1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x) (x)
53 #define DO_NUMA(x) do { (x); } while (0)
54 #else
55 #define NUMA(x) (0)
56 #define DO_NUMA(x) do { } while (0)
57 #endif
58
59 typedef u8 rmap_age_t;
60
61 /**
62 * DOC: Overview
63 *
64 * A few notes about the KSM scanning process,
65 * to make it easier to understand the data structures below:
66 *
67 * In order to reduce excessive scanning, KSM sorts the memory pages by their
68 * contents into a data structure that holds pointers to the pages' locations.
69 *
70 * Since the contents of the pages may change at any moment, KSM cannot just
71 * insert the pages into a normal sorted tree and expect it to find anything.
72 * Therefore KSM uses two data structures - the stable and the unstable tree.
73 *
74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75 * by their contents. Because each such page is write-protected, searching on
76 * this tree is fully assured to be working (except when pages are unmapped),
77 * and therefore this tree is called the stable tree.
78 *
79 * The stable tree node includes information required for reverse
80 * mapping from a KSM page to virtual addresses that map this page.
81 *
82 * In order to avoid large latencies of the rmap walks on KSM pages,
83 * KSM maintains two types of nodes in the stable tree:
84 *
85 * * the regular nodes that keep the reverse mapping structures in a
86 * linked list
87 * * the "chains" that link nodes ("dups") that represent the same
88 * write protected memory content, but each "dup" corresponds to a
89 * different KSM page copy of that content
90 *
91 * Internally, the regular nodes, "dups" and "chains" are represented
92 * using the same struct ksm_stable_node structure.
93 *
94 * In addition to the stable tree, KSM uses a second data structure called the
95 * unstable tree: this tree holds pointers to pages which have been found to
96 * be "unchanged for a period of time". The unstable tree sorts these pages
97 * by their contents, but since they are not write-protected, KSM cannot rely
98 * upon the unstable tree to work correctly - the unstable tree is liable to
99 * be corrupted as its contents are modified, and so it is called unstable.
100 *
101 * KSM solves this problem by several techniques:
102 *
103 * 1) The unstable tree is flushed every time KSM completes scanning all
104 * memory areas, and then the tree is rebuilt again from the beginning.
105 * 2) KSM will only insert into the unstable tree, pages whose hash value
106 * has not changed since the previous scan of all memory areas.
107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108 * colors of the nodes and not on their contents, assuring that even when
109 * the tree gets "corrupted" it won't get out of balance, so scanning time
110 * remains the same (also, searching and inserting nodes in an rbtree uses
111 * the same algorithm, so we have no overhead when we flush and rebuild).
112 * 4) KSM never flushes the stable tree, which means that even if it were to
113 * take 10 attempts to find a page in the unstable tree, once it is found,
114 * it is secured in the stable tree. (When we scan a new page, we first
115 * compare it against the stable tree, and then against the unstable tree.)
116 *
117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118 * stable trees and multiple unstable trees: one of each for each NUMA node.
119 */
120
121 /**
122 * struct ksm_mm_slot - ksm information per mm that is being scanned
123 * @slot: hash lookup from mm to mm_slot
124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125 */
126 struct ksm_mm_slot {
127 struct mm_slot slot;
128 struct ksm_rmap_item *rmap_list;
129 };
130
131 /**
132 * struct ksm_scan - cursor for scanning
133 * @mm_slot: the current mm_slot we are scanning
134 * @address: the next address inside that to be scanned
135 * @rmap_list: link to the next rmap to be scanned in the rmap_list
136 * @seqnr: count of completed full scans (needed when removing unstable node)
137 *
138 * There is only the one ksm_scan instance of this cursor structure.
139 */
140 struct ksm_scan {
141 struct ksm_mm_slot *mm_slot;
142 unsigned long address;
143 struct ksm_rmap_item **rmap_list;
144 unsigned long seqnr;
145 };
146
147 /**
148 * struct ksm_stable_node - node of the stable rbtree
149 * @node: rb node of this ksm page in the stable tree
150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152 * @list: linked into migrate_nodes, pending placement in the proper node tree
153 * @hlist: hlist head of rmap_items using this ksm page
154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155 * @chain_prune_time: time of the last full garbage collection
156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158 */
159 struct ksm_stable_node {
160 union {
161 struct rb_node node; /* when node of stable tree */
162 struct { /* when listed for migration */
163 struct list_head *head;
164 struct {
165 struct hlist_node hlist_dup;
166 struct list_head list;
167 };
168 };
169 };
170 struct hlist_head hlist;
171 union {
172 unsigned long kpfn;
173 unsigned long chain_prune_time;
174 };
175 /*
176 * STABLE_NODE_CHAIN can be any negative number in
177 * rmap_hlist_len negative range, but better not -1 to be able
178 * to reliably detect underflows.
179 */
180 #define STABLE_NODE_CHAIN -1024
181 int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 int nid;
184 #endif
185 };
186
187 /**
188 * struct ksm_rmap_item - reverse mapping item for virtual addresses
189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191 * @nid: NUMA node id of unstable tree in which linked (may not match page)
192 * @mm: the memory structure this rmap_item is pointing into
193 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194 * @oldchecksum: previous checksum of the page at that virtual address
195 * @node: rb node of this rmap_item in the unstable tree
196 * @head: pointer to stable_node heading this list in the stable tree
197 * @hlist: link into hlist of rmap_items hanging off that stable_node
198 * @age: number of scan iterations since creation
199 * @remaining_skips: how many scans to skip
200 */
201 struct ksm_rmap_item {
202 struct ksm_rmap_item *rmap_list;
203 union {
204 struct anon_vma *anon_vma; /* when stable */
205 #ifdef CONFIG_NUMA
206 int nid; /* when node of unstable tree */
207 #endif
208 };
209 struct mm_struct *mm;
210 unsigned long address; /* + low bits used for flags below */
211 unsigned int oldchecksum; /* when unstable */
212 rmap_age_t age;
213 rmap_age_t remaining_skips;
214 union {
215 struct rb_node node; /* when node of unstable tree */
216 struct { /* when listed from stable tree */
217 struct ksm_stable_node *head;
218 struct hlist_node hlist;
219 };
220 };
221 };
222
223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240 static struct ksm_mm_slot ksm_mm_head = {
241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 .mm_slot = &ksm_mm_head,
245 };
246
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu = 70;
311
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317
318 /**
319 * struct advisor_ctx - metadata for KSM advisor
320 * @start_scan: start time of the current scan
321 * @scan_time: scan time of previous scan
322 * @change: change in percent to pages_to_scan parameter
323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324 */
325 struct advisor_ctx {
326 ktime_t start_scan;
327 unsigned long scan_time;
328 unsigned long change;
329 unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 KSM_ADVISOR_NONE,
336 KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339
340 #ifdef CONFIG_SYSFS
341 /*
342 * Only called through the sysfs control interface:
343 */
344
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347
set_advisor_defaults(void)348 static void set_advisor_defaults(void)
349 {
350 if (ksm_advisor == KSM_ADVISOR_NONE) {
351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 advisor_ctx = (const struct advisor_ctx){ 0 };
354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 }
356 }
357 #endif /* CONFIG_SYSFS */
358
advisor_start_scan(void)359 static inline void advisor_start_scan(void)
360 {
361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 advisor_ctx.start_scan = ktime_get();
363 }
364
365 /*
366 * Use previous scan time if available, otherwise use current scan time as an
367 * approximation for the previous scan time.
368 */
prev_scan_time(struct advisor_ctx * ctx,unsigned long scan_time)369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 unsigned long scan_time)
371 {
372 return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374
375 /* Calculate exponential weighted moving average */
ewma(unsigned long prev,unsigned long curr)376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380
381 /*
382 * The scan time advisor is based on the current scan rate and the target
383 * scan rate.
384 *
385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386 *
387 * To avoid perturbations it calculates a change factor of previous changes.
388 * A new change factor is calculated for each iteration and it uses an
389 * exponentially weighted moving average. The new pages_to_scan value is
390 * multiplied with that change factor:
391 *
392 * new_pages_to_scan *= change factor
393 *
394 * The new_pages_to_scan value is limited by the cpu min and max values. It
395 * calculates the cpu percent for the last scan and calculates the new
396 * estimated cpu percent cost for the next scan. That value is capped by the
397 * cpu min and max setting.
398 *
399 * In addition the new pages_to_scan value is capped by the max and min
400 * limits.
401 */
scan_time_advisor(void)402 static void scan_time_advisor(void)
403 {
404 unsigned int cpu_percent;
405 unsigned long cpu_time;
406 unsigned long cpu_time_diff;
407 unsigned long cpu_time_diff_ms;
408 unsigned long pages;
409 unsigned long per_page_cost;
410 unsigned long factor;
411 unsigned long change;
412 unsigned long last_scan_time;
413 unsigned long scan_time;
414
415 /* Convert scan time to seconds */
416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 MSEC_PER_SEC);
418 scan_time = scan_time ? scan_time : 1;
419
420 /* Calculate CPU consumption of ksmd background thread */
421 cpu_time = task_sched_runtime(current);
422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424
425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 cpu_percent = cpu_percent ? cpu_percent : 1;
427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428
429 /* Calculate scan time as percentage of target scan time */
430 factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 factor = factor ? factor : 1;
432
433 /*
434 * Calculate scan time as percentage of last scan time and use
435 * exponentially weighted average to smooth it
436 */
437 change = scan_time * 100 / last_scan_time;
438 change = change ? change : 1;
439 change = ewma(advisor_ctx.change, change);
440
441 /* Calculate new scan rate based on target scan rate. */
442 pages = ksm_thread_pages_to_scan * 100 / factor;
443 /* Update pages_to_scan by weighted change percentage. */
444 pages = pages * change / 100;
445
446 /* Cap new pages_to_scan value */
447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 per_page_cost = per_page_cost ? per_page_cost : 1;
449
450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 pages = min(pages, ksm_advisor_max_pages_to_scan);
453
454 /* Update advisor context */
455 advisor_ctx.change = change;
456 advisor_ctx.scan_time = scan_time;
457 advisor_ctx.cpu_time = cpu_time;
458
459 ksm_thread_pages_to_scan = pages;
460 trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462
advisor_stop_scan(void)463 static void advisor_stop_scan(void)
464 {
465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 scan_time_advisor();
467 }
468
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes 1U
475 #define ksm_nr_node_ids 1
476 #endif
477
478 #define KSM_RUN_STOP 0
479 #define KSM_RUN_MERGE 1
480 #define KSM_RUN_UNMERGE 2
481 #define KSM_RUN_OFFLINE 4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489
ksm_slab_init(void)490 static int __init ksm_slab_init(void)
491 {
492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 if (!rmap_item_cache)
494 goto out;
495
496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 if (!stable_node_cache)
498 goto out_free1;
499
500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 if (!mm_slot_cache)
502 goto out_free2;
503
504 return 0;
505
506 out_free2:
507 kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 kmem_cache_destroy(rmap_item_cache);
510 out:
511 return -ENOMEM;
512 }
513
ksm_slab_free(void)514 static void __init ksm_slab_free(void)
515 {
516 kmem_cache_destroy(mm_slot_cache);
517 kmem_cache_destroy(stable_node_cache);
518 kmem_cache_destroy(rmap_item_cache);
519 mm_slot_cache = NULL;
520 }
521
is_stable_node_chain(struct ksm_stable_node * chain)522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526
is_stable_node_dup(struct ksm_stable_node * dup)527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 struct ksm_stable_node *chain)
534 {
535 VM_BUG_ON(is_stable_node_dup(dup));
536 dup->head = STABLE_NODE_DUP_HEAD;
537 VM_BUG_ON(!is_stable_node_chain(chain));
538 hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 ksm_stable_node_dups++;
540 }
541
__stable_node_dup_del(struct ksm_stable_node * dup)542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 VM_BUG_ON(!is_stable_node_dup(dup));
545 hlist_del(&dup->hlist_dup);
546 ksm_stable_node_dups--;
547 }
548
stable_node_dup_del(struct ksm_stable_node * dup)549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 VM_BUG_ON(is_stable_node_chain(dup));
552 if (is_stable_node_dup(dup))
553 __stable_node_dup_del(dup);
554 else
555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 dup->head = NULL;
558 #endif
559 }
560
alloc_rmap_item(void)561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 struct ksm_rmap_item *rmap_item;
564
565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 __GFP_NORETRY | __GFP_NOWARN);
567 if (rmap_item)
568 ksm_rmap_items++;
569 return rmap_item;
570 }
571
free_rmap_item(struct ksm_rmap_item * rmap_item)572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 ksm_rmap_items--;
575 rmap_item->mm->ksm_rmap_items--;
576 rmap_item->mm = NULL; /* debug safety */
577 kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579
alloc_stable_node(void)580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 /*
583 * The allocation can take too long with GFP_KERNEL when memory is under
584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
585 * grants access to memory reserves, helping to avoid this problem.
586 */
587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589
free_stable_node(struct ksm_stable_node * stable_node)590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 VM_BUG_ON(stable_node->rmap_hlist_len &&
593 !is_stable_node_chain(stable_node));
594 kmem_cache_free(stable_node_cache, stable_node);
595 }
596
597 /*
598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599 * page tables after it has passed through ksm_exit() - which, if necessary,
600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
601 * a special flag: they can just back out as soon as mm_users goes to zero.
602 * ksm_test_exit() is used throughout to make this test for exit: in some
603 * places for correctness, in some places just to avoid unnecessary work.
604 */
ksm_test_exit(struct mm_struct * mm)605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 return atomic_read(&mm->mm_users) == 0;
608 }
609
break_ksm_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)610 static int break_ksm_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
611 struct mm_walk *walk)
612 {
613 unsigned long *found_addr = (unsigned long *) walk->private;
614 struct mm_struct *mm = walk->mm;
615 pte_t *start_ptep, *ptep;
616 spinlock_t *ptl;
617 int found = 0;
618
619 if (ksm_test_exit(walk->mm))
620 return 0;
621 if (signal_pending(current))
622 return -ERESTARTSYS;
623
624 start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
625 if (!start_ptep)
626 return 0;
627
628 for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
629 pte_t pte = ptep_get(ptep);
630 struct folio *folio = NULL;
631
632 if (pte_present(pte)) {
633 folio = vm_normal_folio(walk->vma, addr, pte);
634 } else if (!pte_none(pte)) {
635 const softleaf_t entry = softleaf_from_pte(pte);
636
637 /*
638 * As KSM pages remain KSM pages until freed, no need to wait
639 * here for migration to end.
640 */
641 if (softleaf_is_migration(entry))
642 folio = softleaf_to_folio(entry);
643 }
644 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
645 found = (folio && folio_test_ksm(folio)) ||
646 (pte_present(pte) && is_ksm_zero_pte(pte));
647 if (found) {
648 *found_addr = addr;
649 goto out_unlock;
650 }
651 }
652 out_unlock:
653 pte_unmap_unlock(ptep, ptl);
654 return found;
655 }
656
657 static const struct mm_walk_ops break_ksm_ops = {
658 .pmd_entry = break_ksm_pmd_entry,
659 .walk_lock = PGWALK_RDLOCK,
660 };
661
662 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
663 .pmd_entry = break_ksm_pmd_entry,
664 .walk_lock = PGWALK_WRLOCK,
665 };
666
667 /*
668 * Though it's very tempting to unmerge rmap_items from stable tree rather
669 * than check every pte of a given vma, the locking doesn't quite work for
670 * that - an rmap_item is assigned to the stable tree after inserting ksm
671 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
672 * rmap_items from parent to child at fork time (so as not to waste time
673 * if exit comes before the next scan reaches it).
674 *
675 * Similarly, although we'd like to remove rmap_items (so updating counts
676 * and freeing memory) when unmerging an area, it's easier to leave that
677 * to the next pass of ksmd - consider, for example, how ksmd might be
678 * in cmp_and_merge_page on one of the rmap_items we would be removing.
679 *
680 * We use break_ksm to break COW on a ksm page by triggering unsharing,
681 * such that the ksm page will get replaced by an exclusive anonymous page.
682 *
683 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
684 * in case the application has unmapped and remapped mm,addr meanwhile.
685 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
686 * mmap of /dev/mem, where we would not want to touch it.
687 *
688 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
689 * of the process that owns 'vma'. We also do not want to enforce
690 * protection keys here anyway.
691 */
break_ksm(struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool lock_vma)692 static int break_ksm(struct vm_area_struct *vma, unsigned long addr,
693 unsigned long end, bool lock_vma)
694 {
695 vm_fault_t ret = 0;
696 const struct mm_walk_ops *ops = lock_vma ?
697 &break_ksm_lock_vma_ops : &break_ksm_ops;
698
699 do {
700 int ksm_page;
701
702 cond_resched();
703 ksm_page = walk_page_range_vma(vma, addr, end, ops, &addr);
704 if (ksm_page <= 0)
705 return ksm_page;
706 ret = handle_mm_fault(vma, addr,
707 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
708 NULL);
709 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
710 /*
711 * We must loop until we no longer find a KSM page because
712 * handle_mm_fault() may back out if there's any difficulty e.g. if
713 * pte accessed bit gets updated concurrently.
714 *
715 * VM_FAULT_SIGBUS could occur if we race with truncation of the
716 * backing file, which also invalidates anonymous pages: that's
717 * okay, that truncation will have unmapped the KSM page for us.
718 *
719 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
720 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
721 * current task has TIF_MEMDIE set, and will be OOM killed on return
722 * to user; and ksmd, having no mm, would never be chosen for that.
723 *
724 * But if the mm is in a limited mem_cgroup, then the fault may fail
725 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
726 * even ksmd can fail in this way - though it's usually breaking ksm
727 * just to undo a merge it made a moment before, so unlikely to oom.
728 *
729 * That's a pity: we might therefore have more kernel pages allocated
730 * than we're counting as nodes in the stable tree; but ksm_do_scan
731 * will retry to break_cow on each pass, so should recover the page
732 * in due course. The important thing is to not let VM_MERGEABLE
733 * be cleared while any such pages might remain in the area.
734 */
735 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
736 }
737
ksm_compatible(const struct file * file,vm_flags_t vm_flags)738 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
739 {
740 if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL |
741 VM_HUGETLB | VM_DROPPABLE))
742 return false; /* just ignore the advice */
743
744 if (file_is_dax(file))
745 return false;
746
747 #ifdef VM_SAO
748 if (vm_flags & VM_SAO)
749 return false;
750 #endif
751 #ifdef VM_SPARC_ADI
752 if (vm_flags & VM_SPARC_ADI)
753 return false;
754 #endif
755
756 return true;
757 }
758
vma_ksm_compatible(struct vm_area_struct * vma)759 static bool vma_ksm_compatible(struct vm_area_struct *vma)
760 {
761 return ksm_compatible(vma->vm_file, vma->vm_flags);
762 }
763
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)764 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
765 unsigned long addr)
766 {
767 struct vm_area_struct *vma;
768 if (ksm_test_exit(mm))
769 return NULL;
770 vma = vma_lookup(mm, addr);
771 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772 return NULL;
773 return vma;
774 }
775
break_cow(struct ksm_rmap_item * rmap_item)776 static void break_cow(struct ksm_rmap_item *rmap_item)
777 {
778 struct mm_struct *mm = rmap_item->mm;
779 unsigned long addr = rmap_item->address;
780 struct vm_area_struct *vma;
781
782 /*
783 * It is not an accident that whenever we want to break COW
784 * to undo, we also need to drop a reference to the anon_vma.
785 */
786 put_anon_vma(rmap_item->anon_vma);
787
788 mmap_read_lock(mm);
789 vma = find_mergeable_vma(mm, addr);
790 if (vma)
791 break_ksm(vma, addr, addr + PAGE_SIZE, false);
792 mmap_read_unlock(mm);
793 }
794
get_mergeable_page(struct ksm_rmap_item * rmap_item)795 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
796 {
797 struct mm_struct *mm = rmap_item->mm;
798 unsigned long addr = rmap_item->address;
799 struct vm_area_struct *vma;
800 struct page *page = NULL;
801 struct folio_walk fw;
802 struct folio *folio;
803
804 mmap_read_lock(mm);
805 vma = find_mergeable_vma(mm, addr);
806 if (!vma)
807 goto out;
808
809 folio = folio_walk_start(&fw, vma, addr, 0);
810 if (folio) {
811 if (!folio_is_zone_device(folio) &&
812 folio_test_anon(folio)) {
813 folio_get(folio);
814 page = fw.page;
815 }
816 folio_walk_end(&fw, vma);
817 }
818 out:
819 if (page) {
820 flush_anon_page(vma, page, addr);
821 flush_dcache_page(page);
822 }
823 mmap_read_unlock(mm);
824 return page;
825 }
826
827 /*
828 * This helper is used for getting right index into array of tree roots.
829 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
830 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
831 * every node has its own stable and unstable tree.
832 */
get_kpfn_nid(unsigned long kpfn)833 static inline int get_kpfn_nid(unsigned long kpfn)
834 {
835 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
836 }
837
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)838 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
839 struct rb_root *root)
840 {
841 struct ksm_stable_node *chain = alloc_stable_node();
842 VM_BUG_ON(is_stable_node_chain(dup));
843 if (likely(chain)) {
844 INIT_HLIST_HEAD(&chain->hlist);
845 chain->chain_prune_time = jiffies;
846 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
847 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
848 chain->nid = NUMA_NO_NODE; /* debug */
849 #endif
850 ksm_stable_node_chains++;
851
852 /*
853 * Put the stable node chain in the first dimension of
854 * the stable tree and at the same time remove the old
855 * stable node.
856 */
857 rb_replace_node(&dup->node, &chain->node, root);
858
859 /*
860 * Move the old stable node to the second dimension
861 * queued in the hlist_dup. The invariant is that all
862 * dup stable_nodes in the chain->hlist point to pages
863 * that are write protected and have the exact same
864 * content.
865 */
866 stable_node_chain_add_dup(dup, chain);
867 }
868 return chain;
869 }
870
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)871 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
872 struct rb_root *root)
873 {
874 rb_erase(&chain->node, root);
875 free_stable_node(chain);
876 ksm_stable_node_chains--;
877 }
878
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)879 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
880 {
881 struct ksm_rmap_item *rmap_item;
882
883 /* check it's not STABLE_NODE_CHAIN or negative */
884 BUG_ON(stable_node->rmap_hlist_len < 0);
885
886 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
887 if (rmap_item->hlist.next) {
888 ksm_pages_sharing--;
889 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
890 } else {
891 ksm_pages_shared--;
892 }
893
894 rmap_item->mm->ksm_merging_pages--;
895
896 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
897 stable_node->rmap_hlist_len--;
898 put_anon_vma(rmap_item->anon_vma);
899 rmap_item->address &= PAGE_MASK;
900 cond_resched();
901 }
902
903 /*
904 * We need the second aligned pointer of the migrate_nodes
905 * list_head to stay clear from the rb_parent_color union
906 * (aligned and different than any node) and also different
907 * from &migrate_nodes. This will verify that future list.h changes
908 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
909 */
910 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
911 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
912
913 trace_ksm_remove_ksm_page(stable_node->kpfn);
914 if (stable_node->head == &migrate_nodes)
915 list_del(&stable_node->list);
916 else
917 stable_node_dup_del(stable_node);
918 free_stable_node(stable_node);
919 }
920
921 enum ksm_get_folio_flags {
922 KSM_GET_FOLIO_NOLOCK,
923 KSM_GET_FOLIO_LOCK,
924 KSM_GET_FOLIO_TRYLOCK
925 };
926
927 /*
928 * ksm_get_folio: checks if the page indicated by the stable node
929 * is still its ksm page, despite having held no reference to it.
930 * In which case we can trust the content of the page, and it
931 * returns the gotten page; but if the page has now been zapped,
932 * remove the stale node from the stable tree and return NULL.
933 * But beware, the stable node's page might be being migrated.
934 *
935 * You would expect the stable_node to hold a reference to the ksm page.
936 * But if it increments the page's count, swapping out has to wait for
937 * ksmd to come around again before it can free the page, which may take
938 * seconds or even minutes: much too unresponsive. So instead we use a
939 * "keyhole reference": access to the ksm page from the stable node peeps
940 * out through its keyhole to see if that page still holds the right key,
941 * pointing back to this stable node. This relies on freeing a PageAnon
942 * page to reset its page->mapping to NULL, and relies on no other use of
943 * a page to put something that might look like our key in page->mapping.
944 * is on its way to being freed; but it is an anomaly to bear in mind.
945 */
ksm_get_folio(struct ksm_stable_node * stable_node,enum ksm_get_folio_flags flags)946 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
947 enum ksm_get_folio_flags flags)
948 {
949 struct folio *folio;
950 void *expected_mapping;
951 unsigned long kpfn;
952
953 expected_mapping = (void *)((unsigned long)stable_node |
954 FOLIO_MAPPING_KSM);
955 again:
956 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
957 folio = pfn_folio(kpfn);
958 if (READ_ONCE(folio->mapping) != expected_mapping)
959 goto stale;
960
961 /*
962 * We cannot do anything with the page while its refcount is 0.
963 * Usually 0 means free, or tail of a higher-order page: in which
964 * case this node is no longer referenced, and should be freed;
965 * however, it might mean that the page is under page_ref_freeze().
966 * The __remove_mapping() case is easy, again the node is now stale;
967 * the same is in reuse_ksm_page() case; but if page is swapcache
968 * in folio_migrate_mapping(), it might still be our page,
969 * in which case it's essential to keep the node.
970 */
971 while (!folio_try_get(folio)) {
972 /*
973 * Another check for folio->mapping != expected_mapping
974 * would work here too. We have chosen to test the
975 * swapcache flag to optimize the common case, when the
976 * folio is or is about to be freed: the swapcache flag
977 * is cleared (under spin_lock_irq) in the ref_freeze
978 * section of __remove_mapping(); but anon folio->mapping
979 * is reset to NULL later, in free_pages_prepare().
980 */
981 if (!folio_test_swapcache(folio))
982 goto stale;
983 cpu_relax();
984 }
985
986 if (READ_ONCE(folio->mapping) != expected_mapping) {
987 folio_put(folio);
988 goto stale;
989 }
990
991 if (flags == KSM_GET_FOLIO_TRYLOCK) {
992 if (!folio_trylock(folio)) {
993 folio_put(folio);
994 return ERR_PTR(-EBUSY);
995 }
996 } else if (flags == KSM_GET_FOLIO_LOCK)
997 folio_lock(folio);
998
999 if (flags != KSM_GET_FOLIO_NOLOCK) {
1000 if (READ_ONCE(folio->mapping) != expected_mapping) {
1001 folio_unlock(folio);
1002 folio_put(folio);
1003 goto stale;
1004 }
1005 }
1006 return folio;
1007
1008 stale:
1009 /*
1010 * We come here from above when folio->mapping or the swapcache flag
1011 * suggests that the node is stale; but it might be under migration.
1012 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
1013 * before checking whether node->kpfn has been changed.
1014 */
1015 smp_rmb();
1016 if (READ_ONCE(stable_node->kpfn) != kpfn)
1017 goto again;
1018 remove_node_from_stable_tree(stable_node);
1019 return NULL;
1020 }
1021
1022 /*
1023 * Removing rmap_item from stable or unstable tree.
1024 * This function will clean the information from the stable/unstable tree.
1025 */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)1026 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
1027 {
1028 if (rmap_item->address & STABLE_FLAG) {
1029 struct ksm_stable_node *stable_node;
1030 struct folio *folio;
1031
1032 stable_node = rmap_item->head;
1033 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1034 if (!folio)
1035 goto out;
1036
1037 hlist_del(&rmap_item->hlist);
1038 folio_unlock(folio);
1039 folio_put(folio);
1040
1041 if (!hlist_empty(&stable_node->hlist))
1042 ksm_pages_sharing--;
1043 else
1044 ksm_pages_shared--;
1045
1046 rmap_item->mm->ksm_merging_pages--;
1047
1048 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1049 stable_node->rmap_hlist_len--;
1050
1051 put_anon_vma(rmap_item->anon_vma);
1052 rmap_item->head = NULL;
1053 rmap_item->address &= PAGE_MASK;
1054
1055 } else if (rmap_item->address & UNSTABLE_FLAG) {
1056 unsigned char age;
1057 /*
1058 * Usually ksmd can and must skip the rb_erase, because
1059 * root_unstable_tree was already reset to RB_ROOT.
1060 * But be careful when an mm is exiting: do the rb_erase
1061 * if this rmap_item was inserted by this scan, rather
1062 * than left over from before.
1063 */
1064 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1065 BUG_ON(age > 1);
1066 if (!age)
1067 rb_erase(&rmap_item->node,
1068 root_unstable_tree + NUMA(rmap_item->nid));
1069 ksm_pages_unshared--;
1070 rmap_item->address &= PAGE_MASK;
1071 }
1072 out:
1073 cond_resched(); /* we're called from many long loops */
1074 }
1075
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)1076 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1077 {
1078 while (*rmap_list) {
1079 struct ksm_rmap_item *rmap_item = *rmap_list;
1080 *rmap_list = rmap_item->rmap_list;
1081 remove_rmap_item_from_tree(rmap_item);
1082 free_rmap_item(rmap_item);
1083 }
1084 }
1085
1086 static inline
folio_stable_node(const struct folio * folio)1087 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1088 {
1089 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091
folio_set_stable_node(struct folio * folio,struct ksm_stable_node * stable_node)1092 static inline void folio_set_stable_node(struct folio *folio,
1093 struct ksm_stable_node *stable_node)
1094 {
1095 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1096 folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1097 }
1098
1099 #ifdef CONFIG_SYSFS
1100 /*
1101 * Only called through the sysfs control interface:
1102 */
remove_stable_node(struct ksm_stable_node * stable_node)1103 static int remove_stable_node(struct ksm_stable_node *stable_node)
1104 {
1105 struct folio *folio;
1106 int err;
1107
1108 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1109 if (!folio) {
1110 /*
1111 * ksm_get_folio did remove_node_from_stable_tree itself.
1112 */
1113 return 0;
1114 }
1115
1116 /*
1117 * Page could be still mapped if this races with __mmput() running in
1118 * between ksm_exit() and exit_mmap(). Just refuse to let
1119 * merge_across_nodes/max_page_sharing be switched.
1120 */
1121 err = -EBUSY;
1122 if (!folio_mapped(folio)) {
1123 /*
1124 * The stable node did not yet appear stale to ksm_get_folio(),
1125 * since that allows for an unmapped ksm folio to be recognized
1126 * right up until it is freed; but the node is safe to remove.
1127 * This folio might be in an LRU cache waiting to be freed,
1128 * or it might be in the swapcache (perhaps under writeback),
1129 * or it might have been removed from swapcache a moment ago.
1130 */
1131 folio_set_stable_node(folio, NULL);
1132 remove_node_from_stable_tree(stable_node);
1133 err = 0;
1134 }
1135
1136 folio_unlock(folio);
1137 folio_put(folio);
1138 return err;
1139 }
1140
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)1141 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1142 struct rb_root *root)
1143 {
1144 struct ksm_stable_node *dup;
1145 struct hlist_node *hlist_safe;
1146
1147 if (!is_stable_node_chain(stable_node)) {
1148 VM_BUG_ON(is_stable_node_dup(stable_node));
1149 if (remove_stable_node(stable_node))
1150 return true;
1151 else
1152 return false;
1153 }
1154
1155 hlist_for_each_entry_safe(dup, hlist_safe,
1156 &stable_node->hlist, hlist_dup) {
1157 VM_BUG_ON(!is_stable_node_dup(dup));
1158 if (remove_stable_node(dup))
1159 return true;
1160 }
1161 BUG_ON(!hlist_empty(&stable_node->hlist));
1162 free_stable_node_chain(stable_node, root);
1163 return false;
1164 }
1165
remove_all_stable_nodes(void)1166 static int remove_all_stable_nodes(void)
1167 {
1168 struct ksm_stable_node *stable_node, *next;
1169 int nid;
1170 int err = 0;
1171
1172 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1173 while (root_stable_tree[nid].rb_node) {
1174 stable_node = rb_entry(root_stable_tree[nid].rb_node,
1175 struct ksm_stable_node, node);
1176 if (remove_stable_node_chain(stable_node,
1177 root_stable_tree + nid)) {
1178 err = -EBUSY;
1179 break; /* proceed to next nid */
1180 }
1181 cond_resched();
1182 }
1183 }
1184 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1185 if (remove_stable_node(stable_node))
1186 err = -EBUSY;
1187 cond_resched();
1188 }
1189 return err;
1190 }
1191
unmerge_and_remove_all_rmap_items(void)1192 static int unmerge_and_remove_all_rmap_items(void)
1193 {
1194 struct ksm_mm_slot *mm_slot;
1195 struct mm_slot *slot;
1196 struct mm_struct *mm;
1197 struct vm_area_struct *vma;
1198 int err = 0;
1199
1200 spin_lock(&ksm_mmlist_lock);
1201 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1202 struct mm_slot, mm_node);
1203 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1204 spin_unlock(&ksm_mmlist_lock);
1205
1206 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1207 mm_slot = ksm_scan.mm_slot) {
1208 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1209
1210 mm = mm_slot->slot.mm;
1211 mmap_read_lock(mm);
1212
1213 /*
1214 * Exit right away if mm is exiting to avoid lockdep issue in
1215 * the maple tree
1216 */
1217 if (ksm_test_exit(mm))
1218 goto mm_exiting;
1219
1220 for_each_vma(vmi, vma) {
1221 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1222 continue;
1223 err = break_ksm(vma, vma->vm_start, vma->vm_end, false);
1224 if (err)
1225 goto error;
1226 }
1227
1228 mm_exiting:
1229 remove_trailing_rmap_items(&mm_slot->rmap_list);
1230 mmap_read_unlock(mm);
1231
1232 spin_lock(&ksm_mmlist_lock);
1233 slot = list_entry(mm_slot->slot.mm_node.next,
1234 struct mm_slot, mm_node);
1235 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1236 if (ksm_test_exit(mm)) {
1237 hash_del(&mm_slot->slot.hash);
1238 list_del(&mm_slot->slot.mm_node);
1239 spin_unlock(&ksm_mmlist_lock);
1240
1241 mm_slot_free(mm_slot_cache, mm_slot);
1242 mm_flags_clear(MMF_VM_MERGEABLE, mm);
1243 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1244 mmdrop(mm);
1245 } else
1246 spin_unlock(&ksm_mmlist_lock);
1247 }
1248
1249 /* Clean up stable nodes, but don't worry if some are still busy */
1250 remove_all_stable_nodes();
1251 ksm_scan.seqnr = 0;
1252 return 0;
1253
1254 error:
1255 mmap_read_unlock(mm);
1256 spin_lock(&ksm_mmlist_lock);
1257 ksm_scan.mm_slot = &ksm_mm_head;
1258 spin_unlock(&ksm_mmlist_lock);
1259 return err;
1260 }
1261 #endif /* CONFIG_SYSFS */
1262
calc_checksum(struct page * page)1263 static u32 calc_checksum(struct page *page)
1264 {
1265 u32 checksum;
1266 void *addr = kmap_local_page(page);
1267 checksum = xxhash(addr, PAGE_SIZE, 0);
1268 kunmap_local(addr);
1269 return checksum;
1270 }
1271
write_protect_page(struct vm_area_struct * vma,struct folio * folio,pte_t * orig_pte)1272 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1273 pte_t *orig_pte)
1274 {
1275 struct mm_struct *mm = vma->vm_mm;
1276 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1277 int swapped;
1278 int err = -EFAULT;
1279 struct mmu_notifier_range range;
1280 bool anon_exclusive;
1281 pte_t entry;
1282
1283 if (WARN_ON_ONCE(folio_test_large(folio)))
1284 return err;
1285
1286 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1287 if (pvmw.address == -EFAULT)
1288 goto out;
1289
1290 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1291 pvmw.address + PAGE_SIZE);
1292 mmu_notifier_invalidate_range_start(&range);
1293
1294 if (!page_vma_mapped_walk(&pvmw))
1295 goto out_mn;
1296 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1297 goto out_unlock;
1298
1299 entry = ptep_get(pvmw.pte);
1300 /*
1301 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1302 * map pages: give up just like the next folio_walk would.
1303 */
1304 if (unlikely(!pte_present(entry)))
1305 goto out_unlock;
1306
1307 anon_exclusive = PageAnonExclusive(&folio->page);
1308 if (pte_write(entry) || pte_dirty(entry) ||
1309 anon_exclusive || mm_tlb_flush_pending(mm)) {
1310 swapped = folio_test_swapcache(folio);
1311 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1312 /*
1313 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1314 * take any lock, therefore the check that we are going to make
1315 * with the pagecount against the mapcount is racy and
1316 * O_DIRECT can happen right after the check.
1317 * So we clear the pte and flush the tlb before the check
1318 * this assure us that no O_DIRECT can happen after the check
1319 * or in the middle of the check.
1320 *
1321 * No need to notify as we are downgrading page table to read
1322 * only not changing it to point to a new page.
1323 *
1324 * See Documentation/mm/mmu_notifier.rst
1325 */
1326 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1327 /*
1328 * Check that no O_DIRECT or similar I/O is in progress on the
1329 * page
1330 */
1331 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1332 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1333 goto out_unlock;
1334 }
1335
1336 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1337 if (anon_exclusive &&
1338 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1339 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1340 goto out_unlock;
1341 }
1342
1343 if (pte_dirty(entry))
1344 folio_mark_dirty(folio);
1345 entry = pte_mkclean(entry);
1346
1347 if (pte_write(entry))
1348 entry = pte_wrprotect(entry);
1349
1350 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1351 }
1352 *orig_pte = entry;
1353 err = 0;
1354
1355 out_unlock:
1356 page_vma_mapped_walk_done(&pvmw);
1357 out_mn:
1358 mmu_notifier_invalidate_range_end(&range);
1359 out:
1360 return err;
1361 }
1362
1363 /**
1364 * replace_page - replace page in vma by new ksm page
1365 * @vma: vma that holds the pte pointing to page
1366 * @page: the page we are replacing by kpage
1367 * @kpage: the ksm page we replace page by
1368 * @orig_pte: the original value of the pte
1369 *
1370 * Returns 0 on success, -EFAULT on failure.
1371 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1372 static int replace_page(struct vm_area_struct *vma, struct page *page,
1373 struct page *kpage, pte_t orig_pte)
1374 {
1375 struct folio *kfolio = page_folio(kpage);
1376 struct mm_struct *mm = vma->vm_mm;
1377 struct folio *folio = page_folio(page);
1378 pmd_t *pmd;
1379 pmd_t pmde;
1380 pte_t *ptep;
1381 pte_t newpte;
1382 spinlock_t *ptl;
1383 unsigned long addr;
1384 int err = -EFAULT;
1385 struct mmu_notifier_range range;
1386
1387 addr = page_address_in_vma(folio, page, vma);
1388 if (addr == -EFAULT)
1389 goto out;
1390
1391 pmd = mm_find_pmd(mm, addr);
1392 if (!pmd)
1393 goto out;
1394 /*
1395 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1396 * without holding anon_vma lock for write. So when looking for a
1397 * genuine pmde (in which to find pte), test present and !THP together.
1398 */
1399 pmde = pmdp_get_lockless(pmd);
1400 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1401 goto out;
1402
1403 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1404 addr + PAGE_SIZE);
1405 mmu_notifier_invalidate_range_start(&range);
1406
1407 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408 if (!ptep)
1409 goto out_mn;
1410 if (!pte_same(ptep_get(ptep), orig_pte)) {
1411 pte_unmap_unlock(ptep, ptl);
1412 goto out_mn;
1413 }
1414 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1415 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1416 kfolio);
1417
1418 /*
1419 * No need to check ksm_use_zero_pages here: we can only have a
1420 * zero_page here if ksm_use_zero_pages was enabled already.
1421 */
1422 if (!is_zero_pfn(page_to_pfn(kpage))) {
1423 folio_get(kfolio);
1424 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1425 newpte = mk_pte(kpage, vma->vm_page_prot);
1426 } else {
1427 /*
1428 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1429 * we can easily track all KSM-placed zero pages by checking if
1430 * the dirty bit in zero page's PTE is set.
1431 */
1432 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1433 ksm_map_zero_page(mm);
1434 /*
1435 * We're replacing an anonymous page with a zero page, which is
1436 * not anonymous. We need to do proper accounting otherwise we
1437 * will get wrong values in /proc, and a BUG message in dmesg
1438 * when tearing down the mm.
1439 */
1440 dec_mm_counter(mm, MM_ANONPAGES);
1441 }
1442
1443 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1444 /*
1445 * No need to notify as we are replacing a read only page with another
1446 * read only page with the same content.
1447 *
1448 * See Documentation/mm/mmu_notifier.rst
1449 */
1450 ptep_clear_flush(vma, addr, ptep);
1451 set_pte_at(mm, addr, ptep, newpte);
1452
1453 folio_remove_rmap_pte(folio, page, vma);
1454 if (!folio_mapped(folio))
1455 folio_free_swap(folio);
1456 folio_put(folio);
1457
1458 pte_unmap_unlock(ptep, ptl);
1459 err = 0;
1460 out_mn:
1461 mmu_notifier_invalidate_range_end(&range);
1462 out:
1463 return err;
1464 }
1465
1466 /*
1467 * try_to_merge_one_page - take two pages and merge them into one
1468 * @vma: the vma that holds the pte pointing to page
1469 * @page: the PageAnon page that we want to replace with kpage
1470 * @kpage: the KSM page that we want to map instead of page,
1471 * or NULL the first time when we want to use page as kpage.
1472 *
1473 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1475 static int try_to_merge_one_page(struct vm_area_struct *vma,
1476 struct page *page, struct page *kpage)
1477 {
1478 struct folio *folio = page_folio(page);
1479 pte_t orig_pte = __pte(0);
1480 int err = -EFAULT;
1481
1482 if (page == kpage) /* ksm page forked */
1483 return 0;
1484
1485 if (!folio_test_anon(folio))
1486 goto out;
1487
1488 /*
1489 * We need the folio lock to read a stable swapcache flag in
1490 * write_protect_page(). We trylock because we don't want to wait
1491 * here - we prefer to continue scanning and merging different
1492 * pages, then come back to this page when it is unlocked.
1493 */
1494 if (!folio_trylock(folio))
1495 goto out;
1496
1497 if (folio_test_large(folio)) {
1498 if (split_huge_page(page))
1499 goto out_unlock;
1500 folio = page_folio(page);
1501 }
1502
1503 /*
1504 * If this anonymous page is mapped only here, its pte may need
1505 * to be write-protected. If it's mapped elsewhere, all of its
1506 * ptes are necessarily already write-protected. But in either
1507 * case, we need to lock and check page_count is not raised.
1508 */
1509 if (write_protect_page(vma, folio, &orig_pte) == 0) {
1510 if (!kpage) {
1511 /*
1512 * While we hold folio lock, upgrade folio from
1513 * anon to a NULL stable_node with the KSM flag set:
1514 * stable_tree_insert() will update stable_node.
1515 */
1516 folio_set_stable_node(folio, NULL);
1517 folio_mark_accessed(folio);
1518 /*
1519 * Page reclaim just frees a clean folio with no dirty
1520 * ptes: make sure that the ksm page would be swapped.
1521 */
1522 if (!folio_test_dirty(folio))
1523 folio_mark_dirty(folio);
1524 err = 0;
1525 } else if (pages_identical(page, kpage))
1526 err = replace_page(vma, page, kpage, orig_pte);
1527 }
1528
1529 out_unlock:
1530 folio_unlock(folio);
1531 out:
1532 return err;
1533 }
1534
1535 /*
1536 * This function returns 0 if the pages were merged or if they are
1537 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1538 */
try_to_merge_with_zero_page(struct ksm_rmap_item * rmap_item,struct page * page)1539 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1540 struct page *page)
1541 {
1542 struct mm_struct *mm = rmap_item->mm;
1543 int err = -EFAULT;
1544
1545 /*
1546 * Same checksum as an empty page. We attempt to merge it with the
1547 * appropriate zero page if the user enabled this via sysfs.
1548 */
1549 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1550 struct vm_area_struct *vma;
1551
1552 mmap_read_lock(mm);
1553 vma = find_mergeable_vma(mm, rmap_item->address);
1554 if (vma) {
1555 err = try_to_merge_one_page(vma, page,
1556 ZERO_PAGE(rmap_item->address));
1557 trace_ksm_merge_one_page(
1558 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1559 rmap_item, mm, err);
1560 } else {
1561 /*
1562 * If the vma is out of date, we do not need to
1563 * continue.
1564 */
1565 err = 0;
1566 }
1567 mmap_read_unlock(mm);
1568 }
1569
1570 return err;
1571 }
1572
1573 /*
1574 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1575 * but no new kernel page is allocated: kpage must already be a ksm page.
1576 *
1577 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1578 */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1579 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1580 struct page *page, struct page *kpage)
1581 {
1582 struct mm_struct *mm = rmap_item->mm;
1583 struct vm_area_struct *vma;
1584 int err = -EFAULT;
1585
1586 mmap_read_lock(mm);
1587 vma = find_mergeable_vma(mm, rmap_item->address);
1588 if (!vma)
1589 goto out;
1590
1591 err = try_to_merge_one_page(vma, page, kpage);
1592 if (err)
1593 goto out;
1594
1595 /* Unstable nid is in union with stable anon_vma: remove first */
1596 remove_rmap_item_from_tree(rmap_item);
1597
1598 /* Must get reference to anon_vma while still holding mmap_lock */
1599 rmap_item->anon_vma = vma->anon_vma;
1600 get_anon_vma(vma->anon_vma);
1601 out:
1602 mmap_read_unlock(mm);
1603 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1604 rmap_item, mm, err);
1605 return err;
1606 }
1607
1608 /*
1609 * try_to_merge_two_pages - take two identical pages and prepare them
1610 * to be merged into one page.
1611 *
1612 * This function returns the kpage if we successfully merged two identical
1613 * pages into one ksm page, NULL otherwise.
1614 *
1615 * Note that this function upgrades page to ksm page: if one of the pages
1616 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1617 */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1618 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1619 struct page *page,
1620 struct ksm_rmap_item *tree_rmap_item,
1621 struct page *tree_page)
1622 {
1623 int err;
1624
1625 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1626 if (!err) {
1627 err = try_to_merge_with_ksm_page(tree_rmap_item,
1628 tree_page, page);
1629 /*
1630 * If that fails, we have a ksm page with only one pte
1631 * pointing to it: so break it.
1632 */
1633 if (err)
1634 break_cow(rmap_item);
1635 }
1636 return err ? NULL : page_folio(page);
1637 }
1638
1639 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1640 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1641 {
1642 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1643 /*
1644 * Check that at least one mapping still exists, otherwise
1645 * there's no much point to merge and share with this
1646 * stable_node, as the underlying tree_page of the other
1647 * sharer is going to be freed soon.
1648 */
1649 return stable_node->rmap_hlist_len &&
1650 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1651 }
1652
1653 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1654 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1655 {
1656 return __is_page_sharing_candidate(stable_node, 0);
1657 }
1658
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1659 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1660 struct ksm_stable_node **_stable_node,
1661 struct rb_root *root,
1662 bool prune_stale_stable_nodes)
1663 {
1664 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1665 struct hlist_node *hlist_safe;
1666 struct folio *folio, *tree_folio = NULL;
1667 int found_rmap_hlist_len;
1668
1669 if (!prune_stale_stable_nodes ||
1670 time_before(jiffies, stable_node->chain_prune_time +
1671 msecs_to_jiffies(
1672 ksm_stable_node_chains_prune_millisecs)))
1673 prune_stale_stable_nodes = false;
1674 else
1675 stable_node->chain_prune_time = jiffies;
1676
1677 hlist_for_each_entry_safe(dup, hlist_safe,
1678 &stable_node->hlist, hlist_dup) {
1679 cond_resched();
1680 /*
1681 * We must walk all stable_node_dup to prune the stale
1682 * stable nodes during lookup.
1683 *
1684 * ksm_get_folio can drop the nodes from the
1685 * stable_node->hlist if they point to freed pages
1686 * (that's why we do a _safe walk). The "dup"
1687 * stable_node parameter itself will be freed from
1688 * under us if it returns NULL.
1689 */
1690 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1691 if (!folio)
1692 continue;
1693 /* Pick the best candidate if possible. */
1694 if (!found || (is_page_sharing_candidate(dup) &&
1695 (!is_page_sharing_candidate(found) ||
1696 dup->rmap_hlist_len > found_rmap_hlist_len))) {
1697 if (found)
1698 folio_put(tree_folio);
1699 found = dup;
1700 found_rmap_hlist_len = found->rmap_hlist_len;
1701 tree_folio = folio;
1702 /* skip put_page for found candidate */
1703 if (!prune_stale_stable_nodes &&
1704 is_page_sharing_candidate(found))
1705 break;
1706 continue;
1707 }
1708 folio_put(folio);
1709 }
1710
1711 if (found) {
1712 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1713 /*
1714 * If there's not just one entry it would
1715 * corrupt memory, better BUG_ON. In KSM
1716 * context with no lock held it's not even
1717 * fatal.
1718 */
1719 BUG_ON(stable_node->hlist.first->next);
1720
1721 /*
1722 * There's just one entry and it is below the
1723 * deduplication limit so drop the chain.
1724 */
1725 rb_replace_node(&stable_node->node, &found->node,
1726 root);
1727 free_stable_node(stable_node);
1728 ksm_stable_node_chains--;
1729 ksm_stable_node_dups--;
1730 /*
1731 * NOTE: the caller depends on the stable_node
1732 * to be equal to stable_node_dup if the chain
1733 * was collapsed.
1734 */
1735 *_stable_node = found;
1736 /*
1737 * Just for robustness, as stable_node is
1738 * otherwise left as a stable pointer, the
1739 * compiler shall optimize it away at build
1740 * time.
1741 */
1742 stable_node = NULL;
1743 } else if (stable_node->hlist.first != &found->hlist_dup &&
1744 __is_page_sharing_candidate(found, 1)) {
1745 /*
1746 * If the found stable_node dup can accept one
1747 * more future merge (in addition to the one
1748 * that is underway) and is not at the head of
1749 * the chain, put it there so next search will
1750 * be quicker in the !prune_stale_stable_nodes
1751 * case.
1752 *
1753 * NOTE: it would be inaccurate to use nr > 1
1754 * instead of checking the hlist.first pointer
1755 * directly, because in the
1756 * prune_stale_stable_nodes case "nr" isn't
1757 * the position of the found dup in the chain,
1758 * but the total number of dups in the chain.
1759 */
1760 hlist_del(&found->hlist_dup);
1761 hlist_add_head(&found->hlist_dup,
1762 &stable_node->hlist);
1763 }
1764 } else {
1765 /* Its hlist must be empty if no one found. */
1766 free_stable_node_chain(stable_node, root);
1767 }
1768
1769 *_stable_node_dup = found;
1770 return tree_folio;
1771 }
1772
1773 /*
1774 * Like for ksm_get_folio, this function can free the *_stable_node and
1775 * *_stable_node_dup if the returned tree_page is NULL.
1776 *
1777 * It can also free and overwrite *_stable_node with the found
1778 * stable_node_dup if the chain is collapsed (in which case
1779 * *_stable_node will be equal to *_stable_node_dup like if the chain
1780 * never existed). It's up to the caller to verify tree_page is not
1781 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1782 *
1783 * *_stable_node_dup is really a second output parameter of this
1784 * function and will be overwritten in all cases, the caller doesn't
1785 * need to initialize it.
1786 */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1787 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1788 struct ksm_stable_node **_stable_node,
1789 struct rb_root *root,
1790 bool prune_stale_stable_nodes)
1791 {
1792 struct ksm_stable_node *stable_node = *_stable_node;
1793
1794 if (!is_stable_node_chain(stable_node)) {
1795 *_stable_node_dup = stable_node;
1796 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1797 }
1798 return stable_node_dup(_stable_node_dup, _stable_node, root,
1799 prune_stale_stable_nodes);
1800 }
1801
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1802 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1803 struct ksm_stable_node **s_n,
1804 struct rb_root *root)
1805 {
1806 return __stable_node_chain(s_n_d, s_n, root, true);
1807 }
1808
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1809 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1810 struct ksm_stable_node **s_n,
1811 struct rb_root *root)
1812 {
1813 return __stable_node_chain(s_n_d, s_n, root, false);
1814 }
1815
1816 /*
1817 * stable_tree_search - search for page inside the stable tree
1818 *
1819 * This function checks if there is a page inside the stable tree
1820 * with identical content to the page that we are scanning right now.
1821 *
1822 * This function returns the stable tree node of identical content if found,
1823 * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1824 */
stable_tree_search(struct page * page)1825 static struct folio *stable_tree_search(struct page *page)
1826 {
1827 int nid;
1828 struct rb_root *root;
1829 struct rb_node **new;
1830 struct rb_node *parent;
1831 struct ksm_stable_node *stable_node, *stable_node_dup;
1832 struct ksm_stable_node *page_node;
1833 struct folio *folio;
1834
1835 folio = page_folio(page);
1836 page_node = folio_stable_node(folio);
1837 if (page_node && page_node->head != &migrate_nodes) {
1838 /* ksm page forked */
1839 folio_get(folio);
1840 return folio;
1841 }
1842
1843 nid = get_kpfn_nid(folio_pfn(folio));
1844 root = root_stable_tree + nid;
1845 again:
1846 new = &root->rb_node;
1847 parent = NULL;
1848
1849 while (*new) {
1850 struct folio *tree_folio;
1851 int ret;
1852
1853 cond_resched();
1854 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1855 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1856 if (!tree_folio) {
1857 /*
1858 * If we walked over a stale stable_node,
1859 * ksm_get_folio() will call rb_erase() and it
1860 * may rebalance the tree from under us. So
1861 * restart the search from scratch. Returning
1862 * NULL would be safe too, but we'd generate
1863 * false negative insertions just because some
1864 * stable_node was stale.
1865 */
1866 goto again;
1867 }
1868
1869 ret = memcmp_pages(page, &tree_folio->page);
1870 folio_put(tree_folio);
1871
1872 parent = *new;
1873 if (ret < 0)
1874 new = &parent->rb_left;
1875 else if (ret > 0)
1876 new = &parent->rb_right;
1877 else {
1878 if (page_node) {
1879 VM_BUG_ON(page_node->head != &migrate_nodes);
1880 /*
1881 * If the mapcount of our migrated KSM folio is
1882 * at most 1, we can merge it with another
1883 * KSM folio where we know that we have space
1884 * for one more mapping without exceeding the
1885 * ksm_max_page_sharing limit: see
1886 * chain_prune(). This way, we can avoid adding
1887 * this stable node to the chain.
1888 */
1889 if (folio_mapcount(folio) > 1)
1890 goto chain_append;
1891 }
1892
1893 if (!is_page_sharing_candidate(stable_node_dup)) {
1894 /*
1895 * If the stable_node is a chain and
1896 * we got a payload match in memcmp
1897 * but we cannot merge the scanned
1898 * page in any of the existing
1899 * stable_node dups because they're
1900 * all full, we need to wait the
1901 * scanned page to find itself a match
1902 * in the unstable tree to create a
1903 * brand new KSM page to add later to
1904 * the dups of this stable_node.
1905 */
1906 return NULL;
1907 }
1908
1909 /*
1910 * Lock and unlock the stable_node's page (which
1911 * might already have been migrated) so that page
1912 * migration is sure to notice its raised count.
1913 * It would be more elegant to return stable_node
1914 * than kpage, but that involves more changes.
1915 */
1916 tree_folio = ksm_get_folio(stable_node_dup,
1917 KSM_GET_FOLIO_TRYLOCK);
1918
1919 if (PTR_ERR(tree_folio) == -EBUSY)
1920 return ERR_PTR(-EBUSY);
1921
1922 if (unlikely(!tree_folio))
1923 /*
1924 * The tree may have been rebalanced,
1925 * so re-evaluate parent and new.
1926 */
1927 goto again;
1928 folio_unlock(tree_folio);
1929
1930 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1931 NUMA(stable_node_dup->nid)) {
1932 folio_put(tree_folio);
1933 goto replace;
1934 }
1935 return tree_folio;
1936 }
1937 }
1938
1939 if (!page_node)
1940 return NULL;
1941
1942 list_del(&page_node->list);
1943 DO_NUMA(page_node->nid = nid);
1944 rb_link_node(&page_node->node, parent, new);
1945 rb_insert_color(&page_node->node, root);
1946 out:
1947 if (is_page_sharing_candidate(page_node)) {
1948 folio_get(folio);
1949 return folio;
1950 } else
1951 return NULL;
1952
1953 replace:
1954 /*
1955 * If stable_node was a chain and chain_prune collapsed it,
1956 * stable_node has been updated to be the new regular
1957 * stable_node. A collapse of the chain is indistinguishable
1958 * from the case there was no chain in the stable
1959 * rbtree. Otherwise stable_node is the chain and
1960 * stable_node_dup is the dup to replace.
1961 */
1962 if (stable_node_dup == stable_node) {
1963 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1964 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1965 /* there is no chain */
1966 if (page_node) {
1967 VM_BUG_ON(page_node->head != &migrate_nodes);
1968 list_del(&page_node->list);
1969 DO_NUMA(page_node->nid = nid);
1970 rb_replace_node(&stable_node_dup->node,
1971 &page_node->node,
1972 root);
1973 if (is_page_sharing_candidate(page_node))
1974 folio_get(folio);
1975 else
1976 folio = NULL;
1977 } else {
1978 rb_erase(&stable_node_dup->node, root);
1979 folio = NULL;
1980 }
1981 } else {
1982 VM_BUG_ON(!is_stable_node_chain(stable_node));
1983 __stable_node_dup_del(stable_node_dup);
1984 if (page_node) {
1985 VM_BUG_ON(page_node->head != &migrate_nodes);
1986 list_del(&page_node->list);
1987 DO_NUMA(page_node->nid = nid);
1988 stable_node_chain_add_dup(page_node, stable_node);
1989 if (is_page_sharing_candidate(page_node))
1990 folio_get(folio);
1991 else
1992 folio = NULL;
1993 } else {
1994 folio = NULL;
1995 }
1996 }
1997 stable_node_dup->head = &migrate_nodes;
1998 list_add(&stable_node_dup->list, stable_node_dup->head);
1999 return folio;
2000
2001 chain_append:
2002 /*
2003 * If stable_node was a chain and chain_prune collapsed it,
2004 * stable_node has been updated to be the new regular
2005 * stable_node. A collapse of the chain is indistinguishable
2006 * from the case there was no chain in the stable
2007 * rbtree. Otherwise stable_node is the chain and
2008 * stable_node_dup is the dup to replace.
2009 */
2010 if (stable_node_dup == stable_node) {
2011 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2012 /* chain is missing so create it */
2013 stable_node = alloc_stable_node_chain(stable_node_dup,
2014 root);
2015 if (!stable_node)
2016 return NULL;
2017 }
2018 /*
2019 * Add this stable_node dup that was
2020 * migrated to the stable_node chain
2021 * of the current nid for this page
2022 * content.
2023 */
2024 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2025 VM_BUG_ON(page_node->head != &migrate_nodes);
2026 list_del(&page_node->list);
2027 DO_NUMA(page_node->nid = nid);
2028 stable_node_chain_add_dup(page_node, stable_node);
2029 goto out;
2030 }
2031
2032 /*
2033 * stable_tree_insert - insert stable tree node pointing to new ksm page
2034 * into the stable tree.
2035 *
2036 * This function returns the stable tree node just allocated on success,
2037 * NULL otherwise.
2038 */
stable_tree_insert(struct folio * kfolio)2039 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2040 {
2041 int nid;
2042 unsigned long kpfn;
2043 struct rb_root *root;
2044 struct rb_node **new;
2045 struct rb_node *parent;
2046 struct ksm_stable_node *stable_node, *stable_node_dup;
2047 bool need_chain = false;
2048
2049 kpfn = folio_pfn(kfolio);
2050 nid = get_kpfn_nid(kpfn);
2051 root = root_stable_tree + nid;
2052 again:
2053 parent = NULL;
2054 new = &root->rb_node;
2055
2056 while (*new) {
2057 struct folio *tree_folio;
2058 int ret;
2059
2060 cond_resched();
2061 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2062 tree_folio = chain(&stable_node_dup, &stable_node, root);
2063 if (!tree_folio) {
2064 /*
2065 * If we walked over a stale stable_node,
2066 * ksm_get_folio() will call rb_erase() and it
2067 * may rebalance the tree from under us. So
2068 * restart the search from scratch. Returning
2069 * NULL would be safe too, but we'd generate
2070 * false negative insertions just because some
2071 * stable_node was stale.
2072 */
2073 goto again;
2074 }
2075
2076 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2077 folio_put(tree_folio);
2078
2079 parent = *new;
2080 if (ret < 0)
2081 new = &parent->rb_left;
2082 else if (ret > 0)
2083 new = &parent->rb_right;
2084 else {
2085 need_chain = true;
2086 break;
2087 }
2088 }
2089
2090 stable_node_dup = alloc_stable_node();
2091 if (!stable_node_dup)
2092 return NULL;
2093
2094 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2095 stable_node_dup->kpfn = kpfn;
2096 stable_node_dup->rmap_hlist_len = 0;
2097 DO_NUMA(stable_node_dup->nid = nid);
2098 if (!need_chain) {
2099 rb_link_node(&stable_node_dup->node, parent, new);
2100 rb_insert_color(&stable_node_dup->node, root);
2101 } else {
2102 if (!is_stable_node_chain(stable_node)) {
2103 struct ksm_stable_node *orig = stable_node;
2104 /* chain is missing so create it */
2105 stable_node = alloc_stable_node_chain(orig, root);
2106 if (!stable_node) {
2107 free_stable_node(stable_node_dup);
2108 return NULL;
2109 }
2110 }
2111 stable_node_chain_add_dup(stable_node_dup, stable_node);
2112 }
2113
2114 folio_set_stable_node(kfolio, stable_node_dup);
2115
2116 return stable_node_dup;
2117 }
2118
2119 /*
2120 * unstable_tree_search_insert - search for identical page,
2121 * else insert rmap_item into the unstable tree.
2122 *
2123 * This function searches for a page in the unstable tree identical to the
2124 * page currently being scanned; and if no identical page is found in the
2125 * tree, we insert rmap_item as a new object into the unstable tree.
2126 *
2127 * This function returns pointer to rmap_item found to be identical
2128 * to the currently scanned page, NULL otherwise.
2129 *
2130 * This function does both searching and inserting, because they share
2131 * the same walking algorithm in an rbtree.
2132 */
2133 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2134 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2135 struct page *page,
2136 struct page **tree_pagep)
2137 {
2138 struct rb_node **new;
2139 struct rb_root *root;
2140 struct rb_node *parent = NULL;
2141 int nid;
2142
2143 nid = get_kpfn_nid(page_to_pfn(page));
2144 root = root_unstable_tree + nid;
2145 new = &root->rb_node;
2146
2147 while (*new) {
2148 struct ksm_rmap_item *tree_rmap_item;
2149 struct page *tree_page;
2150 int ret;
2151
2152 cond_resched();
2153 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2154 tree_page = get_mergeable_page(tree_rmap_item);
2155 if (!tree_page)
2156 return NULL;
2157
2158 /*
2159 * Don't substitute a ksm page for a forked page.
2160 */
2161 if (page == tree_page) {
2162 put_page(tree_page);
2163 return NULL;
2164 }
2165
2166 ret = memcmp_pages(page, tree_page);
2167
2168 parent = *new;
2169 if (ret < 0) {
2170 put_page(tree_page);
2171 new = &parent->rb_left;
2172 } else if (ret > 0) {
2173 put_page(tree_page);
2174 new = &parent->rb_right;
2175 } else if (!ksm_merge_across_nodes &&
2176 page_to_nid(tree_page) != nid) {
2177 /*
2178 * If tree_page has been migrated to another NUMA node,
2179 * it will be flushed out and put in the right unstable
2180 * tree next time: only merge with it when across_nodes.
2181 */
2182 put_page(tree_page);
2183 return NULL;
2184 } else {
2185 *tree_pagep = tree_page;
2186 return tree_rmap_item;
2187 }
2188 }
2189
2190 rmap_item->address |= UNSTABLE_FLAG;
2191 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2192 DO_NUMA(rmap_item->nid = nid);
2193 rb_link_node(&rmap_item->node, parent, new);
2194 rb_insert_color(&rmap_item->node, root);
2195
2196 ksm_pages_unshared++;
2197 return NULL;
2198 }
2199
2200 /*
2201 * stable_tree_append - add another rmap_item to the linked list of
2202 * rmap_items hanging off a given node of the stable tree, all sharing
2203 * the same ksm page.
2204 */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2205 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2206 struct ksm_stable_node *stable_node,
2207 bool max_page_sharing_bypass)
2208 {
2209 /*
2210 * rmap won't find this mapping if we don't insert the
2211 * rmap_item in the right stable_node
2212 * duplicate. page_migration could break later if rmap breaks,
2213 * so we can as well crash here. We really need to check for
2214 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2215 * for other negative values as an underflow if detected here
2216 * for the first time (and not when decreasing rmap_hlist_len)
2217 * would be sign of memory corruption in the stable_node.
2218 */
2219 BUG_ON(stable_node->rmap_hlist_len < 0);
2220
2221 stable_node->rmap_hlist_len++;
2222 if (!max_page_sharing_bypass)
2223 /* possibly non fatal but unexpected overflow, only warn */
2224 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2225 ksm_max_page_sharing);
2226
2227 rmap_item->head = stable_node;
2228 rmap_item->address |= STABLE_FLAG;
2229 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2230
2231 if (rmap_item->hlist.next)
2232 ksm_pages_sharing++;
2233 else
2234 ksm_pages_shared++;
2235
2236 rmap_item->mm->ksm_merging_pages++;
2237 }
2238
2239 /*
2240 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2241 * if not, compare checksum to previous and if it's the same, see if page can
2242 * be inserted into the unstable tree, or merged with a page already there and
2243 * both transferred to the stable tree.
2244 *
2245 * @page: the page that we are searching identical page to.
2246 * @rmap_item: the reverse mapping into the virtual address of this page
2247 */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2248 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2249 {
2250 struct folio *folio = page_folio(page);
2251 struct ksm_rmap_item *tree_rmap_item;
2252 struct page *tree_page = NULL;
2253 struct ksm_stable_node *stable_node;
2254 struct folio *kfolio;
2255 unsigned int checksum;
2256 int err;
2257 bool max_page_sharing_bypass = false;
2258
2259 stable_node = folio_stable_node(folio);
2260 if (stable_node) {
2261 if (stable_node->head != &migrate_nodes &&
2262 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2263 NUMA(stable_node->nid)) {
2264 stable_node_dup_del(stable_node);
2265 stable_node->head = &migrate_nodes;
2266 list_add(&stable_node->list, stable_node->head);
2267 }
2268 if (stable_node->head != &migrate_nodes &&
2269 rmap_item->head == stable_node)
2270 return;
2271 /*
2272 * If it's a KSM fork, allow it to go over the sharing limit
2273 * without warnings.
2274 */
2275 if (!is_page_sharing_candidate(stable_node))
2276 max_page_sharing_bypass = true;
2277 } else {
2278 remove_rmap_item_from_tree(rmap_item);
2279
2280 /*
2281 * If the hash value of the page has changed from the last time
2282 * we calculated it, this page is changing frequently: therefore we
2283 * don't want to insert it in the unstable tree, and we don't want
2284 * to waste our time searching for something identical to it there.
2285 */
2286 checksum = calc_checksum(page);
2287 if (rmap_item->oldchecksum != checksum) {
2288 rmap_item->oldchecksum = checksum;
2289 return;
2290 }
2291
2292 if (!try_to_merge_with_zero_page(rmap_item, page))
2293 return;
2294 }
2295
2296 /* Start by searching for the folio in the stable tree */
2297 kfolio = stable_tree_search(page);
2298 if (kfolio == folio && rmap_item->head == stable_node) {
2299 folio_put(kfolio);
2300 return;
2301 }
2302
2303 remove_rmap_item_from_tree(rmap_item);
2304
2305 if (kfolio) {
2306 if (kfolio == ERR_PTR(-EBUSY))
2307 return;
2308
2309 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2310 if (!err) {
2311 /*
2312 * The page was successfully merged:
2313 * add its rmap_item to the stable tree.
2314 */
2315 folio_lock(kfolio);
2316 stable_tree_append(rmap_item, folio_stable_node(kfolio),
2317 max_page_sharing_bypass);
2318 folio_unlock(kfolio);
2319 }
2320 folio_put(kfolio);
2321 return;
2322 }
2323
2324 tree_rmap_item =
2325 unstable_tree_search_insert(rmap_item, page, &tree_page);
2326 if (tree_rmap_item) {
2327 bool split;
2328
2329 kfolio = try_to_merge_two_pages(rmap_item, page,
2330 tree_rmap_item, tree_page);
2331 /*
2332 * If both pages we tried to merge belong to the same compound
2333 * page, then we actually ended up increasing the reference
2334 * count of the same compound page twice, and split_huge_page
2335 * failed.
2336 * Here we set a flag if that happened, and we use it later to
2337 * try split_huge_page again. Since we call put_page right
2338 * afterwards, the reference count will be correct and
2339 * split_huge_page should succeed.
2340 */
2341 split = PageTransCompound(page)
2342 && compound_head(page) == compound_head(tree_page);
2343 put_page(tree_page);
2344 if (kfolio) {
2345 /*
2346 * The pages were successfully merged: insert new
2347 * node in the stable tree and add both rmap_items.
2348 */
2349 folio_lock(kfolio);
2350 stable_node = stable_tree_insert(kfolio);
2351 if (stable_node) {
2352 stable_tree_append(tree_rmap_item, stable_node,
2353 false);
2354 stable_tree_append(rmap_item, stable_node,
2355 false);
2356 }
2357 folio_unlock(kfolio);
2358
2359 /*
2360 * If we fail to insert the page into the stable tree,
2361 * we will have 2 virtual addresses that are pointing
2362 * to a ksm page left outside the stable tree,
2363 * in which case we need to break_cow on both.
2364 */
2365 if (!stable_node) {
2366 break_cow(tree_rmap_item);
2367 break_cow(rmap_item);
2368 }
2369 } else if (split) {
2370 /*
2371 * We are here if we tried to merge two pages and
2372 * failed because they both belonged to the same
2373 * compound page. We will split the page now, but no
2374 * merging will take place.
2375 * We do not want to add the cost of a full lock; if
2376 * the page is locked, it is better to skip it and
2377 * perhaps try again later.
2378 */
2379 if (!folio_trylock(folio))
2380 return;
2381 split_huge_page(page);
2382 folio = page_folio(page);
2383 folio_unlock(folio);
2384 }
2385 }
2386 }
2387
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2388 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2389 struct ksm_rmap_item **rmap_list,
2390 unsigned long addr)
2391 {
2392 struct ksm_rmap_item *rmap_item;
2393
2394 while (*rmap_list) {
2395 rmap_item = *rmap_list;
2396 if ((rmap_item->address & PAGE_MASK) == addr)
2397 return rmap_item;
2398 if (rmap_item->address > addr)
2399 break;
2400 *rmap_list = rmap_item->rmap_list;
2401 remove_rmap_item_from_tree(rmap_item);
2402 free_rmap_item(rmap_item);
2403 }
2404
2405 rmap_item = alloc_rmap_item();
2406 if (rmap_item) {
2407 /* It has already been zeroed */
2408 rmap_item->mm = mm_slot->slot.mm;
2409 rmap_item->mm->ksm_rmap_items++;
2410 rmap_item->address = addr;
2411 rmap_item->rmap_list = *rmap_list;
2412 *rmap_list = rmap_item;
2413 }
2414 return rmap_item;
2415 }
2416
2417 /*
2418 * Calculate skip age for the ksm page age. The age determines how often
2419 * de-duplicating has already been tried unsuccessfully. If the age is
2420 * smaller, the scanning of this page is skipped for less scans.
2421 *
2422 * @age: rmap_item age of page
2423 */
skip_age(rmap_age_t age)2424 static unsigned int skip_age(rmap_age_t age)
2425 {
2426 if (age <= 3)
2427 return 1;
2428 if (age <= 5)
2429 return 2;
2430 if (age <= 8)
2431 return 4;
2432
2433 return 8;
2434 }
2435
2436 /*
2437 * Determines if a page should be skipped for the current scan.
2438 *
2439 * @folio: folio containing the page to check
2440 * @rmap_item: associated rmap_item of page
2441 */
should_skip_rmap_item(struct folio * folio,struct ksm_rmap_item * rmap_item)2442 static bool should_skip_rmap_item(struct folio *folio,
2443 struct ksm_rmap_item *rmap_item)
2444 {
2445 rmap_age_t age;
2446
2447 if (!ksm_smart_scan)
2448 return false;
2449
2450 /*
2451 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2452 * will essentially ignore them, but we still have to process them
2453 * properly.
2454 */
2455 if (folio_test_ksm(folio))
2456 return false;
2457
2458 age = rmap_item->age;
2459 if (age != U8_MAX)
2460 rmap_item->age++;
2461
2462 /*
2463 * Smaller ages are not skipped, they need to get a chance to go
2464 * through the different phases of the KSM merging.
2465 */
2466 if (age < 3)
2467 return false;
2468
2469 /*
2470 * Are we still allowed to skip? If not, then don't skip it
2471 * and determine how much more often we are allowed to skip next.
2472 */
2473 if (!rmap_item->remaining_skips) {
2474 rmap_item->remaining_skips = skip_age(age);
2475 return false;
2476 }
2477
2478 /* Skip this page */
2479 ksm_pages_skipped++;
2480 rmap_item->remaining_skips--;
2481 remove_rmap_item_from_tree(rmap_item);
2482 return true;
2483 }
2484
2485 struct ksm_next_page_arg {
2486 struct folio *folio;
2487 struct page *page;
2488 unsigned long addr;
2489 };
2490
ksm_next_page_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)2491 static int ksm_next_page_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
2492 struct mm_walk *walk)
2493 {
2494 struct ksm_next_page_arg *private = walk->private;
2495 struct vm_area_struct *vma = walk->vma;
2496 pte_t *start_ptep = NULL, *ptep, pte;
2497 struct mm_struct *mm = walk->mm;
2498 struct folio *folio;
2499 struct page *page;
2500 spinlock_t *ptl;
2501 pmd_t pmd;
2502
2503 if (ksm_test_exit(mm))
2504 return 0;
2505
2506 cond_resched();
2507
2508 pmd = pmdp_get_lockless(pmdp);
2509 if (!pmd_present(pmd))
2510 return 0;
2511
2512 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && pmd_leaf(pmd)) {
2513 ptl = pmd_lock(mm, pmdp);
2514 pmd = pmdp_get(pmdp);
2515
2516 if (!pmd_present(pmd)) {
2517 goto not_found_unlock;
2518 } else if (pmd_leaf(pmd)) {
2519 page = vm_normal_page_pmd(vma, addr, pmd);
2520 if (!page)
2521 goto not_found_unlock;
2522 folio = page_folio(page);
2523
2524 if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2525 goto not_found_unlock;
2526
2527 page += ((addr & (PMD_SIZE - 1)) >> PAGE_SHIFT);
2528 goto found_unlock;
2529 }
2530 spin_unlock(ptl);
2531 }
2532
2533 start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2534 if (!start_ptep)
2535 return 0;
2536
2537 for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
2538 pte = ptep_get(ptep);
2539
2540 if (!pte_present(pte))
2541 continue;
2542
2543 page = vm_normal_page(vma, addr, pte);
2544 if (!page)
2545 continue;
2546 folio = page_folio(page);
2547
2548 if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2549 continue;
2550 goto found_unlock;
2551 }
2552
2553 not_found_unlock:
2554 spin_unlock(ptl);
2555 if (start_ptep)
2556 pte_unmap(start_ptep);
2557 return 0;
2558 found_unlock:
2559 folio_get(folio);
2560 spin_unlock(ptl);
2561 if (start_ptep)
2562 pte_unmap(start_ptep);
2563 private->page = page;
2564 private->folio = folio;
2565 private->addr = addr;
2566 return 1;
2567 }
2568
2569 static struct mm_walk_ops ksm_next_page_ops = {
2570 .pmd_entry = ksm_next_page_pmd_entry,
2571 .walk_lock = PGWALK_RDLOCK,
2572 };
2573
scan_get_next_rmap_item(struct page ** page)2574 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2575 {
2576 struct mm_struct *mm;
2577 struct ksm_mm_slot *mm_slot;
2578 struct mm_slot *slot;
2579 struct vm_area_struct *vma;
2580 struct ksm_rmap_item *rmap_item;
2581 struct vma_iterator vmi;
2582 int nid;
2583
2584 if (list_empty(&ksm_mm_head.slot.mm_node))
2585 return NULL;
2586
2587 mm_slot = ksm_scan.mm_slot;
2588 if (mm_slot == &ksm_mm_head) {
2589 advisor_start_scan();
2590 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2591
2592 /*
2593 * A number of pages can hang around indefinitely in per-cpu
2594 * LRU cache, raised page count preventing write_protect_page
2595 * from merging them. Though it doesn't really matter much,
2596 * it is puzzling to see some stuck in pages_volatile until
2597 * other activity jostles them out, and they also prevented
2598 * LTP's KSM test from succeeding deterministically; so drain
2599 * them here (here rather than on entry to ksm_do_scan(),
2600 * so we don't IPI too often when pages_to_scan is set low).
2601 */
2602 lru_add_drain_all();
2603
2604 /*
2605 * Whereas stale stable_nodes on the stable_tree itself
2606 * get pruned in the regular course of stable_tree_search(),
2607 * those moved out to the migrate_nodes list can accumulate:
2608 * so prune them once before each full scan.
2609 */
2610 if (!ksm_merge_across_nodes) {
2611 struct ksm_stable_node *stable_node, *next;
2612 struct folio *folio;
2613
2614 list_for_each_entry_safe(stable_node, next,
2615 &migrate_nodes, list) {
2616 folio = ksm_get_folio(stable_node,
2617 KSM_GET_FOLIO_NOLOCK);
2618 if (folio)
2619 folio_put(folio);
2620 cond_resched();
2621 }
2622 }
2623
2624 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2625 root_unstable_tree[nid] = RB_ROOT;
2626
2627 spin_lock(&ksm_mmlist_lock);
2628 slot = list_entry(mm_slot->slot.mm_node.next,
2629 struct mm_slot, mm_node);
2630 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2631 ksm_scan.mm_slot = mm_slot;
2632 spin_unlock(&ksm_mmlist_lock);
2633 /*
2634 * Although we tested list_empty() above, a racing __ksm_exit
2635 * of the last mm on the list may have removed it since then.
2636 */
2637 if (mm_slot == &ksm_mm_head)
2638 return NULL;
2639 next_mm:
2640 ksm_scan.address = 0;
2641 ksm_scan.rmap_list = &mm_slot->rmap_list;
2642 }
2643
2644 slot = &mm_slot->slot;
2645 mm = slot->mm;
2646 vma_iter_init(&vmi, mm, ksm_scan.address);
2647
2648 mmap_read_lock(mm);
2649 if (ksm_test_exit(mm))
2650 goto no_vmas;
2651
2652 for_each_vma(vmi, vma) {
2653 if (!(vma->vm_flags & VM_MERGEABLE))
2654 continue;
2655 if (ksm_scan.address < vma->vm_start)
2656 ksm_scan.address = vma->vm_start;
2657 if (!vma->anon_vma)
2658 ksm_scan.address = vma->vm_end;
2659
2660 while (ksm_scan.address < vma->vm_end) {
2661 struct ksm_next_page_arg ksm_next_page_arg;
2662 struct page *tmp_page = NULL;
2663 struct folio *folio;
2664
2665 if (ksm_test_exit(mm))
2666 break;
2667
2668 int found;
2669
2670 found = walk_page_range_vma(vma, ksm_scan.address,
2671 vma->vm_end,
2672 &ksm_next_page_ops,
2673 &ksm_next_page_arg);
2674
2675 if (found > 0) {
2676 folio = ksm_next_page_arg.folio;
2677 tmp_page = ksm_next_page_arg.page;
2678 ksm_scan.address = ksm_next_page_arg.addr;
2679 } else {
2680 VM_WARN_ON_ONCE(found < 0);
2681 ksm_scan.address = vma->vm_end - PAGE_SIZE;
2682 }
2683
2684 if (tmp_page) {
2685 flush_anon_page(vma, tmp_page, ksm_scan.address);
2686 flush_dcache_page(tmp_page);
2687 rmap_item = get_next_rmap_item(mm_slot,
2688 ksm_scan.rmap_list, ksm_scan.address);
2689 if (rmap_item) {
2690 ksm_scan.rmap_list =
2691 &rmap_item->rmap_list;
2692
2693 if (should_skip_rmap_item(folio, rmap_item)) {
2694 folio_put(folio);
2695 goto next_page;
2696 }
2697
2698 ksm_scan.address += PAGE_SIZE;
2699 *page = tmp_page;
2700 } else {
2701 folio_put(folio);
2702 }
2703 mmap_read_unlock(mm);
2704 return rmap_item;
2705 }
2706 next_page:
2707 ksm_scan.address += PAGE_SIZE;
2708 cond_resched();
2709 }
2710 }
2711
2712 if (ksm_test_exit(mm)) {
2713 no_vmas:
2714 ksm_scan.address = 0;
2715 ksm_scan.rmap_list = &mm_slot->rmap_list;
2716 }
2717 /*
2718 * Nuke all the rmap_items that are above this current rmap:
2719 * because there were no VM_MERGEABLE vmas with such addresses.
2720 */
2721 remove_trailing_rmap_items(ksm_scan.rmap_list);
2722
2723 spin_lock(&ksm_mmlist_lock);
2724 slot = list_entry(mm_slot->slot.mm_node.next,
2725 struct mm_slot, mm_node);
2726 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2727 if (ksm_scan.address == 0) {
2728 /*
2729 * We've completed a full scan of all vmas, holding mmap_lock
2730 * throughout, and found no VM_MERGEABLE: so do the same as
2731 * __ksm_exit does to remove this mm from all our lists now.
2732 * This applies either when cleaning up after __ksm_exit
2733 * (but beware: we can reach here even before __ksm_exit),
2734 * or when all VM_MERGEABLE areas have been unmapped (and
2735 * mmap_lock then protects against race with MADV_MERGEABLE).
2736 */
2737 hash_del(&mm_slot->slot.hash);
2738 list_del(&mm_slot->slot.mm_node);
2739 spin_unlock(&ksm_mmlist_lock);
2740
2741 mm_slot_free(mm_slot_cache, mm_slot);
2742 /*
2743 * Only clear MMF_VM_MERGEABLE. We must not clear
2744 * MMF_VM_MERGE_ANY, because for those MMF_VM_MERGE_ANY process,
2745 * perhaps their mm_struct has just been added to ksm_mm_slot
2746 * list, and its process has not yet officially started running
2747 * or has not yet performed mmap/brk to allocate anonymous VMAS.
2748 */
2749 mm_flags_clear(MMF_VM_MERGEABLE, mm);
2750 mmap_read_unlock(mm);
2751 mmdrop(mm);
2752 } else {
2753 mmap_read_unlock(mm);
2754 /*
2755 * mmap_read_unlock(mm) first because after
2756 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2757 * already have been freed under us by __ksm_exit()
2758 * because the "mm_slot" is still hashed and
2759 * ksm_scan.mm_slot doesn't point to it anymore.
2760 */
2761 spin_unlock(&ksm_mmlist_lock);
2762 }
2763
2764 /* Repeat until we've completed scanning the whole list */
2765 mm_slot = ksm_scan.mm_slot;
2766 if (mm_slot != &ksm_mm_head)
2767 goto next_mm;
2768
2769 advisor_stop_scan();
2770
2771 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2772 ksm_scan.seqnr++;
2773 return NULL;
2774 }
2775
2776 /**
2777 * ksm_do_scan - the ksm scanner main worker function.
2778 * @scan_npages: number of pages we want to scan before we return.
2779 */
ksm_do_scan(unsigned int scan_npages)2780 static void ksm_do_scan(unsigned int scan_npages)
2781 {
2782 struct ksm_rmap_item *rmap_item;
2783 struct page *page;
2784
2785 while (scan_npages-- && likely(!freezing(current))) {
2786 cond_resched();
2787 rmap_item = scan_get_next_rmap_item(&page);
2788 if (!rmap_item)
2789 return;
2790 cmp_and_merge_page(page, rmap_item);
2791 put_page(page);
2792 ksm_pages_scanned++;
2793 }
2794 }
2795
ksmd_should_run(void)2796 static int ksmd_should_run(void)
2797 {
2798 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2799 }
2800
ksm_scan_thread(void * nothing)2801 static int ksm_scan_thread(void *nothing)
2802 {
2803 unsigned int sleep_ms;
2804
2805 set_freezable();
2806 set_user_nice(current, 5);
2807
2808 while (!kthread_should_stop()) {
2809 mutex_lock(&ksm_thread_mutex);
2810 wait_while_offlining();
2811 if (ksmd_should_run())
2812 ksm_do_scan(ksm_thread_pages_to_scan);
2813 mutex_unlock(&ksm_thread_mutex);
2814
2815 if (ksmd_should_run()) {
2816 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2817 wait_event_freezable_timeout(ksm_iter_wait,
2818 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2819 msecs_to_jiffies(sleep_ms));
2820 } else {
2821 wait_event_freezable(ksm_thread_wait,
2822 ksmd_should_run() || kthread_should_stop());
2823 }
2824 }
2825 return 0;
2826 }
2827
__ksm_should_add_vma(const struct file * file,vm_flags_t vm_flags)2828 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2829 {
2830 if (vm_flags & VM_MERGEABLE)
2831 return false;
2832
2833 return ksm_compatible(file, vm_flags);
2834 }
2835
__ksm_add_vma(struct vm_area_struct * vma)2836 static void __ksm_add_vma(struct vm_area_struct *vma)
2837 {
2838 if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2839 vm_flags_set(vma, VM_MERGEABLE);
2840 }
2841
__ksm_del_vma(struct vm_area_struct * vma)2842 static int __ksm_del_vma(struct vm_area_struct *vma)
2843 {
2844 int err;
2845
2846 if (!(vma->vm_flags & VM_MERGEABLE))
2847 return 0;
2848
2849 if (vma->anon_vma) {
2850 err = break_ksm(vma, vma->vm_start, vma->vm_end, true);
2851 if (err)
2852 return err;
2853 }
2854
2855 vm_flags_clear(vma, VM_MERGEABLE);
2856 return 0;
2857 }
2858 /**
2859 * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2860 *
2861 * @mm: Proposed VMA's mm_struct
2862 * @file: Proposed VMA's file-backed mapping, if any.
2863 * @vm_flags: Proposed VMA"s flags.
2864 *
2865 * Returns: @vm_flags possibly updated to mark mergeable.
2866 */
ksm_vma_flags(struct mm_struct * mm,const struct file * file,vm_flags_t vm_flags)2867 vm_flags_t ksm_vma_flags(struct mm_struct *mm, const struct file *file,
2868 vm_flags_t vm_flags)
2869 {
2870 if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2871 __ksm_should_add_vma(file, vm_flags)) {
2872 vm_flags |= VM_MERGEABLE;
2873 /*
2874 * Generally, the flags here always include MMF_VM_MERGEABLE.
2875 * However, in rare cases, this flag may be cleared by ksmd who
2876 * scans a cycle without finding any mergeable vma.
2877 */
2878 if (unlikely(!mm_flags_test(MMF_VM_MERGEABLE, mm)))
2879 __ksm_enter(mm);
2880 }
2881
2882 return vm_flags;
2883 }
2884
ksm_add_vmas(struct mm_struct * mm)2885 static void ksm_add_vmas(struct mm_struct *mm)
2886 {
2887 struct vm_area_struct *vma;
2888
2889 VMA_ITERATOR(vmi, mm, 0);
2890 for_each_vma(vmi, vma)
2891 __ksm_add_vma(vma);
2892 }
2893
ksm_del_vmas(struct mm_struct * mm)2894 static int ksm_del_vmas(struct mm_struct *mm)
2895 {
2896 struct vm_area_struct *vma;
2897 int err;
2898
2899 VMA_ITERATOR(vmi, mm, 0);
2900 for_each_vma(vmi, vma) {
2901 err = __ksm_del_vma(vma);
2902 if (err)
2903 return err;
2904 }
2905 return 0;
2906 }
2907
2908 /**
2909 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2910 * compatible VMA's
2911 *
2912 * @mm: Pointer to mm
2913 *
2914 * Returns 0 on success, otherwise error code
2915 */
ksm_enable_merge_any(struct mm_struct * mm)2916 int ksm_enable_merge_any(struct mm_struct *mm)
2917 {
2918 int err;
2919
2920 if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2921 return 0;
2922
2923 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2924 err = __ksm_enter(mm);
2925 if (err)
2926 return err;
2927 }
2928
2929 mm_flags_set(MMF_VM_MERGE_ANY, mm);
2930 ksm_add_vmas(mm);
2931
2932 return 0;
2933 }
2934
2935 /**
2936 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2937 * previously enabled via ksm_enable_merge_any().
2938 *
2939 * Disabling merging implies unmerging any merged pages, like setting
2940 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2941 * merging on all compatible VMA's remains enabled.
2942 *
2943 * @mm: Pointer to mm
2944 *
2945 * Returns 0 on success, otherwise error code
2946 */
ksm_disable_merge_any(struct mm_struct * mm)2947 int ksm_disable_merge_any(struct mm_struct *mm)
2948 {
2949 int err;
2950
2951 if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2952 return 0;
2953
2954 err = ksm_del_vmas(mm);
2955 if (err) {
2956 ksm_add_vmas(mm);
2957 return err;
2958 }
2959
2960 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2961 return 0;
2962 }
2963
ksm_disable(struct mm_struct * mm)2964 int ksm_disable(struct mm_struct *mm)
2965 {
2966 mmap_assert_write_locked(mm);
2967
2968 if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2969 return 0;
2970 if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2971 return ksm_disable_merge_any(mm);
2972 return ksm_del_vmas(mm);
2973 }
2974
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,vm_flags_t * vm_flags)2975 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2976 unsigned long end, int advice, vm_flags_t *vm_flags)
2977 {
2978 struct mm_struct *mm = vma->vm_mm;
2979 int err;
2980
2981 switch (advice) {
2982 case MADV_MERGEABLE:
2983 if (vma->vm_flags & VM_MERGEABLE)
2984 return 0;
2985 if (!vma_ksm_compatible(vma))
2986 return 0;
2987
2988 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2989 err = __ksm_enter(mm);
2990 if (err)
2991 return err;
2992 }
2993
2994 *vm_flags |= VM_MERGEABLE;
2995 break;
2996
2997 case MADV_UNMERGEABLE:
2998 if (!(*vm_flags & VM_MERGEABLE))
2999 return 0; /* just ignore the advice */
3000
3001 if (vma->anon_vma) {
3002 err = break_ksm(vma, start, end, true);
3003 if (err)
3004 return err;
3005 }
3006
3007 *vm_flags &= ~VM_MERGEABLE;
3008 break;
3009 }
3010
3011 return 0;
3012 }
3013 EXPORT_SYMBOL_GPL(ksm_madvise);
3014
__ksm_enter(struct mm_struct * mm)3015 int __ksm_enter(struct mm_struct *mm)
3016 {
3017 struct ksm_mm_slot *mm_slot;
3018 struct mm_slot *slot;
3019 int needs_wakeup;
3020
3021 mm_slot = mm_slot_alloc(mm_slot_cache);
3022 if (!mm_slot)
3023 return -ENOMEM;
3024
3025 slot = &mm_slot->slot;
3026
3027 /* Check ksm_run too? Would need tighter locking */
3028 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
3029
3030 spin_lock(&ksm_mmlist_lock);
3031 mm_slot_insert(mm_slots_hash, mm, slot);
3032 /*
3033 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
3034 * insert just behind the scanning cursor, to let the area settle
3035 * down a little; when fork is followed by immediate exec, we don't
3036 * want ksmd to waste time setting up and tearing down an rmap_list.
3037 *
3038 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3039 * scanning cursor, otherwise KSM pages in newly forked mms will be
3040 * missed: then we might as well insert at the end of the list.
3041 */
3042 if (ksm_run & KSM_RUN_UNMERGE)
3043 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3044 else
3045 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3046 spin_unlock(&ksm_mmlist_lock);
3047
3048 mm_flags_set(MMF_VM_MERGEABLE, mm);
3049 mmgrab(mm);
3050
3051 if (needs_wakeup)
3052 wake_up_interruptible(&ksm_thread_wait);
3053
3054 trace_ksm_enter(mm);
3055 return 0;
3056 }
3057
__ksm_exit(struct mm_struct * mm)3058 void __ksm_exit(struct mm_struct *mm)
3059 {
3060 struct ksm_mm_slot *mm_slot = NULL;
3061 struct mm_slot *slot;
3062 int easy_to_free = 0;
3063
3064 /*
3065 * This process is exiting: if it's straightforward (as is the
3066 * case when ksmd was never running), free mm_slot immediately.
3067 * But if it's at the cursor or has rmap_items linked to it, use
3068 * mmap_lock to synchronize with any break_cows before pagetables
3069 * are freed, and leave the mm_slot on the list for ksmd to free.
3070 * Beware: ksm may already have noticed it exiting and freed the slot.
3071 */
3072
3073 spin_lock(&ksm_mmlist_lock);
3074 slot = mm_slot_lookup(mm_slots_hash, mm);
3075 if (!slot)
3076 goto unlock;
3077 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3078 if (ksm_scan.mm_slot == mm_slot)
3079 goto unlock;
3080 if (!mm_slot->rmap_list) {
3081 hash_del(&slot->hash);
3082 list_del(&slot->mm_node);
3083 easy_to_free = 1;
3084 } else {
3085 list_move(&slot->mm_node,
3086 &ksm_scan.mm_slot->slot.mm_node);
3087 }
3088 unlock:
3089 spin_unlock(&ksm_mmlist_lock);
3090
3091 if (easy_to_free) {
3092 mm_slot_free(mm_slot_cache, mm_slot);
3093 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
3094 mm_flags_clear(MMF_VM_MERGEABLE, mm);
3095 mmdrop(mm);
3096 } else if (mm_slot) {
3097 mmap_write_lock(mm);
3098 mmap_write_unlock(mm);
3099 }
3100
3101 trace_ksm_exit(mm);
3102 }
3103
ksm_might_need_to_copy(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)3104 struct folio *ksm_might_need_to_copy(struct folio *folio,
3105 struct vm_area_struct *vma, unsigned long addr)
3106 {
3107 struct page *page = folio_page(folio, 0);
3108 struct anon_vma *anon_vma = folio_anon_vma(folio);
3109 struct folio *new_folio;
3110
3111 if (folio_test_large(folio))
3112 return folio;
3113
3114 if (folio_test_ksm(folio)) {
3115 if (folio_stable_node(folio) &&
3116 !(ksm_run & KSM_RUN_UNMERGE))
3117 return folio; /* no need to copy it */
3118 } else if (!anon_vma) {
3119 return folio; /* no need to copy it */
3120 } else if (folio->index == linear_page_index(vma, addr) &&
3121 anon_vma->root == vma->anon_vma->root) {
3122 return folio; /* still no need to copy it */
3123 }
3124 if (PageHWPoison(page))
3125 return ERR_PTR(-EHWPOISON);
3126 if (!folio_test_uptodate(folio))
3127 return folio; /* let do_swap_page report the error */
3128
3129 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
3130 if (new_folio &&
3131 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3132 folio_put(new_folio);
3133 new_folio = NULL;
3134 }
3135 if (new_folio) {
3136 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3137 addr, vma)) {
3138 folio_put(new_folio);
3139 return ERR_PTR(-EHWPOISON);
3140 }
3141 folio_set_dirty(new_folio);
3142 __folio_mark_uptodate(new_folio);
3143 __folio_set_locked(new_folio);
3144 #ifdef CONFIG_SWAP
3145 count_vm_event(KSM_SWPIN_COPY);
3146 #endif
3147 }
3148
3149 return new_folio;
3150 }
3151
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)3152 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3153 {
3154 struct ksm_stable_node *stable_node;
3155 struct ksm_rmap_item *rmap_item;
3156 int search_new_forks = 0;
3157
3158 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3159
3160 /*
3161 * Rely on the page lock to protect against concurrent modifications
3162 * to that page's node of the stable tree.
3163 */
3164 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3165
3166 stable_node = folio_stable_node(folio);
3167 if (!stable_node)
3168 return;
3169 again:
3170 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3171 struct anon_vma *anon_vma = rmap_item->anon_vma;
3172 struct anon_vma_chain *vmac;
3173 struct vm_area_struct *vma;
3174
3175 cond_resched();
3176 if (!anon_vma_trylock_read(anon_vma)) {
3177 if (rwc->try_lock) {
3178 rwc->contended = true;
3179 return;
3180 }
3181 anon_vma_lock_read(anon_vma);
3182 }
3183 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3184 0, ULONG_MAX) {
3185 unsigned long addr;
3186
3187 cond_resched();
3188 vma = vmac->vma;
3189
3190 /* Ignore the stable/unstable/sqnr flags */
3191 addr = rmap_item->address & PAGE_MASK;
3192
3193 if (addr < vma->vm_start || addr >= vma->vm_end)
3194 continue;
3195 /*
3196 * Initially we examine only the vma which covers this
3197 * rmap_item; but later, if there is still work to do,
3198 * we examine covering vmas in other mms: in case they
3199 * were forked from the original since ksmd passed.
3200 */
3201 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3202 continue;
3203
3204 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3205 continue;
3206
3207 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3208 anon_vma_unlock_read(anon_vma);
3209 return;
3210 }
3211 if (rwc->done && rwc->done(folio)) {
3212 anon_vma_unlock_read(anon_vma);
3213 return;
3214 }
3215 }
3216 anon_vma_unlock_read(anon_vma);
3217 }
3218 if (!search_new_forks++)
3219 goto again;
3220 }
3221
3222 #ifdef CONFIG_MEMORY_FAILURE
3223 /*
3224 * Collect processes when the error hit an ksm page.
3225 */
collect_procs_ksm(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)3226 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3227 struct list_head *to_kill, int force_early)
3228 {
3229 struct ksm_stable_node *stable_node;
3230 struct ksm_rmap_item *rmap_item;
3231 struct vm_area_struct *vma;
3232 struct task_struct *tsk;
3233
3234 stable_node = folio_stable_node(folio);
3235 if (!stable_node)
3236 return;
3237 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3238 struct anon_vma *av = rmap_item->anon_vma;
3239
3240 anon_vma_lock_read(av);
3241 rcu_read_lock();
3242 for_each_process(tsk) {
3243 struct anon_vma_chain *vmac;
3244 unsigned long addr;
3245 struct task_struct *t =
3246 task_early_kill(tsk, force_early);
3247 if (!t)
3248 continue;
3249 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3250 ULONG_MAX)
3251 {
3252 vma = vmac->vma;
3253 if (vma->vm_mm == t->mm) {
3254 addr = rmap_item->address & PAGE_MASK;
3255 add_to_kill_ksm(t, page, vma, to_kill,
3256 addr);
3257 }
3258 }
3259 }
3260 rcu_read_unlock();
3261 anon_vma_unlock_read(av);
3262 }
3263 }
3264 #endif
3265
3266 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)3267 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3268 {
3269 struct ksm_stable_node *stable_node;
3270
3271 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3272 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3273 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3274
3275 stable_node = folio_stable_node(folio);
3276 if (stable_node) {
3277 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3278 stable_node->kpfn = folio_pfn(newfolio);
3279 /*
3280 * newfolio->mapping was set in advance; now we need smp_wmb()
3281 * to make sure that the new stable_node->kpfn is visible
3282 * to ksm_get_folio() before it can see that folio->mapping
3283 * has gone stale (or that the swapcache flag has been cleared).
3284 */
3285 smp_wmb();
3286 folio_set_stable_node(folio, NULL);
3287 }
3288 }
3289 #endif /* CONFIG_MIGRATION */
3290
3291 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)3292 static void wait_while_offlining(void)
3293 {
3294 while (ksm_run & KSM_RUN_OFFLINE) {
3295 mutex_unlock(&ksm_thread_mutex);
3296 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3297 TASK_UNINTERRUPTIBLE);
3298 mutex_lock(&ksm_thread_mutex);
3299 }
3300 }
3301
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)3302 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3303 unsigned long start_pfn,
3304 unsigned long end_pfn)
3305 {
3306 if (stable_node->kpfn >= start_pfn &&
3307 stable_node->kpfn < end_pfn) {
3308 /*
3309 * Don't ksm_get_folio, page has already gone:
3310 * which is why we keep kpfn instead of page*
3311 */
3312 remove_node_from_stable_tree(stable_node);
3313 return true;
3314 }
3315 return false;
3316 }
3317
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3318 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3319 unsigned long start_pfn,
3320 unsigned long end_pfn,
3321 struct rb_root *root)
3322 {
3323 struct ksm_stable_node *dup;
3324 struct hlist_node *hlist_safe;
3325
3326 if (!is_stable_node_chain(stable_node)) {
3327 VM_BUG_ON(is_stable_node_dup(stable_node));
3328 return stable_node_dup_remove_range(stable_node, start_pfn,
3329 end_pfn);
3330 }
3331
3332 hlist_for_each_entry_safe(dup, hlist_safe,
3333 &stable_node->hlist, hlist_dup) {
3334 VM_BUG_ON(!is_stable_node_dup(dup));
3335 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3336 }
3337 if (hlist_empty(&stable_node->hlist)) {
3338 free_stable_node_chain(stable_node, root);
3339 return true; /* notify caller that tree was rebalanced */
3340 } else
3341 return false;
3342 }
3343
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3344 static void ksm_check_stable_tree(unsigned long start_pfn,
3345 unsigned long end_pfn)
3346 {
3347 struct ksm_stable_node *stable_node, *next;
3348 struct rb_node *node;
3349 int nid;
3350
3351 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3352 node = rb_first(root_stable_tree + nid);
3353 while (node) {
3354 stable_node = rb_entry(node, struct ksm_stable_node, node);
3355 if (stable_node_chain_remove_range(stable_node,
3356 start_pfn, end_pfn,
3357 root_stable_tree +
3358 nid))
3359 node = rb_first(root_stable_tree + nid);
3360 else
3361 node = rb_next(node);
3362 cond_resched();
3363 }
3364 }
3365 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3366 if (stable_node->kpfn >= start_pfn &&
3367 stable_node->kpfn < end_pfn)
3368 remove_node_from_stable_tree(stable_node);
3369 cond_resched();
3370 }
3371 }
3372
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3373 static int ksm_memory_callback(struct notifier_block *self,
3374 unsigned long action, void *arg)
3375 {
3376 struct memory_notify *mn = arg;
3377
3378 switch (action) {
3379 case MEM_GOING_OFFLINE:
3380 /*
3381 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3382 * and remove_all_stable_nodes() while memory is going offline:
3383 * it is unsafe for them to touch the stable tree at this time.
3384 * But break_ksm(), rmap lookups and other entry points
3385 * which do not need the ksm_thread_mutex are all safe.
3386 */
3387 mutex_lock(&ksm_thread_mutex);
3388 ksm_run |= KSM_RUN_OFFLINE;
3389 mutex_unlock(&ksm_thread_mutex);
3390 break;
3391
3392 case MEM_OFFLINE:
3393 /*
3394 * Most of the work is done by page migration; but there might
3395 * be a few stable_nodes left over, still pointing to struct
3396 * pages which have been offlined: prune those from the tree,
3397 * otherwise ksm_get_folio() might later try to access a
3398 * non-existent struct page.
3399 */
3400 ksm_check_stable_tree(mn->start_pfn,
3401 mn->start_pfn + mn->nr_pages);
3402 fallthrough;
3403 case MEM_CANCEL_OFFLINE:
3404 mutex_lock(&ksm_thread_mutex);
3405 ksm_run &= ~KSM_RUN_OFFLINE;
3406 mutex_unlock(&ksm_thread_mutex);
3407
3408 smp_mb(); /* wake_up_bit advises this */
3409 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3410 break;
3411 }
3412 return NOTIFY_OK;
3413 }
3414 #else
wait_while_offlining(void)3415 static void wait_while_offlining(void)
3416 {
3417 }
3418 #endif /* CONFIG_MEMORY_HOTREMOVE */
3419
3420 #ifdef CONFIG_PROC_FS
3421 /*
3422 * The process is mergeable only if any VMA is currently
3423 * applicable to KSM.
3424 *
3425 * The mmap lock must be held in read mode.
3426 */
ksm_process_mergeable(struct mm_struct * mm)3427 bool ksm_process_mergeable(struct mm_struct *mm)
3428 {
3429 struct vm_area_struct *vma;
3430
3431 mmap_assert_locked(mm);
3432 VMA_ITERATOR(vmi, mm, 0);
3433 for_each_vma(vmi, vma)
3434 if (vma->vm_flags & VM_MERGEABLE)
3435 return true;
3436
3437 return false;
3438 }
3439
ksm_process_profit(struct mm_struct * mm)3440 long ksm_process_profit(struct mm_struct *mm)
3441 {
3442 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3443 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3444 }
3445 #endif /* CONFIG_PROC_FS */
3446
3447 #ifdef CONFIG_SYSFS
3448 /*
3449 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3450 */
3451
3452 #define KSM_ATTR_RO(_name) \
3453 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3454 #define KSM_ATTR(_name) \
3455 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3456
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3457 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3458 struct kobj_attribute *attr, char *buf)
3459 {
3460 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3461 }
3462
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3463 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3464 struct kobj_attribute *attr,
3465 const char *buf, size_t count)
3466 {
3467 unsigned int msecs;
3468 int err;
3469
3470 err = kstrtouint(buf, 10, &msecs);
3471 if (err)
3472 return -EINVAL;
3473
3474 ksm_thread_sleep_millisecs = msecs;
3475 wake_up_interruptible(&ksm_iter_wait);
3476
3477 return count;
3478 }
3479 KSM_ATTR(sleep_millisecs);
3480
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3481 static ssize_t pages_to_scan_show(struct kobject *kobj,
3482 struct kobj_attribute *attr, char *buf)
3483 {
3484 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3485 }
3486
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3487 static ssize_t pages_to_scan_store(struct kobject *kobj,
3488 struct kobj_attribute *attr,
3489 const char *buf, size_t count)
3490 {
3491 unsigned int nr_pages;
3492 int err;
3493
3494 if (ksm_advisor != KSM_ADVISOR_NONE)
3495 return -EINVAL;
3496
3497 err = kstrtouint(buf, 10, &nr_pages);
3498 if (err)
3499 return -EINVAL;
3500
3501 ksm_thread_pages_to_scan = nr_pages;
3502
3503 return count;
3504 }
3505 KSM_ATTR(pages_to_scan);
3506
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3507 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3508 char *buf)
3509 {
3510 return sysfs_emit(buf, "%lu\n", ksm_run);
3511 }
3512
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3513 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3514 const char *buf, size_t count)
3515 {
3516 unsigned int flags;
3517 int err;
3518
3519 err = kstrtouint(buf, 10, &flags);
3520 if (err)
3521 return -EINVAL;
3522 if (flags > KSM_RUN_UNMERGE)
3523 return -EINVAL;
3524
3525 /*
3526 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3527 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3528 * breaking COW to free the pages_shared (but leaves mm_slots
3529 * on the list for when ksmd may be set running again).
3530 */
3531
3532 mutex_lock(&ksm_thread_mutex);
3533 wait_while_offlining();
3534 if (ksm_run != flags) {
3535 ksm_run = flags;
3536 if (flags & KSM_RUN_UNMERGE) {
3537 set_current_oom_origin();
3538 err = unmerge_and_remove_all_rmap_items();
3539 clear_current_oom_origin();
3540 if (err) {
3541 ksm_run = KSM_RUN_STOP;
3542 count = err;
3543 }
3544 }
3545 }
3546 mutex_unlock(&ksm_thread_mutex);
3547
3548 if (flags & KSM_RUN_MERGE)
3549 wake_up_interruptible(&ksm_thread_wait);
3550
3551 return count;
3552 }
3553 KSM_ATTR(run);
3554
3555 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3556 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3557 struct kobj_attribute *attr, char *buf)
3558 {
3559 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3560 }
3561
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3562 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3563 struct kobj_attribute *attr,
3564 const char *buf, size_t count)
3565 {
3566 int err;
3567 unsigned long knob;
3568
3569 err = kstrtoul(buf, 10, &knob);
3570 if (err)
3571 return err;
3572 if (knob > 1)
3573 return -EINVAL;
3574
3575 mutex_lock(&ksm_thread_mutex);
3576 wait_while_offlining();
3577 if (ksm_merge_across_nodes != knob) {
3578 if (ksm_pages_shared || remove_all_stable_nodes())
3579 err = -EBUSY;
3580 else if (root_stable_tree == one_stable_tree) {
3581 struct rb_root *buf;
3582 /*
3583 * This is the first time that we switch away from the
3584 * default of merging across nodes: must now allocate
3585 * a buffer to hold as many roots as may be needed.
3586 * Allocate stable and unstable together:
3587 * MAXSMP NODES_SHIFT 10 will use 16kB.
3588 */
3589 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3590 GFP_KERNEL);
3591 /* Let us assume that RB_ROOT is NULL is zero */
3592 if (!buf)
3593 err = -ENOMEM;
3594 else {
3595 root_stable_tree = buf;
3596 root_unstable_tree = buf + nr_node_ids;
3597 /* Stable tree is empty but not the unstable */
3598 root_unstable_tree[0] = one_unstable_tree[0];
3599 }
3600 }
3601 if (!err) {
3602 ksm_merge_across_nodes = knob;
3603 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3604 }
3605 }
3606 mutex_unlock(&ksm_thread_mutex);
3607
3608 return err ? err : count;
3609 }
3610 KSM_ATTR(merge_across_nodes);
3611 #endif
3612
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3613 static ssize_t use_zero_pages_show(struct kobject *kobj,
3614 struct kobj_attribute *attr, char *buf)
3615 {
3616 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3617 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3618 static ssize_t use_zero_pages_store(struct kobject *kobj,
3619 struct kobj_attribute *attr,
3620 const char *buf, size_t count)
3621 {
3622 int err;
3623 bool value;
3624
3625 err = kstrtobool(buf, &value);
3626 if (err)
3627 return -EINVAL;
3628
3629 ksm_use_zero_pages = value;
3630
3631 return count;
3632 }
3633 KSM_ATTR(use_zero_pages);
3634
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3635 static ssize_t max_page_sharing_show(struct kobject *kobj,
3636 struct kobj_attribute *attr, char *buf)
3637 {
3638 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3639 }
3640
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3641 static ssize_t max_page_sharing_store(struct kobject *kobj,
3642 struct kobj_attribute *attr,
3643 const char *buf, size_t count)
3644 {
3645 int err;
3646 int knob;
3647
3648 err = kstrtoint(buf, 10, &knob);
3649 if (err)
3650 return err;
3651 /*
3652 * When a KSM page is created it is shared by 2 mappings. This
3653 * being a signed comparison, it implicitly verifies it's not
3654 * negative.
3655 */
3656 if (knob < 2)
3657 return -EINVAL;
3658
3659 if (READ_ONCE(ksm_max_page_sharing) == knob)
3660 return count;
3661
3662 mutex_lock(&ksm_thread_mutex);
3663 wait_while_offlining();
3664 if (ksm_max_page_sharing != knob) {
3665 if (ksm_pages_shared || remove_all_stable_nodes())
3666 err = -EBUSY;
3667 else
3668 ksm_max_page_sharing = knob;
3669 }
3670 mutex_unlock(&ksm_thread_mutex);
3671
3672 return err ? err : count;
3673 }
3674 KSM_ATTR(max_page_sharing);
3675
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3676 static ssize_t pages_scanned_show(struct kobject *kobj,
3677 struct kobj_attribute *attr, char *buf)
3678 {
3679 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3680 }
3681 KSM_ATTR_RO(pages_scanned);
3682
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3683 static ssize_t pages_shared_show(struct kobject *kobj,
3684 struct kobj_attribute *attr, char *buf)
3685 {
3686 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3687 }
3688 KSM_ATTR_RO(pages_shared);
3689
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3690 static ssize_t pages_sharing_show(struct kobject *kobj,
3691 struct kobj_attribute *attr, char *buf)
3692 {
3693 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3694 }
3695 KSM_ATTR_RO(pages_sharing);
3696
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3697 static ssize_t pages_unshared_show(struct kobject *kobj,
3698 struct kobj_attribute *attr, char *buf)
3699 {
3700 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3701 }
3702 KSM_ATTR_RO(pages_unshared);
3703
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3704 static ssize_t pages_volatile_show(struct kobject *kobj,
3705 struct kobj_attribute *attr, char *buf)
3706 {
3707 long ksm_pages_volatile;
3708
3709 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3710 - ksm_pages_sharing - ksm_pages_unshared;
3711 /*
3712 * It was not worth any locking to calculate that statistic,
3713 * but it might therefore sometimes be negative: conceal that.
3714 */
3715 if (ksm_pages_volatile < 0)
3716 ksm_pages_volatile = 0;
3717 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3718 }
3719 KSM_ATTR_RO(pages_volatile);
3720
pages_skipped_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3721 static ssize_t pages_skipped_show(struct kobject *kobj,
3722 struct kobj_attribute *attr, char *buf)
3723 {
3724 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3725 }
3726 KSM_ATTR_RO(pages_skipped);
3727
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3728 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3729 struct kobj_attribute *attr, char *buf)
3730 {
3731 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3732 }
3733 KSM_ATTR_RO(ksm_zero_pages);
3734
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3735 static ssize_t general_profit_show(struct kobject *kobj,
3736 struct kobj_attribute *attr, char *buf)
3737 {
3738 long general_profit;
3739
3740 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3741 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3742
3743 return sysfs_emit(buf, "%ld\n", general_profit);
3744 }
3745 KSM_ATTR_RO(general_profit);
3746
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3747 static ssize_t stable_node_dups_show(struct kobject *kobj,
3748 struct kobj_attribute *attr, char *buf)
3749 {
3750 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3751 }
3752 KSM_ATTR_RO(stable_node_dups);
3753
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3754 static ssize_t stable_node_chains_show(struct kobject *kobj,
3755 struct kobj_attribute *attr, char *buf)
3756 {
3757 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3758 }
3759 KSM_ATTR_RO(stable_node_chains);
3760
3761 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3762 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3763 struct kobj_attribute *attr,
3764 char *buf)
3765 {
3766 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3767 }
3768
3769 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3770 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3771 struct kobj_attribute *attr,
3772 const char *buf, size_t count)
3773 {
3774 unsigned int msecs;
3775 int err;
3776
3777 err = kstrtouint(buf, 10, &msecs);
3778 if (err)
3779 return -EINVAL;
3780
3781 ksm_stable_node_chains_prune_millisecs = msecs;
3782
3783 return count;
3784 }
3785 KSM_ATTR(stable_node_chains_prune_millisecs);
3786
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3787 static ssize_t full_scans_show(struct kobject *kobj,
3788 struct kobj_attribute *attr, char *buf)
3789 {
3790 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3791 }
3792 KSM_ATTR_RO(full_scans);
3793
smart_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3794 static ssize_t smart_scan_show(struct kobject *kobj,
3795 struct kobj_attribute *attr, char *buf)
3796 {
3797 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3798 }
3799
smart_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3800 static ssize_t smart_scan_store(struct kobject *kobj,
3801 struct kobj_attribute *attr,
3802 const char *buf, size_t count)
3803 {
3804 int err;
3805 bool value;
3806
3807 err = kstrtobool(buf, &value);
3808 if (err)
3809 return -EINVAL;
3810
3811 ksm_smart_scan = value;
3812 return count;
3813 }
3814 KSM_ATTR(smart_scan);
3815
advisor_mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3816 static ssize_t advisor_mode_show(struct kobject *kobj,
3817 struct kobj_attribute *attr, char *buf)
3818 {
3819 const char *output;
3820
3821 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3822 output = "none [scan-time]";
3823 else
3824 output = "[none] scan-time";
3825
3826 return sysfs_emit(buf, "%s\n", output);
3827 }
3828
advisor_mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3829 static ssize_t advisor_mode_store(struct kobject *kobj,
3830 struct kobj_attribute *attr, const char *buf,
3831 size_t count)
3832 {
3833 enum ksm_advisor_type curr_advisor = ksm_advisor;
3834
3835 if (sysfs_streq("scan-time", buf))
3836 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3837 else if (sysfs_streq("none", buf))
3838 ksm_advisor = KSM_ADVISOR_NONE;
3839 else
3840 return -EINVAL;
3841
3842 /* Set advisor default values */
3843 if (curr_advisor != ksm_advisor)
3844 set_advisor_defaults();
3845
3846 return count;
3847 }
3848 KSM_ATTR(advisor_mode);
3849
advisor_max_cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3850 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3851 struct kobj_attribute *attr, char *buf)
3852 {
3853 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3854 }
3855
advisor_max_cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3856 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3857 struct kobj_attribute *attr,
3858 const char *buf, size_t count)
3859 {
3860 int err;
3861 unsigned long value;
3862
3863 err = kstrtoul(buf, 10, &value);
3864 if (err)
3865 return -EINVAL;
3866
3867 ksm_advisor_max_cpu = value;
3868 return count;
3869 }
3870 KSM_ATTR(advisor_max_cpu);
3871
advisor_min_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3872 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3873 struct kobj_attribute *attr, char *buf)
3874 {
3875 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3876 }
3877
advisor_min_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3878 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3879 struct kobj_attribute *attr,
3880 const char *buf, size_t count)
3881 {
3882 int err;
3883 unsigned long value;
3884
3885 err = kstrtoul(buf, 10, &value);
3886 if (err)
3887 return -EINVAL;
3888
3889 ksm_advisor_min_pages_to_scan = value;
3890 return count;
3891 }
3892 KSM_ATTR(advisor_min_pages_to_scan);
3893
advisor_max_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3894 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3895 struct kobj_attribute *attr, char *buf)
3896 {
3897 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3898 }
3899
advisor_max_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3900 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3901 struct kobj_attribute *attr,
3902 const char *buf, size_t count)
3903 {
3904 int err;
3905 unsigned long value;
3906
3907 err = kstrtoul(buf, 10, &value);
3908 if (err)
3909 return -EINVAL;
3910
3911 ksm_advisor_max_pages_to_scan = value;
3912 return count;
3913 }
3914 KSM_ATTR(advisor_max_pages_to_scan);
3915
advisor_target_scan_time_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3916 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3917 struct kobj_attribute *attr, char *buf)
3918 {
3919 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3920 }
3921
advisor_target_scan_time_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3922 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3923 struct kobj_attribute *attr,
3924 const char *buf, size_t count)
3925 {
3926 int err;
3927 unsigned long value;
3928
3929 err = kstrtoul(buf, 10, &value);
3930 if (err)
3931 return -EINVAL;
3932 if (value < 1)
3933 return -EINVAL;
3934
3935 ksm_advisor_target_scan_time = value;
3936 return count;
3937 }
3938 KSM_ATTR(advisor_target_scan_time);
3939
3940 static struct attribute *ksm_attrs[] = {
3941 &sleep_millisecs_attr.attr,
3942 &pages_to_scan_attr.attr,
3943 &run_attr.attr,
3944 &pages_scanned_attr.attr,
3945 &pages_shared_attr.attr,
3946 &pages_sharing_attr.attr,
3947 &pages_unshared_attr.attr,
3948 &pages_volatile_attr.attr,
3949 &pages_skipped_attr.attr,
3950 &ksm_zero_pages_attr.attr,
3951 &full_scans_attr.attr,
3952 #ifdef CONFIG_NUMA
3953 &merge_across_nodes_attr.attr,
3954 #endif
3955 &max_page_sharing_attr.attr,
3956 &stable_node_chains_attr.attr,
3957 &stable_node_dups_attr.attr,
3958 &stable_node_chains_prune_millisecs_attr.attr,
3959 &use_zero_pages_attr.attr,
3960 &general_profit_attr.attr,
3961 &smart_scan_attr.attr,
3962 &advisor_mode_attr.attr,
3963 &advisor_max_cpu_attr.attr,
3964 &advisor_min_pages_to_scan_attr.attr,
3965 &advisor_max_pages_to_scan_attr.attr,
3966 &advisor_target_scan_time_attr.attr,
3967 NULL,
3968 };
3969
3970 static const struct attribute_group ksm_attr_group = {
3971 .attrs = ksm_attrs,
3972 .name = "ksm",
3973 };
3974 #endif /* CONFIG_SYSFS */
3975
ksm_init(void)3976 static int __init ksm_init(void)
3977 {
3978 struct task_struct *ksm_thread;
3979 int err;
3980
3981 /* The correct value depends on page size and endianness */
3982 zero_checksum = calc_checksum(ZERO_PAGE(0));
3983 /* Default to false for backwards compatibility */
3984 ksm_use_zero_pages = false;
3985
3986 err = ksm_slab_init();
3987 if (err)
3988 goto out;
3989
3990 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3991 if (IS_ERR(ksm_thread)) {
3992 pr_err("ksm: creating kthread failed\n");
3993 err = PTR_ERR(ksm_thread);
3994 goto out_free;
3995 }
3996
3997 #ifdef CONFIG_SYSFS
3998 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3999 if (err) {
4000 pr_err("ksm: register sysfs failed\n");
4001 kthread_stop(ksm_thread);
4002 goto out_free;
4003 }
4004 #else
4005 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
4006
4007 #endif /* CONFIG_SYSFS */
4008
4009 #ifdef CONFIG_MEMORY_HOTREMOVE
4010 /* There is no significance to this priority 100 */
4011 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
4012 #endif
4013 return 0;
4014
4015 out_free:
4016 ksm_slab_free();
4017 out:
4018 return err;
4019 }
4020 subsys_initcall(ksm_init);
4021