1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/drm_print.h>
9 #include <drm/gpu_scheduler.h>
10 #include <drm/panthor_drm.h>
11
12 #include <linux/build_bug.h>
13 #include <linux/cleanup.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dma-resv.h>
18 #include <linux/firmware.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/iosys-map.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26
27 #include "panthor_devfreq.h"
28 #include "panthor_device.h"
29 #include "panthor_fw.h"
30 #include "panthor_gem.h"
31 #include "panthor_gpu.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36
37 /**
38 * DOC: Scheduler
39 *
40 * Mali CSF hardware adopts a firmware-assisted scheduling model, where
41 * the firmware takes care of scheduling aspects, to some extent.
42 *
43 * The scheduling happens at the scheduling group level, each group
44 * contains 1 to N queues (N is FW/hardware dependent, and exposed
45 * through the firmware interface). Each queue is assigned a command
46 * stream ring buffer, which serves as a way to get jobs submitted to
47 * the GPU, among other things.
48 *
49 * The firmware can schedule a maximum of M groups (M is FW/hardware
50 * dependent, and exposed through the firmware interface). Passed
51 * this maximum number of groups, the kernel must take care of
52 * rotating the groups passed to the firmware so every group gets
53 * a chance to have his queues scheduled for execution.
54 *
55 * The current implementation only supports with kernel-mode queues.
56 * In other terms, userspace doesn't have access to the ring-buffer.
57 * Instead, userspace passes indirect command stream buffers that are
58 * called from the queue ring-buffer by the kernel using a pre-defined
59 * sequence of command stream instructions to ensure the userspace driver
60 * always gets consistent results (cache maintenance,
61 * synchronization, ...).
62 *
63 * We rely on the drm_gpu_scheduler framework to deal with job
64 * dependencies and submission. As any other driver dealing with a
65 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
66 * entity has its own job scheduler. When a job is ready to be executed
67 * (all its dependencies are met), it is pushed to the appropriate
68 * queue ring-buffer, and the group is scheduled for execution if it
69 * wasn't already active.
70 *
71 * Kernel-side group scheduling is timeslice-based. When we have less
72 * groups than there are slots, the periodic tick is disabled and we
73 * just let the FW schedule the active groups. When there are more
74 * groups than slots, we let each group a chance to execute stuff for
75 * a given amount of time, and then re-evaluate and pick new groups
76 * to schedule. The group selection algorithm is based on
77 * priority+round-robin.
78 *
79 * Even though user-mode queues is out of the scope right now, the
80 * current design takes them into account by avoiding any guess on the
81 * group/queue state that would be based on information we wouldn't have
82 * if userspace was in charge of the ring-buffer. That's also one of the
83 * reason we don't do 'cooperative' scheduling (encoding FW group slot
84 * reservation as dma_fence that would be returned from the
85 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
86 * a queue of waiters, ordered by job submission order). This approach
87 * would work for kernel-mode queues, but would make user-mode queues a
88 * lot more complicated to retrofit.
89 */
90
91 #define JOB_TIMEOUT_MS 5000
92
93 #define MAX_CSG_PRIO 0xf
94
95 #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64))
96 #define MAX_INSTRS_PER_JOB 24
97
98 struct panthor_group;
99
100 /**
101 * struct panthor_csg_slot - Command stream group slot
102 *
103 * This represents a FW slot for a scheduling group.
104 */
105 struct panthor_csg_slot {
106 /** @group: Scheduling group bound to this slot. */
107 struct panthor_group *group;
108
109 /** @priority: Group priority. */
110 u8 priority;
111
112 /**
113 * @idle: True if the group bound to this slot is idle.
114 *
115 * A group is idle when it has nothing waiting for execution on
116 * all its queues, or when queues are blocked waiting for something
117 * to happen (synchronization object).
118 */
119 bool idle;
120 };
121
122 /**
123 * enum panthor_csg_priority - Group priority
124 */
125 enum panthor_csg_priority {
126 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
127 PANTHOR_CSG_PRIORITY_LOW = 0,
128
129 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
130 PANTHOR_CSG_PRIORITY_MEDIUM,
131
132 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
133 PANTHOR_CSG_PRIORITY_HIGH,
134
135 /**
136 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
137 *
138 * Real-time priority allows one to preempt scheduling of other
139 * non-real-time groups. When such a group becomes executable,
140 * it will evict the group with the lowest non-rt priority if
141 * there's no free group slot available.
142 */
143 PANTHOR_CSG_PRIORITY_RT,
144
145 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 PANTHOR_CSG_PRIORITY_COUNT,
147 };
148
149 /**
150 * struct panthor_scheduler - Object used to manage the scheduler
151 */
152 struct panthor_scheduler {
153 /** @ptdev: Device. */
154 struct panthor_device *ptdev;
155
156 /**
157 * @wq: Workqueue used by our internal scheduler logic and
158 * drm_gpu_scheduler.
159 *
160 * Used for the scheduler tick, group update or other kind of FW
161 * event processing that can't be handled in the threaded interrupt
162 * path. Also passed to the drm_gpu_scheduler instances embedded
163 * in panthor_queue.
164 */
165 struct workqueue_struct *wq;
166
167 /**
168 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 *
170 * We have a queue dedicated to heap chunk allocation works to avoid
171 * blocking the rest of the scheduler if the allocation tries to
172 * reclaim memory.
173 */
174 struct workqueue_struct *heap_alloc_wq;
175
176 /** @tick_work: Work executed on a scheduling tick. */
177 struct delayed_work tick_work;
178
179 /**
180 * @sync_upd_work: Work used to process synchronization object updates.
181 *
182 * We use this work to unblock queues/groups that were waiting on a
183 * synchronization object.
184 */
185 struct work_struct sync_upd_work;
186
187 /**
188 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 *
190 * Even if the interrupt is threaded, we need any event processing
191 * that require taking the panthor_scheduler::lock to be processed
192 * outside the interrupt path so we don't block the tick logic when
193 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 * event processing requires taking this lock, we just delegate all
195 * FW event processing to the scheduler workqueue.
196 */
197 struct work_struct fw_events_work;
198
199 /**
200 * @fw_events: Bitmask encoding pending FW events.
201 */
202 atomic_t fw_events;
203
204 /**
205 * @resched_target: When the next tick should occur.
206 *
207 * Expressed in jiffies.
208 */
209 u64 resched_target;
210
211 /**
212 * @last_tick: When the last tick occurred.
213 *
214 * Expressed in jiffies.
215 */
216 u64 last_tick;
217
218 /** @tick_period: Tick period in jiffies. */
219 u64 tick_period;
220
221 /**
222 * @lock: Lock protecting access to all the scheduler fields.
223 *
224 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 * fields are touched.
226 */
227 struct mutex lock;
228
229 /** @groups: Various lists used to classify groups. */
230 struct {
231 /**
232 * @runnable: Runnable group lists.
233 *
234 * When a group has queues that want to execute something,
235 * its panthor_group::run_node should be inserted here.
236 *
237 * One list per-priority.
238 */
239 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240
241 /**
242 * @idle: Idle group lists.
243 *
244 * When all queues of a group are idle (either because they
245 * have nothing to execute, or because they are blocked), the
246 * panthor_group::run_node field should be inserted here.
247 *
248 * One list per-priority.
249 */
250 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251
252 /**
253 * @waiting: List of groups whose queues are blocked on a
254 * synchronization object.
255 *
256 * Insert panthor_group::wait_node here when a group is waiting
257 * for synchronization objects to be signaled.
258 *
259 * This list is evaluated in the @sync_upd_work work.
260 */
261 struct list_head waiting;
262 } groups;
263
264 /**
265 * @csg_slots: FW command stream group slots.
266 */
267 struct panthor_csg_slot csg_slots[MAX_CSGS];
268
269 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 u32 csg_slot_count;
271
272 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 u32 cs_slot_count;
274
275 /** @as_slot_count: Number of address space slots supported by the MMU. */
276 u32 as_slot_count;
277
278 /** @used_csg_slot_count: Number of command stream group slot currently used. */
279 u32 used_csg_slot_count;
280
281 /** @sb_slot_count: Number of scoreboard slots. */
282 u32 sb_slot_count;
283
284 /**
285 * @might_have_idle_groups: True if an active group might have become idle.
286 *
287 * This will force a tick, so other runnable groups can be scheduled if one
288 * or more active groups became idle.
289 */
290 bool might_have_idle_groups;
291
292 /** @pm: Power management related fields. */
293 struct {
294 /** @has_ref: True if the scheduler owns a runtime PM reference. */
295 bool has_ref;
296 } pm;
297
298 /** @reset: Reset related fields. */
299 struct {
300 /** @lock: Lock protecting the other reset fields. */
301 struct mutex lock;
302
303 /**
304 * @in_progress: True if a reset is in progress.
305 *
306 * Set to true in panthor_sched_pre_reset() and back to false in
307 * panthor_sched_post_reset().
308 */
309 atomic_t in_progress;
310
311 /**
312 * @stopped_groups: List containing all groups that were stopped
313 * before a reset.
314 *
315 * Insert panthor_group::run_node in the pre_reset path.
316 */
317 struct list_head stopped_groups;
318 } reset;
319 };
320
321 /**
322 * struct panthor_syncobj_32b - 32-bit FW synchronization object
323 */
324 struct panthor_syncobj_32b {
325 /** @seqno: Sequence number. */
326 u32 seqno;
327
328 /**
329 * @status: Status.
330 *
331 * Not zero on failure.
332 */
333 u32 status;
334 };
335
336 /**
337 * struct panthor_syncobj_64b - 64-bit FW synchronization object
338 */
339 struct panthor_syncobj_64b {
340 /** @seqno: Sequence number. */
341 u64 seqno;
342
343 /**
344 * @status: Status.
345 *
346 * Not zero on failure.
347 */
348 u32 status;
349
350 /** @pad: MBZ. */
351 u32 pad;
352 };
353
354 /**
355 * struct panthor_queue - Execution queue
356 */
357 struct panthor_queue {
358 /** @scheduler: DRM scheduler used for this queue. */
359 struct drm_gpu_scheduler scheduler;
360
361 /** @entity: DRM scheduling entity used for this queue. */
362 struct drm_sched_entity entity;
363
364 /** @name: DRM scheduler name for this queue. */
365 char *name;
366
367 /** @timeout: Queue timeout related fields. */
368 struct {
369 /** @timeout.work: Work executed when a queue timeout occurs. */
370 struct delayed_work work;
371
372 /**
373 * @timeout.remaining: Time remaining before a queue timeout.
374 *
375 * When the timer is running, this value is set to MAX_SCHEDULE_TIMEOUT.
376 * When the timer is suspended, it's set to the time remaining when the
377 * timer was suspended.
378 */
379 unsigned long remaining;
380 } timeout;
381
382 /**
383 * @doorbell_id: Doorbell assigned to this queue.
384 *
385 * Right now, all groups share the same doorbell, and the doorbell ID
386 * is assigned to group_slot + 1 when the group is assigned a slot. But
387 * we might decide to provide fine grained doorbell assignment at some
388 * point, so don't have to wake up all queues in a group every time one
389 * of them is updated.
390 */
391 u8 doorbell_id;
392
393 /**
394 * @priority: Priority of the queue inside the group.
395 *
396 * Must be less than 16 (Only 4 bits available).
397 */
398 u8 priority;
399 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0)
400
401 /** @ringbuf: Command stream ring-buffer. */
402 struct panthor_kernel_bo *ringbuf;
403
404 /** @iface: Firmware interface. */
405 struct {
406 /** @mem: FW memory allocated for this interface. */
407 struct panthor_kernel_bo *mem;
408
409 /** @input: Input interface. */
410 struct panthor_fw_ringbuf_input_iface *input;
411
412 /** @output: Output interface. */
413 const struct panthor_fw_ringbuf_output_iface *output;
414
415 /** @input_fw_va: FW virtual address of the input interface buffer. */
416 u32 input_fw_va;
417
418 /** @output_fw_va: FW virtual address of the output interface buffer. */
419 u32 output_fw_va;
420 } iface;
421
422 /**
423 * @syncwait: Stores information about the synchronization object this
424 * queue is waiting on.
425 */
426 struct {
427 /** @gpu_va: GPU address of the synchronization object. */
428 u64 gpu_va;
429
430 /** @ref: Reference value to compare against. */
431 u64 ref;
432
433 /** @gt: True if this is a greater-than test. */
434 bool gt;
435
436 /** @sync64: True if this is a 64-bit sync object. */
437 bool sync64;
438
439 /** @bo: Buffer object holding the synchronization object. */
440 struct drm_gem_object *obj;
441
442 /** @offset: Offset of the synchronization object inside @bo. */
443 u64 offset;
444
445 /**
446 * @kmap: Kernel mapping of the buffer object holding the
447 * synchronization object.
448 */
449 void *kmap;
450 } syncwait;
451
452 /** @fence_ctx: Fence context fields. */
453 struct {
454 /** @lock: Used to protect access to all fences allocated by this context. */
455 spinlock_t lock;
456
457 /**
458 * @id: Fence context ID.
459 *
460 * Allocated with dma_fence_context_alloc().
461 */
462 u64 id;
463
464 /** @seqno: Sequence number of the last initialized fence. */
465 atomic64_t seqno;
466
467 /**
468 * @last_fence: Fence of the last submitted job.
469 *
470 * We return this fence when we get an empty command stream.
471 * This way, we are guaranteed that all earlier jobs have completed
472 * when drm_sched_job::s_fence::finished without having to feed
473 * the CS ring buffer with a dummy job that only signals the fence.
474 */
475 struct dma_fence *last_fence;
476
477 /**
478 * @in_flight_jobs: List containing all in-flight jobs.
479 *
480 * Used to keep track and signal panthor_job::done_fence when the
481 * synchronization object attached to the queue is signaled.
482 */
483 struct list_head in_flight_jobs;
484 } fence_ctx;
485
486 /** @profiling: Job profiling data slots and access information. */
487 struct {
488 /** @slots: Kernel BO holding the slots. */
489 struct panthor_kernel_bo *slots;
490
491 /** @slot_count: Number of jobs ringbuffer can hold at once. */
492 u32 slot_count;
493
494 /** @seqno: Index of the next available profiling information slot. */
495 u32 seqno;
496 } profiling;
497 };
498
499 /**
500 * enum panthor_group_state - Scheduling group state.
501 */
502 enum panthor_group_state {
503 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
504 PANTHOR_CS_GROUP_CREATED,
505
506 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
507 PANTHOR_CS_GROUP_ACTIVE,
508
509 /**
510 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
511 * inactive/suspended right now.
512 */
513 PANTHOR_CS_GROUP_SUSPENDED,
514
515 /**
516 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
517 *
518 * Can no longer be scheduled. The only allowed action is a destruction.
519 */
520 PANTHOR_CS_GROUP_TERMINATED,
521
522 /**
523 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
524 *
525 * The FW returned an inconsistent state. The group is flagged unusable
526 * and can no longer be scheduled. The only allowed action is a
527 * destruction.
528 *
529 * When that happens, we also schedule a FW reset, to start from a fresh
530 * state.
531 */
532 PANTHOR_CS_GROUP_UNKNOWN_STATE,
533 };
534
535 /**
536 * struct panthor_group - Scheduling group object
537 */
538 struct panthor_group {
539 /** @refcount: Reference count */
540 struct kref refcount;
541
542 /** @ptdev: Device. */
543 struct panthor_device *ptdev;
544
545 /** @vm: VM bound to the group. */
546 struct panthor_vm *vm;
547
548 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
549 u64 compute_core_mask;
550
551 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
552 u64 fragment_core_mask;
553
554 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
555 u64 tiler_core_mask;
556
557 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
558 u8 max_compute_cores;
559
560 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
561 u8 max_fragment_cores;
562
563 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
564 u8 max_tiler_cores;
565
566 /** @priority: Group priority (check panthor_csg_priority). */
567 u8 priority;
568
569 /** @blocked_queues: Bitmask reflecting the blocked queues. */
570 u32 blocked_queues;
571
572 /** @idle_queues: Bitmask reflecting the idle queues. */
573 u32 idle_queues;
574
575 /** @fatal_lock: Lock used to protect access to fatal fields. */
576 spinlock_t fatal_lock;
577
578 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
579 u32 fatal_queues;
580
581 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
582 atomic_t tiler_oom;
583
584 /** @queue_count: Number of queues in this group. */
585 u32 queue_count;
586
587 /** @queues: Queues owned by this group. */
588 struct panthor_queue *queues[MAX_CS_PER_CSG];
589
590 /**
591 * @csg_id: ID of the FW group slot.
592 *
593 * -1 when the group is not scheduled/active.
594 */
595 int csg_id;
596
597 /**
598 * @destroyed: True when the group has been destroyed.
599 *
600 * If a group is destroyed it becomes useless: no further jobs can be submitted
601 * to its queues. We simply wait for all references to be dropped so we can
602 * release the group object.
603 */
604 bool destroyed;
605
606 /**
607 * @timedout: True when a timeout occurred on any of the queues owned by
608 * this group.
609 *
610 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
611 * and the group can't be suspended, this also leads to a timeout. In any case,
612 * any timeout situation is unrecoverable, and the group becomes useless. We
613 * simply wait for all references to be dropped so we can release the group
614 * object.
615 */
616 bool timedout;
617
618 /**
619 * @innocent: True when the group becomes unusable because the group suspension
620 * failed during a reset.
621 *
622 * Sometimes the FW was put in a bad state by other groups, causing the group
623 * suspension happening in the reset path to fail. In that case, we consider the
624 * group innocent.
625 */
626 bool innocent;
627
628 /**
629 * @syncobjs: Pool of per-queue synchronization objects.
630 *
631 * One sync object per queue. The position of the sync object is
632 * determined by the queue index.
633 */
634 struct panthor_kernel_bo *syncobjs;
635
636 /** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */
637 struct {
638 /** @data: Total sampled values for jobs in queues from this group. */
639 struct panthor_gpu_usage data;
640
641 /**
642 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo
643 * callback and job post-completion processing function
644 */
645 spinlock_t lock;
646
647 /** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */
648 size_t kbo_sizes;
649 } fdinfo;
650
651 /** @task_info: Info of current->group_leader that created the group. */
652 struct {
653 /** @task_info.pid: pid of current->group_leader */
654 pid_t pid;
655
656 /** @task_info.comm: comm of current->group_leader */
657 char comm[TASK_COMM_LEN];
658 } task_info;
659
660 /** @state: Group state. */
661 enum panthor_group_state state;
662
663 /**
664 * @suspend_buf: Suspend buffer.
665 *
666 * Stores the state of the group and its queues when a group is suspended.
667 * Used at resume time to restore the group in its previous state.
668 *
669 * The size of the suspend buffer is exposed through the FW interface.
670 */
671 struct panthor_kernel_bo *suspend_buf;
672
673 /**
674 * @protm_suspend_buf: Protection mode suspend buffer.
675 *
676 * Stores the state of the group and its queues when a group that's in
677 * protection mode is suspended.
678 *
679 * Used at resume time to restore the group in its previous state.
680 *
681 * The size of the protection mode suspend buffer is exposed through the
682 * FW interface.
683 */
684 struct panthor_kernel_bo *protm_suspend_buf;
685
686 /** @sync_upd_work: Work used to check/signal job fences. */
687 struct work_struct sync_upd_work;
688
689 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
690 struct work_struct tiler_oom_work;
691
692 /** @term_work: Work used to finish the group termination procedure. */
693 struct work_struct term_work;
694
695 /**
696 * @release_work: Work used to release group resources.
697 *
698 * We need to postpone the group release to avoid a deadlock when
699 * the last ref is released in the tick work.
700 */
701 struct work_struct release_work;
702
703 /**
704 * @run_node: Node used to insert the group in the
705 * panthor_group::groups::{runnable,idle} and
706 * panthor_group::reset.stopped_groups lists.
707 */
708 struct list_head run_node;
709
710 /**
711 * @wait_node: Node used to insert the group in the
712 * panthor_group::groups::waiting list.
713 */
714 struct list_head wait_node;
715 };
716
717 struct panthor_job_profiling_data {
718 struct {
719 u64 before;
720 u64 after;
721 } cycles;
722
723 struct {
724 u64 before;
725 u64 after;
726 } time;
727 };
728
729 /**
730 * group_queue_work() - Queue a group work
731 * @group: Group to queue the work for.
732 * @wname: Work name.
733 *
734 * Grabs a ref and queue a work item to the scheduler workqueue. If
735 * the work was already queued, we release the reference we grabbed.
736 *
737 * Work callbacks must release the reference we grabbed here.
738 */
739 #define group_queue_work(group, wname) \
740 do { \
741 group_get(group); \
742 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
743 group_put(group); \
744 } while (0)
745
746 /**
747 * sched_queue_work() - Queue a scheduler work.
748 * @sched: Scheduler object.
749 * @wname: Work name.
750 *
751 * Conditionally queues a scheduler work if no reset is pending/in-progress.
752 */
753 #define sched_queue_work(sched, wname) \
754 do { \
755 if (!atomic_read(&(sched)->reset.in_progress) && \
756 !panthor_device_reset_is_pending((sched)->ptdev)) \
757 queue_work((sched)->wq, &(sched)->wname ## _work); \
758 } while (0)
759
760 /**
761 * sched_queue_delayed_work() - Queue a scheduler delayed work.
762 * @sched: Scheduler object.
763 * @wname: Work name.
764 * @delay: Work delay in jiffies.
765 *
766 * Conditionally queues a scheduler delayed work if no reset is
767 * pending/in-progress.
768 */
769 #define sched_queue_delayed_work(sched, wname, delay) \
770 do { \
771 if (!atomic_read(&sched->reset.in_progress) && \
772 !panthor_device_reset_is_pending((sched)->ptdev)) \
773 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
774 } while (0)
775
776 /*
777 * We currently set the maximum of groups per file to an arbitrary low value.
778 * But this can be updated if we need more.
779 */
780 #define MAX_GROUPS_PER_POOL 128
781
782 /**
783 * struct panthor_group_pool - Group pool
784 *
785 * Each file get assigned a group pool.
786 */
787 struct panthor_group_pool {
788 /** @xa: Xarray used to manage group handles. */
789 struct xarray xa;
790 };
791
792 /**
793 * struct panthor_job - Used to manage GPU job
794 */
795 struct panthor_job {
796 /** @base: Inherit from drm_sched_job. */
797 struct drm_sched_job base;
798
799 /** @refcount: Reference count. */
800 struct kref refcount;
801
802 /** @group: Group of the queue this job will be pushed to. */
803 struct panthor_group *group;
804
805 /** @queue_idx: Index of the queue inside @group. */
806 u32 queue_idx;
807
808 /** @call_info: Information about the userspace command stream call. */
809 struct {
810 /** @start: GPU address of the userspace command stream. */
811 u64 start;
812
813 /** @size: Size of the userspace command stream. */
814 u32 size;
815
816 /**
817 * @latest_flush: Flush ID at the time the userspace command
818 * stream was built.
819 *
820 * Needed for the flush reduction mechanism.
821 */
822 u32 latest_flush;
823 } call_info;
824
825 /** @ringbuf: Position of this job is in the ring buffer. */
826 struct {
827 /** @start: Start offset. */
828 u64 start;
829
830 /** @end: End offset. */
831 u64 end;
832 } ringbuf;
833
834 /**
835 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
836 * list.
837 */
838 struct list_head node;
839
840 /** @done_fence: Fence signaled when the job is finished or cancelled. */
841 struct dma_fence *done_fence;
842
843 /** @profiling: Job profiling information. */
844 struct {
845 /** @mask: Current device job profiling enablement bitmask. */
846 u32 mask;
847
848 /** @slot: Job index in the profiling slots BO. */
849 u32 slot;
850 } profiling;
851 };
852
853 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)854 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
855 {
856 if (queue->syncwait.kmap) {
857 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
858
859 drm_gem_vunmap(queue->syncwait.obj, &map);
860 queue->syncwait.kmap = NULL;
861 }
862
863 drm_gem_object_put(queue->syncwait.obj);
864 queue->syncwait.obj = NULL;
865 }
866
867 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)868 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
869 {
870 struct panthor_device *ptdev = group->ptdev;
871 struct panthor_gem_object *bo;
872 struct iosys_map map;
873 int ret;
874
875 if (queue->syncwait.kmap)
876 return queue->syncwait.kmap + queue->syncwait.offset;
877
878 bo = panthor_vm_get_bo_for_va(group->vm,
879 queue->syncwait.gpu_va,
880 &queue->syncwait.offset);
881 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
882 goto err_put_syncwait_obj;
883
884 queue->syncwait.obj = &bo->base.base;
885 ret = drm_gem_vmap(queue->syncwait.obj, &map);
886 if (drm_WARN_ON(&ptdev->base, ret))
887 goto err_put_syncwait_obj;
888
889 queue->syncwait.kmap = map.vaddr;
890 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
891 goto err_put_syncwait_obj;
892
893 return queue->syncwait.kmap + queue->syncwait.offset;
894
895 err_put_syncwait_obj:
896 panthor_queue_put_syncwait_obj(queue);
897 return NULL;
898 }
899
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)900 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
901 {
902 if (IS_ERR_OR_NULL(queue))
903 return;
904
905 /* This should have been disabled before that point. */
906 drm_WARN_ON(&group->ptdev->base,
907 disable_delayed_work_sync(&queue->timeout.work));
908
909 if (queue->entity.fence_context)
910 drm_sched_entity_destroy(&queue->entity);
911
912 if (queue->scheduler.ops)
913 drm_sched_fini(&queue->scheduler);
914
915 kfree(queue->name);
916
917 panthor_queue_put_syncwait_obj(queue);
918
919 panthor_kernel_bo_destroy(queue->ringbuf);
920 panthor_kernel_bo_destroy(queue->iface.mem);
921 panthor_kernel_bo_destroy(queue->profiling.slots);
922
923 /* Release the last_fence we were holding, if any. */
924 dma_fence_put(queue->fence_ctx.last_fence);
925
926 kfree(queue);
927 }
928
group_release_work(struct work_struct * work)929 static void group_release_work(struct work_struct *work)
930 {
931 struct panthor_group *group = container_of(work,
932 struct panthor_group,
933 release_work);
934 u32 i;
935
936 for (i = 0; i < group->queue_count; i++)
937 group_free_queue(group, group->queues[i]);
938
939 panthor_kernel_bo_destroy(group->suspend_buf);
940 panthor_kernel_bo_destroy(group->protm_suspend_buf);
941 panthor_kernel_bo_destroy(group->syncobjs);
942
943 panthor_vm_put(group->vm);
944 kfree(group);
945 }
946
group_release(struct kref * kref)947 static void group_release(struct kref *kref)
948 {
949 struct panthor_group *group = container_of(kref,
950 struct panthor_group,
951 refcount);
952 struct panthor_device *ptdev = group->ptdev;
953
954 drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
955 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
956 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
957
958 queue_work(panthor_cleanup_wq, &group->release_work);
959 }
960
group_put(struct panthor_group * group)961 static void group_put(struct panthor_group *group)
962 {
963 if (group)
964 kref_put(&group->refcount, group_release);
965 }
966
967 static struct panthor_group *
group_get(struct panthor_group * group)968 group_get(struct panthor_group *group)
969 {
970 if (group)
971 kref_get(&group->refcount);
972
973 return group;
974 }
975
976 /**
977 * group_bind_locked() - Bind a group to a group slot
978 * @group: Group.
979 * @csg_id: Slot.
980 *
981 * Return: 0 on success, a negative error code otherwise.
982 */
983 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)984 group_bind_locked(struct panthor_group *group, u32 csg_id)
985 {
986 struct panthor_device *ptdev = group->ptdev;
987 struct panthor_csg_slot *csg_slot;
988 int ret;
989
990 lockdep_assert_held(&ptdev->scheduler->lock);
991
992 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
993 ptdev->scheduler->csg_slots[csg_id].group))
994 return -EINVAL;
995
996 ret = panthor_vm_active(group->vm);
997 if (ret)
998 return ret;
999
1000 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1001 group_get(group);
1002 group->csg_id = csg_id;
1003
1004 /* Dummy doorbell allocation: doorbell is assigned to the group and
1005 * all queues use the same doorbell.
1006 *
1007 * TODO: Implement LRU-based doorbell assignment, so the most often
1008 * updated queues get their own doorbell, thus avoiding useless checks
1009 * on queues belonging to the same group that are rarely updated.
1010 */
1011 for (u32 i = 0; i < group->queue_count; i++)
1012 group->queues[i]->doorbell_id = csg_id + 1;
1013
1014 csg_slot->group = group;
1015
1016 return 0;
1017 }
1018
1019 /**
1020 * group_unbind_locked() - Unbind a group from a slot.
1021 * @group: Group to unbind.
1022 *
1023 * Return: 0 on success, a negative error code otherwise.
1024 */
1025 static int
group_unbind_locked(struct panthor_group * group)1026 group_unbind_locked(struct panthor_group *group)
1027 {
1028 struct panthor_device *ptdev = group->ptdev;
1029 struct panthor_csg_slot *slot;
1030
1031 lockdep_assert_held(&ptdev->scheduler->lock);
1032
1033 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1034 return -EINVAL;
1035
1036 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1037 return -EINVAL;
1038
1039 slot = &ptdev->scheduler->csg_slots[group->csg_id];
1040 panthor_vm_idle(group->vm);
1041 group->csg_id = -1;
1042
1043 /* Tiler OOM events will be re-issued next time the group is scheduled. */
1044 atomic_set(&group->tiler_oom, 0);
1045 cancel_work(&group->tiler_oom_work);
1046
1047 for (u32 i = 0; i < group->queue_count; i++)
1048 group->queues[i]->doorbell_id = -1;
1049
1050 slot->group = NULL;
1051
1052 group_put(group);
1053 return 0;
1054 }
1055
1056 static bool
group_is_idle(struct panthor_group * group)1057 group_is_idle(struct panthor_group *group)
1058 {
1059 struct panthor_device *ptdev = group->ptdev;
1060 u32 inactive_queues;
1061
1062 if (group->csg_id >= 0)
1063 return ptdev->scheduler->csg_slots[group->csg_id].idle;
1064
1065 inactive_queues = group->idle_queues | group->blocked_queues;
1066 return hweight32(inactive_queues) == group->queue_count;
1067 }
1068
1069 static void
queue_reset_timeout_locked(struct panthor_queue * queue)1070 queue_reset_timeout_locked(struct panthor_queue *queue)
1071 {
1072 lockdep_assert_held(&queue->fence_ctx.lock);
1073
1074 if (queue->timeout.remaining != MAX_SCHEDULE_TIMEOUT) {
1075 mod_delayed_work(queue->scheduler.timeout_wq,
1076 &queue->timeout.work,
1077 msecs_to_jiffies(JOB_TIMEOUT_MS));
1078 }
1079 }
1080
1081 static bool
group_can_run(struct panthor_group * group)1082 group_can_run(struct panthor_group *group)
1083 {
1084 return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1085 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1086 !group->destroyed && group->fatal_queues == 0 &&
1087 !group->timedout;
1088 }
1089
1090 static bool
queue_timeout_is_suspended(struct panthor_queue * queue)1091 queue_timeout_is_suspended(struct panthor_queue *queue)
1092 {
1093 /* When running, the remaining time is set to MAX_SCHEDULE_TIMEOUT. */
1094 return queue->timeout.remaining != MAX_SCHEDULE_TIMEOUT;
1095 }
1096
1097 static void
queue_suspend_timeout_locked(struct panthor_queue * queue)1098 queue_suspend_timeout_locked(struct panthor_queue *queue)
1099 {
1100 unsigned long qtimeout, now;
1101 struct panthor_group *group;
1102 struct panthor_job *job;
1103 bool timer_was_active;
1104
1105 lockdep_assert_held(&queue->fence_ctx.lock);
1106
1107 /* Already suspended, nothing to do. */
1108 if (queue_timeout_is_suspended(queue))
1109 return;
1110
1111 job = list_first_entry_or_null(&queue->fence_ctx.in_flight_jobs,
1112 struct panthor_job, node);
1113 group = job ? job->group : NULL;
1114
1115 /* If the queue is blocked and the group is idle, we want the timer to
1116 * keep running because the group can't be unblocked by other queues,
1117 * so it has to come from an external source, and we want to timebox
1118 * this external signalling.
1119 */
1120 if (group && group_can_run(group) &&
1121 (group->blocked_queues & BIT(job->queue_idx)) &&
1122 group_is_idle(group))
1123 return;
1124
1125 now = jiffies;
1126 qtimeout = queue->timeout.work.timer.expires;
1127
1128 /* Cancel the timer. */
1129 timer_was_active = cancel_delayed_work(&queue->timeout.work);
1130 if (!timer_was_active || !job)
1131 queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1132 else if (time_after(qtimeout, now))
1133 queue->timeout.remaining = qtimeout - now;
1134 else
1135 queue->timeout.remaining = 0;
1136
1137 if (WARN_ON_ONCE(queue->timeout.remaining > msecs_to_jiffies(JOB_TIMEOUT_MS)))
1138 queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1139 }
1140
1141 static void
queue_suspend_timeout(struct panthor_queue * queue)1142 queue_suspend_timeout(struct panthor_queue *queue)
1143 {
1144 spin_lock(&queue->fence_ctx.lock);
1145 queue_suspend_timeout_locked(queue);
1146 spin_unlock(&queue->fence_ctx.lock);
1147 }
1148
1149 static void
queue_resume_timeout(struct panthor_queue * queue)1150 queue_resume_timeout(struct panthor_queue *queue)
1151 {
1152 spin_lock(&queue->fence_ctx.lock);
1153
1154 if (queue_timeout_is_suspended(queue)) {
1155 mod_delayed_work(queue->scheduler.timeout_wq,
1156 &queue->timeout.work,
1157 queue->timeout.remaining);
1158
1159 queue->timeout.remaining = MAX_SCHEDULE_TIMEOUT;
1160 }
1161
1162 spin_unlock(&queue->fence_ctx.lock);
1163 }
1164
1165 /**
1166 * cs_slot_prog_locked() - Program a queue slot
1167 * @ptdev: Device.
1168 * @csg_id: Group slot ID.
1169 * @cs_id: Queue slot ID.
1170 *
1171 * Program a queue slot with the queue information so things can start being
1172 * executed on this queue.
1173 *
1174 * The group slot must have a group bound to it already (group_bind_locked()).
1175 */
1176 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1177 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1178 {
1179 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1180 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1181
1182 lockdep_assert_held(&ptdev->scheduler->lock);
1183
1184 queue->iface.input->extract = queue->iface.output->extract;
1185 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1186
1187 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1188 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1189 cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1190 cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1191 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1192 CS_CONFIG_DOORBELL(queue->doorbell_id);
1193 cs_iface->input->ack_irq_mask = ~0;
1194 panthor_fw_update_reqs(cs_iface, req,
1195 CS_IDLE_SYNC_WAIT |
1196 CS_IDLE_EMPTY |
1197 CS_STATE_START |
1198 CS_EXTRACT_EVENT,
1199 CS_IDLE_SYNC_WAIT |
1200 CS_IDLE_EMPTY |
1201 CS_STATE_MASK |
1202 CS_EXTRACT_EVENT);
1203 if (queue->iface.input->insert != queue->iface.input->extract)
1204 queue_resume_timeout(queue);
1205 }
1206
1207 /**
1208 * cs_slot_reset_locked() - Reset a queue slot
1209 * @ptdev: Device.
1210 * @csg_id: Group slot.
1211 * @cs_id: Queue slot.
1212 *
1213 * Change the queue slot state to STOP and suspend the queue timeout if
1214 * the queue is not blocked.
1215 *
1216 * The group slot must have a group bound to it (group_bind_locked()).
1217 */
1218 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1219 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1220 {
1221 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1222 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1223 struct panthor_queue *queue = group->queues[cs_id];
1224
1225 lockdep_assert_held(&ptdev->scheduler->lock);
1226
1227 panthor_fw_update_reqs(cs_iface, req,
1228 CS_STATE_STOP,
1229 CS_STATE_MASK);
1230
1231 queue_suspend_timeout(queue);
1232
1233 return 0;
1234 }
1235
1236 /**
1237 * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1238 * @ptdev: Device.
1239 * @csg_id: Group slot ID.
1240 *
1241 * Group slot priority update happens asynchronously. When we receive a
1242 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1243 * reflect it to our panthor_csg_slot object.
1244 */
1245 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1246 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1247 {
1248 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1249 struct panthor_fw_csg_iface *csg_iface;
1250 u64 endpoint_req;
1251
1252 lockdep_assert_held(&ptdev->scheduler->lock);
1253
1254 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1255 endpoint_req = panthor_fw_csg_endpoint_req_get(ptdev, csg_iface);
1256 csg_slot->priority = CSG_EP_REQ_PRIORITY_GET(endpoint_req);
1257 }
1258
1259 /**
1260 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1261 * @ptdev: Device.
1262 * @csg_id: Group slot.
1263 * @cs_id: Queue slot.
1264 *
1265 * Queue state is updated on group suspend or STATUS_UPDATE event.
1266 */
1267 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1268 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1269 {
1270 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1271 struct panthor_queue *queue = group->queues[cs_id];
1272 struct panthor_fw_cs_iface *cs_iface =
1273 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1274
1275 u32 status_wait_cond;
1276
1277 switch (cs_iface->output->status_blocked_reason) {
1278 case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1279 if (queue->iface.input->insert == queue->iface.output->extract &&
1280 cs_iface->output->status_scoreboards == 0)
1281 group->idle_queues |= BIT(cs_id);
1282 break;
1283
1284 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1285 if (list_empty(&group->wait_node)) {
1286 list_move_tail(&group->wait_node,
1287 &group->ptdev->scheduler->groups.waiting);
1288 }
1289
1290 /* The queue is only blocked if there's no deferred operation
1291 * pending, which can be checked through the scoreboard status.
1292 */
1293 if (!cs_iface->output->status_scoreboards)
1294 group->blocked_queues |= BIT(cs_id);
1295
1296 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1297 queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1298 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1299 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1300 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1301 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1302
1303 queue->syncwait.sync64 = true;
1304 queue->syncwait.ref |= sync_val_hi << 32;
1305 } else {
1306 queue->syncwait.sync64 = false;
1307 }
1308 break;
1309
1310 default:
1311 /* Other reasons are not blocking. Consider the queue as runnable
1312 * in those cases.
1313 */
1314 break;
1315 }
1316 }
1317
1318 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1319 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1320 {
1321 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1322 struct panthor_group *group = csg_slot->group;
1323 u32 i;
1324
1325 lockdep_assert_held(&ptdev->scheduler->lock);
1326
1327 group->idle_queues = 0;
1328 group->blocked_queues = 0;
1329
1330 for (i = 0; i < group->queue_count; i++) {
1331 if (group->queues[i])
1332 cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1333 }
1334 }
1335
1336 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1337 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1338 {
1339 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1340 struct panthor_fw_csg_iface *csg_iface;
1341 struct panthor_group *group;
1342 enum panthor_group_state new_state, old_state;
1343 u32 csg_state;
1344
1345 lockdep_assert_held(&ptdev->scheduler->lock);
1346
1347 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1348 group = csg_slot->group;
1349
1350 if (!group)
1351 return;
1352
1353 old_state = group->state;
1354 csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1355 switch (csg_state) {
1356 case CSG_STATE_START:
1357 case CSG_STATE_RESUME:
1358 new_state = PANTHOR_CS_GROUP_ACTIVE;
1359 break;
1360 case CSG_STATE_TERMINATE:
1361 new_state = PANTHOR_CS_GROUP_TERMINATED;
1362 break;
1363 case CSG_STATE_SUSPEND:
1364 new_state = PANTHOR_CS_GROUP_SUSPENDED;
1365 break;
1366 default:
1367 /* The unknown state might be caused by a FW state corruption,
1368 * which means the group metadata can't be trusted anymore, and
1369 * the SUSPEND operation might propagate the corruption to the
1370 * suspend buffers. Flag the group state as unknown to make
1371 * sure it's unusable after that point.
1372 */
1373 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1374 csg_id, csg_state);
1375 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1376 break;
1377 }
1378
1379 if (old_state == new_state)
1380 return;
1381
1382 /* The unknown state might be caused by a FW issue, reset the FW to
1383 * take a fresh start.
1384 */
1385 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1386 panthor_device_schedule_reset(ptdev);
1387
1388 if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1389 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1390
1391 if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1392 u32 i;
1393
1394 /* Reset the queue slots so we start from a clean
1395 * state when starting/resuming a new group on this
1396 * CSG slot. No wait needed here, and no ringbell
1397 * either, since the CS slot will only be re-used
1398 * on the next CSG start operation.
1399 */
1400 for (i = 0; i < group->queue_count; i++) {
1401 if (group->queues[i])
1402 cs_slot_reset_locked(ptdev, csg_id, i);
1403 }
1404 }
1405
1406 group->state = new_state;
1407 }
1408
1409 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1410 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1411 {
1412 struct panthor_fw_csg_iface *csg_iface;
1413 struct panthor_csg_slot *csg_slot;
1414 struct panthor_group *group;
1415 u32 queue_mask = 0, i;
1416 u64 endpoint_req;
1417
1418 lockdep_assert_held(&ptdev->scheduler->lock);
1419
1420 if (priority > MAX_CSG_PRIO)
1421 return -EINVAL;
1422
1423 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1424 return -EINVAL;
1425
1426 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1427 group = csg_slot->group;
1428 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1429 return 0;
1430
1431 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1432
1433 for (i = 0; i < group->queue_count; i++) {
1434 if (group->queues[i]) {
1435 cs_slot_prog_locked(ptdev, csg_id, i);
1436 queue_mask |= BIT(i);
1437 }
1438 }
1439
1440 csg_iface->input->allow_compute = group->compute_core_mask;
1441 csg_iface->input->allow_fragment = group->fragment_core_mask;
1442 csg_iface->input->allow_other = group->tiler_core_mask;
1443 endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1444 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1445 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1446 CSG_EP_REQ_PRIORITY(priority);
1447 panthor_fw_csg_endpoint_req_set(ptdev, csg_iface, endpoint_req);
1448
1449 csg_iface->input->config = panthor_vm_as(group->vm);
1450
1451 if (group->suspend_buf)
1452 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1453 else
1454 csg_iface->input->suspend_buf = 0;
1455
1456 if (group->protm_suspend_buf) {
1457 csg_iface->input->protm_suspend_buf =
1458 panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1459 } else {
1460 csg_iface->input->protm_suspend_buf = 0;
1461 }
1462
1463 csg_iface->input->ack_irq_mask = ~0;
1464 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1465 return 0;
1466 }
1467
1468 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1469 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1470 u32 csg_id, u32 cs_id)
1471 {
1472 struct panthor_scheduler *sched = ptdev->scheduler;
1473 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1474 struct panthor_group *group = csg_slot->group;
1475 struct panthor_fw_cs_iface *cs_iface;
1476 u32 fatal;
1477 u64 info;
1478
1479 lockdep_assert_held(&sched->lock);
1480
1481 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1482 fatal = cs_iface->output->fatal;
1483 info = cs_iface->output->fatal_info;
1484
1485 if (group) {
1486 drm_warn(&ptdev->base, "CS_FATAL: pid=%d, comm=%s\n",
1487 group->task_info.pid, group->task_info.comm);
1488
1489 group->fatal_queues |= BIT(cs_id);
1490 }
1491
1492 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1493 /* If this exception is unrecoverable, queue a reset, and make
1494 * sure we stop scheduling groups until the reset has happened.
1495 */
1496 panthor_device_schedule_reset(ptdev);
1497 cancel_delayed_work(&sched->tick_work);
1498 } else {
1499 sched_queue_delayed_work(sched, tick, 0);
1500 }
1501
1502 drm_warn(&ptdev->base,
1503 "CSG slot %d CS slot: %d\n"
1504 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1505 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1506 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1507 csg_id, cs_id,
1508 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1509 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1510 (unsigned int)CS_EXCEPTION_DATA(fatal),
1511 info);
1512 }
1513
1514 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1515 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1516 u32 csg_id, u32 cs_id)
1517 {
1518 struct panthor_scheduler *sched = ptdev->scheduler;
1519 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1520 struct panthor_group *group = csg_slot->group;
1521 struct panthor_queue *queue = group && cs_id < group->queue_count ?
1522 group->queues[cs_id] : NULL;
1523 struct panthor_fw_cs_iface *cs_iface;
1524 u32 fault;
1525 u64 info;
1526
1527 lockdep_assert_held(&sched->lock);
1528
1529 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1530 fault = cs_iface->output->fault;
1531 info = cs_iface->output->fault_info;
1532
1533 if (queue) {
1534 u64 cs_extract = queue->iface.output->extract;
1535 struct panthor_job *job;
1536
1537 spin_lock(&queue->fence_ctx.lock);
1538 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1539 if (cs_extract >= job->ringbuf.end)
1540 continue;
1541
1542 if (cs_extract < job->ringbuf.start)
1543 break;
1544
1545 dma_fence_set_error(job->done_fence, -EINVAL);
1546 }
1547 spin_unlock(&queue->fence_ctx.lock);
1548 }
1549
1550 if (group) {
1551 drm_warn(&ptdev->base, "CS_FAULT: pid=%d, comm=%s\n",
1552 group->task_info.pid, group->task_info.comm);
1553 }
1554
1555 drm_warn(&ptdev->base,
1556 "CSG slot %d CS slot: %d\n"
1557 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1558 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1559 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1560 csg_id, cs_id,
1561 (unsigned int)CS_EXCEPTION_TYPE(fault),
1562 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1563 (unsigned int)CS_EXCEPTION_DATA(fault),
1564 info);
1565 }
1566
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1567 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1568 {
1569 struct panthor_device *ptdev = group->ptdev;
1570 struct panthor_scheduler *sched = ptdev->scheduler;
1571 u32 renderpasses_in_flight, pending_frag_count;
1572 struct panthor_heap_pool *heaps = NULL;
1573 u64 heap_address, new_chunk_va = 0;
1574 u32 vt_start, vt_end, frag_end;
1575 int ret, csg_id;
1576
1577 mutex_lock(&sched->lock);
1578 csg_id = group->csg_id;
1579 if (csg_id >= 0) {
1580 struct panthor_fw_cs_iface *cs_iface;
1581
1582 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1583 heaps = panthor_vm_get_heap_pool(group->vm, false);
1584 heap_address = cs_iface->output->heap_address;
1585 vt_start = cs_iface->output->heap_vt_start;
1586 vt_end = cs_iface->output->heap_vt_end;
1587 frag_end = cs_iface->output->heap_frag_end;
1588 renderpasses_in_flight = vt_start - frag_end;
1589 pending_frag_count = vt_end - frag_end;
1590 }
1591 mutex_unlock(&sched->lock);
1592
1593 /* The group got scheduled out, we stop here. We will get a new tiler OOM event
1594 * when it's scheduled again.
1595 */
1596 if (unlikely(csg_id < 0))
1597 return 0;
1598
1599 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1600 ret = -EINVAL;
1601 } else {
1602 /* We do the allocation without holding the scheduler lock to avoid
1603 * blocking the scheduling.
1604 */
1605 ret = panthor_heap_grow(heaps, heap_address,
1606 renderpasses_in_flight,
1607 pending_frag_count, &new_chunk_va);
1608 }
1609
1610 /* If the heap context doesn't have memory for us, we want to let the
1611 * FW try to reclaim memory by waiting for fragment jobs to land or by
1612 * executing the tiler OOM exception handler, which is supposed to
1613 * implement incremental rendering.
1614 */
1615 if (ret && ret != -ENOMEM) {
1616 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1617 group->fatal_queues |= BIT(cs_id);
1618 sched_queue_delayed_work(sched, tick, 0);
1619 goto out_put_heap_pool;
1620 }
1621
1622 mutex_lock(&sched->lock);
1623 csg_id = group->csg_id;
1624 if (csg_id >= 0) {
1625 struct panthor_fw_csg_iface *csg_iface;
1626 struct panthor_fw_cs_iface *cs_iface;
1627
1628 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1629 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1630
1631 cs_iface->input->heap_start = new_chunk_va;
1632 cs_iface->input->heap_end = new_chunk_va;
1633 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1634 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1635 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1636 }
1637 mutex_unlock(&sched->lock);
1638
1639 /* We allocated a chunck, but couldn't link it to the heap
1640 * context because the group was scheduled out while we were
1641 * allocating memory. We need to return this chunk to the heap.
1642 */
1643 if (unlikely(csg_id < 0 && new_chunk_va))
1644 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1645
1646 ret = 0;
1647
1648 out_put_heap_pool:
1649 panthor_heap_pool_put(heaps);
1650 return ret;
1651 }
1652
group_tiler_oom_work(struct work_struct * work)1653 static void group_tiler_oom_work(struct work_struct *work)
1654 {
1655 struct panthor_group *group =
1656 container_of(work, struct panthor_group, tiler_oom_work);
1657 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1658
1659 while (tiler_oom) {
1660 u32 cs_id = ffs(tiler_oom) - 1;
1661
1662 group_process_tiler_oom(group, cs_id);
1663 tiler_oom &= ~BIT(cs_id);
1664 }
1665
1666 group_put(group);
1667 }
1668
1669 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1670 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1671 u32 csg_id, u32 cs_id)
1672 {
1673 struct panthor_scheduler *sched = ptdev->scheduler;
1674 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1675 struct panthor_group *group = csg_slot->group;
1676
1677 lockdep_assert_held(&sched->lock);
1678
1679 if (drm_WARN_ON(&ptdev->base, !group))
1680 return;
1681
1682 atomic_or(BIT(cs_id), &group->tiler_oom);
1683
1684 /* We don't use group_queue_work() here because we want to queue the
1685 * work item to the heap_alloc_wq.
1686 */
1687 group_get(group);
1688 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1689 group_put(group);
1690 }
1691
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1692 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1693 u32 csg_id, u32 cs_id)
1694 {
1695 struct panthor_fw_cs_iface *cs_iface;
1696 u32 req, ack, events;
1697
1698 lockdep_assert_held(&ptdev->scheduler->lock);
1699
1700 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1701 req = cs_iface->input->req;
1702 ack = cs_iface->output->ack;
1703 events = (req ^ ack) & CS_EVT_MASK;
1704
1705 if (events & CS_FATAL)
1706 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1707
1708 if (events & CS_FAULT)
1709 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1710
1711 if (events & CS_TILER_OOM)
1712 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1713
1714 /* We don't acknowledge the TILER_OOM event since its handling is
1715 * deferred to a separate work.
1716 */
1717 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1718
1719 return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1720 }
1721
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1722 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1723 {
1724 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1725 struct panthor_fw_csg_iface *csg_iface;
1726
1727 lockdep_assert_held(&ptdev->scheduler->lock);
1728
1729 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1730 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1731 }
1732
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1733 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1734 {
1735 struct panthor_scheduler *sched = ptdev->scheduler;
1736
1737 lockdep_assert_held(&sched->lock);
1738
1739 sched->might_have_idle_groups = true;
1740
1741 /* Schedule a tick so we can evict idle groups and schedule non-idle
1742 * ones. This will also update runtime PM and devfreq busy/idle states,
1743 * so the device can lower its frequency or get suspended.
1744 */
1745 sched_queue_delayed_work(sched, tick, 0);
1746 }
1747
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1748 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1749 u32 csg_id)
1750 {
1751 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1752 struct panthor_group *group = csg_slot->group;
1753
1754 lockdep_assert_held(&ptdev->scheduler->lock);
1755
1756 if (group)
1757 group_queue_work(group, sync_upd);
1758
1759 sched_queue_work(ptdev->scheduler, sync_upd);
1760 }
1761
1762 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1763 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1764 {
1765 struct panthor_scheduler *sched = ptdev->scheduler;
1766 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1767 struct panthor_group *group = csg_slot->group;
1768
1769 lockdep_assert_held(&sched->lock);
1770
1771 group = csg_slot->group;
1772 if (!drm_WARN_ON(&ptdev->base, !group)) {
1773 drm_warn(&ptdev->base, "CSG_PROGRESS_TIMER_EVENT: pid=%d, comm=%s\n",
1774 group->task_info.pid, group->task_info.comm);
1775
1776 group->timedout = true;
1777 }
1778
1779 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1780
1781 sched_queue_delayed_work(sched, tick, 0);
1782 }
1783
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1784 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1785 {
1786 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1787 struct panthor_fw_csg_iface *csg_iface;
1788 u32 ring_cs_db_mask = 0;
1789
1790 lockdep_assert_held(&ptdev->scheduler->lock);
1791
1792 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1793 return;
1794
1795 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1796 req = READ_ONCE(csg_iface->input->req);
1797 ack = READ_ONCE(csg_iface->output->ack);
1798 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1799 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1800 csg_events = (req ^ ack) & CSG_EVT_MASK;
1801
1802 /* There may not be any pending CSG/CS interrupts to process */
1803 if (req == ack && cs_irq_req == cs_irq_ack)
1804 return;
1805
1806 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1807 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1808 * doesn't miss an interrupt for the CS in the race scenario where
1809 * whilst Host is servicing an interrupt for the CS, firmware sends
1810 * another interrupt for that CS.
1811 */
1812 csg_iface->input->cs_irq_ack = cs_irq_req;
1813
1814 panthor_fw_update_reqs(csg_iface, req, ack,
1815 CSG_SYNC_UPDATE |
1816 CSG_IDLE |
1817 CSG_PROGRESS_TIMER_EVENT);
1818
1819 if (csg_events & CSG_IDLE)
1820 csg_slot_process_idle_event_locked(ptdev, csg_id);
1821
1822 if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1823 csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1824
1825 cs_irqs = cs_irq_req ^ cs_irq_ack;
1826 while (cs_irqs) {
1827 u32 cs_id = ffs(cs_irqs) - 1;
1828
1829 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1830 ring_cs_db_mask |= BIT(cs_id);
1831
1832 cs_irqs &= ~BIT(cs_id);
1833 }
1834
1835 if (csg_events & CSG_SYNC_UPDATE)
1836 csg_slot_sync_update_locked(ptdev, csg_id);
1837
1838 if (ring_cs_db_mask)
1839 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1840
1841 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1842 }
1843
sched_process_idle_event_locked(struct panthor_device * ptdev)1844 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1845 {
1846 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1847
1848 lockdep_assert_held(&ptdev->scheduler->lock);
1849
1850 /* Acknowledge the idle event and schedule a tick. */
1851 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1852 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1853 }
1854
1855 /**
1856 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1857 * @ptdev: Device.
1858 */
sched_process_global_irq_locked(struct panthor_device * ptdev)1859 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1860 {
1861 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1862 u32 req, ack, evts;
1863
1864 lockdep_assert_held(&ptdev->scheduler->lock);
1865
1866 req = READ_ONCE(glb_iface->input->req);
1867 ack = READ_ONCE(glb_iface->output->ack);
1868 evts = (req ^ ack) & GLB_EVT_MASK;
1869
1870 if (evts & GLB_IDLE)
1871 sched_process_idle_event_locked(ptdev);
1872 }
1873
process_fw_events_work(struct work_struct * work)1874 static void process_fw_events_work(struct work_struct *work)
1875 {
1876 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1877 fw_events_work);
1878 u32 events = atomic_xchg(&sched->fw_events, 0);
1879 struct panthor_device *ptdev = sched->ptdev;
1880
1881 mutex_lock(&sched->lock);
1882
1883 if (events & JOB_INT_GLOBAL_IF) {
1884 sched_process_global_irq_locked(ptdev);
1885 events &= ~JOB_INT_GLOBAL_IF;
1886 }
1887
1888 while (events) {
1889 u32 csg_id = ffs(events) - 1;
1890
1891 sched_process_csg_irq_locked(ptdev, csg_id);
1892 events &= ~BIT(csg_id);
1893 }
1894
1895 mutex_unlock(&sched->lock);
1896 }
1897
1898 /**
1899 * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1900 */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1901 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1902 {
1903 if (!ptdev->scheduler)
1904 return;
1905
1906 atomic_or(events, &ptdev->scheduler->fw_events);
1907 sched_queue_work(ptdev->scheduler, fw_events);
1908 }
1909
fence_get_driver_name(struct dma_fence * fence)1910 static const char *fence_get_driver_name(struct dma_fence *fence)
1911 {
1912 return "panthor";
1913 }
1914
queue_fence_get_timeline_name(struct dma_fence * fence)1915 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1916 {
1917 return "queue-fence";
1918 }
1919
1920 static const struct dma_fence_ops panthor_queue_fence_ops = {
1921 .get_driver_name = fence_get_driver_name,
1922 .get_timeline_name = queue_fence_get_timeline_name,
1923 };
1924
1925 struct panthor_csg_slots_upd_ctx {
1926 u32 update_mask;
1927 u32 timedout_mask;
1928 struct {
1929 u32 value;
1930 u32 mask;
1931 } requests[MAX_CSGS];
1932 };
1933
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1934 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1935 {
1936 memset(ctx, 0, sizeof(*ctx));
1937 }
1938
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1939 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1940 struct panthor_csg_slots_upd_ctx *ctx,
1941 u32 csg_id, u32 value, u32 mask)
1942 {
1943 if (drm_WARN_ON(&ptdev->base, !mask) ||
1944 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1945 return;
1946
1947 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1948 ctx->requests[csg_id].mask |= mask;
1949 ctx->update_mask |= BIT(csg_id);
1950 }
1951
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1952 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1953 struct panthor_csg_slots_upd_ctx *ctx)
1954 {
1955 struct panthor_scheduler *sched = ptdev->scheduler;
1956 u32 update_slots = ctx->update_mask;
1957
1958 lockdep_assert_held(&sched->lock);
1959
1960 if (!ctx->update_mask)
1961 return 0;
1962
1963 while (update_slots) {
1964 struct panthor_fw_csg_iface *csg_iface;
1965 u32 csg_id = ffs(update_slots) - 1;
1966
1967 update_slots &= ~BIT(csg_id);
1968 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1969 panthor_fw_update_reqs(csg_iface, req,
1970 ctx->requests[csg_id].value,
1971 ctx->requests[csg_id].mask);
1972 }
1973
1974 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1975
1976 update_slots = ctx->update_mask;
1977 while (update_slots) {
1978 struct panthor_fw_csg_iface *csg_iface;
1979 u32 csg_id = ffs(update_slots) - 1;
1980 u32 req_mask = ctx->requests[csg_id].mask, acked;
1981 int ret;
1982
1983 update_slots &= ~BIT(csg_id);
1984 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1985
1986 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1987
1988 if (acked & CSG_ENDPOINT_CONFIG)
1989 csg_slot_sync_priority_locked(ptdev, csg_id);
1990
1991 if (acked & CSG_STATE_MASK)
1992 csg_slot_sync_state_locked(ptdev, csg_id);
1993
1994 if (acked & CSG_STATUS_UPDATE) {
1995 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1996 csg_slot_sync_idle_state_locked(ptdev, csg_id);
1997 }
1998
1999 if (ret && acked != req_mask &&
2000 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
2001 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
2002 ctx->timedout_mask |= BIT(csg_id);
2003 }
2004 }
2005
2006 if (ctx->timedout_mask)
2007 return -ETIMEDOUT;
2008
2009 return 0;
2010 }
2011
2012 struct panthor_sched_tick_ctx {
2013 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
2014 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
2015 u32 idle_group_count;
2016 u32 group_count;
2017 enum panthor_csg_priority min_priority;
2018 struct panthor_vm *vms[MAX_CS_PER_CSG];
2019 u32 as_count;
2020 bool immediate_tick;
2021 u32 csg_upd_failed_mask;
2022 };
2023
2024 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2025 tick_ctx_is_full(const struct panthor_scheduler *sched,
2026 const struct panthor_sched_tick_ctx *ctx)
2027 {
2028 return ctx->group_count == sched->csg_slot_count;
2029 }
2030
2031 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)2032 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
2033 struct panthor_sched_tick_ctx *ctx,
2034 struct list_head *queue,
2035 bool skip_idle_groups,
2036 bool owned_by_tick_ctx)
2037 {
2038 struct panthor_group *group, *tmp;
2039
2040 if (tick_ctx_is_full(sched, ctx))
2041 return;
2042
2043 list_for_each_entry_safe(group, tmp, queue, run_node) {
2044 u32 i;
2045
2046 if (!group_can_run(group))
2047 continue;
2048
2049 if (skip_idle_groups && group_is_idle(group))
2050 continue;
2051
2052 for (i = 0; i < ctx->as_count; i++) {
2053 if (ctx->vms[i] == group->vm)
2054 break;
2055 }
2056
2057 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
2058 continue;
2059
2060 if (!owned_by_tick_ctx)
2061 group_get(group);
2062
2063 list_move_tail(&group->run_node, &ctx->groups[group->priority]);
2064 ctx->group_count++;
2065 if (group_is_idle(group))
2066 ctx->idle_group_count++;
2067
2068 if (i == ctx->as_count)
2069 ctx->vms[ctx->as_count++] = group->vm;
2070
2071 if (ctx->min_priority > group->priority)
2072 ctx->min_priority = group->priority;
2073
2074 if (tick_ctx_is_full(sched, ctx))
2075 return;
2076 }
2077 }
2078
2079 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)2080 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
2081 struct panthor_sched_tick_ctx *ctx,
2082 struct panthor_group *group,
2083 bool full_tick)
2084 {
2085 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
2086 struct panthor_group *other_group;
2087
2088 if (!full_tick) {
2089 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2090 return;
2091 }
2092
2093 /* Rotate to make sure groups with lower CSG slot
2094 * priorities have a chance to get a higher CSG slot
2095 * priority next time they get picked. This priority
2096 * has an impact on resource request ordering, so it's
2097 * important to make sure we don't let one group starve
2098 * all other groups with the same group priority.
2099 */
2100 list_for_each_entry(other_group,
2101 &ctx->old_groups[csg_slot->group->priority],
2102 run_node) {
2103 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
2104
2105 if (other_csg_slot->priority > csg_slot->priority) {
2106 list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
2107 return;
2108 }
2109 }
2110
2111 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2112 }
2113
2114 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)2115 tick_ctx_init(struct panthor_scheduler *sched,
2116 struct panthor_sched_tick_ctx *ctx,
2117 bool full_tick)
2118 {
2119 struct panthor_device *ptdev = sched->ptdev;
2120 struct panthor_csg_slots_upd_ctx upd_ctx;
2121 int ret;
2122 u32 i;
2123
2124 memset(ctx, 0, sizeof(*ctx));
2125 csgs_upd_ctx_init(&upd_ctx);
2126
2127 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2128 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2129 INIT_LIST_HEAD(&ctx->groups[i]);
2130 INIT_LIST_HEAD(&ctx->old_groups[i]);
2131 }
2132
2133 for (i = 0; i < sched->csg_slot_count; i++) {
2134 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2135 struct panthor_group *group = csg_slot->group;
2136 struct panthor_fw_csg_iface *csg_iface;
2137
2138 if (!group)
2139 continue;
2140
2141 csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2142 group_get(group);
2143
2144 /* If there was unhandled faults on the VM, force processing of
2145 * CSG IRQs, so we can flag the faulty queue.
2146 */
2147 if (panthor_vm_has_unhandled_faults(group->vm)) {
2148 sched_process_csg_irq_locked(ptdev, i);
2149
2150 /* No fatal fault reported, flag all queues as faulty. */
2151 if (!group->fatal_queues)
2152 group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2153 }
2154
2155 tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2156 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2157 csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2158 CSG_STATUS_UPDATE);
2159 }
2160
2161 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2162 if (ret) {
2163 panthor_device_schedule_reset(ptdev);
2164 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2165 }
2166 }
2167
2168 static void
group_term_post_processing(struct panthor_group * group)2169 group_term_post_processing(struct panthor_group *group)
2170 {
2171 struct panthor_job *job, *tmp;
2172 LIST_HEAD(faulty_jobs);
2173 bool cookie;
2174 u32 i = 0;
2175
2176 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2177 return;
2178
2179 cookie = dma_fence_begin_signalling();
2180 for (i = 0; i < group->queue_count; i++) {
2181 struct panthor_queue *queue = group->queues[i];
2182 struct panthor_syncobj_64b *syncobj;
2183 int err;
2184
2185 if (group->fatal_queues & BIT(i))
2186 err = -EINVAL;
2187 else if (group->timedout)
2188 err = -ETIMEDOUT;
2189 else
2190 err = -ECANCELED;
2191
2192 if (!queue)
2193 continue;
2194
2195 spin_lock(&queue->fence_ctx.lock);
2196 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2197 list_move_tail(&job->node, &faulty_jobs);
2198 dma_fence_set_error(job->done_fence, err);
2199 dma_fence_signal_locked(job->done_fence);
2200 }
2201 spin_unlock(&queue->fence_ctx.lock);
2202
2203 /* Manually update the syncobj seqno to unblock waiters. */
2204 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2205 syncobj->status = ~0;
2206 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2207 sched_queue_work(group->ptdev->scheduler, sync_upd);
2208 }
2209 dma_fence_end_signalling(cookie);
2210
2211 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2212 list_del_init(&job->node);
2213 panthor_job_put(&job->base);
2214 }
2215 }
2216
group_term_work(struct work_struct * work)2217 static void group_term_work(struct work_struct *work)
2218 {
2219 struct panthor_group *group =
2220 container_of(work, struct panthor_group, term_work);
2221
2222 group_term_post_processing(group);
2223 group_put(group);
2224 }
2225
2226 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2227 tick_ctx_cleanup(struct panthor_scheduler *sched,
2228 struct panthor_sched_tick_ctx *ctx)
2229 {
2230 struct panthor_device *ptdev = sched->ptdev;
2231 struct panthor_group *group, *tmp;
2232 u32 i;
2233
2234 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2235 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2236 /* If everything went fine, we should only have groups
2237 * to be terminated in the old_groups lists.
2238 */
2239 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2240 group_can_run(group));
2241
2242 if (!group_can_run(group)) {
2243 list_del_init(&group->run_node);
2244 list_del_init(&group->wait_node);
2245 group_queue_work(group, term);
2246 } else if (group->csg_id >= 0) {
2247 list_del_init(&group->run_node);
2248 } else {
2249 list_move(&group->run_node,
2250 group_is_idle(group) ?
2251 &sched->groups.idle[group->priority] :
2252 &sched->groups.runnable[group->priority]);
2253 }
2254 group_put(group);
2255 }
2256 }
2257
2258 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2259 /* If everything went fine, the groups to schedule lists should
2260 * be empty.
2261 */
2262 drm_WARN_ON(&ptdev->base,
2263 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2264
2265 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2266 if (group->csg_id >= 0) {
2267 list_del_init(&group->run_node);
2268 } else {
2269 list_move(&group->run_node,
2270 group_is_idle(group) ?
2271 &sched->groups.idle[group->priority] :
2272 &sched->groups.runnable[group->priority]);
2273 }
2274 group_put(group);
2275 }
2276 }
2277 }
2278
2279 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2280 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2281 {
2282 struct panthor_group *group, *tmp;
2283 struct panthor_device *ptdev = sched->ptdev;
2284 struct panthor_csg_slot *csg_slot;
2285 int prio, new_csg_prio = MAX_CSG_PRIO, i;
2286 u32 free_csg_slots = 0;
2287 struct panthor_csg_slots_upd_ctx upd_ctx;
2288 int ret;
2289
2290 csgs_upd_ctx_init(&upd_ctx);
2291
2292 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2293 /* Suspend or terminate evicted groups. */
2294 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2295 bool term = !group_can_run(group);
2296 int csg_id = group->csg_id;
2297
2298 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2299 continue;
2300
2301 csg_slot = &sched->csg_slots[csg_id];
2302 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2303 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2304 CSG_STATE_MASK);
2305 }
2306
2307 /* Update priorities on already running groups. */
2308 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2309 struct panthor_fw_csg_iface *csg_iface;
2310 int csg_id = group->csg_id;
2311
2312 if (csg_id < 0) {
2313 new_csg_prio--;
2314 continue;
2315 }
2316
2317 csg_slot = &sched->csg_slots[csg_id];
2318 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2319 if (csg_slot->priority == new_csg_prio) {
2320 new_csg_prio--;
2321 continue;
2322 }
2323
2324 panthor_fw_csg_endpoint_req_update(ptdev, csg_iface,
2325 CSG_EP_REQ_PRIORITY(new_csg_prio),
2326 CSG_EP_REQ_PRIORITY_MASK);
2327 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2328 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2329 CSG_ENDPOINT_CONFIG);
2330 new_csg_prio--;
2331 }
2332 }
2333
2334 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2335 if (ret) {
2336 panthor_device_schedule_reset(ptdev);
2337 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2338 return;
2339 }
2340
2341 /* Unbind evicted groups. */
2342 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2343 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2344 /* This group is gone. Process interrupts to clear
2345 * any pending interrupts before we start the new
2346 * group.
2347 */
2348 if (group->csg_id >= 0)
2349 sched_process_csg_irq_locked(ptdev, group->csg_id);
2350
2351 group_unbind_locked(group);
2352 }
2353 }
2354
2355 for (i = 0; i < sched->csg_slot_count; i++) {
2356 if (!sched->csg_slots[i].group)
2357 free_csg_slots |= BIT(i);
2358 }
2359
2360 csgs_upd_ctx_init(&upd_ctx);
2361 new_csg_prio = MAX_CSG_PRIO;
2362
2363 /* Start new groups. */
2364 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2365 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2366 int csg_id = group->csg_id;
2367 struct panthor_fw_csg_iface *csg_iface;
2368
2369 if (csg_id >= 0) {
2370 new_csg_prio--;
2371 continue;
2372 }
2373
2374 csg_id = ffs(free_csg_slots) - 1;
2375 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2376 break;
2377
2378 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2379 csg_slot = &sched->csg_slots[csg_id];
2380 group_bind_locked(group, csg_id);
2381 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2382 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2383 group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2384 CSG_STATE_RESUME : CSG_STATE_START,
2385 CSG_STATE_MASK);
2386 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2387 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2388 CSG_ENDPOINT_CONFIG);
2389 free_csg_slots &= ~BIT(csg_id);
2390 }
2391 }
2392
2393 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2394 if (ret) {
2395 panthor_device_schedule_reset(ptdev);
2396 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2397 return;
2398 }
2399
2400 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2401 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2402 list_del_init(&group->run_node);
2403
2404 /* If the group has been destroyed while we were
2405 * scheduling, ask for an immediate tick to
2406 * re-evaluate as soon as possible and get rid of
2407 * this dangling group.
2408 */
2409 if (group->destroyed)
2410 ctx->immediate_tick = true;
2411 group_put(group);
2412 }
2413
2414 /* Return evicted groups to the idle or run queues. Groups
2415 * that can no longer be run (because they've been destroyed
2416 * or experienced an unrecoverable error) will be scheduled
2417 * for destruction in tick_ctx_cleanup().
2418 */
2419 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2420 if (!group_can_run(group))
2421 continue;
2422
2423 if (group_is_idle(group))
2424 list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2425 else
2426 list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2427 group_put(group);
2428 }
2429 }
2430
2431 sched->used_csg_slot_count = ctx->group_count;
2432 sched->might_have_idle_groups = ctx->idle_group_count > 0;
2433 }
2434
2435 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2436 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2437 const struct panthor_sched_tick_ctx *ctx)
2438 {
2439 /* We had space left, no need to reschedule until some external event happens. */
2440 if (!tick_ctx_is_full(sched, ctx))
2441 goto no_tick;
2442
2443 /* If idle groups were scheduled, no need to wake up until some external
2444 * event happens (group unblocked, new job submitted, ...).
2445 */
2446 if (ctx->idle_group_count)
2447 goto no_tick;
2448
2449 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2450 goto no_tick;
2451
2452 /* If there are groups of the same priority waiting, we need to
2453 * keep the scheduler ticking, otherwise, we'll just wait for
2454 * new groups with higher priority to be queued.
2455 */
2456 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2457 u64 resched_target = sched->last_tick + sched->tick_period;
2458
2459 if (time_before64(sched->resched_target, sched->last_tick) ||
2460 time_before64(resched_target, sched->resched_target))
2461 sched->resched_target = resched_target;
2462
2463 return sched->resched_target - sched->last_tick;
2464 }
2465
2466 no_tick:
2467 sched->resched_target = U64_MAX;
2468 return U64_MAX;
2469 }
2470
tick_work(struct work_struct * work)2471 static void tick_work(struct work_struct *work)
2472 {
2473 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2474 tick_work.work);
2475 struct panthor_device *ptdev = sched->ptdev;
2476 struct panthor_sched_tick_ctx ctx;
2477 u64 remaining_jiffies = 0, resched_delay;
2478 u64 now = get_jiffies_64();
2479 int prio, ret, cookie;
2480
2481 if (!drm_dev_enter(&ptdev->base, &cookie))
2482 return;
2483
2484 ret = panthor_device_resume_and_get(ptdev);
2485 if (drm_WARN_ON(&ptdev->base, ret))
2486 goto out_dev_exit;
2487
2488 if (time_before64(now, sched->resched_target))
2489 remaining_jiffies = sched->resched_target - now;
2490
2491 mutex_lock(&sched->lock);
2492 if (panthor_device_reset_is_pending(sched->ptdev))
2493 goto out_unlock;
2494
2495 tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2496 if (ctx.csg_upd_failed_mask)
2497 goto out_cleanup_ctx;
2498
2499 if (remaining_jiffies) {
2500 /* Scheduling forced in the middle of a tick. Only RT groups
2501 * can preempt non-RT ones. Currently running RT groups can't be
2502 * preempted.
2503 */
2504 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2505 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2506 prio--) {
2507 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2508 true, true);
2509 if (prio == PANTHOR_CSG_PRIORITY_RT) {
2510 tick_ctx_pick_groups_from_list(sched, &ctx,
2511 &sched->groups.runnable[prio],
2512 true, false);
2513 }
2514 }
2515 }
2516
2517 /* First pick non-idle groups */
2518 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2519 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2520 prio--) {
2521 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2522 true, false);
2523 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2524 }
2525
2526 /* If we have free CSG slots left, pick idle groups */
2527 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2528 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2529 prio--) {
2530 /* Check the old_group queue first to avoid reprogramming the slots */
2531 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2532 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2533 false, false);
2534 }
2535
2536 tick_ctx_apply(sched, &ctx);
2537 if (ctx.csg_upd_failed_mask)
2538 goto out_cleanup_ctx;
2539
2540 if (ctx.idle_group_count == ctx.group_count) {
2541 panthor_devfreq_record_idle(sched->ptdev);
2542 if (sched->pm.has_ref) {
2543 pm_runtime_put_autosuspend(ptdev->base.dev);
2544 sched->pm.has_ref = false;
2545 }
2546 } else {
2547 panthor_devfreq_record_busy(sched->ptdev);
2548 if (!sched->pm.has_ref) {
2549 pm_runtime_get(ptdev->base.dev);
2550 sched->pm.has_ref = true;
2551 }
2552 }
2553
2554 sched->last_tick = now;
2555 resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2556 if (ctx.immediate_tick)
2557 resched_delay = 0;
2558
2559 if (resched_delay != U64_MAX)
2560 sched_queue_delayed_work(sched, tick, resched_delay);
2561
2562 out_cleanup_ctx:
2563 tick_ctx_cleanup(sched, &ctx);
2564
2565 out_unlock:
2566 mutex_unlock(&sched->lock);
2567 pm_runtime_mark_last_busy(ptdev->base.dev);
2568 pm_runtime_put_autosuspend(ptdev->base.dev);
2569
2570 out_dev_exit:
2571 drm_dev_exit(cookie);
2572 }
2573
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2574 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2575 {
2576 struct panthor_queue *queue = group->queues[queue_idx];
2577 union {
2578 struct panthor_syncobj_64b sync64;
2579 struct panthor_syncobj_32b sync32;
2580 } *syncobj;
2581 bool result;
2582 u64 value;
2583
2584 syncobj = panthor_queue_get_syncwait_obj(group, queue);
2585 if (!syncobj)
2586 return -EINVAL;
2587
2588 value = queue->syncwait.sync64 ?
2589 syncobj->sync64.seqno :
2590 syncobj->sync32.seqno;
2591
2592 if (queue->syncwait.gt)
2593 result = value > queue->syncwait.ref;
2594 else
2595 result = value <= queue->syncwait.ref;
2596
2597 if (result)
2598 panthor_queue_put_syncwait_obj(queue);
2599
2600 return result;
2601 }
2602
sync_upd_work(struct work_struct * work)2603 static void sync_upd_work(struct work_struct *work)
2604 {
2605 struct panthor_scheduler *sched = container_of(work,
2606 struct panthor_scheduler,
2607 sync_upd_work);
2608 struct panthor_group *group, *tmp;
2609 bool immediate_tick = false;
2610
2611 mutex_lock(&sched->lock);
2612 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2613 u32 tested_queues = group->blocked_queues;
2614 u32 unblocked_queues = 0;
2615
2616 while (tested_queues) {
2617 u32 cs_id = ffs(tested_queues) - 1;
2618 int ret;
2619
2620 ret = panthor_queue_eval_syncwait(group, cs_id);
2621 drm_WARN_ON(&group->ptdev->base, ret < 0);
2622 if (ret)
2623 unblocked_queues |= BIT(cs_id);
2624
2625 tested_queues &= ~BIT(cs_id);
2626 }
2627
2628 if (unblocked_queues) {
2629 group->blocked_queues &= ~unblocked_queues;
2630
2631 if (group->csg_id < 0) {
2632 list_move(&group->run_node,
2633 &sched->groups.runnable[group->priority]);
2634 if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2635 immediate_tick = true;
2636 }
2637 }
2638
2639 if (!group->blocked_queues)
2640 list_del_init(&group->wait_node);
2641 }
2642 mutex_unlock(&sched->lock);
2643
2644 if (immediate_tick)
2645 sched_queue_delayed_work(sched, tick, 0);
2646 }
2647
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2648 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2649 {
2650 struct panthor_device *ptdev = group->ptdev;
2651 struct panthor_scheduler *sched = ptdev->scheduler;
2652 struct list_head *queue = &sched->groups.runnable[group->priority];
2653 u64 delay_jiffies = 0;
2654 bool was_idle;
2655 u64 now;
2656
2657 if (!group_can_run(group))
2658 return;
2659
2660 /* All updated queues are blocked, no need to wake up the scheduler. */
2661 if ((queue_mask & group->blocked_queues) == queue_mask)
2662 return;
2663
2664 was_idle = group_is_idle(group);
2665 group->idle_queues &= ~queue_mask;
2666
2667 /* Don't mess up with the lists if we're in a middle of a reset. */
2668 if (atomic_read(&sched->reset.in_progress))
2669 return;
2670
2671 if (was_idle && !group_is_idle(group))
2672 list_move_tail(&group->run_node, queue);
2673
2674 /* RT groups are preemptive. */
2675 if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2676 sched_queue_delayed_work(sched, tick, 0);
2677 return;
2678 }
2679
2680 /* Some groups might be idle, force an immediate tick to
2681 * re-evaluate.
2682 */
2683 if (sched->might_have_idle_groups) {
2684 sched_queue_delayed_work(sched, tick, 0);
2685 return;
2686 }
2687
2688 /* Scheduler is ticking, nothing to do. */
2689 if (sched->resched_target != U64_MAX) {
2690 /* If there are free slots, force immediating ticking. */
2691 if (sched->used_csg_slot_count < sched->csg_slot_count)
2692 sched_queue_delayed_work(sched, tick, 0);
2693
2694 return;
2695 }
2696
2697 /* Scheduler tick was off, recalculate the resched_target based on the
2698 * last tick event, and queue the scheduler work.
2699 */
2700 now = get_jiffies_64();
2701 sched->resched_target = sched->last_tick + sched->tick_period;
2702 if (sched->used_csg_slot_count == sched->csg_slot_count &&
2703 time_before64(now, sched->resched_target))
2704 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2705
2706 sched_queue_delayed_work(sched, tick, delay_jiffies);
2707 }
2708
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2709 static void queue_stop(struct panthor_queue *queue,
2710 struct panthor_job *bad_job)
2711 {
2712 disable_delayed_work_sync(&queue->timeout.work);
2713 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2714 }
2715
queue_start(struct panthor_queue * queue)2716 static void queue_start(struct panthor_queue *queue)
2717 {
2718 struct panthor_job *job;
2719
2720 /* Re-assign the parent fences. */
2721 list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2722 job->base.s_fence->parent = dma_fence_get(job->done_fence);
2723
2724 enable_delayed_work(&queue->timeout.work);
2725 drm_sched_start(&queue->scheduler, 0);
2726 }
2727
panthor_group_stop(struct panthor_group * group)2728 static void panthor_group_stop(struct panthor_group *group)
2729 {
2730 struct panthor_scheduler *sched = group->ptdev->scheduler;
2731
2732 lockdep_assert_held(&sched->reset.lock);
2733
2734 for (u32 i = 0; i < group->queue_count; i++)
2735 queue_stop(group->queues[i], NULL);
2736
2737 group_get(group);
2738 list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2739 }
2740
panthor_group_start(struct panthor_group * group)2741 static void panthor_group_start(struct panthor_group *group)
2742 {
2743 struct panthor_scheduler *sched = group->ptdev->scheduler;
2744
2745 lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2746
2747 for (u32 i = 0; i < group->queue_count; i++)
2748 queue_start(group->queues[i]);
2749
2750 if (group_can_run(group)) {
2751 list_move_tail(&group->run_node,
2752 group_is_idle(group) ?
2753 &sched->groups.idle[group->priority] :
2754 &sched->groups.runnable[group->priority]);
2755 } else {
2756 list_del_init(&group->run_node);
2757 list_del_init(&group->wait_node);
2758 group_queue_work(group, term);
2759 }
2760
2761 group_put(group);
2762 }
2763
panthor_sched_immediate_tick(struct panthor_device * ptdev)2764 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2765 {
2766 struct panthor_scheduler *sched = ptdev->scheduler;
2767
2768 sched_queue_delayed_work(sched, tick, 0);
2769 }
2770
2771 /**
2772 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2773 */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2774 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2775 {
2776 /* Force a tick to immediately kill faulty groups. */
2777 if (ptdev->scheduler)
2778 panthor_sched_immediate_tick(ptdev);
2779 }
2780
panthor_sched_resume(struct panthor_device * ptdev)2781 void panthor_sched_resume(struct panthor_device *ptdev)
2782 {
2783 /* Force a tick to re-evaluate after a resume. */
2784 panthor_sched_immediate_tick(ptdev);
2785 }
2786
panthor_sched_suspend(struct panthor_device * ptdev)2787 void panthor_sched_suspend(struct panthor_device *ptdev)
2788 {
2789 struct panthor_scheduler *sched = ptdev->scheduler;
2790 struct panthor_csg_slots_upd_ctx upd_ctx;
2791 u32 suspended_slots;
2792 u32 i;
2793
2794 mutex_lock(&sched->lock);
2795 csgs_upd_ctx_init(&upd_ctx);
2796 for (i = 0; i < sched->csg_slot_count; i++) {
2797 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2798
2799 if (csg_slot->group) {
2800 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2801 group_can_run(csg_slot->group) ?
2802 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2803 CSG_STATE_MASK);
2804 }
2805 }
2806
2807 suspended_slots = upd_ctx.update_mask;
2808
2809 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2810 suspended_slots &= ~upd_ctx.timedout_mask;
2811
2812 if (upd_ctx.timedout_mask) {
2813 u32 slot_mask = upd_ctx.timedout_mask;
2814
2815 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2816 csgs_upd_ctx_init(&upd_ctx);
2817 while (slot_mask) {
2818 u32 csg_id = ffs(slot_mask) - 1;
2819 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2820
2821 /* If the group was still usable before that point, we consider
2822 * it innocent.
2823 */
2824 if (group_can_run(csg_slot->group))
2825 csg_slot->group->innocent = true;
2826
2827 /* We consider group suspension failures as fatal and flag the
2828 * group as unusable by setting timedout=true.
2829 */
2830 csg_slot->group->timedout = true;
2831
2832 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2833 CSG_STATE_TERMINATE,
2834 CSG_STATE_MASK);
2835 slot_mask &= ~BIT(csg_id);
2836 }
2837
2838 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2839
2840 slot_mask = upd_ctx.timedout_mask;
2841 while (slot_mask) {
2842 u32 csg_id = ffs(slot_mask) - 1;
2843 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2844 struct panthor_group *group = csg_slot->group;
2845
2846 /* Terminate command timedout, but the soft-reset will
2847 * automatically terminate all active groups, so let's
2848 * force the state to halted here.
2849 */
2850 if (group->state != PANTHOR_CS_GROUP_TERMINATED) {
2851 group->state = PANTHOR_CS_GROUP_TERMINATED;
2852
2853 /* Reset the queue slots manually if the termination
2854 * request failed.
2855 */
2856 for (i = 0; i < group->queue_count; i++) {
2857 if (group->queues[i])
2858 cs_slot_reset_locked(ptdev, csg_id, i);
2859 }
2860 }
2861 slot_mask &= ~BIT(csg_id);
2862 }
2863 }
2864
2865 /* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2866 * If the flush fails, flag all queues for termination.
2867 */
2868 if (suspended_slots) {
2869 bool flush_caches_failed = false;
2870 u32 slot_mask = suspended_slots;
2871
2872 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2873 flush_caches_failed = true;
2874
2875 while (slot_mask) {
2876 u32 csg_id = ffs(slot_mask) - 1;
2877 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2878
2879 if (flush_caches_failed)
2880 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2881 else
2882 csg_slot_sync_update_locked(ptdev, csg_id);
2883
2884 slot_mask &= ~BIT(csg_id);
2885 }
2886 }
2887
2888 for (i = 0; i < sched->csg_slot_count; i++) {
2889 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2890 struct panthor_group *group = csg_slot->group;
2891
2892 if (!group)
2893 continue;
2894
2895 group_get(group);
2896
2897 if (group->csg_id >= 0)
2898 sched_process_csg_irq_locked(ptdev, group->csg_id);
2899
2900 group_unbind_locked(group);
2901
2902 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2903
2904 if (group_can_run(group)) {
2905 list_add(&group->run_node,
2906 &sched->groups.idle[group->priority]);
2907 } else {
2908 /* We don't bother stopping the scheduler if the group is
2909 * faulty, the group termination work will finish the job.
2910 */
2911 list_del_init(&group->wait_node);
2912 group_queue_work(group, term);
2913 }
2914 group_put(group);
2915 }
2916 mutex_unlock(&sched->lock);
2917 }
2918
panthor_sched_pre_reset(struct panthor_device * ptdev)2919 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2920 {
2921 struct panthor_scheduler *sched = ptdev->scheduler;
2922 struct panthor_group *group, *group_tmp;
2923 u32 i;
2924
2925 mutex_lock(&sched->reset.lock);
2926 atomic_set(&sched->reset.in_progress, true);
2927
2928 /* Cancel all scheduler works. Once this is done, these works can't be
2929 * scheduled again until the reset operation is complete.
2930 */
2931 cancel_work_sync(&sched->sync_upd_work);
2932 cancel_delayed_work_sync(&sched->tick_work);
2933
2934 panthor_sched_suspend(ptdev);
2935
2936 /* Stop all groups that might still accept jobs, so we don't get passed
2937 * new jobs while we're resetting.
2938 */
2939 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2940 /* All groups should be in the idle lists. */
2941 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2942 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2943 panthor_group_stop(group);
2944 }
2945
2946 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2947 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2948 panthor_group_stop(group);
2949 }
2950
2951 mutex_unlock(&sched->reset.lock);
2952 }
2953
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2954 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2955 {
2956 struct panthor_scheduler *sched = ptdev->scheduler;
2957 struct panthor_group *group, *group_tmp;
2958
2959 mutex_lock(&sched->reset.lock);
2960
2961 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2962 /* Consider all previously running group as terminated if the
2963 * reset failed.
2964 */
2965 if (reset_failed)
2966 group->state = PANTHOR_CS_GROUP_TERMINATED;
2967
2968 panthor_group_start(group);
2969 }
2970
2971 /* We're done resetting the GPU, clear the reset.in_progress bit so we can
2972 * kick the scheduler.
2973 */
2974 atomic_set(&sched->reset.in_progress, false);
2975 mutex_unlock(&sched->reset.lock);
2976
2977 /* No need to queue a tick and update syncs if the reset failed. */
2978 if (!reset_failed) {
2979 sched_queue_delayed_work(sched, tick, 0);
2980 sched_queue_work(sched, sync_upd);
2981 }
2982 }
2983
update_fdinfo_stats(struct panthor_job * job)2984 static void update_fdinfo_stats(struct panthor_job *job)
2985 {
2986 struct panthor_group *group = job->group;
2987 struct panthor_queue *queue = group->queues[job->queue_idx];
2988 struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2989 struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2990 struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2991
2992 scoped_guard(spinlock, &group->fdinfo.lock) {
2993 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
2994 fdinfo->cycles += data->cycles.after - data->cycles.before;
2995 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
2996 fdinfo->time += data->time.after - data->time.before;
2997 }
2998 }
2999
panthor_fdinfo_gather_group_samples(struct panthor_file * pfile)3000 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
3001 {
3002 struct panthor_group_pool *gpool = pfile->groups;
3003 struct panthor_group *group;
3004 unsigned long i;
3005
3006 if (IS_ERR_OR_NULL(gpool))
3007 return;
3008
3009 xa_lock(&gpool->xa);
3010 xa_for_each(&gpool->xa, i, group) {
3011 guard(spinlock)(&group->fdinfo.lock);
3012 pfile->stats.cycles += group->fdinfo.data.cycles;
3013 pfile->stats.time += group->fdinfo.data.time;
3014 group->fdinfo.data.cycles = 0;
3015 group->fdinfo.data.time = 0;
3016 }
3017 xa_unlock(&gpool->xa);
3018 }
3019
queue_check_job_completion(struct panthor_queue * queue)3020 static bool queue_check_job_completion(struct panthor_queue *queue)
3021 {
3022 struct panthor_syncobj_64b *syncobj = NULL;
3023 struct panthor_job *job, *job_tmp;
3024 bool cookie, progress = false;
3025 LIST_HEAD(done_jobs);
3026
3027 cookie = dma_fence_begin_signalling();
3028 spin_lock(&queue->fence_ctx.lock);
3029 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
3030 if (!syncobj) {
3031 struct panthor_group *group = job->group;
3032
3033 syncobj = group->syncobjs->kmap +
3034 (job->queue_idx * sizeof(*syncobj));
3035 }
3036
3037 if (syncobj->seqno < job->done_fence->seqno)
3038 break;
3039
3040 list_move_tail(&job->node, &done_jobs);
3041 dma_fence_signal_locked(job->done_fence);
3042 }
3043
3044 if (list_empty(&queue->fence_ctx.in_flight_jobs)) {
3045 /* If we have no job left, we cancel the timer, and reset remaining
3046 * time to its default so it can be restarted next time
3047 * queue_resume_timeout() is called.
3048 */
3049 queue_suspend_timeout_locked(queue);
3050
3051 /* If there's no job pending, we consider it progress to avoid a
3052 * spurious timeout if the timeout handler and the sync update
3053 * handler raced.
3054 */
3055 progress = true;
3056 } else if (!list_empty(&done_jobs)) {
3057 queue_reset_timeout_locked(queue);
3058 progress = true;
3059 }
3060 spin_unlock(&queue->fence_ctx.lock);
3061 dma_fence_end_signalling(cookie);
3062
3063 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
3064 if (job->profiling.mask)
3065 update_fdinfo_stats(job);
3066 list_del_init(&job->node);
3067 panthor_job_put(&job->base);
3068 }
3069
3070 return progress;
3071 }
3072
group_sync_upd_work(struct work_struct * work)3073 static void group_sync_upd_work(struct work_struct *work)
3074 {
3075 struct panthor_group *group =
3076 container_of(work, struct panthor_group, sync_upd_work);
3077 u32 queue_idx;
3078 bool cookie;
3079
3080 cookie = dma_fence_begin_signalling();
3081 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
3082 struct panthor_queue *queue = group->queues[queue_idx];
3083
3084 if (!queue)
3085 continue;
3086
3087 queue_check_job_completion(queue);
3088 }
3089 dma_fence_end_signalling(cookie);
3090
3091 group_put(group);
3092 }
3093
3094 struct panthor_job_ringbuf_instrs {
3095 u64 buffer[MAX_INSTRS_PER_JOB];
3096 u32 count;
3097 };
3098
3099 struct panthor_job_instr {
3100 u32 profile_mask;
3101 u64 instr;
3102 };
3103
3104 #define JOB_INSTR(__prof, __instr) \
3105 { \
3106 .profile_mask = __prof, \
3107 .instr = __instr, \
3108 }
3109
3110 static void
copy_instrs_to_ringbuf(struct panthor_queue * queue,struct panthor_job * job,struct panthor_job_ringbuf_instrs * instrs)3111 copy_instrs_to_ringbuf(struct panthor_queue *queue,
3112 struct panthor_job *job,
3113 struct panthor_job_ringbuf_instrs *instrs)
3114 {
3115 u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
3116 u64 start = job->ringbuf.start & (ringbuf_size - 1);
3117 u64 size, written;
3118
3119 /*
3120 * We need to write a whole slot, including any trailing zeroes
3121 * that may come at the end of it. Also, because instrs.buffer has
3122 * been zero-initialised, there's no need to pad it with 0's
3123 */
3124 instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3125 size = instrs->count * sizeof(u64);
3126 WARN_ON(size > ringbuf_size);
3127 written = min(ringbuf_size - start, size);
3128
3129 memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
3130
3131 if (written < size)
3132 memcpy(queue->ringbuf->kmap,
3133 &instrs->buffer[written / sizeof(u64)],
3134 size - written);
3135 }
3136
3137 struct panthor_job_cs_params {
3138 u32 profile_mask;
3139 u64 addr_reg; u64 val_reg;
3140 u64 cycle_reg; u64 time_reg;
3141 u64 sync_addr; u64 times_addr;
3142 u64 cs_start; u64 cs_size;
3143 u32 last_flush; u32 waitall_mask;
3144 };
3145
3146 static void
get_job_cs_params(struct panthor_job * job,struct panthor_job_cs_params * params)3147 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
3148 {
3149 struct panthor_group *group = job->group;
3150 struct panthor_queue *queue = group->queues[job->queue_idx];
3151 struct panthor_device *ptdev = group->ptdev;
3152 struct panthor_scheduler *sched = ptdev->scheduler;
3153
3154 params->addr_reg = ptdev->csif_info.cs_reg_count -
3155 ptdev->csif_info.unpreserved_cs_reg_count;
3156 params->val_reg = params->addr_reg + 2;
3157 params->cycle_reg = params->addr_reg;
3158 params->time_reg = params->val_reg;
3159
3160 params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
3161 job->queue_idx * sizeof(struct panthor_syncobj_64b);
3162 params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3163 (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3164 params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3165
3166 params->cs_start = job->call_info.start;
3167 params->cs_size = job->call_info.size;
3168 params->last_flush = job->call_info.latest_flush;
3169
3170 params->profile_mask = job->profiling.mask;
3171 }
3172
3173 #define JOB_INSTR_ALWAYS(instr) \
3174 JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3175 #define JOB_INSTR_TIMESTAMP(instr) \
3176 JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3177 #define JOB_INSTR_CYCLES(instr) \
3178 JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3179
3180 static void
prepare_job_instrs(const struct panthor_job_cs_params * params,struct panthor_job_ringbuf_instrs * instrs)3181 prepare_job_instrs(const struct panthor_job_cs_params *params,
3182 struct panthor_job_ringbuf_instrs *instrs)
3183 {
3184 const struct panthor_job_instr instr_seq[] = {
3185 /* MOV32 rX+2, cs.latest_flush */
3186 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3187 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3188 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3189 (0 << 16) | 0x233),
3190 /* MOV48 rX:rX+1, cycles_offset */
3191 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3192 (params->times_addr +
3193 offsetof(struct panthor_job_profiling_data, cycles.before))),
3194 /* STORE_STATE cycles */
3195 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3196 /* MOV48 rX:rX+1, time_offset */
3197 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3198 (params->times_addr +
3199 offsetof(struct panthor_job_profiling_data, time.before))),
3200 /* STORE_STATE timer */
3201 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3202 /* MOV48 rX:rX+1, cs.start */
3203 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3204 /* MOV32 rX+2, cs.size */
3205 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3206 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3207 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3208 /* CALL rX:rX+1, rX+2 */
3209 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3210 (params->val_reg << 32)),
3211 /* MOV48 rX:rX+1, cycles_offset */
3212 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3213 (params->times_addr +
3214 offsetof(struct panthor_job_profiling_data, cycles.after))),
3215 /* STORE_STATE cycles */
3216 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3217 /* MOV48 rX:rX+1, time_offset */
3218 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3219 (params->times_addr +
3220 offsetof(struct panthor_job_profiling_data, time.after))),
3221 /* STORE_STATE timer */
3222 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3223 /* MOV48 rX:rX+1, sync_addr */
3224 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3225 /* MOV48 rX+2, #1 */
3226 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3227 /* WAIT(all) */
3228 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3229 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3230 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3231 (params->val_reg << 32) | (0 << 16) | 1),
3232 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3233 JOB_INSTR_ALWAYS((47ull << 56)),
3234 };
3235 u32 pad;
3236
3237 instrs->count = 0;
3238
3239 /* NEED to be cacheline aligned to please the prefetcher. */
3240 static_assert(sizeof(instrs->buffer) % 64 == 0,
3241 "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3242
3243 /* Make sure we have enough storage to store the whole sequence. */
3244 static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3245 ARRAY_SIZE(instrs->buffer),
3246 "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3247
3248 for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3249 /* If the profile mask of this instruction is not enabled, skip it. */
3250 if (instr_seq[i].profile_mask &&
3251 !(instr_seq[i].profile_mask & params->profile_mask))
3252 continue;
3253
3254 instrs->buffer[instrs->count++] = instr_seq[i].instr;
3255 }
3256
3257 pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3258 memset(&instrs->buffer[instrs->count], 0,
3259 (pad - instrs->count) * sizeof(instrs->buffer[0]));
3260 instrs->count = pad;
3261 }
3262
calc_job_credits(u32 profile_mask)3263 static u32 calc_job_credits(u32 profile_mask)
3264 {
3265 struct panthor_job_ringbuf_instrs instrs;
3266 struct panthor_job_cs_params params = {
3267 .profile_mask = profile_mask,
3268 };
3269
3270 prepare_job_instrs(¶ms, &instrs);
3271 return instrs.count;
3272 }
3273
3274 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)3275 queue_run_job(struct drm_sched_job *sched_job)
3276 {
3277 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3278 struct panthor_group *group = job->group;
3279 struct panthor_queue *queue = group->queues[job->queue_idx];
3280 struct panthor_device *ptdev = group->ptdev;
3281 struct panthor_scheduler *sched = ptdev->scheduler;
3282 struct panthor_job_ringbuf_instrs instrs;
3283 struct panthor_job_cs_params cs_params;
3284 struct dma_fence *done_fence;
3285 int ret;
3286
3287 /* Stream size is zero, nothing to do except making sure all previously
3288 * submitted jobs are done before we signal the
3289 * drm_sched_job::s_fence::finished fence.
3290 */
3291 if (!job->call_info.size) {
3292 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3293 return dma_fence_get(job->done_fence);
3294 }
3295
3296 ret = panthor_device_resume_and_get(ptdev);
3297 if (drm_WARN_ON(&ptdev->base, ret))
3298 return ERR_PTR(ret);
3299
3300 mutex_lock(&sched->lock);
3301 if (!group_can_run(group)) {
3302 done_fence = ERR_PTR(-ECANCELED);
3303 goto out_unlock;
3304 }
3305
3306 dma_fence_init(job->done_fence,
3307 &panthor_queue_fence_ops,
3308 &queue->fence_ctx.lock,
3309 queue->fence_ctx.id,
3310 atomic64_inc_return(&queue->fence_ctx.seqno));
3311
3312 job->profiling.slot = queue->profiling.seqno++;
3313 if (queue->profiling.seqno == queue->profiling.slot_count)
3314 queue->profiling.seqno = 0;
3315
3316 job->ringbuf.start = queue->iface.input->insert;
3317
3318 get_job_cs_params(job, &cs_params);
3319 prepare_job_instrs(&cs_params, &instrs);
3320 copy_instrs_to_ringbuf(queue, job, &instrs);
3321
3322 job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3323
3324 panthor_job_get(&job->base);
3325 spin_lock(&queue->fence_ctx.lock);
3326 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3327 spin_unlock(&queue->fence_ctx.lock);
3328
3329 /* Make sure the ring buffer is updated before the INSERT
3330 * register.
3331 */
3332 wmb();
3333
3334 queue->iface.input->extract = queue->iface.output->extract;
3335 queue->iface.input->insert = job->ringbuf.end;
3336
3337 if (group->csg_id < 0) {
3338 group_schedule_locked(group, BIT(job->queue_idx));
3339 } else {
3340 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3341 if (!sched->pm.has_ref &&
3342 !(group->blocked_queues & BIT(job->queue_idx))) {
3343 pm_runtime_get(ptdev->base.dev);
3344 sched->pm.has_ref = true;
3345 }
3346 queue_resume_timeout(queue);
3347 panthor_devfreq_record_busy(sched->ptdev);
3348 }
3349
3350 /* Update the last fence. */
3351 dma_fence_put(queue->fence_ctx.last_fence);
3352 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3353
3354 done_fence = dma_fence_get(job->done_fence);
3355
3356 out_unlock:
3357 mutex_unlock(&sched->lock);
3358 pm_runtime_mark_last_busy(ptdev->base.dev);
3359 pm_runtime_put_autosuspend(ptdev->base.dev);
3360
3361 return done_fence;
3362 }
3363
3364 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)3365 queue_timedout_job(struct drm_sched_job *sched_job)
3366 {
3367 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3368 struct panthor_group *group = job->group;
3369 struct panthor_device *ptdev = group->ptdev;
3370 struct panthor_scheduler *sched = ptdev->scheduler;
3371 struct panthor_queue *queue = group->queues[job->queue_idx];
3372
3373 drm_warn(&ptdev->base, "job timeout: pid=%d, comm=%s, seqno=%llu\n",
3374 group->task_info.pid, group->task_info.comm, job->done_fence->seqno);
3375
3376 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3377
3378 queue_stop(queue, job);
3379
3380 mutex_lock(&sched->lock);
3381 group->timedout = true;
3382 if (group->csg_id >= 0) {
3383 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3384 } else {
3385 /* Remove from the run queues, so the scheduler can't
3386 * pick the group on the next tick.
3387 */
3388 list_del_init(&group->run_node);
3389 list_del_init(&group->wait_node);
3390
3391 group_queue_work(group, term);
3392 }
3393 mutex_unlock(&sched->lock);
3394
3395 queue_start(queue);
3396 return DRM_GPU_SCHED_STAT_RESET;
3397 }
3398
queue_free_job(struct drm_sched_job * sched_job)3399 static void queue_free_job(struct drm_sched_job *sched_job)
3400 {
3401 drm_sched_job_cleanup(sched_job);
3402 panthor_job_put(sched_job);
3403 }
3404
3405 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3406 .run_job = queue_run_job,
3407 .timedout_job = queue_timedout_job,
3408 .free_job = queue_free_job,
3409 };
3410
calc_profiling_ringbuf_num_slots(struct panthor_device * ptdev,u32 cs_ringbuf_size)3411 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3412 u32 cs_ringbuf_size)
3413 {
3414 u32 min_profiled_job_instrs = U32_MAX;
3415 u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3416
3417 /*
3418 * We want to calculate the minimum size of a profiled job's CS,
3419 * because since they need additional instructions for the sampling
3420 * of performance metrics, they might take up further slots in
3421 * the queue's ringbuffer. This means we might not need as many job
3422 * slots for keeping track of their profiling information. What we
3423 * need is the maximum number of slots we should allocate to this end,
3424 * which matches the maximum number of profiled jobs we can place
3425 * simultaneously in the queue's ring buffer.
3426 * That has to be calculated separately for every single job profiling
3427 * flag, but not in the case job profiling is disabled, since unprofiled
3428 * jobs don't need to keep track of this at all.
3429 */
3430 for (u32 i = 0; i < last_flag; i++) {
3431 min_profiled_job_instrs =
3432 min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3433 }
3434
3435 return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3436 }
3437
queue_timeout_work(struct work_struct * work)3438 static void queue_timeout_work(struct work_struct *work)
3439 {
3440 struct panthor_queue *queue = container_of(work, struct panthor_queue,
3441 timeout.work.work);
3442 bool progress;
3443
3444 progress = queue_check_job_completion(queue);
3445 if (!progress)
3446 drm_sched_fault(&queue->scheduler);
3447 }
3448
3449 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args,u64 drm_client_id,u32 gid,u32 qid)3450 group_create_queue(struct panthor_group *group,
3451 const struct drm_panthor_queue_create *args,
3452 u64 drm_client_id, u32 gid, u32 qid)
3453 {
3454 struct drm_sched_init_args sched_args = {
3455 .ops = &panthor_queue_sched_ops,
3456 .submit_wq = group->ptdev->scheduler->wq,
3457 .num_rqs = 1,
3458 /*
3459 * The credit limit argument tells us the total number of
3460 * instructions across all CS slots in the ringbuffer, with
3461 * some jobs requiring twice as many as others, depending on
3462 * their profiling status.
3463 */
3464 .credit_limit = args->ringbuf_size / sizeof(u64),
3465 .timeout = MAX_SCHEDULE_TIMEOUT,
3466 .timeout_wq = group->ptdev->reset.wq,
3467 .dev = group->ptdev->base.dev,
3468 };
3469 struct drm_gpu_scheduler *drm_sched;
3470 struct panthor_queue *queue;
3471 int ret;
3472
3473 if (args->pad[0] || args->pad[1] || args->pad[2])
3474 return ERR_PTR(-EINVAL);
3475
3476 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3477 !is_power_of_2(args->ringbuf_size))
3478 return ERR_PTR(-EINVAL);
3479
3480 if (args->priority > CSF_MAX_QUEUE_PRIO)
3481 return ERR_PTR(-EINVAL);
3482
3483 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3484 if (!queue)
3485 return ERR_PTR(-ENOMEM);
3486
3487 queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
3488 INIT_DELAYED_WORK(&queue->timeout.work, queue_timeout_work);
3489 queue->fence_ctx.id = dma_fence_context_alloc(1);
3490 spin_lock_init(&queue->fence_ctx.lock);
3491 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3492
3493 queue->priority = args->priority;
3494
3495 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3496 args->ringbuf_size,
3497 DRM_PANTHOR_BO_NO_MMAP,
3498 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3499 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3500 PANTHOR_VM_KERNEL_AUTO_VA,
3501 "CS ring buffer");
3502 if (IS_ERR(queue->ringbuf)) {
3503 ret = PTR_ERR(queue->ringbuf);
3504 goto err_free_queue;
3505 }
3506
3507 ret = panthor_kernel_bo_vmap(queue->ringbuf);
3508 if (ret)
3509 goto err_free_queue;
3510
3511 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3512 &queue->iface.input,
3513 &queue->iface.output,
3514 &queue->iface.input_fw_va,
3515 &queue->iface.output_fw_va);
3516 if (IS_ERR(queue->iface.mem)) {
3517 ret = PTR_ERR(queue->iface.mem);
3518 goto err_free_queue;
3519 }
3520
3521 queue->profiling.slot_count =
3522 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3523
3524 queue->profiling.slots =
3525 panthor_kernel_bo_create(group->ptdev, group->vm,
3526 queue->profiling.slot_count *
3527 sizeof(struct panthor_job_profiling_data),
3528 DRM_PANTHOR_BO_NO_MMAP,
3529 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3530 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3531 PANTHOR_VM_KERNEL_AUTO_VA,
3532 "Group job stats");
3533
3534 if (IS_ERR(queue->profiling.slots)) {
3535 ret = PTR_ERR(queue->profiling.slots);
3536 goto err_free_queue;
3537 }
3538
3539 ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3540 if (ret)
3541 goto err_free_queue;
3542
3543 /* assign a unique name */
3544 queue->name = kasprintf(GFP_KERNEL, "panthor-queue-%llu-%u-%u", drm_client_id, gid, qid);
3545 if (!queue->name) {
3546 ret = -ENOMEM;
3547 goto err_free_queue;
3548 }
3549
3550 sched_args.name = queue->name;
3551
3552 ret = drm_sched_init(&queue->scheduler, &sched_args);
3553 if (ret)
3554 goto err_free_queue;
3555
3556 drm_sched = &queue->scheduler;
3557 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3558 if (ret)
3559 goto err_free_queue;
3560
3561 return queue;
3562
3563 err_free_queue:
3564 group_free_queue(group, queue);
3565 return ERR_PTR(ret);
3566 }
3567
group_init_task_info(struct panthor_group * group)3568 static void group_init_task_info(struct panthor_group *group)
3569 {
3570 struct task_struct *task = current->group_leader;
3571
3572 group->task_info.pid = task->pid;
3573 get_task_comm(group->task_info.comm, task);
3574 }
3575
add_group_kbo_sizes(struct panthor_device * ptdev,struct panthor_group * group)3576 static void add_group_kbo_sizes(struct panthor_device *ptdev,
3577 struct panthor_group *group)
3578 {
3579 struct panthor_queue *queue;
3580 int i;
3581
3582 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group)))
3583 return;
3584 if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev))
3585 return;
3586
3587 group->fdinfo.kbo_sizes += group->suspend_buf->obj->size;
3588 group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size;
3589 group->fdinfo.kbo_sizes += group->syncobjs->obj->size;
3590
3591 for (i = 0; i < group->queue_count; i++) {
3592 queue = group->queues[i];
3593 group->fdinfo.kbo_sizes += queue->ringbuf->obj->size;
3594 group->fdinfo.kbo_sizes += queue->iface.mem->obj->size;
3595 group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size;
3596 }
3597 }
3598
3599 #define MAX_GROUPS_PER_POOL 128
3600
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args,u64 drm_client_id)3601 int panthor_group_create(struct panthor_file *pfile,
3602 const struct drm_panthor_group_create *group_args,
3603 const struct drm_panthor_queue_create *queue_args,
3604 u64 drm_client_id)
3605 {
3606 struct panthor_device *ptdev = pfile->ptdev;
3607 struct panthor_group_pool *gpool = pfile->groups;
3608 struct panthor_scheduler *sched = ptdev->scheduler;
3609 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3610 struct panthor_group *group = NULL;
3611 u32 gid, i, suspend_size;
3612 int ret;
3613
3614 if (group_args->pad)
3615 return -EINVAL;
3616
3617 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3618 return -EINVAL;
3619
3620 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3621 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3622 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3623 return -EINVAL;
3624
3625 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3626 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3627 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3628 return -EINVAL;
3629
3630 group = kzalloc(sizeof(*group), GFP_KERNEL);
3631 if (!group)
3632 return -ENOMEM;
3633
3634 spin_lock_init(&group->fatal_lock);
3635 kref_init(&group->refcount);
3636 group->state = PANTHOR_CS_GROUP_CREATED;
3637 group->csg_id = -1;
3638
3639 group->ptdev = ptdev;
3640 group->max_compute_cores = group_args->max_compute_cores;
3641 group->compute_core_mask = group_args->compute_core_mask;
3642 group->max_fragment_cores = group_args->max_fragment_cores;
3643 group->fragment_core_mask = group_args->fragment_core_mask;
3644 group->max_tiler_cores = group_args->max_tiler_cores;
3645 group->tiler_core_mask = group_args->tiler_core_mask;
3646 group->priority = group_args->priority;
3647
3648 INIT_LIST_HEAD(&group->wait_node);
3649 INIT_LIST_HEAD(&group->run_node);
3650 INIT_WORK(&group->term_work, group_term_work);
3651 INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3652 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3653 INIT_WORK(&group->release_work, group_release_work);
3654
3655 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3656 if (!group->vm) {
3657 ret = -EINVAL;
3658 goto err_put_group;
3659 }
3660
3661 suspend_size = csg_iface->control->suspend_size;
3662 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3663 if (IS_ERR(group->suspend_buf)) {
3664 ret = PTR_ERR(group->suspend_buf);
3665 group->suspend_buf = NULL;
3666 goto err_put_group;
3667 }
3668
3669 suspend_size = csg_iface->control->protm_suspend_size;
3670 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3671 if (IS_ERR(group->protm_suspend_buf)) {
3672 ret = PTR_ERR(group->protm_suspend_buf);
3673 group->protm_suspend_buf = NULL;
3674 goto err_put_group;
3675 }
3676
3677 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3678 group_args->queues.count *
3679 sizeof(struct panthor_syncobj_64b),
3680 DRM_PANTHOR_BO_NO_MMAP,
3681 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3682 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3683 PANTHOR_VM_KERNEL_AUTO_VA,
3684 "Group sync objects");
3685 if (IS_ERR(group->syncobjs)) {
3686 ret = PTR_ERR(group->syncobjs);
3687 goto err_put_group;
3688 }
3689
3690 ret = panthor_kernel_bo_vmap(group->syncobjs);
3691 if (ret)
3692 goto err_put_group;
3693
3694 memset(group->syncobjs->kmap, 0,
3695 group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3696
3697 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3698 if (ret)
3699 goto err_put_group;
3700
3701 for (i = 0; i < group_args->queues.count; i++) {
3702 group->queues[i] = group_create_queue(group, &queue_args[i], drm_client_id, gid, i);
3703 if (IS_ERR(group->queues[i])) {
3704 ret = PTR_ERR(group->queues[i]);
3705 group->queues[i] = NULL;
3706 goto err_erase_gid;
3707 }
3708
3709 group->queue_count++;
3710 }
3711
3712 group->idle_queues = GENMASK(group->queue_count - 1, 0);
3713
3714 mutex_lock(&sched->reset.lock);
3715 if (atomic_read(&sched->reset.in_progress)) {
3716 panthor_group_stop(group);
3717 } else {
3718 mutex_lock(&sched->lock);
3719 list_add_tail(&group->run_node,
3720 &sched->groups.idle[group->priority]);
3721 mutex_unlock(&sched->lock);
3722 }
3723 mutex_unlock(&sched->reset.lock);
3724
3725 add_group_kbo_sizes(group->ptdev, group);
3726 spin_lock_init(&group->fdinfo.lock);
3727
3728 group_init_task_info(group);
3729
3730 return gid;
3731
3732 err_erase_gid:
3733 xa_erase(&gpool->xa, gid);
3734
3735 err_put_group:
3736 group_put(group);
3737 return ret;
3738 }
3739
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3740 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3741 {
3742 struct panthor_group_pool *gpool = pfile->groups;
3743 struct panthor_device *ptdev = pfile->ptdev;
3744 struct panthor_scheduler *sched = ptdev->scheduler;
3745 struct panthor_group *group;
3746
3747 group = xa_erase(&gpool->xa, group_handle);
3748 if (!group)
3749 return -EINVAL;
3750
3751 mutex_lock(&sched->reset.lock);
3752 mutex_lock(&sched->lock);
3753 group->destroyed = true;
3754 if (group->csg_id >= 0) {
3755 sched_queue_delayed_work(sched, tick, 0);
3756 } else if (!atomic_read(&sched->reset.in_progress)) {
3757 /* Remove from the run queues, so the scheduler can't
3758 * pick the group on the next tick.
3759 */
3760 list_del_init(&group->run_node);
3761 list_del_init(&group->wait_node);
3762 group_queue_work(group, term);
3763 }
3764 mutex_unlock(&sched->lock);
3765 mutex_unlock(&sched->reset.lock);
3766
3767 group_put(group);
3768 return 0;
3769 }
3770
group_from_handle(struct panthor_group_pool * pool,u32 group_handle)3771 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3772 u32 group_handle)
3773 {
3774 struct panthor_group *group;
3775
3776 xa_lock(&pool->xa);
3777 group = group_get(xa_load(&pool->xa, group_handle));
3778 xa_unlock(&pool->xa);
3779
3780 return group;
3781 }
3782
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3783 int panthor_group_get_state(struct panthor_file *pfile,
3784 struct drm_panthor_group_get_state *get_state)
3785 {
3786 struct panthor_group_pool *gpool = pfile->groups;
3787 struct panthor_device *ptdev = pfile->ptdev;
3788 struct panthor_scheduler *sched = ptdev->scheduler;
3789 struct panthor_group *group;
3790
3791 if (get_state->pad)
3792 return -EINVAL;
3793
3794 group = group_from_handle(gpool, get_state->group_handle);
3795 if (!group)
3796 return -EINVAL;
3797
3798 memset(get_state, 0, sizeof(*get_state));
3799
3800 mutex_lock(&sched->lock);
3801 if (group->timedout)
3802 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3803 if (group->fatal_queues) {
3804 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3805 get_state->fatal_queues = group->fatal_queues;
3806 }
3807 if (group->innocent)
3808 get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3809 mutex_unlock(&sched->lock);
3810
3811 group_put(group);
3812 return 0;
3813 }
3814
panthor_group_pool_create(struct panthor_file * pfile)3815 int panthor_group_pool_create(struct panthor_file *pfile)
3816 {
3817 struct panthor_group_pool *gpool;
3818
3819 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3820 if (!gpool)
3821 return -ENOMEM;
3822
3823 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3824 pfile->groups = gpool;
3825 return 0;
3826 }
3827
panthor_group_pool_destroy(struct panthor_file * pfile)3828 void panthor_group_pool_destroy(struct panthor_file *pfile)
3829 {
3830 struct panthor_group_pool *gpool = pfile->groups;
3831 struct panthor_group *group;
3832 unsigned long i;
3833
3834 if (IS_ERR_OR_NULL(gpool))
3835 return;
3836
3837 xa_for_each(&gpool->xa, i, group)
3838 panthor_group_destroy(pfile, i);
3839
3840 xa_destroy(&gpool->xa);
3841 kfree(gpool);
3842 pfile->groups = NULL;
3843 }
3844
3845 /**
3846 * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's
3847 * belonging to all the groups owned by an open Panthor file
3848 * @pfile: File.
3849 * @stats: Memory statistics to be updated.
3850 *
3851 */
3852 void
panthor_fdinfo_gather_group_mem_info(struct panthor_file * pfile,struct drm_memory_stats * stats)3853 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile,
3854 struct drm_memory_stats *stats)
3855 {
3856 struct panthor_group_pool *gpool = pfile->groups;
3857 struct panthor_group *group;
3858 unsigned long i;
3859
3860 if (IS_ERR_OR_NULL(gpool))
3861 return;
3862
3863 xa_lock(&gpool->xa);
3864 xa_for_each(&gpool->xa, i, group) {
3865 stats->resident += group->fdinfo.kbo_sizes;
3866 if (group->csg_id >= 0)
3867 stats->active += group->fdinfo.kbo_sizes;
3868 }
3869 xa_unlock(&gpool->xa);
3870 }
3871
job_release(struct kref * ref)3872 static void job_release(struct kref *ref)
3873 {
3874 struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3875
3876 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3877
3878 if (job->base.s_fence)
3879 drm_sched_job_cleanup(&job->base);
3880
3881 if (job->done_fence && job->done_fence->ops)
3882 dma_fence_put(job->done_fence);
3883 else
3884 dma_fence_free(job->done_fence);
3885
3886 group_put(job->group);
3887
3888 kfree(job);
3889 }
3890
panthor_job_get(struct drm_sched_job * sched_job)3891 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3892 {
3893 if (sched_job) {
3894 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3895
3896 kref_get(&job->refcount);
3897 }
3898
3899 return sched_job;
3900 }
3901
panthor_job_put(struct drm_sched_job * sched_job)3902 void panthor_job_put(struct drm_sched_job *sched_job)
3903 {
3904 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3905
3906 if (sched_job)
3907 kref_put(&job->refcount, job_release);
3908 }
3909
panthor_job_vm(struct drm_sched_job * sched_job)3910 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3911 {
3912 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3913
3914 return job->group->vm;
3915 }
3916
3917 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit,u64 drm_client_id)3918 panthor_job_create(struct panthor_file *pfile,
3919 u16 group_handle,
3920 const struct drm_panthor_queue_submit *qsubmit,
3921 u64 drm_client_id)
3922 {
3923 struct panthor_group_pool *gpool = pfile->groups;
3924 struct panthor_job *job;
3925 u32 credits;
3926 int ret;
3927
3928 if (qsubmit->pad)
3929 return ERR_PTR(-EINVAL);
3930
3931 /* If stream_addr is zero, so stream_size should be. */
3932 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3933 return ERR_PTR(-EINVAL);
3934
3935 /* Make sure the address is aligned on 64-byte (cacheline) and the size is
3936 * aligned on 8-byte (instruction size).
3937 */
3938 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3939 return ERR_PTR(-EINVAL);
3940
3941 /* bits 24:30 must be zero. */
3942 if (qsubmit->latest_flush & GENMASK(30, 24))
3943 return ERR_PTR(-EINVAL);
3944
3945 job = kzalloc(sizeof(*job), GFP_KERNEL);
3946 if (!job)
3947 return ERR_PTR(-ENOMEM);
3948
3949 kref_init(&job->refcount);
3950 job->queue_idx = qsubmit->queue_index;
3951 job->call_info.size = qsubmit->stream_size;
3952 job->call_info.start = qsubmit->stream_addr;
3953 job->call_info.latest_flush = qsubmit->latest_flush;
3954 INIT_LIST_HEAD(&job->node);
3955
3956 job->group = group_from_handle(gpool, group_handle);
3957 if (!job->group) {
3958 ret = -EINVAL;
3959 goto err_put_job;
3960 }
3961
3962 if (!group_can_run(job->group)) {
3963 ret = -EINVAL;
3964 goto err_put_job;
3965 }
3966
3967 if (job->queue_idx >= job->group->queue_count ||
3968 !job->group->queues[job->queue_idx]) {
3969 ret = -EINVAL;
3970 goto err_put_job;
3971 }
3972
3973 /* Empty command streams don't need a fence, they'll pick the one from
3974 * the previously submitted job.
3975 */
3976 if (job->call_info.size) {
3977 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3978 if (!job->done_fence) {
3979 ret = -ENOMEM;
3980 goto err_put_job;
3981 }
3982 }
3983
3984 job->profiling.mask = pfile->ptdev->profile_mask;
3985 credits = calc_job_credits(job->profiling.mask);
3986 if (credits == 0) {
3987 ret = -EINVAL;
3988 goto err_put_job;
3989 }
3990
3991 ret = drm_sched_job_init(&job->base,
3992 &job->group->queues[job->queue_idx]->entity,
3993 credits, job->group, drm_client_id);
3994 if (ret)
3995 goto err_put_job;
3996
3997 return &job->base;
3998
3999 err_put_job:
4000 panthor_job_put(&job->base);
4001 return ERR_PTR(ret);
4002 }
4003
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)4004 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
4005 {
4006 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
4007
4008 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
4009 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
4010 }
4011
panthor_sched_unplug(struct panthor_device * ptdev)4012 void panthor_sched_unplug(struct panthor_device *ptdev)
4013 {
4014 struct panthor_scheduler *sched = ptdev->scheduler;
4015
4016 disable_delayed_work_sync(&sched->tick_work);
4017 disable_work_sync(&sched->fw_events_work);
4018 disable_work_sync(&sched->sync_upd_work);
4019
4020 mutex_lock(&sched->lock);
4021 if (sched->pm.has_ref) {
4022 pm_runtime_put(ptdev->base.dev);
4023 sched->pm.has_ref = false;
4024 }
4025 mutex_unlock(&sched->lock);
4026 }
4027
panthor_sched_fini(struct drm_device * ddev,void * res)4028 static void panthor_sched_fini(struct drm_device *ddev, void *res)
4029 {
4030 struct panthor_scheduler *sched = res;
4031 int prio;
4032
4033 if (!sched || !sched->csg_slot_count)
4034 return;
4035
4036 if (sched->wq)
4037 destroy_workqueue(sched->wq);
4038
4039 if (sched->heap_alloc_wq)
4040 destroy_workqueue(sched->heap_alloc_wq);
4041
4042 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4043 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
4044 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
4045 }
4046
4047 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
4048 }
4049
panthor_sched_init(struct panthor_device * ptdev)4050 int panthor_sched_init(struct panthor_device *ptdev)
4051 {
4052 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
4053 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
4054 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
4055 struct panthor_scheduler *sched;
4056 u32 gpu_as_count, num_groups;
4057 int prio, ret;
4058
4059 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
4060 if (!sched)
4061 return -ENOMEM;
4062
4063 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
4064 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
4065 */
4066 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
4067
4068 /* The FW-side scheduler might deadlock if two groups with the same
4069 * priority try to access a set of resources that overlaps, with part
4070 * of the resources being allocated to one group and the other part to
4071 * the other group, both groups waiting for the remaining resources to
4072 * be allocated. To avoid that, it is recommended to assign each CSG a
4073 * different priority. In theory we could allow several groups to have
4074 * the same CSG priority if they don't request the same resources, but
4075 * that makes the scheduling logic more complicated, so let's clamp
4076 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
4077 */
4078 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
4079
4080 /* We need at least one AS for the MCU and one for the GPU contexts. */
4081 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
4082 if (!gpu_as_count) {
4083 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
4084 gpu_as_count + 1);
4085 return -EINVAL;
4086 }
4087
4088 sched->ptdev = ptdev;
4089 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
4090 sched->csg_slot_count = num_groups;
4091 sched->cs_slot_count = csg_iface->control->stream_num;
4092 sched->as_slot_count = gpu_as_count;
4093 ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
4094 ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
4095 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
4096
4097 sched->last_tick = 0;
4098 sched->resched_target = U64_MAX;
4099 sched->tick_period = msecs_to_jiffies(10);
4100 INIT_DELAYED_WORK(&sched->tick_work, tick_work);
4101 INIT_WORK(&sched->sync_upd_work, sync_upd_work);
4102 INIT_WORK(&sched->fw_events_work, process_fw_events_work);
4103
4104 ret = drmm_mutex_init(&ptdev->base, &sched->lock);
4105 if (ret)
4106 return ret;
4107
4108 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4109 INIT_LIST_HEAD(&sched->groups.runnable[prio]);
4110 INIT_LIST_HEAD(&sched->groups.idle[prio]);
4111 }
4112 INIT_LIST_HEAD(&sched->groups.waiting);
4113
4114 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
4115 if (ret)
4116 return ret;
4117
4118 INIT_LIST_HEAD(&sched->reset.stopped_groups);
4119
4120 /* sched->heap_alloc_wq will be used for heap chunk allocation on
4121 * tiler OOM events, which means we can't use the same workqueue for
4122 * the scheduler because works queued by the scheduler are in
4123 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
4124 * work around this limitation.
4125 *
4126 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
4127 * allocation path that we can call when a heap OOM is reported. The
4128 * FW is smart enough to fall back on other methods if the kernel can't
4129 * allocate memory, and fail the tiling job if none of these
4130 * countermeasures worked.
4131 *
4132 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
4133 * system is running out of memory.
4134 */
4135 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
4136 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
4137 if (!sched->wq || !sched->heap_alloc_wq) {
4138 panthor_sched_fini(&ptdev->base, sched);
4139 drm_err(&ptdev->base, "Failed to allocate the workqueues");
4140 return -ENOMEM;
4141 }
4142
4143 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
4144 if (ret)
4145 return ret;
4146
4147 ptdev->scheduler = sched;
4148 return 0;
4149 }
4150