xref: /linux/kernel/time/timekeeping.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31 
32 #define TK_CLEAR_NTP		(1 << 0)
33 #define TK_CLOCK_WAS_SET	(1 << 1)
34 
35 #define TK_UPDATE_ALL		(TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
36 
37 enum timekeeping_adv_mode {
38 	/* Update timekeeper when a tick has passed */
39 	TK_ADV_TICK,
40 
41 	/* Update timekeeper on a direct frequency change */
42 	TK_ADV_FREQ
43 };
44 
45 /*
46  * The most important data for readout fits into a single 64 byte
47  * cache line.
48  */
49 struct tk_data {
50 	seqcount_raw_spinlock_t	seq;
51 	struct timekeeper	timekeeper;
52 	struct timekeeper	shadow_timekeeper;
53 	raw_spinlock_t		lock;
54 } ____cacheline_aligned;
55 
56 static struct tk_data tk_core;
57 
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended;
60 
61 /**
62  * struct tk_fast - NMI safe timekeeper
63  * @seq:	Sequence counter for protecting updates. The lowest bit
64  *		is the index for the tk_read_base array
65  * @base:	tk_read_base array. Access is indexed by the lowest bit of
66  *		@seq.
67  *
68  * See @update_fast_timekeeper() below.
69  */
70 struct tk_fast {
71 	seqcount_latch_t	seq;
72 	struct tk_read_base	base[2];
73 };
74 
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
77 
dummy_clock_read(struct clocksource * cs)78 static u64 dummy_clock_read(struct clocksource *cs)
79 {
80 	if (timekeeping_suspended)
81 		return cycles_at_suspend;
82 	return local_clock();
83 }
84 
85 static struct clocksource dummy_clock = {
86 	.read = dummy_clock_read,
87 };
88 
89 /*
90  * Boot time initialization which allows local_clock() to be utilized
91  * during early boot when clocksources are not available. local_clock()
92  * returns nanoseconds already so no conversion is required, hence mult=1
93  * and shift=0. When the first proper clocksource is installed then
94  * the fast time keepers are updated with the correct values.
95  */
96 #define FAST_TK_INIT						\
97 	{							\
98 		.clock		= &dummy_clock,			\
99 		.mask		= CLOCKSOURCE_MASK(64),		\
100 		.mult		= 1,				\
101 		.shift		= 0,				\
102 	}
103 
104 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 	.base[0] = FAST_TK_INIT,
107 	.base[1] = FAST_TK_INIT,
108 };
109 
110 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
111 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 	.base[0] = FAST_TK_INIT,
113 	.base[1] = FAST_TK_INIT,
114 };
115 
timekeeper_lock_irqsave(void)116 unsigned long timekeeper_lock_irqsave(void)
117 {
118 	unsigned long flags;
119 
120 	raw_spin_lock_irqsave(&tk_core.lock, flags);
121 	return flags;
122 }
123 
timekeeper_unlock_irqrestore(unsigned long flags)124 void timekeeper_unlock_irqrestore(unsigned long flags)
125 {
126 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
127 }
128 
129 /*
130  * Multigrain timestamps require tracking the latest fine-grained timestamp
131  * that has been issued, and never returning a coarse-grained timestamp that is
132  * earlier than that value.
133  *
134  * mg_floor represents the latest fine-grained time that has been handed out as
135  * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136  * converted to a realtime clock value on an as-needed basis.
137  *
138  * Maintaining mg_floor ensures the multigrain interfaces never issue a
139  * timestamp earlier than one that has been previously issued.
140  *
141  * The exception to this rule is when there is a backward realtime clock jump. If
142  * such an event occurs, a timestamp can appear to be earlier than a previous one.
143  */
144 static __cacheline_aligned_in_smp atomic64_t mg_floor;
145 
tk_normalize_xtime(struct timekeeper * tk)146 static inline void tk_normalize_xtime(struct timekeeper *tk)
147 {
148 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
149 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
150 		tk->xtime_sec++;
151 	}
152 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
153 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
154 		tk->raw_sec++;
155 	}
156 }
157 
tk_xtime(const struct timekeeper * tk)158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
159 {
160 	struct timespec64 ts;
161 
162 	ts.tv_sec = tk->xtime_sec;
163 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
164 	return ts;
165 }
166 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
168 {
169 	tk->xtime_sec = ts->tv_sec;
170 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
171 }
172 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
174 {
175 	tk->xtime_sec += ts->tv_sec;
176 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
177 	tk_normalize_xtime(tk);
178 }
179 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
181 {
182 	struct timespec64 tmp;
183 
184 	/*
185 	 * Verify consistency of: offset_real = -wall_to_monotonic
186 	 * before modifying anything
187 	 */
188 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
189 					-tk->wall_to_monotonic.tv_nsec);
190 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
191 	tk->wall_to_monotonic = wtm;
192 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
193 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
194 	WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
195 	WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
196 }
197 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
199 {
200 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
201 	WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
202 	/*
203 	 * Timespec representation for VDSO update to avoid 64bit division
204 	 * on every update.
205 	 */
206 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
207 }
208 
209 /*
210  * tk_clock_read - atomic clocksource read() helper
211  *
212  * This helper is necessary to use in the read paths because, while the
213  * seqcount ensures we don't return a bad value while structures are updated,
214  * it doesn't protect from potential crashes. There is the possibility that
215  * the tkr's clocksource may change between the read reference, and the
216  * clock reference passed to the read function.  This can cause crashes if
217  * the wrong clocksource is passed to the wrong read function.
218  * This isn't necessary to use when holding the tk_core.lock or doing
219  * a read of the fast-timekeeper tkrs (which is protected by its own locking
220  * and update logic).
221  */
tk_clock_read(const struct tk_read_base * tkr)222 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
223 {
224 	struct clocksource *clock = READ_ONCE(tkr->clock);
225 
226 	return clock->read(clock);
227 }
228 
229 /**
230  * tk_setup_internals - Set up internals to use clocksource clock.
231  *
232  * @tk:		The target timekeeper to setup.
233  * @clock:		Pointer to clocksource.
234  *
235  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236  * pair and interval request.
237  *
238  * Unless you're the timekeeping code, you should not be using this!
239  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
241 {
242 	u64 interval;
243 	u64 tmp, ntpinterval;
244 	struct clocksource *old_clock;
245 
246 	++tk->cs_was_changed_seq;
247 	old_clock = tk->tkr_mono.clock;
248 	tk->tkr_mono.clock = clock;
249 	tk->tkr_mono.mask = clock->mask;
250 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
251 
252 	tk->tkr_raw.clock = clock;
253 	tk->tkr_raw.mask = clock->mask;
254 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
255 
256 	/* Do the ns -> cycle conversion first, using original mult */
257 	tmp = NTP_INTERVAL_LENGTH;
258 	tmp <<= clock->shift;
259 	ntpinterval = tmp;
260 	tmp += clock->mult/2;
261 	do_div(tmp, clock->mult);
262 	if (tmp == 0)
263 		tmp = 1;
264 
265 	interval = (u64) tmp;
266 	tk->cycle_interval = interval;
267 
268 	/* Go back from cycles -> shifted ns */
269 	tk->xtime_interval = interval * clock->mult;
270 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
271 	tk->raw_interval = interval * clock->mult;
272 
273 	 /* if changing clocks, convert xtime_nsec shift units */
274 	if (old_clock) {
275 		int shift_change = clock->shift - old_clock->shift;
276 		if (shift_change < 0) {
277 			tk->tkr_mono.xtime_nsec >>= -shift_change;
278 			tk->tkr_raw.xtime_nsec >>= -shift_change;
279 		} else {
280 			tk->tkr_mono.xtime_nsec <<= shift_change;
281 			tk->tkr_raw.xtime_nsec <<= shift_change;
282 		}
283 	}
284 
285 	tk->tkr_mono.shift = clock->shift;
286 	tk->tkr_raw.shift = clock->shift;
287 
288 	tk->ntp_error = 0;
289 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
290 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
291 
292 	/*
293 	 * The timekeeper keeps its own mult values for the currently
294 	 * active clocksource. These value will be adjusted via NTP
295 	 * to counteract clock drifting.
296 	 */
297 	tk->tkr_mono.mult = clock->mult;
298 	tk->tkr_raw.mult = clock->mult;
299 	tk->ntp_err_mult = 0;
300 	tk->skip_second_overflow = 0;
301 }
302 
303 /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
305 {
306 	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
307 }
308 
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
310 {
311 	/* Calculate the delta since the last update_wall_time() */
312 	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
313 
314 	/*
315 	 * This detects both negative motion and the case where the delta
316 	 * overflows the multiplication with tkr->mult.
317 	 */
318 	if (unlikely(delta > tkr->clock->max_cycles)) {
319 		/*
320 		 * Handle clocksource inconsistency between CPUs to prevent
321 		 * time from going backwards by checking for the MSB of the
322 		 * mask being set in the delta.
323 		 */
324 		if (delta & ~(mask >> 1))
325 			return tkr->xtime_nsec >> tkr->shift;
326 
327 		return delta_to_ns_safe(tkr, delta);
328 	}
329 
330 	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
331 }
332 
timekeeping_get_ns(const struct tk_read_base * tkr)333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
334 {
335 	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
336 }
337 
338 /**
339  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340  * @tkr: Timekeeping readout base from which we take the update
341  * @tkf: Pointer to NMI safe timekeeper
342  *
343  * We want to use this from any context including NMI and tracing /
344  * instrumenting the timekeeping code itself.
345  *
346  * Employ the latch technique; see @write_seqcount_latch.
347  *
348  * So if a NMI hits the update of base[0] then it will use base[1]
349  * which is still consistent. In the worst case this can result is a
350  * slightly wrong timestamp (a few nanoseconds). See
351  * @ktime_get_mono_fast_ns.
352  */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)353 static void update_fast_timekeeper(const struct tk_read_base *tkr,
354 				   struct tk_fast *tkf)
355 {
356 	struct tk_read_base *base = tkf->base;
357 
358 	/* Force readers off to base[1] */
359 	write_seqcount_latch_begin(&tkf->seq);
360 
361 	/* Update base[0] */
362 	memcpy(base, tkr, sizeof(*base));
363 
364 	/* Force readers back to base[0] */
365 	write_seqcount_latch(&tkf->seq);
366 
367 	/* Update base[1] */
368 	memcpy(base + 1, base, sizeof(*base));
369 
370 	write_seqcount_latch_end(&tkf->seq);
371 }
372 
__ktime_get_fast_ns(struct tk_fast * tkf)373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
374 {
375 	struct tk_read_base *tkr;
376 	unsigned int seq;
377 	u64 now;
378 
379 	do {
380 		seq = read_seqcount_latch(&tkf->seq);
381 		tkr = tkf->base + (seq & 0x01);
382 		now = ktime_to_ns(tkr->base);
383 		now += timekeeping_get_ns(tkr);
384 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
385 
386 	return now;
387 }
388 
389 /**
390  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
391  *
392  * This timestamp is not guaranteed to be monotonic across an update.
393  * The timestamp is calculated by:
394  *
395  *	now = base_mono + clock_delta * slope
396  *
397  * So if the update lowers the slope, readers who are forced to the
398  * not yet updated second array are still using the old steeper slope.
399  *
400  * tmono
401  * ^
402  * |    o  n
403  * |   o n
404  * |  u
405  * | o
406  * |o
407  * |12345678---> reader order
408  *
409  * o = old slope
410  * u = update
411  * n = new slope
412  *
413  * So reader 6 will observe time going backwards versus reader 5.
414  *
415  * While other CPUs are likely to be able to observe that, the only way
416  * for a CPU local observation is when an NMI hits in the middle of
417  * the update. Timestamps taken from that NMI context might be ahead
418  * of the following timestamps. Callers need to be aware of that and
419  * deal with it.
420  */
ktime_get_mono_fast_ns(void)421 u64 notrace ktime_get_mono_fast_ns(void)
422 {
423 	return __ktime_get_fast_ns(&tk_fast_mono);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
426 
427 /**
428  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
429  *
430  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431  * conversion factor is not affected by NTP/PTP correction.
432  */
ktime_get_raw_fast_ns(void)433 u64 notrace ktime_get_raw_fast_ns(void)
434 {
435 	return __ktime_get_fast_ns(&tk_fast_raw);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
438 
439 /**
440  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
441  *
442  * To keep it NMI safe since we're accessing from tracing, we're not using a
443  * separate timekeeper with updates to monotonic clock and boot offset
444  * protected with seqcounts. This has the following minor side effects:
445  *
446  * (1) Its possible that a timestamp be taken after the boot offset is updated
447  * but before the timekeeper is updated. If this happens, the new boot offset
448  * is added to the old timekeeping making the clock appear to update slightly
449  * earlier:
450  *    CPU 0                                        CPU 1
451  *    timekeeping_inject_sleeptime64()
452  *    __timekeeping_inject_sleeptime(tk, delta);
453  *                                                 timestamp();
454  *    timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
455  *
456  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457  * partially updated.  Since the tk->offs_boot update is a rare event, this
458  * should be a rare occurrence which postprocessing should be able to handle.
459  *
460  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
461  * apply as well.
462  */
ktime_get_boot_fast_ns(void)463 u64 notrace ktime_get_boot_fast_ns(void)
464 {
465 	struct timekeeper *tk = &tk_core.timekeeper;
466 
467 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
468 }
469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
470 
471 /**
472  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
473  *
474  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475  * mono time and the TAI offset are not read atomically which may yield wrong
476  * readouts. However, an update of the TAI offset is an rare event e.g., caused
477  * by settime or adjtimex with an offset. The user of this function has to deal
478  * with the possibility of wrong timestamps in post processing.
479  */
ktime_get_tai_fast_ns(void)480 u64 notrace ktime_get_tai_fast_ns(void)
481 {
482 	struct timekeeper *tk = &tk_core.timekeeper;
483 
484 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
485 }
486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
487 
488 /**
489  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
490  *
491  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
492  */
ktime_get_real_fast_ns(void)493 u64 ktime_get_real_fast_ns(void)
494 {
495 	struct tk_fast *tkf = &tk_fast_mono;
496 	struct tk_read_base *tkr;
497 	u64 baser, delta;
498 	unsigned int seq;
499 
500 	do {
501 		seq = raw_read_seqcount_latch(&tkf->seq);
502 		tkr = tkf->base + (seq & 0x01);
503 		baser = ktime_to_ns(tkr->base_real);
504 		delta = timekeeping_get_ns(tkr);
505 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
506 
507 	return baser + delta;
508 }
509 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
510 
511 /**
512  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
513  * @tk: Timekeeper to snapshot.
514  *
515  * It generally is unsafe to access the clocksource after timekeeping has been
516  * suspended, so take a snapshot of the readout base of @tk and use it as the
517  * fast timekeeper's readout base while suspended.  It will return the same
518  * number of cycles every time until timekeeping is resumed at which time the
519  * proper readout base for the fast timekeeper will be restored automatically.
520  */
halt_fast_timekeeper(const struct timekeeper * tk)521 static void halt_fast_timekeeper(const struct timekeeper *tk)
522 {
523 	static struct tk_read_base tkr_dummy;
524 	const struct tk_read_base *tkr = &tk->tkr_mono;
525 
526 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
527 	cycles_at_suspend = tk_clock_read(tkr);
528 	tkr_dummy.clock = &dummy_clock;
529 	tkr_dummy.base_real = tkr->base + tk->offs_real;
530 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
531 
532 	tkr = &tk->tkr_raw;
533 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
534 	tkr_dummy.clock = &dummy_clock;
535 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
536 }
537 
538 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
539 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)540 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
541 {
542 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
543 }
544 
545 /**
546  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
547  * @nb: Pointer to the notifier block to register
548  */
pvclock_gtod_register_notifier(struct notifier_block * nb)549 int pvclock_gtod_register_notifier(struct notifier_block *nb)
550 {
551 	struct timekeeper *tk = &tk_core.timekeeper;
552 	int ret;
553 
554 	guard(raw_spinlock_irqsave)(&tk_core.lock);
555 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
556 	update_pvclock_gtod(tk, true);
557 
558 	return ret;
559 }
560 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
561 
562 /**
563  * pvclock_gtod_unregister_notifier - unregister a pvclock
564  * timedata update listener
565  * @nb: Pointer to the notifier block to unregister
566  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)567 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
568 {
569 	guard(raw_spinlock_irqsave)(&tk_core.lock);
570 	return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
571 }
572 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
573 
574 /*
575  * tk_update_leap_state - helper to update the next_leap_ktime
576  */
tk_update_leap_state(struct timekeeper * tk)577 static inline void tk_update_leap_state(struct timekeeper *tk)
578 {
579 	tk->next_leap_ktime = ntp_get_next_leap();
580 	if (tk->next_leap_ktime != KTIME_MAX)
581 		/* Convert to monotonic time */
582 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
583 }
584 
585 /*
586  * Leap state update for both shadow and the real timekeeper
587  * Separate to spare a full memcpy() of the timekeeper.
588  */
tk_update_leap_state_all(struct tk_data * tkd)589 static void tk_update_leap_state_all(struct tk_data *tkd)
590 {
591 	write_seqcount_begin(&tkd->seq);
592 	tk_update_leap_state(&tkd->shadow_timekeeper);
593 	tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
594 	write_seqcount_end(&tkd->seq);
595 }
596 
597 /*
598  * Update the ktime_t based scalar nsec members of the timekeeper
599  */
tk_update_ktime_data(struct timekeeper * tk)600 static inline void tk_update_ktime_data(struct timekeeper *tk)
601 {
602 	u64 seconds;
603 	u32 nsec;
604 
605 	/*
606 	 * The xtime based monotonic readout is:
607 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
608 	 * The ktime based monotonic readout is:
609 	 *	nsec = base_mono + now();
610 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
611 	 */
612 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
613 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
614 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
615 
616 	/*
617 	 * The sum of the nanoseconds portions of xtime and
618 	 * wall_to_monotonic can be greater/equal one second. Take
619 	 * this into account before updating tk->ktime_sec.
620 	 */
621 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
622 	if (nsec >= NSEC_PER_SEC)
623 		seconds++;
624 	tk->ktime_sec = seconds;
625 
626 	/* Update the monotonic raw base */
627 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
628 }
629 
630 /*
631  * Restore the shadow timekeeper from the real timekeeper.
632  */
timekeeping_restore_shadow(struct tk_data * tkd)633 static void timekeeping_restore_shadow(struct tk_data *tkd)
634 {
635 	lockdep_assert_held(&tkd->lock);
636 	memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
637 }
638 
timekeeping_update_from_shadow(struct tk_data * tkd,unsigned int action)639 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
640 {
641 	struct timekeeper *tk = &tk_core.shadow_timekeeper;
642 
643 	lockdep_assert_held(&tkd->lock);
644 
645 	/*
646 	 * Block out readers before running the updates below because that
647 	 * updates VDSO and other time related infrastructure. Not blocking
648 	 * the readers might let a reader see time going backwards when
649 	 * reading from the VDSO after the VDSO update and then reading in
650 	 * the kernel from the timekeeper before that got updated.
651 	 */
652 	write_seqcount_begin(&tkd->seq);
653 
654 	if (action & TK_CLEAR_NTP) {
655 		tk->ntp_error = 0;
656 		ntp_clear();
657 	}
658 
659 	tk_update_leap_state(tk);
660 	tk_update_ktime_data(tk);
661 
662 	update_vsyscall(tk);
663 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
664 
665 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
666 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
667 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
668 
669 	if (action & TK_CLOCK_WAS_SET)
670 		tk->clock_was_set_seq++;
671 
672 	/*
673 	 * Update the real timekeeper.
674 	 *
675 	 * We could avoid this memcpy() by switching pointers, but that has
676 	 * the downside that the reader side does not longer benefit from
677 	 * the cacheline optimized data layout of the timekeeper and requires
678 	 * another indirection.
679 	 */
680 	memcpy(&tkd->timekeeper, tk, sizeof(*tk));
681 	write_seqcount_end(&tkd->seq);
682 }
683 
684 /**
685  * timekeeping_forward - update clock to given cycle now value
686  * @tk:		Pointer to the timekeeper to update
687  * @cycle_now:  Current clocksource read value
688  *
689  * Forward the current clock to update its state since the last call to
690  * update_wall_time(). This is useful before significant clock changes,
691  * as it avoids having to deal with this time offset explicitly.
692  */
timekeeping_forward(struct timekeeper * tk,u64 cycle_now)693 static void timekeeping_forward(struct timekeeper *tk, u64 cycle_now)
694 {
695 	u64 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
696 				      tk->tkr_mono.clock->max_raw_delta);
697 
698 	tk->tkr_mono.cycle_last = cycle_now;
699 	tk->tkr_raw.cycle_last  = cycle_now;
700 
701 	while (delta > 0) {
702 		u64 max = tk->tkr_mono.clock->max_cycles;
703 		u64 incr = delta < max ? delta : max;
704 
705 		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
706 		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
707 		tk_normalize_xtime(tk);
708 		delta -= incr;
709 	}
710 }
711 
712 /**
713  * timekeeping_forward_now - update clock to the current time
714  * @tk:		Pointer to the timekeeper to update
715  *
716  * Forward the current clock to update its state since the last call to
717  * update_wall_time(). This is useful before significant clock changes,
718  * as it avoids having to deal with this time offset explicitly.
719  */
timekeeping_forward_now(struct timekeeper * tk)720 static void timekeeping_forward_now(struct timekeeper *tk)
721 {
722 	u64 cycle_now = tk_clock_read(&tk->tkr_mono);
723 
724 	timekeeping_forward(tk, cycle_now);
725 }
726 
727 /**
728  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
729  * @ts:		pointer to the timespec to be set
730  *
731  * Returns the time of day in a timespec64 (WARN if suspended).
732  */
ktime_get_real_ts64(struct timespec64 * ts)733 void ktime_get_real_ts64(struct timespec64 *ts)
734 {
735 	struct timekeeper *tk = &tk_core.timekeeper;
736 	unsigned int seq;
737 	u64 nsecs;
738 
739 	WARN_ON(timekeeping_suspended);
740 
741 	do {
742 		seq = read_seqcount_begin(&tk_core.seq);
743 
744 		ts->tv_sec = tk->xtime_sec;
745 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
746 
747 	} while (read_seqcount_retry(&tk_core.seq, seq));
748 
749 	ts->tv_nsec = 0;
750 	timespec64_add_ns(ts, nsecs);
751 }
752 EXPORT_SYMBOL(ktime_get_real_ts64);
753 
ktime_get(void)754 ktime_t ktime_get(void)
755 {
756 	struct timekeeper *tk = &tk_core.timekeeper;
757 	unsigned int seq;
758 	ktime_t base;
759 	u64 nsecs;
760 
761 	WARN_ON(timekeeping_suspended);
762 
763 	do {
764 		seq = read_seqcount_begin(&tk_core.seq);
765 		base = tk->tkr_mono.base;
766 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
767 
768 	} while (read_seqcount_retry(&tk_core.seq, seq));
769 
770 	return ktime_add_ns(base, nsecs);
771 }
772 EXPORT_SYMBOL_GPL(ktime_get);
773 
ktime_get_resolution_ns(void)774 u32 ktime_get_resolution_ns(void)
775 {
776 	struct timekeeper *tk = &tk_core.timekeeper;
777 	unsigned int seq;
778 	u32 nsecs;
779 
780 	WARN_ON(timekeeping_suspended);
781 
782 	do {
783 		seq = read_seqcount_begin(&tk_core.seq);
784 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
785 	} while (read_seqcount_retry(&tk_core.seq, seq));
786 
787 	return nsecs;
788 }
789 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
790 
791 static ktime_t *offsets[TK_OFFS_MAX] = {
792 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
793 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
794 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
795 };
796 
ktime_get_with_offset(enum tk_offsets offs)797 ktime_t ktime_get_with_offset(enum tk_offsets offs)
798 {
799 	struct timekeeper *tk = &tk_core.timekeeper;
800 	unsigned int seq;
801 	ktime_t base, *offset = offsets[offs];
802 	u64 nsecs;
803 
804 	WARN_ON(timekeeping_suspended);
805 
806 	do {
807 		seq = read_seqcount_begin(&tk_core.seq);
808 		base = ktime_add(tk->tkr_mono.base, *offset);
809 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
810 
811 	} while (read_seqcount_retry(&tk_core.seq, seq));
812 
813 	return ktime_add_ns(base, nsecs);
814 
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
817 
ktime_get_coarse_with_offset(enum tk_offsets offs)818 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
819 {
820 	struct timekeeper *tk = &tk_core.timekeeper;
821 	unsigned int seq;
822 	ktime_t base, *offset = offsets[offs];
823 	u64 nsecs;
824 
825 	WARN_ON(timekeeping_suspended);
826 
827 	do {
828 		seq = read_seqcount_begin(&tk_core.seq);
829 		base = ktime_add(tk->tkr_mono.base, *offset);
830 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
831 
832 	} while (read_seqcount_retry(&tk_core.seq, seq));
833 
834 	return ktime_add_ns(base, nsecs);
835 }
836 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
837 
838 /**
839  * ktime_mono_to_any() - convert monotonic time to any other time
840  * @tmono:	time to convert.
841  * @offs:	which offset to use
842  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)843 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
844 {
845 	ktime_t *offset = offsets[offs];
846 	unsigned int seq;
847 	ktime_t tconv;
848 
849 	if (IS_ENABLED(CONFIG_64BIT)) {
850 		/*
851 		 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
852 		 * tk_update_sleep_time().
853 		 */
854 		return ktime_add(tmono, READ_ONCE(*offset));
855 	}
856 
857 	do {
858 		seq = read_seqcount_begin(&tk_core.seq);
859 		tconv = ktime_add(tmono, *offset);
860 	} while (read_seqcount_retry(&tk_core.seq, seq));
861 
862 	return tconv;
863 }
864 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
865 
866 /**
867  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
868  */
ktime_get_raw(void)869 ktime_t ktime_get_raw(void)
870 {
871 	struct timekeeper *tk = &tk_core.timekeeper;
872 	unsigned int seq;
873 	ktime_t base;
874 	u64 nsecs;
875 
876 	do {
877 		seq = read_seqcount_begin(&tk_core.seq);
878 		base = tk->tkr_raw.base;
879 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
880 
881 	} while (read_seqcount_retry(&tk_core.seq, seq));
882 
883 	return ktime_add_ns(base, nsecs);
884 }
885 EXPORT_SYMBOL_GPL(ktime_get_raw);
886 
887 /**
888  * ktime_get_ts64 - get the monotonic clock in timespec64 format
889  * @ts:		pointer to timespec variable
890  *
891  * The function calculates the monotonic clock from the realtime
892  * clock and the wall_to_monotonic offset and stores the result
893  * in normalized timespec64 format in the variable pointed to by @ts.
894  */
ktime_get_ts64(struct timespec64 * ts)895 void ktime_get_ts64(struct timespec64 *ts)
896 {
897 	struct timekeeper *tk = &tk_core.timekeeper;
898 	struct timespec64 tomono;
899 	unsigned int seq;
900 	u64 nsec;
901 
902 	WARN_ON(timekeeping_suspended);
903 
904 	do {
905 		seq = read_seqcount_begin(&tk_core.seq);
906 		ts->tv_sec = tk->xtime_sec;
907 		nsec = timekeeping_get_ns(&tk->tkr_mono);
908 		tomono = tk->wall_to_monotonic;
909 
910 	} while (read_seqcount_retry(&tk_core.seq, seq));
911 
912 	ts->tv_sec += tomono.tv_sec;
913 	ts->tv_nsec = 0;
914 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_ts64);
917 
918 /**
919  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
920  *
921  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
922  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
923  * works on both 32 and 64 bit systems. On 32 bit systems the readout
924  * covers ~136 years of uptime which should be enough to prevent
925  * premature wrap arounds.
926  */
ktime_get_seconds(void)927 time64_t ktime_get_seconds(void)
928 {
929 	struct timekeeper *tk = &tk_core.timekeeper;
930 
931 	WARN_ON(timekeeping_suspended);
932 	return tk->ktime_sec;
933 }
934 EXPORT_SYMBOL_GPL(ktime_get_seconds);
935 
936 /**
937  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
938  *
939  * Returns the wall clock seconds since 1970.
940  *
941  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
942  * 32bit systems the access must be protected with the sequence
943  * counter to provide "atomic" access to the 64bit tk->xtime_sec
944  * value.
945  */
ktime_get_real_seconds(void)946 time64_t ktime_get_real_seconds(void)
947 {
948 	struct timekeeper *tk = &tk_core.timekeeper;
949 	time64_t seconds;
950 	unsigned int seq;
951 
952 	if (IS_ENABLED(CONFIG_64BIT))
953 		return tk->xtime_sec;
954 
955 	do {
956 		seq = read_seqcount_begin(&tk_core.seq);
957 		seconds = tk->xtime_sec;
958 
959 	} while (read_seqcount_retry(&tk_core.seq, seq));
960 
961 	return seconds;
962 }
963 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
964 
965 /**
966  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
967  * but without the sequence counter protect. This internal function
968  * is called just when timekeeping lock is already held.
969  */
__ktime_get_real_seconds(void)970 noinstr time64_t __ktime_get_real_seconds(void)
971 {
972 	struct timekeeper *tk = &tk_core.timekeeper;
973 
974 	return tk->xtime_sec;
975 }
976 
977 /**
978  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
979  * @systime_snapshot:	pointer to struct receiving the system time snapshot
980  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)981 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
982 {
983 	struct timekeeper *tk = &tk_core.timekeeper;
984 	unsigned int seq;
985 	ktime_t base_raw;
986 	ktime_t base_real;
987 	ktime_t base_boot;
988 	u64 nsec_raw;
989 	u64 nsec_real;
990 	u64 now;
991 
992 	WARN_ON_ONCE(timekeeping_suspended);
993 
994 	do {
995 		seq = read_seqcount_begin(&tk_core.seq);
996 		now = tk_clock_read(&tk->tkr_mono);
997 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
998 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
999 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1000 		base_real = ktime_add(tk->tkr_mono.base,
1001 				      tk_core.timekeeper.offs_real);
1002 		base_boot = ktime_add(tk->tkr_mono.base,
1003 				      tk_core.timekeeper.offs_boot);
1004 		base_raw = tk->tkr_raw.base;
1005 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1006 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1007 	} while (read_seqcount_retry(&tk_core.seq, seq));
1008 
1009 	systime_snapshot->cycles = now;
1010 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1011 	systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1012 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1013 }
1014 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1015 
1016 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1017 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1018 {
1019 	u64 tmp, rem;
1020 
1021 	tmp = div64_u64_rem(*base, div, &rem);
1022 
1023 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1024 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1025 		return -EOVERFLOW;
1026 	tmp *= mult;
1027 
1028 	rem = div64_u64(rem * mult, div);
1029 	*base = tmp + rem;
1030 	return 0;
1031 }
1032 
1033 /**
1034  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1035  * @history:			Snapshot representing start of history
1036  * @partial_history_cycles:	Cycle offset into history (fractional part)
1037  * @total_history_cycles:	Total history length in cycles
1038  * @discontinuity:		True indicates clock was set on history period
1039  * @ts:				Cross timestamp that should be adjusted using
1040  *	partial/total ratio
1041  *
1042  * Helper function used by get_device_system_crosststamp() to correct the
1043  * crosstimestamp corresponding to the start of the current interval to the
1044  * system counter value (timestamp point) provided by the driver. The
1045  * total_history_* quantities are the total history starting at the provided
1046  * reference point and ending at the start of the current interval. The cycle
1047  * count between the driver timestamp point and the start of the current
1048  * interval is partial_history_cycles.
1049  */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1050 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1051 					 u64 partial_history_cycles,
1052 					 u64 total_history_cycles,
1053 					 bool discontinuity,
1054 					 struct system_device_crosststamp *ts)
1055 {
1056 	struct timekeeper *tk = &tk_core.timekeeper;
1057 	u64 corr_raw, corr_real;
1058 	bool interp_forward;
1059 	int ret;
1060 
1061 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1062 		return 0;
1063 
1064 	/* Interpolate shortest distance from beginning or end of history */
1065 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1066 	partial_history_cycles = interp_forward ?
1067 		total_history_cycles - partial_history_cycles :
1068 		partial_history_cycles;
1069 
1070 	/*
1071 	 * Scale the monotonic raw time delta by:
1072 	 *	partial_history_cycles / total_history_cycles
1073 	 */
1074 	corr_raw = (u64)ktime_to_ns(
1075 		ktime_sub(ts->sys_monoraw, history->raw));
1076 	ret = scale64_check_overflow(partial_history_cycles,
1077 				     total_history_cycles, &corr_raw);
1078 	if (ret)
1079 		return ret;
1080 
1081 	/*
1082 	 * If there is a discontinuity in the history, scale monotonic raw
1083 	 *	correction by:
1084 	 *	mult(real)/mult(raw) yielding the realtime correction
1085 	 * Otherwise, calculate the realtime correction similar to monotonic
1086 	 *	raw calculation
1087 	 */
1088 	if (discontinuity) {
1089 		corr_real = mul_u64_u32_div
1090 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1091 	} else {
1092 		corr_real = (u64)ktime_to_ns(
1093 			ktime_sub(ts->sys_realtime, history->real));
1094 		ret = scale64_check_overflow(partial_history_cycles,
1095 					     total_history_cycles, &corr_real);
1096 		if (ret)
1097 			return ret;
1098 	}
1099 
1100 	/* Fixup monotonic raw and real time time values */
1101 	if (interp_forward) {
1102 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1103 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1104 	} else {
1105 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1106 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * timestamp_in_interval - true if ts is chronologically in [start, end]
1114  *
1115  * True if ts occurs chronologically at or after start, and before or at end.
1116  */
timestamp_in_interval(u64 start,u64 end,u64 ts)1117 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1118 {
1119 	if (ts >= start && ts <= end)
1120 		return true;
1121 	if (start > end && (ts >= start || ts <= end))
1122 		return true;
1123 	return false;
1124 }
1125 
convert_clock(u64 * val,u32 numerator,u32 denominator)1126 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1127 {
1128 	u64 rem, res;
1129 
1130 	if (!numerator || !denominator)
1131 		return false;
1132 
1133 	res = div64_u64_rem(*val, denominator, &rem) * numerator;
1134 	*val = res + div_u64(rem * numerator, denominator);
1135 	return true;
1136 }
1137 
convert_base_to_cs(struct system_counterval_t * scv)1138 static bool convert_base_to_cs(struct system_counterval_t *scv)
1139 {
1140 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1141 	struct clocksource_base *base;
1142 	u32 num, den;
1143 
1144 	/* The timestamp was taken from the time keeper clock source */
1145 	if (cs->id == scv->cs_id)
1146 		return true;
1147 
1148 	/*
1149 	 * Check whether cs_id matches the base clock. Prevent the compiler from
1150 	 * re-evaluating @base as the clocksource might change concurrently.
1151 	 */
1152 	base = READ_ONCE(cs->base);
1153 	if (!base || base->id != scv->cs_id)
1154 		return false;
1155 
1156 	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1157 	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1158 
1159 	if (!convert_clock(&scv->cycles, num, den))
1160 		return false;
1161 
1162 	scv->cycles += base->offset;
1163 	return true;
1164 }
1165 
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1166 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1167 {
1168 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1169 	struct clocksource_base *base;
1170 
1171 	/*
1172 	 * Check whether base_id matches the base clock. Prevent the compiler from
1173 	 * re-evaluating @base as the clocksource might change concurrently.
1174 	 */
1175 	base = READ_ONCE(cs->base);
1176 	if (!base || base->id != base_id)
1177 		return false;
1178 
1179 	*cycles -= base->offset;
1180 	if (!convert_clock(cycles, base->denominator, base->numerator))
1181 		return false;
1182 	return true;
1183 }
1184 
convert_ns_to_cs(u64 * delta)1185 static bool convert_ns_to_cs(u64 *delta)
1186 {
1187 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1188 
1189 	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1190 		return false;
1191 
1192 	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1193 	return true;
1194 }
1195 
1196 /**
1197  * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1198  * @treal:	CLOCK_REALTIME timestamp to convert
1199  * @base_id:	base clocksource id
1200  * @cycles:	pointer to store the converted base clock timestamp
1201  *
1202  * Converts a supplied, future realtime clock value to the corresponding base clock value.
1203  *
1204  * Return:  true if the conversion is successful, false otherwise.
1205  */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1206 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1207 {
1208 	struct timekeeper *tk = &tk_core.timekeeper;
1209 	unsigned int seq;
1210 	u64 delta;
1211 
1212 	do {
1213 		seq = read_seqcount_begin(&tk_core.seq);
1214 		if ((u64)treal < tk->tkr_mono.base_real)
1215 			return false;
1216 		delta = (u64)treal - tk->tkr_mono.base_real;
1217 		if (!convert_ns_to_cs(&delta))
1218 			return false;
1219 		*cycles = tk->tkr_mono.cycle_last + delta;
1220 		if (!convert_cs_to_base(cycles, base_id))
1221 			return false;
1222 	} while (read_seqcount_retry(&tk_core.seq, seq));
1223 
1224 	return true;
1225 }
1226 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1227 
1228 /**
1229  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1230  * @get_time_fn:	Callback to get simultaneous device time and
1231  *	system counter from the device driver
1232  * @ctx:		Context passed to get_time_fn()
1233  * @history_begin:	Historical reference point used to interpolate system
1234  *	time when counter provided by the driver is before the current interval
1235  * @xtstamp:		Receives simultaneously captured system and device time
1236  *
1237  * Reads a timestamp from a device and correlates it to system time
1238  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1239 int get_device_system_crosststamp(int (*get_time_fn)
1240 				  (ktime_t *device_time,
1241 				   struct system_counterval_t *sys_counterval,
1242 				   void *ctx),
1243 				  void *ctx,
1244 				  struct system_time_snapshot *history_begin,
1245 				  struct system_device_crosststamp *xtstamp)
1246 {
1247 	struct system_counterval_t system_counterval;
1248 	struct timekeeper *tk = &tk_core.timekeeper;
1249 	u64 cycles, now, interval_start;
1250 	unsigned int clock_was_set_seq = 0;
1251 	ktime_t base_real, base_raw;
1252 	u64 nsec_real, nsec_raw;
1253 	u8 cs_was_changed_seq;
1254 	unsigned int seq;
1255 	bool do_interp;
1256 	int ret;
1257 
1258 	do {
1259 		seq = read_seqcount_begin(&tk_core.seq);
1260 		/*
1261 		 * Try to synchronously capture device time and a system
1262 		 * counter value calling back into the device driver
1263 		 */
1264 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1265 		if (ret)
1266 			return ret;
1267 
1268 		/*
1269 		 * Verify that the clocksource ID associated with the captured
1270 		 * system counter value is the same as for the currently
1271 		 * installed timekeeper clocksource
1272 		 */
1273 		if (system_counterval.cs_id == CSID_GENERIC ||
1274 		    !convert_base_to_cs(&system_counterval))
1275 			return -ENODEV;
1276 		cycles = system_counterval.cycles;
1277 
1278 		/*
1279 		 * Check whether the system counter value provided by the
1280 		 * device driver is on the current timekeeping interval.
1281 		 */
1282 		now = tk_clock_read(&tk->tkr_mono);
1283 		interval_start = tk->tkr_mono.cycle_last;
1284 		if (!timestamp_in_interval(interval_start, now, cycles)) {
1285 			clock_was_set_seq = tk->clock_was_set_seq;
1286 			cs_was_changed_seq = tk->cs_was_changed_seq;
1287 			cycles = interval_start;
1288 			do_interp = true;
1289 		} else {
1290 			do_interp = false;
1291 		}
1292 
1293 		base_real = ktime_add(tk->tkr_mono.base,
1294 				      tk_core.timekeeper.offs_real);
1295 		base_raw = tk->tkr_raw.base;
1296 
1297 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1298 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1299 	} while (read_seqcount_retry(&tk_core.seq, seq));
1300 
1301 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1302 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1303 
1304 	/*
1305 	 * Interpolate if necessary, adjusting back from the start of the
1306 	 * current interval
1307 	 */
1308 	if (do_interp) {
1309 		u64 partial_history_cycles, total_history_cycles;
1310 		bool discontinuity;
1311 
1312 		/*
1313 		 * Check that the counter value is not before the provided
1314 		 * history reference and that the history doesn't cross a
1315 		 * clocksource change
1316 		 */
1317 		if (!history_begin ||
1318 		    !timestamp_in_interval(history_begin->cycles,
1319 					   cycles, system_counterval.cycles) ||
1320 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1321 			return -EINVAL;
1322 		partial_history_cycles = cycles - system_counterval.cycles;
1323 		total_history_cycles = cycles - history_begin->cycles;
1324 		discontinuity =
1325 			history_begin->clock_was_set_seq != clock_was_set_seq;
1326 
1327 		ret = adjust_historical_crosststamp(history_begin,
1328 						    partial_history_cycles,
1329 						    total_history_cycles,
1330 						    discontinuity, xtstamp);
1331 		if (ret)
1332 			return ret;
1333 	}
1334 
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1338 
1339 /**
1340  * timekeeping_clocksource_has_base - Check whether the current clocksource
1341  *				      is based on given a base clock
1342  * @id:		base clocksource ID
1343  *
1344  * Note:	The return value is a snapshot which can become invalid right
1345  *		after the function returns.
1346  *
1347  * Return:	true if the timekeeper clocksource has a base clock with @id,
1348  *		false otherwise
1349  */
timekeeping_clocksource_has_base(enum clocksource_ids id)1350 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1351 {
1352 	/*
1353 	 * This is a snapshot, so no point in using the sequence
1354 	 * count. Just prevent the compiler from re-evaluating @base as the
1355 	 * clocksource might change concurrently.
1356 	 */
1357 	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1358 
1359 	return base ? base->id == id : false;
1360 }
1361 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1362 
1363 /**
1364  * do_settimeofday64 - Sets the time of day.
1365  * @ts:     pointer to the timespec64 variable containing the new time
1366  *
1367  * Sets the time of day to the new time and update NTP and notify hrtimers
1368  */
do_settimeofday64(const struct timespec64 * ts)1369 int do_settimeofday64(const struct timespec64 *ts)
1370 {
1371 	struct timespec64 ts_delta, xt;
1372 
1373 	if (!timespec64_valid_settod(ts))
1374 		return -EINVAL;
1375 
1376 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1377 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1378 
1379 		timekeeping_forward_now(tks);
1380 
1381 		xt = tk_xtime(tks);
1382 		ts_delta = timespec64_sub(*ts, xt);
1383 
1384 		if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1385 			timekeeping_restore_shadow(&tk_core);
1386 			return -EINVAL;
1387 		}
1388 
1389 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1390 		tk_set_xtime(tks, ts);
1391 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1392 	}
1393 
1394 	/* Signal hrtimers about time change */
1395 	clock_was_set(CLOCK_SET_WALL);
1396 
1397 	audit_tk_injoffset(ts_delta);
1398 	add_device_randomness(ts, sizeof(*ts));
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(do_settimeofday64);
1402 
1403 /**
1404  * timekeeping_inject_offset - Adds or subtracts from the current time.
1405  * @ts:		Pointer to the timespec variable containing the offset
1406  *
1407  * Adds or subtracts an offset value from the current time.
1408  */
timekeeping_inject_offset(const struct timespec64 * ts)1409 static int timekeeping_inject_offset(const struct timespec64 *ts)
1410 {
1411 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1412 		return -EINVAL;
1413 
1414 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1415 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1416 		struct timespec64 tmp;
1417 
1418 		timekeeping_forward_now(tks);
1419 
1420 		/* Make sure the proposed value is valid */
1421 		tmp = timespec64_add(tk_xtime(tks), *ts);
1422 		if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1423 		    !timespec64_valid_settod(&tmp)) {
1424 			timekeeping_restore_shadow(&tk_core);
1425 			return -EINVAL;
1426 		}
1427 
1428 		tk_xtime_add(tks, ts);
1429 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1430 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1431 	}
1432 
1433 	/* Signal hrtimers about time change */
1434 	clock_was_set(CLOCK_SET_WALL);
1435 	return 0;
1436 }
1437 
1438 /*
1439  * Indicates if there is an offset between the system clock and the hardware
1440  * clock/persistent clock/rtc.
1441  */
1442 int persistent_clock_is_local;
1443 
1444 /*
1445  * Adjust the time obtained from the CMOS to be UTC time instead of
1446  * local time.
1447  *
1448  * This is ugly, but preferable to the alternatives.  Otherwise we
1449  * would either need to write a program to do it in /etc/rc (and risk
1450  * confusion if the program gets run more than once; it would also be
1451  * hard to make the program warp the clock precisely n hours)  or
1452  * compile in the timezone information into the kernel.  Bad, bad....
1453  *
1454  *						- TYT, 1992-01-01
1455  *
1456  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1457  * as real UNIX machines always do it. This avoids all headaches about
1458  * daylight saving times and warping kernel clocks.
1459  */
timekeeping_warp_clock(void)1460 void timekeeping_warp_clock(void)
1461 {
1462 	if (sys_tz.tz_minuteswest != 0) {
1463 		struct timespec64 adjust;
1464 
1465 		persistent_clock_is_local = 1;
1466 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1467 		adjust.tv_nsec = 0;
1468 		timekeeping_inject_offset(&adjust);
1469 	}
1470 }
1471 
1472 /*
1473  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1474  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1475 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1476 {
1477 	tk->tai_offset = tai_offset;
1478 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1479 }
1480 
1481 /*
1482  * change_clocksource - Swaps clocksources if a new one is available
1483  *
1484  * Accumulates current time interval and initializes new clocksource
1485  */
change_clocksource(void * data)1486 static int change_clocksource(void *data)
1487 {
1488 	struct clocksource *new = data, *old = NULL;
1489 
1490 	/*
1491 	 * If the clocksource is in a module, get a module reference.
1492 	 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1493 	 * reference can't be acquired.
1494 	 */
1495 	if (!try_module_get(new->owner))
1496 		return 0;
1497 
1498 	/* Abort if the device can't be enabled */
1499 	if (new->enable && new->enable(new) != 0) {
1500 		module_put(new->owner);
1501 		return 0;
1502 	}
1503 
1504 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1505 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1506 
1507 		timekeeping_forward_now(tks);
1508 		old = tks->tkr_mono.clock;
1509 		tk_setup_internals(tks, new);
1510 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1511 	}
1512 
1513 	if (old) {
1514 		if (old->disable)
1515 			old->disable(old);
1516 		module_put(old->owner);
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /**
1523  * timekeeping_notify - Install a new clock source
1524  * @clock:		pointer to the clock source
1525  *
1526  * This function is called from clocksource.c after a new, better clock
1527  * source has been registered. The caller holds the clocksource_mutex.
1528  */
timekeeping_notify(struct clocksource * clock)1529 int timekeeping_notify(struct clocksource *clock)
1530 {
1531 	struct timekeeper *tk = &tk_core.timekeeper;
1532 
1533 	if (tk->tkr_mono.clock == clock)
1534 		return 0;
1535 	stop_machine(change_clocksource, clock, NULL);
1536 	tick_clock_notify();
1537 	return tk->tkr_mono.clock == clock ? 0 : -1;
1538 }
1539 
1540 /**
1541  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1542  * @ts:		pointer to the timespec64 to be set
1543  *
1544  * Returns the raw monotonic time (completely un-modified by ntp)
1545  */
ktime_get_raw_ts64(struct timespec64 * ts)1546 void ktime_get_raw_ts64(struct timespec64 *ts)
1547 {
1548 	struct timekeeper *tk = &tk_core.timekeeper;
1549 	unsigned int seq;
1550 	u64 nsecs;
1551 
1552 	do {
1553 		seq = read_seqcount_begin(&tk_core.seq);
1554 		ts->tv_sec = tk->raw_sec;
1555 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1556 
1557 	} while (read_seqcount_retry(&tk_core.seq, seq));
1558 
1559 	ts->tv_nsec = 0;
1560 	timespec64_add_ns(ts, nsecs);
1561 }
1562 EXPORT_SYMBOL(ktime_get_raw_ts64);
1563 
1564 
1565 /**
1566  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1567  */
timekeeping_valid_for_hres(void)1568 int timekeeping_valid_for_hres(void)
1569 {
1570 	struct timekeeper *tk = &tk_core.timekeeper;
1571 	unsigned int seq;
1572 	int ret;
1573 
1574 	do {
1575 		seq = read_seqcount_begin(&tk_core.seq);
1576 
1577 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1578 
1579 	} while (read_seqcount_retry(&tk_core.seq, seq));
1580 
1581 	return ret;
1582 }
1583 
1584 /**
1585  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1586  */
timekeeping_max_deferment(void)1587 u64 timekeeping_max_deferment(void)
1588 {
1589 	struct timekeeper *tk = &tk_core.timekeeper;
1590 	unsigned int seq;
1591 	u64 ret;
1592 
1593 	do {
1594 		seq = read_seqcount_begin(&tk_core.seq);
1595 
1596 		ret = tk->tkr_mono.clock->max_idle_ns;
1597 
1598 	} while (read_seqcount_retry(&tk_core.seq, seq));
1599 
1600 	return ret;
1601 }
1602 
1603 /**
1604  * read_persistent_clock64 -  Return time from the persistent clock.
1605  * @ts: Pointer to the storage for the readout value
1606  *
1607  * Weak dummy function for arches that do not yet support it.
1608  * Reads the time from the battery backed persistent clock.
1609  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1610  *
1611  *  XXX - Do be sure to remove it once all arches implement it.
1612  */
read_persistent_clock64(struct timespec64 * ts)1613 void __weak read_persistent_clock64(struct timespec64 *ts)
1614 {
1615 	ts->tv_sec = 0;
1616 	ts->tv_nsec = 0;
1617 }
1618 
1619 /**
1620  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1621  *                                        from the boot.
1622  * @wall_time:	  current time as returned by persistent clock
1623  * @boot_offset:  offset that is defined as wall_time - boot_time
1624  *
1625  * Weak dummy function for arches that do not yet support it.
1626  *
1627  * The default function calculates offset based on the current value of
1628  * local_clock(). This way architectures that support sched_clock() but don't
1629  * support dedicated boot time clock will provide the best estimate of the
1630  * boot time.
1631  */
1632 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1633 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1634 				     struct timespec64 *boot_offset)
1635 {
1636 	read_persistent_clock64(wall_time);
1637 	*boot_offset = ns_to_timespec64(local_clock());
1638 }
1639 
tkd_basic_setup(struct tk_data * tkd)1640 static __init void tkd_basic_setup(struct tk_data *tkd)
1641 {
1642 	raw_spin_lock_init(&tkd->lock);
1643 	seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1644 }
1645 
1646 /*
1647  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1648  *
1649  * The flag starts of false and is only set when a suspend reaches
1650  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1651  * timekeeper clocksource is not stopping across suspend and has been
1652  * used to update sleep time. If the timekeeper clocksource has stopped
1653  * then the flag stays true and is used by the RTC resume code to decide
1654  * whether sleeptime must be injected and if so the flag gets false then.
1655  *
1656  * If a suspend fails before reaching timekeeping_resume() then the flag
1657  * stays false and prevents erroneous sleeptime injection.
1658  */
1659 static bool suspend_timing_needed;
1660 
1661 /* Flag for if there is a persistent clock on this platform */
1662 static bool persistent_clock_exists;
1663 
1664 /*
1665  * timekeeping_init - Initializes the clocksource and common timekeeping values
1666  */
timekeeping_init(void)1667 void __init timekeeping_init(void)
1668 {
1669 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1670 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1671 	struct clocksource *clock;
1672 
1673 	tkd_basic_setup(&tk_core);
1674 
1675 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1676 	if (timespec64_valid_settod(&wall_time) &&
1677 	    timespec64_to_ns(&wall_time) > 0) {
1678 		persistent_clock_exists = true;
1679 	} else if (timespec64_to_ns(&wall_time) != 0) {
1680 		pr_warn("Persistent clock returned invalid value");
1681 		wall_time = (struct timespec64){0};
1682 	}
1683 
1684 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1685 		boot_offset = (struct timespec64){0};
1686 
1687 	/*
1688 	 * We want set wall_to_mono, so the following is true:
1689 	 * wall time + wall_to_mono = boot time
1690 	 */
1691 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1692 
1693 	guard(raw_spinlock_irqsave)(&tk_core.lock);
1694 
1695 	ntp_init();
1696 
1697 	clock = clocksource_default_clock();
1698 	if (clock->enable)
1699 		clock->enable(clock);
1700 	tk_setup_internals(tks, clock);
1701 
1702 	tk_set_xtime(tks, &wall_time);
1703 	tks->raw_sec = 0;
1704 
1705 	tk_set_wall_to_mono(tks, wall_to_mono);
1706 
1707 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1708 }
1709 
1710 /* time in seconds when suspend began for persistent clock */
1711 static struct timespec64 timekeeping_suspend_time;
1712 
1713 /**
1714  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1715  * @tk:		Pointer to the timekeeper to be updated
1716  * @delta:	Pointer to the delta value in timespec64 format
1717  *
1718  * Takes a timespec offset measuring a suspend interval and properly
1719  * adds the sleep offset to the timekeeping variables.
1720  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1721 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1722 					   const struct timespec64 *delta)
1723 {
1724 	if (!timespec64_valid_strict(delta)) {
1725 		printk_deferred(KERN_WARNING
1726 				"__timekeeping_inject_sleeptime: Invalid "
1727 				"sleep delta value!\n");
1728 		return;
1729 	}
1730 	tk_xtime_add(tk, delta);
1731 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1732 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1733 	tk_debug_account_sleep_time(delta);
1734 }
1735 
1736 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1737 /*
1738  * We have three kinds of time sources to use for sleep time
1739  * injection, the preference order is:
1740  * 1) non-stop clocksource
1741  * 2) persistent clock (ie: RTC accessible when irqs are off)
1742  * 3) RTC
1743  *
1744  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1745  * If system has neither 1) nor 2), 3) will be used finally.
1746  *
1747  *
1748  * If timekeeping has injected sleeptime via either 1) or 2),
1749  * 3) becomes needless, so in this case we don't need to call
1750  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1751  * means.
1752  */
timekeeping_rtc_skipresume(void)1753 bool timekeeping_rtc_skipresume(void)
1754 {
1755 	return !suspend_timing_needed;
1756 }
1757 
1758 /*
1759  * 1) can be determined whether to use or not only when doing
1760  * timekeeping_resume() which is invoked after rtc_suspend(),
1761  * so we can't skip rtc_suspend() surely if system has 1).
1762  *
1763  * But if system has 2), 2) will definitely be used, so in this
1764  * case we don't need to call rtc_suspend(), and this is what
1765  * timekeeping_rtc_skipsuspend() means.
1766  */
timekeeping_rtc_skipsuspend(void)1767 bool timekeeping_rtc_skipsuspend(void)
1768 {
1769 	return persistent_clock_exists;
1770 }
1771 
1772 /**
1773  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1774  * @delta: pointer to a timespec64 delta value
1775  *
1776  * This hook is for architectures that cannot support read_persistent_clock64
1777  * because their RTC/persistent clock is only accessible when irqs are enabled.
1778  * and also don't have an effective nonstop clocksource.
1779  *
1780  * This function should only be called by rtc_resume(), and allows
1781  * a suspend offset to be injected into the timekeeping values.
1782  */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1783 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1784 {
1785 	scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1786 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1787 
1788 		suspend_timing_needed = false;
1789 		timekeeping_forward_now(tks);
1790 		__timekeeping_inject_sleeptime(tks, delta);
1791 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1792 	}
1793 
1794 	/* Signal hrtimers about time change */
1795 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1796 }
1797 #endif
1798 
1799 /**
1800  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1801  */
timekeeping_resume(void)1802 void timekeeping_resume(void)
1803 {
1804 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1805 	struct clocksource *clock = tks->tkr_mono.clock;
1806 	struct timespec64 ts_new, ts_delta;
1807 	bool inject_sleeptime = false;
1808 	u64 cycle_now, nsec;
1809 	unsigned long flags;
1810 
1811 	read_persistent_clock64(&ts_new);
1812 
1813 	clockevents_resume();
1814 	clocksource_resume();
1815 
1816 	raw_spin_lock_irqsave(&tk_core.lock, flags);
1817 
1818 	/*
1819 	 * After system resumes, we need to calculate the suspended time and
1820 	 * compensate it for the OS time. There are 3 sources that could be
1821 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1822 	 * device.
1823 	 *
1824 	 * One specific platform may have 1 or 2 or all of them, and the
1825 	 * preference will be:
1826 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1827 	 * The less preferred source will only be tried if there is no better
1828 	 * usable source. The rtc part is handled separately in rtc core code.
1829 	 */
1830 	cycle_now = tk_clock_read(&tks->tkr_mono);
1831 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1832 	if (nsec > 0) {
1833 		ts_delta = ns_to_timespec64(nsec);
1834 		inject_sleeptime = true;
1835 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1836 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1837 		inject_sleeptime = true;
1838 	}
1839 
1840 	if (inject_sleeptime) {
1841 		suspend_timing_needed = false;
1842 		__timekeeping_inject_sleeptime(tks, &ts_delta);
1843 	}
1844 
1845 	/* Re-base the last cycle value */
1846 	tks->tkr_mono.cycle_last = cycle_now;
1847 	tks->tkr_raw.cycle_last  = cycle_now;
1848 
1849 	tks->ntp_error = 0;
1850 	timekeeping_suspended = 0;
1851 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1852 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1853 
1854 	touch_softlockup_watchdog();
1855 
1856 	/* Resume the clockevent device(s) and hrtimers */
1857 	tick_resume();
1858 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1859 	timerfd_resume();
1860 }
1861 
timekeeping_suspend(void)1862 int timekeeping_suspend(void)
1863 {
1864 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1865 	struct timespec64 delta, delta_delta;
1866 	static struct timespec64 old_delta;
1867 	struct clocksource *curr_clock;
1868 	unsigned long flags;
1869 	u64 cycle_now;
1870 
1871 	read_persistent_clock64(&timekeeping_suspend_time);
1872 
1873 	/*
1874 	 * On some systems the persistent_clock can not be detected at
1875 	 * timekeeping_init by its return value, so if we see a valid
1876 	 * value returned, update the persistent_clock_exists flag.
1877 	 */
1878 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1879 		persistent_clock_exists = true;
1880 
1881 	suspend_timing_needed = true;
1882 
1883 	raw_spin_lock_irqsave(&tk_core.lock, flags);
1884 	timekeeping_forward_now(tks);
1885 	timekeeping_suspended = 1;
1886 
1887 	/*
1888 	 * Since we've called forward_now, cycle_last stores the value
1889 	 * just read from the current clocksource. Save this to potentially
1890 	 * use in suspend timing.
1891 	 */
1892 	curr_clock = tks->tkr_mono.clock;
1893 	cycle_now = tks->tkr_mono.cycle_last;
1894 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1895 
1896 	if (persistent_clock_exists) {
1897 		/*
1898 		 * To avoid drift caused by repeated suspend/resumes,
1899 		 * which each can add ~1 second drift error,
1900 		 * try to compensate so the difference in system time
1901 		 * and persistent_clock time stays close to constant.
1902 		 */
1903 		delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
1904 		delta_delta = timespec64_sub(delta, old_delta);
1905 		if (abs(delta_delta.tv_sec) >= 2) {
1906 			/*
1907 			 * if delta_delta is too large, assume time correction
1908 			 * has occurred and set old_delta to the current delta.
1909 			 */
1910 			old_delta = delta;
1911 		} else {
1912 			/* Otherwise try to adjust old_system to compensate */
1913 			timekeeping_suspend_time =
1914 				timespec64_add(timekeeping_suspend_time, delta_delta);
1915 		}
1916 	}
1917 
1918 	timekeeping_update_from_shadow(&tk_core, 0);
1919 	halt_fast_timekeeper(tks);
1920 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1921 
1922 	tick_suspend();
1923 	clocksource_suspend();
1924 	clockevents_suspend();
1925 
1926 	return 0;
1927 }
1928 
1929 /* sysfs resume/suspend bits for timekeeping */
1930 static struct syscore_ops timekeeping_syscore_ops = {
1931 	.resume		= timekeeping_resume,
1932 	.suspend	= timekeeping_suspend,
1933 };
1934 
timekeeping_init_ops(void)1935 static int __init timekeeping_init_ops(void)
1936 {
1937 	register_syscore_ops(&timekeeping_syscore_ops);
1938 	return 0;
1939 }
1940 device_initcall(timekeeping_init_ops);
1941 
1942 /*
1943  * Apply a multiplier adjustment to the timekeeper
1944  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1945 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1946 							 s64 offset,
1947 							 s32 mult_adj)
1948 {
1949 	s64 interval = tk->cycle_interval;
1950 
1951 	if (mult_adj == 0) {
1952 		return;
1953 	} else if (mult_adj == -1) {
1954 		interval = -interval;
1955 		offset = -offset;
1956 	} else if (mult_adj != 1) {
1957 		interval *= mult_adj;
1958 		offset *= mult_adj;
1959 	}
1960 
1961 	/*
1962 	 * So the following can be confusing.
1963 	 *
1964 	 * To keep things simple, lets assume mult_adj == 1 for now.
1965 	 *
1966 	 * When mult_adj != 1, remember that the interval and offset values
1967 	 * have been appropriately scaled so the math is the same.
1968 	 *
1969 	 * The basic idea here is that we're increasing the multiplier
1970 	 * by one, this causes the xtime_interval to be incremented by
1971 	 * one cycle_interval. This is because:
1972 	 *	xtime_interval = cycle_interval * mult
1973 	 * So if mult is being incremented by one:
1974 	 *	xtime_interval = cycle_interval * (mult + 1)
1975 	 * Its the same as:
1976 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1977 	 * Which can be shortened to:
1978 	 *	xtime_interval += cycle_interval
1979 	 *
1980 	 * So offset stores the non-accumulated cycles. Thus the current
1981 	 * time (in shifted nanoseconds) is:
1982 	 *	now = (offset * adj) + xtime_nsec
1983 	 * Now, even though we're adjusting the clock frequency, we have
1984 	 * to keep time consistent. In other words, we can't jump back
1985 	 * in time, and we also want to avoid jumping forward in time.
1986 	 *
1987 	 * So given the same offset value, we need the time to be the same
1988 	 * both before and after the freq adjustment.
1989 	 *	now = (offset * adj_1) + xtime_nsec_1
1990 	 *	now = (offset * adj_2) + xtime_nsec_2
1991 	 * So:
1992 	 *	(offset * adj_1) + xtime_nsec_1 =
1993 	 *		(offset * adj_2) + xtime_nsec_2
1994 	 * And we know:
1995 	 *	adj_2 = adj_1 + 1
1996 	 * So:
1997 	 *	(offset * adj_1) + xtime_nsec_1 =
1998 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1999 	 *	(offset * adj_1) + xtime_nsec_1 =
2000 	 *		(offset * adj_1) + offset + xtime_nsec_2
2001 	 * Canceling the sides:
2002 	 *	xtime_nsec_1 = offset + xtime_nsec_2
2003 	 * Which gives us:
2004 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
2005 	 * Which simplifies to:
2006 	 *	xtime_nsec -= offset
2007 	 */
2008 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2009 		/* NTP adjustment caused clocksource mult overflow */
2010 		WARN_ON_ONCE(1);
2011 		return;
2012 	}
2013 
2014 	tk->tkr_mono.mult += mult_adj;
2015 	tk->xtime_interval += interval;
2016 	tk->tkr_mono.xtime_nsec -= offset;
2017 }
2018 
2019 /*
2020  * Adjust the timekeeper's multiplier to the correct frequency
2021  * and also to reduce the accumulated error value.
2022  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2023 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2024 {
2025 	u64 ntp_tl = ntp_tick_length();
2026 	u32 mult;
2027 
2028 	/*
2029 	 * Determine the multiplier from the current NTP tick length.
2030 	 * Avoid expensive division when the tick length doesn't change.
2031 	 */
2032 	if (likely(tk->ntp_tick == ntp_tl)) {
2033 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2034 	} else {
2035 		tk->ntp_tick = ntp_tl;
2036 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2037 				 tk->xtime_remainder, tk->cycle_interval);
2038 	}
2039 
2040 	/*
2041 	 * If the clock is behind the NTP time, increase the multiplier by 1
2042 	 * to catch up with it. If it's ahead and there was a remainder in the
2043 	 * tick division, the clock will slow down. Otherwise it will stay
2044 	 * ahead until the tick length changes to a non-divisible value.
2045 	 */
2046 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2047 	mult += tk->ntp_err_mult;
2048 
2049 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2050 
2051 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2052 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2053 			> tk->tkr_mono.clock->maxadj))) {
2054 		printk_once(KERN_WARNING
2055 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2056 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2057 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2058 	}
2059 
2060 	/*
2061 	 * It may be possible that when we entered this function, xtime_nsec
2062 	 * was very small.  Further, if we're slightly speeding the clocksource
2063 	 * in the code above, its possible the required corrective factor to
2064 	 * xtime_nsec could cause it to underflow.
2065 	 *
2066 	 * Now, since we have already accumulated the second and the NTP
2067 	 * subsystem has been notified via second_overflow(), we need to skip
2068 	 * the next update.
2069 	 */
2070 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2071 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2072 							tk->tkr_mono.shift;
2073 		tk->xtime_sec--;
2074 		tk->skip_second_overflow = 1;
2075 	}
2076 }
2077 
2078 /*
2079  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2080  *
2081  * Helper function that accumulates the nsecs greater than a second
2082  * from the xtime_nsec field to the xtime_secs field.
2083  * It also calls into the NTP code to handle leapsecond processing.
2084  */
accumulate_nsecs_to_secs(struct timekeeper * tk)2085 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2086 {
2087 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2088 	unsigned int clock_set = 0;
2089 
2090 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2091 		int leap;
2092 
2093 		tk->tkr_mono.xtime_nsec -= nsecps;
2094 		tk->xtime_sec++;
2095 
2096 		/*
2097 		 * Skip NTP update if this second was accumulated before,
2098 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2099 		 */
2100 		if (unlikely(tk->skip_second_overflow)) {
2101 			tk->skip_second_overflow = 0;
2102 			continue;
2103 		}
2104 
2105 		/* Figure out if its a leap sec and apply if needed */
2106 		leap = second_overflow(tk->xtime_sec);
2107 		if (unlikely(leap)) {
2108 			struct timespec64 ts;
2109 
2110 			tk->xtime_sec += leap;
2111 
2112 			ts.tv_sec = leap;
2113 			ts.tv_nsec = 0;
2114 			tk_set_wall_to_mono(tk,
2115 				timespec64_sub(tk->wall_to_monotonic, ts));
2116 
2117 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2118 
2119 			clock_set = TK_CLOCK_WAS_SET;
2120 		}
2121 	}
2122 	return clock_set;
2123 }
2124 
2125 /*
2126  * logarithmic_accumulation - shifted accumulation of cycles
2127  *
2128  * This functions accumulates a shifted interval of cycles into
2129  * a shifted interval nanoseconds. Allows for O(log) accumulation
2130  * loop.
2131  *
2132  * Returns the unconsumed cycles.
2133  */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2134 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2135 				    u32 shift, unsigned int *clock_set)
2136 {
2137 	u64 interval = tk->cycle_interval << shift;
2138 	u64 snsec_per_sec;
2139 
2140 	/* If the offset is smaller than a shifted interval, do nothing */
2141 	if (offset < interval)
2142 		return offset;
2143 
2144 	/* Accumulate one shifted interval */
2145 	offset -= interval;
2146 	tk->tkr_mono.cycle_last += interval;
2147 	tk->tkr_raw.cycle_last  += interval;
2148 
2149 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2150 	*clock_set |= accumulate_nsecs_to_secs(tk);
2151 
2152 	/* Accumulate raw time */
2153 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2154 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2155 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2156 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2157 		tk->raw_sec++;
2158 	}
2159 
2160 	/* Accumulate error between NTP and clock interval */
2161 	tk->ntp_error += tk->ntp_tick << shift;
2162 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2163 						(tk->ntp_error_shift + shift);
2164 
2165 	return offset;
2166 }
2167 
timekeeping_accumulate(struct timekeeper * tk,u64 offset,enum timekeeping_adv_mode mode,unsigned int * clock_set)2168 static u64 timekeeping_accumulate(struct timekeeper *tk, u64 offset,
2169 				  enum timekeeping_adv_mode mode,
2170 				  unsigned int *clock_set)
2171 {
2172 	int shift = 0, maxshift;
2173 
2174 	/*
2175 	 * TK_ADV_FREQ indicates that adjtimex(2) directly set the
2176 	 * frequency or the tick length.
2177 	 *
2178 	 * Accumulate the offset, so that the new multiplier starts from
2179 	 * now. This is required as otherwise for offsets, which are
2180 	 * smaller than tk::cycle_interval, timekeeping_adjust() could set
2181 	 * xtime_nsec backwards, which subsequently causes time going
2182 	 * backwards in the coarse time getters. But even for the case
2183 	 * where offset is greater than tk::cycle_interval the periodic
2184 	 * accumulation does not have much value.
2185 	 *
2186 	 * Also reset tk::ntp_error as it does not make sense to keep the
2187 	 * old accumulated error around in this case.
2188 	 */
2189 	if (mode == TK_ADV_FREQ) {
2190 		timekeeping_forward(tk, tk->tkr_mono.cycle_last + offset);
2191 		tk->ntp_error = 0;
2192 		return 0;
2193 	}
2194 
2195 	/*
2196 	 * With NO_HZ we may have to accumulate many cycle_intervals
2197 	 * (think "ticks") worth of time at once. To do this efficiently,
2198 	 * we calculate the largest doubling multiple of cycle_intervals
2199 	 * that is smaller than the offset.  We then accumulate that
2200 	 * chunk in one go, and then try to consume the next smaller
2201 	 * doubled multiple.
2202 	 */
2203 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2204 	shift = max(0, shift);
2205 	/* Bound shift to one less than what overflows tick_length */
2206 	maxshift = (64 - (ilog2(ntp_tick_length()) + 1)) - 1;
2207 	shift = min(shift, maxshift);
2208 	while (offset >= tk->cycle_interval) {
2209 		offset = logarithmic_accumulation(tk, offset, shift, clock_set);
2210 		if (offset < tk->cycle_interval << shift)
2211 			shift--;
2212 	}
2213 	return offset;
2214 }
2215 
2216 /*
2217  * timekeeping_advance - Updates the timekeeper to the current time and
2218  * current NTP tick length
2219  */
timekeeping_advance(enum timekeeping_adv_mode mode)2220 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2221 {
2222 	struct timekeeper *tk = &tk_core.shadow_timekeeper;
2223 	struct timekeeper *real_tk = &tk_core.timekeeper;
2224 	unsigned int clock_set = 0;
2225 	u64 offset;
2226 
2227 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2228 
2229 	/* Make sure we're fully resumed: */
2230 	if (unlikely(timekeeping_suspended))
2231 		return false;
2232 
2233 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2234 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2235 				   tk->tkr_mono.clock->max_raw_delta);
2236 
2237 	/* Check if there's really nothing to do */
2238 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2239 		return false;
2240 
2241 	offset = timekeeping_accumulate(tk, offset, mode, &clock_set);
2242 
2243 	/* Adjust the multiplier to correct NTP error */
2244 	timekeeping_adjust(tk, offset);
2245 
2246 	/*
2247 	 * Finally, make sure that after the rounding
2248 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2249 	 */
2250 	clock_set |= accumulate_nsecs_to_secs(tk);
2251 
2252 	timekeeping_update_from_shadow(&tk_core, clock_set);
2253 
2254 	return !!clock_set;
2255 }
2256 
2257 /**
2258  * update_wall_time - Uses the current clocksource to increment the wall time
2259  *
2260  */
update_wall_time(void)2261 void update_wall_time(void)
2262 {
2263 	if (timekeeping_advance(TK_ADV_TICK))
2264 		clock_was_set_delayed();
2265 }
2266 
2267 /**
2268  * getboottime64 - Return the real time of system boot.
2269  * @ts:		pointer to the timespec64 to be set
2270  *
2271  * Returns the wall-time of boot in a timespec64.
2272  *
2273  * This is based on the wall_to_monotonic offset and the total suspend
2274  * time. Calls to settimeofday will affect the value returned (which
2275  * basically means that however wrong your real time clock is at boot time,
2276  * you get the right time here).
2277  */
getboottime64(struct timespec64 * ts)2278 void getboottime64(struct timespec64 *ts)
2279 {
2280 	struct timekeeper *tk = &tk_core.timekeeper;
2281 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2282 
2283 	*ts = ktime_to_timespec64(t);
2284 }
2285 EXPORT_SYMBOL_GPL(getboottime64);
2286 
ktime_get_coarse_real_ts64(struct timespec64 * ts)2287 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2288 {
2289 	struct timekeeper *tk = &tk_core.timekeeper;
2290 	unsigned int seq;
2291 
2292 	do {
2293 		seq = read_seqcount_begin(&tk_core.seq);
2294 
2295 		*ts = tk_xtime(tk);
2296 	} while (read_seqcount_retry(&tk_core.seq, seq));
2297 }
2298 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2299 
2300 /**
2301  * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2302  * @ts:		timespec64 to be filled
2303  *
2304  * Fetch the global mg_floor value, convert it to realtime and compare it
2305  * to the current coarse-grained time. Fill @ts with whichever is
2306  * latest. Note that this is a filesystem-specific interface and should be
2307  * avoided outside of that context.
2308  */
ktime_get_coarse_real_ts64_mg(struct timespec64 * ts)2309 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2310 {
2311 	struct timekeeper *tk = &tk_core.timekeeper;
2312 	u64 floor = atomic64_read(&mg_floor);
2313 	ktime_t f_real, offset, coarse;
2314 	unsigned int seq;
2315 
2316 	do {
2317 		seq = read_seqcount_begin(&tk_core.seq);
2318 		*ts = tk_xtime(tk);
2319 		offset = tk_core.timekeeper.offs_real;
2320 	} while (read_seqcount_retry(&tk_core.seq, seq));
2321 
2322 	coarse = timespec64_to_ktime(*ts);
2323 	f_real = ktime_add(floor, offset);
2324 	if (ktime_after(f_real, coarse))
2325 		*ts = ktime_to_timespec64(f_real);
2326 }
2327 
2328 /**
2329  * ktime_get_real_ts64_mg - attempt to update floor value and return result
2330  * @ts:		pointer to the timespec to be set
2331  *
2332  * Get a monotonic fine-grained time value and attempt to swap it into
2333  * mg_floor. If that succeeds then accept the new floor value. If it fails
2334  * then another task raced in during the interim time and updated the
2335  * floor.  Since any update to the floor must be later than the previous
2336  * floor, either outcome is acceptable.
2337  *
2338  * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2339  * and determining that the resulting coarse-grained timestamp did not effect
2340  * a change in ctime. Any more recent floor value would effect a change to
2341  * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2342  *
2343  * @ts will be filled with the latest floor value, regardless of the outcome of
2344  * the cmpxchg. Note that this is a filesystem specific interface and should be
2345  * avoided outside of that context.
2346  */
ktime_get_real_ts64_mg(struct timespec64 * ts)2347 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2348 {
2349 	struct timekeeper *tk = &tk_core.timekeeper;
2350 	ktime_t old = atomic64_read(&mg_floor);
2351 	ktime_t offset, mono;
2352 	unsigned int seq;
2353 	u64 nsecs;
2354 
2355 	do {
2356 		seq = read_seqcount_begin(&tk_core.seq);
2357 
2358 		ts->tv_sec = tk->xtime_sec;
2359 		mono = tk->tkr_mono.base;
2360 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2361 		offset = tk_core.timekeeper.offs_real;
2362 	} while (read_seqcount_retry(&tk_core.seq, seq));
2363 
2364 	mono = ktime_add_ns(mono, nsecs);
2365 
2366 	/*
2367 	 * Attempt to update the floor with the new time value. As any
2368 	 * update must be later then the existing floor, and would effect
2369 	 * a change to ctime from the perspective of the current task,
2370 	 * accept the resulting floor value regardless of the outcome of
2371 	 * the swap.
2372 	 */
2373 	if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2374 		ts->tv_nsec = 0;
2375 		timespec64_add_ns(ts, nsecs);
2376 		timekeeping_inc_mg_floor_swaps();
2377 	} else {
2378 		/*
2379 		 * Another task changed mg_floor since "old" was fetched.
2380 		 * "old" has been updated with the latest value of "mg_floor".
2381 		 * That value is newer than the previous floor value, which
2382 		 * is enough to effect a change to ctime. Accept it.
2383 		 */
2384 		*ts = ktime_to_timespec64(ktime_add(old, offset));
2385 	}
2386 }
2387 
ktime_get_coarse_ts64(struct timespec64 * ts)2388 void ktime_get_coarse_ts64(struct timespec64 *ts)
2389 {
2390 	struct timekeeper *tk = &tk_core.timekeeper;
2391 	struct timespec64 now, mono;
2392 	unsigned int seq;
2393 
2394 	do {
2395 		seq = read_seqcount_begin(&tk_core.seq);
2396 
2397 		now = tk_xtime(tk);
2398 		mono = tk->wall_to_monotonic;
2399 	} while (read_seqcount_retry(&tk_core.seq, seq));
2400 
2401 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2402 				now.tv_nsec + mono.tv_nsec);
2403 }
2404 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2405 
2406 /*
2407  * Must hold jiffies_lock
2408  */
do_timer(unsigned long ticks)2409 void do_timer(unsigned long ticks)
2410 {
2411 	jiffies_64 += ticks;
2412 	calc_global_load();
2413 }
2414 
2415 /**
2416  * ktime_get_update_offsets_now - hrtimer helper
2417  * @cwsseq:	pointer to check and store the clock was set sequence number
2418  * @offs_real:	pointer to storage for monotonic -> realtime offset
2419  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2420  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2421  *
2422  * Returns current monotonic time and updates the offsets if the
2423  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2424  * different.
2425  *
2426  * Called from hrtimer_interrupt() or retrigger_next_event()
2427  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2428 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2429 				     ktime_t *offs_boot, ktime_t *offs_tai)
2430 {
2431 	struct timekeeper *tk = &tk_core.timekeeper;
2432 	unsigned int seq;
2433 	ktime_t base;
2434 	u64 nsecs;
2435 
2436 	do {
2437 		seq = read_seqcount_begin(&tk_core.seq);
2438 
2439 		base = tk->tkr_mono.base;
2440 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2441 		base = ktime_add_ns(base, nsecs);
2442 
2443 		if (*cwsseq != tk->clock_was_set_seq) {
2444 			*cwsseq = tk->clock_was_set_seq;
2445 			*offs_real = tk->offs_real;
2446 			*offs_boot = tk->offs_boot;
2447 			*offs_tai = tk->offs_tai;
2448 		}
2449 
2450 		/* Handle leapsecond insertion adjustments */
2451 		if (unlikely(base >= tk->next_leap_ktime))
2452 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2453 
2454 	} while (read_seqcount_retry(&tk_core.seq, seq));
2455 
2456 	return base;
2457 }
2458 
2459 /*
2460  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2461  */
timekeeping_validate_timex(const struct __kernel_timex * txc)2462 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2463 {
2464 	if (txc->modes & ADJ_ADJTIME) {
2465 		/* singleshot must not be used with any other mode bits */
2466 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2467 			return -EINVAL;
2468 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2469 		    !capable(CAP_SYS_TIME))
2470 			return -EPERM;
2471 	} else {
2472 		/* In order to modify anything, you gotta be super-user! */
2473 		if (txc->modes && !capable(CAP_SYS_TIME))
2474 			return -EPERM;
2475 		/*
2476 		 * if the quartz is off by more than 10% then
2477 		 * something is VERY wrong!
2478 		 */
2479 		if (txc->modes & ADJ_TICK &&
2480 		    (txc->tick <  900000/USER_HZ ||
2481 		     txc->tick > 1100000/USER_HZ))
2482 			return -EINVAL;
2483 	}
2484 
2485 	if (txc->modes & ADJ_SETOFFSET) {
2486 		/* In order to inject time, you gotta be super-user! */
2487 		if (!capable(CAP_SYS_TIME))
2488 			return -EPERM;
2489 
2490 		/*
2491 		 * Validate if a timespec/timeval used to inject a time
2492 		 * offset is valid.  Offsets can be positive or negative, so
2493 		 * we don't check tv_sec. The value of the timeval/timespec
2494 		 * is the sum of its fields,but *NOTE*:
2495 		 * The field tv_usec/tv_nsec must always be non-negative and
2496 		 * we can't have more nanoseconds/microseconds than a second.
2497 		 */
2498 		if (txc->time.tv_usec < 0)
2499 			return -EINVAL;
2500 
2501 		if (txc->modes & ADJ_NANO) {
2502 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2503 				return -EINVAL;
2504 		} else {
2505 			if (txc->time.tv_usec >= USEC_PER_SEC)
2506 				return -EINVAL;
2507 		}
2508 	}
2509 
2510 	/*
2511 	 * Check for potential multiplication overflows that can
2512 	 * only happen on 64-bit systems:
2513 	 */
2514 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2515 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2516 			return -EINVAL;
2517 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2518 			return -EINVAL;
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 /**
2525  * random_get_entropy_fallback - Returns the raw clock source value,
2526  * used by random.c for platforms with no valid random_get_entropy().
2527  */
random_get_entropy_fallback(void)2528 unsigned long random_get_entropy_fallback(void)
2529 {
2530 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2531 	struct clocksource *clock = READ_ONCE(tkr->clock);
2532 
2533 	if (unlikely(timekeeping_suspended || !clock))
2534 		return 0;
2535 	return clock->read(clock);
2536 }
2537 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2538 
2539 /**
2540  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2541  * @txc:	Pointer to kernel_timex structure containing NTP parameters
2542  */
do_adjtimex(struct __kernel_timex * txc)2543 int do_adjtimex(struct __kernel_timex *txc)
2544 {
2545 	struct audit_ntp_data ad;
2546 	bool offset_set = false;
2547 	bool clock_set = false;
2548 	struct timespec64 ts;
2549 	int ret;
2550 
2551 	/* Validate the data before disabling interrupts */
2552 	ret = timekeeping_validate_timex(txc);
2553 	if (ret)
2554 		return ret;
2555 	add_device_randomness(txc, sizeof(*txc));
2556 
2557 	if (txc->modes & ADJ_SETOFFSET) {
2558 		struct timespec64 delta;
2559 
2560 		delta.tv_sec  = txc->time.tv_sec;
2561 		delta.tv_nsec = txc->time.tv_usec;
2562 		if (!(txc->modes & ADJ_NANO))
2563 			delta.tv_nsec *= 1000;
2564 		ret = timekeeping_inject_offset(&delta);
2565 		if (ret)
2566 			return ret;
2567 
2568 		offset_set = delta.tv_sec != 0;
2569 		audit_tk_injoffset(delta);
2570 	}
2571 
2572 	audit_ntp_init(&ad);
2573 
2574 	ktime_get_real_ts64(&ts);
2575 	add_device_randomness(&ts, sizeof(ts));
2576 
2577 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
2578 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
2579 		s32 orig_tai, tai;
2580 
2581 		orig_tai = tai = tks->tai_offset;
2582 		ret = __do_adjtimex(txc, &ts, &tai, &ad);
2583 
2584 		if (tai != orig_tai) {
2585 			__timekeeping_set_tai_offset(tks, tai);
2586 			timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
2587 			clock_set = true;
2588 		} else {
2589 			tk_update_leap_state_all(&tk_core);
2590 		}
2591 	}
2592 
2593 	audit_ntp_log(&ad);
2594 
2595 	/* Update the multiplier immediately if frequency was set directly */
2596 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2597 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2598 
2599 	if (clock_set)
2600 		clock_was_set(CLOCK_SET_WALL);
2601 
2602 	ntp_notify_cmos_timer(offset_set);
2603 
2604 	return ret;
2605 }
2606 
2607 #ifdef CONFIG_NTP_PPS
2608 /**
2609  * hardpps() - Accessor function to NTP __hardpps function
2610  * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
2611  * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
2612  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2613 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2614 {
2615 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2616 	__hardpps(phase_ts, raw_ts);
2617 }
2618 EXPORT_SYMBOL(hardpps);
2619 #endif /* CONFIG_NTP_PPS */
2620