xref: /linux/fs/crypto/keyring.c (revision d60ac92c105fd8c09224b92c3e34dd03327ba3f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <linux/export.h>
23 #include <linux/key-type.h>
24 #include <linux/once.h>
25 #include <linux/random.h>
26 #include <linux/seq_file.h>
27 #include <linux/unaligned.h>
28 
29 #include "fscrypt_private.h"
30 
31 /* The master encryption keys for a filesystem (->s_master_keys) */
32 struct fscrypt_keyring {
33 	/*
34 	 * Lock that protects ->key_hashtable.  It does *not* protect the
35 	 * fscrypt_master_key structs themselves.
36 	 */
37 	spinlock_t lock;
38 
39 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
40 	struct hlist_head key_hashtable[128];
41 };
42 
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)43 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
44 {
45 	memzero_explicit(secret, sizeof(*secret));
46 }
47 
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)48 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
49 				   struct fscrypt_master_key_secret *src)
50 {
51 	memcpy(dst, src, sizeof(*dst));
52 	memzero_explicit(src, sizeof(*src));
53 }
54 
fscrypt_free_master_key(struct rcu_head * head)55 static void fscrypt_free_master_key(struct rcu_head *head)
56 {
57 	struct fscrypt_master_key *mk =
58 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
59 	/*
60 	 * The master key secret and any embedded subkeys should have already
61 	 * been wiped when the last active reference to the fscrypt_master_key
62 	 * struct was dropped; doing it here would be unnecessarily late.
63 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
64 	 */
65 	kfree_sensitive(mk);
66 }
67 
fscrypt_put_master_key(struct fscrypt_master_key * mk)68 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
69 {
70 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
71 		return;
72 	/*
73 	 * No structural references left, so free ->mk_users, and also free the
74 	 * fscrypt_master_key struct itself after an RCU grace period ensures
75 	 * that concurrent keyring lookups can no longer find it.
76 	 */
77 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
78 	if (mk->mk_users) {
79 		/* Clear the keyring so the quota gets released right away. */
80 		keyring_clear(mk->mk_users);
81 		key_put(mk->mk_users);
82 		mk->mk_users = NULL;
83 	}
84 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
85 }
86 
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)87 void fscrypt_put_master_key_activeref(struct super_block *sb,
88 				      struct fscrypt_master_key *mk)
89 {
90 	size_t i;
91 
92 	if (!refcount_dec_and_test(&mk->mk_active_refs))
93 		return;
94 	/*
95 	 * No active references left, so complete the full removal of this
96 	 * fscrypt_master_key struct by removing it from the keyring and
97 	 * destroying any subkeys embedded in it.
98 	 */
99 
100 	if (WARN_ON_ONCE(!sb->s_master_keys))
101 		return;
102 	spin_lock(&sb->s_master_keys->lock);
103 	hlist_del_rcu(&mk->mk_node);
104 	spin_unlock(&sb->s_master_keys->lock);
105 
106 	/*
107 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
108 	 * ->mk_decrypted_inodes is empty.
109 	 */
110 	WARN_ON_ONCE(mk->mk_present);
111 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
112 
113 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
114 		fscrypt_destroy_prepared_key(
115 				sb, &mk->mk_direct_keys[i]);
116 		fscrypt_destroy_prepared_key(
117 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
118 		fscrypt_destroy_prepared_key(
119 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
120 	}
121 	memzero_explicit(&mk->mk_ino_hash_key,
122 			 sizeof(mk->mk_ino_hash_key));
123 	mk->mk_ino_hash_key_initialized = false;
124 
125 	/* Drop the structural ref associated with the active refs. */
126 	fscrypt_put_master_key(mk);
127 }
128 
129 /*
130  * This transitions the key state from present to incompletely removed, and then
131  * potentially to absent (depending on whether inodes remain).
132  */
fscrypt_initiate_key_removal(struct super_block * sb,struct fscrypt_master_key * mk)133 static void fscrypt_initiate_key_removal(struct super_block *sb,
134 					 struct fscrypt_master_key *mk)
135 {
136 	WRITE_ONCE(mk->mk_present, false);
137 	wipe_master_key_secret(&mk->mk_secret);
138 	fscrypt_put_master_key_activeref(sb, mk);
139 }
140 
valid_key_spec(const struct fscrypt_key_specifier * spec)141 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
142 {
143 	if (spec->__reserved)
144 		return false;
145 	return master_key_spec_len(spec) != 0;
146 }
147 
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)148 static int fscrypt_user_key_instantiate(struct key *key,
149 					struct key_preparsed_payload *prep)
150 {
151 	/*
152 	 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota
153 	 * for each key, regardless of the exact key size.  The amount of memory
154 	 * actually used is greater than the size of the raw key anyway.
155 	 */
156 	return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE);
157 }
158 
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)159 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
160 {
161 	seq_puts(m, key->description);
162 }
163 
164 /*
165  * Type of key in ->mk_users.  Each key of this type represents a particular
166  * user who has added a particular master key.
167  *
168  * Note that the name of this key type really should be something like
169  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
170  * mainly for simplicity of presentation in /proc/keys when read by a non-root
171  * user.  And it is expected to be rare that a key is actually added by multiple
172  * users, since users should keep their encryption keys confidential.
173  */
174 static struct key_type key_type_fscrypt_user = {
175 	.name			= ".fscrypt",
176 	.instantiate		= fscrypt_user_key_instantiate,
177 	.describe		= fscrypt_user_key_describe,
178 };
179 
180 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
181 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
182 	 CONST_STRLEN("-users") + 1)
183 
184 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
185 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
186 
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])187 static void format_mk_users_keyring_description(
188 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
189 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
190 {
191 	sprintf(description, "fscrypt-%*phN-users",
192 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
193 }
194 
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])195 static void format_mk_user_description(
196 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
197 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
198 {
199 
200 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
201 		mk_identifier, __kuid_val(current_fsuid()));
202 }
203 
204 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)205 static int allocate_filesystem_keyring(struct super_block *sb)
206 {
207 	struct fscrypt_keyring *keyring;
208 
209 	if (sb->s_master_keys)
210 		return 0;
211 
212 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
213 	if (!keyring)
214 		return -ENOMEM;
215 	spin_lock_init(&keyring->lock);
216 	/*
217 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
218 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
219 	 * concurrent tasks can ACQUIRE it.
220 	 */
221 	smp_store_release(&sb->s_master_keys, keyring);
222 	return 0;
223 }
224 
225 /*
226  * Release all encryption keys that have been added to the filesystem, along
227  * with the keyring that contains them.
228  *
229  * This is called at unmount time, after all potentially-encrypted inodes have
230  * been evicted.  The filesystem's underlying block device(s) are still
231  * available at this time; this is important because after user file accesses
232  * have been allowed, this function may need to evict keys from the keyslots of
233  * an inline crypto engine, which requires the block device(s).
234  */
fscrypt_destroy_keyring(struct super_block * sb)235 void fscrypt_destroy_keyring(struct super_block *sb)
236 {
237 	struct fscrypt_keyring *keyring = sb->s_master_keys;
238 	size_t i;
239 
240 	if (!keyring)
241 		return;
242 
243 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
244 		struct hlist_head *bucket = &keyring->key_hashtable[i];
245 		struct fscrypt_master_key *mk;
246 		struct hlist_node *tmp;
247 
248 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
249 			/*
250 			 * Since all potentially-encrypted inodes were already
251 			 * evicted, every key remaining in the keyring should
252 			 * have an empty inode list, and should only still be in
253 			 * the keyring due to the single active ref associated
254 			 * with ->mk_present.  There should be no structural
255 			 * refs beyond the one associated with the active ref.
256 			 */
257 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
258 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
259 			WARN_ON_ONCE(!mk->mk_present);
260 			fscrypt_initiate_key_removal(sb, mk);
261 		}
262 	}
263 	kfree_sensitive(keyring);
264 	sb->s_master_keys = NULL;
265 }
266 
267 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)268 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
269 		       const struct fscrypt_key_specifier *mk_spec)
270 {
271 	/*
272 	 * Since key specifiers should be "random" values, it is sufficient to
273 	 * use a trivial hash function that just takes the first several bits of
274 	 * the key specifier.
275 	 */
276 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
277 
278 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
279 }
280 
281 /*
282  * Find the specified master key struct in ->s_master_keys and take a structural
283  * ref to it.  The structural ref guarantees that the key struct continues to
284  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
285  * the key struct.  The structural ref needs to be dropped by
286  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
287  */
288 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)289 fscrypt_find_master_key(struct super_block *sb,
290 			const struct fscrypt_key_specifier *mk_spec)
291 {
292 	struct fscrypt_keyring *keyring;
293 	struct hlist_head *bucket;
294 	struct fscrypt_master_key *mk;
295 
296 	/*
297 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
298 	 * I.e., another task can publish ->s_master_keys concurrently,
299 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
300 	 * to safely ACQUIRE the memory the other task published.
301 	 */
302 	keyring = smp_load_acquire(&sb->s_master_keys);
303 	if (keyring == NULL)
304 		return NULL; /* No keyring yet, so no keys yet. */
305 
306 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
307 	rcu_read_lock();
308 	switch (mk_spec->type) {
309 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
310 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
311 			if (mk->mk_spec.type ==
312 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
313 			    memcmp(mk->mk_spec.u.descriptor,
314 				   mk_spec->u.descriptor,
315 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
316 			    refcount_inc_not_zero(&mk->mk_struct_refs))
317 				goto out;
318 		}
319 		break;
320 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
321 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
322 			if (mk->mk_spec.type ==
323 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
324 			    memcmp(mk->mk_spec.u.identifier,
325 				   mk_spec->u.identifier,
326 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
327 			    refcount_inc_not_zero(&mk->mk_struct_refs))
328 				goto out;
329 		}
330 		break;
331 	}
332 	mk = NULL;
333 out:
334 	rcu_read_unlock();
335 	return mk;
336 }
337 
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)338 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
339 {
340 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
341 	struct key *keyring;
342 
343 	format_mk_users_keyring_description(description,
344 					    mk->mk_spec.u.identifier);
345 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
346 				current_cred(), KEY_POS_SEARCH |
347 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
348 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
349 	if (IS_ERR(keyring))
350 		return PTR_ERR(keyring);
351 
352 	mk->mk_users = keyring;
353 	return 0;
354 }
355 
356 /*
357  * Find the current user's "key" in the master key's ->mk_users.
358  * Returns ERR_PTR(-ENOKEY) if not found.
359  */
find_master_key_user(struct fscrypt_master_key * mk)360 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
361 {
362 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
363 	key_ref_t keyref;
364 
365 	format_mk_user_description(description, mk->mk_spec.u.identifier);
366 
367 	/*
368 	 * We need to mark the keyring reference as "possessed" so that we
369 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
370 	 */
371 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
372 				&key_type_fscrypt_user, description, false);
373 	if (IS_ERR(keyref)) {
374 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
375 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
376 			keyref = ERR_PTR(-ENOKEY);
377 		return ERR_CAST(keyref);
378 	}
379 	return key_ref_to_ptr(keyref);
380 }
381 
382 /*
383  * Give the current user a "key" in ->mk_users.  This charges the user's quota
384  * and marks the master key as added by the current user, so that it cannot be
385  * removed by another user with the key.  Either ->mk_sem must be held for
386  * write, or the master key must be still undergoing initialization.
387  */
add_master_key_user(struct fscrypt_master_key * mk)388 static int add_master_key_user(struct fscrypt_master_key *mk)
389 {
390 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
391 	struct key *mk_user;
392 	int err;
393 
394 	format_mk_user_description(description, mk->mk_spec.u.identifier);
395 	mk_user = key_alloc(&key_type_fscrypt_user, description,
396 			    current_fsuid(), current_gid(), current_cred(),
397 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
398 	if (IS_ERR(mk_user))
399 		return PTR_ERR(mk_user);
400 
401 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
402 	key_put(mk_user);
403 	return err;
404 }
405 
406 /*
407  * Remove the current user's "key" from ->mk_users.
408  * ->mk_sem must be held for write.
409  *
410  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
411  */
remove_master_key_user(struct fscrypt_master_key * mk)412 static int remove_master_key_user(struct fscrypt_master_key *mk)
413 {
414 	struct key *mk_user;
415 	int err;
416 
417 	mk_user = find_master_key_user(mk);
418 	if (IS_ERR(mk_user))
419 		return PTR_ERR(mk_user);
420 	err = key_unlink(mk->mk_users, mk_user);
421 	key_put(mk_user);
422 	return err;
423 }
424 
425 /*
426  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
427  * insert it into sb->s_master_keys.
428  */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)429 static int add_new_master_key(struct super_block *sb,
430 			      struct fscrypt_master_key_secret *secret,
431 			      const struct fscrypt_key_specifier *mk_spec)
432 {
433 	struct fscrypt_keyring *keyring = sb->s_master_keys;
434 	struct fscrypt_master_key *mk;
435 	int err;
436 
437 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
438 	if (!mk)
439 		return -ENOMEM;
440 
441 	init_rwsem(&mk->mk_sem);
442 	refcount_set(&mk->mk_struct_refs, 1);
443 	mk->mk_spec = *mk_spec;
444 
445 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
446 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
447 
448 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
449 		err = allocate_master_key_users_keyring(mk);
450 		if (err)
451 			goto out_put;
452 		err = add_master_key_user(mk);
453 		if (err)
454 			goto out_put;
455 	}
456 
457 	move_master_key_secret(&mk->mk_secret, secret);
458 	mk->mk_present = true;
459 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
460 
461 	spin_lock(&keyring->lock);
462 	hlist_add_head_rcu(&mk->mk_node,
463 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
464 	spin_unlock(&keyring->lock);
465 	return 0;
466 
467 out_put:
468 	fscrypt_put_master_key(mk);
469 	return err;
470 }
471 
472 #define KEY_DEAD	1
473 
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)474 static int add_existing_master_key(struct fscrypt_master_key *mk,
475 				   struct fscrypt_master_key_secret *secret)
476 {
477 	int err;
478 
479 	/*
480 	 * If the current user is already in ->mk_users, then there's nothing to
481 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
482 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
483 	 */
484 	if (mk->mk_users) {
485 		struct key *mk_user = find_master_key_user(mk);
486 
487 		if (mk_user != ERR_PTR(-ENOKEY)) {
488 			if (IS_ERR(mk_user))
489 				return PTR_ERR(mk_user);
490 			key_put(mk_user);
491 			return 0;
492 		}
493 		err = add_master_key_user(mk);
494 		if (err)
495 			return err;
496 	}
497 
498 	/* If the key is incompletely removed, make it present again. */
499 	if (!mk->mk_present) {
500 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
501 			/*
502 			 * Raced with the last active ref being dropped, so the
503 			 * key has become, or is about to become, "absent".
504 			 * Therefore, we need to allocate a new key struct.
505 			 */
506 			return KEY_DEAD;
507 		}
508 		move_master_key_secret(&mk->mk_secret, secret);
509 		WRITE_ONCE(mk->mk_present, true);
510 	}
511 
512 	return 0;
513 }
514 
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)515 static int do_add_master_key(struct super_block *sb,
516 			     struct fscrypt_master_key_secret *secret,
517 			     const struct fscrypt_key_specifier *mk_spec)
518 {
519 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
520 	struct fscrypt_master_key *mk;
521 	int err;
522 
523 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
524 
525 	mk = fscrypt_find_master_key(sb, mk_spec);
526 	if (!mk) {
527 		/* Didn't find the key in ->s_master_keys.  Add it. */
528 		err = allocate_filesystem_keyring(sb);
529 		if (!err)
530 			err = add_new_master_key(sb, secret, mk_spec);
531 	} else {
532 		/*
533 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
534 		 * if needed, and make the key "present" again if possible.
535 		 */
536 		down_write(&mk->mk_sem);
537 		err = add_existing_master_key(mk, secret);
538 		up_write(&mk->mk_sem);
539 		if (err == KEY_DEAD) {
540 			/*
541 			 * We found a key struct, but it's already been fully
542 			 * removed.  Ignore the old struct and add a new one.
543 			 * fscrypt_add_key_mutex means we don't need to worry
544 			 * about concurrent adds.
545 			 */
546 			err = add_new_master_key(sb, secret, mk_spec);
547 		}
548 		fscrypt_put_master_key(mk);
549 	}
550 	mutex_unlock(&fscrypt_add_key_mutex);
551 	return err;
552 }
553 
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)554 static int add_master_key(struct super_block *sb,
555 			  struct fscrypt_master_key_secret *secret,
556 			  struct fscrypt_key_specifier *key_spec)
557 {
558 	int err;
559 
560 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
561 		u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
562 		u8 *kdf_key = secret->bytes;
563 		unsigned int kdf_key_size = secret->size;
564 		u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY;
565 
566 		/*
567 		 * For raw keys, the fscrypt master key is used directly as the
568 		 * fscrypt KDF key.  For hardware-wrapped keys, we have to pass
569 		 * the master key to the hardware to derive the KDF key, which
570 		 * is then only used to derive non-file-contents subkeys.
571 		 */
572 		if (secret->is_hw_wrapped) {
573 			err = fscrypt_derive_sw_secret(sb, secret->bytes,
574 						       secret->size, sw_secret);
575 			if (err)
576 				return err;
577 			kdf_key = sw_secret;
578 			kdf_key_size = sizeof(sw_secret);
579 			/*
580 			 * To avoid weird behavior if someone manages to
581 			 * determine sw_secret and add it as a raw key, ensure
582 			 * that hardware-wrapped keys and raw keys will have
583 			 * different key identifiers by deriving their key
584 			 * identifiers using different KDF contexts.
585 			 */
586 			keyid_kdf_ctx =
587 				HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY;
588 		}
589 		fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
590 		/*
591 		 * Now that the KDF context is initialized, the raw KDF key is
592 		 * no longer needed.
593 		 */
594 		memzero_explicit(kdf_key, kdf_key_size);
595 
596 		/* Calculate the key identifier */
597 		fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
598 				    key_spec->u.identifier,
599 				    FSCRYPT_KEY_IDENTIFIER_SIZE);
600 	}
601 	return do_add_master_key(sb, secret, key_spec);
602 }
603 
604 /*
605  * Validate the size of an fscrypt master key being added.  Note that this is
606  * just an initial check, as we don't know which ciphers will be used yet.
607  * There is a stricter size check later when the key is actually used by a file.
608  */
fscrypt_valid_key_size(size_t size,u32 add_key_flags)609 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags)
610 {
611 	u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ?
612 		       FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
613 		       FSCRYPT_MAX_RAW_KEY_SIZE;
614 
615 	return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size;
616 }
617 
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)618 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
619 {
620 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
621 
622 	if (prep->datalen < sizeof(*payload))
623 		return -EINVAL;
624 
625 	if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload),
626 				    payload->flags))
627 		return -EINVAL;
628 
629 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
630 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
631 		return -EINVAL;
632 
633 	if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
634 		return -EINVAL;
635 
636 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
637 	if (!prep->payload.data[0])
638 		return -ENOMEM;
639 
640 	prep->quotalen = prep->datalen;
641 	return 0;
642 }
643 
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)644 static void fscrypt_provisioning_key_free_preparse(
645 					struct key_preparsed_payload *prep)
646 {
647 	kfree_sensitive(prep->payload.data[0]);
648 }
649 
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)650 static void fscrypt_provisioning_key_describe(const struct key *key,
651 					      struct seq_file *m)
652 {
653 	seq_puts(m, key->description);
654 	if (key_is_positive(key)) {
655 		const struct fscrypt_provisioning_key_payload *payload =
656 			key->payload.data[0];
657 
658 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
659 	}
660 }
661 
fscrypt_provisioning_key_destroy(struct key * key)662 static void fscrypt_provisioning_key_destroy(struct key *key)
663 {
664 	kfree_sensitive(key->payload.data[0]);
665 }
666 
667 static struct key_type key_type_fscrypt_provisioning = {
668 	.name			= "fscrypt-provisioning",
669 	.preparse		= fscrypt_provisioning_key_preparse,
670 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
671 	.instantiate		= generic_key_instantiate,
672 	.describe		= fscrypt_provisioning_key_describe,
673 	.destroy		= fscrypt_provisioning_key_destroy,
674 };
675 
676 /*
677  * Retrieve the key from the Linux keyring key specified by 'key_id', and store
678  * it into 'secret'.
679  *
680  * The key must be of type "fscrypt-provisioning" and must have the 'type' and
681  * 'flags' field of the payload set to the given values, indicating that the key
682  * is intended for use for the specified purpose.  We don't use the "logon" key
683  * type because there's no way to completely restrict the use of such keys; they
684  * can be used by any kernel API that accepts "logon" keys and doesn't require a
685  * specific service prefix.
686  *
687  * The ability to specify the key via Linux keyring key is intended for cases
688  * where userspace needs to re-add keys after the filesystem is unmounted and
689  * re-mounted.  Most users should just provide the key directly instead.
690  */
get_keyring_key(u32 key_id,u32 type,u32 flags,struct fscrypt_master_key_secret * secret)691 static int get_keyring_key(u32 key_id, u32 type, u32 flags,
692 			   struct fscrypt_master_key_secret *secret)
693 {
694 	key_ref_t ref;
695 	struct key *key;
696 	const struct fscrypt_provisioning_key_payload *payload;
697 	int err;
698 
699 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
700 	if (IS_ERR(ref))
701 		return PTR_ERR(ref);
702 	key = key_ref_to_ptr(ref);
703 
704 	if (key->type != &key_type_fscrypt_provisioning)
705 		goto bad_key;
706 	payload = key->payload.data[0];
707 
708 	/*
709 	 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa.
710 	 * Similarly, don't allow hardware-wrapped keys to be used as
711 	 * non-hardware-wrapped keys and vice versa.
712 	 */
713 	if (payload->type != type || payload->flags != flags)
714 		goto bad_key;
715 
716 	secret->size = key->datalen - sizeof(*payload);
717 	memcpy(secret->bytes, payload->raw, secret->size);
718 	err = 0;
719 	goto out_put;
720 
721 bad_key:
722 	err = -EKEYREJECTED;
723 out_put:
724 	key_ref_put(ref);
725 	return err;
726 }
727 
728 /*
729  * Add a master encryption key to the filesystem, causing all files which were
730  * encrypted with it to appear "unlocked" (decrypted) when accessed.
731  *
732  * When adding a key for use by v1 encryption policies, this ioctl is
733  * privileged, and userspace must provide the 'key_descriptor'.
734  *
735  * When adding a key for use by v2+ encryption policies, this ioctl is
736  * unprivileged.  This is needed, in general, to allow non-root users to use
737  * encryption without encountering the visibility problems of process-subscribed
738  * keyrings and the inability to properly remove keys.  This works by having
739  * each key identified by its cryptographically secure hash --- the
740  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
741  * cannot add the wrong key for a given identifier.  Furthermore, each added key
742  * is charged to the appropriate user's quota for the keyrings service, which
743  * prevents a malicious user from adding too many keys.  Finally, we forbid a
744  * user from removing a key while other users have added it too, which prevents
745  * a user who knows another user's key from causing a denial-of-service by
746  * removing it at an inopportune time.  (We tolerate that a user who knows a key
747  * can prevent other users from removing it.)
748  *
749  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
750  * Documentation/filesystems/fscrypt.rst.
751  */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)752 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
753 {
754 	struct super_block *sb = file_inode(filp)->i_sb;
755 	struct fscrypt_add_key_arg __user *uarg = _uarg;
756 	struct fscrypt_add_key_arg arg;
757 	struct fscrypt_master_key_secret secret;
758 	int err;
759 
760 	if (copy_from_user(&arg, uarg, sizeof(arg)))
761 		return -EFAULT;
762 
763 	if (!valid_key_spec(&arg.key_spec))
764 		return -EINVAL;
765 
766 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
767 		return -EINVAL;
768 
769 	/*
770 	 * Only root can add keys that are identified by an arbitrary descriptor
771 	 * rather than by a cryptographic hash --- since otherwise a malicious
772 	 * user could add the wrong key.
773 	 */
774 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
775 	    !capable(CAP_SYS_ADMIN))
776 		return -EACCES;
777 
778 	memset(&secret, 0, sizeof(secret));
779 
780 	if (arg.flags) {
781 		if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
782 			return -EINVAL;
783 		if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
784 			return -EINVAL;
785 		secret.is_hw_wrapped = true;
786 	}
787 
788 	if (arg.key_id) {
789 		if (arg.raw_size != 0)
790 			return -EINVAL;
791 		err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags,
792 				      &secret);
793 		if (err)
794 			goto out_wipe_secret;
795 	} else {
796 		if (!fscrypt_valid_key_size(arg.raw_size, arg.flags))
797 			return -EINVAL;
798 		secret.size = arg.raw_size;
799 		err = -EFAULT;
800 		if (copy_from_user(secret.bytes, uarg->raw, secret.size))
801 			goto out_wipe_secret;
802 	}
803 
804 	err = add_master_key(sb, &secret, &arg.key_spec);
805 	if (err)
806 		goto out_wipe_secret;
807 
808 	/* Return the key identifier to userspace, if applicable */
809 	err = -EFAULT;
810 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
811 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
812 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
813 		goto out_wipe_secret;
814 	err = 0;
815 out_wipe_secret:
816 	wipe_master_key_secret(&secret);
817 	return err;
818 }
819 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
820 
821 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)822 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
823 {
824 	static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE];
825 
826 	get_random_once(test_key, sizeof(test_key));
827 
828 	memset(secret, 0, sizeof(*secret));
829 	secret->size = sizeof(test_key);
830 	memcpy(secret->bytes, test_key, sizeof(test_key));
831 }
832 
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])833 void fscrypt_get_test_dummy_key_identifier(
834 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
835 {
836 	struct fscrypt_master_key_secret secret;
837 
838 	fscrypt_get_test_dummy_secret(&secret);
839 	fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size);
840 	fscrypt_hkdf_expand(&secret.hkdf,
841 			    HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY, NULL, 0,
842 			    key_identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
843 	wipe_master_key_secret(&secret);
844 }
845 
846 /**
847  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
848  * @sb: the filesystem instance to add the key to
849  * @key_spec: the key specifier of the test dummy encryption key
850  *
851  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
852  * prevent misuse of this mount option, a per-boot random key is used instead of
853  * a hardcoded one.  This makes it so that any encrypted files created using
854  * this option won't be accessible after a reboot.
855  *
856  * Return: 0 on success, -errno on failure
857  */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)858 int fscrypt_add_test_dummy_key(struct super_block *sb,
859 			       struct fscrypt_key_specifier *key_spec)
860 {
861 	struct fscrypt_master_key_secret secret;
862 	int err;
863 
864 	fscrypt_get_test_dummy_secret(&secret);
865 	err = add_master_key(sb, &secret, key_spec);
866 	wipe_master_key_secret(&secret);
867 	return err;
868 }
869 
870 /*
871  * Verify that the current user has added a master key with the given identifier
872  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
873  * their files using some other user's key which they don't actually know.
874  * Cryptographically this isn't much of a problem, but the semantics of this
875  * would be a bit weird, so it's best to just forbid it.
876  *
877  * The system administrator (CAP_FOWNER) can override this, which should be
878  * enough for any use cases where encryption policies are being set using keys
879  * that were chosen ahead of time but aren't available at the moment.
880  *
881  * Note that the key may have already removed by the time this returns, but
882  * that's okay; we just care whether the key was there at some point.
883  *
884  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
885  */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])886 int fscrypt_verify_key_added(struct super_block *sb,
887 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
888 {
889 	struct fscrypt_key_specifier mk_spec;
890 	struct fscrypt_master_key *mk;
891 	struct key *mk_user;
892 	int err;
893 
894 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
895 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
896 
897 	mk = fscrypt_find_master_key(sb, &mk_spec);
898 	if (!mk) {
899 		err = -ENOKEY;
900 		goto out;
901 	}
902 	down_read(&mk->mk_sem);
903 	mk_user = find_master_key_user(mk);
904 	if (IS_ERR(mk_user)) {
905 		err = PTR_ERR(mk_user);
906 	} else {
907 		key_put(mk_user);
908 		err = 0;
909 	}
910 	up_read(&mk->mk_sem);
911 	fscrypt_put_master_key(mk);
912 out:
913 	if (err == -ENOKEY && capable(CAP_FOWNER))
914 		err = 0;
915 	return err;
916 }
917 
918 /*
919  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
920  * directory, then it can have at most one dentry; however, that dentry may be
921  * pinned by child dentries, so first try to evict the children too.
922  */
shrink_dcache_inode(struct inode * inode)923 static void shrink_dcache_inode(struct inode *inode)
924 {
925 	struct dentry *dentry;
926 
927 	if (S_ISDIR(inode->i_mode)) {
928 		dentry = d_find_any_alias(inode);
929 		if (dentry) {
930 			shrink_dcache_parent(dentry);
931 			dput(dentry);
932 		}
933 	}
934 	d_prune_aliases(inode);
935 }
936 
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)937 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
938 {
939 	struct fscrypt_inode_info *ci;
940 	struct inode *inode;
941 	struct inode *toput_inode = NULL;
942 
943 	spin_lock(&mk->mk_decrypted_inodes_lock);
944 
945 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
946 		inode = ci->ci_inode;
947 		spin_lock(&inode->i_lock);
948 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
949 			spin_unlock(&inode->i_lock);
950 			continue;
951 		}
952 		__iget(inode);
953 		spin_unlock(&inode->i_lock);
954 		spin_unlock(&mk->mk_decrypted_inodes_lock);
955 
956 		shrink_dcache_inode(inode);
957 		iput(toput_inode);
958 		toput_inode = inode;
959 
960 		spin_lock(&mk->mk_decrypted_inodes_lock);
961 	}
962 
963 	spin_unlock(&mk->mk_decrypted_inodes_lock);
964 	iput(toput_inode);
965 }
966 
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)967 static int check_for_busy_inodes(struct super_block *sb,
968 				 struct fscrypt_master_key *mk)
969 {
970 	struct list_head *pos;
971 	size_t busy_count = 0;
972 	unsigned long ino;
973 	char ino_str[50] = "";
974 
975 	spin_lock(&mk->mk_decrypted_inodes_lock);
976 
977 	list_for_each(pos, &mk->mk_decrypted_inodes)
978 		busy_count++;
979 
980 	if (busy_count == 0) {
981 		spin_unlock(&mk->mk_decrypted_inodes_lock);
982 		return 0;
983 	}
984 
985 	{
986 		/* select an example file to show for debugging purposes */
987 		struct inode *inode =
988 			list_first_entry(&mk->mk_decrypted_inodes,
989 					 struct fscrypt_inode_info,
990 					 ci_master_key_link)->ci_inode;
991 		ino = inode->i_ino;
992 	}
993 	spin_unlock(&mk->mk_decrypted_inodes_lock);
994 
995 	/* If the inode is currently being created, ino may still be 0. */
996 	if (ino)
997 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
998 
999 	fscrypt_warn(NULL,
1000 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
1001 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
1002 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
1003 		     ino_str);
1004 	return -EBUSY;
1005 }
1006 
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)1007 static int try_to_lock_encrypted_files(struct super_block *sb,
1008 				       struct fscrypt_master_key *mk)
1009 {
1010 	int err1;
1011 	int err2;
1012 
1013 	/*
1014 	 * An inode can't be evicted while it is dirty or has dirty pages.
1015 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
1016 	 *
1017 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
1018 	 * it works, and it's more important to minimize the amount of caches we
1019 	 * drop than the amount of data we sync.  Also, unprivileged users can
1020 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
1021 	 */
1022 	down_read(&sb->s_umount);
1023 	err1 = sync_filesystem(sb);
1024 	up_read(&sb->s_umount);
1025 	/* If a sync error occurs, still try to evict as much as possible. */
1026 
1027 	/*
1028 	 * Inodes are pinned by their dentries, so we have to evict their
1029 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
1030 	 * and inappropriate for use by unprivileged users.  So instead go
1031 	 * through the inodes' alias lists and try to evict each dentry.
1032 	 */
1033 	evict_dentries_for_decrypted_inodes(mk);
1034 
1035 	/*
1036 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
1037 	 * the list; any inodes for which that dropped the last reference will
1038 	 * have been evicted due to fscrypt_drop_inode() detecting the key
1039 	 * removal and telling the VFS to evict the inode.  So to finish, we
1040 	 * just need to check whether any inodes couldn't be evicted.
1041 	 */
1042 	err2 = check_for_busy_inodes(sb, mk);
1043 
1044 	return err1 ?: err2;
1045 }
1046 
1047 /*
1048  * Try to remove an fscrypt master encryption key.
1049  *
1050  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1051  * claim to the key, then removes the key itself if no other users have claims.
1052  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1053  * key itself.
1054  *
1055  * To "remove the key itself", first we transition the key to the "incompletely
1056  * removed" state, so that no more inodes can be unlocked with it.  Then we try
1057  * to evict all cached inodes that had been unlocked with the key.
1058  *
1059  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1060  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1061  * state where it tracks the list of remaining inodes.  Userspace can execute
1062  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1063  *
1064  * For more details, see the "Removing keys" section of
1065  * Documentation/filesystems/fscrypt.rst.
1066  */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1067 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1068 {
1069 	struct super_block *sb = file_inode(filp)->i_sb;
1070 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1071 	struct fscrypt_remove_key_arg arg;
1072 	struct fscrypt_master_key *mk;
1073 	u32 status_flags = 0;
1074 	int err;
1075 	bool inodes_remain;
1076 
1077 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1078 		return -EFAULT;
1079 
1080 	if (!valid_key_spec(&arg.key_spec))
1081 		return -EINVAL;
1082 
1083 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1084 		return -EINVAL;
1085 
1086 	/*
1087 	 * Only root can add and remove keys that are identified by an arbitrary
1088 	 * descriptor rather than by a cryptographic hash.
1089 	 */
1090 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1091 	    !capable(CAP_SYS_ADMIN))
1092 		return -EACCES;
1093 
1094 	/* Find the key being removed. */
1095 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1096 	if (!mk)
1097 		return -ENOKEY;
1098 	down_write(&mk->mk_sem);
1099 
1100 	/* If relevant, remove current user's (or all users) claim to the key */
1101 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1102 		if (all_users)
1103 			err = keyring_clear(mk->mk_users);
1104 		else
1105 			err = remove_master_key_user(mk);
1106 		if (err) {
1107 			up_write(&mk->mk_sem);
1108 			goto out_put_key;
1109 		}
1110 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1111 			/*
1112 			 * Other users have still added the key too.  We removed
1113 			 * the current user's claim to the key, but we still
1114 			 * can't remove the key itself.
1115 			 */
1116 			status_flags |=
1117 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1118 			err = 0;
1119 			up_write(&mk->mk_sem);
1120 			goto out_put_key;
1121 		}
1122 	}
1123 
1124 	/* No user claims remaining.  Initiate removal of the key. */
1125 	err = -ENOKEY;
1126 	if (mk->mk_present) {
1127 		fscrypt_initiate_key_removal(sb, mk);
1128 		err = 0;
1129 	}
1130 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1131 	up_write(&mk->mk_sem);
1132 
1133 	if (inodes_remain) {
1134 		/* Some inodes still reference this key; try to evict them. */
1135 		err = try_to_lock_encrypted_files(sb, mk);
1136 		if (err == -EBUSY) {
1137 			status_flags |=
1138 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1139 			err = 0;
1140 		}
1141 	}
1142 	/*
1143 	 * We return 0 if we successfully did something: removed a claim to the
1144 	 * key, initiated removal of the key, or tried locking the files again.
1145 	 * Users need to check the informational status flags if they care
1146 	 * whether the key has been fully removed including all files locked.
1147 	 */
1148 out_put_key:
1149 	fscrypt_put_master_key(mk);
1150 	if (err == 0)
1151 		err = put_user(status_flags, &uarg->removal_status_flags);
1152 	return err;
1153 }
1154 
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1155 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1156 {
1157 	return do_remove_key(filp, uarg, false);
1158 }
1159 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1160 
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1161 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1162 {
1163 	if (!capable(CAP_SYS_ADMIN))
1164 		return -EACCES;
1165 	return do_remove_key(filp, uarg, true);
1166 }
1167 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1168 
1169 /*
1170  * Retrieve the status of an fscrypt master encryption key.
1171  *
1172  * We set ->status to indicate whether the key is absent, present, or
1173  * incompletely removed.  (For an explanation of what these statuses mean and
1174  * how they are represented internally, see struct fscrypt_master_key.)  This
1175  * field allows applications to easily determine the status of an encrypted
1176  * directory without using a hack such as trying to open a regular file in it
1177  * (which can confuse the "incompletely removed" status with absent or present).
1178  *
1179  * In addition, for v2 policy keys we allow applications to determine, via
1180  * ->status_flags and ->user_count, whether the key has been added by the
1181  * current user, by other users, or by both.  Most applications should not need
1182  * this, since ordinarily only one user should know a given key.  However, if a
1183  * secret key is shared by multiple users, applications may wish to add an
1184  * already-present key to prevent other users from removing it.  This ioctl can
1185  * be used to check whether that really is the case before the work is done to
1186  * add the key --- which might e.g. require prompting the user for a passphrase.
1187  *
1188  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1189  * Documentation/filesystems/fscrypt.rst.
1190  */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1191 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1192 {
1193 	struct super_block *sb = file_inode(filp)->i_sb;
1194 	struct fscrypt_get_key_status_arg arg;
1195 	struct fscrypt_master_key *mk;
1196 	int err;
1197 
1198 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1199 		return -EFAULT;
1200 
1201 	if (!valid_key_spec(&arg.key_spec))
1202 		return -EINVAL;
1203 
1204 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1205 		return -EINVAL;
1206 
1207 	arg.status_flags = 0;
1208 	arg.user_count = 0;
1209 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1210 
1211 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1212 	if (!mk) {
1213 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1214 		err = 0;
1215 		goto out;
1216 	}
1217 	down_read(&mk->mk_sem);
1218 
1219 	if (!mk->mk_present) {
1220 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1221 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1222 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1223 		err = 0;
1224 		goto out_release_key;
1225 	}
1226 
1227 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1228 	if (mk->mk_users) {
1229 		struct key *mk_user;
1230 
1231 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1232 		mk_user = find_master_key_user(mk);
1233 		if (!IS_ERR(mk_user)) {
1234 			arg.status_flags |=
1235 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1236 			key_put(mk_user);
1237 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1238 			err = PTR_ERR(mk_user);
1239 			goto out_release_key;
1240 		}
1241 	}
1242 	err = 0;
1243 out_release_key:
1244 	up_read(&mk->mk_sem);
1245 	fscrypt_put_master_key(mk);
1246 out:
1247 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1248 		err = -EFAULT;
1249 	return err;
1250 }
1251 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1252 
fscrypt_init_keyring(void)1253 int __init fscrypt_init_keyring(void)
1254 {
1255 	int err;
1256 
1257 	err = register_key_type(&key_type_fscrypt_user);
1258 	if (err)
1259 		return err;
1260 
1261 	err = register_key_type(&key_type_fscrypt_provisioning);
1262 	if (err)
1263 		goto err_unregister_fscrypt_user;
1264 
1265 	return 0;
1266 
1267 err_unregister_fscrypt_user:
1268 	unregister_key_type(&key_type_fscrypt_user);
1269 	return err;
1270 }
1271