_scan(void)359 static inline void advisor_start_scan(void)
360 {
361 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 		advisor_ctx.start_scan = ktime_get();
363 }
364 
365 /*
366  * Use previous scan time if available, otherwise use current scan time as an
367  * approximation for the previous scan time.
368  */
prev_scan_time(struct advisor_ctx * ctx,unsigned long scan_time)369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 					   unsigned long scan_time)
371 {
372 	return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374 
375 /* Calculate exponential weighted moving average */
ewma(unsigned long prev,unsigned long curr)376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380 
381 /*
382  * The scan time advisor is based on the current scan rate and the target
383  * scan rate.
384  *
385  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386  *
387  * To avoid perturbations it calculates a change factor of previous changes.
388  * A new change factor is calculated for each iteration and it uses an
389  * exponentially weighted moving average. The new pages_to_scan value is
390  * multiplied with that change factor:
391  *
392  *      new_pages_to_scan *= change factor
393  *
394  * The new_pages_to_scan value is limited by the cpu min and max values. It
395  * calculates the cpu percent for the last scan and calculates the new
396  * estimated cpu percent cost for the next scan. That value is capped by the
397  * cpu min and max setting.
398  *
399  * In addition the new pages_to_scan value is capped by the max and min
400  * limits.
401  */
scan_time_advisor(void)402 static void scan_time_advisor(void)
403 {
404 	unsigned int cpu_percent;
405 	unsigned long cpu_time;
406 	unsigned long cpu_time_diff;
407 	unsigned long cpu_time_diff_ms;
408 	unsigned long pages;
409 	unsigned long per_page_cost;
410 	unsigned long factor;
411 	unsigned long change;
412 	unsigned long last_scan_time;
413 	unsigned long scan_time;
414 
415 	/* Convert scan time to seconds */
416 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 			    MSEC_PER_SEC);
418 	scan_time = scan_time ? scan_time : 1;
419 
420 	/* Calculate CPU consumption of ksmd background thread */
421 	cpu_time = task_sched_runtime(current);
422 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424 
425 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 	cpu_percent = cpu_percent ? cpu_percent : 1;
427 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428 
429 	/* Calculate scan time as percentage of target scan time */
430 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 	factor = factor ? factor : 1;
432 
433 	/*
434 	 * Calculate scan time as percentage of last scan time and use
435 	 * exponentially weighted average to smooth it
436 	 */
437 	change = scan_time * 100 / last_scan_time;
438 	change = change ? change : 1;
439 	change = ewma(advisor_ctx.change, change);
440 
441 	/* Calculate new scan rate based on target scan rate. */
442 	pages = ksm_thread_pages_to_scan * 100 / factor;
443 	/* Update pages_to_scan by weighted change percentage. */
444 	pages = pages * change / 100;
445 
446 	/* Cap new pages_to_scan value */
447 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 	per_page_cost = per_page_cost ? per_page_cost : 1;
449 
450 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 	pages = min(pages, ksm_advisor_max_pages_to_scan);
453 
454 	/* Update advisor context */
455 	advisor_ctx.change = change;
456 	advisor_ctx.scan_time = scan_time;
457 	advisor_ctx.cpu_time = cpu_time;
458 
459 	ksm_thread_pages_to_scan = pages;
460 	trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462 
advisor_stop_scan(void)463 static void advisor_stop_scan(void)
464 {
465 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 		scan_time_advisor();
467 }
468 
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes	1U
475 #define ksm_nr_node_ids		1
476 #endif
477 
478 #define KSM_RUN_STOP	0
479 #define KSM_RUN_MERGE	1
480 #define KSM_RUN_UNMERGE	2
481 #define KSM_RUN_OFFLINE	4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484 
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489 
ksm_slab_init(void)490 static int __init ksm_slab_init(void)
491 {
492 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 	if (!rmap_item_cache)
494 		goto out;
495 
496 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 	if (!stable_node_cache)
498 		goto out_free1;
499 
500 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 	if (!mm_slot_cache)
502 		goto out_free2;
503 
504 	return 0;
505 
506 out_free2:
507 	kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 	kmem_cache_destroy(rmap_item_cache);
510 out:
511 	return -ENOMEM;
512 }
513 
ksm_slab_free(void)514 static void __init ksm_slab_free(void)
515 {
516 	kmem_cache_destroy(mm_slot_cache);
517 	kmem_cache_destroy(stable_node_cache);
518 	kmem_cache_destroy(rmap_item_cache);
519 	mm_slot_cache = NULL;
520 }
521 
is_stable_node_chain(struct ksm_stable_node * chain)522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526 
is_stable_node_dup(struct ksm_stable_node * dup)527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 	return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531 
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 					     struct ksm_stable_node *chain)
534 {
535 	VM_BUG_ON(is_stable_node_dup(dup));
536 	dup->head = STABLE_NODE_DUP_HEAD;
537 	VM_BUG_ON(!is_stable_node_chain(chain));
538 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 	ksm_stable_node_dups++;
540 }
541 
__stable_node_dup_del(struct ksm_stable_node * dup)542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 	VM_BUG_ON(!is_stable_node_dup(dup));
545 	hlist_del(&dup->hlist_dup);
546 	ksm_stable_node_dups--;
547 }
548 
stable_node_dup_del(struct ksm_stable_node * dup)549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 	VM_BUG_ON(is_stable_node_chain(dup));
552 	if (is_stable_node_dup(dup))
553 		__stable_node_dup_del(dup);
554 	else
555 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 	dup->head = NULL;
558 #endif
559 }
560 
alloc_rmap_item(void)561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 	struct ksm_rmap_item *rmap_item;
564 
565 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 						__GFP_NORETRY | __GFP_NOWARN);
567 	if (rmap_item)
568 		ksm_rmap_items++;
569 	return rmap_item;
570 }
571 
free_rmap_item(struct ksm_rmap_item * rmap_item)572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 	ksm_rmap_items--;
575 	rmap_item->mm->ksm_rmap_items--;
576 	rmap_item->mm = NULL;	/* debug safety */
577 	kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579 
alloc_stable_node(void)580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 	/*
583 	 * The allocation can take too long with GFP_KERNEL when memory is under
584 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
585 	 * grants access to memory reserves, helping to avoid this problem.
586 	 */
587 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589 
free_stable_node(struct ksm_stable_node * stable_node)590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 	VM_BUG_ON(stable_node->rmap_hlist_len &&
593 		  !is_stable_node_chain(stable_node));
594 	kmem_cache_free(stable_node_cache, stable_node);
595 }
596 
597 /*
598  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599  * page tables after it has passed through ksm_exit() - which, if necessary,
600  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
601  * a special flag: they can just back out as soon as mm_users goes to zero.
602  * ksm_test_exit() is used throughout to make this test for exit: in some
603  * places for correctness, in some places just to avoid unnecessary work.
604  */
ksm_test_exit(struct mm_struct * mm)605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 	return atomic_read(&mm->mm_users) == 0;
608 }
609 
break_ksm_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)610 static int break_ksm_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
611 			struct mm_walk *walk)
612 {
613 	unsigned long *found_addr = (unsigned long *) walk->private;
614 	struct mm_struct *mm = walk->mm;
615 	pte_t *start_ptep, *ptep;
616 	spinlock_t *ptl;
617 	int found = 0;
618 
619 	if (ksm_test_exit(walk->mm))
620 		return 0;
621 	if (signal_pending(current))
622 		return -ERESTARTSYS;
623 
624 	start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
625 	if (!start_ptep)
626 		return 0;
627 
628 	for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
629 		pte_t pte = ptep_get(ptep);
630 		struct folio *folio = NULL;
631 
632 		if (pte_present(pte)) {
633 			folio = vm_normal_folio(walk->vma, addr, pte);
634 		} else if (!pte_none(pte)) {
635 			const softleaf_t entry = softleaf_from_pte(pte);
636 
637 			/*
638 			 * As KSM pages remain KSM pages until freed, no need to wait
639 			 * here for migration to end.
640 			 */
641 			if (softleaf_is_migration(entry))
642 				folio = softleaf_to_folio(entry);
643 		}
644 		/* return 1 if the page is an normal ksm page or KSM-placed zero page */
645 		found = (folio && folio_test_ksm(folio)) ||
646 			(pte_present(pte) && is_ksm_zero_pte(pte));
647 		if (found) {
648 			*found_addr = addr;
649 			goto out_unlock;
650 		}
651 	}
652 out_unlock:
653 	pte_unmap_unlock(ptep, ptl);
654 	return found;
655 }
656 
657 static const struct mm_walk_ops break_ksm_ops = {
658 	.pmd_entry = break_ksm_pmd_entry,
659 	.walk_lock = PGWALK_RDLOCK,
660 };
661 
662 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
663 	.pmd_entry = break_ksm_pmd_entry,
664 	.walk_lock = PGWALK_WRLOCK,
665 };
666 
667 /*
668  * Though it's very tempting to unmerge rmap_items from stable tree rather
669  * than check every pte of a given vma, the locking doesn't quite work for
670  * that - an rmap_item is assigned to the stable tree after inserting ksm
671  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
672  * rmap_items from parent to child at fork time (so as not to waste time
673  * if exit comes before the next scan reaches it).
674  *
675  * Similarly, although we'd like to remove rmap_items (so updating counts
676  * and freeing memory) when unmerging an area, it's easier to leave that
677  * to the next pass of ksmd - consider, for example, how ksmd might be
678  * in cmp_and_merge_page on one of the rmap_items we would be removing.
679  *
680  * We use break_ksm to break COW on a ksm page by triggering unsharing,
681  * such that the ksm page will get replaced by an exclusive anonymous page.
682  *
683  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
684  * in case the application has unmapped and remapped mm,addr meanwhile.
685  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
686  * mmap of /dev/mem, where we would not want to touch it.
687  *
688  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
689  * of the process that owns 'vma'.  We also do not want to enforce
690  * protection keys here anyway.
691  */
break_ksm(struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool lock_vma)692 static int break_ksm(struct vm_area_struct *vma, unsigned long addr,
693 		unsigned long end, bool lock_vma)
694 {
695 	vm_fault_t ret = 0;
696 	const struct mm_walk_ops *ops = lock_vma ?
697 				&break_ksm_lock_vma_ops : &break_ksm_ops;
698 
699 	do {
700 		int ksm_page;
701 
702 		cond_resched();
703 		ksm_page = walk_page_range_vma(vma, addr, end, ops, &addr);
704 		if (ksm_page <= 0)
705 			return ksm_page;
706 		ret = handle_mm_fault(vma, addr,
707 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
708 				      NULL);
709 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
710 	/*
711 	 * We must loop until we no longer find a KSM page because
712 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
713 	 * pte accessed bit gets updated concurrently.
714 	 *
715 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
716 	 * backing file, which also invalidates anonymous pages: that's
717 	 * okay, that truncation will have unmapped the KSM page for us.
718 	 *
719 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
720 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
721 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
722 	 * to user; and ksmd, having no mm, would never be chosen for that.
723 	 *
724 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
725 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
726 	 * even ksmd can fail in this way - though it's usually breaking ksm
727 	 * just to undo a merge it made a moment before, so unlikely to oom.
728 	 *
729 	 * That's a pity: we might therefore have more kernel pages allocated
730 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
731 	 * will retry to break_cow on each pass, so should recover the page
732 	 * in due course.  The important thing is to not let VM_MERGEABLE
733 	 * be cleared while any such pages might remain in the area.
734 	 */
735 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
736 }
737 
ksm_compatible(const struct file * file,vm_flags_t vm_flags)738 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
739 {
740 	if (vm_flags & (VM_SHARED  | VM_MAYSHARE | VM_SPECIAL |
741 			VM_HUGETLB | VM_DROPPABLE))
742 		return false;		/* just ignore the advice */
743 
744 	if (file_is_dax(file))
745 		return false;
746 
747 #ifdef VM_SAO
748 	if (vm_flags & VM_SAO)
749 		return false;
750 #endif
751 #ifdef VM_SPARC_ADI
752 	if (vm_flags & VM_SPARC_ADI)
753 		return false;
754 #endif
755 
756 	return true;
757 }
758 
vma_ksm_compatible(struct vm_area_struct * vma)759 static bool vma_ksm_compatible(struct vm_area_struct *vma)
760 {
761 	return ksm_compatible(vma->vm_file, vma->vm_flags);
762 }
763 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)764 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
765 		unsigned long addr)
766 {
767 	struct vm_area_struct *vma;
768 	if (ksm_test_exit(mm))
769 		return NULL;
770 	vma = vma_lookup(mm, addr);
771 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772 		return NULL;
773 	return vma;
774 }
775 
break_cow(struct ksm_rmap_item * rmap_item)776 static void break_cow(struct ksm_rmap_item *rmap_item)
777 {
778 	struct mm_struct *mm = rmap_item->mm;
779 	unsigned long addr = rmap_item->address;
780 	struct vm_area_struct *vma;
781 
782 	/*
783 	 * It is not an accident that whenever we want to break COW
784 	 * to undo, we also need to drop a reference to the anon_vma.
785 	 */
786 	put_anon_vma(rmap_item->anon_vma);
787 
788 	mmap_read_lock(mm);
789 	vma = find_mergeable_vma(mm, addr);
790 	if (vma)
791 		break_ksm(vma, addr, addr + PAGE_SIZE, false);
792 	mmap_read_unlock(mm);
793 }
794 
get_mergeable_page(struct ksm_rmap_item * rmap_item)795 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
796 {
797 	struct mm_struct *mm = rmap_item->mm;
798 	unsigned long addr = rmap_item->address;
799 	struct vm_area_struct *vma;
800 	struct page *page = NULL;
801 	struct folio_walk fw;
802 	struct folio *folio;
803 
804 	mmap_read_lock(mm);
805 	vma = find_mergeable_vma(mm, addr);
806 	if (!vma)
807 		goto out;
808 
809 	folio = folio_walk_start(&fw, vma, addr, 0);
810 	if (folio) {
811 		if (!folio_is_zone_device(folio) &&
812 		    folio_test_anon(folio)) {
813 			folio_get(folio);
814 			page = fw.page;
815 		}
816 		folio_walk_end(&fw, vma);
817 	}
818 out:
819 	if (page) {
820 		flush_anon_page(vma, page, addr);
821 		flush_dcache_page(page);
822 	}
823 	mmap_read_unlock(mm);
824 	return page;
825 }
826 
827 /*
828  * This helper is used for getting right index into array of tree roots.
829  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
830  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
831  * every node has its own stable and unstable tree.
832  */
get_kpfn_nid(unsigned long kpfn)833 static inline int get_kpfn_nid(unsigned long kpfn)
834 {
835 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
836 }
837 
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)838 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
839 						   struct rb_root *root)
840 {
841 	struct ksm_stable_node *chain = alloc_stable_node();
842 	VM_BUG_ON(is_stable_node_chain(dup));
843 	if (likely(chain)) {
844 		INIT_HLIST_HEAD(&chain->hlist);
845 		chain->chain_prune_time = jiffies;
846 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
847 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
848 		chain->nid = NUMA_NO_NODE; /* debug */
849 #endif
850 		ksm_stable_node_chains++;
851 
852 		/*
853 		 * Put the stable node chain in the first dimension of
854 		 * the stable tree and at the same time remove the old
855 		 * stable node.
856 		 */
857 		rb_replace_node(&dup->node, &chain->node, root);
858 
859 		/*
860 		 * Move the old stable node to the second dimension
861 		 * queued in the hlist_dup. The invariant is that all
862 		 * dup stable_nodes in the chain->hlist point to pages
863 		 * that are write protected and have the exact same
864 		 * content.
865 		 */
866 		stable_node_chain_add_dup(dup, chain);
867 	}
868 	return chain;
869 }
870 
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)871 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
872 					  struct rb_root *root)
873 {
874 	rb_erase(&chain->node, root);
875 	free_stable_node(chain);
876 	ksm_stable_node_chains--;
877 }
878 
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)879 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
880 {
881 	struct ksm_rmap_item *rmap_item;
882 
883 	/* check it's not STABLE_NODE_CHAIN or negative */
884 	BUG_ON(stable_node->rmap_hlist_len < 0);
885 
886 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
887 		if (rmap_item->hlist.next) {
888 			ksm_pages_sharing--;
889 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
890 		} else {
891 			ksm_pages_shared--;
892 		}
893 
894 		rmap_item->mm->ksm_merging_pages--;
895 
896 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
897 		stable_node->rmap_hlist_len--;
898 		put_anon_vma(rmap_item->anon_vma);
899 		rmap_item->address &= PAGE_MASK;
900 		cond_resched();
901 	}
902 
903 	/*
904 	 * We need the second aligned pointer of the migrate_nodes
905 	 * list_head to stay clear from the rb_parent_color union
906 	 * (aligned and different than any node) and also different
907 	 * from &migrate_nodes. This will verify that future list.h changes
908 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
909 	 */
910 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
911 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
912 
913 	trace_ksm_remove_ksm_page(stable_node->kpfn);
914 	if (stable_node->head == &migrate_nodes)
915 		list_del(&stable_node->list);
916 	else
917 		stable_node_dup_del(stable_node);
918 	free_stable_node(stable_node);
919 }
920 
921 enum ksm_get_folio_flags {
922 	KSM_GET_FOLIO_NOLOCK,
923 	KSM_GET_FOLIO_LOCK,
924 	KSM_GET_FOLIO_TRYLOCK
925 };
926 
927 /*
928  * ksm_get_folio: checks if the page indicated by the stable node
929  * is still its ksm page, despite having held no reference to it.
930  * In which case we can trust the content of the page, and it
931  * returns the gotten page; but if the page has now been zapped,
932  * remove the stale node from the stable tree and return NULL.
933  * But beware, the stable node's page might be being migrated.
934  *
935  * You would expect the stable_node to hold a reference to the ksm page.
936  * But if it increments the page's count, swapping out has to wait for
937  * ksmd to come around again before it can free the page, which may take
938  * seconds or even minutes: much too unresponsive.  So instead we use a
939  * "keyhole reference": access to the ksm page from the stable node peeps
940  * out through its keyhole to see if that page still holds the right key,
941  * pointing back to this stable node.  This relies on freeing a PageAnon
942  * page to reset its page->mapping to NULL, and relies on no other use of
943  * a page to put something that might look like our key in page->mapping.
944  * is on its way to being freed; but it is an anomaly to bear in mind.
945  */
ksm_get_folio(struct ksm_stable_node * stable_node,enum ksm_get_folio_flags flags)946 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
947 				 enum ksm_get_folio_flags flags)
948 {
949 	struct folio *folio;
950 	void *expected_mapping;
951 	unsigned long kpfn;
952 
953 	expected_mapping = (void *)((unsigned long)stable_node |
954 					FOLIO_MAPPING_KSM);
955 again:
956 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
957 	folio = pfn_folio(kpfn);
958 	if (READ_ONCE(folio->mapping) != expected_mapping)
959 		goto stale;
960 
961 	/*
962 	 * We cannot do anything with the page while its refcount is 0.
963 	 * Usually 0 means free, or tail of a higher-order page: in which
964 	 * case this node is no longer referenced, and should be freed;
965 	 * however, it might mean that the page is under page_ref_freeze().
966 	 * The __remove_mapping() case is easy, again the node is now stale;
967 	 * the same is in reuse_ksm_page() case; but if page is swapcache
968 	 * in folio_migrate_mapping(), it might still be our page,
969 	 * in which case it's essential to keep the node.
970 	 */
971 	while (!folio_try_get(folio)) {
972 		/*
973 		 * Another check for folio->mapping != expected_mapping
974 		 * would work here too.  We have chosen to test the
975 		 * swapcache flag to optimize the common case, when the
976 		 * folio is or is about to be freed: the swapcache flag
977 		 * is cleared (under spin_lock_irq) in the ref_freeze
978 		 * section of __remove_mapping(); but anon folio->mapping
979 		 * is reset to NULL later, in free_pages_prepare().
980 		 */
981 		if (!folio_test_swapcache(folio))
982 			goto stale;
983 		cpu_relax();
984 	}
985 
986 	if (READ_ONCE(folio->mapping) != expected_mapping) {
987 		folio_put(folio);
988 		goto stale;
989 	}
990 
991 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
992 		if (!folio_trylock(folio)) {
993 			folio_put(folio);
994 			return ERR_PTR(-EBUSY);
995 		}
996 	} else if (flags == KSM_GET_FOLIO_LOCK)
997 		folio_lock(folio);
998 
999 	if (flags != KSM_GET_FOLIO_NOLOCK) {
1000 		if (READ_ONCE(folio->mapping) != expected_mapping) {
1001 			folio_unlock(folio);
1002 			folio_put(folio);
1003 			goto stale;
1004 		}
1005 	}
1006 	return folio;
1007 
1008 stale:
1009 	/*
1010 	 * We come here from above when folio->mapping or the swapcache flag
1011 	 * suggests that the node is stale; but it might be under migration.
1012 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
1013 	 * before checking whether node->kpfn has been changed.
1014 	 */
1015 	smp_rmb();
1016 	if (READ_ONCE(stable_node->kpfn) != kpfn)
1017 		goto again;
1018 	remove_node_from_stable_tree(stable_node);
1019 	return NULL;
1020 }
1021 
1022 /*
1023  * Removing rmap_item from stable or unstable tree.
1024  * This function will clean the information from the stable/unstable tree.
1025  */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)1026 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
1027 {
1028 	if (rmap_item->address & STABLE_FLAG) {
1029 		struct ksm_stable_node *stable_node;
1030 		struct folio *folio;
1031 
1032 		stable_node = rmap_item->head;
1033 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1034 		if (!folio)
1035 			goto out;
1036 
1037 		hlist_del(&rmap_item->hlist);
1038 		folio_unlock(folio);
1039 		folio_put(folio);
1040 
1041 		if (!hlist_empty(&stable_node->hlist))
1042 			ksm_pages_sharing--;
1043 		else
1044 			ksm_pages_shared--;
1045 
1046 		rmap_item->mm->ksm_merging_pages--;
1047 
1048 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1049 		stable_node->rmap_hlist_len--;
1050 
1051 		put_anon_vma(rmap_item->anon_vma);
1052 		rmap_item->head = NULL;
1053 		rmap_item->address &= PAGE_MASK;
1054 
1055 	} else if (rmap_item->address & UNSTABLE_FLAG) {
1056 		unsigned char age;
1057 		/*
1058 		 * Usually ksmd can and must skip the rb_erase, because
1059 		 * root_unstable_tree was already reset to RB_ROOT.
1060 		 * But be careful when an mm is exiting: do the rb_erase
1061 		 * if this rmap_item was inserted by this scan, rather
1062 		 * than left over from before.
1063 		 */
1064 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1065 		BUG_ON(age > 1);
1066 		if (!age)
1067 			rb_erase(&rmap_item->node,
1068 				 root_unstable_tree + NUMA(rmap_item->nid));
1069 		ksm_pages_unshared--;
1070 		rmap_item->address &= PAGE_MASK;
1071 	}
1072 out:
1073 	cond_resched();		/* we're called from many long loops */
1074 }
1075 
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)1076 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1077 {
1078 	while (*rmap_list) {
1079 		struct ksm_rmap_item *rmap_item = *rmap_list;
1080 		*rmap_list = rmap_item->rmap_list;
1081 		remove_rmap_item_from_tree(rmap_item);
1082 		free_rmap_item(rmap_item);
1083 	}
1084 }
1085 
1086 static inline
folio_stable_node(const struct folio * folio)1087 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1088 {
1089 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091 
folio_set_stable_node(struct folio * folio,struct ksm_stable_node * stable_node)1092 static inline void folio_set_stable_node(struct folio *folio,
1093 					 struct ksm_stable_node *stable_node)
1094 {
1095 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1096 	folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1097 }
1098 
1099 #ifdef CONFIG_SYSFS
1100 /*
1101  * Only called through the sysfs control interface:
1102  */
remove_stable_node(struct ksm_stable_node * stable_node)1103 static int remove_stable_node(struct ksm_stable_node *stable_node)
1104 {
1105 	struct folio *folio;
1106 	int err;
1107 
1108 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1109 	if (!folio) {
1110 		/*
1111 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1112 		 */
1113 		return 0;
1114 	}
1115 
1116 	/*
1117 	 * Page could be still mapped if this races with __mmput() running in
1118 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1119 	 * merge_across_nodes/max_page_sharing be switched.
1120 	 */
1121 	err = -EBUSY;
1122 	if (!folio_mapped(folio)) {
1123 		/*
1124 		 * The stable node did not yet appear stale to ksm_get_folio(),
1125 		 * since that allows for an unmapped ksm folio to be recognized
1126 		 * right up until it is freed; but the node is safe to remove.
1127 		 * This folio might be in an LRU cache waiting to be freed,
1128 		 * or it might be in the swapcache (perhaps under writeback),
1129 		 * or it might have been removed from swapcache a moment ago.
1130 		 */
1131 		folio_set_stable_node(folio, NULL);
1132 		remove_node_from_stable_tree(stable_node);
1133 		err = 0;
1134 	}
1135 
1136 	folio_unlock(folio);
1137 	folio_put(folio);
1138 	return err;
1139 }
1140 
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)1141 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1142 				    struct rb_root *root)
1143 {
1144 	struct ksm_stable_node *dup;
1145 	struct hlist_node *hlist_safe;
1146 
1147 	if (!is_stable_node_chain(stable_node)) {
1148 		VM_BUG_ON(is_stable_node_dup(stable_node));
1149 		if (remove_stable_node(stable_node))
1150 			return true;
1151 		else
1152 			return false;
1153 	}
1154 
1155 	hlist_for_each_entry_safe(dup, hlist_safe,
1156 				  &stable_node->hlist, hlist_dup) {
1157 		VM_BUG_ON(!is_stable_node_dup(dup));
1158 		if (remove_stable_node(dup))
1159 			return true;
1160 	}
1161 	BUG_ON(!hlist_empty(&stable_node->hlist));
1162 	free_stable_node_chain(stable_node, root);
1163 	return false;
1164 }
1165 
remove_all_stable_nodes(void)1166 static int remove_all_stable_nodes(void)
1167 {
1168 	struct ksm_stable_node *stable_node, *next;
1169 	int nid;
1170 	int err = 0;
1171 
1172 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1173 		while (root_stable_tree[nid].rb_node) {
1174 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1175 						struct ksm_stable_node, node);
1176 			if (remove_stable_node_chain(stable_node,
1177 						     root_stable_tree + nid)) {
1178 				err = -EBUSY;
1179 				break;	/* proceed to next nid */
1180 			}
1181 			cond_resched();
1182 		}
1183 	}
1184 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1185 		if (remove_stable_node(stable_node))
1186 			err = -EBUSY;
1187 		cond_resched();
1188 	}
1189 	return err;
1190 }
1191 
unmerge_and_remove_all_rmap_items(void)1192 static int unmerge_and_remove_all_rmap_items(void)
1193 {
1194 	struct ksm_mm_slot *mm_slot;
1195 	struct mm_slot *slot;
1196 	struct mm_struct *mm;
1197 	struct vm_area_struct *vma;
1198 	int err = 0;
1199 
1200 	spin_lock(&ksm_mmlist_lock);
1201 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1202 			  struct mm_slot, mm_node);
1203 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1204 	spin_unlock(&ksm_mmlist_lock);
1205 
1206 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1207 	     mm_slot = ksm_scan.mm_slot) {
1208 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1209 
1210 		mm = mm_slot->slot.mm;
1211 		mmap_read_lock(mm);
1212 
1213 		/*
1214 		 * Exit right away if mm is exiting to avoid lockdep issue in
1215 		 * the maple tree
1216 		 */
1217 		if (ksm_test_exit(mm))
1218 			goto mm_exiting;
1219 
1220 		for_each_vma(vmi, vma) {
1221 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1222 				continue;
1223 			err = break_ksm(vma, vma->vm_start, vma->vm_end, false);
1224 			if (err)
1225 				goto error;
1226 		}
1227 
1228 mm_exiting:
1229 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1230 		mmap_read_unlock(mm);
1231 
1232 		spin_lock(&ksm_mmlist_lock);
1233 		slot = list_entry(mm_slot->slot.mm_node.next,
1234 				  struct mm_slot, mm_node);
1235 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1236 		if (ksm_test_exit(mm)) {
1237 			hash_del(&mm_slot->slot.hash);
1238 			list_del(&mm_slot->slot.mm_node);
1239 			spin_unlock(&ksm_mmlist_lock);
1240 
1241 			mm_slot_free(mm_slot_cache, mm_slot);
1242 			mm_flags_clear(MMF_VM_MERGEABLE, mm);
1243 			mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1244 			mmdrop(mm);
1245 		} else
1246 			spin_unlock(&ksm_mmlist_lock);
1247 	}
1248 
1249 	/* Clean up stable nodes, but don't worry if some are still busy */
1250 	remove_all_stable_nodes();
1251 	ksm_scan.seqnr = 0;
1252 	return 0;
1253 
1254 error:
1255 	mmap_read_unlock(mm);
1256 	spin_lock(&ksm_mmlist_lock);
1257 	ksm_scan.mm_slot = &ksm_mm_head;
1258 	spin_unlock(&ksm_mmlist_lock);
1259 	return err;
1260 }
1261 #endif /* CONFIG_SYSFS */
1262 
calc_checksum(struct page * page)1263 static u32 calc_checksum(struct page *page)
1264 {
1265 	u32 checksum;
1266 	void *addr = kmap_local_page(page);
1267 	checksum = xxhash(addr, PAGE_SIZE, 0);
1268 	kunmap_local(addr);
1269 	return checksum;
1270 }
1271 
write_protect_page(struct vm_area_struct * vma,struct folio * folio,pte_t * orig_pte)1272 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1273 			      pte_t *orig_pte)
1274 {
1275 	struct mm_struct *mm = vma->vm_mm;
1276 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1277 	int swapped;
1278 	int err = -EFAULT;
1279 	struct mmu_notifier_range range;
1280 	bool anon_exclusive;
1281 	pte_t entry;
1282 
1283 	if (WARN_ON_ONCE(folio_test_large(folio)))
1284 		return err;
1285 
1286 	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1287 	if (pvmw.address == -EFAULT)
1288 		goto out;
1289 
1290 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1291 				pvmw.address + PAGE_SIZE);
1292 	mmu_notifier_invalidate_range_start(&range);
1293 
1294 	if (!page_vma_mapped_walk(&pvmw))
1295 		goto out_mn;
1296 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1297 		goto out_unlock;
1298 
1299 	entry = ptep_get(pvmw.pte);
1300 	/*
1301 	 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1302 	 * map pages: give up just like the next folio_walk would.
1303 	 */
1304 	if (unlikely(!pte_present(entry)))
1305 		goto out_unlock;
1306 
1307 	anon_exclusive = PageAnonExclusive(&folio->page);
1308 	if (pte_write(entry) || pte_dirty(entry) ||
1309 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1310 		swapped = folio_test_swapcache(folio);
1311 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1312 		/*
1313 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1314 		 * take any lock, therefore the check that we are going to make
1315 		 * with the pagecount against the mapcount is racy and
1316 		 * O_DIRECT can happen right after the check.
1317 		 * So we clear the pte and flush the tlb before the check
1318 		 * this assure us that no O_DIRECT can happen after the check
1319 		 * or in the middle of the check.
1320 		 *
1321 		 * No need to notify as we are downgrading page table to read
1322 		 * only not changing it to point to a new page.
1323 		 *
1324 		 * See Documentation/mm/mmu_notifier.rst
1325 		 */
1326 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1327 		/*
1328 		 * Check that no O_DIRECT or similar I/O is in progress on the
1329 		 * page
1330 		 */
1331 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1332 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1333 			goto out_unlock;
1334 		}
1335 
1336 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1337 		if (anon_exclusive &&
1338 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1339 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1340 			goto out_unlock;
1341 		}
1342 
1343 		if (pte_dirty(entry))
1344 			folio_mark_dirty(folio);
1345 		entry = pte_mkclean(entry);
1346 
1347 		if (pte_write(entry))
1348 			entry = pte_wrprotect(entry);
1349 
1350 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1351 	}
1352 	*orig_pte = entry;
1353 	err = 0;
1354 
1355 out_unlock:
1356 	page_vma_mapped_walk_done(&pvmw);
1357 out_mn:
1358 	mmu_notifier_invalidate_range_end(&range);
1359 out:
1360 	return err;
1361 }
1362 
1363 /**
1364  * replace_page - replace page in vma by new ksm page
1365  * @vma:      vma that holds the pte pointing to page
1366  * @page:     the page we are replacing by kpage
1367  * @kpage:    the ksm page we replace page by
1368  * @orig_pte: the original value of the pte
1369  *
1370  * Returns 0 on success, -EFAULT on failure.
1371  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1372 static int replace_page(struct vm_area_struct *vma, struct page *page,
1373 			struct page *kpage, pte_t orig_pte)
1374 {
1375 	struct folio *kfolio = page_folio(kpage);
1376 	struct mm_struct *mm = vma->vm_mm;
1377 	struct folio *folio = page_folio(page);
1378 	pmd_t *pmd;
1379 	pmd_t pmde;
1380 	pte_t *ptep;
1381 	pte_t newpte;
1382 	spinlock_t *ptl;
1383 	unsigned long addr;
1384 	int err = -EFAULT;
1385 	struct mmu_notifier_range range;
1386 
1387 	addr = page_address_in_vma(folio, page, vma);
1388 	if (addr == -EFAULT)
1389 		goto out;
1390 
1391 	pmd = mm_find_pmd(mm, addr);
1392 	if (!pmd)
1393 		goto out;
1394 	/*
1395 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1396 	 * without holding anon_vma lock for write.  So when looking for a
1397 	 * genuine pmde (in which to find pte), test present and !THP together.
1398 	 */
1399 	pmde = pmdp_get_lockless(pmd);
1400 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1401 		goto out;
1402 
1403 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1404 				addr + PAGE_SIZE);
1405 	mmu_notifier_invalidate_range_start(&range);
1406 
1407 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408 	if (!ptep)
1409 		goto out_mn;
1410 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1411 		pte_unmap_unlock(ptep, ptl);
1412 		goto out_mn;
1413 	}
1414 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1415 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1416 			kfolio);
1417 
1418 	/*
1419 	 * No need to check ksm_use_zero_pages here: we can only have a
1420 	 * zero_page here if ksm_use_zero_pages was enabled already.
1421 	 */
1422 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1423 		folio_get(kfolio);
1424 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1425 		newpte = mk_pte(kpage, vma->vm_page_prot);
1426 	} else {
1427 		/*
1428 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1429 		 * we can easily track all KSM-placed zero pages by checking if
1430 		 * the dirty bit in zero page's PTE is set.
1431 		 */
1432 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1433 		ksm_map_zero_page(mm);
1434 		/*
1435 		 * We're replacing an anonymous page with a zero page, which is
1436 		 * not anonymous. We need to do proper accounting otherwise we
1437 		 * will get wrong values in /proc, and a BUG message in dmesg
1438 		 * when tearing down the mm.
1439 		 */
1440 		dec_mm_counter(mm, MM_ANONPAGES);
1441 	}
1442 
1443 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1444 	/*
1445 	 * No need to notify as we are replacing a read only page with another
1446 	 * read only page with the same content.
1447 	 *
1448 	 * See Documentation/mm/mmu_notifier.rst
1449 	 */
1450 	ptep_clear_flush(vma, addr, ptep);
1451 	set_pte_at(mm, addr, ptep, newpte);
1452 
1453 	folio_remove_rmap_pte(folio, page, vma);
1454 	if (!folio_mapped(folio))
1455 		folio_free_swap(folio);
1456 	folio_put(folio);
1457 
1458 	pte_unmap_unlock(ptep, ptl);
1459 	err = 0;
1460 out_mn:
1461 	mmu_notifier_invalidate_range_end(&range);
1462 out:
1463 	return err;
1464 }
1465 
1466 /*
1467  * try_to_merge_one_page - take two pages and merge them into one
1468  * @vma: the vma that holds the pte pointing to page
1469  * @page: the PageAnon page that we want to replace with kpage
1470  * @kpage: the KSM page that we want to map instead of page,
1471  *         or NULL the first time when we want to use page as kpage.
1472  *
1473  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1475 static int try_to_merge_one_page(struct vm_area_struct *vma,
1476 				 struct page *page, struct page *kpage)
1477 {
1478 	struct folio *folio = page_folio(page);
1479 	pte_t orig_pte = __pte(0);
1480 	int err = -EFAULT;
1481 
1482 	if (page == kpage)			/* ksm page forked */
1483 		return 0;
1484 
1485 	if (!folio_test_anon(folio))
1486 		goto out;
1487 
1488 	/*
1489 	 * We need the folio lock to read a stable swapcache flag in
1490 	 * write_protect_page().  We trylock because we don't want to wait
1491 	 * here - we prefer to continue scanning and merging different
1492 	 * pages, then come back to this page when it is unlocked.
1493 	 */
1494 	if (!folio_trylock(folio))
1495 		goto out;
1496 
1497 	if (folio_test_large(folio)) {
1498 		if (split_huge_page(page))
1499 			goto out_unlock;
1500 		folio = page_folio(page);
1501 	}
1502 
1503 	/*
1504 	 * If this anonymous page is mapped only here, its pte may need
1505 	 * to be write-protected.  If it's mapped elsewhere, all of its
1506 	 * ptes are necessarily already write-protected.  But in either
1507 	 * case, we need to lock and check page_count is not raised.
1508 	 */
1509 	if (write_protect_page(vma, folio, &orig_pte) == 0) {
1510 		if (!kpage) {
1511 			/*
1512 			 * While we hold folio lock, upgrade folio from
1513 			 * anon to a NULL stable_node with the KSM flag set:
1514 			 * stable_tree_insert() will update stable_node.
1515 			 */
1516 			folio_set_stable_node(folio, NULL);
1517 			folio_mark_accessed(folio);
1518 			/*
1519 			 * Page reclaim just frees a clean folio with no dirty
1520 			 * ptes: make sure that the ksm page would be swapped.
1521 			 */
1522 			if (!folio_test_dirty(folio))
1523 				folio_mark_dirty(folio);
1524 			err = 0;
1525 		} else if (pages_identical(page, kpage))
1526 			err = replace_page(vma, page, kpage, orig_pte);
1527 	}
1528 
1529 out_unlock:
1530 	folio_unlock(folio);
1531 out:
1532 	return err;
1533 }
1534 
1535 /*
1536  * This function returns 0 if the pages were merged or if they are
1537  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1538  */
try_to_merge_with_zero_page(struct ksm_rmap_item * rmap_item,struct page * page)1539 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1540 				       struct page *page)
1541 {
1542 	struct mm_struct *mm = rmap_item->mm;
1543 	int err = -EFAULT;
1544 
1545 	/*
1546 	 * Same checksum as an empty page. We attempt to merge it with the
1547 	 * appropriate zero page if the user enabled this via sysfs.
1548 	 */
1549 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1550 		struct vm_area_struct *vma;
1551 
1552 		mmap_read_lock(mm);
1553 		vma = find_mergeable_vma(mm, rmap_item->address);
1554 		if (vma) {
1555 			err = try_to_merge_one_page(vma, page,
1556 					ZERO_PAGE(rmap_item->address));
1557 			trace_ksm_merge_one_page(
1558 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1559 				rmap_item, mm, err);
1560 		} else {
1561 			/*
1562 			 * If the vma is out of date, we do not need to
1563 			 * continue.
1564 			 */
1565 			err = 0;
1566 		}
1567 		mmap_read_unlock(mm);
1568 	}
1569 
1570 	return err;
1571 }
1572 
1573 /*
1574  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1575  * but no new kernel page is allocated: kpage must already be a ksm page.
1576  *
1577  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1578  */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1579 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1580 				      struct page *page, struct page *kpage)
1581 {
1582 	struct mm_struct *mm = rmap_item->mm;
1583 	struct vm_area_struct *vma;
1584 	int err = -EFAULT;
1585 
1586 	mmap_read_lock(mm);
1587 	vma = find_mergeable_vma(mm, rmap_item->address);
1588 	if (!vma)
1589 		goto out;
1590 
1591 	err = try_to_merge_one_page(vma, page, kpage);
1592 	if (err)
1593 		goto out;
1594 
1595 	/* Unstable nid is in union with stable anon_vma: remove first */
1596 	remove_rmap_item_from_tree(rmap_item);
1597 
1598 	/* Must get reference to anon_vma while still holding mmap_lock */
1599 	rmap_item->anon_vma = vma->anon_vma;
1600 	get_anon_vma(vma->anon_vma);
1601 out:
1602 	mmap_read_unlock(mm);
1603 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1604 				rmap_item, mm, err);
1605 	return err;
1606 }
1607 
1608 /*
1609  * try_to_merge_two_pages - take two identical pages and prepare them
1610  * to be merged into one page.
1611  *
1612  * This function returns the kpage if we successfully merged two identical
1613  * pages into one ksm page, NULL otherwise.
1614  *
1615  * Note that this function upgrades page to ksm page: if one of the pages
1616  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1617  */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1618 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1619 					   struct page *page,
1620 					   struct ksm_rmap_item *tree_rmap_item,
1621 					   struct page *tree_page)
1622 {
1623 	int err;
1624 
1625 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1626 	if (!err) {
1627 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1628 							tree_page, page);
1629 		/*
1630 		 * If that fails, we have a ksm page with only one pte
1631 		 * pointing to it: so break it.
1632 		 */
1633 		if (err)
1634 			break_cow(rmap_item);
1635 	}
1636 	return err ? NULL : page_folio(page);
1637 }
1638 
1639 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1640 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1641 {
1642 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1643 	/*
1644 	 * Check that at least one mapping still exists, otherwise
1645 	 * there's no much point to merge and share with this
1646 	 * stable_node, as the underlying tree_page of the other
1647 	 * sharer is going to be freed soon.
1648 	 */
1649 	return stable_node->rmap_hlist_len &&
1650 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1651 }
1652 
1653 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1654 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1655 {
1656 	return __is_page_sharing_candidate(stable_node, 0);
1657 }
1658 
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1659 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1660 				     struct ksm_stable_node **_stable_node,
1661 				     struct rb_root *root,
1662 				     bool prune_stale_stable_nodes)
1663 {
1664 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1665 	struct hlist_node *hlist_safe;
1666 	struct folio *folio, *tree_folio = NULL;
1667 	int found_rmap_hlist_len;
1668 
1669 	if (!prune_stale_stable_nodes ||
1670 	    time_before(jiffies, stable_node->chain_prune_time +
1671 			msecs_to_jiffies(
1672 				ksm_stable_node_chains_prune_millisecs)))
1673 		prune_stale_stable_nodes = false;
1674 	else
1675 		stable_node->chain_prune_time = jiffies;
1676 
1677 	hlist_for_each_entry_safe(dup, hlist_safe,
1678 				  &stable_node->hlist, hlist_dup) {
1679 		cond_resched();
1680 		/*
1681 		 * We must walk all stable_node_dup to prune the stale
1682 		 * stable nodes during lookup.
1683 		 *
1684 		 * ksm_get_folio can drop the nodes from the
1685 		 * stable_node->hlist if they point to freed pages
1686 		 * (that's why we do a _safe walk). The "dup"
1687 		 * stable_node parameter itself will be freed from
1688 		 * under us if it returns NULL.
1689 		 */
1690 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1691 		if (!folio)
1692 			continue;
1693 		/* Pick the best candidate if possible. */
1694 		if (!found || (is_page_sharing_candidate(dup) &&
1695 		    (!is_page_sharing_candidate(found) ||
1696 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1697 			if (found)
1698 				folio_put(tree_folio);
1699 			found = dup;
1700 			found_rmap_hlist_len = found->rmap_hlist_len;
1701 			tree_folio = folio;
1702 			/* skip put_page for found candidate */
1703 			if (!prune_stale_stable_nodes &&
1704 			    is_page_sharing_candidate(found))
1705 				break;
1706 			continue;
1707 		}
1708 		folio_put(folio);
1709 	}
1710 
1711 	if (found) {
1712 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1713 			/*
1714 			 * If there's not just one entry it would
1715 			 * corrupt memory, better BUG_ON. In KSM
1716 			 * context with no lock held it's not even
1717 			 * fatal.
1718 			 */
1719 			BUG_ON(stable_node->hlist.first->next);
1720 
1721 			/*
1722 			 * There's just one entry and it is below the
1723 			 * deduplication limit so drop the chain.
1724 			 */
1725 			rb_replace_node(&stable_node->node, &found->node,
1726 					root);
1727 			free_stable_node(stable_node);
1728 			ksm_stable_node_chains--;
1729 			ksm_stable_node_dups--;
1730 			/*
1731 			 * NOTE: the caller depends on the stable_node
1732 			 * to be equal to stable_node_dup if the chain
1733 			 * was collapsed.
1734 			 */
1735 			*_stable_node = found;
1736 			/*
1737 			 * Just for robustness, as stable_node is
1738 			 * otherwise left as a stable pointer, the
1739 			 * compiler shall optimize it away at build
1740 			 * time.
1741 			 */
1742 			stable_node = NULL;
1743 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1744 			   __is_page_sharing_candidate(found, 1)) {
1745 			/*
1746 			 * If the found stable_node dup can accept one
1747 			 * more future merge (in addition to the one
1748 			 * that is underway) and is not at the head of
1749 			 * the chain, put it there so next search will
1750 			 * be quicker in the !prune_stale_stable_nodes
1751 			 * case.
1752 			 *
1753 			 * NOTE: it would be inaccurate to use nr > 1
1754 			 * instead of checking the hlist.first pointer
1755 			 * directly, because in the
1756 			 * prune_stale_stable_nodes case "nr" isn't
1757 			 * the position of the found dup in the chain,
1758 			 * but the total number of dups in the chain.
1759 			 */
1760 			hlist_del(&found->hlist_dup);
1761 			hlist_add_head(&found->hlist_dup,
1762 				       &stable_node->hlist);
1763 		}
1764 	} else {
1765 		/* Its hlist must be empty if no one found. */
1766 		free_stable_node_chain(stable_node, root);
1767 	}
1768 
1769 	*_stable_node_dup = found;
1770 	return tree_folio;
1771 }
1772 
1773 /*
1774  * Like for ksm_get_folio, this function can free the *_stable_node and
1775  * *_stable_node_dup if the returned tree_page is NULL.
1776  *
1777  * It can also free and overwrite *_stable_node with the found
1778  * stable_node_dup if the chain is collapsed (in which case
1779  * *_stable_node will be equal to *_stable_node_dup like if the chain
1780  * never existed). It's up to the caller to verify tree_page is not
1781  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1782  *
1783  * *_stable_node_dup is really a second output parameter of this
1784  * function and will be overwritten in all cases, the caller doesn't
1785  * need to initialize it.
1786  */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1787 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1788 					 struct ksm_stable_node **_stable_node,
1789 					 struct rb_root *root,
1790 					 bool prune_stale_stable_nodes)
1791 {
1792 	struct ksm_stable_node *stable_node = *_stable_node;
1793 
1794 	if (!is_stable_node_chain(stable_node)) {
1795 		*_stable_node_dup = stable_node;
1796 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1797 	}
1798 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1799 			       prune_stale_stable_nodes);
1800 }
1801 
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1802 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1803 						 struct ksm_stable_node **s_n,
1804 						 struct rb_root *root)
1805 {
1806 	return __stable_node_chain(s_n_d, s_n, root, true);
1807 }
1808 
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1809 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1810 					   struct ksm_stable_node **s_n,
1811 					   struct rb_root *root)
1812 {
1813 	return __stable_node_chain(s_n_d, s_n, root, false);
1814 }
1815 
1816 /*
1817  * stable_tree_search - search for page inside the stable tree
1818  *
1819  * This function checks if there is a page inside the stable tree
1820  * with identical content to the page that we are scanning right now.
1821  *
1822  * This function returns the stable tree node of identical content if found,
1823  * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1824  */
stable_tree_search(struct page * page)1825 static struct folio *stable_tree_search(struct page *page)
1826 {
1827 	int nid;
1828 	struct rb_root *root;
1829 	struct rb_node **new;
1830 	struct rb_node *parent;
1831 	struct ksm_stable_node *stable_node, *stable_node_dup;
1832 	struct ksm_stable_node *page_node;
1833 	struct folio *folio;
1834 
1835 	folio = page_folio(page);
1836 	page_node = folio_stable_node(folio);
1837 	if (page_node && page_node->head != &migrate_nodes) {
1838 		/* ksm page forked */
1839 		folio_get(folio);
1840 		return folio;
1841 	}
1842 
1843 	nid = get_kpfn_nid(folio_pfn(folio));
1844 	root = root_stable_tree + nid;
1845 again:
1846 	new = &root->rb_node;
1847 	parent = NULL;
1848 
1849 	while (*new) {
1850 		struct folio *tree_folio;
1851 		int ret;
1852 
1853 		cond_resched();
1854 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1855 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1856 		if (!tree_folio) {
1857 			/*
1858 			 * If we walked over a stale stable_node,
1859 			 * ksm_get_folio() will call rb_erase() and it
1860 			 * may rebalance the tree from under us. So
1861 			 * restart the search from scratch. Returning
1862 			 * NULL would be safe too, but we'd generate
1863 			 * false negative insertions just because some
1864 			 * stable_node was stale.
1865 			 */
1866 			goto again;
1867 		}
1868 
1869 		ret = memcmp_pages(page, &tree_folio->page);
1870 		folio_put(tree_folio);
1871 
1872 		parent = *new;
1873 		if (ret < 0)
1874 			new = &parent->rb_left;
1875 		else if (ret > 0)
1876 			new = &parent->rb_right;
1877 		else {
1878 			if (page_node) {
1879 				VM_BUG_ON(page_node->head != &migrate_nodes);
1880 				/*
1881 				 * If the mapcount of our migrated KSM folio is
1882 				 * at most 1, we can merge it with another
1883 				 * KSM folio where we know that we have space
1884 				 * for one more mapping without exceeding the
1885 				 * ksm_max_page_sharing limit: see
1886 				 * chain_prune(). This way, we can avoid adding
1887 				 * this stable node to the chain.
1888 				 */
1889 				if (folio_mapcount(folio) > 1)
1890 					goto chain_append;
1891 			}
1892 
1893 			if (!is_page_sharing_candidate(stable_node_dup)) {
1894 				/*
1895 				 * If the stable_node is a chain and
1896 				 * we got a payload match in memcmp
1897 				 * but we cannot merge the scanned
1898 				 * page in any of the existing
1899 				 * stable_node dups because they're
1900 				 * all full, we need to wait the
1901 				 * scanned page to find itself a match
1902 				 * in the unstable tree to create a
1903 				 * brand new KSM page to add later to
1904 				 * the dups of this stable_node.
1905 				 */
1906 				return NULL;
1907 			}
1908 
1909 			/*
1910 			 * Lock and unlock the stable_node's page (which
1911 			 * might already have been migrated) so that page
1912 			 * migration is sure to notice its raised count.
1913 			 * It would be more elegant to return stable_node
1914 			 * than kpage, but that involves more changes.
1915 			 */
1916 			tree_folio = ksm_get_folio(stable_node_dup,
1917 						   KSM_GET_FOLIO_TRYLOCK);
1918 
1919 			if (PTR_ERR(tree_folio) == -EBUSY)
1920 				return ERR_PTR(-EBUSY);
1921 
1922 			if (unlikely(!tree_folio))
1923 				/*
1924 				 * The tree may have been rebalanced,
1925 				 * so re-evaluate parent and new.
1926 				 */
1927 				goto again;
1928 			folio_unlock(tree_folio);
1929 
1930 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1931 			    NUMA(stable_node_dup->nid)) {
1932 				folio_put(tree_folio);
1933 				goto replace;
1934 			}
1935 			return tree_folio;
1936 		}
1937 	}
1938 
1939 	if (!page_node)
1940 		return NULL;
1941 
1942 	list_del(&page_node->list);
1943 	DO_NUMA(page_node->nid = nid);
1944 	rb_link_node(&page_node->node, parent, new);
1945 	rb_insert_color(&page_node->node, root);
1946 out:
1947 	if (is_page_sharing_candidate(page_node)) {
1948 		folio_get(folio);
1949 		return folio;
1950 	} else
1951 		return NULL;
1952 
1953 replace:
1954 	/*
1955 	 * If stable_node was a chain and chain_prune collapsed it,
1956 	 * stable_node has been updated to be the new regular
1957 	 * stable_node. A collapse of the chain is indistinguishable
1958 	 * from the case there was no chain in the stable
1959 	 * rbtree. Otherwise stable_node is the chain and
1960 	 * stable_node_dup is the dup to replace.
1961 	 */
1962 	if (stable_node_dup == stable_node) {
1963 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1964 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1965 		/* there is no chain */
1966 		if (page_node) {
1967 			VM_BUG_ON(page_node->head != &migrate_nodes);
1968 			list_del(&page_node->list);
1969 			DO_NUMA(page_node->nid = nid);
1970 			rb_replace_node(&stable_node_dup->node,
1971 					&page_node->node,
1972 					root);
1973 			if (is_page_sharing_candidate(page_node))
1974 				folio_get(folio);
1975 			else
1976 				folio = NULL;
1977 		} else {
1978 			rb_erase(&stable_node_dup->node, root);
1979 			folio = NULL;
1980 		}
1981 	} else {
1982 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1983 		__stable_node_dup_del(stable_node_dup);
1984 		if (page_node) {
1985 			VM_BUG_ON(page_node->head != &migrate_nodes);
1986 			list_del(&page_node->list);
1987 			DO_NUMA(page_node->nid = nid);
1988 			stable_node_chain_add_dup(page_node, stable_node);
1989 			if (is_page_sharing_candidate(page_node))
1990 				folio_get(folio);
1991 			else
1992 				folio = NULL;
1993 		} else {
1994 			folio = NULL;
1995 		}
1996 	}
1997 	stable_node_dup->head = &migrate_nodes;
1998 	list_add(&stable_node_dup->list, stable_node_dup->head);
1999 	return folio;
2000 
2001 chain_append:
2002 	/*
2003 	 * If stable_node was a chain and chain_prune collapsed it,
2004 	 * stable_node has been updated to be the new regular
2005 	 * stable_node. A collapse of the chain is indistinguishable
2006 	 * from the case there was no chain in the stable
2007 	 * rbtree. Otherwise stable_node is the chain and
2008 	 * stable_node_dup is the dup to replace.
2009 	 */
2010 	if (stable_node_dup == stable_node) {
2011 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2012 		/* chain is missing so create it */
2013 		stable_node = alloc_stable_node_chain(stable_node_dup,
2014 						      root);
2015 		if (!stable_node)
2016 			return NULL;
2017 	}
2018 	/*
2019 	 * Add this stable_node dup that was
2020 	 * migrated to the stable_node chain
2021 	 * of the current nid for this page
2022 	 * content.
2023 	 */
2024 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2025 	VM_BUG_ON(page_node->head != &migrate_nodes);
2026 	list_del(&page_node->list);
2027 	DO_NUMA(page_node->nid = nid);
2028 	stable_node_chain_add_dup(page_node, stable_node);
2029 	goto out;
2030 }
2031 
2032 /*
2033  * stable_tree_insert - insert stable tree node pointing to new ksm page
2034  * into the stable tree.
2035  *
2036  * This function returns the stable tree node just allocated on success,
2037  * NULL otherwise.
2038  */
stable_tree_insert(struct folio * kfolio)2039 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2040 {
2041 	int nid;
2042 	unsigned long kpfn;
2043 	struct rb_root *root;
2044 	struct rb_node **new;
2045 	struct rb_node *parent;
2046 	struct ksm_stable_node *stable_node, *stable_node_dup;
2047 	bool need_chain = false;
2048 
2049 	kpfn = folio_pfn(kfolio);
2050 	nid = get_kpfn_nid(kpfn);
2051 	root = root_stable_tree + nid;
2052 again:
2053 	parent = NULL;
2054 	new = &root->rb_node;
2055 
2056 	while (*new) {
2057 		struct folio *tree_folio;
2058 		int ret;
2059 
2060 		cond_resched();
2061 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2062 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2063 		if (!tree_folio) {
2064 			/*
2065 			 * If we walked over a stale stable_node,
2066 			 * ksm_get_folio() will call rb_erase() and it
2067 			 * may rebalance the tree from under us. So
2068 			 * restart the search from scratch. Returning
2069 			 * NULL would be safe too, but we'd generate
2070 			 * false negative insertions just because some
2071 			 * stable_node was stale.
2072 			 */
2073 			goto again;
2074 		}
2075 
2076 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2077 		folio_put(tree_folio);
2078 
2079 		parent = *new;
2080 		if (ret < 0)
2081 			new = &parent->rb_left;
2082 		else if (ret > 0)
2083 			new = &parent->rb_right;
2084 		else {
2085 			need_chain = true;
2086 			break;
2087 		}
2088 	}
2089 
2090 	stable_node_dup = alloc_stable_node();
2091 	if (!stable_node_dup)
2092 		return NULL;
2093 
2094 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2095 	stable_node_dup->kpfn = kpfn;
2096 	stable_node_dup->rmap_hlist_len = 0;
2097 	DO_NUMA(stable_node_dup->nid = nid);
2098 	if (!need_chain) {
2099 		rb_link_node(&stable_node_dup->node, parent, new);
2100 		rb_insert_color(&stable_node_dup->node, root);
2101 	} else {
2102 		if (!is_stable_node_chain(stable_node)) {
2103 			struct ksm_stable_node *orig = stable_node;
2104 			/* chain is missing so create it */
2105 			stable_node = alloc_stable_node_chain(orig, root);
2106 			if (!stable_node) {
2107 				free_stable_node(stable_node_dup);
2108 				return NULL;
2109 			}
2110 		}
2111 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2112 	}
2113 
2114 	folio_set_stable_node(kfolio, stable_node_dup);
2115 
2116 	return stable_node_dup;
2117 }
2118 
2119 /*
2120  * unstable_tree_search_insert - search for identical page,
2121  * else insert rmap_item into the unstable tree.
2122  *
2123  * This function searches for a page in the unstable tree identical to the
2124  * page currently being scanned; and if no identical page is found in the
2125  * tree, we insert rmap_item as a new object into the unstable tree.
2126  *
2127  * This function returns pointer to rmap_item found to be identical
2128  * to the currently scanned page, NULL otherwise.
2129  *
2130  * This function does both searching and inserting, because they share
2131  * the same walking algorithm in an rbtree.
2132  */
2133 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2134 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2135 					      struct page *page,
2136 					      struct page **tree_pagep)
2137 {
2138 	struct rb_node **new;
2139 	struct rb_root *root;
2140 	struct rb_node *parent = NULL;
2141 	int nid;
2142 
2143 	nid = get_kpfn_nid(page_to_pfn(page));
2144 	root = root_unstable_tree + nid;
2145 	new = &root->rb_node;
2146 
2147 	while (*new) {
2148 		struct ksm_rmap_item *tree_rmap_item;
2149 		struct page *tree_page;
2150 		int ret;
2151 
2152 		cond_resched();
2153 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2154 		tree_page = get_mergeable_page(tree_rmap_item);
2155 		if (!tree_page)
2156 			return NULL;
2157 
2158 		/*
2159 		 * Don't substitute a ksm page for a forked page.
2160 		 */
2161 		if (page == tree_page) {
2162 			put_page(tree_page);
2163 			return NULL;
2164 		}
2165 
2166 		ret = memcmp_pages(page, tree_page);
2167 
2168 		parent = *new;
2169 		if (ret < 0) {
2170 			put_page(tree_page);
2171 			new = &parent->rb_left;
2172 		} else if (ret > 0) {
2173 			put_page(tree_page);
2174 			new = &parent->rb_right;
2175 		} else if (!ksm_merge_across_nodes &&
2176 			   page_to_nid(tree_page) != nid) {
2177 			/*
2178 			 * If tree_page has been migrated to another NUMA node,
2179 			 * it will be flushed out and put in the right unstable
2180 			 * tree next time: only merge with it when across_nodes.
2181 			 */
2182 			put_page(tree_page);
2183 			return NULL;
2184 		} else {
2185 			*tree_pagep = tree_page;
2186 			return tree_rmap_item;
2187 		}
2188 	}
2189 
2190 	rmap_item->address |= UNSTABLE_FLAG;
2191 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2192 	DO_NUMA(rmap_item->nid = nid);
2193 	rb_link_node(&rmap_item->node, parent, new);
2194 	rb_insert_color(&rmap_item->node, root);
2195 
2196 	ksm_pages_unshared++;
2197 	return NULL;
2198 }
2199 
2200 /*
2201  * stable_tree_append - add another rmap_item to the linked list of
2202  * rmap_items hanging off a given node of the stable tree, all sharing
2203  * the same ksm page.
2204  */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2205 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2206 			       struct ksm_stable_node *stable_node,
2207 			       bool max_page_sharing_bypass)
2208 {
2209 	/*
2210 	 * rmap won't find this mapping if we don't insert the
2211 	 * rmap_item in the right stable_node
2212 	 * duplicate. page_migration could break later if rmap breaks,
2213 	 * so we can as well crash here. We really need to check for
2214 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2215 	 * for other negative values as an underflow if detected here
2216 	 * for the first time (and not when decreasing rmap_hlist_len)
2217 	 * would be sign of memory corruption in the stable_node.
2218 	 */
2219 	BUG_ON(stable_node->rmap_hlist_len < 0);
2220 
2221 	stable_node->rmap_hlist_len++;
2222 	if (!max_page_sharing_bypass)
2223 		/* possibly non fatal but unexpected overflow, only warn */
2224 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2225 			     ksm_max_page_sharing);
2226 
2227 	rmap_item->head = stable_node;
2228 	rmap_item->address |= STABLE_FLAG;
2229 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2230 
2231 	if (rmap_item->hlist.next)
2232 		ksm_pages_sharing++;
2233 	else
2234 		ksm_pages_shared++;
2235 
2236 	rmap_item->mm->ksm_merging_pages++;
2237 }
2238 
2239 /*
2240  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2241  * if not, compare checksum to previous and if it's the same, see if page can
2242  * be inserted into the unstable tree, or merged with a page already there and
2243  * both transferred to the stable tree.
2244  *
2245  * @page: the page that we are searching identical page to.
2246  * @rmap_item: the reverse mapping into the virtual address of this page
2247  */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2248 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2249 {
2250 	struct folio *folio = page_folio(page);
2251 	struct ksm_rmap_item *tree_rmap_item;
2252 	struct page *tree_page = NULL;
2253 	struct ksm_stable_node *stable_node;
2254 	struct folio *kfolio;
2255 	unsigned int checksum;
2256 	int err;
2257 	bool max_page_sharing_bypass = false;
2258 
2259 	stable_node = folio_stable_node(folio);
2260 	if (stable_node) {
2261 		if (stable_node->head != &migrate_nodes &&
2262 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2263 		    NUMA(stable_node->nid)) {
2264 			stable_node_dup_del(stable_node);
2265 			stable_node->head = &migrate_nodes;
2266 			list_add(&stable_node->list, stable_node->head);
2267 		}
2268 		if (stable_node->head != &migrate_nodes &&
2269 		    rmap_item->head == stable_node)
2270 			return;
2271 		/*
2272 		 * If it's a KSM fork, allow it to go over the sharing limit
2273 		 * without warnings.
2274 		 */
2275 		if (!is_page_sharing_candidate(stable_node))
2276 			max_page_sharing_bypass = true;
2277 	} else {
2278 		remove_rmap_item_from_tree(rmap_item);
2279 
2280 		/*
2281 		 * If the hash value of the page has changed from the last time
2282 		 * we calculated it, this page is changing frequently: therefore we
2283 		 * don't want to insert it in the unstable tree, and we don't want
2284 		 * to waste our time searching for something identical to it there.
2285 		 */
2286 		checksum = calc_checksum(page);
2287 		if (rmap_item->oldchecksum != checksum) {
2288 			rmap_item->oldchecksum = checksum;
2289 			return;
2290 		}
2291 
2292 		if (!try_to_merge_with_zero_page(rmap_item, page))
2293 			return;
2294 	}
2295 
2296 	/* Start by searching for the folio in the stable tree */
2297 	kfolio = stable_tree_search(page);
2298 	if (kfolio == folio && rmap_item->head == stable_node) {
2299 		folio_put(kfolio);
2300 		return;
2301 	}
2302 
2303 	remove_rmap_item_from_tree(rmap_item);
2304 
2305 	if (kfolio) {
2306 		if (kfolio == ERR_PTR(-EBUSY))
2307 			return;
2308 
2309 		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2310 		if (!err) {
2311 			/*
2312 			 * The page was successfully merged:
2313 			 * add its rmap_item to the stable tree.
2314 			 */
2315 			folio_lock(kfolio);
2316 			stable_tree_append(rmap_item, folio_stable_node(kfolio),
2317 					   max_page_sharing_bypass);
2318 			folio_unlock(kfolio);
2319 		}
2320 		folio_put(kfolio);
2321 		return;
2322 	}
2323 
2324 	tree_rmap_item =
2325 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2326 	if (tree_rmap_item) {
2327 		bool split;
2328 
2329 		kfolio = try_to_merge_two_pages(rmap_item, page,
2330 						tree_rmap_item, tree_page);
2331 		/*
2332 		 * If both pages we tried to merge belong to the same compound
2333 		 * page, then we actually ended up increasing the reference
2334 		 * count of the same compound page twice, and split_huge_page
2335 		 * failed.
2336 		 * Here we set a flag if that happened, and we use it later to
2337 		 * try split_huge_page again. Since we call put_page right
2338 		 * afterwards, the reference count will be correct and
2339 		 * split_huge_page should succeed.
2340 		 */
2341 		split = PageTransCompound(page)
2342 			&& compound_head(page) == compound_head(tree_page);
2343 		put_page(tree_page);
2344 		if (kfolio) {
2345 			/*
2346 			 * The pages were successfully merged: insert new
2347 			 * node in the stable tree and add both rmap_items.
2348 			 */
2349 			folio_lock(kfolio);
2350 			stable_node = stable_tree_insert(kfolio);
2351 			if (stable_node) {
2352 				stable_tree_append(tree_rmap_item, stable_node,
2353 						   false);
2354 				stable_tree_append(rmap_item, stable_node,
2355 						   false);
2356 			}
2357 			folio_unlock(kfolio);
2358 
2359 			/*
2360 			 * If we fail to insert the page into the stable tree,
2361 			 * we will have 2 virtual addresses that are pointing
2362 			 * to a ksm page left outside the stable tree,
2363 			 * in which case we need to break_cow on both.
2364 			 */
2365 			if (!stable_node) {
2366 				break_cow(tree_rmap_item);
2367 				break_cow(rmap_item);
2368 			}
2369 		} else if (split) {
2370 			/*
2371 			 * We are here if we tried to merge two pages and
2372 			 * failed because they both belonged to the same
2373 			 * compound page. We will split the page now, but no
2374 			 * merging will take place.
2375 			 * We do not want to add the cost of a full lock; if
2376 			 * the page is locked, it is better to skip it and
2377 			 * perhaps try again later.
2378 			 */
2379 			if (!folio_trylock(folio))
2380 				return;
2381 			split_huge_page(page);
2382 			folio = page_folio(page);
2383 			folio_unlock(folio);
2384 		}
2385 	}
2386 }
2387 
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2388 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2389 					    struct ksm_rmap_item **rmap_list,
2390 					    unsigned long addr)
2391 {
2392 	struct ksm_rmap_item *rmap_item;
2393 
2394 	while (*rmap_list) {
2395 		rmap_item = *rmap_list;
2396 		if ((rmap_item->address & PAGE_MASK) == addr)
2397 			return rmap_item;
2398 		if (rmap_item->address > addr)
2399 			break;
2400 		*rmap_list = rmap_item->rmap_list;
2401 		remove_rmap_item_from_tree(rmap_item);
2402 		free_rmap_item(rmap_item);
2403 	}
2404 
2405 	rmap_item = alloc_rmap_item();
2406 	if (rmap_item) {
2407 		/* It has already been zeroed */
2408 		rmap_item->mm = mm_slot->slot.mm;
2409 		rmap_item->mm->ksm_rmap_items++;
2410 		rmap_item->address = addr;
2411 		rmap_item->rmap_list = *rmap_list;
2412 		*rmap_list = rmap_item;
2413 	}
2414 	return rmap_item;
2415 }
2416 
2417 /*
2418  * Calculate skip age for the ksm page age. The age determines how often
2419  * de-duplicating has already been tried unsuccessfully. If the age is
2420  * smaller, the scanning of this page is skipped for less scans.
2421  *
2422  * @age: rmap_item age of page
2423  */
skip_age(rmap_age_t age)2424 static unsigned int skip_age(rmap_age_t age)
2425 {
2426 	if (age <= 3)
2427 		return 1;
2428 	if (age <= 5)
2429 		return 2;
2430 	if (age <= 8)
2431 		return 4;
2432 
2433 	return 8;
2434 }
2435 
2436 /*
2437  * Determines if a page should be skipped for the current scan.
2438  *
2439  * @folio: folio containing the page to check
2440  * @rmap_item: associated rmap_item of page
2441  */
should_skip_rmap_item(struct folio * folio,struct ksm_rmap_item * rmap_item)2442 static bool should_skip_rmap_item(struct folio *folio,
2443 				  struct ksm_rmap_item *rmap_item)
2444 {
2445 	rmap_age_t age;
2446 
2447 	if (!ksm_smart_scan)
2448 		return false;
2449 
2450 	/*
2451 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2452 	 * will essentially ignore them, but we still have to process them
2453 	 * properly.
2454 	 */
2455 	if (folio_test_ksm(folio))
2456 		return false;
2457 
2458 	age = rmap_item->age;
2459 	if (age != U8_MAX)
2460 		rmap_item->age++;
2461 
2462 	/*
2463 	 * Smaller ages are not skipped, they need to get a chance to go
2464 	 * through the different phases of the KSM merging.
2465 	 */
2466 	if (age < 3)
2467 		return false;
2468 
2469 	/*
2470 	 * Are we still allowed to skip? If not, then don't skip it
2471 	 * and determine how much more often we are allowed to skip next.
2472 	 */
2473 	if (!rmap_item->remaining_skips) {
2474 		rmap_item->remaining_skips = skip_age(age);
2475 		return false;
2476 	}
2477 
2478 	/* Skip this page */
2479 	ksm_pages_skipped++;
2480 	rmap_item->remaining_skips--;
2481 	remove_rmap_item_from_tree(rmap_item);
2482 	return true;
2483 }
2484 
2485 struct ksm_next_page_arg {
2486 	struct folio *folio;
2487 	struct page *page;
2488 	unsigned long addr;
2489 };
2490 
ksm_next_page_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)2491 static int ksm_next_page_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
2492 		struct mm_walk *walk)
2493 {
2494 	struct ksm_next_page_arg *private = walk->private;
2495 	struct vm_area_struct *vma = walk->vma;
2496 	pte_t *start_ptep = NULL, *ptep, pte;
2497 	struct mm_struct *mm = walk->mm;
2498 	struct folio *folio;
2499 	struct page *page;
2500 	spinlock_t *ptl;
2501 	pmd_t pmd;
2502 
2503 	if (ksm_test_exit(mm))
2504 		return 0;
2505 
2506 	cond_resched();
2507 
2508 	pmd = pmdp_get_lockless(pmdp);
2509 	if (!pmd_present(pmd))
2510 		return 0;
2511 
2512 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && pmd_leaf(pmd)) {
2513 		ptl = pmd_lock(mm, pmdp);
2514 		pmd = pmdp_get(pmdp);
2515 
2516 		if (!pmd_present(pmd)) {
2517 			goto not_found_unlock;
2518 		} else if (pmd_leaf(pmd)) {
2519 			page = vm_normal_page_pmd(vma, addr, pmd);
2520 			if (!page)
2521 				goto not_found_unlock;
2522 			folio = page_folio(page);
2523 
2524 			if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2525 				goto not_found_unlock;
2526 
2527 			page += ((addr & (PMD_SIZE - 1)) >> PAGE_SHIFT);
2528 			goto found_unlock;
2529 		}
2530 		spin_unlock(ptl);
2531 	}
2532 
2533 	start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2534 	if (!start_ptep)
2535 		return 0;
2536 
2537 	for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
2538 		pte = ptep_get(ptep);
2539 
2540 		if (!pte_present(pte))
2541 			continue;
2542 
2543 		page = vm_normal_page(vma, addr, pte);
2544 		if (!page)
2545 			continue;
2546 		folio = page_folio(page);
2547 
2548 		if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2549 			continue;
2550 		goto found_unlock;
2551 	}
2552 
2553 not_found_unlock:
2554 	spin_unlock(ptl);
2555 	if (start_ptep)
2556 		pte_unmap(start_ptep);
2557 	return 0;
2558 found_unlock:
2559 	folio_get(folio);
2560 	spin_unlock(ptl);
2561 	if (start_ptep)
2562 		pte_unmap(start_ptep);
2563 	private->page = page;
2564 	private->folio = folio;
2565 	private->addr = addr;
2566 	return 1;
2567 }
2568 
2569 static struct mm_walk_ops ksm_next_page_ops = {
2570 	.pmd_entry = ksm_next_page_pmd_entry,
2571 	.walk_lock = PGWALK_RDLOCK,
2572 };
2573 
scan_get_next_rmap_item(struct page ** page)2574 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2575 {
2576 	struct mm_struct *mm;
2577 	struct ksm_mm_slot *mm_slot;
2578 	struct mm_slot *slot;
2579 	struct vm_area_struct *vma;
2580 	struct ksm_rmap_item *rmap_item;
2581 	struct vma_iterator vmi;
2582 	int nid;
2583 
2584 	if (list_empty(&ksm_mm_head.slot.mm_node))
2585 		return NULL;
2586 
2587 	mm_slot = ksm_scan.mm_slot;
2588 	if (mm_slot == &ksm_mm_head) {
2589 		advisor_start_scan();
2590 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2591 
2592 		/*
2593 		 * A number of pages can hang around indefinitely in per-cpu
2594 		 * LRU cache, raised page count preventing write_protect_page
2595 		 * from merging them.  Though it doesn't really matter much,
2596 		 * it is puzzling to see some stuck in pages_volatile until
2597 		 * other activity jostles them out, and they also prevented
2598 		 * LTP's KSM test from succeeding deterministically; so drain
2599 		 * them here (here rather than on entry to ksm_do_scan(),
2600 		 * so we don't IPI too often when pages_to_scan is set low).
2601 		 */
2602 		lru_add_drain_all();
2603 
2604 		/*
2605 		 * Whereas stale stable_nodes on the stable_tree itself
2606 		 * get pruned in the regular course of stable_tree_search(),
2607 		 * those moved out to the migrate_nodes list can accumulate:
2608 		 * so prune them once before each full scan.
2609 		 */
2610 		if (!ksm_merge_across_nodes) {
2611 			struct ksm_stable_node *stable_node, *next;
2612 			struct folio *folio;
2613 
2614 			list_for_each_entry_safe(stable_node, next,
2615 						 &migrate_nodes, list) {
2616 				folio = ksm_get_folio(stable_node,
2617 						      KSM_GET_FOLIO_NOLOCK);
2618 				if (folio)
2619 					folio_put(folio);
2620 				cond_resched();
2621 			}
2622 		}
2623 
2624 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2625 			root_unstable_tree[nid] = RB_ROOT;
2626 
2627 		spin_lock(&ksm_mmlist_lock);
2628 		slot = list_entry(mm_slot->slot.mm_node.next,
2629 				  struct mm_slot, mm_node);
2630 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2631 		ksm_scan.mm_slot = mm_slot;
2632 		spin_unlock(&ksm_mmlist_lock);
2633 		/*
2634 		 * Although we tested list_empty() above, a racing __ksm_exit
2635 		 * of the last mm on the list may have removed it since then.
2636 		 */
2637 		if (mm_slot == &ksm_mm_head)
2638 			return NULL;
2639 next_mm:
2640 		ksm_scan.address = 0;
2641 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2642 	}
2643 
2644 	slot = &mm_slot->slot;
2645 	mm = slot->mm;
2646 	vma_iter_init(&vmi, mm, ksm_scan.address);
2647 
2648 	mmap_read_lock(mm);
2649 	if (ksm_test_exit(mm))
2650 		goto no_vmas;
2651 
2652 	for_each_vma(vmi, vma) {
2653 		if (!(vma->vm_flags & VM_MERGEABLE))
2654 			continue;
2655 		if (ksm_scan.address < vma->vm_start)
2656 			ksm_scan.address = vma->vm_start;
2657 		if (!vma->anon_vma)
2658 			ksm_scan.address = vma->vm_end;
2659 
2660 		while (ksm_scan.address < vma->vm_end) {
2661 			struct ksm_next_page_arg ksm_next_page_arg;
2662 			struct page *tmp_page = NULL;
2663 			struct folio *folio;
2664 
2665 			if (ksm_test_exit(mm))
2666 				break;
2667 
2668 			int found;
2669 
2670 			found = walk_page_range_vma(vma, ksm_scan.address,
2671 						    vma->vm_end,
2672 						    &ksm_next_page_ops,
2673 						    &ksm_next_page_arg);
2674 
2675 			if (found > 0) {
2676 				folio = ksm_next_page_arg.folio;
2677 				tmp_page = ksm_next_page_arg.page;
2678 				ksm_scan.address = ksm_next_page_arg.addr;
2679 			} else {
2680 				VM_WARN_ON_ONCE(found < 0);
2681 				ksm_scan.address = vma->vm_end - PAGE_SIZE;
2682 			}
2683 
2684 			if (tmp_page) {
2685 				flush_anon_page(vma, tmp_page, ksm_scan.address);
2686 				flush_dcache_page(tmp_page);
2687 				rmap_item = get_next_rmap_item(mm_slot,
2688 					ksm_scan.rmap_list, ksm_scan.address);
2689 				if (rmap_item) {
2690 					ksm_scan.rmap_list =
2691 							&rmap_item->rmap_list;
2692 
2693 					if (should_skip_rmap_item(folio, rmap_item)) {
2694 						folio_put(folio);
2695 						goto next_page;
2696 					}
2697 
2698 					ksm_scan.address += PAGE_SIZE;
2699 					*page = tmp_page;
2700 				} else {
2701 					folio_put(folio);
2702 				}
2703 				mmap_read_unlock(mm);
2704 				return rmap_item;
2705 			}
2706 next_page:
2707 			ksm_scan.address += PAGE_SIZE;
2708 			cond_resched();
2709 		}
2710 	}
2711 
2712 	if (ksm_test_exit(mm)) {
2713 no_vmas:
2714 		ksm_scan.address = 0;
2715 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2716 	}
2717 	/*
2718 	 * Nuke all the rmap_items that are above this current rmap:
2719 	 * because there were no VM_MERGEABLE vmas with such addresses.
2720 	 */
2721 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2722 
2723 	spin_lock(&ksm_mmlist_lock);
2724 	slot = list_entry(mm_slot->slot.mm_node.next,
2725 			  struct mm_slot, mm_node);
2726 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2727 	if (ksm_scan.address == 0) {
2728 		/*
2729 		 * We've completed a full scan of all vmas, holding mmap_lock
2730 		 * throughout, and found no VM_MERGEABLE: so do the same as
2731 		 * __ksm_exit does to remove this mm from all our lists now.
2732 		 * This applies either when cleaning up after __ksm_exit
2733 		 * (but beware: we can reach here even before __ksm_exit),
2734 		 * or when all VM_MERGEABLE areas have been unmapped (and
2735 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2736 		 */
2737 		hash_del(&mm_slot->slot.hash);
2738 		list_del(&mm_slot->slot.mm_node);
2739 		spin_unlock(&ksm_mmlist_lock);
2740 
2741 		mm_slot_free(mm_slot_cache, mm_slot);
2742 		/*
2743 		 * Only clear MMF_VM_MERGEABLE. We must not clear
2744 		 * MMF_VM_MERGE_ANY, because for those MMF_VM_MERGE_ANY process,
2745 		 * perhaps their mm_struct has just been added to ksm_mm_slot
2746 		 * list, and its process has not yet officially started running
2747 		 * or has not yet performed mmap/brk to allocate anonymous VMAS.
2748 		 */
2749 		mm_flags_clear(MMF_VM_MERGEABLE, mm);
2750 		mmap_read_unlock(mm);
2751 		mmdrop(mm);
2752 	} else {
2753 		mmap_read_unlock(mm);
2754 		/*
2755 		 * mmap_read_unlock(mm) first because after
2756 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2757 		 * already have been freed under us by __ksm_exit()
2758 		 * because the "mm_slot" is still hashed and
2759 		 * ksm_scan.mm_slot doesn't point to it anymore.
2760 		 */
2761 		spin_unlock(&ksm_mmlist_lock);
2762 	}
2763 
2764 	/* Repeat until we've completed scanning the whole list */
2765 	mm_slot = ksm_scan.mm_slot;
2766 	if (mm_slot != &ksm_mm_head)
2767 		goto next_mm;
2768 
2769 	advisor_stop_scan();
2770 
2771 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2772 	ksm_scan.seqnr++;
2773 	return NULL;
2774 }
2775 
2776 /**
2777  * ksm_do_scan  - the ksm scanner main worker function.
2778  * @scan_npages:  number of pages we want to scan before we return.
2779  */
ksm_do_scan(unsigned int scan_npages)2780 static void ksm_do_scan(unsigned int scan_npages)
2781 {
2782 	struct ksm_rmap_item *rmap_item;
2783 	struct page *page;
2784 
2785 	while (scan_npages-- && likely(!freezing(current))) {
2786 		cond_resched();
2787 		rmap_item = scan_get_next_rmap_item(&page);
2788 		if (!rmap_item)
2789 			return;
2790 		cmp_and_merge_page(page, rmap_item);
2791 		put_page(page);
2792 		ksm_pages_scanned++;
2793 	}
2794 }
2795 
ksmd_should_run(void)2796 static int ksmd_should_run(void)
2797 {
2798 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2799 }
2800 
ksm_scan_thread(void * nothing)2801 static int ksm_scan_thread(void *nothing)
2802 {
2803 	unsigned int sleep_ms;
2804 
2805 	set_freezable();
2806 	set_user_nice(current, 5);
2807 
2808 	while (!kthread_should_stop()) {
2809 		mutex_lock(&ksm_thread_mutex);
2810 		wait_while_offlining();
2811 		if (ksmd_should_run())
2812 			ksm_do_scan(ksm_thread_pages_to_scan);
2813 		mutex_unlock(&ksm_thread_mutex);
2814 
2815 		if (ksmd_should_run()) {
2816 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2817 			wait_event_freezable_timeout(ksm_iter_wait,
2818 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2819 				msecs_to_jiffies(sleep_ms));
2820 		} else {
2821 			wait_event_freezable(ksm_thread_wait,
2822 				ksmd_should_run() || kthread_should_stop());
2823 		}
2824 	}
2825 	return 0;
2826 }
2827 
__ksm_should_add_vma(const struct file * file,vm_flags_t vm_flags)2828 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2829 {
2830 	if (vm_flags & VM_MERGEABLE)
2831 		return false;
2832 
2833 	return ksm_compatible(file, vm_flags);
2834 }
2835 
__ksm_add_vma(struct vm_area_struct * vma)2836 static void __ksm_add_vma(struct vm_area_struct *vma)
2837 {
2838 	if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2839 		vm_flags_set(vma, VM_MERGEABLE);
2840 }
2841 
__ksm_del_vma(struct vm_area_struct * vma)2842 static int __ksm_del_vma(struct vm_area_struct *vma)
2843 {
2844 	int err;
2845 
2846 	if (!(vma->vm_flags & VM_MERGEABLE))
2847 		return 0;
2848 
2849 	if (vma->anon_vma) {
2850 		err = break_ksm(vma, vma->vm_start, vma->vm_end, true);
2851 		if (err)
2852 			return err;
2853 	}
2854 
2855 	vm_flags_clear(vma, VM_MERGEABLE);
2856 	return 0;
2857 }
2858 /**
2859  * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2860  *
2861  * @mm:       Proposed VMA's mm_struct
2862  * @file:     Proposed VMA's file-backed mapping, if any.
2863  * @vm_flags: Proposed VMA"s flags.
2864  *
2865  * Returns: @vm_flags possibly updated to mark mergeable.
2866  */
ksm_vma_flags(struct mm_struct * mm,const struct file * file,vm_flags_t vm_flags)2867 vm_flags_t ksm_vma_flags(struct mm_struct *mm, const struct file *file,
2868 			 vm_flags_t vm_flags)
2869 {
2870 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2871 	    __ksm_should_add_vma(file, vm_flags)) {
2872 		vm_flags |= VM_MERGEABLE;
2873 		/*
2874 		 * Generally, the flags here always include MMF_VM_MERGEABLE.
2875 		 * However, in rare cases, this flag may be cleared by ksmd who
2876 		 * scans a cycle without finding any mergeable vma.
2877 		 */
2878 		if (unlikely(!mm_flags_test(MMF_VM_MERGEABLE, mm)))
2879 			__ksm_enter(mm);
2880 	}
2881 
2882 	return vm_flags;
2883 }
2884 
ksm_add_vmas(struct mm_struct * mm)2885 static void ksm_add_vmas(struct mm_struct *mm)
2886 {
2887 	struct vm_area_struct *vma;
2888 
2889 	VMA_ITERATOR(vmi, mm, 0);
2890 	for_each_vma(vmi, vma)
2891 		__ksm_add_vma(vma);
2892 }
2893 
ksm_del_vmas(struct mm_struct * mm)2894 static int ksm_del_vmas(struct mm_struct *mm)
2895 {
2896 	struct vm_area_struct *vma;
2897 	int err;
2898 
2899 	VMA_ITERATOR(vmi, mm, 0);
2900 	for_each_vma(vmi, vma) {
2901 		err = __ksm_del_vma(vma);
2902 		if (err)
2903 			return err;
2904 	}
2905 	return 0;
2906 }
2907 
2908 /**
2909  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2910  *                        compatible VMA's
2911  *
2912  * @mm:  Pointer to mm
2913  *
2914  * Returns 0 on success, otherwise error code
2915  */
ksm_enable_merge_any(struct mm_struct * mm)2916 int ksm_enable_merge_any(struct mm_struct *mm)
2917 {
2918 	int err;
2919 
2920 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2921 		return 0;
2922 
2923 	if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2924 		err = __ksm_enter(mm);
2925 		if (err)
2926 			return err;
2927 	}
2928 
2929 	mm_flags_set(MMF_VM_MERGE_ANY, mm);
2930 	ksm_add_vmas(mm);
2931 
2932 	return 0;
2933 }
2934 
2935 /**
2936  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2937  *			   previously enabled via ksm_enable_merge_any().
2938  *
2939  * Disabling merging implies unmerging any merged pages, like setting
2940  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2941  * merging on all compatible VMA's remains enabled.
2942  *
2943  * @mm: Pointer to mm
2944  *
2945  * Returns 0 on success, otherwise error code
2946  */
ksm_disable_merge_any(struct mm_struct * mm)2947 int ksm_disable_merge_any(struct mm_struct *mm)
2948 {
2949 	int err;
2950 
2951 	if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2952 		return 0;
2953 
2954 	err = ksm_del_vmas(mm);
2955 	if (err) {
2956 		ksm_add_vmas(mm);
2957 		return err;
2958 	}
2959 
2960 	mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2961 	return 0;
2962 }
2963 
ksm_disable(struct mm_struct * mm)2964 int ksm_disable(struct mm_struct *mm)
2965 {
2966 	mmap_assert_write_locked(mm);
2967 
2968 	if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2969 		return 0;
2970 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2971 		return ksm_disable_merge_any(mm);
2972 	return ksm_del_vmas(mm);
2973 }
2974 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,vm_flags_t * vm_flags)2975 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2976 		unsigned long end, int advice, vm_flags_t *vm_flags)
2977 {
2978 	struct mm_struct *mm = vma->vm_mm;
2979 	int err;
2980 
2981 	switch (advice) {
2982 	case MADV_MERGEABLE:
2983 		if (vma->vm_flags & VM_MERGEABLE)
2984 			return 0;
2985 		if (!vma_ksm_compatible(vma))
2986 			return 0;
2987 
2988 		if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2989 			err = __ksm_enter(mm);
2990 			if (err)
2991 				return err;
2992 		}
2993 
2994 		*vm_flags |= VM_MERGEABLE;
2995 		break;
2996 
2997 	case MADV_UNMERGEABLE:
2998 		if (!(*vm_flags & VM_MERGEABLE))
2999 			return 0;		/* just ignore the advice */
3000 
3001 		if (vma->anon_vma) {
3002 			err = break_ksm(vma, start, end, true);
3003 			if (err)
3004 				return err;
3005 		}
3006 
3007 		*vm_flags &= ~VM_MERGEABLE;
3008 		break;
3009 	}
3010 
3011 	return 0;
3012 }
3013 EXPORT_SYMBOL_GPL(ksm_madvise);
3014 
__ksm_enter(struct mm_struct * mm)3015 int __ksm_enter(struct mm_struct *mm)
3016 {
3017 	struct ksm_mm_slot *mm_slot;
3018 	struct mm_slot *slot;
3019 	int needs_wakeup;
3020 
3021 	mm_slot = mm_slot_alloc(mm_slot_cache);
3022 	if (!mm_slot)
3023 		return -ENOMEM;
3024 
3025 	slot = &mm_slot->slot;
3026 
3027 	/* Check ksm_run too?  Would need tighter locking */
3028 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
3029 
3030 	spin_lock(&ksm_mmlist_lock);
3031 	mm_slot_insert(mm_slots_hash, mm, slot);
3032 	/*
3033 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
3034 	 * insert just behind the scanning cursor, to let the area settle
3035 	 * down a little; when fork is followed by immediate exec, we don't
3036 	 * want ksmd to waste time setting up and tearing down an rmap_list.
3037 	 *
3038 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3039 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
3040 	 * missed: then we might as well insert at the end of the list.
3041 	 */
3042 	if (ksm_run & KSM_RUN_UNMERGE)
3043 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3044 	else
3045 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3046 	spin_unlock(&ksm_mmlist_lock);
3047 
3048 	mm_flags_set(MMF_VM_MERGEABLE, mm);
3049 	mmgrab(mm);
3050 
3051 	if (needs_wakeup)
3052 		wake_up_interruptible(&ksm_thread_wait);
3053 
3054 	trace_ksm_enter(mm);
3055 	return 0;
3056 }
3057 
__ksm_exit(struct mm_struct * mm)3058 void __ksm_exit(struct mm_struct *mm)
3059 {
3060 	struct ksm_mm_slot *mm_slot = NULL;
3061 	struct mm_slot *slot;
3062 	int easy_to_free = 0;
3063 
3064 	/*
3065 	 * This process is exiting: if it's straightforward (as is the
3066 	 * case when ksmd was never running), free mm_slot immediately.
3067 	 * But if it's at the cursor or has rmap_items linked to it, use
3068 	 * mmap_lock to synchronize with any break_cows before pagetables
3069 	 * are freed, and leave the mm_slot on the list for ksmd to free.
3070 	 * Beware: ksm may already have noticed it exiting and freed the slot.
3071 	 */
3072 
3073 	spin_lock(&ksm_mmlist_lock);
3074 	slot = mm_slot_lookup(mm_slots_hash, mm);
3075 	if (!slot)
3076 		goto unlock;
3077 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3078 	if (ksm_scan.mm_slot == mm_slot)
3079 		goto unlock;
3080 	if (!mm_slot->rmap_list) {
3081 		hash_del(&slot->hash);
3082 		list_del(&slot->mm_node);
3083 		easy_to_free = 1;
3084 	} else {
3085 		list_move(&slot->mm_node,
3086 			  &ksm_scan.mm_slot->slot.mm_node);
3087 	}
3088 unlock:
3089 	spin_unlock(&ksm_mmlist_lock);
3090 
3091 	if (easy_to_free) {
3092 		mm_slot_free(mm_slot_cache, mm_slot);
3093 		mm_flags_clear(MMF_VM_MERGE_ANY, mm);
3094 		mm_flags_clear(MMF_VM_MERGEABLE, mm);
3095 		mmdrop(mm);
3096 	} else if (mm_slot) {
3097 		mmap_write_lock(mm);
3098 		mmap_write_unlock(mm);
3099 	}
3100 
3101 	trace_ksm_exit(mm);
3102 }
3103 
ksm_might_need_to_copy(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)3104 struct folio *ksm_might_need_to_copy(struct folio *folio,
3105 			struct vm_area_struct *vma, unsigned long addr)
3106 {
3107 	struct page *page = folio_page(folio, 0);
3108 	struct anon_vma *anon_vma = folio_anon_vma(folio);
3109 	struct folio *new_folio;
3110 
3111 	if (folio_test_large(folio))
3112 		return folio;
3113 
3114 	if (folio_test_ksm(folio)) {
3115 		if (folio_stable_node(folio) &&
3116 		    !(ksm_run & KSM_RUN_UNMERGE))
3117 			return folio;	/* no need to copy it */
3118 	} else if (!anon_vma) {
3119 		return folio;		/* no need to copy it */
3120 	} else if (folio->index == linear_page_index(vma, addr) &&
3121 			anon_vma->root == vma->anon_vma->root) {
3122 		return folio;		/* still no need to copy it */
3123 	}
3124 	if (PageHWPoison(page))
3125 		return ERR_PTR(-EHWPOISON);
3126 	if (!folio_test_uptodate(folio))
3127 		return folio;		/* let do_swap_page report the error */
3128 
3129 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
3130 	if (new_folio &&
3131 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3132 		folio_put(new_folio);
3133 		new_folio = NULL;
3134 	}
3135 	if (new_folio) {
3136 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3137 								addr, vma)) {
3138 			folio_put(new_folio);
3139 			return ERR_PTR(-EHWPOISON);
3140 		}
3141 		folio_set_dirty(new_folio);
3142 		__folio_mark_uptodate(new_folio);
3143 		__folio_set_locked(new_folio);
3144 #ifdef CONFIG_SWAP
3145 		count_vm_event(KSM_SWPIN_COPY);
3146 #endif
3147 	}
3148 
3149 	return new_folio;
3150 }
3151 
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)3152 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3153 {
3154 	struct ksm_stable_node *stable_node;
3155 	struct ksm_rmap_item *rmap_item;
3156 	int search_new_forks = 0;
3157 
3158 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3159 
3160 	/*
3161 	 * Rely on the page lock to protect against concurrent modifications
3162 	 * to that page's node of the stable tree.
3163 	 */
3164 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3165 
3166 	stable_node = folio_stable_node(folio);
3167 	if (!stable_node)
3168 		return;
3169 again:
3170 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3171 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3172 		struct anon_vma_chain *vmac;
3173 		struct vm_area_struct *vma;
3174 
3175 		cond_resched();
3176 		if (!anon_vma_trylock_read(anon_vma)) {
3177 			if (rwc->try_lock) {
3178 				rwc->contended = true;
3179 				return;
3180 			}
3181 			anon_vma_lock_read(anon_vma);
3182 		}
3183 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3184 					       0, ULONG_MAX) {
3185 			unsigned long addr;
3186 
3187 			cond_resched();
3188 			vma = vmac->vma;
3189 
3190 			/* Ignore the stable/unstable/sqnr flags */
3191 			addr = rmap_item->address & PAGE_MASK;
3192 
3193 			if (addr < vma->vm_start || addr >= vma->vm_end)
3194 				continue;
3195 			/*
3196 			 * Initially we examine only the vma which covers this
3197 			 * rmap_item; but later, if there is still work to do,
3198 			 * we examine covering vmas in other mms: in case they
3199 			 * were forked from the original since ksmd passed.
3200 			 */
3201 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3202 				continue;
3203 
3204 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3205 				continue;
3206 
3207 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3208 				anon_vma_unlock_read(anon_vma);
3209 				return;
3210 			}
3211 			if (rwc->done && rwc->done(folio)) {
3212 				anon_vma_unlock_read(anon_vma);
3213 				return;
3214 			}
3215 		}
3216 		anon_vma_unlock_read(anon_vma);
3217 	}
3218 	if (!search_new_forks++)
3219 		goto again;
3220 }
3221 
3222 #ifdef CONFIG_MEMORY_FAILURE
3223 /*
3224  * Collect processes when the error hit an ksm page.
3225  */
collect_procs_ksm(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)3226 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3227 		struct list_head *to_kill, int force_early)
3228 {
3229 	struct ksm_stable_node *stable_node;
3230 	struct ksm_rmap_item *rmap_item;
3231 	struct vm_area_struct *vma;
3232 	struct task_struct *tsk;
3233 
3234 	stable_node = folio_stable_node(folio);
3235 	if (!stable_node)
3236 		return;
3237 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3238 		struct anon_vma *av = rmap_item->anon_vma;
3239 
3240 		anon_vma_lock_read(av);
3241 		rcu_read_lock();
3242 		for_each_process(tsk) {
3243 			struct anon_vma_chain *vmac;
3244 			unsigned long addr;
3245 			struct task_struct *t =
3246 				task_early_kill(tsk, force_early);
3247 			if (!t)
3248 				continue;
3249 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3250 						       ULONG_MAX)
3251 			{
3252 				vma = vmac->vma;
3253 				if (vma->vm_mm == t->mm) {
3254 					addr = rmap_item->address & PAGE_MASK;
3255 					add_to_kill_ksm(t, page, vma, to_kill,
3256 							addr);
3257 				}
3258 			}
3259 		}
3260 		rcu_read_unlock();
3261 		anon_vma_unlock_read(av);
3262 	}
3263 }
3264 #endif
3265 
3266 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)3267 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3268 {
3269 	struct ksm_stable_node *stable_node;
3270 
3271 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3272 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3273 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3274 
3275 	stable_node = folio_stable_node(folio);
3276 	if (stable_node) {
3277 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3278 		stable_node->kpfn = folio_pfn(newfolio);
3279 		/*
3280 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3281 		 * to make sure that the new stable_node->kpfn is visible
3282 		 * to ksm_get_folio() before it can see that folio->mapping
3283 		 * has gone stale (or that the swapcache flag has been cleared).
3284 		 */
3285 		smp_wmb();
3286 		folio_set_stable_node(folio, NULL);
3287 	}
3288 }
3289 #endif /* CONFIG_MIGRATION */
3290 
3291 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)3292 static void wait_while_offlining(void)
3293 {
3294 	while (ksm_run & KSM_RUN_OFFLINE) {
3295 		mutex_unlock(&ksm_thread_mutex);
3296 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3297 			    TASK_UNINTERRUPTIBLE);
3298 		mutex_lock(&ksm_thread_mutex);
3299 	}
3300 }
3301 
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)3302 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3303 					 unsigned long start_pfn,
3304 					 unsigned long end_pfn)
3305 {
3306 	if (stable_node->kpfn >= start_pfn &&
3307 	    stable_node->kpfn < end_pfn) {
3308 		/*
3309 		 * Don't ksm_get_folio, page has already gone:
3310 		 * which is why we keep kpfn instead of page*
3311 		 */
3312 		remove_node_from_stable_tree(stable_node);
3313 		return true;
3314 	}
3315 	return false;
3316 }
3317 
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3318 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3319 					   unsigned long start_pfn,
3320 					   unsigned long end_pfn,
3321 					   struct rb_root *root)
3322 {
3323 	struct ksm_stable_node *dup;
3324 	struct hlist_node *hlist_safe;
3325 
3326 	if (!is_stable_node_chain(stable_node)) {
3327 		VM_BUG_ON(is_stable_node_dup(stable_node));
3328 		return stable_node_dup_remove_range(stable_node, start_pfn,
3329 						    end_pfn);
3330 	}
3331 
3332 	hlist_for_each_entry_safe(dup, hlist_safe,
3333 				  &stable_node->hlist, hlist_dup) {
3334 		VM_BUG_ON(!is_stable_node_dup(dup));
3335 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3336 	}
3337 	if (hlist_empty(&stable_node->hlist)) {
3338 		free_stable_node_chain(stable_node, root);
3339 		return true; /* notify caller that tree was rebalanced */
3340 	} else
3341 		return false;
3342 }
3343 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3344 static void ksm_check_stable_tree(unsigned long start_pfn,
3345 				  unsigned long end_pfn)
3346 {
3347 	struct ksm_stable_node *stable_node, *next;
3348 	struct rb_node *node;
3349 	int nid;
3350 
3351 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3352 		node = rb_first(root_stable_tree + nid);
3353 		while (node) {
3354 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3355 			if (stable_node_chain_remove_range(stable_node,
3356 							   start_pfn, end_pfn,
3357 							   root_stable_tree +
3358 							   nid))
3359 				node = rb_first(root_stable_tree + nid);
3360 			else
3361 				node = rb_next(node);
3362 			cond_resched();
3363 		}
3364 	}
3365 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3366 		if (stable_node->kpfn >= start_pfn &&
3367 		    stable_node->kpfn < end_pfn)
3368 			remove_node_from_stable_tree(stable_node);
3369 		cond_resched();
3370 	}
3371 }
3372 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3373 static int ksm_memory_callback(struct notifier_block *self,
3374 			       unsigned long action, void *arg)
3375 {
3376 	struct memory_notify *mn = arg;
3377 
3378 	switch (action) {
3379 	case MEM_GOING_OFFLINE:
3380 		/*
3381 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3382 		 * and remove_all_stable_nodes() while memory is going offline:
3383 		 * it is unsafe for them to touch the stable tree at this time.
3384 		 * But break_ksm(), rmap lookups and other entry points
3385 		 * which do not need the ksm_thread_mutex are all safe.
3386 		 */
3387 		mutex_lock(&ksm_thread_mutex);
3388 		ksm_run |= KSM_RUN_OFFLINE;
3389 		mutex_unlock(&ksm_thread_mutex);
3390 		break;
3391 
3392 	case MEM_OFFLINE:
3393 		/*
3394 		 * Most of the work is done by page migration; but there might
3395 		 * be a few stable_nodes left over, still pointing to struct
3396 		 * pages which have been offlined: prune those from the tree,
3397 		 * otherwise ksm_get_folio() might later try to access a
3398 		 * non-existent struct page.
3399 		 */
3400 		ksm_check_stable_tree(mn->start_pfn,
3401 				      mn->start_pfn + mn->nr_pages);
3402 		fallthrough;
3403 	case MEM_CANCEL_OFFLINE:
3404 		mutex_lock(&ksm_thread_mutex);
3405 		ksm_run &= ~KSM_RUN_OFFLINE;
3406 		mutex_unlock(&ksm_thread_mutex);
3407 
3408 		smp_mb();	/* wake_up_bit advises this */
3409 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3410 		break;
3411 	}
3412 	return NOTIFY_OK;
3413 }
3414 #else
wait_while_offlining(void)3415 static void wait_while_offlining(void)
3416 {
3417 }
3418 #endif /* CONFIG_MEMORY_HOTREMOVE */
3419 
3420 #ifdef CONFIG_PROC_FS
3421 /*
3422  * The process is mergeable only if any VMA is currently
3423  * applicable to KSM.
3424  *
3425  * The mmap lock must be held in read mode.
3426  */
ksm_process_mergeable(struct mm_struct * mm)3427 bool ksm_process_mergeable(struct mm_struct *mm)
3428 {
3429 	struct vm_area_struct *vma;
3430 
3431 	mmap_assert_locked(mm);
3432 	VMA_ITERATOR(vmi, mm, 0);
3433 	for_each_vma(vmi, vma)
3434 		if (vma->vm_flags & VM_MERGEABLE)
3435 			return true;
3436 
3437 	return false;
3438 }
3439 
ksm_process_profit(struct mm_struct * mm)3440 long ksm_process_profit(struct mm_struct *mm)
3441 {
3442 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3443 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3444 }
3445 #endif /* CONFIG_PROC_FS */
3446 
3447 #ifdef CONFIG_SYSFS
3448 /*
3449  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3450  */
3451 
3452 #define KSM_ATTR_RO(_name) \
3453 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3454 #define KSM_ATTR(_name) \
3455 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3456 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3457 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3458 				    struct kobj_attribute *attr, char *buf)
3459 {
3460 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3461 }
3462 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3463 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3464 				     struct kobj_attribute *attr,
3465 				     const char *buf, size_t count)
3466 {
3467 	unsigned int msecs;
3468 	int err;
3469 
3470 	err = kstrtouint(buf, 10, &msecs);
3471 	if (err)
3472 		return -EINVAL;
3473 
3474 	ksm_thread_sleep_millisecs = msecs;
3475 	wake_up_interruptible(&ksm_iter_wait);
3476 
3477 	return count;
3478 }
3479 KSM_ATTR(sleep_millisecs);
3480 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3481 static ssize_t pages_to_scan_show(struct kobject *kobj,
3482 				  struct kobj_attribute *attr, char *buf)
3483 {
3484 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3485 }
3486 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3487 static ssize_t pages_to_scan_store(struct kobject *kobj,
3488 				   struct kobj_attribute *attr,
3489 				   const char *buf, size_t count)
3490 {
3491 	unsigned int nr_pages;
3492 	int err;
3493 
3494 	if (ksm_advisor != KSM_ADVISOR_NONE)
3495 		return -EINVAL;
3496 
3497 	err = kstrtouint(buf, 10, &nr_pages);
3498 	if (err)
3499 		return -EINVAL;
3500 
3501 	ksm_thread_pages_to_scan = nr_pages;
3502 
3503 	return count;
3504 }
3505 KSM_ATTR(pages_to_scan);
3506 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3507 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3508 			char *buf)
3509 {
3510 	return sysfs_emit(buf, "%lu\n", ksm_run);
3511 }
3512 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3513 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3514 			 const char *buf, size_t count)
3515 {
3516 	unsigned int flags;
3517 	int err;
3518 
3519 	err = kstrtouint(buf, 10, &flags);
3520 	if (err)
3521 		return -EINVAL;
3522 	if (flags > KSM_RUN_UNMERGE)
3523 		return -EINVAL;
3524 
3525 	/*
3526 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3527 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3528 	 * breaking COW to free the pages_shared (but leaves mm_slots
3529 	 * on the list for when ksmd may be set running again).
3530 	 */
3531 
3532 	mutex_lock(&ksm_thread_mutex);
3533 	wait_while_offlining();
3534 	if (ksm_run != flags) {
3535 		ksm_run = flags;
3536 		if (flags & KSM_RUN_UNMERGE) {
3537 			set_current_oom_origin();
3538 			err = unmerge_and_remove_all_rmap_items();
3539 			clear_current_oom_origin();
3540 			if (err) {
3541 				ksm_run = KSM_RUN_STOP;
3542 				count = err;
3543 			}
3544 		}
3545 	}
3546 	mutex_unlock(&ksm_thread_mutex);
3547 
3548 	if (flags & KSM_RUN_MERGE)
3549 		wake_up_interruptible(&ksm_thread_wait);
3550 
3551 	return count;
3552 }
3553 KSM_ATTR(run);
3554 
3555 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3556 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3557 				       struct kobj_attribute *attr, char *buf)
3558 {
3559 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3560 }
3561 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3562 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3563 				   struct kobj_attribute *attr,
3564 				   const char *buf, size_t count)
3565 {
3566 	int err;
3567 	unsigned long knob;
3568 
3569 	err = kstrtoul(buf, 10, &knob);
3570 	if (err)
3571 		return err;
3572 	if (knob > 1)
3573 		return -EINVAL;
3574 
3575 	mutex_lock(&ksm_thread_mutex);
3576 	wait_while_offlining();
3577 	if (ksm_merge_across_nodes != knob) {
3578 		if (ksm_pages_shared || remove_all_stable_nodes())
3579 			err = -EBUSY;
3580 		else if (root_stable_tree == one_stable_tree) {
3581 			struct rb_root *buf;
3582 			/*
3583 			 * This is the first time that we switch away from the
3584 			 * default of merging across nodes: must now allocate
3585 			 * a buffer to hold as many roots as may be needed.
3586 			 * Allocate stable and unstable together:
3587 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3588 			 */
3589 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3590 				      GFP_KERNEL);
3591 			/* Let us assume that RB_ROOT is NULL is zero */
3592 			if (!buf)
3593 				err = -ENOMEM;
3594 			else {
3595 				root_stable_tree = buf;
3596 				root_unstable_tree = buf + nr_node_ids;
3597 				/* Stable tree is empty but not the unstable */
3598 				root_unstable_tree[0] = one_unstable_tree[0];
3599 			}
3600 		}
3601 		if (!err) {
3602 			ksm_merge_across_nodes = knob;
3603 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3604 		}
3605 	}
3606 	mutex_unlock(&ksm_thread_mutex);
3607 
3608 	return err ? err : count;
3609 }
3610 KSM_ATTR(merge_across_nodes);
3611 #endif
3612 
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3613 static ssize_t use_zero_pages_show(struct kobject *kobj,
3614 				   struct kobj_attribute *attr, char *buf)
3615 {
3616 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3617 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3618 static ssize_t use_zero_pages_store(struct kobject *kobj,
3619 				   struct kobj_attribute *attr,
3620 				   const char *buf, size_t count)
3621 {
3622 	int err;
3623 	bool value;
3624 
3625 	err = kstrtobool(buf, &value);
3626 	if (err)
3627 		return -EINVAL;
3628 
3629 	ksm_use_zero_pages = value;
3630 
3631 	return count;
3632 }
3633 KSM_ATTR(use_zero_pages);
3634 
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3635 static ssize_t max_page_sharing_show(struct kobject *kobj,
3636 				     struct kobj_attribute *attr, char *buf)
3637 {
3638 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3639 }
3640 
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3641 static ssize_t max_page_sharing_store(struct kobject *kobj,
3642 				      struct kobj_attribute *attr,
3643 				      const char *buf, size_t count)
3644 {
3645 	int err;
3646 	int knob;
3647 
3648 	err = kstrtoint(buf, 10, &knob);
3649 	if (err)
3650 		return err;
3651 	/*
3652 	 * When a KSM page is created it is shared by 2 mappings. This
3653 	 * being a signed comparison, it implicitly verifies it's not
3654 	 * negative.
3655 	 */
3656 	if (knob < 2)
3657 		return -EINVAL;
3658 
3659 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3660 		return count;
3661 
3662 	mutex_lock(&ksm_thread_mutex);
3663 	wait_while_offlining();
3664 	if (ksm_max_page_sharing != knob) {
3665 		if (ksm_pages_shared || remove_all_stable_nodes())
3666 			err = -EBUSY;
3667 		else
3668 			ksm_max_page_sharing = knob;
3669 	}
3670 	mutex_unlock(&ksm_thread_mutex);
3671 
3672 	return err ? err : count;
3673 }
3674 KSM_ATTR(max_page_sharing);
3675 
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3676 static ssize_t pages_scanned_show(struct kobject *kobj,
3677 				  struct kobj_attribute *attr, char *buf)
3678 {
3679 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3680 }
3681 KSM_ATTR_RO(pages_scanned);
3682 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3683 static ssize_t pages_shared_show(struct kobject *kobj,
3684 				 struct kobj_attribute *attr, char *buf)
3685 {
3686 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3687 }
3688 KSM_ATTR_RO(pages_shared);
3689 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3690 static ssize_t pages_sharing_show(struct kobject *kobj,
3691 				  struct kobj_attribute *attr, char *buf)
3692 {
3693 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3694 }
3695 KSM_ATTR_RO(pages_sharing);
3696 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3697 static ssize_t pages_unshared_show(struct kobject *kobj,
3698 				   struct kobj_attribute *attr, char *buf)
3699 {
3700 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3701 }
3702 KSM_ATTR_RO(pages_unshared);
3703 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3704 static ssize_t pages_volatile_show(struct kobject *kobj,
3705 				   struct kobj_attribute *attr, char *buf)
3706 {
3707 	long ksm_pages_volatile;
3708 
3709 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3710 				- ksm_pages_sharing - ksm_pages_unshared;
3711 	/*
3712 	 * It was not worth any locking to calculate that statistic,
3713 	 * but it might therefore sometimes be negative: conceal that.
3714 	 */
3715 	if (ksm_pages_volatile < 0)
3716 		ksm_pages_volatile = 0;
3717 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3718 }
3719 KSM_ATTR_RO(pages_volatile);
3720 
pages_skipped_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3721 static ssize_t pages_skipped_show(struct kobject *kobj,
3722 				  struct kobj_attribute *attr, char *buf)
3723 {
3724 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3725 }
3726 KSM_ATTR_RO(pages_skipped);
3727 
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3728 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3729 				struct kobj_attribute *attr, char *buf)
3730 {
3731 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3732 }
3733 KSM_ATTR_RO(ksm_zero_pages);
3734 
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3735 static ssize_t general_profit_show(struct kobject *kobj,
3736 				   struct kobj_attribute *attr, char *buf)
3737 {
3738 	long general_profit;
3739 
3740 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3741 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3742 
3743 	return sysfs_emit(buf, "%ld\n", general_profit);
3744 }
3745 KSM_ATTR_RO(general_profit);
3746 
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3747 static ssize_t stable_node_dups_show(struct kobject *kobj,
3748 				     struct kobj_attribute *attr, char *buf)
3749 {
3750 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3751 }
3752 KSM_ATTR_RO(stable_node_dups);
3753 
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3754 static ssize_t stable_node_chains_show(struct kobject *kobj,
3755 				       struct kobj_attribute *attr, char *buf)
3756 {
3757 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3758 }
3759 KSM_ATTR_RO(stable_node_chains);
3760 
3761 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3762 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3763 					struct kobj_attribute *attr,
3764 					char *buf)
3765 {
3766 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3767 }
3768 
3769 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3770 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3771 					 struct kobj_attribute *attr,
3772 					 const char *buf, size_t count)
3773 {
3774 	unsigned int msecs;
3775 	int err;
3776 
3777 	err = kstrtouint(buf, 10, &msecs);
3778 	if (err)
3779 		return -EINVAL;
3780 
3781 	ksm_stable_node_chains_prune_millisecs = msecs;
3782 
3783 	return count;
3784 }
3785 KSM_ATTR(stable_node_chains_prune_millisecs);
3786 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3787 static ssize_t full_scans_show(struct kobject *kobj,
3788 			       struct kobj_attribute *attr, char *buf)
3789 {
3790 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3791 }
3792 KSM_ATTR_RO(full_scans);
3793 
smart_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3794 static ssize_t smart_scan_show(struct kobject *kobj,
3795 			       struct kobj_attribute *attr, char *buf)
3796 {
3797 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3798 }
3799 
smart_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3800 static ssize_t smart_scan_store(struct kobject *kobj,
3801 				struct kobj_attribute *attr,
3802 				const char *buf, size_t count)
3803 {
3804 	int err;
3805 	bool value;
3806 
3807 	err = kstrtobool(buf, &value);
3808 	if (err)
3809 		return -EINVAL;
3810 
3811 	ksm_smart_scan = value;
3812 	return count;
3813 }
3814 KSM_ATTR(smart_scan);
3815 
advisor_mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3816 static ssize_t advisor_mode_show(struct kobject *kobj,
3817 				 struct kobj_attribute *attr, char *buf)
3818 {
3819 	const char *output;
3820 
3821 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3822 		output = "none [scan-time]";
3823 	else
3824 		output = "[none] scan-time";
3825 
3826 	return sysfs_emit(buf, "%s\n", output);
3827 }
3828 
advisor_mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3829 static ssize_t advisor_mode_store(struct kobject *kobj,
3830 				  struct kobj_attribute *attr, const char *buf,
3831 				  size_t count)
3832 {
3833 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3834 
3835 	if (sysfs_streq("scan-time", buf))
3836 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3837 	else if (sysfs_streq("none", buf))
3838 		ksm_advisor = KSM_ADVISOR_NONE;
3839 	else
3840 		return -EINVAL;
3841 
3842 	/* Set advisor default values */
3843 	if (curr_advisor != ksm_advisor)
3844 		set_advisor_defaults();
3845 
3846 	return count;
3847 }
3848 KSM_ATTR(advisor_mode);
3849 
advisor_max_cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3850 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3851 				    struct kobj_attribute *attr, char *buf)
3852 {
3853 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3854 }
3855 
advisor_max_cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3856 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3857 				     struct kobj_attribute *attr,
3858 				     const char *buf, size_t count)
3859 {
3860 	int err;
3861 	unsigned long value;
3862 
3863 	err = kstrtoul(buf, 10, &value);
3864 	if (err)
3865 		return -EINVAL;
3866 
3867 	ksm_advisor_max_cpu = value;
3868 	return count;
3869 }
3870 KSM_ATTR(advisor_max_cpu);
3871 
advisor_min_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3872 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3873 					struct kobj_attribute *attr, char *buf)
3874 {
3875 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3876 }
3877 
advisor_min_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3878 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3879 					struct kobj_attribute *attr,
3880 					const char *buf, size_t count)
3881 {
3882 	int err;
3883 	unsigned long value;
3884 
3885 	err = kstrtoul(buf, 10, &value);
3886 	if (err)
3887 		return -EINVAL;
3888 
3889 	ksm_advisor_min_pages_to_scan = value;
3890 	return count;
3891 }
3892 KSM_ATTR(advisor_min_pages_to_scan);
3893 
advisor_max_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3894 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3895 					struct kobj_attribute *attr, char *buf)
3896 {
3897 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3898 }
3899 
advisor_max_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3900 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3901 					struct kobj_attribute *attr,
3902 					const char *buf, size_t count)
3903 {
3904 	int err;
3905 	unsigned long value;
3906 
3907 	err = kstrtoul(buf, 10, &value);
3908 	if (err)
3909 		return -EINVAL;
3910 
3911 	ksm_advisor_max_pages_to_scan = value;
3912 	return count;
3913 }
3914 KSM_ATTR(advisor_max_pages_to_scan);
3915 
advisor_target_scan_time_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3916 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3917 					     struct kobj_attribute *attr, char *buf)
3918 {
3919 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3920 }
3921 
advisor_target_scan_time_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3922 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3923 					      struct kobj_attribute *attr,
3924 					      const char *buf, size_t count)
3925 {
3926 	int err;
3927 	unsigned long value;
3928 
3929 	err = kstrtoul(buf, 10, &value);
3930 	if (err)
3931 		return -EINVAL;
3932 	if (value < 1)
3933 		return -EINVAL;
3934 
3935 	ksm_advisor_target_scan_time = value;
3936 	return count;
3937 }
3938 KSM_ATTR(advisor_target_scan_time);
3939 
3940 static struct attribute *ksm_attrs[] = {
3941 	&sleep_millisecs_attr.attr,
3942 	&pages_to_scan_attr.attr,
3943 	&run_attr.attr,
3944 	&pages_scanned_attr.attr,
3945 	&pages_shared_attr.attr,
3946 	&pages_sharing_attr.attr,
3947 	&pages_unshared_attr.attr,
3948 	&pages_volatile_attr.attr,
3949 	&pages_skipped_attr.attr,
3950 	&ksm_zero_pages_attr.attr,
3951 	&full_scans_attr.attr,
3952 #ifdef CONFIG_NUMA
3953 	&merge_across_nodes_attr.attr,
3954 #endif
3955 	&max_page_sharing_attr.attr,
3956 	&stable_node_chains_attr.attr,
3957 	&stable_node_dups_attr.attr,
3958 	&stable_node_chains_prune_millisecs_attr.attr,
3959 	&use_zero_pages_attr.attr,
3960 	&general_profit_attr.attr,
3961 	&smart_scan_attr.attr,
3962 	&advisor_mode_attr.attr,
3963 	&advisor_max_cpu_attr.attr,
3964 	&advisor_min_pages_to_scan_attr.attr,
3965 	&advisor_max_pages_to_scan_attr.attr,
3966 	&advisor_target_scan_time_attr.attr,
3967 	NULL,
3968 };
3969 
3970 static const struct attribute_group ksm_attr_group = {
3971 	.attrs = ksm_attrs,
3972 	.name = "ksm",
3973 };
3974 #endif /* CONFIG_SYSFS */
3975 
ksm_init(void)3976 static int __init ksm_init(void)
3977 {
3978 	struct task_struct *ksm_thread;
3979 	int err;
3980 
3981 	/* The correct value depends on page size and endianness */
3982 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3983 	/* Default to false for backwards compatibility */
3984 	ksm_use_zero_pages = false;
3985 
3986 	err = ksm_slab_init();
3987 	if (err)
3988 		goto out;
3989 
3990 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3991 	if (IS_ERR(ksm_thread)) {
3992 		pr_err("ksm: creating kthread failed\n");
3993 		err = PTR_ERR(ksm_thread);
3994 		goto out_free;
3995 	}
3996 
3997 #ifdef CONFIG_SYSFS
3998 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3999 	if (err) {
4000 		pr_err("ksm: register sysfs failed\n");
4001 		kthread_stop(ksm_thread);
4002 		goto out_free;
4003 	}
4004 #else
4005 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
4006 
4007 #endif /* CONFIG_SYSFS */
4008 
4009 #ifdef CONFIG_MEMORY_HOTREMOVE
4010 	/* There is no significance to this priority 100 */
4011 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
4012 #endif
4013 	return 0;
4014 
4015 out_free:
4016 	ksm_slab_free();
4017 out:
4018 	return err;
4019 }
4020 subsys_initcall(ksm_init);
4021