1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2021 Intel Corporation. */
3
4 #include <generated/utsrelease.h>
5 #include <linux/crash_dump.h>
6 #include <linux/if_bridge.h>
7 #include <linux/if_macvlan.h>
8 #include <linux/module.h>
9 #include <net/pkt_cls.h>
10 #include <net/xdp_sock_drv.h>
11
12 /* Local includes */
13 #include "i40e.h"
14 #include "i40e_devids.h"
15 #include "i40e_diag.h"
16 #include "i40e_lan_hmc.h"
17 #include "i40e_virtchnl_pf.h"
18 #include "i40e_xsk.h"
19
20 /* All i40e tracepoints are defined by the include below, which
21 * must be included exactly once across the whole kernel with
22 * CREATE_TRACE_POINTS defined
23 */
24 #define CREATE_TRACE_POINTS
25 #include "i40e_trace.h"
26
27 const char i40e_driver_name[] = "i40e";
28 static const char i40e_driver_string[] =
29 "Intel(R) Ethernet Connection XL710 Network Driver";
30
31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation.";
32
33 /* a bit of forward declarations */
34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
36 static int i40e_add_vsi(struct i40e_vsi *vsi);
37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired);
39 static int i40e_setup_misc_vector(struct i40e_pf *pf);
40 static void i40e_determine_queue_usage(struct i40e_pf *pf);
41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
42 static void i40e_prep_for_reset(struct i40e_pf *pf);
43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
44 bool lock_acquired);
45 static int i40e_reset(struct i40e_pf *pf);
46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf);
48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf);
49 static bool i40e_check_recovery_mode(struct i40e_pf *pf);
50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw);
51 static void i40e_fdir_sb_setup(struct i40e_pf *pf);
52 static int i40e_veb_get_bw_info(struct i40e_veb *veb);
53 static int i40e_get_capabilities(struct i40e_pf *pf,
54 enum i40e_admin_queue_opc list_type);
55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf);
56
57 /* i40e_pci_tbl - PCI Device ID Table
58 *
59 * Last entry must be all 0s
60 *
61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62 * Class, Class Mask, private data (not used) }
63 */
64 static const struct pci_device_id i40e_pci_tbl[] = {
65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0},
73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0},
76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0},
77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0},
78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0},
85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0},
88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0},
89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
91 /* required last entry */
92 {0, }
93 };
94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
95
96 #define I40E_MAX_VF_COUNT 128
97 static int debug = -1;
98 module_param(debug, uint, 0);
99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
100
101 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
102 MODULE_IMPORT_NS("LIBIE");
103 MODULE_LICENSE("GPL v2");
104
105 static struct workqueue_struct *i40e_wq;
106
netdev_hw_addr_refcnt(struct i40e_mac_filter * f,struct net_device * netdev,int delta)107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f,
108 struct net_device *netdev, int delta)
109 {
110 struct netdev_hw_addr_list *ha_list;
111 struct netdev_hw_addr *ha;
112
113 if (!f || !netdev)
114 return;
115
116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr))
117 ha_list = &netdev->uc;
118 else
119 ha_list = &netdev->mc;
120
121 netdev_hw_addr_list_for_each(ha, ha_list) {
122 if (ether_addr_equal(ha->addr, f->macaddr)) {
123 ha->refcount += delta;
124 if (ha->refcount <= 0)
125 ha->refcount = 1;
126 break;
127 }
128 }
129 }
130
131 /**
132 * i40e_hw_to_dev - get device pointer from the hardware structure
133 * @hw: pointer to the device HW structure
134 **/
i40e_hw_to_dev(struct i40e_hw * hw)135 struct device *i40e_hw_to_dev(struct i40e_hw *hw)
136 {
137 struct i40e_pf *pf = i40e_hw_to_pf(hw);
138
139 return &pf->pdev->dev;
140 }
141
142 /**
143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code
144 * @hw: pointer to the HW structure
145 * @mem: ptr to mem struct to fill out
146 * @size: size of memory requested
147 * @alignment: what to align the allocation to
148 **/
i40e_allocate_dma_mem(struct i40e_hw * hw,struct i40e_dma_mem * mem,u64 size,u32 alignment)149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem,
150 u64 size, u32 alignment)
151 {
152 struct i40e_pf *pf = i40e_hw_to_pf(hw);
153
154 mem->size = ALIGN(size, alignment);
155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa,
156 GFP_KERNEL);
157 if (!mem->va)
158 return -ENOMEM;
159
160 return 0;
161 }
162
163 /**
164 * i40e_free_dma_mem - OS specific memory free for shared code
165 * @hw: pointer to the HW structure
166 * @mem: ptr to mem struct to free
167 **/
i40e_free_dma_mem(struct i40e_hw * hw,struct i40e_dma_mem * mem)168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem)
169 {
170 struct i40e_pf *pf = i40e_hw_to_pf(hw);
171
172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
173 mem->va = NULL;
174 mem->pa = 0;
175 mem->size = 0;
176
177 return 0;
178 }
179
180 /**
181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code
182 * @hw: pointer to the HW structure
183 * @mem: ptr to mem struct to fill out
184 * @size: size of memory requested
185 **/
i40e_allocate_virt_mem(struct i40e_hw * hw,struct i40e_virt_mem * mem,u32 size)186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem,
187 u32 size)
188 {
189 mem->size = size;
190 mem->va = kzalloc(size, GFP_KERNEL);
191
192 if (!mem->va)
193 return -ENOMEM;
194
195 return 0;
196 }
197
198 /**
199 * i40e_free_virt_mem - OS specific memory free for shared code
200 * @hw: pointer to the HW structure
201 * @mem: ptr to mem struct to free
202 **/
i40e_free_virt_mem(struct i40e_hw * hw,struct i40e_virt_mem * mem)203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem)
204 {
205 /* it's ok to kfree a NULL pointer */
206 kfree(mem->va);
207 mem->va = NULL;
208 mem->size = 0;
209
210 return 0;
211 }
212
213 /**
214 * i40e_get_lump - find a lump of free generic resource
215 * @pf: board private structure
216 * @pile: the pile of resource to search
217 * @needed: the number of items needed
218 * @id: an owner id to stick on the items assigned
219 *
220 * Returns the base item index of the lump, or negative for error
221 **/
i40e_get_lump(struct i40e_pf * pf,struct i40e_lump_tracking * pile,u16 needed,u16 id)222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
223 u16 needed, u16 id)
224 {
225 int ret = -ENOMEM;
226 int i, j;
227
228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
229 dev_info(&pf->pdev->dev,
230 "param err: pile=%s needed=%d id=0x%04x\n",
231 pile ? "<valid>" : "<null>", needed, id);
232 return -EINVAL;
233 }
234
235 /* Allocate last queue in the pile for FDIR VSI queue
236 * so it doesn't fragment the qp_pile
237 */
238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) {
239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) {
240 dev_err(&pf->pdev->dev,
241 "Cannot allocate queue %d for I40E_VSI_FDIR\n",
242 pile->num_entries - 1);
243 return -ENOMEM;
244 }
245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT;
246 return pile->num_entries - 1;
247 }
248
249 i = 0;
250 while (i < pile->num_entries) {
251 /* skip already allocated entries */
252 if (pile->list[i] & I40E_PILE_VALID_BIT) {
253 i++;
254 continue;
255 }
256
257 /* do we have enough in this lump? */
258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
259 if (pile->list[i+j] & I40E_PILE_VALID_BIT)
260 break;
261 }
262
263 if (j == needed) {
264 /* there was enough, so assign it to the requestor */
265 for (j = 0; j < needed; j++)
266 pile->list[i+j] = id | I40E_PILE_VALID_BIT;
267 ret = i;
268 break;
269 }
270
271 /* not enough, so skip over it and continue looking */
272 i += j;
273 }
274
275 return ret;
276 }
277
278 /**
279 * i40e_put_lump - return a lump of generic resource
280 * @pile: the pile of resource to search
281 * @index: the base item index
282 * @id: the owner id of the items assigned
283 *
284 * Returns the count of items in the lump
285 **/
i40e_put_lump(struct i40e_lump_tracking * pile,u16 index,u16 id)286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
287 {
288 int valid_id = (id | I40E_PILE_VALID_BIT);
289 int count = 0;
290 u16 i;
291
292 if (!pile || index >= pile->num_entries)
293 return -EINVAL;
294
295 for (i = index;
296 i < pile->num_entries && pile->list[i] == valid_id;
297 i++) {
298 pile->list[i] = 0;
299 count++;
300 }
301
302
303 return count;
304 }
305
306 /**
307 * i40e_find_vsi_from_id - searches for the vsi with the given id
308 * @pf: the pf structure to search for the vsi
309 * @id: id of the vsi it is searching for
310 **/
i40e_find_vsi_from_id(struct i40e_pf * pf,u16 id)311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
312 {
313 struct i40e_vsi *vsi;
314 int i;
315
316 i40e_pf_for_each_vsi(pf, i, vsi)
317 if (vsi->id == id)
318 return vsi;
319
320 return NULL;
321 }
322
323 /**
324 * i40e_service_event_schedule - Schedule the service task to wake up
325 * @pf: board private structure
326 *
327 * If not already scheduled, this puts the task into the work queue
328 **/
i40e_service_event_schedule(struct i40e_pf * pf)329 void i40e_service_event_schedule(struct i40e_pf *pf)
330 {
331 if ((!test_bit(__I40E_DOWN, pf->state) &&
332 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) ||
333 test_bit(__I40E_RECOVERY_MODE, pf->state))
334 queue_work(i40e_wq, &pf->service_task);
335 }
336
337 /**
338 * i40e_tx_timeout - Respond to a Tx Hang
339 * @netdev: network interface device structure
340 * @txqueue: queue number timing out
341 *
342 * If any port has noticed a Tx timeout, it is likely that the whole
343 * device is munged, not just the one netdev port, so go for the full
344 * reset.
345 **/
i40e_tx_timeout(struct net_device * netdev,unsigned int txqueue)346 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue)
347 {
348 struct i40e_netdev_priv *np = netdev_priv(netdev);
349 struct i40e_vsi *vsi = np->vsi;
350 struct i40e_pf *pf = vsi->back;
351 struct i40e_ring *tx_ring = NULL;
352 unsigned int i;
353 u32 head, val;
354
355 pf->tx_timeout_count++;
356
357 /* with txqueue index, find the tx_ring struct */
358 for (i = 0; i < vsi->num_queue_pairs; i++) {
359 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
360 if (txqueue ==
361 vsi->tx_rings[i]->queue_index) {
362 tx_ring = vsi->tx_rings[i];
363 break;
364 }
365 }
366 }
367
368 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
369 pf->tx_timeout_recovery_level = 1; /* reset after some time */
370 else if (time_before(jiffies,
371 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
372 return; /* don't do any new action before the next timeout */
373
374 /* don't kick off another recovery if one is already pending */
375 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state))
376 return;
377
378 if (tx_ring) {
379 head = i40e_get_head(tx_ring);
380 /* Read interrupt register */
381 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
382 val = rd32(&pf->hw,
383 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
384 tx_ring->vsi->base_vector - 1));
385 else
386 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
387
388 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
389 vsi->seid, txqueue, tx_ring->next_to_clean,
390 head, tx_ring->next_to_use,
391 readl(tx_ring->tail), val);
392 }
393
394 pf->tx_timeout_last_recovery = jiffies;
395 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
396 pf->tx_timeout_recovery_level, txqueue);
397
398 switch (pf->tx_timeout_recovery_level) {
399 case 1:
400 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
401 break;
402 case 2:
403 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
404 break;
405 case 3:
406 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
407 break;
408 default:
409 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n");
410 set_bit(__I40E_DOWN_REQUESTED, pf->state);
411 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state);
412 break;
413 }
414
415 i40e_service_event_schedule(pf);
416 pf->tx_timeout_recovery_level++;
417 }
418
419 /**
420 * i40e_get_vsi_stats_struct - Get System Network Statistics
421 * @vsi: the VSI we care about
422 *
423 * Returns the address of the device statistics structure.
424 * The statistics are actually updated from the service task.
425 **/
i40e_get_vsi_stats_struct(struct i40e_vsi * vsi)426 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
427 {
428 return &vsi->net_stats;
429 }
430
431 /**
432 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
433 * @ring: Tx ring to get statistics from
434 * @stats: statistics entry to be updated
435 **/
i40e_get_netdev_stats_struct_tx(struct i40e_ring * ring,struct rtnl_link_stats64 * stats)436 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
437 struct rtnl_link_stats64 *stats)
438 {
439 u64 bytes, packets;
440 unsigned int start;
441
442 do {
443 start = u64_stats_fetch_begin(&ring->syncp);
444 packets = ring->stats.packets;
445 bytes = ring->stats.bytes;
446 } while (u64_stats_fetch_retry(&ring->syncp, start));
447
448 stats->tx_packets += packets;
449 stats->tx_bytes += bytes;
450 }
451
452 /**
453 * i40e_get_netdev_stats_struct - Get statistics for netdev interface
454 * @netdev: network interface device structure
455 * @stats: data structure to store statistics
456 *
457 * Returns the address of the device statistics structure.
458 * The statistics are actually updated from the service task.
459 **/
i40e_get_netdev_stats_struct(struct net_device * netdev,struct rtnl_link_stats64 * stats)460 static void i40e_get_netdev_stats_struct(struct net_device *netdev,
461 struct rtnl_link_stats64 *stats)
462 {
463 struct i40e_netdev_priv *np = netdev_priv(netdev);
464 struct i40e_vsi *vsi = np->vsi;
465 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
466 struct i40e_ring *ring;
467 int i;
468
469 if (test_bit(__I40E_VSI_DOWN, vsi->state))
470 return;
471
472 if (!vsi->tx_rings)
473 return;
474
475 rcu_read_lock();
476 for (i = 0; i < vsi->num_queue_pairs; i++) {
477 u64 bytes, packets;
478 unsigned int start;
479
480 ring = READ_ONCE(vsi->tx_rings[i]);
481 if (!ring)
482 continue;
483 i40e_get_netdev_stats_struct_tx(ring, stats);
484
485 if (i40e_enabled_xdp_vsi(vsi)) {
486 ring = READ_ONCE(vsi->xdp_rings[i]);
487 if (!ring)
488 continue;
489 i40e_get_netdev_stats_struct_tx(ring, stats);
490 }
491
492 ring = READ_ONCE(vsi->rx_rings[i]);
493 if (!ring)
494 continue;
495 do {
496 start = u64_stats_fetch_begin(&ring->syncp);
497 packets = ring->stats.packets;
498 bytes = ring->stats.bytes;
499 } while (u64_stats_fetch_retry(&ring->syncp, start));
500
501 stats->rx_packets += packets;
502 stats->rx_bytes += bytes;
503
504 }
505 rcu_read_unlock();
506
507 /* following stats updated by i40e_watchdog_subtask() */
508 stats->multicast = vsi_stats->multicast;
509 stats->tx_errors = vsi_stats->tx_errors;
510 stats->tx_dropped = vsi_stats->tx_dropped;
511 stats->rx_errors = vsi_stats->rx_errors;
512 stats->rx_dropped = vsi_stats->rx_dropped;
513 stats->rx_missed_errors = vsi_stats->rx_missed_errors;
514 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
515 stats->rx_length_errors = vsi_stats->rx_length_errors;
516 }
517
518 /**
519 * i40e_vsi_reset_stats - Resets all stats of the given vsi
520 * @vsi: the VSI to have its stats reset
521 **/
i40e_vsi_reset_stats(struct i40e_vsi * vsi)522 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
523 {
524 struct rtnl_link_stats64 *ns;
525 int i;
526
527 if (!vsi)
528 return;
529
530 ns = i40e_get_vsi_stats_struct(vsi);
531 memset(ns, 0, sizeof(*ns));
532 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
533 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
534 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
535 if (vsi->rx_rings && vsi->rx_rings[0]) {
536 for (i = 0; i < vsi->num_queue_pairs; i++) {
537 memset(&vsi->rx_rings[i]->stats, 0,
538 sizeof(vsi->rx_rings[i]->stats));
539 memset(&vsi->rx_rings[i]->rx_stats, 0,
540 sizeof(vsi->rx_rings[i]->rx_stats));
541 memset(&vsi->tx_rings[i]->stats, 0,
542 sizeof(vsi->tx_rings[i]->stats));
543 memset(&vsi->tx_rings[i]->tx_stats, 0,
544 sizeof(vsi->tx_rings[i]->tx_stats));
545 }
546 }
547 vsi->stat_offsets_loaded = false;
548 }
549
550 /**
551 * i40e_pf_reset_stats - Reset all of the stats for the given PF
552 * @pf: the PF to be reset
553 **/
i40e_pf_reset_stats(struct i40e_pf * pf)554 void i40e_pf_reset_stats(struct i40e_pf *pf)
555 {
556 struct i40e_veb *veb;
557 int i;
558
559 memset(&pf->stats, 0, sizeof(pf->stats));
560 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
561 pf->stat_offsets_loaded = false;
562
563 i40e_pf_for_each_veb(pf, i, veb) {
564 memset(&veb->stats, 0, sizeof(veb->stats));
565 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets));
566 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats));
567 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets));
568 veb->stat_offsets_loaded = false;
569 }
570 pf->hw_csum_rx_error = 0;
571 }
572
573 /**
574 * i40e_compute_pci_to_hw_id - compute index form PCI function.
575 * @vsi: ptr to the VSI to read from.
576 * @hw: ptr to the hardware info.
577 **/
i40e_compute_pci_to_hw_id(struct i40e_vsi * vsi,struct i40e_hw * hw)578 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw)
579 {
580 int pf_count = i40e_get_pf_count(hw);
581
582 if (vsi->type == I40E_VSI_SRIOV)
583 return (hw->port * BIT(7)) / pf_count + vsi->vf_id;
584
585 return hw->port + BIT(7);
586 }
587
588 /**
589 * i40e_stat_update64 - read and update a 64 bit stat from the chip.
590 * @hw: ptr to the hardware info.
591 * @hireg: the high 32 bit reg to read.
592 * @loreg: the low 32 bit reg to read.
593 * @offset_loaded: has the initial offset been loaded yet.
594 * @offset: ptr to current offset value.
595 * @stat: ptr to the stat.
596 *
597 * Since the device stats are not reset at PFReset, they will not
598 * be zeroed when the driver starts. We'll save the first values read
599 * and use them as offsets to be subtracted from the raw values in order
600 * to report stats that count from zero.
601 **/
i40e_stat_update64(struct i40e_hw * hw,u32 hireg,u32 loreg,bool offset_loaded,u64 * offset,u64 * stat)602 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg,
603 bool offset_loaded, u64 *offset, u64 *stat)
604 {
605 u64 new_data;
606
607 new_data = rd64(hw, loreg);
608
609 if (!offset_loaded || new_data < *offset)
610 *offset = new_data;
611 *stat = new_data - *offset;
612 }
613
614 /**
615 * i40e_stat_update48 - read and update a 48 bit stat from the chip
616 * @hw: ptr to the hardware info
617 * @hireg: the high 32 bit reg to read
618 * @loreg: the low 32 bit reg to read
619 * @offset_loaded: has the initial offset been loaded yet
620 * @offset: ptr to current offset value
621 * @stat: ptr to the stat
622 *
623 * Since the device stats are not reset at PFReset, they likely will not
624 * be zeroed when the driver starts. We'll save the first values read
625 * and use them as offsets to be subtracted from the raw values in order
626 * to report stats that count from zero. In the process, we also manage
627 * the potential roll-over.
628 **/
i40e_stat_update48(struct i40e_hw * hw,u32 hireg,u32 loreg,bool offset_loaded,u64 * offset,u64 * stat)629 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
630 bool offset_loaded, u64 *offset, u64 *stat)
631 {
632 u64 new_data;
633
634 if (hw->device_id == I40E_DEV_ID_QEMU) {
635 new_data = rd32(hw, loreg);
636 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
637 } else {
638 new_data = rd64(hw, loreg);
639 }
640 if (!offset_loaded)
641 *offset = new_data;
642 if (likely(new_data >= *offset))
643 *stat = new_data - *offset;
644 else
645 *stat = (new_data + BIT_ULL(48)) - *offset;
646 *stat &= 0xFFFFFFFFFFFFULL;
647 }
648
649 /**
650 * i40e_stat_update32 - read and update a 32 bit stat from the chip
651 * @hw: ptr to the hardware info
652 * @reg: the hw reg to read
653 * @offset_loaded: has the initial offset been loaded yet
654 * @offset: ptr to current offset value
655 * @stat: ptr to the stat
656 **/
i40e_stat_update32(struct i40e_hw * hw,u32 reg,bool offset_loaded,u64 * offset,u64 * stat)657 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
658 bool offset_loaded, u64 *offset, u64 *stat)
659 {
660 u32 new_data;
661
662 new_data = rd32(hw, reg);
663 if (!offset_loaded)
664 *offset = new_data;
665 if (likely(new_data >= *offset))
666 *stat = (u32)(new_data - *offset);
667 else
668 *stat = (u32)((new_data + BIT_ULL(32)) - *offset);
669 }
670
671 /**
672 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat
673 * @hw: ptr to the hardware info
674 * @reg: the hw reg to read and clear
675 * @stat: ptr to the stat
676 **/
i40e_stat_update_and_clear32(struct i40e_hw * hw,u32 reg,u64 * stat)677 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat)
678 {
679 u32 new_data = rd32(hw, reg);
680
681 wr32(hw, reg, 1); /* must write a nonzero value to clear register */
682 *stat += new_data;
683 }
684
685 /**
686 * i40e_stats_update_rx_discards - update rx_discards.
687 * @vsi: ptr to the VSI to be updated.
688 * @hw: ptr to the hardware info.
689 * @stat_idx: VSI's stat_counter_idx.
690 * @offset_loaded: ptr to the VSI's stat_offsets_loaded.
691 * @stat_offset: ptr to stat_offset to store first read of specific register.
692 * @stat: ptr to VSI's stat to be updated.
693 **/
694 static void
i40e_stats_update_rx_discards(struct i40e_vsi * vsi,struct i40e_hw * hw,int stat_idx,bool offset_loaded,struct i40e_eth_stats * stat_offset,struct i40e_eth_stats * stat)695 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw,
696 int stat_idx, bool offset_loaded,
697 struct i40e_eth_stats *stat_offset,
698 struct i40e_eth_stats *stat)
699 {
700 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded,
701 &stat_offset->rx_discards, &stat->rx_discards);
702 i40e_stat_update64(hw,
703 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)),
704 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)),
705 offset_loaded, &stat_offset->rx_discards_other,
706 &stat->rx_discards_other);
707 }
708
709 /**
710 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
711 * @vsi: the VSI to be updated
712 **/
i40e_update_eth_stats(struct i40e_vsi * vsi)713 void i40e_update_eth_stats(struct i40e_vsi *vsi)
714 {
715 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
716 struct i40e_pf *pf = vsi->back;
717 struct i40e_hw *hw = &pf->hw;
718 struct i40e_eth_stats *oes;
719 struct i40e_eth_stats *es; /* device's eth stats */
720
721 es = &vsi->eth_stats;
722 oes = &vsi->eth_stats_offsets;
723
724 /* Gather up the stats that the hw collects */
725 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
726 vsi->stat_offsets_loaded,
727 &oes->tx_errors, &es->tx_errors);
728 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
729 vsi->stat_offsets_loaded,
730 &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
731
732 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
733 I40E_GLV_GORCL(stat_idx),
734 vsi->stat_offsets_loaded,
735 &oes->rx_bytes, &es->rx_bytes);
736 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
737 I40E_GLV_UPRCL(stat_idx),
738 vsi->stat_offsets_loaded,
739 &oes->rx_unicast, &es->rx_unicast);
740 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
741 I40E_GLV_MPRCL(stat_idx),
742 vsi->stat_offsets_loaded,
743 &oes->rx_multicast, &es->rx_multicast);
744 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
745 I40E_GLV_BPRCL(stat_idx),
746 vsi->stat_offsets_loaded,
747 &oes->rx_broadcast, &es->rx_broadcast);
748
749 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
750 I40E_GLV_GOTCL(stat_idx),
751 vsi->stat_offsets_loaded,
752 &oes->tx_bytes, &es->tx_bytes);
753 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
754 I40E_GLV_UPTCL(stat_idx),
755 vsi->stat_offsets_loaded,
756 &oes->tx_unicast, &es->tx_unicast);
757 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
758 I40E_GLV_MPTCL(stat_idx),
759 vsi->stat_offsets_loaded,
760 &oes->tx_multicast, &es->tx_multicast);
761 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
762 I40E_GLV_BPTCL(stat_idx),
763 vsi->stat_offsets_loaded,
764 &oes->tx_broadcast, &es->tx_broadcast);
765
766 i40e_stats_update_rx_discards(vsi, hw, stat_idx,
767 vsi->stat_offsets_loaded, oes, es);
768
769 vsi->stat_offsets_loaded = true;
770 }
771
772 /**
773 * i40e_update_veb_stats - Update Switch component statistics
774 * @veb: the VEB being updated
775 **/
i40e_update_veb_stats(struct i40e_veb * veb)776 void i40e_update_veb_stats(struct i40e_veb *veb)
777 {
778 struct i40e_pf *pf = veb->pf;
779 struct i40e_hw *hw = &pf->hw;
780 struct i40e_eth_stats *oes;
781 struct i40e_eth_stats *es; /* device's eth stats */
782 struct i40e_veb_tc_stats *veb_oes;
783 struct i40e_veb_tc_stats *veb_es;
784 int i, idx = 0;
785
786 idx = veb->stats_idx;
787 es = &veb->stats;
788 oes = &veb->stats_offsets;
789 veb_es = &veb->tc_stats;
790 veb_oes = &veb->tc_stats_offsets;
791
792 /* Gather up the stats that the hw collects */
793 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
794 veb->stat_offsets_loaded,
795 &oes->tx_discards, &es->tx_discards);
796 if (hw->revision_id > 0)
797 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
798 veb->stat_offsets_loaded,
799 &oes->rx_unknown_protocol,
800 &es->rx_unknown_protocol);
801 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
802 veb->stat_offsets_loaded,
803 &oes->rx_bytes, &es->rx_bytes);
804 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
805 veb->stat_offsets_loaded,
806 &oes->rx_unicast, &es->rx_unicast);
807 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
808 veb->stat_offsets_loaded,
809 &oes->rx_multicast, &es->rx_multicast);
810 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
811 veb->stat_offsets_loaded,
812 &oes->rx_broadcast, &es->rx_broadcast);
813
814 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
815 veb->stat_offsets_loaded,
816 &oes->tx_bytes, &es->tx_bytes);
817 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
818 veb->stat_offsets_loaded,
819 &oes->tx_unicast, &es->tx_unicast);
820 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
821 veb->stat_offsets_loaded,
822 &oes->tx_multicast, &es->tx_multicast);
823 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
824 veb->stat_offsets_loaded,
825 &oes->tx_broadcast, &es->tx_broadcast);
826 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
827 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
828 I40E_GLVEBTC_RPCL(i, idx),
829 veb->stat_offsets_loaded,
830 &veb_oes->tc_rx_packets[i],
831 &veb_es->tc_rx_packets[i]);
832 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
833 I40E_GLVEBTC_RBCL(i, idx),
834 veb->stat_offsets_loaded,
835 &veb_oes->tc_rx_bytes[i],
836 &veb_es->tc_rx_bytes[i]);
837 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
838 I40E_GLVEBTC_TPCL(i, idx),
839 veb->stat_offsets_loaded,
840 &veb_oes->tc_tx_packets[i],
841 &veb_es->tc_tx_packets[i]);
842 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
843 I40E_GLVEBTC_TBCL(i, idx),
844 veb->stat_offsets_loaded,
845 &veb_oes->tc_tx_bytes[i],
846 &veb_es->tc_tx_bytes[i]);
847 }
848 veb->stat_offsets_loaded = true;
849 }
850
851 /**
852 * i40e_update_vsi_stats - Update the vsi statistics counters.
853 * @vsi: the VSI to be updated
854 *
855 * There are a few instances where we store the same stat in a
856 * couple of different structs. This is partly because we have
857 * the netdev stats that need to be filled out, which is slightly
858 * different from the "eth_stats" defined by the chip and used in
859 * VF communications. We sort it out here.
860 **/
i40e_update_vsi_stats(struct i40e_vsi * vsi)861 static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
862 {
863 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy;
864 struct i40e_pf *pf = vsi->back;
865 struct rtnl_link_stats64 *ons;
866 struct rtnl_link_stats64 *ns; /* netdev stats */
867 struct i40e_eth_stats *oes;
868 struct i40e_eth_stats *es; /* device's eth stats */
869 u64 tx_restart, tx_busy;
870 struct i40e_ring *p;
871 u64 bytes, packets;
872 unsigned int start;
873 u64 tx_linearize;
874 u64 tx_force_wb;
875 u64 tx_stopped;
876 u64 rx_p, rx_b;
877 u64 tx_p, tx_b;
878 u16 q;
879
880 if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
881 test_bit(__I40E_CONFIG_BUSY, pf->state))
882 return;
883
884 ns = i40e_get_vsi_stats_struct(vsi);
885 ons = &vsi->net_stats_offsets;
886 es = &vsi->eth_stats;
887 oes = &vsi->eth_stats_offsets;
888
889 /* Gather up the netdev and vsi stats that the driver collects
890 * on the fly during packet processing
891 */
892 rx_b = rx_p = 0;
893 tx_b = tx_p = 0;
894 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
895 tx_stopped = 0;
896 rx_page = 0;
897 rx_buf = 0;
898 rx_reuse = 0;
899 rx_alloc = 0;
900 rx_waive = 0;
901 rx_busy = 0;
902 rcu_read_lock();
903 for (q = 0; q < vsi->num_queue_pairs; q++) {
904 /* locate Tx ring */
905 p = READ_ONCE(vsi->tx_rings[q]);
906 if (!p)
907 continue;
908
909 do {
910 start = u64_stats_fetch_begin(&p->syncp);
911 packets = p->stats.packets;
912 bytes = p->stats.bytes;
913 } while (u64_stats_fetch_retry(&p->syncp, start));
914 tx_b += bytes;
915 tx_p += packets;
916 tx_restart += p->tx_stats.restart_queue;
917 tx_busy += p->tx_stats.tx_busy;
918 tx_linearize += p->tx_stats.tx_linearize;
919 tx_force_wb += p->tx_stats.tx_force_wb;
920 tx_stopped += p->tx_stats.tx_stopped;
921
922 /* locate Rx ring */
923 p = READ_ONCE(vsi->rx_rings[q]);
924 if (!p)
925 continue;
926
927 do {
928 start = u64_stats_fetch_begin(&p->syncp);
929 packets = p->stats.packets;
930 bytes = p->stats.bytes;
931 } while (u64_stats_fetch_retry(&p->syncp, start));
932 rx_b += bytes;
933 rx_p += packets;
934 rx_buf += p->rx_stats.alloc_buff_failed;
935 rx_page += p->rx_stats.alloc_page_failed;
936 rx_reuse += p->rx_stats.page_reuse_count;
937 rx_alloc += p->rx_stats.page_alloc_count;
938 rx_waive += p->rx_stats.page_waive_count;
939 rx_busy += p->rx_stats.page_busy_count;
940
941 if (i40e_enabled_xdp_vsi(vsi)) {
942 /* locate XDP ring */
943 p = READ_ONCE(vsi->xdp_rings[q]);
944 if (!p)
945 continue;
946
947 do {
948 start = u64_stats_fetch_begin(&p->syncp);
949 packets = p->stats.packets;
950 bytes = p->stats.bytes;
951 } while (u64_stats_fetch_retry(&p->syncp, start));
952 tx_b += bytes;
953 tx_p += packets;
954 tx_restart += p->tx_stats.restart_queue;
955 tx_busy += p->tx_stats.tx_busy;
956 tx_linearize += p->tx_stats.tx_linearize;
957 tx_force_wb += p->tx_stats.tx_force_wb;
958 }
959 }
960 rcu_read_unlock();
961 vsi->tx_restart = tx_restart;
962 vsi->tx_busy = tx_busy;
963 vsi->tx_linearize = tx_linearize;
964 vsi->tx_force_wb = tx_force_wb;
965 vsi->tx_stopped = tx_stopped;
966 vsi->rx_page_failed = rx_page;
967 vsi->rx_buf_failed = rx_buf;
968 vsi->rx_page_reuse = rx_reuse;
969 vsi->rx_page_alloc = rx_alloc;
970 vsi->rx_page_waive = rx_waive;
971 vsi->rx_page_busy = rx_busy;
972
973 ns->rx_packets = rx_p;
974 ns->rx_bytes = rx_b;
975 ns->tx_packets = tx_p;
976 ns->tx_bytes = tx_b;
977
978 /* update netdev stats from eth stats */
979 i40e_update_eth_stats(vsi);
980 ons->tx_errors = oes->tx_errors;
981 ns->tx_errors = es->tx_errors;
982 ons->multicast = oes->rx_multicast;
983 ns->multicast = es->rx_multicast;
984 ons->rx_dropped = oes->rx_discards_other;
985 ns->rx_dropped = es->rx_discards_other;
986 ons->rx_missed_errors = oes->rx_discards;
987 ns->rx_missed_errors = es->rx_discards;
988 ons->tx_dropped = oes->tx_discards;
989 ns->tx_dropped = es->tx_discards;
990
991 /* pull in a couple PF stats if this is the main vsi */
992 if (vsi->type == I40E_VSI_MAIN) {
993 ns->rx_crc_errors = pf->stats.crc_errors;
994 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
995 ns->rx_length_errors = pf->stats.rx_length_errors;
996 }
997 }
998
999 /**
1000 * i40e_update_pf_stats - Update the PF statistics counters.
1001 * @pf: the PF to be updated
1002 **/
i40e_update_pf_stats(struct i40e_pf * pf)1003 static void i40e_update_pf_stats(struct i40e_pf *pf)
1004 {
1005 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
1006 struct i40e_hw_port_stats *nsd = &pf->stats;
1007 struct i40e_hw *hw = &pf->hw;
1008 u32 val;
1009 int i;
1010
1011 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
1012 I40E_GLPRT_GORCL(hw->port),
1013 pf->stat_offsets_loaded,
1014 &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
1015 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
1016 I40E_GLPRT_GOTCL(hw->port),
1017 pf->stat_offsets_loaded,
1018 &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
1019 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
1020 pf->stat_offsets_loaded,
1021 &osd->eth.rx_discards,
1022 &nsd->eth.rx_discards);
1023 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
1024 I40E_GLPRT_UPRCL(hw->port),
1025 pf->stat_offsets_loaded,
1026 &osd->eth.rx_unicast,
1027 &nsd->eth.rx_unicast);
1028 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
1029 I40E_GLPRT_MPRCL(hw->port),
1030 pf->stat_offsets_loaded,
1031 &osd->eth.rx_multicast,
1032 &nsd->eth.rx_multicast);
1033 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
1034 I40E_GLPRT_BPRCL(hw->port),
1035 pf->stat_offsets_loaded,
1036 &osd->eth.rx_broadcast,
1037 &nsd->eth.rx_broadcast);
1038 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
1039 I40E_GLPRT_UPTCL(hw->port),
1040 pf->stat_offsets_loaded,
1041 &osd->eth.tx_unicast,
1042 &nsd->eth.tx_unicast);
1043 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
1044 I40E_GLPRT_MPTCL(hw->port),
1045 pf->stat_offsets_loaded,
1046 &osd->eth.tx_multicast,
1047 &nsd->eth.tx_multicast);
1048 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
1049 I40E_GLPRT_BPTCL(hw->port),
1050 pf->stat_offsets_loaded,
1051 &osd->eth.tx_broadcast,
1052 &nsd->eth.tx_broadcast);
1053
1054 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
1055 pf->stat_offsets_loaded,
1056 &osd->tx_dropped_link_down,
1057 &nsd->tx_dropped_link_down);
1058
1059 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
1060 pf->stat_offsets_loaded,
1061 &osd->crc_errors, &nsd->crc_errors);
1062
1063 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
1064 pf->stat_offsets_loaded,
1065 &osd->illegal_bytes, &nsd->illegal_bytes);
1066
1067 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
1068 pf->stat_offsets_loaded,
1069 &osd->mac_local_faults,
1070 &nsd->mac_local_faults);
1071 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
1072 pf->stat_offsets_loaded,
1073 &osd->mac_remote_faults,
1074 &nsd->mac_remote_faults);
1075
1076 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
1077 pf->stat_offsets_loaded,
1078 &osd->rx_length_errors,
1079 &nsd->rx_length_errors);
1080
1081 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
1082 pf->stat_offsets_loaded,
1083 &osd->link_xon_rx, &nsd->link_xon_rx);
1084 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
1085 pf->stat_offsets_loaded,
1086 &osd->link_xon_tx, &nsd->link_xon_tx);
1087 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
1088 pf->stat_offsets_loaded,
1089 &osd->link_xoff_rx, &nsd->link_xoff_rx);
1090 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
1091 pf->stat_offsets_loaded,
1092 &osd->link_xoff_tx, &nsd->link_xoff_tx);
1093
1094 for (i = 0; i < 8; i++) {
1095 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
1096 pf->stat_offsets_loaded,
1097 &osd->priority_xoff_rx[i],
1098 &nsd->priority_xoff_rx[i]);
1099 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
1100 pf->stat_offsets_loaded,
1101 &osd->priority_xon_rx[i],
1102 &nsd->priority_xon_rx[i]);
1103 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
1104 pf->stat_offsets_loaded,
1105 &osd->priority_xon_tx[i],
1106 &nsd->priority_xon_tx[i]);
1107 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
1108 pf->stat_offsets_loaded,
1109 &osd->priority_xoff_tx[i],
1110 &nsd->priority_xoff_tx[i]);
1111 i40e_stat_update32(hw,
1112 I40E_GLPRT_RXON2OFFCNT(hw->port, i),
1113 pf->stat_offsets_loaded,
1114 &osd->priority_xon_2_xoff[i],
1115 &nsd->priority_xon_2_xoff[i]);
1116 }
1117
1118 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
1119 I40E_GLPRT_PRC64L(hw->port),
1120 pf->stat_offsets_loaded,
1121 &osd->rx_size_64, &nsd->rx_size_64);
1122 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
1123 I40E_GLPRT_PRC127L(hw->port),
1124 pf->stat_offsets_loaded,
1125 &osd->rx_size_127, &nsd->rx_size_127);
1126 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
1127 I40E_GLPRT_PRC255L(hw->port),
1128 pf->stat_offsets_loaded,
1129 &osd->rx_size_255, &nsd->rx_size_255);
1130 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
1131 I40E_GLPRT_PRC511L(hw->port),
1132 pf->stat_offsets_loaded,
1133 &osd->rx_size_511, &nsd->rx_size_511);
1134 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
1135 I40E_GLPRT_PRC1023L(hw->port),
1136 pf->stat_offsets_loaded,
1137 &osd->rx_size_1023, &nsd->rx_size_1023);
1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
1139 I40E_GLPRT_PRC1522L(hw->port),
1140 pf->stat_offsets_loaded,
1141 &osd->rx_size_1522, &nsd->rx_size_1522);
1142 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
1143 I40E_GLPRT_PRC9522L(hw->port),
1144 pf->stat_offsets_loaded,
1145 &osd->rx_size_big, &nsd->rx_size_big);
1146
1147 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
1148 I40E_GLPRT_PTC64L(hw->port),
1149 pf->stat_offsets_loaded,
1150 &osd->tx_size_64, &nsd->tx_size_64);
1151 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
1152 I40E_GLPRT_PTC127L(hw->port),
1153 pf->stat_offsets_loaded,
1154 &osd->tx_size_127, &nsd->tx_size_127);
1155 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
1156 I40E_GLPRT_PTC255L(hw->port),
1157 pf->stat_offsets_loaded,
1158 &osd->tx_size_255, &nsd->tx_size_255);
1159 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
1160 I40E_GLPRT_PTC511L(hw->port),
1161 pf->stat_offsets_loaded,
1162 &osd->tx_size_511, &nsd->tx_size_511);
1163 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
1164 I40E_GLPRT_PTC1023L(hw->port),
1165 pf->stat_offsets_loaded,
1166 &osd->tx_size_1023, &nsd->tx_size_1023);
1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
1168 I40E_GLPRT_PTC1522L(hw->port),
1169 pf->stat_offsets_loaded,
1170 &osd->tx_size_1522, &nsd->tx_size_1522);
1171 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
1172 I40E_GLPRT_PTC9522L(hw->port),
1173 pf->stat_offsets_loaded,
1174 &osd->tx_size_big, &nsd->tx_size_big);
1175
1176 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
1177 pf->stat_offsets_loaded,
1178 &osd->rx_undersize, &nsd->rx_undersize);
1179 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
1180 pf->stat_offsets_loaded,
1181 &osd->rx_fragments, &nsd->rx_fragments);
1182 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
1183 pf->stat_offsets_loaded,
1184 &osd->rx_oversize, &nsd->rx_oversize);
1185 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
1186 pf->stat_offsets_loaded,
1187 &osd->rx_jabber, &nsd->rx_jabber);
1188
1189 /* FDIR stats */
1190 i40e_stat_update_and_clear32(hw,
1191 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)),
1192 &nsd->fd_atr_match);
1193 i40e_stat_update_and_clear32(hw,
1194 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)),
1195 &nsd->fd_sb_match);
1196 i40e_stat_update_and_clear32(hw,
1197 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)),
1198 &nsd->fd_atr_tunnel_match);
1199
1200 val = rd32(hw, I40E_PRTPM_EEE_STAT);
1201 nsd->tx_lpi_status =
1202 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val);
1203 nsd->rx_lpi_status =
1204 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val);
1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
1206 pf->stat_offsets_loaded,
1207 &osd->tx_lpi_count, &nsd->tx_lpi_count);
1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
1209 pf->stat_offsets_loaded,
1210 &osd->rx_lpi_count, &nsd->rx_lpi_count);
1211
1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
1214 nsd->fd_sb_status = true;
1215 else
1216 nsd->fd_sb_status = false;
1217
1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
1220 nsd->fd_atr_status = true;
1221 else
1222 nsd->fd_atr_status = false;
1223
1224 pf->stat_offsets_loaded = true;
1225 }
1226
1227 /**
1228 * i40e_update_stats - Update the various statistics counters.
1229 * @vsi: the VSI to be updated
1230 *
1231 * Update the various stats for this VSI and its related entities.
1232 **/
i40e_update_stats(struct i40e_vsi * vsi)1233 void i40e_update_stats(struct i40e_vsi *vsi)
1234 {
1235 struct i40e_pf *pf = vsi->back;
1236
1237 if (vsi->type == I40E_VSI_MAIN)
1238 i40e_update_pf_stats(pf);
1239
1240 i40e_update_vsi_stats(vsi);
1241 }
1242
1243 /**
1244 * i40e_count_filters - counts VSI mac filters
1245 * @vsi: the VSI to be searched
1246 *
1247 * Returns count of mac filters
1248 **/
i40e_count_filters(struct i40e_vsi * vsi)1249 int i40e_count_filters(struct i40e_vsi *vsi)
1250 {
1251 struct i40e_mac_filter *f;
1252 struct hlist_node *h;
1253 int bkt;
1254 int cnt = 0;
1255
1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1257 if (f->state == I40E_FILTER_NEW ||
1258 f->state == I40E_FILTER_NEW_SYNC ||
1259 f->state == I40E_FILTER_ACTIVE)
1260 ++cnt;
1261 }
1262
1263 return cnt;
1264 }
1265
1266 /**
1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
1268 * @vsi: the VSI to be searched
1269 * @macaddr: the MAC address
1270 * @vlan: the vlan
1271 *
1272 * Returns ptr to the filter object or NULL
1273 **/
i40e_find_filter(struct i40e_vsi * vsi,const u8 * macaddr,s16 vlan)1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
1275 const u8 *macaddr, s16 vlan)
1276 {
1277 struct i40e_mac_filter *f;
1278 u64 key;
1279
1280 if (!vsi || !macaddr)
1281 return NULL;
1282
1283 key = i40e_addr_to_hkey(macaddr);
1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1285 if ((ether_addr_equal(macaddr, f->macaddr)) &&
1286 (vlan == f->vlan))
1287 return f;
1288 }
1289 return NULL;
1290 }
1291
1292 /**
1293 * i40e_find_mac - Find a mac addr in the macvlan filters list
1294 * @vsi: the VSI to be searched
1295 * @macaddr: the MAC address we are searching for
1296 *
1297 * Returns the first filter with the provided MAC address or NULL if
1298 * MAC address was not found
1299 **/
i40e_find_mac(struct i40e_vsi * vsi,const u8 * macaddr)1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
1301 {
1302 struct i40e_mac_filter *f;
1303 u64 key;
1304
1305 if (!vsi || !macaddr)
1306 return NULL;
1307
1308 key = i40e_addr_to_hkey(macaddr);
1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1310 if ((ether_addr_equal(macaddr, f->macaddr)))
1311 return f;
1312 }
1313 return NULL;
1314 }
1315
1316 /**
1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
1318 * @vsi: the VSI to be searched
1319 *
1320 * Returns true if VSI is in vlan mode or false otherwise
1321 **/
i40e_is_vsi_in_vlan(struct i40e_vsi * vsi)1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
1323 {
1324 /* If we have a PVID, always operate in VLAN mode */
1325 if (vsi->info.pvid)
1326 return true;
1327
1328 /* We need to operate in VLAN mode whenever we have any filters with
1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each
1330 * time, incurring search cost repeatedly. However, we can notice two
1331 * things:
1332 *
1333 * 1) the only place where we can gain a VLAN filter is in
1334 * i40e_add_filter.
1335 *
1336 * 2) the only place where filters are actually removed is in
1337 * i40e_sync_filters_subtask.
1338 *
1339 * Thus, we can simply use a boolean value, has_vlan_filters which we
1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then
1341 * we have to perform the full search after deleting filters in
1342 * i40e_sync_filters_subtask, but we already have to search
1343 * filters here and can perform the check at the same time. This
1344 * results in avoiding embedding a loop for VLAN mode inside another
1345 * loop over all the filters, and should maintain correctness as noted
1346 * above.
1347 */
1348 return vsi->has_vlan_filter;
1349 }
1350
1351 /**
1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
1353 * @vsi: the VSI to configure
1354 * @tmp_add_list: list of filters ready to be added
1355 * @tmp_del_list: list of filters ready to be deleted
1356 * @vlan_filters: the number of active VLAN filters
1357 *
1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
1359 * behave as expected. If we have any active VLAN filters remaining or about
1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0
1361 * so that they only match against untagged traffic. If we no longer have any
1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
1363 * so that they match against both tagged and untagged traffic. In this way,
1364 * we ensure that we correctly receive the desired traffic. This ensures that
1365 * when we have an active VLAN we will receive only untagged traffic and
1366 * traffic matching active VLANs. If we have no active VLANs then we will
1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged.
1368 *
1369 * Finally, in a similar fashion, this function also corrects filters when
1370 * there is an active PVID assigned to this VSI.
1371 *
1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1373 *
1374 * This function is only expected to be called from within
1375 * i40e_sync_vsi_filters.
1376 *
1377 * NOTE: This function expects to be called while under the
1378 * mac_filter_hash_lock
1379 */
i40e_correct_mac_vlan_filters(struct i40e_vsi * vsi,struct hlist_head * tmp_add_list,struct hlist_head * tmp_del_list,int vlan_filters)1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
1381 struct hlist_head *tmp_add_list,
1382 struct hlist_head *tmp_del_list,
1383 int vlan_filters)
1384 {
1385 s16 pvid = le16_to_cpu(vsi->info.pvid);
1386 struct i40e_mac_filter *f, *add_head;
1387 struct i40e_new_mac_filter *new;
1388 struct hlist_node *h;
1389 int bkt, new_vlan;
1390
1391 /* To determine if a particular filter needs to be replaced we
1392 * have the three following conditions:
1393 *
1394 * a) if we have a PVID assigned, then all filters which are
1395 * not marked as VLAN=PVID must be replaced with filters that
1396 * are.
1397 * b) otherwise, if we have any active VLANS, all filters
1398 * which are marked as VLAN=-1 must be replaced with
1399 * filters marked as VLAN=0
1400 * c) finally, if we do not have any active VLANS, all filters
1401 * which are marked as VLAN=0 must be replaced with filters
1402 * marked as VLAN=-1
1403 */
1404
1405 /* Update the filters about to be added in place */
1406 hlist_for_each_entry(new, tmp_add_list, hlist) {
1407 if (pvid && new->f->vlan != pvid)
1408 new->f->vlan = pvid;
1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
1410 new->f->vlan = 0;
1411 else if (!vlan_filters && new->f->vlan == 0)
1412 new->f->vlan = I40E_VLAN_ANY;
1413 }
1414
1415 /* Update the remaining active filters */
1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1417 /* Combine the checks for whether a filter needs to be changed
1418 * and then determine the new VLAN inside the if block, in
1419 * order to avoid duplicating code for adding the new filter
1420 * then deleting the old filter.
1421 */
1422 if ((pvid && f->vlan != pvid) ||
1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1424 (!vlan_filters && f->vlan == 0)) {
1425 /* Determine the new vlan we will be adding */
1426 if (pvid)
1427 new_vlan = pvid;
1428 else if (vlan_filters)
1429 new_vlan = 0;
1430 else
1431 new_vlan = I40E_VLAN_ANY;
1432
1433 /* Create the new filter */
1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1435 if (!add_head)
1436 return -ENOMEM;
1437
1438 /* Create a temporary i40e_new_mac_filter */
1439 new = kzalloc(sizeof(*new), GFP_ATOMIC);
1440 if (!new)
1441 return -ENOMEM;
1442
1443 new->f = add_head;
1444 new->state = add_head->state;
1445 if (add_head->state == I40E_FILTER_NEW)
1446 add_head->state = I40E_FILTER_NEW_SYNC;
1447
1448 /* Add the new filter to the tmp list */
1449 hlist_add_head(&new->hlist, tmp_add_list);
1450
1451 /* Put the original filter into the delete list */
1452 f->state = I40E_FILTER_REMOVE;
1453 hash_del(&f->hlist);
1454 hlist_add_head(&f->hlist, tmp_del_list);
1455 }
1456 }
1457
1458 vsi->has_vlan_filter = !!vlan_filters;
1459
1460 return 0;
1461 }
1462
1463 /**
1464 * i40e_get_vf_new_vlan - Get new vlan id on a vf
1465 * @vsi: the vsi to configure
1466 * @new_mac: new mac filter to be added
1467 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL
1468 * @vlan_filters: the number of active VLAN filters
1469 * @trusted: flag if the VF is trusted
1470 *
1471 * Get new VLAN id based on current VLAN filters, trust, PVID
1472 * and vf-vlan-prune-disable flag.
1473 *
1474 * Returns the value of the new vlan filter or
1475 * the old value if no new filter is needed.
1476 */
i40e_get_vf_new_vlan(struct i40e_vsi * vsi,struct i40e_new_mac_filter * new_mac,struct i40e_mac_filter * f,int vlan_filters,bool trusted)1477 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi,
1478 struct i40e_new_mac_filter *new_mac,
1479 struct i40e_mac_filter *f,
1480 int vlan_filters,
1481 bool trusted)
1482 {
1483 s16 pvid = le16_to_cpu(vsi->info.pvid);
1484 struct i40e_pf *pf = vsi->back;
1485 bool is_any;
1486
1487 if (new_mac)
1488 f = new_mac->f;
1489
1490 if (pvid && f->vlan != pvid)
1491 return pvid;
1492
1493 is_any = (trusted ||
1494 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags));
1495
1496 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1497 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1498 (is_any && !vlan_filters && f->vlan == 0)) {
1499 if (is_any)
1500 return I40E_VLAN_ANY;
1501 else
1502 return 0;
1503 }
1504
1505 return f->vlan;
1506 }
1507
1508 /**
1509 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary
1510 * @vsi: the vsi to configure
1511 * @tmp_add_list: list of filters ready to be added
1512 * @tmp_del_list: list of filters ready to be deleted
1513 * @vlan_filters: the number of active VLAN filters
1514 * @trusted: flag if the VF is trusted
1515 *
1516 * Correct VF VLAN filters based on current VLAN filters, trust, PVID
1517 * and vf-vlan-prune-disable flag.
1518 *
1519 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1520 *
1521 * This function is only expected to be called from within
1522 * i40e_sync_vsi_filters.
1523 *
1524 * NOTE: This function expects to be called while under the
1525 * mac_filter_hash_lock
1526 */
i40e_correct_vf_mac_vlan_filters(struct i40e_vsi * vsi,struct hlist_head * tmp_add_list,struct hlist_head * tmp_del_list,int vlan_filters,bool trusted)1527 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi,
1528 struct hlist_head *tmp_add_list,
1529 struct hlist_head *tmp_del_list,
1530 int vlan_filters,
1531 bool trusted)
1532 {
1533 struct i40e_mac_filter *f, *add_head;
1534 struct i40e_new_mac_filter *new_mac;
1535 struct hlist_node *h;
1536 int bkt, new_vlan;
1537
1538 hlist_for_each_entry(new_mac, tmp_add_list, hlist) {
1539 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL,
1540 vlan_filters, trusted);
1541 }
1542
1543 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1544 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters,
1545 trusted);
1546 if (new_vlan != f->vlan) {
1547 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1548 if (!add_head)
1549 return -ENOMEM;
1550 /* Create a temporary i40e_new_mac_filter */
1551 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC);
1552 if (!new_mac)
1553 return -ENOMEM;
1554 new_mac->f = add_head;
1555 new_mac->state = add_head->state;
1556 if (add_head->state == I40E_FILTER_NEW)
1557 add_head->state = I40E_FILTER_NEW_SYNC;
1558
1559 /* Add the new filter to the tmp list */
1560 hlist_add_head(&new_mac->hlist, tmp_add_list);
1561
1562 /* Put the original filter into the delete list */
1563 f->state = I40E_FILTER_REMOVE;
1564 hash_del(&f->hlist);
1565 hlist_add_head(&f->hlist, tmp_del_list);
1566 }
1567 }
1568
1569 vsi->has_vlan_filter = !!vlan_filters;
1570 return 0;
1571 }
1572
1573 /**
1574 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
1575 * @vsi: the PF Main VSI - inappropriate for any other VSI
1576 * @macaddr: the MAC address
1577 *
1578 * Remove whatever filter the firmware set up so the driver can manage
1579 * its own filtering intelligently.
1580 **/
i40e_rm_default_mac_filter(struct i40e_vsi * vsi,u8 * macaddr)1581 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
1582 {
1583 struct i40e_aqc_remove_macvlan_element_data element;
1584 struct i40e_pf *pf = vsi->back;
1585
1586 /* Only appropriate for the PF main VSI */
1587 if (vsi->type != I40E_VSI_MAIN)
1588 return;
1589
1590 memset(&element, 0, sizeof(element));
1591 ether_addr_copy(element.mac_addr, macaddr);
1592 element.vlan_tag = 0;
1593 /* Ignore error returns, some firmware does it this way... */
1594 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1595 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1596
1597 memset(&element, 0, sizeof(element));
1598 ether_addr_copy(element.mac_addr, macaddr);
1599 element.vlan_tag = 0;
1600 /* ...and some firmware does it this way. */
1601 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
1602 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1603 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1604 }
1605
1606 /**
1607 * i40e_add_filter - Add a mac/vlan filter to the VSI
1608 * @vsi: the VSI to be searched
1609 * @macaddr: the MAC address
1610 * @vlan: the vlan
1611 *
1612 * Returns ptr to the filter object or NULL when no memory available.
1613 *
1614 * NOTE: This function is expected to be called with mac_filter_hash_lock
1615 * being held.
1616 **/
i40e_add_filter(struct i40e_vsi * vsi,const u8 * macaddr,s16 vlan)1617 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1618 const u8 *macaddr, s16 vlan)
1619 {
1620 struct i40e_mac_filter *f;
1621 u64 key;
1622
1623 if (!vsi || !macaddr)
1624 return NULL;
1625
1626 f = i40e_find_filter(vsi, macaddr, vlan);
1627 if (!f) {
1628 f = kzalloc(sizeof(*f), GFP_ATOMIC);
1629 if (!f)
1630 return NULL;
1631
1632 /* Update the boolean indicating if we need to function in
1633 * VLAN mode.
1634 */
1635 if (vlan >= 0)
1636 vsi->has_vlan_filter = true;
1637
1638 ether_addr_copy(f->macaddr, macaddr);
1639 f->vlan = vlan;
1640 f->state = I40E_FILTER_NEW;
1641 INIT_HLIST_NODE(&f->hlist);
1642
1643 key = i40e_addr_to_hkey(macaddr);
1644 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1645
1646 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1647 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
1648 }
1649
1650 /* If we're asked to add a filter that has been marked for removal, it
1651 * is safe to simply restore it to active state. __i40e_del_filter
1652 * will have simply deleted any filters which were previously marked
1653 * NEW or FAILED, so if it is currently marked REMOVE it must have
1654 * previously been ACTIVE. Since we haven't yet run the sync filters
1655 * task, just restore this filter to the ACTIVE state so that the
1656 * sync task leaves it in place
1657 */
1658 if (f->state == I40E_FILTER_REMOVE)
1659 f->state = I40E_FILTER_ACTIVE;
1660
1661 return f;
1662 }
1663
1664 /**
1665 * __i40e_del_filter - Remove a specific filter from the VSI
1666 * @vsi: VSI to remove from
1667 * @f: the filter to remove from the list
1668 *
1669 * This function requires you've found * the exact filter you will remove
1670 * already, such as via i40e_find_filter or i40e_find_mac.
1671 *
1672 * NOTE: This function is expected to be called with mac_filter_hash_lock
1673 * being held.
1674 * ANOTHER NOTE: This function MUST be called from within the context of
1675 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1676 * instead of list_for_each_entry().
1677 **/
__i40e_del_filter(struct i40e_vsi * vsi,struct i40e_mac_filter * f)1678 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
1679 {
1680 if (!f)
1681 return;
1682
1683 /* If the filter was never added to firmware then we can just delete it
1684 * directly and we don't want to set the status to remove or else an
1685 * admin queue command will unnecessarily fire.
1686 */
1687 if ((f->state == I40E_FILTER_FAILED) ||
1688 (f->state == I40E_FILTER_NEW)) {
1689 hash_del(&f->hlist);
1690 kfree(f);
1691 } else {
1692 f->state = I40E_FILTER_REMOVE;
1693 }
1694
1695 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1696 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
1697 }
1698
1699 /**
1700 * i40e_add_mac_filter - Add a MAC filter for all active VLANs
1701 * @vsi: the VSI to be searched
1702 * @macaddr: the mac address to be filtered
1703 *
1704 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
1705 * go through all the macvlan filters and add a macvlan filter for each
1706 * unique vlan that already exists. If a PVID has been assigned, instead only
1707 * add the macaddr to that VLAN.
1708 *
1709 * Returns last filter added on success, else NULL
1710 **/
i40e_add_mac_filter(struct i40e_vsi * vsi,const u8 * macaddr)1711 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
1712 const u8 *macaddr)
1713 {
1714 struct i40e_mac_filter *f, *add = NULL;
1715 struct hlist_node *h;
1716 int bkt;
1717
1718 lockdep_assert_held(&vsi->mac_filter_hash_lock);
1719 if (vsi->info.pvid)
1720 return i40e_add_filter(vsi, macaddr,
1721 le16_to_cpu(vsi->info.pvid));
1722
1723 if (!i40e_is_vsi_in_vlan(vsi))
1724 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
1725
1726 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1727 if (f->state == I40E_FILTER_REMOVE)
1728 continue;
1729 add = i40e_add_filter(vsi, macaddr, f->vlan);
1730 if (!add)
1731 return NULL;
1732 }
1733
1734 return add;
1735 }
1736
1737 /**
1738 * i40e_del_mac_filter - Remove a MAC filter from all VLANs
1739 * @vsi: the VSI to be searched
1740 * @macaddr: the mac address to be removed
1741 *
1742 * Removes a given MAC address from a VSI regardless of what VLAN it has been
1743 * associated with.
1744 *
1745 * Returns 0 for success, or error
1746 **/
i40e_del_mac_filter(struct i40e_vsi * vsi,const u8 * macaddr)1747 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
1748 {
1749 struct i40e_mac_filter *f;
1750 struct hlist_node *h;
1751 bool found = false;
1752 int bkt;
1753
1754 lockdep_assert_held(&vsi->mac_filter_hash_lock);
1755 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1756 if (ether_addr_equal(macaddr, f->macaddr)) {
1757 __i40e_del_filter(vsi, f);
1758 found = true;
1759 }
1760 }
1761
1762 if (found)
1763 return 0;
1764 else
1765 return -ENOENT;
1766 }
1767
1768 /**
1769 * i40e_set_mac - NDO callback to set mac address
1770 * @netdev: network interface device structure
1771 * @p: pointer to an address structure
1772 *
1773 * Returns 0 on success, negative on failure
1774 **/
i40e_set_mac(struct net_device * netdev,void * p)1775 static int i40e_set_mac(struct net_device *netdev, void *p)
1776 {
1777 struct i40e_netdev_priv *np = netdev_priv(netdev);
1778 struct i40e_vsi *vsi = np->vsi;
1779 struct i40e_pf *pf = vsi->back;
1780 struct i40e_hw *hw = &pf->hw;
1781 struct sockaddr *addr = p;
1782
1783 if (!is_valid_ether_addr(addr->sa_data))
1784 return -EADDRNOTAVAIL;
1785
1786 if (test_bit(__I40E_DOWN, pf->state) ||
1787 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
1788 return -EADDRNOTAVAIL;
1789
1790 if (ether_addr_equal(hw->mac.addr, addr->sa_data))
1791 netdev_info(netdev, "returning to hw mac address %pM\n",
1792 hw->mac.addr);
1793 else
1794 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
1795
1796 /* Copy the address first, so that we avoid a possible race with
1797 * .set_rx_mode().
1798 * - Remove old address from MAC filter
1799 * - Copy new address
1800 * - Add new address to MAC filter
1801 */
1802 spin_lock_bh(&vsi->mac_filter_hash_lock);
1803 i40e_del_mac_filter(vsi, netdev->dev_addr);
1804 eth_hw_addr_set(netdev, addr->sa_data);
1805 i40e_add_mac_filter(vsi, netdev->dev_addr);
1806 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1807
1808 if (vsi->type == I40E_VSI_MAIN) {
1809 int ret;
1810
1811 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL,
1812 addr->sa_data, NULL);
1813 if (ret)
1814 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n",
1815 ERR_PTR(ret),
1816 i40e_aq_str(hw, hw->aq.asq_last_status));
1817 }
1818
1819 /* schedule our worker thread which will take care of
1820 * applying the new filter changes
1821 */
1822 i40e_service_event_schedule(pf);
1823 return 0;
1824 }
1825
1826 /**
1827 * i40e_config_rss_aq - Prepare for RSS using AQ commands
1828 * @vsi: vsi structure
1829 * @seed: RSS hash seed
1830 * @lut: pointer to lookup table of lut_size
1831 * @lut_size: size of the lookup table
1832 **/
i40e_config_rss_aq(struct i40e_vsi * vsi,const u8 * seed,u8 * lut,u16 lut_size)1833 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
1834 u8 *lut, u16 lut_size)
1835 {
1836 struct i40e_pf *pf = vsi->back;
1837 struct i40e_hw *hw = &pf->hw;
1838 int ret = 0;
1839
1840 if (seed) {
1841 struct i40e_aqc_get_set_rss_key_data *seed_dw =
1842 (struct i40e_aqc_get_set_rss_key_data *)seed;
1843 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
1844 if (ret) {
1845 dev_info(&pf->pdev->dev,
1846 "Cannot set RSS key, err %pe aq_err %s\n",
1847 ERR_PTR(ret),
1848 i40e_aq_str(hw, hw->aq.asq_last_status));
1849 return ret;
1850 }
1851 }
1852 if (lut) {
1853 bool pf_lut = vsi->type == I40E_VSI_MAIN;
1854
1855 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
1856 if (ret) {
1857 dev_info(&pf->pdev->dev,
1858 "Cannot set RSS lut, err %pe aq_err %s\n",
1859 ERR_PTR(ret),
1860 i40e_aq_str(hw, hw->aq.asq_last_status));
1861 return ret;
1862 }
1863 }
1864 return ret;
1865 }
1866
1867 /**
1868 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
1869 * @vsi: VSI structure
1870 **/
i40e_vsi_config_rss(struct i40e_vsi * vsi)1871 static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
1872 {
1873 struct i40e_pf *pf = vsi->back;
1874 u8 seed[I40E_HKEY_ARRAY_SIZE];
1875 u8 *lut;
1876 int ret;
1877
1878 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
1879 return 0;
1880 if (!vsi->rss_size)
1881 vsi->rss_size = min_t(int, pf->alloc_rss_size,
1882 vsi->num_queue_pairs);
1883 if (!vsi->rss_size)
1884 return -EINVAL;
1885 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1886 if (!lut)
1887 return -ENOMEM;
1888
1889 /* Use the user configured hash keys and lookup table if there is one,
1890 * otherwise use default
1891 */
1892 if (vsi->rss_lut_user)
1893 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1894 else
1895 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
1896 if (vsi->rss_hkey_user)
1897 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
1898 else
1899 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
1900 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
1901 kfree(lut);
1902 return ret;
1903 }
1904
1905 /**
1906 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config
1907 * @vsi: the VSI being configured,
1908 * @ctxt: VSI context structure
1909 * @enabled_tc: number of traffic classes to enable
1910 *
1911 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
1912 **/
i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt,u8 enabled_tc)1913 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi,
1914 struct i40e_vsi_context *ctxt,
1915 u8 enabled_tc)
1916 {
1917 u16 qcount = 0, max_qcount, qmap, sections = 0;
1918 int i, override_q, pow, num_qps, ret;
1919 u8 netdev_tc = 0, offset = 0;
1920
1921 if (vsi->type != I40E_VSI_MAIN)
1922 return -EINVAL;
1923 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1924 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1925 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc;
1926 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1927 num_qps = vsi->mqprio_qopt.qopt.count[0];
1928
1929 /* find the next higher power-of-2 of num queue pairs */
1930 pow = ilog2(num_qps);
1931 if (!is_power_of_2(num_qps))
1932 pow++;
1933 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1934 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1935
1936 /* Setup queue offset/count for all TCs for given VSI */
1937 max_qcount = vsi->mqprio_qopt.qopt.count[0];
1938 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1939 /* See if the given TC is enabled for the given VSI */
1940 if (vsi->tc_config.enabled_tc & BIT(i)) {
1941 offset = vsi->mqprio_qopt.qopt.offset[i];
1942 qcount = vsi->mqprio_qopt.qopt.count[i];
1943 if (qcount > max_qcount)
1944 max_qcount = qcount;
1945 vsi->tc_config.tc_info[i].qoffset = offset;
1946 vsi->tc_config.tc_info[i].qcount = qcount;
1947 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1948 } else {
1949 /* TC is not enabled so set the offset to
1950 * default queue and allocate one queue
1951 * for the given TC.
1952 */
1953 vsi->tc_config.tc_info[i].qoffset = 0;
1954 vsi->tc_config.tc_info[i].qcount = 1;
1955 vsi->tc_config.tc_info[i].netdev_tc = 0;
1956 }
1957 }
1958
1959 /* Set actual Tx/Rx queue pairs */
1960 vsi->num_queue_pairs = offset + qcount;
1961
1962 /* Setup queue TC[0].qmap for given VSI context */
1963 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1964 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1965 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1966 ctxt->info.valid_sections |= cpu_to_le16(sections);
1967
1968 /* Reconfigure RSS for main VSI with max queue count */
1969 vsi->rss_size = max_qcount;
1970 ret = i40e_vsi_config_rss(vsi);
1971 if (ret) {
1972 dev_info(&vsi->back->pdev->dev,
1973 "Failed to reconfig rss for num_queues (%u)\n",
1974 max_qcount);
1975 return ret;
1976 }
1977 vsi->reconfig_rss = true;
1978 dev_dbg(&vsi->back->pdev->dev,
1979 "Reconfigured rss with num_queues (%u)\n", max_qcount);
1980
1981 /* Find queue count available for channel VSIs and starting offset
1982 * for channel VSIs
1983 */
1984 override_q = vsi->mqprio_qopt.qopt.count[0];
1985 if (override_q && override_q < vsi->num_queue_pairs) {
1986 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q;
1987 vsi->next_base_queue = override_q;
1988 }
1989 return 0;
1990 }
1991
1992 /**
1993 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
1994 * @vsi: the VSI being setup
1995 * @ctxt: VSI context structure
1996 * @enabled_tc: Enabled TCs bitmap
1997 * @is_add: True if called before Add VSI
1998 *
1999 * Setup VSI queue mapping for enabled traffic classes.
2000 **/
i40e_vsi_setup_queue_map(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt,u8 enabled_tc,bool is_add)2001 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
2002 struct i40e_vsi_context *ctxt,
2003 u8 enabled_tc,
2004 bool is_add)
2005 {
2006 struct i40e_pf *pf = vsi->back;
2007 u16 num_tc_qps = 0;
2008 u16 sections = 0;
2009 u8 netdev_tc = 0;
2010 u16 numtc = 1;
2011 u16 qcount;
2012 u8 offset;
2013 u16 qmap;
2014 int i;
2015
2016 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
2017 offset = 0;
2018 /* zero out queue mapping, it will get updated on the end of the function */
2019 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping));
2020
2021 if (vsi->type == I40E_VSI_MAIN) {
2022 /* This code helps add more queue to the VSI if we have
2023 * more cores than RSS can support, the higher cores will
2024 * be served by ATR or other filters. Furthermore, the
2025 * non-zero req_queue_pairs says that user requested a new
2026 * queue count via ethtool's set_channels, so use this
2027 * value for queues distribution across traffic classes
2028 * We need at least one queue pair for the interface
2029 * to be usable as we see in else statement.
2030 */
2031 if (vsi->req_queue_pairs > 0)
2032 vsi->num_queue_pairs = vsi->req_queue_pairs;
2033 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
2034 vsi->num_queue_pairs = pf->num_lan_msix;
2035 else
2036 vsi->num_queue_pairs = 1;
2037 }
2038
2039 /* Number of queues per enabled TC */
2040 if (vsi->type == I40E_VSI_MAIN ||
2041 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0))
2042 num_tc_qps = vsi->num_queue_pairs;
2043 else
2044 num_tc_qps = vsi->alloc_queue_pairs;
2045
2046 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
2047 /* Find numtc from enabled TC bitmap */
2048 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2049 if (enabled_tc & BIT(i)) /* TC is enabled */
2050 numtc++;
2051 }
2052 if (!numtc) {
2053 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
2054 numtc = 1;
2055 }
2056 num_tc_qps = num_tc_qps / numtc;
2057 num_tc_qps = min_t(int, num_tc_qps,
2058 i40e_pf_get_max_q_per_tc(pf));
2059 }
2060
2061 vsi->tc_config.numtc = numtc;
2062 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
2063
2064 /* Do not allow use more TC queue pairs than MSI-X vectors exist */
2065 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
2066 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix);
2067
2068 /* Setup queue offset/count for all TCs for given VSI */
2069 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2070 /* See if the given TC is enabled for the given VSI */
2071 if (vsi->tc_config.enabled_tc & BIT(i)) {
2072 /* TC is enabled */
2073 int pow, num_qps;
2074
2075 switch (vsi->type) {
2076 case I40E_VSI_MAIN:
2077 if ((!test_bit(I40E_FLAG_FD_SB_ENA,
2078 pf->flags) &&
2079 !test_bit(I40E_FLAG_FD_ATR_ENA,
2080 pf->flags)) ||
2081 vsi->tc_config.enabled_tc != 1) {
2082 qcount = min_t(int, pf->alloc_rss_size,
2083 num_tc_qps);
2084 break;
2085 }
2086 fallthrough;
2087 case I40E_VSI_FDIR:
2088 case I40E_VSI_SRIOV:
2089 case I40E_VSI_VMDQ2:
2090 default:
2091 qcount = num_tc_qps;
2092 WARN_ON(i != 0);
2093 break;
2094 }
2095 vsi->tc_config.tc_info[i].qoffset = offset;
2096 vsi->tc_config.tc_info[i].qcount = qcount;
2097
2098 /* find the next higher power-of-2 of num queue pairs */
2099 num_qps = qcount;
2100 pow = 0;
2101 while (num_qps && (BIT_ULL(pow) < qcount)) {
2102 pow++;
2103 num_qps >>= 1;
2104 }
2105
2106 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
2107 qmap =
2108 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
2109 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
2110
2111 offset += qcount;
2112 } else {
2113 /* TC is not enabled so set the offset to
2114 * default queue and allocate one queue
2115 * for the given TC.
2116 */
2117 vsi->tc_config.tc_info[i].qoffset = 0;
2118 vsi->tc_config.tc_info[i].qcount = 1;
2119 vsi->tc_config.tc_info[i].netdev_tc = 0;
2120
2121 qmap = 0;
2122 }
2123 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
2124 }
2125 /* Do not change previously set num_queue_pairs for PFs and VFs*/
2126 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) ||
2127 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) ||
2128 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV))
2129 vsi->num_queue_pairs = offset;
2130
2131 /* Scheduler section valid can only be set for ADD VSI */
2132 if (is_add) {
2133 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
2134
2135 ctxt->info.up_enable_bits = enabled_tc;
2136 }
2137 if (vsi->type == I40E_VSI_SRIOV) {
2138 ctxt->info.mapping_flags |=
2139 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
2140 for (i = 0; i < vsi->num_queue_pairs; i++)
2141 ctxt->info.queue_mapping[i] =
2142 cpu_to_le16(vsi->base_queue + i);
2143 } else {
2144 ctxt->info.mapping_flags |=
2145 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2146 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
2147 }
2148 ctxt->info.valid_sections |= cpu_to_le16(sections);
2149 }
2150
2151 /**
2152 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
2153 * @netdev: the netdevice
2154 * @addr: address to add
2155 *
2156 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2157 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
2158 */
i40e_addr_sync(struct net_device * netdev,const u8 * addr)2159 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
2160 {
2161 struct i40e_netdev_priv *np = netdev_priv(netdev);
2162 struct i40e_vsi *vsi = np->vsi;
2163
2164 if (i40e_add_mac_filter(vsi, addr))
2165 return 0;
2166 else
2167 return -ENOMEM;
2168 }
2169
2170 /**
2171 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2172 * @netdev: the netdevice
2173 * @addr: address to add
2174 *
2175 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
2176 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
2177 */
i40e_addr_unsync(struct net_device * netdev,const u8 * addr)2178 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
2179 {
2180 struct i40e_netdev_priv *np = netdev_priv(netdev);
2181 struct i40e_vsi *vsi = np->vsi;
2182
2183 /* Under some circumstances, we might receive a request to delete
2184 * our own device address from our uc list. Because we store the
2185 * device address in the VSI's MAC/VLAN filter list, we need to ignore
2186 * such requests and not delete our device address from this list.
2187 */
2188 if (ether_addr_equal(addr, netdev->dev_addr))
2189 return 0;
2190
2191 i40e_del_mac_filter(vsi, addr);
2192
2193 return 0;
2194 }
2195
2196 /**
2197 * i40e_set_rx_mode - NDO callback to set the netdev filters
2198 * @netdev: network interface device structure
2199 **/
i40e_set_rx_mode(struct net_device * netdev)2200 static void i40e_set_rx_mode(struct net_device *netdev)
2201 {
2202 struct i40e_netdev_priv *np = netdev_priv(netdev);
2203 struct i40e_vsi *vsi = np->vsi;
2204
2205 spin_lock_bh(&vsi->mac_filter_hash_lock);
2206
2207 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
2208 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
2209
2210 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2211
2212 /* check for other flag changes */
2213 if (vsi->current_netdev_flags != vsi->netdev->flags) {
2214 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2215 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
2216 }
2217 }
2218
2219 /**
2220 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
2221 * @vsi: Pointer to VSI struct
2222 * @from: Pointer to list which contains MAC filter entries - changes to
2223 * those entries needs to be undone.
2224 *
2225 * MAC filter entries from this list were slated for deletion.
2226 **/
i40e_undo_del_filter_entries(struct i40e_vsi * vsi,struct hlist_head * from)2227 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
2228 struct hlist_head *from)
2229 {
2230 struct i40e_mac_filter *f;
2231 struct hlist_node *h;
2232
2233 hlist_for_each_entry_safe(f, h, from, hlist) {
2234 u64 key = i40e_addr_to_hkey(f->macaddr);
2235
2236 /* Move the element back into MAC filter list*/
2237 hlist_del(&f->hlist);
2238 hash_add(vsi->mac_filter_hash, &f->hlist, key);
2239 }
2240 }
2241
2242 /**
2243 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
2244 * @vsi: Pointer to vsi struct
2245 * @from: Pointer to list which contains MAC filter entries - changes to
2246 * those entries needs to be undone.
2247 *
2248 * MAC filter entries from this list were slated for addition.
2249 **/
i40e_undo_add_filter_entries(struct i40e_vsi * vsi,struct hlist_head * from)2250 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
2251 struct hlist_head *from)
2252 {
2253 struct i40e_new_mac_filter *new;
2254 struct hlist_node *h;
2255
2256 hlist_for_each_entry_safe(new, h, from, hlist) {
2257 /* We can simply free the wrapper structure */
2258 hlist_del(&new->hlist);
2259 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
2260 kfree(new);
2261 }
2262 }
2263
2264 /**
2265 * i40e_next_filter - Get the next non-broadcast filter from a list
2266 * @next: pointer to filter in list
2267 *
2268 * Returns the next non-broadcast filter in the list. Required so that we
2269 * ignore broadcast filters within the list, since these are not handled via
2270 * the normal firmware update path.
2271 */
2272 static
i40e_next_filter(struct i40e_new_mac_filter * next)2273 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
2274 {
2275 hlist_for_each_entry_continue(next, hlist) {
2276 if (!is_broadcast_ether_addr(next->f->macaddr))
2277 return next;
2278 }
2279
2280 return NULL;
2281 }
2282
2283 /**
2284 * i40e_update_filter_state - Update filter state based on return data
2285 * from firmware
2286 * @count: Number of filters added
2287 * @add_list: return data from fw
2288 * @add_head: pointer to first filter in current batch
2289 *
2290 * MAC filter entries from list were slated to be added to device. Returns
2291 * number of successful filters. Note that 0 does NOT mean success!
2292 **/
2293 static int
i40e_update_filter_state(int count,struct i40e_aqc_add_macvlan_element_data * add_list,struct i40e_new_mac_filter * add_head)2294 i40e_update_filter_state(int count,
2295 struct i40e_aqc_add_macvlan_element_data *add_list,
2296 struct i40e_new_mac_filter *add_head)
2297 {
2298 int retval = 0;
2299 int i;
2300
2301 for (i = 0; i < count; i++) {
2302 /* Always check status of each filter. We don't need to check
2303 * the firmware return status because we pre-set the filter
2304 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter
2305 * request to the adminq. Thus, if it no longer matches then
2306 * we know the filter is active.
2307 */
2308 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
2309 add_head->state = I40E_FILTER_FAILED;
2310 } else {
2311 add_head->state = I40E_FILTER_ACTIVE;
2312 retval++;
2313 }
2314
2315 add_head = i40e_next_filter(add_head);
2316 if (!add_head)
2317 break;
2318 }
2319
2320 return retval;
2321 }
2322
2323 /**
2324 * i40e_aqc_del_filters - Request firmware to delete a set of filters
2325 * @vsi: ptr to the VSI
2326 * @vsi_name: name to display in messages
2327 * @list: the list of filters to send to firmware
2328 * @num_del: the number of filters to delete
2329 * @retval: Set to -EIO on failure to delete
2330 *
2331 * Send a request to firmware via AdminQ to delete a set of filters. Uses
2332 * *retval instead of a return value so that success does not force ret_val to
2333 * be set to 0. This ensures that a sequence of calls to this function
2334 * preserve the previous value of *retval on successful delete.
2335 */
2336 static
i40e_aqc_del_filters(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_aqc_remove_macvlan_element_data * list,int num_del,int * retval)2337 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
2338 struct i40e_aqc_remove_macvlan_element_data *list,
2339 int num_del, int *retval)
2340 {
2341 struct i40e_hw *hw = &vsi->back->hw;
2342 enum i40e_admin_queue_err aq_status;
2343 int aq_ret;
2344
2345 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL,
2346 &aq_status);
2347
2348 /* Explicitly ignore and do not report when firmware returns ENOENT */
2349 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) {
2350 *retval = -EIO;
2351 dev_info(&vsi->back->pdev->dev,
2352 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n",
2353 vsi_name, ERR_PTR(aq_ret),
2354 i40e_aq_str(hw, aq_status));
2355 }
2356 }
2357
2358 /**
2359 * i40e_aqc_add_filters - Request firmware to add a set of filters
2360 * @vsi: ptr to the VSI
2361 * @vsi_name: name to display in messages
2362 * @list: the list of filters to send to firmware
2363 * @add_head: Position in the add hlist
2364 * @num_add: the number of filters to add
2365 *
2366 * Send a request to firmware via AdminQ to add a chunk of filters. Will set
2367 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of
2368 * space for more filters.
2369 */
2370 static
i40e_aqc_add_filters(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_aqc_add_macvlan_element_data * list,struct i40e_new_mac_filter * add_head,int num_add)2371 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
2372 struct i40e_aqc_add_macvlan_element_data *list,
2373 struct i40e_new_mac_filter *add_head,
2374 int num_add)
2375 {
2376 struct i40e_hw *hw = &vsi->back->hw;
2377 enum i40e_admin_queue_err aq_status;
2378 int fcnt;
2379
2380 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status);
2381 fcnt = i40e_update_filter_state(num_add, list, add_head);
2382
2383 if (fcnt != num_add) {
2384 if (vsi->type == I40E_VSI_MAIN) {
2385 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2386 dev_warn(&vsi->back->pdev->dev,
2387 "Error %s adding RX filters on %s, promiscuous mode forced on\n",
2388 i40e_aq_str(hw, aq_status), vsi_name);
2389 } else if (vsi->type == I40E_VSI_SRIOV ||
2390 vsi->type == I40E_VSI_VMDQ1 ||
2391 vsi->type == I40E_VSI_VMDQ2) {
2392 dev_warn(&vsi->back->pdev->dev,
2393 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n",
2394 i40e_aq_str(hw, aq_status), vsi_name,
2395 vsi_name);
2396 } else {
2397 dev_warn(&vsi->back->pdev->dev,
2398 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n",
2399 i40e_aq_str(hw, aq_status), vsi_name,
2400 vsi->type);
2401 }
2402 }
2403 }
2404
2405 /**
2406 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
2407 * @vsi: pointer to the VSI
2408 * @vsi_name: the VSI name
2409 * @f: filter data
2410 *
2411 * This function sets or clears the promiscuous broadcast flags for VLAN
2412 * filters in order to properly receive broadcast frames. Assumes that only
2413 * broadcast filters are passed.
2414 *
2415 * Returns status indicating success or failure;
2416 **/
2417 static int
i40e_aqc_broadcast_filter(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_mac_filter * f)2418 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
2419 struct i40e_mac_filter *f)
2420 {
2421 bool enable = f->state == I40E_FILTER_NEW ||
2422 f->state == I40E_FILTER_NEW_SYNC;
2423 struct i40e_hw *hw = &vsi->back->hw;
2424 int aq_ret;
2425
2426 if (f->vlan == I40E_VLAN_ANY) {
2427 aq_ret = i40e_aq_set_vsi_broadcast(hw,
2428 vsi->seid,
2429 enable,
2430 NULL);
2431 } else {
2432 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
2433 vsi->seid,
2434 enable,
2435 f->vlan,
2436 NULL);
2437 }
2438
2439 if (aq_ret) {
2440 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2441 dev_warn(&vsi->back->pdev->dev,
2442 "Error %s, forcing overflow promiscuous on %s\n",
2443 i40e_aq_str(hw, hw->aq.asq_last_status),
2444 vsi_name);
2445 }
2446
2447 return aq_ret;
2448 }
2449
2450 /**
2451 * i40e_set_promiscuous - set promiscuous mode
2452 * @pf: board private structure
2453 * @promisc: promisc on or off
2454 *
2455 * There are different ways of setting promiscuous mode on a PF depending on
2456 * what state/environment we're in. This identifies and sets it appropriately.
2457 * Returns 0 on success.
2458 **/
i40e_set_promiscuous(struct i40e_pf * pf,bool promisc)2459 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc)
2460 {
2461 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
2462 struct i40e_hw *hw = &pf->hw;
2463 int aq_ret;
2464
2465 if (vsi->type == I40E_VSI_MAIN &&
2466 i40e_pf_get_main_veb(pf) &&
2467 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
2468 /* set defport ON for Main VSI instead of true promisc
2469 * this way we will get all unicast/multicast and VLAN
2470 * promisc behavior but will not get VF or VMDq traffic
2471 * replicated on the Main VSI.
2472 */
2473 if (promisc)
2474 aq_ret = i40e_aq_set_default_vsi(hw,
2475 vsi->seid,
2476 NULL);
2477 else
2478 aq_ret = i40e_aq_clear_default_vsi(hw,
2479 vsi->seid,
2480 NULL);
2481 if (aq_ret) {
2482 dev_info(&pf->pdev->dev,
2483 "Set default VSI failed, err %pe, aq_err %s\n",
2484 ERR_PTR(aq_ret),
2485 i40e_aq_str(hw, hw->aq.asq_last_status));
2486 }
2487 } else {
2488 aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
2489 hw,
2490 vsi->seid,
2491 promisc, NULL,
2492 true);
2493 if (aq_ret) {
2494 dev_info(&pf->pdev->dev,
2495 "set unicast promisc failed, err %pe, aq_err %s\n",
2496 ERR_PTR(aq_ret),
2497 i40e_aq_str(hw, hw->aq.asq_last_status));
2498 }
2499 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
2500 hw,
2501 vsi->seid,
2502 promisc, NULL);
2503 if (aq_ret) {
2504 dev_info(&pf->pdev->dev,
2505 "set multicast promisc failed, err %pe, aq_err %s\n",
2506 ERR_PTR(aq_ret),
2507 i40e_aq_str(hw, hw->aq.asq_last_status));
2508 }
2509 }
2510
2511 if (!aq_ret)
2512 pf->cur_promisc = promisc;
2513
2514 return aq_ret;
2515 }
2516
2517 /**
2518 * i40e_sync_vsi_filters - Update the VSI filter list to the HW
2519 * @vsi: ptr to the VSI
2520 *
2521 * Push any outstanding VSI filter changes through the AdminQ.
2522 *
2523 * Returns 0 or error value
2524 **/
i40e_sync_vsi_filters(struct i40e_vsi * vsi)2525 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
2526 {
2527 struct hlist_head tmp_add_list, tmp_del_list;
2528 struct i40e_mac_filter *f;
2529 struct i40e_new_mac_filter *new, *add_head = NULL;
2530 struct i40e_hw *hw = &vsi->back->hw;
2531 bool old_overflow, new_overflow;
2532 unsigned int failed_filters = 0;
2533 unsigned int vlan_filters = 0;
2534 char vsi_name[16] = "PF";
2535 int filter_list_len = 0;
2536 u32 changed_flags = 0;
2537 struct hlist_node *h;
2538 struct i40e_pf *pf;
2539 int num_add = 0;
2540 int num_del = 0;
2541 int aq_ret = 0;
2542 int retval = 0;
2543 u16 cmd_flags;
2544 int list_size;
2545 int bkt;
2546
2547 /* empty array typed pointers, kcalloc later */
2548 struct i40e_aqc_add_macvlan_element_data *add_list;
2549 struct i40e_aqc_remove_macvlan_element_data *del_list;
2550
2551 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
2552 usleep_range(1000, 2000);
2553 pf = vsi->back;
2554
2555 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2556
2557 if (vsi->netdev) {
2558 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
2559 vsi->current_netdev_flags = vsi->netdev->flags;
2560 }
2561
2562 INIT_HLIST_HEAD(&tmp_add_list);
2563 INIT_HLIST_HEAD(&tmp_del_list);
2564
2565 if (vsi->type == I40E_VSI_SRIOV)
2566 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
2567 else if (vsi->type != I40E_VSI_MAIN)
2568 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
2569
2570 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
2571 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
2572
2573 spin_lock_bh(&vsi->mac_filter_hash_lock);
2574 /* Create a list of filters to delete. */
2575 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2576 if (f->state == I40E_FILTER_REMOVE) {
2577 /* Move the element into temporary del_list */
2578 hash_del(&f->hlist);
2579 hlist_add_head(&f->hlist, &tmp_del_list);
2580
2581 /* Avoid counting removed filters */
2582 continue;
2583 }
2584 if (f->state == I40E_FILTER_NEW) {
2585 /* Create a temporary i40e_new_mac_filter */
2586 new = kzalloc(sizeof(*new), GFP_ATOMIC);
2587 if (!new)
2588 goto err_no_memory_locked;
2589
2590 /* Store pointer to the real filter */
2591 new->f = f;
2592 new->state = f->state;
2593
2594 /* Add it to the hash list */
2595 hlist_add_head(&new->hlist, &tmp_add_list);
2596 f->state = I40E_FILTER_NEW_SYNC;
2597 }
2598
2599 /* Count the number of active (current and new) VLAN
2600 * filters we have now. Does not count filters which
2601 * are marked for deletion.
2602 */
2603 if (f->vlan > 0)
2604 vlan_filters++;
2605 }
2606
2607 if (vsi->type != I40E_VSI_SRIOV)
2608 retval = i40e_correct_mac_vlan_filters
2609 (vsi, &tmp_add_list, &tmp_del_list,
2610 vlan_filters);
2611 else if (pf->vf)
2612 retval = i40e_correct_vf_mac_vlan_filters
2613 (vsi, &tmp_add_list, &tmp_del_list,
2614 vlan_filters, pf->vf[vsi->vf_id].trusted);
2615
2616 hlist_for_each_entry(new, &tmp_add_list, hlist)
2617 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1);
2618
2619 if (retval)
2620 goto err_no_memory_locked;
2621
2622 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2623 }
2624
2625 /* Now process 'del_list' outside the lock */
2626 if (!hlist_empty(&tmp_del_list)) {
2627 filter_list_len = hw->aq.asq_buf_size /
2628 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2629 list_size = filter_list_len *
2630 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2631 del_list = kzalloc(list_size, GFP_ATOMIC);
2632 if (!del_list)
2633 goto err_no_memory;
2634
2635 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
2636 cmd_flags = 0;
2637
2638 /* handle broadcast filters by updating the broadcast
2639 * promiscuous flag and release filter list.
2640 */
2641 if (is_broadcast_ether_addr(f->macaddr)) {
2642 i40e_aqc_broadcast_filter(vsi, vsi_name, f);
2643
2644 hlist_del(&f->hlist);
2645 kfree(f);
2646 continue;
2647 }
2648
2649 /* add to delete list */
2650 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
2651 if (f->vlan == I40E_VLAN_ANY) {
2652 del_list[num_del].vlan_tag = 0;
2653 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
2654 } else {
2655 del_list[num_del].vlan_tag =
2656 cpu_to_le16((u16)(f->vlan));
2657 }
2658
2659 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2660 del_list[num_del].flags = cmd_flags;
2661 num_del++;
2662
2663 /* flush a full buffer */
2664 if (num_del == filter_list_len) {
2665 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2666 num_del, &retval);
2667 memset(del_list, 0, list_size);
2668 num_del = 0;
2669 }
2670 /* Release memory for MAC filter entries which were
2671 * synced up with HW.
2672 */
2673 hlist_del(&f->hlist);
2674 kfree(f);
2675 }
2676
2677 if (num_del) {
2678 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2679 num_del, &retval);
2680 }
2681
2682 kfree(del_list);
2683 del_list = NULL;
2684 }
2685
2686 if (!hlist_empty(&tmp_add_list)) {
2687 /* Do all the adds now. */
2688 filter_list_len = hw->aq.asq_buf_size /
2689 sizeof(struct i40e_aqc_add_macvlan_element_data);
2690 list_size = filter_list_len *
2691 sizeof(struct i40e_aqc_add_macvlan_element_data);
2692 add_list = kzalloc(list_size, GFP_ATOMIC);
2693 if (!add_list)
2694 goto err_no_memory;
2695
2696 num_add = 0;
2697 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2698 /* handle broadcast filters by updating the broadcast
2699 * promiscuous flag instead of adding a MAC filter.
2700 */
2701 if (is_broadcast_ether_addr(new->f->macaddr)) {
2702 if (i40e_aqc_broadcast_filter(vsi, vsi_name,
2703 new->f))
2704 new->state = I40E_FILTER_FAILED;
2705 else
2706 new->state = I40E_FILTER_ACTIVE;
2707 continue;
2708 }
2709
2710 /* add to add array */
2711 if (num_add == 0)
2712 add_head = new;
2713 cmd_flags = 0;
2714 ether_addr_copy(add_list[num_add].mac_addr,
2715 new->f->macaddr);
2716 if (new->f->vlan == I40E_VLAN_ANY) {
2717 add_list[num_add].vlan_tag = 0;
2718 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
2719 } else {
2720 add_list[num_add].vlan_tag =
2721 cpu_to_le16((u16)(new->f->vlan));
2722 }
2723 add_list[num_add].queue_number = 0;
2724 /* set invalid match method for later detection */
2725 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
2726 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
2727 add_list[num_add].flags = cpu_to_le16(cmd_flags);
2728 num_add++;
2729
2730 /* flush a full buffer */
2731 if (num_add == filter_list_len) {
2732 i40e_aqc_add_filters(vsi, vsi_name, add_list,
2733 add_head, num_add);
2734 memset(add_list, 0, list_size);
2735 num_add = 0;
2736 }
2737 }
2738 if (num_add) {
2739 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
2740 num_add);
2741 }
2742 /* Now move all of the filters from the temp add list back to
2743 * the VSI's list.
2744 */
2745 spin_lock_bh(&vsi->mac_filter_hash_lock);
2746 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2747 /* Only update the state if we're still NEW */
2748 if (new->f->state == I40E_FILTER_NEW ||
2749 new->f->state == I40E_FILTER_NEW_SYNC)
2750 new->f->state = new->state;
2751 hlist_del(&new->hlist);
2752 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
2753 kfree(new);
2754 }
2755 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2756 kfree(add_list);
2757 add_list = NULL;
2758 }
2759
2760 /* Determine the number of active and failed filters. */
2761 spin_lock_bh(&vsi->mac_filter_hash_lock);
2762 vsi->active_filters = 0;
2763 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
2764 if (f->state == I40E_FILTER_ACTIVE)
2765 vsi->active_filters++;
2766 else if (f->state == I40E_FILTER_FAILED)
2767 failed_filters++;
2768 }
2769 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2770
2771 /* Check if we are able to exit overflow promiscuous mode. We can
2772 * safely exit if we didn't just enter, we no longer have any failed
2773 * filters, and we have reduced filters below the threshold value.
2774 */
2775 if (old_overflow && !failed_filters &&
2776 vsi->active_filters < vsi->promisc_threshold) {
2777 dev_info(&pf->pdev->dev,
2778 "filter logjam cleared on %s, leaving overflow promiscuous mode\n",
2779 vsi_name);
2780 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2781 vsi->promisc_threshold = 0;
2782 }
2783
2784 /* if the VF is not trusted do not do promisc */
2785 if (vsi->type == I40E_VSI_SRIOV && pf->vf &&
2786 !pf->vf[vsi->vf_id].trusted) {
2787 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2788 goto out;
2789 }
2790
2791 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2792
2793 /* If we are entering overflow promiscuous, we need to calculate a new
2794 * threshold for when we are safe to exit
2795 */
2796 if (!old_overflow && new_overflow)
2797 vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
2798
2799 /* check for changes in promiscuous modes */
2800 if (changed_flags & IFF_ALLMULTI) {
2801 bool cur_multipromisc;
2802
2803 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
2804 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
2805 vsi->seid,
2806 cur_multipromisc,
2807 NULL);
2808 if (aq_ret) {
2809 retval = i40e_aq_rc_to_posix(aq_ret,
2810 hw->aq.asq_last_status);
2811 dev_info(&pf->pdev->dev,
2812 "set multi promisc failed on %s, err %pe aq_err %s\n",
2813 vsi_name,
2814 ERR_PTR(aq_ret),
2815 i40e_aq_str(hw, hw->aq.asq_last_status));
2816 } else {
2817 dev_info(&pf->pdev->dev, "%s allmulti mode.\n",
2818 cur_multipromisc ? "entering" : "leaving");
2819 }
2820 }
2821
2822 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) {
2823 bool cur_promisc;
2824
2825 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
2826 new_overflow);
2827 aq_ret = i40e_set_promiscuous(pf, cur_promisc);
2828 if (aq_ret) {
2829 retval = i40e_aq_rc_to_posix(aq_ret,
2830 hw->aq.asq_last_status);
2831 dev_info(&pf->pdev->dev,
2832 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n",
2833 cur_promisc ? "on" : "off",
2834 vsi_name,
2835 ERR_PTR(aq_ret),
2836 i40e_aq_str(hw, hw->aq.asq_last_status));
2837 }
2838 }
2839 out:
2840 /* if something went wrong then set the changed flag so we try again */
2841 if (retval)
2842 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2843
2844 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2845 return retval;
2846
2847 err_no_memory:
2848 /* Restore elements on the temporary add and delete lists */
2849 spin_lock_bh(&vsi->mac_filter_hash_lock);
2850 err_no_memory_locked:
2851 i40e_undo_del_filter_entries(vsi, &tmp_del_list);
2852 i40e_undo_add_filter_entries(vsi, &tmp_add_list);
2853 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2854
2855 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2856 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2857 return -ENOMEM;
2858 }
2859
2860 /**
2861 * i40e_sync_filters_subtask - Sync the VSI filter list with HW
2862 * @pf: board private structure
2863 **/
i40e_sync_filters_subtask(struct i40e_pf * pf)2864 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
2865 {
2866 struct i40e_vsi *vsi;
2867 int v;
2868
2869 if (!pf)
2870 return;
2871 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state))
2872 return;
2873 if (test_bit(__I40E_VF_DISABLE, pf->state)) {
2874 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
2875 return;
2876 }
2877
2878 i40e_pf_for_each_vsi(pf, v, vsi) {
2879 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) &&
2880 !test_bit(__I40E_VSI_RELEASING, vsi->state)) {
2881 int ret = i40e_sync_vsi_filters(vsi);
2882
2883 if (ret) {
2884 /* come back and try again later */
2885 set_bit(__I40E_MACVLAN_SYNC_PENDING,
2886 pf->state);
2887 break;
2888 }
2889 }
2890 }
2891 }
2892
2893 /**
2894 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length
2895 *
2896 * @vsi: VSI to calculate rx_buf_len from
2897 */
i40e_calculate_vsi_rx_buf_len(struct i40e_vsi * vsi)2898 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi)
2899 {
2900 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags))
2901 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048);
2902
2903 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048;
2904 }
2905
2906 /**
2907 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI
2908 * @vsi: the vsi
2909 * @xdp_prog: XDP program
2910 **/
i40e_max_vsi_frame_size(struct i40e_vsi * vsi,struct bpf_prog * xdp_prog)2911 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi,
2912 struct bpf_prog *xdp_prog)
2913 {
2914 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
2915 u16 chain_len;
2916
2917 if (xdp_prog && !xdp_prog->aux->xdp_has_frags)
2918 chain_len = 1;
2919 else
2920 chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
2921
2922 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER);
2923 }
2924
2925 /**
2926 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
2927 * @netdev: network interface device structure
2928 * @new_mtu: new value for maximum frame size
2929 *
2930 * Returns 0 on success, negative on failure
2931 **/
i40e_change_mtu(struct net_device * netdev,int new_mtu)2932 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
2933 {
2934 struct i40e_netdev_priv *np = netdev_priv(netdev);
2935 struct i40e_vsi *vsi = np->vsi;
2936 struct i40e_pf *pf = vsi->back;
2937 int frame_size;
2938
2939 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
2940 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) {
2941 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n",
2942 new_mtu, frame_size - I40E_PACKET_HDR_PAD);
2943 return -EINVAL;
2944 }
2945
2946 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2947 netdev->mtu, new_mtu);
2948 WRITE_ONCE(netdev->mtu, new_mtu);
2949 if (netif_running(netdev))
2950 i40e_vsi_reinit_locked(vsi);
2951 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
2952 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
2953 return 0;
2954 }
2955
2956 /**
2957 * i40e_ioctl - Access the hwtstamp interface
2958 * @netdev: network interface device structure
2959 * @ifr: interface request data
2960 * @cmd: ioctl command
2961 **/
i40e_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2962 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2963 {
2964 struct i40e_netdev_priv *np = netdev_priv(netdev);
2965 struct i40e_pf *pf = np->vsi->back;
2966
2967 switch (cmd) {
2968 case SIOCGHWTSTAMP:
2969 return i40e_ptp_get_ts_config(pf, ifr);
2970 case SIOCSHWTSTAMP:
2971 return i40e_ptp_set_ts_config(pf, ifr);
2972 default:
2973 return -EOPNOTSUPP;
2974 }
2975 }
2976
2977 /**
2978 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
2979 * @vsi: the vsi being adjusted
2980 **/
i40e_vlan_stripping_enable(struct i40e_vsi * vsi)2981 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
2982 {
2983 struct i40e_vsi_context ctxt;
2984 int ret;
2985
2986 /* Don't modify stripping options if a port VLAN is active */
2987 if (vsi->info.pvid)
2988 return;
2989
2990 if ((vsi->info.valid_sections &
2991 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2992 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
2993 return; /* already enabled */
2994
2995 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2996 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2997 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
2998
2999 ctxt.seid = vsi->seid;
3000 ctxt.info = vsi->info;
3001 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3002 if (ret) {
3003 dev_info(&vsi->back->pdev->dev,
3004 "update vlan stripping failed, err %pe aq_err %s\n",
3005 ERR_PTR(ret),
3006 i40e_aq_str(&vsi->back->hw,
3007 vsi->back->hw.aq.asq_last_status));
3008 }
3009 }
3010
3011 /**
3012 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
3013 * @vsi: the vsi being adjusted
3014 **/
i40e_vlan_stripping_disable(struct i40e_vsi * vsi)3015 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
3016 {
3017 struct i40e_vsi_context ctxt;
3018 int ret;
3019
3020 /* Don't modify stripping options if a port VLAN is active */
3021 if (vsi->info.pvid)
3022 return;
3023
3024 if ((vsi->info.valid_sections &
3025 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
3026 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
3027 I40E_AQ_VSI_PVLAN_EMOD_MASK))
3028 return; /* already disabled */
3029
3030 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
3031 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
3032 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
3033
3034 ctxt.seid = vsi->seid;
3035 ctxt.info = vsi->info;
3036 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3037 if (ret) {
3038 dev_info(&vsi->back->pdev->dev,
3039 "update vlan stripping failed, err %pe aq_err %s\n",
3040 ERR_PTR(ret),
3041 i40e_aq_str(&vsi->back->hw,
3042 vsi->back->hw.aq.asq_last_status));
3043 }
3044 }
3045
3046 /**
3047 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
3048 * @vsi: the vsi being configured
3049 * @vid: vlan id to be added (0 = untagged only , -1 = any)
3050 *
3051 * This is a helper function for adding a new MAC/VLAN filter with the
3052 * specified VLAN for each existing MAC address already in the hash table.
3053 * This function does *not* perform any accounting to update filters based on
3054 * VLAN mode.
3055 *
3056 * NOTE: this function expects to be called while under the
3057 * mac_filter_hash_lock
3058 **/
i40e_add_vlan_all_mac(struct i40e_vsi * vsi,s16 vid)3059 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
3060 {
3061 struct i40e_mac_filter *f, *add_f;
3062 struct hlist_node *h;
3063 int bkt;
3064
3065 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
3066 /* If we're asked to add a filter that has been marked for
3067 * removal, it is safe to simply restore it to active state.
3068 * __i40e_del_filter will have simply deleted any filters which
3069 * were previously marked NEW or FAILED, so if it is currently
3070 * marked REMOVE it must have previously been ACTIVE. Since we
3071 * haven't yet run the sync filters task, just restore this
3072 * filter to the ACTIVE state so that the sync task leaves it
3073 * in place.
3074 */
3075 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) {
3076 f->state = I40E_FILTER_ACTIVE;
3077 continue;
3078 } else if (f->state == I40E_FILTER_REMOVE) {
3079 continue;
3080 }
3081 add_f = i40e_add_filter(vsi, f->macaddr, vid);
3082 if (!add_f) {
3083 dev_info(&vsi->back->pdev->dev,
3084 "Could not add vlan filter %d for %pM\n",
3085 vid, f->macaddr);
3086 return -ENOMEM;
3087 }
3088 }
3089
3090 return 0;
3091 }
3092
3093 /**
3094 * i40e_vsi_add_vlan - Add VSI membership for given VLAN
3095 * @vsi: the VSI being configured
3096 * @vid: VLAN id to be added
3097 **/
i40e_vsi_add_vlan(struct i40e_vsi * vsi,u16 vid)3098 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
3099 {
3100 int err;
3101
3102 if (vsi->info.pvid)
3103 return -EINVAL;
3104
3105 /* The network stack will attempt to add VID=0, with the intention to
3106 * receive priority tagged packets with a VLAN of 0. Our HW receives
3107 * these packets by default when configured to receive untagged
3108 * packets, so we don't need to add a filter for this case.
3109 * Additionally, HW interprets adding a VID=0 filter as meaning to
3110 * receive *only* tagged traffic and stops receiving untagged traffic.
3111 * Thus, we do not want to actually add a filter for VID=0
3112 */
3113 if (!vid)
3114 return 0;
3115
3116 /* Locked once because all functions invoked below iterates list*/
3117 spin_lock_bh(&vsi->mac_filter_hash_lock);
3118 err = i40e_add_vlan_all_mac(vsi, vid);
3119 spin_unlock_bh(&vsi->mac_filter_hash_lock);
3120 if (err)
3121 return err;
3122
3123 /* schedule our worker thread which will take care of
3124 * applying the new filter changes
3125 */
3126 i40e_service_event_schedule(vsi->back);
3127 return 0;
3128 }
3129
3130 /**
3131 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
3132 * @vsi: the vsi being configured
3133 * @vid: vlan id to be removed (0 = untagged only , -1 = any)
3134 *
3135 * This function should be used to remove all VLAN filters which match the
3136 * given VID. It does not schedule the service event and does not take the
3137 * mac_filter_hash_lock so it may be combined with other operations under
3138 * a single invocation of the mac_filter_hash_lock.
3139 *
3140 * NOTE: this function expects to be called while under the
3141 * mac_filter_hash_lock
3142 */
i40e_rm_vlan_all_mac(struct i40e_vsi * vsi,s16 vid)3143 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
3144 {
3145 struct i40e_mac_filter *f;
3146 struct hlist_node *h;
3147 int bkt;
3148
3149 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
3150 if (f->vlan == vid)
3151 __i40e_del_filter(vsi, f);
3152 }
3153 }
3154
3155 /**
3156 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
3157 * @vsi: the VSI being configured
3158 * @vid: VLAN id to be removed
3159 **/
i40e_vsi_kill_vlan(struct i40e_vsi * vsi,u16 vid)3160 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
3161 {
3162 if (!vid || vsi->info.pvid)
3163 return;
3164
3165 spin_lock_bh(&vsi->mac_filter_hash_lock);
3166 i40e_rm_vlan_all_mac(vsi, vid);
3167 spin_unlock_bh(&vsi->mac_filter_hash_lock);
3168
3169 /* schedule our worker thread which will take care of
3170 * applying the new filter changes
3171 */
3172 i40e_service_event_schedule(vsi->back);
3173 }
3174
3175 /**
3176 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
3177 * @netdev: network interface to be adjusted
3178 * @proto: unused protocol value
3179 * @vid: vlan id to be added
3180 *
3181 * net_device_ops implementation for adding vlan ids
3182 **/
i40e_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3183 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
3184 __always_unused __be16 proto, u16 vid)
3185 {
3186 struct i40e_netdev_priv *np = netdev_priv(netdev);
3187 struct i40e_vsi *vsi = np->vsi;
3188 int ret = 0;
3189
3190 if (vid >= VLAN_N_VID)
3191 return -EINVAL;
3192
3193 ret = i40e_vsi_add_vlan(vsi, vid);
3194 if (!ret)
3195 set_bit(vid, vsi->active_vlans);
3196
3197 return ret;
3198 }
3199
3200 /**
3201 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path
3202 * @netdev: network interface to be adjusted
3203 * @proto: unused protocol value
3204 * @vid: vlan id to be added
3205 **/
i40e_vlan_rx_add_vid_up(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3206 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev,
3207 __always_unused __be16 proto, u16 vid)
3208 {
3209 struct i40e_netdev_priv *np = netdev_priv(netdev);
3210 struct i40e_vsi *vsi = np->vsi;
3211
3212 if (vid >= VLAN_N_VID)
3213 return;
3214 set_bit(vid, vsi->active_vlans);
3215 }
3216
3217 /**
3218 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
3219 * @netdev: network interface to be adjusted
3220 * @proto: unused protocol value
3221 * @vid: vlan id to be removed
3222 *
3223 * net_device_ops implementation for removing vlan ids
3224 **/
i40e_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3225 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
3226 __always_unused __be16 proto, u16 vid)
3227 {
3228 struct i40e_netdev_priv *np = netdev_priv(netdev);
3229 struct i40e_vsi *vsi = np->vsi;
3230
3231 /* return code is ignored as there is nothing a user
3232 * can do about failure to remove and a log message was
3233 * already printed from the other function
3234 */
3235 i40e_vsi_kill_vlan(vsi, vid);
3236
3237 clear_bit(vid, vsi->active_vlans);
3238
3239 return 0;
3240 }
3241
3242 /**
3243 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
3244 * @vsi: the vsi being brought back up
3245 **/
i40e_restore_vlan(struct i40e_vsi * vsi)3246 static void i40e_restore_vlan(struct i40e_vsi *vsi)
3247 {
3248 u16 vid;
3249
3250 if (!vsi->netdev)
3251 return;
3252
3253 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3254 i40e_vlan_stripping_enable(vsi);
3255 else
3256 i40e_vlan_stripping_disable(vsi);
3257
3258 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
3259 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q),
3260 vid);
3261 }
3262
3263 /**
3264 * i40e_vsi_add_pvid - Add pvid for the VSI
3265 * @vsi: the vsi being adjusted
3266 * @vid: the vlan id to set as a PVID
3267 **/
i40e_vsi_add_pvid(struct i40e_vsi * vsi,u16 vid)3268 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
3269 {
3270 struct i40e_vsi_context ctxt;
3271 int ret;
3272
3273 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
3274 vsi->info.pvid = cpu_to_le16(vid);
3275 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
3276 I40E_AQ_VSI_PVLAN_INSERT_PVID |
3277 I40E_AQ_VSI_PVLAN_EMOD_STR;
3278
3279 ctxt.seid = vsi->seid;
3280 ctxt.info = vsi->info;
3281 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3282 if (ret) {
3283 dev_info(&vsi->back->pdev->dev,
3284 "add pvid failed, err %pe aq_err %s\n",
3285 ERR_PTR(ret),
3286 i40e_aq_str(&vsi->back->hw,
3287 vsi->back->hw.aq.asq_last_status));
3288 return -ENOENT;
3289 }
3290
3291 return 0;
3292 }
3293
3294 /**
3295 * i40e_vsi_remove_pvid - Remove the pvid from the VSI
3296 * @vsi: the vsi being adjusted
3297 *
3298 * Just use the vlan_rx_register() service to put it back to normal
3299 **/
i40e_vsi_remove_pvid(struct i40e_vsi * vsi)3300 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
3301 {
3302 vsi->info.pvid = 0;
3303
3304 i40e_vlan_stripping_disable(vsi);
3305 }
3306
3307 /**
3308 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
3309 * @vsi: ptr to the VSI
3310 *
3311 * If this function returns with an error, then it's possible one or
3312 * more of the rings is populated (while the rest are not). It is the
3313 * callers duty to clean those orphaned rings.
3314 *
3315 * Return 0 on success, negative on failure
3316 **/
i40e_vsi_setup_tx_resources(struct i40e_vsi * vsi)3317 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
3318 {
3319 int i, err = 0;
3320
3321 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3322 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
3323
3324 if (!i40e_enabled_xdp_vsi(vsi))
3325 return err;
3326
3327 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3328 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
3329
3330 return err;
3331 }
3332
3333 /**
3334 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
3335 * @vsi: ptr to the VSI
3336 *
3337 * Free VSI's transmit software resources
3338 **/
i40e_vsi_free_tx_resources(struct i40e_vsi * vsi)3339 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
3340 {
3341 int i;
3342
3343 if (vsi->tx_rings) {
3344 for (i = 0; i < vsi->num_queue_pairs; i++)
3345 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
3346 i40e_free_tx_resources(vsi->tx_rings[i]);
3347 }
3348
3349 if (vsi->xdp_rings) {
3350 for (i = 0; i < vsi->num_queue_pairs; i++)
3351 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
3352 i40e_free_tx_resources(vsi->xdp_rings[i]);
3353 }
3354 }
3355
3356 /**
3357 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
3358 * @vsi: ptr to the VSI
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not). It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
i40e_vsi_setup_rx_resources(struct i40e_vsi * vsi)3366 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
3367 {
3368 int i, err = 0;
3369
3370 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3371 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
3372 return err;
3373 }
3374
3375 /**
3376 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
3377 * @vsi: ptr to the VSI
3378 *
3379 * Free all receive software resources
3380 **/
i40e_vsi_free_rx_resources(struct i40e_vsi * vsi)3381 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
3382 {
3383 int i;
3384
3385 if (!vsi->rx_rings)
3386 return;
3387
3388 for (i = 0; i < vsi->num_queue_pairs; i++)
3389 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
3390 i40e_free_rx_resources(vsi->rx_rings[i]);
3391 }
3392
3393 /**
3394 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring
3395 * @ring: The Tx ring to configure
3396 *
3397 * This enables/disables XPS for a given Tx descriptor ring
3398 * based on the TCs enabled for the VSI that ring belongs to.
3399 **/
i40e_config_xps_tx_ring(struct i40e_ring * ring)3400 static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
3401 {
3402 int cpu;
3403
3404 if (!ring->q_vector || !ring->netdev || ring->ch)
3405 return;
3406
3407 /* We only initialize XPS once, so as not to overwrite user settings */
3408 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state))
3409 return;
3410
3411 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1);
3412 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu),
3413 ring->queue_index);
3414 }
3415
3416 /**
3417 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled
3418 * @ring: The Tx or Rx ring
3419 *
3420 * Returns the AF_XDP buffer pool or NULL.
3421 **/
i40e_xsk_pool(struct i40e_ring * ring)3422 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring)
3423 {
3424 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi);
3425 int qid = ring->queue_index;
3426
3427 if (ring_is_xdp(ring))
3428 qid -= ring->vsi->alloc_queue_pairs;
3429
3430 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps))
3431 return NULL;
3432
3433 return xsk_get_pool_from_qid(ring->vsi->netdev, qid);
3434 }
3435
3436 /**
3437 * i40e_configure_tx_ring - Configure a transmit ring context and rest
3438 * @ring: The Tx ring to configure
3439 *
3440 * Configure the Tx descriptor ring in the HMC context.
3441 **/
i40e_configure_tx_ring(struct i40e_ring * ring)3442 static int i40e_configure_tx_ring(struct i40e_ring *ring)
3443 {
3444 struct i40e_vsi *vsi = ring->vsi;
3445 u16 pf_q = vsi->base_queue + ring->queue_index;
3446 struct i40e_hw *hw = &vsi->back->hw;
3447 struct i40e_hmc_obj_txq tx_ctx;
3448 u32 qtx_ctl = 0;
3449 int err = 0;
3450
3451 if (ring_is_xdp(ring))
3452 ring->xsk_pool = i40e_xsk_pool(ring);
3453
3454 /* some ATR related tx ring init */
3455 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) {
3456 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
3457 ring->atr_count = 0;
3458 } else {
3459 ring->atr_sample_rate = 0;
3460 }
3461
3462 /* configure XPS */
3463 i40e_config_xps_tx_ring(ring);
3464
3465 /* clear the context structure first */
3466 memset(&tx_ctx, 0, sizeof(tx_ctx));
3467
3468 tx_ctx.new_context = 1;
3469 tx_ctx.base = (ring->dma / 128);
3470 tx_ctx.qlen = ring->count;
3471 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) ||
3472 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags))
3473 tx_ctx.fd_ena = 1;
3474 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags))
3475 tx_ctx.timesync_ena = 1;
3476 /* FDIR VSI tx ring can still use RS bit and writebacks */
3477 if (vsi->type != I40E_VSI_FDIR)
3478 tx_ctx.head_wb_ena = 1;
3479 tx_ctx.head_wb_addr = ring->dma +
3480 (ring->count * sizeof(struct i40e_tx_desc));
3481
3482 /* As part of VSI creation/update, FW allocates certain
3483 * Tx arbitration queue sets for each TC enabled for
3484 * the VSI. The FW returns the handles to these queue
3485 * sets as part of the response buffer to Add VSI,
3486 * Update VSI, etc. AQ commands. It is expected that
3487 * these queue set handles be associated with the Tx
3488 * queues by the driver as part of the TX queue context
3489 * initialization. This has to be done regardless of
3490 * DCB as by default everything is mapped to TC0.
3491 */
3492
3493 if (ring->ch)
3494 tx_ctx.rdylist =
3495 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]);
3496
3497 else
3498 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
3499
3500 tx_ctx.rdylist_act = 0;
3501
3502 /* clear the context in the HMC */
3503 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
3504 if (err) {
3505 dev_info(&vsi->back->pdev->dev,
3506 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
3507 ring->queue_index, pf_q, err);
3508 return -ENOMEM;
3509 }
3510
3511 /* set the context in the HMC */
3512 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
3513 if (err) {
3514 dev_info(&vsi->back->pdev->dev,
3515 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
3516 ring->queue_index, pf_q, err);
3517 return -ENOMEM;
3518 }
3519
3520 /* Now associate this queue with this PCI function */
3521 if (ring->ch) {
3522 if (ring->ch->type == I40E_VSI_VMDQ2)
3523 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3524 else
3525 return -EINVAL;
3526
3527 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
3528 ring->ch->vsi_number);
3529 } else {
3530 if (vsi->type == I40E_VSI_VMDQ2) {
3531 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3532 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
3533 vsi->id);
3534 } else {
3535 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
3536 }
3537 }
3538
3539 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id);
3540 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
3541 i40e_flush(hw);
3542
3543 /* cache tail off for easier writes later */
3544 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
3545
3546 return 0;
3547 }
3548
3549 /**
3550 * i40e_rx_offset - Return expected offset into page to access data
3551 * @rx_ring: Ring we are requesting offset of
3552 *
3553 * Returns the offset value for ring into the data buffer.
3554 */
i40e_rx_offset(struct i40e_ring * rx_ring)3555 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
3556 {
3557 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
3558 }
3559
3560 /**
3561 * i40e_configure_rx_ring - Configure a receive ring context
3562 * @ring: The Rx ring to configure
3563 *
3564 * Configure the Rx descriptor ring in the HMC context.
3565 **/
i40e_configure_rx_ring(struct i40e_ring * ring)3566 static int i40e_configure_rx_ring(struct i40e_ring *ring)
3567 {
3568 struct i40e_vsi *vsi = ring->vsi;
3569 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
3570 u16 pf_q = vsi->base_queue + ring->queue_index;
3571 struct i40e_hw *hw = &vsi->back->hw;
3572 struct i40e_hmc_obj_rxq rx_ctx;
3573 int err = 0;
3574 bool ok;
3575
3576 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS);
3577
3578 /* clear the context structure first */
3579 memset(&rx_ctx, 0, sizeof(rx_ctx));
3580
3581 ring->rx_buf_len = vsi->rx_buf_len;
3582
3583 /* XDP RX-queue info only needed for RX rings exposed to XDP */
3584 if (ring->vsi->type != I40E_VSI_MAIN)
3585 goto skip;
3586
3587 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
3588 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
3589 ring->queue_index,
3590 ring->q_vector->napi.napi_id,
3591 ring->rx_buf_len);
3592 if (err)
3593 return err;
3594 }
3595
3596 ring->xsk_pool = i40e_xsk_pool(ring);
3597 if (ring->xsk_pool) {
3598 xdp_rxq_info_unreg(&ring->xdp_rxq);
3599 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool);
3600 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
3601 ring->queue_index,
3602 ring->q_vector->napi.napi_id,
3603 ring->rx_buf_len);
3604 if (err)
3605 return err;
3606 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
3607 MEM_TYPE_XSK_BUFF_POOL,
3608 NULL);
3609 if (err)
3610 return err;
3611 dev_info(&vsi->back->pdev->dev,
3612 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
3613 ring->queue_index);
3614
3615 } else {
3616 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
3617 MEM_TYPE_PAGE_SHARED,
3618 NULL);
3619 if (err)
3620 return err;
3621 }
3622
3623 skip:
3624 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq);
3625
3626 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
3627 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
3628
3629 rx_ctx.base = (ring->dma / 128);
3630 rx_ctx.qlen = ring->count;
3631
3632 /* use 16 byte descriptors */
3633 rx_ctx.dsize = 0;
3634
3635 /* descriptor type is always zero
3636 * rx_ctx.dtype = 0;
3637 */
3638 rx_ctx.hsplit_0 = 0;
3639
3640 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
3641 if (hw->revision_id == 0)
3642 rx_ctx.lrxqthresh = 0;
3643 else
3644 rx_ctx.lrxqthresh = 1;
3645 rx_ctx.crcstrip = 1;
3646 rx_ctx.l2tsel = 1;
3647 /* this controls whether VLAN is stripped from inner headers */
3648 rx_ctx.showiv = 0;
3649 /* set the prefena field to 1 because the manual says to */
3650 rx_ctx.prefena = 1;
3651
3652 /* clear the context in the HMC */
3653 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3654 if (err) {
3655 dev_info(&vsi->back->pdev->dev,
3656 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3657 ring->queue_index, pf_q, err);
3658 return -ENOMEM;
3659 }
3660
3661 /* set the context in the HMC */
3662 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3663 if (err) {
3664 dev_info(&vsi->back->pdev->dev,
3665 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3666 ring->queue_index, pf_q, err);
3667 return -ENOMEM;
3668 }
3669
3670 /* configure Rx buffer alignment */
3671 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) {
3672 if (I40E_2K_TOO_SMALL_WITH_PADDING) {
3673 dev_info(&vsi->back->pdev->dev,
3674 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n");
3675 return -EOPNOTSUPP;
3676 }
3677 clear_ring_build_skb_enabled(ring);
3678 } else {
3679 set_ring_build_skb_enabled(ring);
3680 }
3681
3682 ring->rx_offset = i40e_rx_offset(ring);
3683
3684 /* cache tail for quicker writes, and clear the reg before use */
3685 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3686 writel(0, ring->tail);
3687
3688 if (ring->xsk_pool) {
3689 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
3690 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring));
3691 } else {
3692 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
3693 }
3694 if (!ok) {
3695 /* Log this in case the user has forgotten to give the kernel
3696 * any buffers, even later in the application.
3697 */
3698 dev_info(&vsi->back->pdev->dev,
3699 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n",
3700 ring->xsk_pool ? "AF_XDP ZC enabled " : "",
3701 ring->queue_index, pf_q);
3702 }
3703
3704 return 0;
3705 }
3706
3707 /**
3708 * i40e_vsi_configure_tx - Configure the VSI for Tx
3709 * @vsi: VSI structure describing this set of rings and resources
3710 *
3711 * Configure the Tx VSI for operation.
3712 **/
i40e_vsi_configure_tx(struct i40e_vsi * vsi)3713 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
3714 {
3715 int err = 0;
3716 u16 i;
3717
3718 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3719 err = i40e_configure_tx_ring(vsi->tx_rings[i]);
3720
3721 if (err || !i40e_enabled_xdp_vsi(vsi))
3722 return err;
3723
3724 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3725 err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
3726
3727 return err;
3728 }
3729
3730 /**
3731 * i40e_vsi_configure_rx - Configure the VSI for Rx
3732 * @vsi: the VSI being configured
3733 *
3734 * Configure the Rx VSI for operation.
3735 **/
i40e_vsi_configure_rx(struct i40e_vsi * vsi)3736 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
3737 {
3738 int err = 0;
3739 u16 i;
3740
3741 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
3742 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
3743
3744 #if (PAGE_SIZE < 8192)
3745 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING &&
3746 vsi->netdev->mtu <= ETH_DATA_LEN) {
3747 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3748 vsi->max_frame = vsi->rx_buf_len;
3749 }
3750 #endif
3751
3752 /* set up individual rings */
3753 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3754 err = i40e_configure_rx_ring(vsi->rx_rings[i]);
3755
3756 return err;
3757 }
3758
3759 /**
3760 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
3761 * @vsi: ptr to the VSI
3762 **/
i40e_vsi_config_dcb_rings(struct i40e_vsi * vsi)3763 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
3764 {
3765 struct i40e_ring *tx_ring, *rx_ring;
3766 u16 qoffset, qcount;
3767 int i, n;
3768
3769 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
3770 /* Reset the TC information */
3771 for (i = 0; i < vsi->num_queue_pairs; i++) {
3772 rx_ring = vsi->rx_rings[i];
3773 tx_ring = vsi->tx_rings[i];
3774 rx_ring->dcb_tc = 0;
3775 tx_ring->dcb_tc = 0;
3776 }
3777 return;
3778 }
3779
3780 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
3781 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
3782 continue;
3783
3784 qoffset = vsi->tc_config.tc_info[n].qoffset;
3785 qcount = vsi->tc_config.tc_info[n].qcount;
3786 for (i = qoffset; i < (qoffset + qcount); i++) {
3787 rx_ring = vsi->rx_rings[i];
3788 tx_ring = vsi->tx_rings[i];
3789 rx_ring->dcb_tc = n;
3790 tx_ring->dcb_tc = n;
3791 }
3792 }
3793 }
3794
3795 /**
3796 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
3797 * @vsi: ptr to the VSI
3798 **/
i40e_set_vsi_rx_mode(struct i40e_vsi * vsi)3799 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
3800 {
3801 if (vsi->netdev)
3802 i40e_set_rx_mode(vsi->netdev);
3803 }
3804
3805 /**
3806 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters
3807 * @pf: Pointer to the targeted PF
3808 *
3809 * Set all flow director counters to 0.
3810 */
i40e_reset_fdir_filter_cnt(struct i40e_pf * pf)3811 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf)
3812 {
3813 pf->fd_tcp4_filter_cnt = 0;
3814 pf->fd_udp4_filter_cnt = 0;
3815 pf->fd_sctp4_filter_cnt = 0;
3816 pf->fd_ip4_filter_cnt = 0;
3817 pf->fd_tcp6_filter_cnt = 0;
3818 pf->fd_udp6_filter_cnt = 0;
3819 pf->fd_sctp6_filter_cnt = 0;
3820 pf->fd_ip6_filter_cnt = 0;
3821 }
3822
3823 /**
3824 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
3825 * @vsi: Pointer to the targeted VSI
3826 *
3827 * This function replays the hlist on the hw where all the SB Flow Director
3828 * filters were saved.
3829 **/
i40e_fdir_filter_restore(struct i40e_vsi * vsi)3830 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
3831 {
3832 struct i40e_fdir_filter *filter;
3833 struct i40e_pf *pf = vsi->back;
3834 struct hlist_node *node;
3835
3836 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
3837 return;
3838
3839 /* Reset FDir counters as we're replaying all existing filters */
3840 i40e_reset_fdir_filter_cnt(pf);
3841
3842 hlist_for_each_entry_safe(filter, node,
3843 &pf->fdir_filter_list, fdir_node) {
3844 i40e_add_del_fdir(vsi, filter, true);
3845 }
3846 }
3847
3848 /**
3849 * i40e_vsi_configure - Set up the VSI for action
3850 * @vsi: the VSI being configured
3851 **/
i40e_vsi_configure(struct i40e_vsi * vsi)3852 static int i40e_vsi_configure(struct i40e_vsi *vsi)
3853 {
3854 int err;
3855
3856 i40e_set_vsi_rx_mode(vsi);
3857 i40e_restore_vlan(vsi);
3858 i40e_vsi_config_dcb_rings(vsi);
3859 err = i40e_vsi_configure_tx(vsi);
3860 if (!err)
3861 err = i40e_vsi_configure_rx(vsi);
3862
3863 return err;
3864 }
3865
3866 /**
3867 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
3868 * @vsi: the VSI being configured
3869 **/
i40e_vsi_configure_msix(struct i40e_vsi * vsi)3870 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
3871 {
3872 bool has_xdp = i40e_enabled_xdp_vsi(vsi);
3873 struct i40e_pf *pf = vsi->back;
3874 struct i40e_hw *hw = &pf->hw;
3875 u16 vector;
3876 int i, q;
3877 u32 qp;
3878
3879 /* The interrupt indexing is offset by 1 in the PFINT_ITRn
3880 * and PFINT_LNKLSTn registers, e.g.:
3881 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
3882 */
3883 qp = vsi->base_queue;
3884 vector = vsi->base_vector;
3885 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
3886 struct i40e_q_vector *q_vector = vsi->q_vectors[i];
3887
3888 q_vector->rx.next_update = jiffies + 1;
3889 q_vector->rx.target_itr =
3890 ITR_TO_REG(vsi->rx_rings[i]->itr_setting);
3891 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
3892 q_vector->rx.target_itr >> 1);
3893 q_vector->rx.current_itr = q_vector->rx.target_itr;
3894
3895 q_vector->tx.next_update = jiffies + 1;
3896 q_vector->tx.target_itr =
3897 ITR_TO_REG(vsi->tx_rings[i]->itr_setting);
3898 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
3899 q_vector->tx.target_itr >> 1);
3900 q_vector->tx.current_itr = q_vector->tx.target_itr;
3901
3902 /* Set ITR for software interrupts triggered after exiting
3903 * busy-loop polling.
3904 */
3905 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1),
3906 I40E_ITR_20K);
3907
3908 wr32(hw, I40E_PFINT_RATEN(vector - 1),
3909 i40e_intrl_usec_to_reg(vsi->int_rate_limit));
3910
3911 /* begin of linked list for RX queue assigned to this vector */
3912 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
3913 for (q = 0; q < q_vector->num_ringpairs; q++) {
3914 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
3915 u32 val;
3916
3917 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3918 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3919 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
3920 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
3921 (I40E_QUEUE_TYPE_TX <<
3922 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
3923
3924 wr32(hw, I40E_QINT_RQCTL(qp), val);
3925
3926 if (has_xdp) {
3927 /* TX queue with next queue set to TX */
3928 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3929 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3930 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3931 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3932 (I40E_QUEUE_TYPE_TX <<
3933 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3934
3935 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3936 }
3937 /* TX queue with next RX or end of linked list */
3938 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3939 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3940 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3941 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3942 (I40E_QUEUE_TYPE_RX <<
3943 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3944
3945 /* Terminate the linked list */
3946 if (q == (q_vector->num_ringpairs - 1))
3947 val |= (I40E_QUEUE_END_OF_LIST <<
3948 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3949
3950 wr32(hw, I40E_QINT_TQCTL(qp), val);
3951 qp++;
3952 }
3953 }
3954
3955 i40e_flush(hw);
3956 }
3957
3958 /**
3959 * i40e_enable_misc_int_causes - enable the non-queue interrupts
3960 * @pf: pointer to private device data structure
3961 **/
i40e_enable_misc_int_causes(struct i40e_pf * pf)3962 static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
3963 {
3964 struct i40e_hw *hw = &pf->hw;
3965 u32 val;
3966
3967 /* clear things first */
3968 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
3969 rd32(hw, I40E_PFINT_ICR0); /* read to clear */
3970
3971 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
3972 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
3973 I40E_PFINT_ICR0_ENA_GRST_MASK |
3974 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
3975 I40E_PFINT_ICR0_ENA_GPIO_MASK |
3976 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
3977 I40E_PFINT_ICR0_ENA_VFLR_MASK |
3978 I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3979
3980 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
3981 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3982
3983 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3984 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3985
3986 wr32(hw, I40E_PFINT_ICR0_ENA, val);
3987
3988 /* SW_ITR_IDX = 0, but don't change INTENA */
3989 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
3990 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
3991
3992 /* OTHER_ITR_IDX = 0 */
3993 wr32(hw, I40E_PFINT_STAT_CTL0, 0);
3994 }
3995
3996 /**
3997 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
3998 * @vsi: the VSI being configured
3999 **/
i40e_configure_msi_and_legacy(struct i40e_vsi * vsi)4000 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
4001 {
4002 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
4003 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
4004 struct i40e_pf *pf = vsi->back;
4005 struct i40e_hw *hw = &pf->hw;
4006
4007 /* set the ITR configuration */
4008 q_vector->rx.next_update = jiffies + 1;
4009 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting);
4010 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1);
4011 q_vector->rx.current_itr = q_vector->rx.target_itr;
4012 q_vector->tx.next_update = jiffies + 1;
4013 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting);
4014 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1);
4015 q_vector->tx.current_itr = q_vector->tx.target_itr;
4016
4017 i40e_enable_misc_int_causes(pf);
4018
4019 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
4020 wr32(hw, I40E_PFINT_LNKLST0, 0);
4021
4022 /* Associate the queue pair to the vector and enable the queue
4023 * interrupt RX queue in linked list with next queue set to TX
4024 */
4025 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX));
4026
4027 if (i40e_enabled_xdp_vsi(vsi)) {
4028 /* TX queue in linked list with next queue set to TX */
4029 wr32(hw, I40E_QINT_TQCTL(nextqp),
4030 I40E_QINT_TQCTL_VAL(nextqp, 0, TX));
4031 }
4032
4033 /* last TX queue so the next RX queue doesn't matter */
4034 wr32(hw, I40E_QINT_TQCTL(0),
4035 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX));
4036 i40e_flush(hw);
4037 }
4038
4039 /**
4040 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
4041 * @pf: board private structure
4042 **/
i40e_irq_dynamic_disable_icr0(struct i40e_pf * pf)4043 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
4044 {
4045 struct i40e_hw *hw = &pf->hw;
4046
4047 wr32(hw, I40E_PFINT_DYN_CTL0,
4048 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
4049 i40e_flush(hw);
4050 }
4051
4052 /**
4053 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
4054 * @pf: board private structure
4055 **/
i40e_irq_dynamic_enable_icr0(struct i40e_pf * pf)4056 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
4057 {
4058 struct i40e_hw *hw = &pf->hw;
4059 u32 val;
4060
4061 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
4062 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
4063 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
4064
4065 wr32(hw, I40E_PFINT_DYN_CTL0, val);
4066 i40e_flush(hw);
4067 }
4068
4069 /**
4070 * i40e_msix_clean_rings - MSIX mode Interrupt Handler
4071 * @irq: interrupt number
4072 * @data: pointer to a q_vector
4073 **/
i40e_msix_clean_rings(int irq,void * data)4074 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
4075 {
4076 struct i40e_q_vector *q_vector = data;
4077
4078 if (!q_vector->tx.ring && !q_vector->rx.ring)
4079 return IRQ_HANDLED;
4080
4081 napi_schedule_irqoff(&q_vector->napi);
4082
4083 return IRQ_HANDLED;
4084 }
4085
4086 /**
4087 * i40e_irq_affinity_notify - Callback for affinity changes
4088 * @notify: context as to what irq was changed
4089 * @mask: the new affinity mask
4090 *
4091 * This is a callback function used by the irq_set_affinity_notifier function
4092 * so that we may register to receive changes to the irq affinity masks.
4093 **/
i40e_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)4094 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
4095 const cpumask_t *mask)
4096 {
4097 struct i40e_q_vector *q_vector =
4098 container_of(notify, struct i40e_q_vector, affinity_notify);
4099
4100 cpumask_copy(&q_vector->affinity_mask, mask);
4101 }
4102
4103 /**
4104 * i40e_irq_affinity_release - Callback for affinity notifier release
4105 * @ref: internal core kernel usage
4106 *
4107 * This is a callback function used by the irq_set_affinity_notifier function
4108 * to inform the current notification subscriber that they will no longer
4109 * receive notifications.
4110 **/
i40e_irq_affinity_release(struct kref * ref)4111 static void i40e_irq_affinity_release(struct kref *ref) {}
4112
4113 /**
4114 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
4115 * @vsi: the VSI being configured
4116 * @basename: name for the vector
4117 *
4118 * Allocates MSI-X vectors and requests interrupts from the kernel.
4119 **/
i40e_vsi_request_irq_msix(struct i40e_vsi * vsi,char * basename)4120 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
4121 {
4122 int q_vectors = vsi->num_q_vectors;
4123 struct i40e_pf *pf = vsi->back;
4124 int base = vsi->base_vector;
4125 int rx_int_idx = 0;
4126 int tx_int_idx = 0;
4127 int vector, err;
4128 int irq_num;
4129 int cpu;
4130
4131 for (vector = 0; vector < q_vectors; vector++) {
4132 struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
4133
4134 irq_num = pf->msix_entries[base + vector].vector;
4135
4136 if (q_vector->tx.ring && q_vector->rx.ring) {
4137 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4138 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
4139 tx_int_idx++;
4140 } else if (q_vector->rx.ring) {
4141 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4142 "%s-%s-%d", basename, "rx", rx_int_idx++);
4143 } else if (q_vector->tx.ring) {
4144 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4145 "%s-%s-%d", basename, "tx", tx_int_idx++);
4146 } else {
4147 /* skip this unused q_vector */
4148 continue;
4149 }
4150 err = request_irq(irq_num,
4151 vsi->irq_handler,
4152 0,
4153 q_vector->name,
4154 q_vector);
4155 if (err) {
4156 dev_info(&pf->pdev->dev,
4157 "MSIX request_irq failed, error: %d\n", err);
4158 goto free_queue_irqs;
4159 }
4160
4161 /* register for affinity change notifications */
4162 q_vector->irq_num = irq_num;
4163 q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
4164 q_vector->affinity_notify.release = i40e_irq_affinity_release;
4165 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
4166 /* Spread affinity hints out across online CPUs.
4167 *
4168 * get_cpu_mask returns a static constant mask with
4169 * a permanent lifetime so it's ok to pass to
4170 * irq_update_affinity_hint without making a copy.
4171 */
4172 cpu = cpumask_local_spread(q_vector->v_idx, -1);
4173 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
4174 }
4175
4176 vsi->irqs_ready = true;
4177 return 0;
4178
4179 free_queue_irqs:
4180 while (vector) {
4181 vector--;
4182 irq_num = pf->msix_entries[base + vector].vector;
4183 irq_set_affinity_notifier(irq_num, NULL);
4184 irq_update_affinity_hint(irq_num, NULL);
4185 free_irq(irq_num, &vsi->q_vectors[vector]);
4186 }
4187 return err;
4188 }
4189
4190 /**
4191 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
4192 * @vsi: the VSI being un-configured
4193 **/
i40e_vsi_disable_irq(struct i40e_vsi * vsi)4194 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
4195 {
4196 struct i40e_pf *pf = vsi->back;
4197 struct i40e_hw *hw = &pf->hw;
4198 int base = vsi->base_vector;
4199 int i;
4200
4201 /* disable interrupt causation from each queue */
4202 for (i = 0; i < vsi->num_queue_pairs; i++) {
4203 u32 val;
4204
4205 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4206 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
4207 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4208
4209 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
4210 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
4211 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
4212
4213 if (!i40e_enabled_xdp_vsi(vsi))
4214 continue;
4215 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
4216 }
4217
4218 /* disable each interrupt */
4219 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4220 for (i = vsi->base_vector;
4221 i < (vsi->num_q_vectors + vsi->base_vector); i++)
4222 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
4223
4224 i40e_flush(hw);
4225 for (i = 0; i < vsi->num_q_vectors; i++)
4226 synchronize_irq(pf->msix_entries[i + base].vector);
4227 } else {
4228 /* Legacy and MSI mode - this stops all interrupt handling */
4229 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
4230 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
4231 i40e_flush(hw);
4232 synchronize_irq(pf->pdev->irq);
4233 }
4234 }
4235
4236 /**
4237 * i40e_vsi_enable_irq - Enable IRQ for the given VSI
4238 * @vsi: the VSI being configured
4239 **/
i40e_vsi_enable_irq(struct i40e_vsi * vsi)4240 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
4241 {
4242 struct i40e_pf *pf = vsi->back;
4243 int i;
4244
4245 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4246 for (i = 0; i < vsi->num_q_vectors; i++)
4247 i40e_irq_dynamic_enable(vsi, i);
4248 } else {
4249 i40e_irq_dynamic_enable_icr0(pf);
4250 }
4251
4252 i40e_flush(&pf->hw);
4253 return 0;
4254 }
4255
4256 /**
4257 * i40e_free_misc_vector - Free the vector that handles non-queue events
4258 * @pf: board private structure
4259 **/
i40e_free_misc_vector(struct i40e_pf * pf)4260 static void i40e_free_misc_vector(struct i40e_pf *pf)
4261 {
4262 /* Disable ICR 0 */
4263 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
4264 i40e_flush(&pf->hw);
4265
4266 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
4267 free_irq(pf->msix_entries[0].vector, pf);
4268 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
4269 }
4270 }
4271
4272 /**
4273 * i40e_intr - MSI/Legacy and non-queue interrupt handler
4274 * @irq: interrupt number
4275 * @data: pointer to a q_vector
4276 *
4277 * This is the handler used for all MSI/Legacy interrupts, and deals
4278 * with both queue and non-queue interrupts. This is also used in
4279 * MSIX mode to handle the non-queue interrupts.
4280 **/
i40e_intr(int irq,void * data)4281 static irqreturn_t i40e_intr(int irq, void *data)
4282 {
4283 struct i40e_pf *pf = (struct i40e_pf *)data;
4284 struct i40e_hw *hw = &pf->hw;
4285 irqreturn_t ret = IRQ_NONE;
4286 u32 icr0, icr0_remaining;
4287 u32 val, ena_mask;
4288
4289 icr0 = rd32(hw, I40E_PFINT_ICR0);
4290 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
4291
4292 /* if sharing a legacy IRQ, we might get called w/o an intr pending */
4293 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
4294 goto enable_intr;
4295
4296 /* if interrupt but no bits showing, must be SWINT */
4297 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
4298 (icr0 & I40E_PFINT_ICR0_SWINT_MASK))
4299 pf->sw_int_count++;
4300
4301 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
4302 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
4303 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
4304 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
4305 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
4306 }
4307
4308 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
4309 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
4310 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
4311 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
4312
4313 /* We do not have a way to disarm Queue causes while leaving
4314 * interrupt enabled for all other causes, ideally
4315 * interrupt should be disabled while we are in NAPI but
4316 * this is not a performance path and napi_schedule()
4317 * can deal with rescheduling.
4318 */
4319 if (!test_bit(__I40E_DOWN, pf->state))
4320 napi_schedule_irqoff(&q_vector->napi);
4321 }
4322
4323 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
4324 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
4325 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
4326 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
4327 }
4328
4329 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
4330 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
4331 set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
4332 }
4333
4334 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
4335 /* disable any further VFLR event notifications */
4336 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) {
4337 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
4338
4339 reg &= ~I40E_PFINT_ICR0_VFLR_MASK;
4340 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
4341 } else {
4342 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
4343 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
4344 }
4345 }
4346
4347 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
4348 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
4349 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
4350 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
4351 val = rd32(hw, I40E_GLGEN_RSTAT);
4352 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val);
4353 if (val == I40E_RESET_CORER) {
4354 pf->corer_count++;
4355 } else if (val == I40E_RESET_GLOBR) {
4356 pf->globr_count++;
4357 } else if (val == I40E_RESET_EMPR) {
4358 pf->empr_count++;
4359 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
4360 }
4361 }
4362
4363 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
4364 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
4365 dev_info(&pf->pdev->dev, "HMC error interrupt\n");
4366 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
4367 rd32(hw, I40E_PFHMC_ERRORINFO),
4368 rd32(hw, I40E_PFHMC_ERRORDATA));
4369 }
4370
4371 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
4372 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
4373
4374 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK)
4375 schedule_work(&pf->ptp_extts0_work);
4376
4377 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK)
4378 i40e_ptp_tx_hwtstamp(pf);
4379
4380 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
4381 }
4382
4383 /* If a critical error is pending we have no choice but to reset the
4384 * device.
4385 * Report and mask out any remaining unexpected interrupts.
4386 */
4387 icr0_remaining = icr0 & ena_mask;
4388 if (icr0_remaining) {
4389 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
4390 icr0_remaining);
4391 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
4392 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
4393 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
4394 dev_info(&pf->pdev->dev, "device will be reset\n");
4395 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
4396 i40e_service_event_schedule(pf);
4397 }
4398 ena_mask &= ~icr0_remaining;
4399 }
4400 ret = IRQ_HANDLED;
4401
4402 enable_intr:
4403 /* re-enable interrupt causes */
4404 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
4405 if (!test_bit(__I40E_DOWN, pf->state) ||
4406 test_bit(__I40E_RECOVERY_MODE, pf->state)) {
4407 i40e_service_event_schedule(pf);
4408 i40e_irq_dynamic_enable_icr0(pf);
4409 }
4410
4411 return ret;
4412 }
4413
4414 /**
4415 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
4416 * @tx_ring: tx ring to clean
4417 * @budget: how many cleans we're allowed
4418 *
4419 * Returns true if there's any budget left (e.g. the clean is finished)
4420 **/
i40e_clean_fdir_tx_irq(struct i40e_ring * tx_ring,int budget)4421 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
4422 {
4423 struct i40e_vsi *vsi = tx_ring->vsi;
4424 u16 i = tx_ring->next_to_clean;
4425 struct i40e_tx_buffer *tx_buf;
4426 struct i40e_tx_desc *tx_desc;
4427
4428 tx_buf = &tx_ring->tx_bi[i];
4429 tx_desc = I40E_TX_DESC(tx_ring, i);
4430 i -= tx_ring->count;
4431
4432 do {
4433 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
4434
4435 /* if next_to_watch is not set then there is no work pending */
4436 if (!eop_desc)
4437 break;
4438
4439 /* prevent any other reads prior to eop_desc */
4440 smp_rmb();
4441
4442 /* if the descriptor isn't done, no work yet to do */
4443 if (!(eop_desc->cmd_type_offset_bsz &
4444 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
4445 break;
4446
4447 /* clear next_to_watch to prevent false hangs */
4448 tx_buf->next_to_watch = NULL;
4449
4450 tx_desc->buffer_addr = 0;
4451 tx_desc->cmd_type_offset_bsz = 0;
4452 /* move past filter desc */
4453 tx_buf++;
4454 tx_desc++;
4455 i++;
4456 if (unlikely(!i)) {
4457 i -= tx_ring->count;
4458 tx_buf = tx_ring->tx_bi;
4459 tx_desc = I40E_TX_DESC(tx_ring, 0);
4460 }
4461 /* unmap skb header data */
4462 dma_unmap_single(tx_ring->dev,
4463 dma_unmap_addr(tx_buf, dma),
4464 dma_unmap_len(tx_buf, len),
4465 DMA_TO_DEVICE);
4466 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
4467 kfree(tx_buf->raw_buf);
4468
4469 tx_buf->raw_buf = NULL;
4470 tx_buf->tx_flags = 0;
4471 tx_buf->next_to_watch = NULL;
4472 dma_unmap_len_set(tx_buf, len, 0);
4473 tx_desc->buffer_addr = 0;
4474 tx_desc->cmd_type_offset_bsz = 0;
4475
4476 /* move us past the eop_desc for start of next FD desc */
4477 tx_buf++;
4478 tx_desc++;
4479 i++;
4480 if (unlikely(!i)) {
4481 i -= tx_ring->count;
4482 tx_buf = tx_ring->tx_bi;
4483 tx_desc = I40E_TX_DESC(tx_ring, 0);
4484 }
4485
4486 /* update budget accounting */
4487 budget--;
4488 } while (likely(budget));
4489
4490 i += tx_ring->count;
4491 tx_ring->next_to_clean = i;
4492
4493 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags))
4494 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
4495
4496 return budget > 0;
4497 }
4498
4499 /**
4500 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
4501 * @irq: interrupt number
4502 * @data: pointer to a q_vector
4503 **/
i40e_fdir_clean_ring(int irq,void * data)4504 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
4505 {
4506 struct i40e_q_vector *q_vector = data;
4507 struct i40e_vsi *vsi;
4508
4509 if (!q_vector->tx.ring)
4510 return IRQ_HANDLED;
4511
4512 vsi = q_vector->tx.ring->vsi;
4513 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
4514
4515 return IRQ_HANDLED;
4516 }
4517
4518 /**
4519 * i40e_map_vector_to_qp - Assigns the queue pair to the vector
4520 * @vsi: the VSI being configured
4521 * @v_idx: vector index
4522 * @qp_idx: queue pair index
4523 **/
i40e_map_vector_to_qp(struct i40e_vsi * vsi,int v_idx,int qp_idx)4524 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
4525 {
4526 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4527 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
4528 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
4529
4530 tx_ring->q_vector = q_vector;
4531 tx_ring->next = q_vector->tx.ring;
4532 q_vector->tx.ring = tx_ring;
4533 q_vector->tx.count++;
4534
4535 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */
4536 if (i40e_enabled_xdp_vsi(vsi)) {
4537 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
4538
4539 xdp_ring->q_vector = q_vector;
4540 xdp_ring->next = q_vector->tx.ring;
4541 q_vector->tx.ring = xdp_ring;
4542 q_vector->tx.count++;
4543 }
4544
4545 rx_ring->q_vector = q_vector;
4546 rx_ring->next = q_vector->rx.ring;
4547 q_vector->rx.ring = rx_ring;
4548 q_vector->rx.count++;
4549 }
4550
4551 /**
4552 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
4553 * @vsi: the VSI being configured
4554 *
4555 * This function maps descriptor rings to the queue-specific vectors
4556 * we were allotted through the MSI-X enabling code. Ideally, we'd have
4557 * one vector per queue pair, but on a constrained vector budget, we
4558 * group the queue pairs as "efficiently" as possible.
4559 **/
i40e_vsi_map_rings_to_vectors(struct i40e_vsi * vsi)4560 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
4561 {
4562 int qp_remaining = vsi->num_queue_pairs;
4563 int q_vectors = vsi->num_q_vectors;
4564 int num_ringpairs;
4565 int v_start = 0;
4566 int qp_idx = 0;
4567
4568 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
4569 * group them so there are multiple queues per vector.
4570 * It is also important to go through all the vectors available to be
4571 * sure that if we don't use all the vectors, that the remaining vectors
4572 * are cleared. This is especially important when decreasing the
4573 * number of queues in use.
4574 */
4575 for (; v_start < q_vectors; v_start++) {
4576 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
4577
4578 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
4579
4580 q_vector->num_ringpairs = num_ringpairs;
4581 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1;
4582
4583 q_vector->rx.count = 0;
4584 q_vector->tx.count = 0;
4585 q_vector->rx.ring = NULL;
4586 q_vector->tx.ring = NULL;
4587
4588 while (num_ringpairs--) {
4589 i40e_map_vector_to_qp(vsi, v_start, qp_idx);
4590 qp_idx++;
4591 qp_remaining--;
4592 }
4593 }
4594 }
4595
4596 /**
4597 * i40e_vsi_request_irq - Request IRQ from the OS
4598 * @vsi: the VSI being configured
4599 * @basename: name for the vector
4600 **/
i40e_vsi_request_irq(struct i40e_vsi * vsi,char * basename)4601 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
4602 {
4603 struct i40e_pf *pf = vsi->back;
4604 int err;
4605
4606 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
4607 err = i40e_vsi_request_irq_msix(vsi, basename);
4608 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags))
4609 err = request_irq(pf->pdev->irq, i40e_intr, 0,
4610 pf->int_name, pf);
4611 else
4612 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
4613 pf->int_name, pf);
4614
4615 if (err)
4616 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
4617
4618 return err;
4619 }
4620
4621 #ifdef CONFIG_NET_POLL_CONTROLLER
4622 /**
4623 * i40e_netpoll - A Polling 'interrupt' handler
4624 * @netdev: network interface device structure
4625 *
4626 * This is used by netconsole to send skbs without having to re-enable
4627 * interrupts. It's not called while the normal interrupt routine is executing.
4628 **/
i40e_netpoll(struct net_device * netdev)4629 static void i40e_netpoll(struct net_device *netdev)
4630 {
4631 struct i40e_netdev_priv *np = netdev_priv(netdev);
4632 struct i40e_vsi *vsi = np->vsi;
4633 struct i40e_pf *pf = vsi->back;
4634 int i;
4635
4636 /* if interface is down do nothing */
4637 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4638 return;
4639
4640 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4641 for (i = 0; i < vsi->num_q_vectors; i++)
4642 i40e_msix_clean_rings(0, vsi->q_vectors[i]);
4643 } else {
4644 i40e_intr(pf->pdev->irq, netdev);
4645 }
4646 }
4647 #endif
4648
4649 #define I40E_QTX_ENA_WAIT_COUNT 50
4650
4651 /**
4652 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
4653 * @pf: the PF being configured
4654 * @pf_q: the PF queue
4655 * @enable: enable or disable state of the queue
4656 *
4657 * This routine will wait for the given Tx queue of the PF to reach the
4658 * enabled or disabled state.
4659 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4660 * multiple retries; else will return 0 in case of success.
4661 **/
i40e_pf_txq_wait(struct i40e_pf * pf,int pf_q,bool enable)4662 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4663 {
4664 int i;
4665 u32 tx_reg;
4666
4667 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4668 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
4669 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4670 break;
4671
4672 usleep_range(10, 20);
4673 }
4674 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4675 return -ETIMEDOUT;
4676
4677 return 0;
4678 }
4679
4680 /**
4681 * i40e_control_tx_q - Start or stop a particular Tx queue
4682 * @pf: the PF structure
4683 * @pf_q: the PF queue to configure
4684 * @enable: start or stop the queue
4685 *
4686 * This function enables or disables a single queue. Note that any delay
4687 * required after the operation is expected to be handled by the caller of
4688 * this function.
4689 **/
i40e_control_tx_q(struct i40e_pf * pf,int pf_q,bool enable)4690 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
4691 {
4692 struct i40e_hw *hw = &pf->hw;
4693 u32 tx_reg;
4694 int i;
4695
4696 /* warn the TX unit of coming changes */
4697 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
4698 if (!enable)
4699 usleep_range(10, 20);
4700
4701 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4702 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
4703 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
4704 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
4705 break;
4706 usleep_range(1000, 2000);
4707 }
4708
4709 /* Skip if the queue is already in the requested state */
4710 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4711 return;
4712
4713 /* turn on/off the queue */
4714 if (enable) {
4715 wr32(hw, I40E_QTX_HEAD(pf_q), 0);
4716 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
4717 } else {
4718 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
4719 }
4720
4721 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
4722 }
4723
4724 /**
4725 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
4726 * @seid: VSI SEID
4727 * @pf: the PF structure
4728 * @pf_q: the PF queue to configure
4729 * @is_xdp: true if the queue is used for XDP
4730 * @enable: start or stop the queue
4731 **/
i40e_control_wait_tx_q(int seid,struct i40e_pf * pf,int pf_q,bool is_xdp,bool enable)4732 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
4733 bool is_xdp, bool enable)
4734 {
4735 int ret;
4736
4737 i40e_control_tx_q(pf, pf_q, enable);
4738
4739 /* wait for the change to finish */
4740 ret = i40e_pf_txq_wait(pf, pf_q, enable);
4741 if (ret) {
4742 dev_info(&pf->pdev->dev,
4743 "VSI seid %d %sTx ring %d %sable timeout\n",
4744 seid, (is_xdp ? "XDP " : ""), pf_q,
4745 (enable ? "en" : "dis"));
4746 }
4747
4748 return ret;
4749 }
4750
4751 /**
4752 * i40e_vsi_enable_tx - Start a VSI's rings
4753 * @vsi: the VSI being configured
4754 **/
i40e_vsi_enable_tx(struct i40e_vsi * vsi)4755 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi)
4756 {
4757 struct i40e_pf *pf = vsi->back;
4758 int i, pf_q, ret = 0;
4759
4760 pf_q = vsi->base_queue;
4761 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4762 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4763 pf_q,
4764 false /*is xdp*/, true);
4765 if (ret)
4766 break;
4767
4768 if (!i40e_enabled_xdp_vsi(vsi))
4769 continue;
4770
4771 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4772 pf_q + vsi->alloc_queue_pairs,
4773 true /*is xdp*/, true);
4774 if (ret)
4775 break;
4776 }
4777 return ret;
4778 }
4779
4780 /**
4781 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4782 * @pf: the PF being configured
4783 * @pf_q: the PF queue
4784 * @enable: enable or disable state of the queue
4785 *
4786 * This routine will wait for the given Rx queue of the PF to reach the
4787 * enabled or disabled state.
4788 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4789 * multiple retries; else will return 0 in case of success.
4790 **/
i40e_pf_rxq_wait(struct i40e_pf * pf,int pf_q,bool enable)4791 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4792 {
4793 int i;
4794 u32 rx_reg;
4795
4796 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4797 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
4798 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4799 break;
4800
4801 usleep_range(10, 20);
4802 }
4803 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4804 return -ETIMEDOUT;
4805
4806 return 0;
4807 }
4808
4809 /**
4810 * i40e_control_rx_q - Start or stop a particular Rx queue
4811 * @pf: the PF structure
4812 * @pf_q: the PF queue to configure
4813 * @enable: start or stop the queue
4814 *
4815 * This function enables or disables a single queue. Note that
4816 * any delay required after the operation is expected to be
4817 * handled by the caller of this function.
4818 **/
i40e_control_rx_q(struct i40e_pf * pf,int pf_q,bool enable)4819 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4820 {
4821 struct i40e_hw *hw = &pf->hw;
4822 u32 rx_reg;
4823 int i;
4824
4825 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4826 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
4827 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
4828 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
4829 break;
4830 usleep_range(1000, 2000);
4831 }
4832
4833 /* Skip if the queue is already in the requested state */
4834 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4835 return;
4836
4837 /* turn on/off the queue */
4838 if (enable)
4839 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
4840 else
4841 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
4842
4843 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
4844 }
4845
4846 /**
4847 * i40e_control_wait_rx_q
4848 * @pf: the PF structure
4849 * @pf_q: queue being configured
4850 * @enable: start or stop the rings
4851 *
4852 * This function enables or disables a single queue along with waiting
4853 * for the change to finish. The caller of this function should handle
4854 * the delays needed in the case of disabling queues.
4855 **/
i40e_control_wait_rx_q(struct i40e_pf * pf,int pf_q,bool enable)4856 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4857 {
4858 int ret = 0;
4859
4860 i40e_control_rx_q(pf, pf_q, enable);
4861
4862 /* wait for the change to finish */
4863 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
4864 if (ret)
4865 return ret;
4866
4867 return ret;
4868 }
4869
4870 /**
4871 * i40e_vsi_enable_rx - Start a VSI's rings
4872 * @vsi: the VSI being configured
4873 **/
i40e_vsi_enable_rx(struct i40e_vsi * vsi)4874 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi)
4875 {
4876 struct i40e_pf *pf = vsi->back;
4877 int i, pf_q, ret = 0;
4878
4879 pf_q = vsi->base_queue;
4880 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4881 ret = i40e_control_wait_rx_q(pf, pf_q, true);
4882 if (ret) {
4883 dev_info(&pf->pdev->dev,
4884 "VSI seid %d Rx ring %d enable timeout\n",
4885 vsi->seid, pf_q);
4886 break;
4887 }
4888 }
4889
4890 return ret;
4891 }
4892
4893 /**
4894 * i40e_vsi_start_rings - Start a VSI's rings
4895 * @vsi: the VSI being configured
4896 **/
i40e_vsi_start_rings(struct i40e_vsi * vsi)4897 int i40e_vsi_start_rings(struct i40e_vsi *vsi)
4898 {
4899 int ret = 0;
4900
4901 /* do rx first for enable and last for disable */
4902 ret = i40e_vsi_enable_rx(vsi);
4903 if (ret)
4904 return ret;
4905 ret = i40e_vsi_enable_tx(vsi);
4906
4907 return ret;
4908 }
4909
4910 #define I40E_DISABLE_TX_GAP_MSEC 50
4911
4912 /**
4913 * i40e_vsi_stop_rings - Stop a VSI's rings
4914 * @vsi: the VSI being configured
4915 **/
i40e_vsi_stop_rings(struct i40e_vsi * vsi)4916 void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
4917 {
4918 struct i40e_pf *pf = vsi->back;
4919 u32 pf_q, tx_q_end, rx_q_end;
4920
4921 /* When port TX is suspended, don't wait */
4922 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
4923 return i40e_vsi_stop_rings_no_wait(vsi);
4924
4925 tx_q_end = vsi->base_queue +
4926 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
4927 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
4928 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false);
4929
4930 rx_q_end = vsi->base_queue + vsi->num_queue_pairs;
4931 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++)
4932 i40e_control_rx_q(pf, pf_q, false);
4933
4934 msleep(I40E_DISABLE_TX_GAP_MSEC);
4935 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
4936 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0);
4937
4938 i40e_vsi_wait_queues_disabled(vsi);
4939 }
4940
4941 /**
4942 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
4943 * @vsi: the VSI being shutdown
4944 *
4945 * This function stops all the rings for a VSI but does not delay to verify
4946 * that rings have been disabled. It is expected that the caller is shutting
4947 * down multiple VSIs at once and will delay together for all the VSIs after
4948 * initiating the shutdown. This is particularly useful for shutting down lots
4949 * of VFs together. Otherwise, a large delay can be incurred while configuring
4950 * each VSI in serial.
4951 **/
i40e_vsi_stop_rings_no_wait(struct i40e_vsi * vsi)4952 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
4953 {
4954 struct i40e_pf *pf = vsi->back;
4955 int i, pf_q;
4956
4957 pf_q = vsi->base_queue;
4958 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4959 i40e_control_tx_q(pf, pf_q, false);
4960 i40e_control_rx_q(pf, pf_q, false);
4961 }
4962 }
4963
4964 /**
4965 * i40e_vsi_free_irq - Free the irq association with the OS
4966 * @vsi: the VSI being configured
4967 **/
i40e_vsi_free_irq(struct i40e_vsi * vsi)4968 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
4969 {
4970 struct i40e_pf *pf = vsi->back;
4971 struct i40e_hw *hw = &pf->hw;
4972 int base = vsi->base_vector;
4973 u32 val, qp;
4974 int i;
4975
4976 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4977 if (!vsi->q_vectors)
4978 return;
4979
4980 if (!vsi->irqs_ready)
4981 return;
4982
4983 vsi->irqs_ready = false;
4984 for (i = 0; i < vsi->num_q_vectors; i++) {
4985 int irq_num;
4986 u16 vector;
4987
4988 vector = i + base;
4989 irq_num = pf->msix_entries[vector].vector;
4990
4991 /* free only the irqs that were actually requested */
4992 if (!vsi->q_vectors[i] ||
4993 !vsi->q_vectors[i]->num_ringpairs)
4994 continue;
4995
4996 /* clear the affinity notifier in the IRQ descriptor */
4997 irq_set_affinity_notifier(irq_num, NULL);
4998 /* remove our suggested affinity mask for this IRQ */
4999 irq_update_affinity_hint(irq_num, NULL);
5000 free_irq(irq_num, vsi->q_vectors[i]);
5001
5002 /* Tear down the interrupt queue link list
5003 *
5004 * We know that they come in pairs and always
5005 * the Rx first, then the Tx. To clear the
5006 * link list, stick the EOL value into the
5007 * next_q field of the registers.
5008 */
5009 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
5010 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK,
5011 val);
5012 val |= I40E_QUEUE_END_OF_LIST
5013 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
5014 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
5015
5016 while (qp != I40E_QUEUE_END_OF_LIST) {
5017 u32 next;
5018
5019 val = rd32(hw, I40E_QINT_RQCTL(qp));
5020
5021 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
5022 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
5023 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
5024 I40E_QINT_RQCTL_INTEVENT_MASK);
5025
5026 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
5027 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
5028
5029 wr32(hw, I40E_QINT_RQCTL(qp), val);
5030
5031 val = rd32(hw, I40E_QINT_TQCTL(qp));
5032
5033 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK,
5034 val);
5035
5036 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
5037 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
5038 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
5039 I40E_QINT_TQCTL_INTEVENT_MASK);
5040
5041 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
5042 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
5043
5044 wr32(hw, I40E_QINT_TQCTL(qp), val);
5045 qp = next;
5046 }
5047 }
5048 } else {
5049 free_irq(pf->pdev->irq, pf);
5050
5051 val = rd32(hw, I40E_PFINT_LNKLST0);
5052 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val);
5053 val |= I40E_QUEUE_END_OF_LIST
5054 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
5055 wr32(hw, I40E_PFINT_LNKLST0, val);
5056
5057 val = rd32(hw, I40E_QINT_RQCTL(qp));
5058 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
5059 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
5060 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
5061 I40E_QINT_RQCTL_INTEVENT_MASK);
5062
5063 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
5064 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
5065
5066 wr32(hw, I40E_QINT_RQCTL(qp), val);
5067
5068 val = rd32(hw, I40E_QINT_TQCTL(qp));
5069
5070 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
5071 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
5072 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
5073 I40E_QINT_TQCTL_INTEVENT_MASK);
5074
5075 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
5076 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
5077
5078 wr32(hw, I40E_QINT_TQCTL(qp), val);
5079 }
5080 }
5081
5082 /**
5083 * i40e_free_q_vector - Free memory allocated for specific interrupt vector
5084 * @vsi: the VSI being configured
5085 * @v_idx: Index of vector to be freed
5086 *
5087 * This function frees the memory allocated to the q_vector. In addition if
5088 * NAPI is enabled it will delete any references to the NAPI struct prior
5089 * to freeing the q_vector.
5090 **/
i40e_free_q_vector(struct i40e_vsi * vsi,int v_idx)5091 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
5092 {
5093 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
5094 struct i40e_ring *ring;
5095
5096 if (!q_vector)
5097 return;
5098
5099 /* disassociate q_vector from rings */
5100 i40e_for_each_ring(ring, q_vector->tx)
5101 ring->q_vector = NULL;
5102
5103 i40e_for_each_ring(ring, q_vector->rx)
5104 ring->q_vector = NULL;
5105
5106 /* only VSI w/ an associated netdev is set up w/ NAPI */
5107 if (vsi->netdev)
5108 netif_napi_del(&q_vector->napi);
5109
5110 vsi->q_vectors[v_idx] = NULL;
5111
5112 kfree_rcu(q_vector, rcu);
5113 }
5114
5115 /**
5116 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
5117 * @vsi: the VSI being un-configured
5118 *
5119 * This frees the memory allocated to the q_vectors and
5120 * deletes references to the NAPI struct.
5121 **/
i40e_vsi_free_q_vectors(struct i40e_vsi * vsi)5122 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
5123 {
5124 int v_idx;
5125
5126 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
5127 i40e_free_q_vector(vsi, v_idx);
5128 }
5129
5130 /**
5131 * i40e_reset_interrupt_capability - Disable interrupt setup in OS
5132 * @pf: board private structure
5133 **/
i40e_reset_interrupt_capability(struct i40e_pf * pf)5134 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
5135 {
5136 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
5137 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
5138 pci_disable_msix(pf->pdev);
5139 kfree(pf->msix_entries);
5140 pf->msix_entries = NULL;
5141 kfree(pf->irq_pile);
5142 pf->irq_pile = NULL;
5143 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
5144 pci_disable_msi(pf->pdev);
5145 }
5146 clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
5147 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
5148 }
5149
5150 /**
5151 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
5152 * @pf: board private structure
5153 *
5154 * We go through and clear interrupt specific resources and reset the structure
5155 * to pre-load conditions
5156 **/
i40e_clear_interrupt_scheme(struct i40e_pf * pf)5157 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
5158 {
5159 struct i40e_vsi *vsi;
5160 int i;
5161
5162 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state))
5163 i40e_free_misc_vector(pf);
5164
5165 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
5166 I40E_IWARP_IRQ_PILE_ID);
5167
5168 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
5169
5170 i40e_pf_for_each_vsi(pf, i, vsi)
5171 i40e_vsi_free_q_vectors(vsi);
5172
5173 i40e_reset_interrupt_capability(pf);
5174 }
5175
5176 /**
5177 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5178 * @vsi: the VSI being configured
5179 **/
i40e_napi_enable_all(struct i40e_vsi * vsi)5180 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
5181 {
5182 int q_idx;
5183
5184 if (!vsi->netdev)
5185 return;
5186
5187 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
5188 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
5189
5190 if (q_vector->rx.ring || q_vector->tx.ring)
5191 napi_enable(&q_vector->napi);
5192 }
5193 }
5194
5195 /**
5196 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5197 * @vsi: the VSI being configured
5198 **/
i40e_napi_disable_all(struct i40e_vsi * vsi)5199 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
5200 {
5201 int q_idx;
5202
5203 if (!vsi->netdev)
5204 return;
5205
5206 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
5207 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
5208
5209 if (q_vector->rx.ring || q_vector->tx.ring)
5210 napi_disable(&q_vector->napi);
5211 }
5212 }
5213
5214 /**
5215 * i40e_vsi_close - Shut down a VSI
5216 * @vsi: the vsi to be quelled
5217 **/
i40e_vsi_close(struct i40e_vsi * vsi)5218 static void i40e_vsi_close(struct i40e_vsi *vsi)
5219 {
5220 struct i40e_pf *pf = vsi->back;
5221 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
5222 i40e_down(vsi);
5223 i40e_vsi_free_irq(vsi);
5224 i40e_vsi_free_tx_resources(vsi);
5225 i40e_vsi_free_rx_resources(vsi);
5226 vsi->current_netdev_flags = 0;
5227 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
5228 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
5229 set_bit(__I40E_CLIENT_RESET, pf->state);
5230 }
5231
5232 /**
5233 * i40e_quiesce_vsi - Pause a given VSI
5234 * @vsi: the VSI being paused
5235 **/
i40e_quiesce_vsi(struct i40e_vsi * vsi)5236 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
5237 {
5238 if (test_bit(__I40E_VSI_DOWN, vsi->state))
5239 return;
5240
5241 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
5242 if (vsi->netdev && netif_running(vsi->netdev))
5243 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
5244 else
5245 i40e_vsi_close(vsi);
5246 }
5247
5248 /**
5249 * i40e_unquiesce_vsi - Resume a given VSI
5250 * @vsi: the VSI being resumed
5251 **/
i40e_unquiesce_vsi(struct i40e_vsi * vsi)5252 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
5253 {
5254 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
5255 return;
5256
5257 if (vsi->netdev && netif_running(vsi->netdev))
5258 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5259 else
5260 i40e_vsi_open(vsi); /* this clears the DOWN bit */
5261 }
5262
5263 /**
5264 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
5265 * @pf: the PF
5266 **/
i40e_pf_quiesce_all_vsi(struct i40e_pf * pf)5267 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
5268 {
5269 struct i40e_vsi *vsi;
5270 int v;
5271
5272 i40e_pf_for_each_vsi(pf, v, vsi)
5273 i40e_quiesce_vsi(vsi);
5274 }
5275
5276 /**
5277 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
5278 * @pf: the PF
5279 **/
i40e_pf_unquiesce_all_vsi(struct i40e_pf * pf)5280 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
5281 {
5282 struct i40e_vsi *vsi;
5283 int v;
5284
5285 i40e_pf_for_each_vsi(pf, v, vsi)
5286 i40e_unquiesce_vsi(vsi);
5287 }
5288
5289 /**
5290 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
5291 * @vsi: the VSI being configured
5292 *
5293 * Wait until all queues on a given VSI have been disabled.
5294 **/
i40e_vsi_wait_queues_disabled(struct i40e_vsi * vsi)5295 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
5296 {
5297 struct i40e_pf *pf = vsi->back;
5298 int i, pf_q, ret;
5299
5300 pf_q = vsi->base_queue;
5301 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
5302 /* Check and wait for the Tx queue */
5303 ret = i40e_pf_txq_wait(pf, pf_q, false);
5304 if (ret) {
5305 dev_info(&pf->pdev->dev,
5306 "VSI seid %d Tx ring %d disable timeout\n",
5307 vsi->seid, pf_q);
5308 return ret;
5309 }
5310
5311 if (!i40e_enabled_xdp_vsi(vsi))
5312 goto wait_rx;
5313
5314 /* Check and wait for the XDP Tx queue */
5315 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
5316 false);
5317 if (ret) {
5318 dev_info(&pf->pdev->dev,
5319 "VSI seid %d XDP Tx ring %d disable timeout\n",
5320 vsi->seid, pf_q);
5321 return ret;
5322 }
5323 wait_rx:
5324 /* Check and wait for the Rx queue */
5325 ret = i40e_pf_rxq_wait(pf, pf_q, false);
5326 if (ret) {
5327 dev_info(&pf->pdev->dev,
5328 "VSI seid %d Rx ring %d disable timeout\n",
5329 vsi->seid, pf_q);
5330 return ret;
5331 }
5332 }
5333
5334 return 0;
5335 }
5336
5337 #ifdef CONFIG_I40E_DCB
5338 /**
5339 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
5340 * @pf: the PF
5341 *
5342 * This function waits for the queues to be in disabled state for all the
5343 * VSIs that are managed by this PF.
5344 **/
i40e_pf_wait_queues_disabled(struct i40e_pf * pf)5345 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
5346 {
5347 struct i40e_vsi *vsi;
5348 int v, ret = 0;
5349
5350 i40e_pf_for_each_vsi(pf, v, vsi) {
5351 ret = i40e_vsi_wait_queues_disabled(vsi);
5352 if (ret)
5353 break;
5354 }
5355
5356 return ret;
5357 }
5358
5359 #endif
5360
5361 /**
5362 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
5363 * @pf: pointer to PF
5364 *
5365 * Get TC map for ISCSI PF type that will include iSCSI TC
5366 * and LAN TC.
5367 **/
i40e_get_iscsi_tc_map(struct i40e_pf * pf)5368 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
5369 {
5370 struct i40e_dcb_app_priority_table app;
5371 struct i40e_hw *hw = &pf->hw;
5372 u8 enabled_tc = 1; /* TC0 is always enabled */
5373 u8 tc, i;
5374 /* Get the iSCSI APP TLV */
5375 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5376
5377 for (i = 0; i < dcbcfg->numapps; i++) {
5378 app = dcbcfg->app[i];
5379 if (app.selector == I40E_APP_SEL_TCPIP &&
5380 app.protocolid == I40E_APP_PROTOID_ISCSI) {
5381 tc = dcbcfg->etscfg.prioritytable[app.priority];
5382 enabled_tc |= BIT(tc);
5383 break;
5384 }
5385 }
5386
5387 return enabled_tc;
5388 }
5389
5390 /**
5391 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
5392 * @dcbcfg: the corresponding DCBx configuration structure
5393 *
5394 * Return the number of TCs from given DCBx configuration
5395 **/
i40e_dcb_get_num_tc(struct i40e_dcbx_config * dcbcfg)5396 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
5397 {
5398 int i, tc_unused = 0;
5399 u8 num_tc = 0;
5400 u8 ret = 0;
5401
5402 /* Scan the ETS Config Priority Table to find
5403 * traffic class enabled for a given priority
5404 * and create a bitmask of enabled TCs
5405 */
5406 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
5407 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
5408
5409 /* Now scan the bitmask to check for
5410 * contiguous TCs starting with TC0
5411 */
5412 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5413 if (num_tc & BIT(i)) {
5414 if (!tc_unused) {
5415 ret++;
5416 } else {
5417 pr_err("Non-contiguous TC - Disabling DCB\n");
5418 return 1;
5419 }
5420 } else {
5421 tc_unused = 1;
5422 }
5423 }
5424
5425 /* There is always at least TC0 */
5426 if (!ret)
5427 ret = 1;
5428
5429 return ret;
5430 }
5431
5432 /**
5433 * i40e_dcb_get_enabled_tc - Get enabled traffic classes
5434 * @dcbcfg: the corresponding DCBx configuration structure
5435 *
5436 * Query the current DCB configuration and return the number of
5437 * traffic classes enabled from the given DCBX config
5438 **/
i40e_dcb_get_enabled_tc(struct i40e_dcbx_config * dcbcfg)5439 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
5440 {
5441 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
5442 u8 enabled_tc = 1;
5443 u8 i;
5444
5445 for (i = 0; i < num_tc; i++)
5446 enabled_tc |= BIT(i);
5447
5448 return enabled_tc;
5449 }
5450
5451 /**
5452 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes
5453 * @pf: PF being queried
5454 *
5455 * Query the current MQPRIO configuration and return the number of
5456 * traffic classes enabled.
5457 **/
i40e_mqprio_get_enabled_tc(struct i40e_pf * pf)5458 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf)
5459 {
5460 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
5461 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc;
5462 u8 enabled_tc = 1, i;
5463
5464 for (i = 1; i < num_tc; i++)
5465 enabled_tc |= BIT(i);
5466 return enabled_tc;
5467 }
5468
5469 /**
5470 * i40e_pf_get_num_tc - Get enabled traffic classes for PF
5471 * @pf: PF being queried
5472 *
5473 * Return number of traffic classes enabled for the given PF
5474 **/
i40e_pf_get_num_tc(struct i40e_pf * pf)5475 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
5476 {
5477 u8 i, enabled_tc = 1;
5478 u8 num_tc = 0;
5479
5480 if (i40e_is_tc_mqprio_enabled(pf)) {
5481 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
5482
5483 return vsi->mqprio_qopt.qopt.num_tc;
5484 }
5485
5486 /* If neither MQPRIO nor DCB is enabled, then always use single TC */
5487 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
5488 return 1;
5489
5490 /* SFP mode will be enabled for all TCs on port */
5491 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
5492 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config);
5493
5494 /* MFP mode return count of enabled TCs for this PF */
5495 if (pf->hw.func_caps.iscsi)
5496 enabled_tc = i40e_get_iscsi_tc_map(pf);
5497 else
5498 return 1; /* Only TC0 */
5499
5500 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5501 if (enabled_tc & BIT(i))
5502 num_tc++;
5503 }
5504 return num_tc;
5505 }
5506
5507 /**
5508 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes
5509 * @pf: PF being queried
5510 *
5511 * Return a bitmap for enabled traffic classes for this PF.
5512 **/
i40e_pf_get_tc_map(struct i40e_pf * pf)5513 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
5514 {
5515 if (i40e_is_tc_mqprio_enabled(pf))
5516 return i40e_mqprio_get_enabled_tc(pf);
5517
5518 /* If neither MQPRIO nor DCB is enabled for this PF then just return
5519 * default TC
5520 */
5521 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
5522 return I40E_DEFAULT_TRAFFIC_CLASS;
5523
5524 /* SFP mode we want PF to be enabled for all TCs */
5525 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
5526 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
5527
5528 /* MFP enabled and iSCSI PF type */
5529 if (pf->hw.func_caps.iscsi)
5530 return i40e_get_iscsi_tc_map(pf);
5531 else
5532 return I40E_DEFAULT_TRAFFIC_CLASS;
5533 }
5534
5535 /**
5536 * i40e_vsi_get_bw_info - Query VSI BW Information
5537 * @vsi: the VSI being queried
5538 *
5539 * Returns 0 on success, negative value on failure
5540 **/
i40e_vsi_get_bw_info(struct i40e_vsi * vsi)5541 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
5542 {
5543 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
5544 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5545 struct i40e_pf *pf = vsi->back;
5546 struct i40e_hw *hw = &pf->hw;
5547 u32 tc_bw_max;
5548 int ret;
5549 int i;
5550
5551 /* Get the VSI level BW configuration */
5552 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
5553 if (ret) {
5554 dev_info(&pf->pdev->dev,
5555 "couldn't get PF vsi bw config, err %pe aq_err %s\n",
5556 ERR_PTR(ret),
5557 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5558 return -EINVAL;
5559 }
5560
5561 /* Get the VSI level BW configuration per TC */
5562 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
5563 NULL);
5564 if (ret) {
5565 dev_info(&pf->pdev->dev,
5566 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n",
5567 ERR_PTR(ret),
5568 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5569 return -EINVAL;
5570 }
5571
5572 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
5573 dev_info(&pf->pdev->dev,
5574 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
5575 bw_config.tc_valid_bits,
5576 bw_ets_config.tc_valid_bits);
5577 /* Still continuing */
5578 }
5579
5580 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
5581 vsi->bw_max_quanta = bw_config.max_bw;
5582 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
5583 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
5584 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5585 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
5586 vsi->bw_ets_limit_credits[i] =
5587 le16_to_cpu(bw_ets_config.credits[i]);
5588 /* 3 bits out of 4 for each TC */
5589 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
5590 }
5591
5592 return 0;
5593 }
5594
5595 /**
5596 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
5597 * @vsi: the VSI being configured
5598 * @enabled_tc: TC bitmap
5599 * @bw_share: BW shared credits per TC
5600 *
5601 * Returns 0 on success, negative value on failure
5602 **/
i40e_vsi_configure_bw_alloc(struct i40e_vsi * vsi,u8 enabled_tc,u8 * bw_share)5603 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
5604 u8 *bw_share)
5605 {
5606 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5607 struct i40e_pf *pf = vsi->back;
5608 int ret;
5609 int i;
5610
5611 /* There is no need to reset BW when mqprio mode is on. */
5612 if (i40e_is_tc_mqprio_enabled(pf))
5613 return 0;
5614 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
5615 ret = i40e_set_bw_limit(vsi, vsi->seid, 0);
5616 if (ret)
5617 dev_info(&pf->pdev->dev,
5618 "Failed to reset tx rate for vsi->seid %u\n",
5619 vsi->seid);
5620 return ret;
5621 }
5622 memset(&bw_data, 0, sizeof(bw_data));
5623 bw_data.tc_valid_bits = enabled_tc;
5624 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5625 bw_data.tc_bw_credits[i] = bw_share[i];
5626
5627 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL);
5628 if (ret) {
5629 dev_info(&pf->pdev->dev,
5630 "AQ command Config VSI BW allocation per TC failed = %d\n",
5631 pf->hw.aq.asq_last_status);
5632 return -EINVAL;
5633 }
5634
5635 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5636 vsi->info.qs_handle[i] = bw_data.qs_handles[i];
5637
5638 return 0;
5639 }
5640
5641 /**
5642 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
5643 * @vsi: the VSI being configured
5644 * @enabled_tc: TC map to be enabled
5645 *
5646 **/
i40e_vsi_config_netdev_tc(struct i40e_vsi * vsi,u8 enabled_tc)5647 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5648 {
5649 struct net_device *netdev = vsi->netdev;
5650 struct i40e_pf *pf = vsi->back;
5651 struct i40e_hw *hw = &pf->hw;
5652 u8 netdev_tc = 0;
5653 int i;
5654 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5655
5656 if (!netdev)
5657 return;
5658
5659 if (!enabled_tc) {
5660 netdev_reset_tc(netdev);
5661 return;
5662 }
5663
5664 /* Set up actual enabled TCs on the VSI */
5665 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
5666 return;
5667
5668 /* set per TC queues for the VSI */
5669 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5670 /* Only set TC queues for enabled tcs
5671 *
5672 * e.g. For a VSI that has TC0 and TC3 enabled the
5673 * enabled_tc bitmap would be 0x00001001; the driver
5674 * will set the numtc for netdev as 2 that will be
5675 * referenced by the netdev layer as TC 0 and 1.
5676 */
5677 if (vsi->tc_config.enabled_tc & BIT(i))
5678 netdev_set_tc_queue(netdev,
5679 vsi->tc_config.tc_info[i].netdev_tc,
5680 vsi->tc_config.tc_info[i].qcount,
5681 vsi->tc_config.tc_info[i].qoffset);
5682 }
5683
5684 if (i40e_is_tc_mqprio_enabled(pf))
5685 return;
5686
5687 /* Assign UP2TC map for the VSI */
5688 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
5689 /* Get the actual TC# for the UP */
5690 u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
5691 /* Get the mapped netdev TC# for the UP */
5692 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
5693 netdev_set_prio_tc_map(netdev, i, netdev_tc);
5694 }
5695 }
5696
5697 /**
5698 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
5699 * @vsi: the VSI being configured
5700 * @ctxt: the ctxt buffer returned from AQ VSI update param command
5701 **/
i40e_vsi_update_queue_map(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt)5702 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
5703 struct i40e_vsi_context *ctxt)
5704 {
5705 /* copy just the sections touched not the entire info
5706 * since not all sections are valid as returned by
5707 * update vsi params
5708 */
5709 vsi->info.mapping_flags = ctxt->info.mapping_flags;
5710 memcpy(&vsi->info.queue_mapping,
5711 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
5712 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
5713 sizeof(vsi->info.tc_mapping));
5714 }
5715
5716 /**
5717 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI
5718 * @vsi: the VSI being reconfigured
5719 * @vsi_offset: offset from main VF VSI
5720 */
i40e_update_adq_vsi_queues(struct i40e_vsi * vsi,int vsi_offset)5721 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset)
5722 {
5723 struct i40e_vsi_context ctxt = {};
5724 struct i40e_pf *pf;
5725 struct i40e_hw *hw;
5726 int ret;
5727
5728 if (!vsi)
5729 return -EINVAL;
5730 pf = vsi->back;
5731 hw = &pf->hw;
5732
5733 ctxt.seid = vsi->seid;
5734 ctxt.pf_num = hw->pf_id;
5735 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset;
5736 ctxt.uplink_seid = vsi->uplink_seid;
5737 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
5738 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
5739 ctxt.info = vsi->info;
5740
5741 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc,
5742 false);
5743 if (vsi->reconfig_rss) {
5744 vsi->rss_size = min_t(int, pf->alloc_rss_size,
5745 vsi->num_queue_pairs);
5746 ret = i40e_vsi_config_rss(vsi);
5747 if (ret) {
5748 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n");
5749 return ret;
5750 }
5751 vsi->reconfig_rss = false;
5752 }
5753
5754 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
5755 if (ret) {
5756 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n",
5757 ERR_PTR(ret),
5758 i40e_aq_str(hw, hw->aq.asq_last_status));
5759 return ret;
5760 }
5761 /* update the local VSI info with updated queue map */
5762 i40e_vsi_update_queue_map(vsi, &ctxt);
5763 vsi->info.valid_sections = 0;
5764
5765 return ret;
5766 }
5767
5768 /**
5769 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
5770 * @vsi: VSI to be configured
5771 * @enabled_tc: TC bitmap
5772 *
5773 * This configures a particular VSI for TCs that are mapped to the
5774 * given TC bitmap. It uses default bandwidth share for TCs across
5775 * VSIs to configure TC for a particular VSI.
5776 *
5777 * NOTE:
5778 * It is expected that the VSI queues have been quisced before calling
5779 * this function.
5780 **/
i40e_vsi_config_tc(struct i40e_vsi * vsi,u8 enabled_tc)5781 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5782 {
5783 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5784 struct i40e_pf *pf = vsi->back;
5785 struct i40e_hw *hw = &pf->hw;
5786 struct i40e_vsi_context ctxt;
5787 int ret = 0;
5788 int i;
5789
5790 /* Check if enabled_tc is same as existing or new TCs */
5791 if (vsi->tc_config.enabled_tc == enabled_tc &&
5792 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
5793 return ret;
5794
5795 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5796 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5797 if (enabled_tc & BIT(i))
5798 bw_share[i] = 1;
5799 }
5800
5801 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5802 if (ret) {
5803 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5804
5805 dev_info(&pf->pdev->dev,
5806 "Failed configuring TC map %d for VSI %d\n",
5807 enabled_tc, vsi->seid);
5808 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid,
5809 &bw_config, NULL);
5810 if (ret) {
5811 dev_info(&pf->pdev->dev,
5812 "Failed querying vsi bw info, err %pe aq_err %s\n",
5813 ERR_PTR(ret),
5814 i40e_aq_str(hw, hw->aq.asq_last_status));
5815 goto out;
5816 }
5817 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) {
5818 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc;
5819
5820 if (!valid_tc)
5821 valid_tc = bw_config.tc_valid_bits;
5822 /* Always enable TC0, no matter what */
5823 valid_tc |= 1;
5824 dev_info(&pf->pdev->dev,
5825 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n",
5826 enabled_tc, bw_config.tc_valid_bits, valid_tc);
5827 enabled_tc = valid_tc;
5828 }
5829
5830 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5831 if (ret) {
5832 dev_err(&pf->pdev->dev,
5833 "Unable to configure TC map %d for VSI %d\n",
5834 enabled_tc, vsi->seid);
5835 goto out;
5836 }
5837 }
5838
5839 /* Update Queue Pairs Mapping for currently enabled UPs */
5840 ctxt.seid = vsi->seid;
5841 ctxt.pf_num = vsi->back->hw.pf_id;
5842 ctxt.vf_num = 0;
5843 ctxt.uplink_seid = vsi->uplink_seid;
5844 ctxt.info = vsi->info;
5845 if (i40e_is_tc_mqprio_enabled(pf)) {
5846 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc);
5847 if (ret)
5848 goto out;
5849 } else {
5850 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5851 }
5852
5853 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled
5854 * queues changed.
5855 */
5856 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) {
5857 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size,
5858 vsi->num_queue_pairs);
5859 ret = i40e_vsi_config_rss(vsi);
5860 if (ret) {
5861 dev_info(&vsi->back->pdev->dev,
5862 "Failed to reconfig rss for num_queues\n");
5863 return ret;
5864 }
5865 vsi->reconfig_rss = false;
5866 }
5867 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
5868 ctxt.info.valid_sections |=
5869 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
5870 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
5871 }
5872
5873 /* Update the VSI after updating the VSI queue-mapping
5874 * information
5875 */
5876 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
5877 if (ret) {
5878 dev_info(&pf->pdev->dev,
5879 "Update vsi tc config failed, err %pe aq_err %s\n",
5880 ERR_PTR(ret),
5881 i40e_aq_str(hw, hw->aq.asq_last_status));
5882 goto out;
5883 }
5884 /* update the local VSI info with updated queue map */
5885 i40e_vsi_update_queue_map(vsi, &ctxt);
5886 vsi->info.valid_sections = 0;
5887
5888 /* Update current VSI BW information */
5889 ret = i40e_vsi_get_bw_info(vsi);
5890 if (ret) {
5891 dev_info(&pf->pdev->dev,
5892 "Failed updating vsi bw info, err %pe aq_err %s\n",
5893 ERR_PTR(ret),
5894 i40e_aq_str(hw, hw->aq.asq_last_status));
5895 goto out;
5896 }
5897
5898 /* Update the netdev TC setup */
5899 i40e_vsi_config_netdev_tc(vsi, enabled_tc);
5900 out:
5901 return ret;
5902 }
5903
5904 /**
5905 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map
5906 * @vsi: VSI to be reconfigured
5907 *
5908 * This reconfigures a particular VSI for TCs that are mapped to the
5909 * TC bitmap stored previously for the VSI.
5910 *
5911 * Context: It is expected that the VSI queues have been quisced before
5912 * calling this function.
5913 *
5914 * Return: 0 on success, negative value on failure
5915 **/
i40e_vsi_reconfig_tc(struct i40e_vsi * vsi)5916 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi)
5917 {
5918 u8 enabled_tc;
5919
5920 enabled_tc = vsi->tc_config.enabled_tc;
5921 vsi->tc_config.enabled_tc = 0;
5922
5923 return i40e_vsi_config_tc(vsi, enabled_tc);
5924 }
5925
5926 /**
5927 * i40e_get_link_speed - Returns link speed for the interface
5928 * @vsi: VSI to be configured
5929 *
5930 **/
i40e_get_link_speed(struct i40e_vsi * vsi)5931 static int i40e_get_link_speed(struct i40e_vsi *vsi)
5932 {
5933 struct i40e_pf *pf = vsi->back;
5934
5935 switch (pf->hw.phy.link_info.link_speed) {
5936 case I40E_LINK_SPEED_40GB:
5937 return 40000;
5938 case I40E_LINK_SPEED_25GB:
5939 return 25000;
5940 case I40E_LINK_SPEED_20GB:
5941 return 20000;
5942 case I40E_LINK_SPEED_10GB:
5943 return 10000;
5944 case I40E_LINK_SPEED_1GB:
5945 return 1000;
5946 default:
5947 return -EINVAL;
5948 }
5949 }
5950
5951 /**
5952 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits
5953 * @vsi: Pointer to vsi structure
5954 * @max_tx_rate: max TX rate in bytes to be converted into Mbits
5955 *
5956 * Helper function to convert units before send to set BW limit
5957 **/
i40e_bw_bytes_to_mbits(struct i40e_vsi * vsi,u64 max_tx_rate)5958 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate)
5959 {
5960 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) {
5961 dev_warn(&vsi->back->pdev->dev,
5962 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5963 max_tx_rate = I40E_BW_CREDIT_DIVISOR;
5964 } else {
5965 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
5966 }
5967
5968 return max_tx_rate;
5969 }
5970
5971 /**
5972 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
5973 * @vsi: VSI to be configured
5974 * @seid: seid of the channel/VSI
5975 * @max_tx_rate: max TX rate to be configured as BW limit
5976 *
5977 * Helper function to set BW limit for a given VSI
5978 **/
i40e_set_bw_limit(struct i40e_vsi * vsi,u16 seid,u64 max_tx_rate)5979 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate)
5980 {
5981 struct i40e_pf *pf = vsi->back;
5982 u64 credits = 0;
5983 int speed = 0;
5984 int ret = 0;
5985
5986 speed = i40e_get_link_speed(vsi);
5987 if (max_tx_rate > speed) {
5988 dev_err(&pf->pdev->dev,
5989 "Invalid max tx rate %llu specified for VSI seid %d.",
5990 max_tx_rate, seid);
5991 return -EINVAL;
5992 }
5993 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) {
5994 dev_warn(&pf->pdev->dev,
5995 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5996 max_tx_rate = I40E_BW_CREDIT_DIVISOR;
5997 }
5998
5999 /* Tx rate credits are in values of 50Mbps, 0 is disabled */
6000 credits = max_tx_rate;
6001 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6002 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits,
6003 I40E_MAX_BW_INACTIVE_ACCUM, NULL);
6004 if (ret)
6005 dev_err(&pf->pdev->dev,
6006 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n",
6007 max_tx_rate, seid, ERR_PTR(ret),
6008 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6009 return ret;
6010 }
6011
6012 /**
6013 * i40e_remove_queue_channels - Remove queue channels for the TCs
6014 * @vsi: VSI to be configured
6015 *
6016 * Remove queue channels for the TCs
6017 **/
i40e_remove_queue_channels(struct i40e_vsi * vsi)6018 static void i40e_remove_queue_channels(struct i40e_vsi *vsi)
6019 {
6020 enum i40e_admin_queue_err last_aq_status;
6021 struct i40e_cloud_filter *cfilter;
6022 struct i40e_channel *ch, *ch_tmp;
6023 struct i40e_pf *pf = vsi->back;
6024 struct hlist_node *node;
6025 int ret, i;
6026
6027 /* Reset rss size that was stored when reconfiguring rss for
6028 * channel VSIs with non-power-of-2 queue count.
6029 */
6030 vsi->current_rss_size = 0;
6031
6032 /* perform cleanup for channels if they exist */
6033 if (list_empty(&vsi->ch_list))
6034 return;
6035
6036 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
6037 struct i40e_vsi *p_vsi;
6038
6039 list_del(&ch->list);
6040 p_vsi = ch->parent_vsi;
6041 if (!p_vsi || !ch->initialized) {
6042 kfree(ch);
6043 continue;
6044 }
6045 /* Reset queue contexts */
6046 for (i = 0; i < ch->num_queue_pairs; i++) {
6047 struct i40e_ring *tx_ring, *rx_ring;
6048 u16 pf_q;
6049
6050 pf_q = ch->base_queue + i;
6051 tx_ring = vsi->tx_rings[pf_q];
6052 tx_ring->ch = NULL;
6053
6054 rx_ring = vsi->rx_rings[pf_q];
6055 rx_ring->ch = NULL;
6056 }
6057
6058 /* Reset BW configured for this VSI via mqprio */
6059 ret = i40e_set_bw_limit(vsi, ch->seid, 0);
6060 if (ret)
6061 dev_info(&vsi->back->pdev->dev,
6062 "Failed to reset tx rate for ch->seid %u\n",
6063 ch->seid);
6064
6065 /* delete cloud filters associated with this channel */
6066 hlist_for_each_entry_safe(cfilter, node,
6067 &pf->cloud_filter_list, cloud_node) {
6068 if (cfilter->seid != ch->seid)
6069 continue;
6070
6071 hash_del(&cfilter->cloud_node);
6072 if (cfilter->dst_port)
6073 ret = i40e_add_del_cloud_filter_big_buf(vsi,
6074 cfilter,
6075 false);
6076 else
6077 ret = i40e_add_del_cloud_filter(vsi, cfilter,
6078 false);
6079 last_aq_status = pf->hw.aq.asq_last_status;
6080 if (ret)
6081 dev_info(&pf->pdev->dev,
6082 "Failed to delete cloud filter, err %pe aq_err %s\n",
6083 ERR_PTR(ret),
6084 i40e_aq_str(&pf->hw, last_aq_status));
6085 kfree(cfilter);
6086 }
6087
6088 /* delete VSI from FW */
6089 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
6090 NULL);
6091 if (ret)
6092 dev_err(&vsi->back->pdev->dev,
6093 "unable to remove channel (%d) for parent VSI(%d)\n",
6094 ch->seid, p_vsi->seid);
6095 kfree(ch);
6096 }
6097 INIT_LIST_HEAD(&vsi->ch_list);
6098 }
6099
6100 /**
6101 * i40e_get_max_queues_for_channel
6102 * @vsi: ptr to VSI to which channels are associated with
6103 *
6104 * Helper function which returns max value among the queue counts set on the
6105 * channels/TCs created.
6106 **/
i40e_get_max_queues_for_channel(struct i40e_vsi * vsi)6107 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi)
6108 {
6109 struct i40e_channel *ch, *ch_tmp;
6110 int max = 0;
6111
6112 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
6113 if (!ch->initialized)
6114 continue;
6115 if (ch->num_queue_pairs > max)
6116 max = ch->num_queue_pairs;
6117 }
6118
6119 return max;
6120 }
6121
6122 /**
6123 * i40e_validate_num_queues - validate num_queues w.r.t channel
6124 * @pf: ptr to PF device
6125 * @num_queues: number of queues
6126 * @vsi: the parent VSI
6127 * @reconfig_rss: indicates should the RSS be reconfigured or not
6128 *
6129 * This function validates number of queues in the context of new channel
6130 * which is being established and determines if RSS should be reconfigured
6131 * or not for parent VSI.
6132 **/
i40e_validate_num_queues(struct i40e_pf * pf,int num_queues,struct i40e_vsi * vsi,bool * reconfig_rss)6133 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues,
6134 struct i40e_vsi *vsi, bool *reconfig_rss)
6135 {
6136 int max_ch_queues;
6137
6138 if (!reconfig_rss)
6139 return -EINVAL;
6140
6141 *reconfig_rss = false;
6142 if (vsi->current_rss_size) {
6143 if (num_queues > vsi->current_rss_size) {
6144 dev_dbg(&pf->pdev->dev,
6145 "Error: num_queues (%d) > vsi's current_size(%d)\n",
6146 num_queues, vsi->current_rss_size);
6147 return -EINVAL;
6148 } else if ((num_queues < vsi->current_rss_size) &&
6149 (!is_power_of_2(num_queues))) {
6150 dev_dbg(&pf->pdev->dev,
6151 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n",
6152 num_queues, vsi->current_rss_size);
6153 return -EINVAL;
6154 }
6155 }
6156
6157 if (!is_power_of_2(num_queues)) {
6158 /* Find the max num_queues configured for channel if channel
6159 * exist.
6160 * if channel exist, then enforce 'num_queues' to be more than
6161 * max ever queues configured for channel.
6162 */
6163 max_ch_queues = i40e_get_max_queues_for_channel(vsi);
6164 if (num_queues < max_ch_queues) {
6165 dev_dbg(&pf->pdev->dev,
6166 "Error: num_queues (%d) < max queues configured for channel(%d)\n",
6167 num_queues, max_ch_queues);
6168 return -EINVAL;
6169 }
6170 *reconfig_rss = true;
6171 }
6172
6173 return 0;
6174 }
6175
6176 /**
6177 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size
6178 * @vsi: the VSI being setup
6179 * @rss_size: size of RSS, accordingly LUT gets reprogrammed
6180 *
6181 * This function reconfigures RSS by reprogramming LUTs using 'rss_size'
6182 **/
i40e_vsi_reconfig_rss(struct i40e_vsi * vsi,u16 rss_size)6183 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size)
6184 {
6185 struct i40e_pf *pf = vsi->back;
6186 u8 seed[I40E_HKEY_ARRAY_SIZE];
6187 struct i40e_hw *hw = &pf->hw;
6188 int local_rss_size;
6189 u8 *lut;
6190 int ret;
6191
6192 if (!vsi->rss_size)
6193 return -EINVAL;
6194
6195 if (rss_size > vsi->rss_size)
6196 return -EINVAL;
6197
6198 local_rss_size = min_t(int, vsi->rss_size, rss_size);
6199 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
6200 if (!lut)
6201 return -ENOMEM;
6202
6203 /* Ignoring user configured lut if there is one */
6204 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size);
6205
6206 /* Use user configured hash key if there is one, otherwise
6207 * use default.
6208 */
6209 if (vsi->rss_hkey_user)
6210 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
6211 else
6212 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
6213
6214 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
6215 if (ret) {
6216 dev_info(&pf->pdev->dev,
6217 "Cannot set RSS lut, err %pe aq_err %s\n",
6218 ERR_PTR(ret),
6219 i40e_aq_str(hw, hw->aq.asq_last_status));
6220 kfree(lut);
6221 return ret;
6222 }
6223 kfree(lut);
6224
6225 /* Do the update w.r.t. storing rss_size */
6226 if (!vsi->orig_rss_size)
6227 vsi->orig_rss_size = vsi->rss_size;
6228 vsi->current_rss_size = local_rss_size;
6229
6230 return ret;
6231 }
6232
6233 /**
6234 * i40e_channel_setup_queue_map - Setup a channel queue map
6235 * @pf: ptr to PF device
6236 * @ctxt: VSI context structure
6237 * @ch: ptr to channel structure
6238 *
6239 * Setup queue map for a specific channel
6240 **/
i40e_channel_setup_queue_map(struct i40e_pf * pf,struct i40e_vsi_context * ctxt,struct i40e_channel * ch)6241 static void i40e_channel_setup_queue_map(struct i40e_pf *pf,
6242 struct i40e_vsi_context *ctxt,
6243 struct i40e_channel *ch)
6244 {
6245 u16 qcount, qmap, sections = 0;
6246 u8 offset = 0;
6247 int pow;
6248
6249 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
6250 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
6251
6252 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix);
6253 ch->num_queue_pairs = qcount;
6254
6255 /* find the next higher power-of-2 of num queue pairs */
6256 pow = ilog2(qcount);
6257 if (!is_power_of_2(qcount))
6258 pow++;
6259
6260 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
6261 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
6262
6263 /* Setup queue TC[0].qmap for given VSI context */
6264 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
6265
6266 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */
6267 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
6268 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue);
6269 ctxt->info.valid_sections |= cpu_to_le16(sections);
6270 }
6271
6272 /**
6273 * i40e_add_channel - add a channel by adding VSI
6274 * @pf: ptr to PF device
6275 * @uplink_seid: underlying HW switching element (VEB) ID
6276 * @ch: ptr to channel structure
6277 *
6278 * Add a channel (VSI) using add_vsi and queue_map
6279 **/
i40e_add_channel(struct i40e_pf * pf,u16 uplink_seid,struct i40e_channel * ch)6280 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid,
6281 struct i40e_channel *ch)
6282 {
6283 struct i40e_hw *hw = &pf->hw;
6284 struct i40e_vsi_context ctxt;
6285 u8 enabled_tc = 0x1; /* TC0 enabled */
6286 int ret;
6287
6288 if (ch->type != I40E_VSI_VMDQ2) {
6289 dev_info(&pf->pdev->dev,
6290 "add new vsi failed, ch->type %d\n", ch->type);
6291 return -EINVAL;
6292 }
6293
6294 memset(&ctxt, 0, sizeof(ctxt));
6295 ctxt.pf_num = hw->pf_id;
6296 ctxt.vf_num = 0;
6297 ctxt.uplink_seid = uplink_seid;
6298 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
6299 if (ch->type == I40E_VSI_VMDQ2)
6300 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
6301
6302 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
6303 ctxt.info.valid_sections |=
6304 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
6305 ctxt.info.switch_id =
6306 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
6307 }
6308
6309 /* Set queue map for a given VSI context */
6310 i40e_channel_setup_queue_map(pf, &ctxt, ch);
6311
6312 /* Now time to create VSI */
6313 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
6314 if (ret) {
6315 dev_info(&pf->pdev->dev,
6316 "add new vsi failed, err %pe aq_err %s\n",
6317 ERR_PTR(ret),
6318 i40e_aq_str(&pf->hw,
6319 pf->hw.aq.asq_last_status));
6320 return -ENOENT;
6321 }
6322
6323 /* Success, update channel, set enabled_tc only if the channel
6324 * is not a macvlan
6325 */
6326 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc;
6327 ch->seid = ctxt.seid;
6328 ch->vsi_number = ctxt.vsi_number;
6329 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx);
6330
6331 /* copy just the sections touched not the entire info
6332 * since not all sections are valid as returned by
6333 * update vsi params
6334 */
6335 ch->info.mapping_flags = ctxt.info.mapping_flags;
6336 memcpy(&ch->info.queue_mapping,
6337 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping));
6338 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping,
6339 sizeof(ctxt.info.tc_mapping));
6340
6341 return 0;
6342 }
6343
i40e_channel_config_bw(struct i40e_vsi * vsi,struct i40e_channel * ch,u8 * bw_share)6344 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch,
6345 u8 *bw_share)
6346 {
6347 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
6348 int ret;
6349 int i;
6350
6351 memset(&bw_data, 0, sizeof(bw_data));
6352 bw_data.tc_valid_bits = ch->enabled_tc;
6353 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
6354 bw_data.tc_bw_credits[i] = bw_share[i];
6355
6356 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid,
6357 &bw_data, NULL);
6358 if (ret) {
6359 dev_info(&vsi->back->pdev->dev,
6360 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n",
6361 vsi->back->hw.aq.asq_last_status, ch->seid);
6362 return -EINVAL;
6363 }
6364
6365 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
6366 ch->info.qs_handle[i] = bw_data.qs_handles[i];
6367
6368 return 0;
6369 }
6370
6371 /**
6372 * i40e_channel_config_tx_ring - config TX ring associated with new channel
6373 * @pf: ptr to PF device
6374 * @vsi: the VSI being setup
6375 * @ch: ptr to channel structure
6376 *
6377 * Configure TX rings associated with channel (VSI) since queues are being
6378 * from parent VSI.
6379 **/
i40e_channel_config_tx_ring(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch)6380 static int i40e_channel_config_tx_ring(struct i40e_pf *pf,
6381 struct i40e_vsi *vsi,
6382 struct i40e_channel *ch)
6383 {
6384 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
6385 int ret;
6386 int i;
6387
6388 /* Enable ETS TCs with equal BW Share for now across all VSIs */
6389 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6390 if (ch->enabled_tc & BIT(i))
6391 bw_share[i] = 1;
6392 }
6393
6394 /* configure BW for new VSI */
6395 ret = i40e_channel_config_bw(vsi, ch, bw_share);
6396 if (ret) {
6397 dev_info(&vsi->back->pdev->dev,
6398 "Failed configuring TC map %d for channel (seid %u)\n",
6399 ch->enabled_tc, ch->seid);
6400 return ret;
6401 }
6402
6403 for (i = 0; i < ch->num_queue_pairs; i++) {
6404 struct i40e_ring *tx_ring, *rx_ring;
6405 u16 pf_q;
6406
6407 pf_q = ch->base_queue + i;
6408
6409 /* Get to TX ring ptr of main VSI, for re-setup TX queue
6410 * context
6411 */
6412 tx_ring = vsi->tx_rings[pf_q];
6413 tx_ring->ch = ch;
6414
6415 /* Get the RX ring ptr */
6416 rx_ring = vsi->rx_rings[pf_q];
6417 rx_ring->ch = ch;
6418 }
6419
6420 return 0;
6421 }
6422
6423 /**
6424 * i40e_setup_hw_channel - setup new channel
6425 * @pf: ptr to PF device
6426 * @vsi: the VSI being setup
6427 * @ch: ptr to channel structure
6428 * @uplink_seid: underlying HW switching element (VEB) ID
6429 * @type: type of channel to be created (VMDq2/VF)
6430 *
6431 * Setup new channel (VSI) based on specified type (VMDq2/VF)
6432 * and configures TX rings accordingly
6433 **/
i40e_setup_hw_channel(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch,u16 uplink_seid,u8 type)6434 static inline int i40e_setup_hw_channel(struct i40e_pf *pf,
6435 struct i40e_vsi *vsi,
6436 struct i40e_channel *ch,
6437 u16 uplink_seid, u8 type)
6438 {
6439 int ret;
6440
6441 ch->initialized = false;
6442 ch->base_queue = vsi->next_base_queue;
6443 ch->type = type;
6444
6445 /* Proceed with creation of channel (VMDq2) VSI */
6446 ret = i40e_add_channel(pf, uplink_seid, ch);
6447 if (ret) {
6448 dev_info(&pf->pdev->dev,
6449 "failed to add_channel using uplink_seid %u\n",
6450 uplink_seid);
6451 return ret;
6452 }
6453
6454 /* Mark the successful creation of channel */
6455 ch->initialized = true;
6456
6457 /* Reconfigure TX queues using QTX_CTL register */
6458 ret = i40e_channel_config_tx_ring(pf, vsi, ch);
6459 if (ret) {
6460 dev_info(&pf->pdev->dev,
6461 "failed to configure TX rings for channel %u\n",
6462 ch->seid);
6463 return ret;
6464 }
6465
6466 /* update 'next_base_queue' */
6467 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs;
6468 dev_dbg(&pf->pdev->dev,
6469 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n",
6470 ch->seid, ch->vsi_number, ch->stat_counter_idx,
6471 ch->num_queue_pairs,
6472 vsi->next_base_queue);
6473 return ret;
6474 }
6475
6476 /**
6477 * i40e_setup_channel - setup new channel using uplink element
6478 * @pf: ptr to PF device
6479 * @vsi: pointer to the VSI to set up the channel within
6480 * @ch: ptr to channel structure
6481 *
6482 * Setup new channel (VSI) based on specified type (VMDq2/VF)
6483 * and uplink switching element (uplink_seid)
6484 **/
i40e_setup_channel(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch)6485 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi,
6486 struct i40e_channel *ch)
6487 {
6488 struct i40e_vsi *main_vsi;
6489 u8 vsi_type;
6490 u16 seid;
6491 int ret;
6492
6493 if (vsi->type == I40E_VSI_MAIN) {
6494 vsi_type = I40E_VSI_VMDQ2;
6495 } else {
6496 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n",
6497 vsi->type);
6498 return false;
6499 }
6500
6501 /* underlying switching element */
6502 main_vsi = i40e_pf_get_main_vsi(pf);
6503 seid = main_vsi->uplink_seid;
6504
6505 /* create channel (VSI), configure TX rings */
6506 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type);
6507 if (ret) {
6508 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n");
6509 return false;
6510 }
6511
6512 return ch->initialized ? true : false;
6513 }
6514
6515 /**
6516 * i40e_validate_and_set_switch_mode - sets up switch mode correctly
6517 * @vsi: ptr to VSI which has PF backing
6518 *
6519 * Sets up switch mode correctly if it needs to be changed and perform
6520 * what are allowed modes.
6521 **/
i40e_validate_and_set_switch_mode(struct i40e_vsi * vsi)6522 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi)
6523 {
6524 u8 mode;
6525 struct i40e_pf *pf = vsi->back;
6526 struct i40e_hw *hw = &pf->hw;
6527 int ret;
6528
6529 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities);
6530 if (ret)
6531 return -EINVAL;
6532
6533 if (hw->dev_caps.switch_mode) {
6534 /* if switch mode is set, support mode2 (non-tunneled for
6535 * cloud filter) for now
6536 */
6537 u32 switch_mode = hw->dev_caps.switch_mode &
6538 I40E_SWITCH_MODE_MASK;
6539 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) {
6540 if (switch_mode == I40E_CLOUD_FILTER_MODE2)
6541 return 0;
6542 dev_err(&pf->pdev->dev,
6543 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n",
6544 hw->dev_caps.switch_mode);
6545 return -EINVAL;
6546 }
6547 }
6548
6549 /* Set Bit 7 to be valid */
6550 mode = I40E_AQ_SET_SWITCH_BIT7_VALID;
6551
6552 /* Set L4type for TCP support */
6553 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP;
6554
6555 /* Set cloud filter mode */
6556 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL;
6557
6558 /* Prep mode field for set_switch_config */
6559 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags,
6560 pf->last_sw_conf_valid_flags,
6561 mode, NULL);
6562 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH)
6563 dev_err(&pf->pdev->dev,
6564 "couldn't set switch config bits, err %pe aq_err %s\n",
6565 ERR_PTR(ret),
6566 i40e_aq_str(hw,
6567 hw->aq.asq_last_status));
6568
6569 return ret;
6570 }
6571
6572 /**
6573 * i40e_create_queue_channel - function to create channel
6574 * @vsi: VSI to be configured
6575 * @ch: ptr to channel (it contains channel specific params)
6576 *
6577 * This function creates channel (VSI) using num_queues specified by user,
6578 * reconfigs RSS if needed.
6579 **/
i40e_create_queue_channel(struct i40e_vsi * vsi,struct i40e_channel * ch)6580 int i40e_create_queue_channel(struct i40e_vsi *vsi,
6581 struct i40e_channel *ch)
6582 {
6583 struct i40e_pf *pf = vsi->back;
6584 bool reconfig_rss;
6585 int err;
6586
6587 if (!ch)
6588 return -EINVAL;
6589
6590 if (!ch->num_queue_pairs) {
6591 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n",
6592 ch->num_queue_pairs);
6593 return -EINVAL;
6594 }
6595
6596 /* validate user requested num_queues for channel */
6597 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi,
6598 &reconfig_rss);
6599 if (err) {
6600 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n",
6601 ch->num_queue_pairs);
6602 return -EINVAL;
6603 }
6604
6605 /* By default we are in VEPA mode, if this is the first VF/VMDq
6606 * VSI to be added switch to VEB mode.
6607 */
6608
6609 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
6610 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
6611
6612 if (vsi->type == I40E_VSI_MAIN) {
6613 if (i40e_is_tc_mqprio_enabled(pf))
6614 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
6615 else
6616 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG);
6617 }
6618 /* now onwards for main VSI, number of queues will be value
6619 * of TC0's queue count
6620 */
6621 }
6622
6623 /* By this time, vsi->cnt_q_avail shall be set to non-zero and
6624 * it should be more than num_queues
6625 */
6626 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) {
6627 dev_dbg(&pf->pdev->dev,
6628 "Error: cnt_q_avail (%u) less than num_queues %d\n",
6629 vsi->cnt_q_avail, ch->num_queue_pairs);
6630 return -EINVAL;
6631 }
6632
6633 /* reconfig_rss only if vsi type is MAIN_VSI */
6634 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) {
6635 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs);
6636 if (err) {
6637 dev_info(&pf->pdev->dev,
6638 "Error: unable to reconfig rss for num_queues (%u)\n",
6639 ch->num_queue_pairs);
6640 return -EINVAL;
6641 }
6642 }
6643
6644 if (!i40e_setup_channel(pf, vsi, ch)) {
6645 dev_info(&pf->pdev->dev, "Failed to setup channel\n");
6646 return -EINVAL;
6647 }
6648
6649 dev_info(&pf->pdev->dev,
6650 "Setup channel (id:%u) utilizing num_queues %d\n",
6651 ch->seid, ch->num_queue_pairs);
6652
6653 /* configure VSI for BW limit */
6654 if (ch->max_tx_rate) {
6655 u64 credits = ch->max_tx_rate;
6656
6657 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate))
6658 return -EINVAL;
6659
6660 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6661 dev_dbg(&pf->pdev->dev,
6662 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6663 ch->max_tx_rate,
6664 credits,
6665 ch->seid);
6666 }
6667
6668 /* in case of VF, this will be main SRIOV VSI */
6669 ch->parent_vsi = vsi;
6670
6671 /* and update main_vsi's count for queue_available to use */
6672 vsi->cnt_q_avail -= ch->num_queue_pairs;
6673
6674 return 0;
6675 }
6676
6677 /**
6678 * i40e_configure_queue_channels - Add queue channel for the given TCs
6679 * @vsi: VSI to be configured
6680 *
6681 * Configures queue channel mapping to the given TCs
6682 **/
i40e_configure_queue_channels(struct i40e_vsi * vsi)6683 static int i40e_configure_queue_channels(struct i40e_vsi *vsi)
6684 {
6685 struct i40e_channel *ch;
6686 u64 max_rate = 0;
6687 int ret = 0, i;
6688
6689 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */
6690 vsi->tc_seid_map[0] = vsi->seid;
6691 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6692 if (vsi->tc_config.enabled_tc & BIT(i)) {
6693 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
6694 if (!ch) {
6695 ret = -ENOMEM;
6696 goto err_free;
6697 }
6698
6699 INIT_LIST_HEAD(&ch->list);
6700 ch->num_queue_pairs =
6701 vsi->tc_config.tc_info[i].qcount;
6702 ch->base_queue =
6703 vsi->tc_config.tc_info[i].qoffset;
6704
6705 /* Bandwidth limit through tc interface is in bytes/s,
6706 * change to Mbit/s
6707 */
6708 max_rate = vsi->mqprio_qopt.max_rate[i];
6709 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6710 ch->max_tx_rate = max_rate;
6711
6712 list_add_tail(&ch->list, &vsi->ch_list);
6713
6714 ret = i40e_create_queue_channel(vsi, ch);
6715 if (ret) {
6716 dev_err(&vsi->back->pdev->dev,
6717 "Failed creating queue channel with TC%d: queues %d\n",
6718 i, ch->num_queue_pairs);
6719 goto err_free;
6720 }
6721 vsi->tc_seid_map[i] = ch->seid;
6722 }
6723 }
6724
6725 /* reset to reconfigure TX queue contexts */
6726 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true);
6727 return ret;
6728
6729 err_free:
6730 i40e_remove_queue_channels(vsi);
6731 return ret;
6732 }
6733
6734 /**
6735 * i40e_veb_config_tc - Configure TCs for given VEB
6736 * @veb: given VEB
6737 * @enabled_tc: TC bitmap
6738 *
6739 * Configures given TC bitmap for VEB (switching) element
6740 **/
i40e_veb_config_tc(struct i40e_veb * veb,u8 enabled_tc)6741 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
6742 {
6743 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
6744 struct i40e_pf *pf = veb->pf;
6745 int ret = 0;
6746 int i;
6747
6748 /* No TCs or already enabled TCs just return */
6749 if (!enabled_tc || veb->enabled_tc == enabled_tc)
6750 return ret;
6751
6752 bw_data.tc_valid_bits = enabled_tc;
6753 /* bw_data.absolute_credits is not set (relative) */
6754
6755 /* Enable ETS TCs with equal BW Share for now */
6756 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6757 if (enabled_tc & BIT(i))
6758 bw_data.tc_bw_share_credits[i] = 1;
6759 }
6760
6761 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
6762 &bw_data, NULL);
6763 if (ret) {
6764 dev_info(&pf->pdev->dev,
6765 "VEB bw config failed, err %pe aq_err %s\n",
6766 ERR_PTR(ret),
6767 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6768 goto out;
6769 }
6770
6771 /* Update the BW information */
6772 ret = i40e_veb_get_bw_info(veb);
6773 if (ret) {
6774 dev_info(&pf->pdev->dev,
6775 "Failed getting veb bw config, err %pe aq_err %s\n",
6776 ERR_PTR(ret),
6777 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6778 }
6779
6780 out:
6781 return ret;
6782 }
6783
6784 #ifdef CONFIG_I40E_DCB
6785 /**
6786 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
6787 * @pf: PF struct
6788 *
6789 * Reconfigure VEB/VSIs on a given PF; it is assumed that
6790 * the caller would've quiesce all the VSIs before calling
6791 * this function
6792 **/
i40e_dcb_reconfigure(struct i40e_pf * pf)6793 static void i40e_dcb_reconfigure(struct i40e_pf *pf)
6794 {
6795 struct i40e_vsi *vsi;
6796 struct i40e_veb *veb;
6797 u8 tc_map = 0;
6798 int ret;
6799 int v;
6800
6801 /* Enable the TCs available on PF to all VEBs */
6802 tc_map = i40e_pf_get_tc_map(pf);
6803 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS)
6804 return;
6805
6806 i40e_pf_for_each_veb(pf, v, veb) {
6807 ret = i40e_veb_config_tc(veb, tc_map);
6808 if (ret) {
6809 dev_info(&pf->pdev->dev,
6810 "Failed configuring TC for VEB seid=%d\n",
6811 veb->seid);
6812 /* Will try to configure as many components */
6813 }
6814 }
6815
6816 /* Update each VSI */
6817 i40e_pf_for_each_vsi(pf, v, vsi) {
6818 /* - Enable all TCs for the LAN VSI
6819 * - For all others keep them at TC0 for now
6820 */
6821 if (vsi->type == I40E_VSI_MAIN)
6822 tc_map = i40e_pf_get_tc_map(pf);
6823 else
6824 tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
6825
6826 ret = i40e_vsi_config_tc(vsi, tc_map);
6827 if (ret) {
6828 dev_info(&pf->pdev->dev,
6829 "Failed configuring TC for VSI seid=%d\n",
6830 vsi->seid);
6831 /* Will try to configure as many components */
6832 } else {
6833 /* Re-configure VSI vectors based on updated TC map */
6834 i40e_vsi_map_rings_to_vectors(vsi);
6835 if (vsi->netdev)
6836 i40e_dcbnl_set_all(vsi);
6837 }
6838 }
6839 }
6840
6841 /**
6842 * i40e_resume_port_tx - Resume port Tx
6843 * @pf: PF struct
6844 *
6845 * Resume a port's Tx and issue a PF reset in case of failure to
6846 * resume.
6847 **/
i40e_resume_port_tx(struct i40e_pf * pf)6848 static int i40e_resume_port_tx(struct i40e_pf *pf)
6849 {
6850 struct i40e_hw *hw = &pf->hw;
6851 int ret;
6852
6853 ret = i40e_aq_resume_port_tx(hw, NULL);
6854 if (ret) {
6855 dev_info(&pf->pdev->dev,
6856 "Resume Port Tx failed, err %pe aq_err %s\n",
6857 ERR_PTR(ret),
6858 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6859 /* Schedule PF reset to recover */
6860 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6861 i40e_service_event_schedule(pf);
6862 }
6863
6864 return ret;
6865 }
6866
6867 /**
6868 * i40e_suspend_port_tx - Suspend port Tx
6869 * @pf: PF struct
6870 *
6871 * Suspend a port's Tx and issue a PF reset in case of failure.
6872 **/
i40e_suspend_port_tx(struct i40e_pf * pf)6873 static int i40e_suspend_port_tx(struct i40e_pf *pf)
6874 {
6875 struct i40e_hw *hw = &pf->hw;
6876 int ret;
6877
6878 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL);
6879 if (ret) {
6880 dev_info(&pf->pdev->dev,
6881 "Suspend Port Tx failed, err %pe aq_err %s\n",
6882 ERR_PTR(ret),
6883 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6884 /* Schedule PF reset to recover */
6885 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6886 i40e_service_event_schedule(pf);
6887 }
6888
6889 return ret;
6890 }
6891
6892 /**
6893 * i40e_hw_set_dcb_config - Program new DCBX settings into HW
6894 * @pf: PF being configured
6895 * @new_cfg: New DCBX configuration
6896 *
6897 * Program DCB settings into HW and reconfigure VEB/VSIs on
6898 * given PF. Uses "Set LLDP MIB" AQC to program the hardware.
6899 **/
i40e_hw_set_dcb_config(struct i40e_pf * pf,struct i40e_dcbx_config * new_cfg)6900 static int i40e_hw_set_dcb_config(struct i40e_pf *pf,
6901 struct i40e_dcbx_config *new_cfg)
6902 {
6903 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config;
6904 int ret;
6905
6906 /* Check if need reconfiguration */
6907 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) {
6908 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n");
6909 return 0;
6910 }
6911
6912 /* Config change disable all VSIs */
6913 i40e_pf_quiesce_all_vsi(pf);
6914
6915 /* Copy the new config to the current config */
6916 *old_cfg = *new_cfg;
6917 old_cfg->etsrec = old_cfg->etscfg;
6918 ret = i40e_set_dcb_config(&pf->hw);
6919 if (ret) {
6920 dev_info(&pf->pdev->dev,
6921 "Set DCB Config failed, err %pe aq_err %s\n",
6922 ERR_PTR(ret),
6923 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6924 goto out;
6925 }
6926
6927 /* Changes in configuration update VEB/VSI */
6928 i40e_dcb_reconfigure(pf);
6929 out:
6930 /* In case of reset do not try to resume anything */
6931 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) {
6932 /* Re-start the VSIs if disabled */
6933 ret = i40e_resume_port_tx(pf);
6934 /* In case of error no point in resuming VSIs */
6935 if (ret)
6936 goto err;
6937 i40e_pf_unquiesce_all_vsi(pf);
6938 }
6939 err:
6940 return ret;
6941 }
6942
6943 /**
6944 * i40e_hw_dcb_config - Program new DCBX settings into HW
6945 * @pf: PF being configured
6946 * @new_cfg: New DCBX configuration
6947 *
6948 * Program DCB settings into HW and reconfigure VEB/VSIs on
6949 * given PF
6950 **/
i40e_hw_dcb_config(struct i40e_pf * pf,struct i40e_dcbx_config * new_cfg)6951 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg)
6952 {
6953 struct i40e_aqc_configure_switching_comp_ets_data ets_data;
6954 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0};
6955 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS];
6956 struct i40e_dcbx_config *old_cfg;
6957 u8 mode[I40E_MAX_TRAFFIC_CLASS];
6958 struct i40e_rx_pb_config pb_cfg;
6959 struct i40e_hw *hw = &pf->hw;
6960 u8 num_ports = hw->num_ports;
6961 bool need_reconfig;
6962 int ret = -EINVAL;
6963 u8 lltc_map = 0;
6964 u8 tc_map = 0;
6965 u8 new_numtc;
6966 u8 i;
6967
6968 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n");
6969 /* Un-pack information to Program ETS HW via shared API
6970 * numtc, tcmap
6971 * LLTC map
6972 * ETS/NON-ETS arbiter mode
6973 * max exponent (credit refills)
6974 * Total number of ports
6975 * PFC priority bit-map
6976 * Priority Table
6977 * BW % per TC
6978 * Arbiter mode between UPs sharing same TC
6979 * TSA table (ETS or non-ETS)
6980 * EEE enabled or not
6981 * MFS TC table
6982 */
6983
6984 new_numtc = i40e_dcb_get_num_tc(new_cfg);
6985
6986 memset(&ets_data, 0, sizeof(ets_data));
6987 for (i = 0; i < new_numtc; i++) {
6988 tc_map |= BIT(i);
6989 switch (new_cfg->etscfg.tsatable[i]) {
6990 case I40E_IEEE_TSA_ETS:
6991 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS;
6992 ets_data.tc_bw_share_credits[i] =
6993 new_cfg->etscfg.tcbwtable[i];
6994 break;
6995 case I40E_IEEE_TSA_STRICT:
6996 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT;
6997 lltc_map |= BIT(i);
6998 ets_data.tc_bw_share_credits[i] =
6999 I40E_DCB_STRICT_PRIO_CREDITS;
7000 break;
7001 default:
7002 /* Invalid TSA type */
7003 need_reconfig = false;
7004 goto out;
7005 }
7006 }
7007
7008 old_cfg = &hw->local_dcbx_config;
7009 /* Check if need reconfiguration */
7010 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg);
7011
7012 /* If needed, enable/disable frame tagging, disable all VSIs
7013 * and suspend port tx
7014 */
7015 if (need_reconfig) {
7016 /* Enable DCB tagging only when more than one TC */
7017 if (new_numtc > 1)
7018 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
7019 else
7020 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7021
7022 set_bit(__I40E_PORT_SUSPENDED, pf->state);
7023 /* Reconfiguration needed quiesce all VSIs */
7024 i40e_pf_quiesce_all_vsi(pf);
7025 ret = i40e_suspend_port_tx(pf);
7026 if (ret)
7027 goto err;
7028 }
7029
7030 /* Configure Port ETS Tx Scheduler */
7031 ets_data.tc_valid_bits = tc_map;
7032 ets_data.tc_strict_priority_flags = lltc_map;
7033 ret = i40e_aq_config_switch_comp_ets
7034 (hw, pf->mac_seid, &ets_data,
7035 i40e_aqc_opc_modify_switching_comp_ets, NULL);
7036 if (ret) {
7037 dev_info(&pf->pdev->dev,
7038 "Modify Port ETS failed, err %pe aq_err %s\n",
7039 ERR_PTR(ret),
7040 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7041 goto out;
7042 }
7043
7044 /* Configure Rx ETS HW */
7045 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode));
7046 i40e_dcb_hw_set_num_tc(hw, new_numtc);
7047 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN,
7048 I40E_DCB_ARB_MODE_STRICT_PRIORITY,
7049 I40E_DCB_DEFAULT_MAX_EXPONENT,
7050 lltc_map);
7051 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports);
7052 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode,
7053 prio_type);
7054 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable,
7055 new_cfg->etscfg.prioritytable);
7056 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable);
7057
7058 /* Configure Rx Packet Buffers in HW */
7059 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
7060 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
7061
7062 mfs_tc[i] = main_vsi->netdev->mtu;
7063 mfs_tc[i] += I40E_PACKET_HDR_PAD;
7064 }
7065
7066 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports,
7067 false, new_cfg->pfc.pfcenable,
7068 mfs_tc, &pb_cfg);
7069 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg);
7070
7071 /* Update the local Rx Packet buffer config */
7072 pf->pb_cfg = pb_cfg;
7073
7074 /* Inform the FW about changes to DCB configuration */
7075 ret = i40e_aq_dcb_updated(&pf->hw, NULL);
7076 if (ret) {
7077 dev_info(&pf->pdev->dev,
7078 "DCB Updated failed, err %pe aq_err %s\n",
7079 ERR_PTR(ret),
7080 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7081 goto out;
7082 }
7083
7084 /* Update the port DCBx configuration */
7085 *old_cfg = *new_cfg;
7086
7087 /* Changes in configuration update VEB/VSI */
7088 i40e_dcb_reconfigure(pf);
7089 out:
7090 /* Re-start the VSIs if disabled */
7091 if (need_reconfig) {
7092 ret = i40e_resume_port_tx(pf);
7093
7094 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
7095 /* In case of error no point in resuming VSIs */
7096 if (ret)
7097 goto err;
7098
7099 /* Wait for the PF's queues to be disabled */
7100 ret = i40e_pf_wait_queues_disabled(pf);
7101 if (ret) {
7102 /* Schedule PF reset to recover */
7103 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
7104 i40e_service_event_schedule(pf);
7105 goto err;
7106 } else {
7107 i40e_pf_unquiesce_all_vsi(pf);
7108 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
7109 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
7110 }
7111 /* registers are set, lets apply */
7112 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps))
7113 ret = i40e_hw_set_dcb_config(pf, new_cfg);
7114 }
7115
7116 err:
7117 return ret;
7118 }
7119
7120 /**
7121 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW
7122 * @pf: PF being queried
7123 *
7124 * Set default DCB configuration in case DCB is to be done in SW.
7125 **/
i40e_dcb_sw_default_config(struct i40e_pf * pf)7126 int i40e_dcb_sw_default_config(struct i40e_pf *pf)
7127 {
7128 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config;
7129 struct i40e_aqc_configure_switching_comp_ets_data ets_data;
7130 struct i40e_hw *hw = &pf->hw;
7131 int err;
7132
7133 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) {
7134 /* Update the local cached instance with TC0 ETS */
7135 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config));
7136 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
7137 pf->tmp_cfg.etscfg.maxtcs = 0;
7138 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
7139 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS;
7140 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING;
7141 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
7142 /* FW needs one App to configure HW */
7143 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS;
7144 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE;
7145 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO;
7146 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE;
7147
7148 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg);
7149 }
7150
7151 memset(&ets_data, 0, sizeof(ets_data));
7152 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */
7153 ets_data.tc_strict_priority_flags = 0; /* ETS */
7154 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */
7155
7156 /* Enable ETS on the Physical port */
7157 err = i40e_aq_config_switch_comp_ets
7158 (hw, pf->mac_seid, &ets_data,
7159 i40e_aqc_opc_enable_switching_comp_ets, NULL);
7160 if (err) {
7161 dev_info(&pf->pdev->dev,
7162 "Enable Port ETS failed, err %pe aq_err %s\n",
7163 ERR_PTR(err),
7164 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7165 err = -ENOENT;
7166 goto out;
7167 }
7168
7169 /* Update the local cached instance with TC0 ETS */
7170 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
7171 dcb_cfg->etscfg.cbs = 0;
7172 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS;
7173 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
7174
7175 out:
7176 return err;
7177 }
7178
7179 /**
7180 * i40e_init_pf_dcb - Initialize DCB configuration
7181 * @pf: PF being configured
7182 *
7183 * Query the current DCB configuration and cache it
7184 * in the hardware structure
7185 **/
i40e_init_pf_dcb(struct i40e_pf * pf)7186 static int i40e_init_pf_dcb(struct i40e_pf *pf)
7187 {
7188 struct i40e_hw *hw = &pf->hw;
7189 int err;
7190
7191 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable
7192 * Also do not enable DCBx if FW LLDP agent is disabled
7193 */
7194 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) {
7195 dev_info(&pf->pdev->dev, "DCB is not supported.\n");
7196 err = -EOPNOTSUPP;
7197 goto out;
7198 }
7199 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) {
7200 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n");
7201 err = i40e_dcb_sw_default_config(pf);
7202 if (err) {
7203 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n");
7204 goto out;
7205 }
7206 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n");
7207 pf->dcbx_cap = DCB_CAP_DCBX_HOST |
7208 DCB_CAP_DCBX_VER_IEEE;
7209 /* at init capable but disabled */
7210 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
7211 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7212 goto out;
7213 }
7214 err = i40e_init_dcb(hw, true);
7215 if (!err) {
7216 /* Device/Function is not DCBX capable */
7217 if ((!hw->func_caps.dcb) ||
7218 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
7219 dev_info(&pf->pdev->dev,
7220 "DCBX offload is not supported or is disabled for this PF.\n");
7221 } else {
7222 /* When status is not DISABLED then DCBX in FW */
7223 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
7224 DCB_CAP_DCBX_VER_IEEE;
7225
7226 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
7227 /* Enable DCB tagging only when more than one TC
7228 * or explicitly disable if only one TC
7229 */
7230 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
7231 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
7232 else
7233 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7234 dev_dbg(&pf->pdev->dev,
7235 "DCBX offload is supported for this PF.\n");
7236 }
7237 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) {
7238 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n");
7239 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags);
7240 } else {
7241 dev_info(&pf->pdev->dev,
7242 "Query for DCB configuration failed, err %pe aq_err %s\n",
7243 ERR_PTR(err),
7244 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7245 }
7246
7247 out:
7248 return err;
7249 }
7250 #endif /* CONFIG_I40E_DCB */
7251
i40e_print_link_message_eee(struct i40e_vsi * vsi,const char * speed,const char * fc)7252 static void i40e_print_link_message_eee(struct i40e_vsi *vsi,
7253 const char *speed, const char *fc)
7254 {
7255 struct ethtool_keee kedata;
7256
7257 memzero_explicit(&kedata, sizeof(kedata));
7258 if (vsi->netdev->ethtool_ops->get_eee)
7259 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata);
7260
7261 if (!linkmode_empty(kedata.supported))
7262 netdev_info(vsi->netdev,
7263 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n",
7264 speed, fc,
7265 kedata.eee_enabled ? "Enabled" : "Disabled");
7266 else
7267 netdev_info(vsi->netdev,
7268 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n",
7269 speed, fc);
7270 }
7271
7272 /**
7273 * i40e_print_link_message - print link up or down
7274 * @vsi: the VSI for which link needs a message
7275 * @isup: true of link is up, false otherwise
7276 */
i40e_print_link_message(struct i40e_vsi * vsi,bool isup)7277 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
7278 {
7279 enum i40e_aq_link_speed new_speed;
7280 struct i40e_pf *pf = vsi->back;
7281 char *speed = "Unknown";
7282 char *fc = "Unknown";
7283 char *fec = "";
7284 char *req_fec = "";
7285 char *an = "";
7286
7287 if (isup)
7288 new_speed = pf->hw.phy.link_info.link_speed;
7289 else
7290 new_speed = I40E_LINK_SPEED_UNKNOWN;
7291
7292 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
7293 return;
7294 vsi->current_isup = isup;
7295 vsi->current_speed = new_speed;
7296 if (!isup) {
7297 netdev_info(vsi->netdev, "NIC Link is Down\n");
7298 return;
7299 }
7300
7301 /* Warn user if link speed on NPAR enabled partition is not at
7302 * least 10GB
7303 */
7304 if (pf->hw.func_caps.npar_enable &&
7305 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
7306 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
7307 netdev_warn(vsi->netdev,
7308 "The partition detected link speed that is less than 10Gbps\n");
7309
7310 switch (pf->hw.phy.link_info.link_speed) {
7311 case I40E_LINK_SPEED_40GB:
7312 speed = "40 G";
7313 break;
7314 case I40E_LINK_SPEED_20GB:
7315 speed = "20 G";
7316 break;
7317 case I40E_LINK_SPEED_25GB:
7318 speed = "25 G";
7319 break;
7320 case I40E_LINK_SPEED_10GB:
7321 speed = "10 G";
7322 break;
7323 case I40E_LINK_SPEED_5GB:
7324 speed = "5 G";
7325 break;
7326 case I40E_LINK_SPEED_2_5GB:
7327 speed = "2.5 G";
7328 break;
7329 case I40E_LINK_SPEED_1GB:
7330 speed = "1000 M";
7331 break;
7332 case I40E_LINK_SPEED_100MB:
7333 speed = "100 M";
7334 break;
7335 default:
7336 break;
7337 }
7338
7339 switch (pf->hw.fc.current_mode) {
7340 case I40E_FC_FULL:
7341 fc = "RX/TX";
7342 break;
7343 case I40E_FC_TX_PAUSE:
7344 fc = "TX";
7345 break;
7346 case I40E_FC_RX_PAUSE:
7347 fc = "RX";
7348 break;
7349 default:
7350 fc = "None";
7351 break;
7352 }
7353
7354 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
7355 req_fec = "None";
7356 fec = "None";
7357 an = "False";
7358
7359 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
7360 an = "True";
7361
7362 if (pf->hw.phy.link_info.fec_info &
7363 I40E_AQ_CONFIG_FEC_KR_ENA)
7364 fec = "CL74 FC-FEC/BASE-R";
7365 else if (pf->hw.phy.link_info.fec_info &
7366 I40E_AQ_CONFIG_FEC_RS_ENA)
7367 fec = "CL108 RS-FEC";
7368
7369 /* 'CL108 RS-FEC' should be displayed when RS is requested, or
7370 * both RS and FC are requested
7371 */
7372 if (vsi->back->hw.phy.link_info.req_fec_info &
7373 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
7374 if (vsi->back->hw.phy.link_info.req_fec_info &
7375 I40E_AQ_REQUEST_FEC_RS)
7376 req_fec = "CL108 RS-FEC";
7377 else
7378 req_fec = "CL74 FC-FEC/BASE-R";
7379 }
7380 netdev_info(vsi->netdev,
7381 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
7382 speed, req_fec, fec, an, fc);
7383 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) {
7384 req_fec = "None";
7385 fec = "None";
7386 an = "False";
7387
7388 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
7389 an = "True";
7390
7391 if (pf->hw.phy.link_info.fec_info &
7392 I40E_AQ_CONFIG_FEC_KR_ENA)
7393 fec = "CL74 FC-FEC/BASE-R";
7394
7395 if (pf->hw.phy.link_info.req_fec_info &
7396 I40E_AQ_REQUEST_FEC_KR)
7397 req_fec = "CL74 FC-FEC/BASE-R";
7398
7399 netdev_info(vsi->netdev,
7400 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
7401 speed, req_fec, fec, an, fc);
7402 } else {
7403 i40e_print_link_message_eee(vsi, speed, fc);
7404 }
7405
7406 }
7407
7408 /**
7409 * i40e_up_complete - Finish the last steps of bringing up a connection
7410 * @vsi: the VSI being configured
7411 **/
i40e_up_complete(struct i40e_vsi * vsi)7412 static int i40e_up_complete(struct i40e_vsi *vsi)
7413 {
7414 struct i40e_pf *pf = vsi->back;
7415 int err;
7416
7417 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
7418 i40e_vsi_configure_msix(vsi);
7419 else
7420 i40e_configure_msi_and_legacy(vsi);
7421
7422 /* start rings */
7423 err = i40e_vsi_start_rings(vsi);
7424 if (err)
7425 return err;
7426
7427 clear_bit(__I40E_VSI_DOWN, vsi->state);
7428 i40e_napi_enable_all(vsi);
7429 i40e_vsi_enable_irq(vsi);
7430
7431 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
7432 (vsi->netdev)) {
7433 i40e_print_link_message(vsi, true);
7434 netif_tx_start_all_queues(vsi->netdev);
7435 netif_carrier_on(vsi->netdev);
7436 }
7437
7438 /* replay FDIR SB filters */
7439 if (vsi->type == I40E_VSI_FDIR) {
7440 /* reset fd counters */
7441 pf->fd_add_err = 0;
7442 pf->fd_atr_cnt = 0;
7443 i40e_fdir_filter_restore(vsi);
7444 }
7445
7446 /* On the next run of the service_task, notify any clients of the new
7447 * opened netdev
7448 */
7449 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
7450 i40e_service_event_schedule(pf);
7451
7452 return 0;
7453 }
7454
7455 /**
7456 * i40e_vsi_reinit_locked - Reset the VSI
7457 * @vsi: the VSI being configured
7458 *
7459 * Rebuild the ring structs after some configuration
7460 * has changed, e.g. MTU size.
7461 **/
i40e_vsi_reinit_locked(struct i40e_vsi * vsi)7462 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
7463 {
7464 struct i40e_pf *pf = vsi->back;
7465
7466 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
7467 usleep_range(1000, 2000);
7468 i40e_down(vsi);
7469
7470 i40e_up(vsi);
7471 clear_bit(__I40E_CONFIG_BUSY, pf->state);
7472 }
7473
7474 /**
7475 * i40e_force_link_state - Force the link status
7476 * @pf: board private structure
7477 * @is_up: whether the link state should be forced up or down
7478 **/
i40e_force_link_state(struct i40e_pf * pf,bool is_up)7479 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up)
7480 {
7481 struct i40e_aq_get_phy_abilities_resp abilities;
7482 struct i40e_aq_set_phy_config config = {0};
7483 bool non_zero_phy_type = is_up;
7484 struct i40e_hw *hw = &pf->hw;
7485 u64 mask;
7486 u8 speed;
7487 int err;
7488
7489 /* Card might've been put in an unstable state by other drivers
7490 * and applications, which causes incorrect speed values being
7491 * set on startup. In order to clear speed registers, we call
7492 * get_phy_capabilities twice, once to get initial state of
7493 * available speeds, and once to get current PHY config.
7494 */
7495 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities,
7496 NULL);
7497 if (err) {
7498 dev_err(&pf->pdev->dev,
7499 "failed to get phy cap., ret = %pe last_status = %s\n",
7500 ERR_PTR(err),
7501 i40e_aq_str(hw, hw->aq.asq_last_status));
7502 return err;
7503 }
7504 speed = abilities.link_speed;
7505
7506 /* Get the current phy config */
7507 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
7508 NULL);
7509 if (err) {
7510 dev_err(&pf->pdev->dev,
7511 "failed to get phy cap., ret = %pe last_status = %s\n",
7512 ERR_PTR(err),
7513 i40e_aq_str(hw, hw->aq.asq_last_status));
7514 return err;
7515 }
7516
7517 /* If link needs to go up, but was not forced to go down,
7518 * and its speed values are OK, no need for a flap
7519 * if non_zero_phy_type was set, still need to force up
7520 */
7521 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags))
7522 non_zero_phy_type = true;
7523 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0)
7524 return 0;
7525
7526 /* To force link we need to set bits for all supported PHY types,
7527 * but there are now more than 32, so we need to split the bitmap
7528 * across two fields.
7529 */
7530 mask = I40E_PHY_TYPES_BITMASK;
7531 config.phy_type =
7532 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0;
7533 config.phy_type_ext =
7534 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0;
7535 /* Copy the old settings, except of phy_type */
7536 config.abilities = abilities.abilities;
7537 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
7538 if (is_up)
7539 config.abilities |= I40E_AQ_PHY_ENABLE_LINK;
7540 else
7541 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK);
7542 }
7543 if (abilities.link_speed != 0)
7544 config.link_speed = abilities.link_speed;
7545 else
7546 config.link_speed = speed;
7547 config.eee_capability = abilities.eee_capability;
7548 config.eeer = abilities.eeer_val;
7549 config.low_power_ctrl = abilities.d3_lpan;
7550 config.fec_config = abilities.fec_cfg_curr_mod_ext_info &
7551 I40E_AQ_PHY_FEC_CONFIG_MASK;
7552 err = i40e_aq_set_phy_config(hw, &config, NULL);
7553
7554 if (err) {
7555 dev_err(&pf->pdev->dev,
7556 "set phy config ret = %pe last_status = %s\n",
7557 ERR_PTR(err),
7558 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7559 return err;
7560 }
7561
7562 /* Update the link info */
7563 err = i40e_update_link_info(hw);
7564 if (err) {
7565 /* Wait a little bit (on 40G cards it sometimes takes a really
7566 * long time for link to come back from the atomic reset)
7567 * and try once more
7568 */
7569 msleep(1000);
7570 i40e_update_link_info(hw);
7571 }
7572
7573 i40e_aq_set_link_restart_an(hw, is_up, NULL);
7574
7575 return 0;
7576 }
7577
7578 /**
7579 * i40e_up - Bring the connection back up after being down
7580 * @vsi: the VSI being configured
7581 **/
i40e_up(struct i40e_vsi * vsi)7582 int i40e_up(struct i40e_vsi *vsi)
7583 {
7584 int err;
7585
7586 if (vsi->type == I40E_VSI_MAIN &&
7587 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
7588 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
7589 i40e_force_link_state(vsi->back, true);
7590
7591 err = i40e_vsi_configure(vsi);
7592 if (!err)
7593 err = i40e_up_complete(vsi);
7594
7595 return err;
7596 }
7597
7598 /**
7599 * i40e_down - Shutdown the connection processing
7600 * @vsi: the VSI being stopped
7601 **/
i40e_down(struct i40e_vsi * vsi)7602 void i40e_down(struct i40e_vsi *vsi)
7603 {
7604 int i;
7605
7606 /* It is assumed that the caller of this function
7607 * sets the vsi->state __I40E_VSI_DOWN bit.
7608 */
7609 if (vsi->netdev) {
7610 netif_carrier_off(vsi->netdev);
7611 netif_tx_disable(vsi->netdev);
7612 }
7613 i40e_vsi_disable_irq(vsi);
7614 i40e_vsi_stop_rings(vsi);
7615 if (vsi->type == I40E_VSI_MAIN &&
7616 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
7617 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
7618 i40e_force_link_state(vsi->back, false);
7619 i40e_napi_disable_all(vsi);
7620
7621 for (i = 0; i < vsi->num_queue_pairs; i++) {
7622 i40e_clean_tx_ring(vsi->tx_rings[i]);
7623 if (i40e_enabled_xdp_vsi(vsi)) {
7624 /* Make sure that in-progress ndo_xdp_xmit and
7625 * ndo_xsk_wakeup calls are completed.
7626 */
7627 synchronize_rcu();
7628 i40e_clean_tx_ring(vsi->xdp_rings[i]);
7629 }
7630 i40e_clean_rx_ring(vsi->rx_rings[i]);
7631 }
7632
7633 }
7634
7635 /**
7636 * i40e_validate_mqprio_qopt- validate queue mapping info
7637 * @vsi: the VSI being configured
7638 * @mqprio_qopt: queue parametrs
7639 **/
i40e_validate_mqprio_qopt(struct i40e_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7640 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi,
7641 struct tc_mqprio_qopt_offload *mqprio_qopt)
7642 {
7643 u64 sum_max_rate = 0;
7644 u64 max_rate = 0;
7645 int i;
7646
7647 if (mqprio_qopt->qopt.offset[0] != 0 ||
7648 mqprio_qopt->qopt.num_tc < 1 ||
7649 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS)
7650 return -EINVAL;
7651 for (i = 0; ; i++) {
7652 if (!mqprio_qopt->qopt.count[i])
7653 return -EINVAL;
7654 if (mqprio_qopt->min_rate[i]) {
7655 dev_err(&vsi->back->pdev->dev,
7656 "Invalid min tx rate (greater than 0) specified\n");
7657 return -EINVAL;
7658 }
7659 max_rate = mqprio_qopt->max_rate[i];
7660 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
7661 sum_max_rate += max_rate;
7662
7663 if (i >= mqprio_qopt->qopt.num_tc - 1)
7664 break;
7665 if (mqprio_qopt->qopt.offset[i + 1] !=
7666 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7667 return -EINVAL;
7668 }
7669 if (vsi->num_queue_pairs <
7670 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) {
7671 dev_err(&vsi->back->pdev->dev,
7672 "Failed to create traffic channel, insufficient number of queues.\n");
7673 return -EINVAL;
7674 }
7675 if (sum_max_rate > i40e_get_link_speed(vsi)) {
7676 dev_err(&vsi->back->pdev->dev,
7677 "Invalid max tx rate specified\n");
7678 return -EINVAL;
7679 }
7680 return 0;
7681 }
7682
7683 /**
7684 * i40e_vsi_set_default_tc_config - set default values for tc configuration
7685 * @vsi: the VSI being configured
7686 **/
i40e_vsi_set_default_tc_config(struct i40e_vsi * vsi)7687 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi)
7688 {
7689 u16 qcount;
7690 int i;
7691
7692 /* Only TC0 is enabled */
7693 vsi->tc_config.numtc = 1;
7694 vsi->tc_config.enabled_tc = 1;
7695 qcount = min_t(int, vsi->alloc_queue_pairs,
7696 i40e_pf_get_max_q_per_tc(vsi->back));
7697 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
7698 /* For the TC that is not enabled set the offset to default
7699 * queue and allocate one queue for the given TC.
7700 */
7701 vsi->tc_config.tc_info[i].qoffset = 0;
7702 if (i == 0)
7703 vsi->tc_config.tc_info[i].qcount = qcount;
7704 else
7705 vsi->tc_config.tc_info[i].qcount = 1;
7706 vsi->tc_config.tc_info[i].netdev_tc = 0;
7707 }
7708 }
7709
7710 /**
7711 * i40e_del_macvlan_filter
7712 * @hw: pointer to the HW structure
7713 * @seid: seid of the channel VSI
7714 * @macaddr: the mac address to apply as a filter
7715 * @aq_err: store the admin Q error
7716 *
7717 * This function deletes a mac filter on the channel VSI which serves as the
7718 * macvlan. Returns 0 on success.
7719 **/
i40e_del_macvlan_filter(struct i40e_hw * hw,u16 seid,const u8 * macaddr,int * aq_err)7720 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid,
7721 const u8 *macaddr, int *aq_err)
7722 {
7723 struct i40e_aqc_remove_macvlan_element_data element;
7724 int status;
7725
7726 memset(&element, 0, sizeof(element));
7727 ether_addr_copy(element.mac_addr, macaddr);
7728 element.vlan_tag = 0;
7729 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
7730 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL);
7731 *aq_err = hw->aq.asq_last_status;
7732
7733 return status;
7734 }
7735
7736 /**
7737 * i40e_add_macvlan_filter
7738 * @hw: pointer to the HW structure
7739 * @seid: seid of the channel VSI
7740 * @macaddr: the mac address to apply as a filter
7741 * @aq_err: store the admin Q error
7742 *
7743 * This function adds a mac filter on the channel VSI which serves as the
7744 * macvlan. Returns 0 on success.
7745 **/
i40e_add_macvlan_filter(struct i40e_hw * hw,u16 seid,const u8 * macaddr,int * aq_err)7746 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid,
7747 const u8 *macaddr, int *aq_err)
7748 {
7749 struct i40e_aqc_add_macvlan_element_data element;
7750 u16 cmd_flags = 0;
7751 int status;
7752
7753 ether_addr_copy(element.mac_addr, macaddr);
7754 element.vlan_tag = 0;
7755 element.queue_number = 0;
7756 element.match_method = I40E_AQC_MM_ERR_NO_RES;
7757 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
7758 element.flags = cpu_to_le16(cmd_flags);
7759 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL);
7760 *aq_err = hw->aq.asq_last_status;
7761
7762 return status;
7763 }
7764
7765 /**
7766 * i40e_reset_ch_rings - Reset the queue contexts in a channel
7767 * @vsi: the VSI we want to access
7768 * @ch: the channel we want to access
7769 */
i40e_reset_ch_rings(struct i40e_vsi * vsi,struct i40e_channel * ch)7770 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch)
7771 {
7772 struct i40e_ring *tx_ring, *rx_ring;
7773 u16 pf_q;
7774 int i;
7775
7776 for (i = 0; i < ch->num_queue_pairs; i++) {
7777 pf_q = ch->base_queue + i;
7778 tx_ring = vsi->tx_rings[pf_q];
7779 tx_ring->ch = NULL;
7780 rx_ring = vsi->rx_rings[pf_q];
7781 rx_ring->ch = NULL;
7782 }
7783 }
7784
7785 /**
7786 * i40e_free_macvlan_channels
7787 * @vsi: the VSI we want to access
7788 *
7789 * This function frees the Qs of the channel VSI from
7790 * the stack and also deletes the channel VSIs which
7791 * serve as macvlans.
7792 */
i40e_free_macvlan_channels(struct i40e_vsi * vsi)7793 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi)
7794 {
7795 struct i40e_channel *ch, *ch_tmp;
7796 int ret;
7797
7798 if (list_empty(&vsi->macvlan_list))
7799 return;
7800
7801 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
7802 struct i40e_vsi *parent_vsi;
7803
7804 if (i40e_is_channel_macvlan(ch)) {
7805 i40e_reset_ch_rings(vsi, ch);
7806 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
7807 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev);
7808 netdev_set_sb_channel(ch->fwd->netdev, 0);
7809 kfree(ch->fwd);
7810 ch->fwd = NULL;
7811 }
7812
7813 list_del(&ch->list);
7814 parent_vsi = ch->parent_vsi;
7815 if (!parent_vsi || !ch->initialized) {
7816 kfree(ch);
7817 continue;
7818 }
7819
7820 /* remove the VSI */
7821 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
7822 NULL);
7823 if (ret)
7824 dev_err(&vsi->back->pdev->dev,
7825 "unable to remove channel (%d) for parent VSI(%d)\n",
7826 ch->seid, parent_vsi->seid);
7827 kfree(ch);
7828 }
7829 vsi->macvlan_cnt = 0;
7830 }
7831
7832 /**
7833 * i40e_fwd_ring_up - bring the macvlan device up
7834 * @vsi: the VSI we want to access
7835 * @vdev: macvlan netdevice
7836 * @fwd: the private fwd structure
7837 */
i40e_fwd_ring_up(struct i40e_vsi * vsi,struct net_device * vdev,struct i40e_fwd_adapter * fwd)7838 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev,
7839 struct i40e_fwd_adapter *fwd)
7840 {
7841 struct i40e_channel *ch = NULL, *ch_tmp, *iter;
7842 int ret = 0, num_tc = 1, i, aq_err;
7843 struct i40e_pf *pf = vsi->back;
7844 struct i40e_hw *hw = &pf->hw;
7845
7846 /* Go through the list and find an available channel */
7847 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) {
7848 if (!i40e_is_channel_macvlan(iter)) {
7849 iter->fwd = fwd;
7850 /* record configuration for macvlan interface in vdev */
7851 for (i = 0; i < num_tc; i++)
7852 netdev_bind_sb_channel_queue(vsi->netdev, vdev,
7853 i,
7854 iter->num_queue_pairs,
7855 iter->base_queue);
7856 for (i = 0; i < iter->num_queue_pairs; i++) {
7857 struct i40e_ring *tx_ring, *rx_ring;
7858 u16 pf_q;
7859
7860 pf_q = iter->base_queue + i;
7861
7862 /* Get to TX ring ptr */
7863 tx_ring = vsi->tx_rings[pf_q];
7864 tx_ring->ch = iter;
7865
7866 /* Get the RX ring ptr */
7867 rx_ring = vsi->rx_rings[pf_q];
7868 rx_ring->ch = iter;
7869 }
7870 ch = iter;
7871 break;
7872 }
7873 }
7874
7875 if (!ch)
7876 return -EINVAL;
7877
7878 /* Guarantee all rings are updated before we update the
7879 * MAC address filter.
7880 */
7881 wmb();
7882
7883 /* Add a mac filter */
7884 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err);
7885 if (ret) {
7886 /* if we cannot add the MAC rule then disable the offload */
7887 macvlan_release_l2fw_offload(vdev);
7888 for (i = 0; i < ch->num_queue_pairs; i++) {
7889 struct i40e_ring *rx_ring;
7890 u16 pf_q;
7891
7892 pf_q = ch->base_queue + i;
7893 rx_ring = vsi->rx_rings[pf_q];
7894 rx_ring->netdev = NULL;
7895 }
7896 dev_info(&pf->pdev->dev,
7897 "Error adding mac filter on macvlan err %pe, aq_err %s\n",
7898 ERR_PTR(ret),
7899 i40e_aq_str(hw, aq_err));
7900 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n");
7901 }
7902
7903 return ret;
7904 }
7905
7906 /**
7907 * i40e_setup_macvlans - create the channels which will be macvlans
7908 * @vsi: the VSI we want to access
7909 * @macvlan_cnt: no. of macvlans to be setup
7910 * @qcnt: no. of Qs per macvlan
7911 * @vdev: macvlan netdevice
7912 */
i40e_setup_macvlans(struct i40e_vsi * vsi,u16 macvlan_cnt,u16 qcnt,struct net_device * vdev)7913 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt,
7914 struct net_device *vdev)
7915 {
7916 struct i40e_pf *pf = vsi->back;
7917 struct i40e_hw *hw = &pf->hw;
7918 struct i40e_vsi_context ctxt;
7919 u16 sections, qmap, num_qps;
7920 struct i40e_channel *ch;
7921 int i, pow, ret = 0;
7922 u8 offset = 0;
7923
7924 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt)
7925 return -EINVAL;
7926
7927 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt);
7928
7929 /* find the next higher power-of-2 of num queue pairs */
7930 pow = fls(roundup_pow_of_two(num_qps) - 1);
7931
7932 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
7933 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
7934
7935 /* Setup context bits for the main VSI */
7936 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
7937 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
7938 memset(&ctxt, 0, sizeof(ctxt));
7939 ctxt.seid = vsi->seid;
7940 ctxt.pf_num = vsi->back->hw.pf_id;
7941 ctxt.vf_num = 0;
7942 ctxt.uplink_seid = vsi->uplink_seid;
7943 ctxt.info = vsi->info;
7944 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap);
7945 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
7946 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
7947 ctxt.info.valid_sections |= cpu_to_le16(sections);
7948
7949 /* Reconfigure RSS for main VSI with new max queue count */
7950 vsi->rss_size = max_t(u16, num_qps, qcnt);
7951 ret = i40e_vsi_config_rss(vsi);
7952 if (ret) {
7953 dev_info(&pf->pdev->dev,
7954 "Failed to reconfig RSS for num_queues (%u)\n",
7955 vsi->rss_size);
7956 return ret;
7957 }
7958 vsi->reconfig_rss = true;
7959 dev_dbg(&vsi->back->pdev->dev,
7960 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size);
7961 vsi->next_base_queue = num_qps;
7962 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps;
7963
7964 /* Update the VSI after updating the VSI queue-mapping
7965 * information
7966 */
7967 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
7968 if (ret) {
7969 dev_info(&pf->pdev->dev,
7970 "Update vsi tc config failed, err %pe aq_err %s\n",
7971 ERR_PTR(ret),
7972 i40e_aq_str(hw, hw->aq.asq_last_status));
7973 return ret;
7974 }
7975 /* update the local VSI info with updated queue map */
7976 i40e_vsi_update_queue_map(vsi, &ctxt);
7977 vsi->info.valid_sections = 0;
7978
7979 /* Create channels for macvlans */
7980 INIT_LIST_HEAD(&vsi->macvlan_list);
7981 for (i = 0; i < macvlan_cnt; i++) {
7982 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
7983 if (!ch) {
7984 ret = -ENOMEM;
7985 goto err_free;
7986 }
7987 INIT_LIST_HEAD(&ch->list);
7988 ch->num_queue_pairs = qcnt;
7989 if (!i40e_setup_channel(pf, vsi, ch)) {
7990 ret = -EINVAL;
7991 kfree(ch);
7992 goto err_free;
7993 }
7994 ch->parent_vsi = vsi;
7995 vsi->cnt_q_avail -= ch->num_queue_pairs;
7996 vsi->macvlan_cnt++;
7997 list_add_tail(&ch->list, &vsi->macvlan_list);
7998 }
7999
8000 return ret;
8001
8002 err_free:
8003 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n");
8004 i40e_free_macvlan_channels(vsi);
8005
8006 return ret;
8007 }
8008
8009 /**
8010 * i40e_fwd_add - configure macvlans
8011 * @netdev: net device to configure
8012 * @vdev: macvlan netdevice
8013 **/
i40e_fwd_add(struct net_device * netdev,struct net_device * vdev)8014 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev)
8015 {
8016 struct i40e_netdev_priv *np = netdev_priv(netdev);
8017 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors;
8018 struct i40e_vsi *vsi = np->vsi;
8019 struct i40e_pf *pf = vsi->back;
8020 struct i40e_fwd_adapter *fwd;
8021 int avail_macvlan, ret;
8022
8023 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8024 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n");
8025 return ERR_PTR(-EINVAL);
8026 }
8027 if (i40e_is_tc_mqprio_enabled(pf)) {
8028 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n");
8029 return ERR_PTR(-EINVAL);
8030 }
8031 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) {
8032 netdev_info(netdev, "Not enough vectors available to support macvlans\n");
8033 return ERR_PTR(-EINVAL);
8034 }
8035
8036 /* The macvlan device has to be a single Q device so that the
8037 * tc_to_txq field can be reused to pick the tx queue.
8038 */
8039 if (netif_is_multiqueue(vdev))
8040 return ERR_PTR(-ERANGE);
8041
8042 if (!vsi->macvlan_cnt) {
8043 /* reserve bit 0 for the pf device */
8044 set_bit(0, vsi->fwd_bitmask);
8045
8046 /* Try to reserve as many queues as possible for macvlans. First
8047 * reserve 3/4th of max vectors, then half, then quarter and
8048 * calculate Qs per macvlan as you go
8049 */
8050 vectors = pf->num_lan_msix;
8051 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) {
8052 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/
8053 q_per_macvlan = 4;
8054 macvlan_cnt = (vectors - 32) / 4;
8055 } else if (vectors <= 64 && vectors > 32) {
8056 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/
8057 q_per_macvlan = 2;
8058 macvlan_cnt = (vectors - 16) / 2;
8059 } else if (vectors <= 32 && vectors > 16) {
8060 /* allocate 1 Q per macvlan and 16 Qs to the PF*/
8061 q_per_macvlan = 1;
8062 macvlan_cnt = vectors - 16;
8063 } else if (vectors <= 16 && vectors > 8) {
8064 /* allocate 1 Q per macvlan and 8 Qs to the PF */
8065 q_per_macvlan = 1;
8066 macvlan_cnt = vectors - 8;
8067 } else {
8068 /* allocate 1 Q per macvlan and 1 Q to the PF */
8069 q_per_macvlan = 1;
8070 macvlan_cnt = vectors - 1;
8071 }
8072
8073 if (macvlan_cnt == 0)
8074 return ERR_PTR(-EBUSY);
8075
8076 /* Quiesce VSI queues */
8077 i40e_quiesce_vsi(vsi);
8078
8079 /* sets up the macvlans but does not "enable" them */
8080 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan,
8081 vdev);
8082 if (ret)
8083 return ERR_PTR(ret);
8084
8085 /* Unquiesce VSI */
8086 i40e_unquiesce_vsi(vsi);
8087 }
8088 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask,
8089 vsi->macvlan_cnt);
8090 if (avail_macvlan >= I40E_MAX_MACVLANS)
8091 return ERR_PTR(-EBUSY);
8092
8093 /* create the fwd struct */
8094 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL);
8095 if (!fwd)
8096 return ERR_PTR(-ENOMEM);
8097
8098 set_bit(avail_macvlan, vsi->fwd_bitmask);
8099 fwd->bit_no = avail_macvlan;
8100 netdev_set_sb_channel(vdev, avail_macvlan);
8101 fwd->netdev = vdev;
8102
8103 if (!netif_running(netdev))
8104 return fwd;
8105
8106 /* Set fwd ring up */
8107 ret = i40e_fwd_ring_up(vsi, vdev, fwd);
8108 if (ret) {
8109 /* unbind the queues and drop the subordinate channel config */
8110 netdev_unbind_sb_channel(netdev, vdev);
8111 netdev_set_sb_channel(vdev, 0);
8112
8113 kfree(fwd);
8114 return ERR_PTR(-EINVAL);
8115 }
8116
8117 return fwd;
8118 }
8119
8120 /**
8121 * i40e_del_all_macvlans - Delete all the mac filters on the channels
8122 * @vsi: the VSI we want to access
8123 */
i40e_del_all_macvlans(struct i40e_vsi * vsi)8124 static void i40e_del_all_macvlans(struct i40e_vsi *vsi)
8125 {
8126 struct i40e_channel *ch, *ch_tmp;
8127 struct i40e_pf *pf = vsi->back;
8128 struct i40e_hw *hw = &pf->hw;
8129 int aq_err, ret = 0;
8130
8131 if (list_empty(&vsi->macvlan_list))
8132 return;
8133
8134 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
8135 if (i40e_is_channel_macvlan(ch)) {
8136 ret = i40e_del_macvlan_filter(hw, ch->seid,
8137 i40e_channel_mac(ch),
8138 &aq_err);
8139 if (!ret) {
8140 /* Reset queue contexts */
8141 i40e_reset_ch_rings(vsi, ch);
8142 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
8143 netdev_unbind_sb_channel(vsi->netdev,
8144 ch->fwd->netdev);
8145 netdev_set_sb_channel(ch->fwd->netdev, 0);
8146 kfree(ch->fwd);
8147 ch->fwd = NULL;
8148 }
8149 }
8150 }
8151 }
8152
8153 /**
8154 * i40e_fwd_del - delete macvlan interfaces
8155 * @netdev: net device to configure
8156 * @vdev: macvlan netdevice
8157 */
i40e_fwd_del(struct net_device * netdev,void * vdev)8158 static void i40e_fwd_del(struct net_device *netdev, void *vdev)
8159 {
8160 struct i40e_netdev_priv *np = netdev_priv(netdev);
8161 struct i40e_fwd_adapter *fwd = vdev;
8162 struct i40e_channel *ch, *ch_tmp;
8163 struct i40e_vsi *vsi = np->vsi;
8164 struct i40e_pf *pf = vsi->back;
8165 struct i40e_hw *hw = &pf->hw;
8166 int aq_err, ret = 0;
8167
8168 /* Find the channel associated with the macvlan and del mac filter */
8169 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
8170 if (i40e_is_channel_macvlan(ch) &&
8171 ether_addr_equal(i40e_channel_mac(ch),
8172 fwd->netdev->dev_addr)) {
8173 ret = i40e_del_macvlan_filter(hw, ch->seid,
8174 i40e_channel_mac(ch),
8175 &aq_err);
8176 if (!ret) {
8177 /* Reset queue contexts */
8178 i40e_reset_ch_rings(vsi, ch);
8179 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
8180 netdev_unbind_sb_channel(netdev, fwd->netdev);
8181 netdev_set_sb_channel(fwd->netdev, 0);
8182 kfree(ch->fwd);
8183 ch->fwd = NULL;
8184 } else {
8185 dev_info(&pf->pdev->dev,
8186 "Error deleting mac filter on macvlan err %pe, aq_err %s\n",
8187 ERR_PTR(ret),
8188 i40e_aq_str(hw, aq_err));
8189 }
8190 break;
8191 }
8192 }
8193 }
8194
8195 /**
8196 * i40e_setup_tc - configure multiple traffic classes
8197 * @netdev: net device to configure
8198 * @type_data: tc offload data
8199 **/
i40e_setup_tc(struct net_device * netdev,void * type_data)8200 static int i40e_setup_tc(struct net_device *netdev, void *type_data)
8201 {
8202 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8203 struct i40e_netdev_priv *np = netdev_priv(netdev);
8204 struct i40e_vsi *vsi = np->vsi;
8205 struct i40e_pf *pf = vsi->back;
8206 u8 enabled_tc = 0, num_tc, hw;
8207 bool need_reset = false;
8208 int old_queue_pairs;
8209 int ret = -EINVAL;
8210 u16 mode;
8211 int i;
8212
8213 old_queue_pairs = vsi->num_queue_pairs;
8214 num_tc = mqprio_qopt->qopt.num_tc;
8215 hw = mqprio_qopt->qopt.hw;
8216 mode = mqprio_qopt->mode;
8217 if (!hw) {
8218 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8219 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8220 goto config_tc;
8221 }
8222
8223 /* Check if MFP enabled */
8224 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
8225 netdev_info(netdev,
8226 "Configuring TC not supported in MFP mode\n");
8227 return ret;
8228 }
8229 switch (mode) {
8230 case TC_MQPRIO_MODE_DCB:
8231 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8232
8233 /* Check if DCB enabled to continue */
8234 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8235 netdev_info(netdev,
8236 "DCB is not enabled for adapter\n");
8237 return ret;
8238 }
8239
8240 /* Check whether tc count is within enabled limit */
8241 if (num_tc > i40e_pf_get_num_tc(pf)) {
8242 netdev_info(netdev,
8243 "TC count greater than enabled on link for adapter\n");
8244 return ret;
8245 }
8246 break;
8247 case TC_MQPRIO_MODE_CHANNEL:
8248 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8249 netdev_info(netdev,
8250 "Full offload of TC Mqprio options is not supported when DCB is enabled\n");
8251 return ret;
8252 }
8253 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
8254 return ret;
8255 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt);
8256 if (ret)
8257 return ret;
8258 memcpy(&vsi->mqprio_qopt, mqprio_qopt,
8259 sizeof(*mqprio_qopt));
8260 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8261 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
8262 break;
8263 default:
8264 return -EINVAL;
8265 }
8266
8267 config_tc:
8268 /* Generate TC map for number of tc requested */
8269 for (i = 0; i < num_tc; i++)
8270 enabled_tc |= BIT(i);
8271
8272 /* Requesting same TC configuration as already enabled */
8273 if (enabled_tc == vsi->tc_config.enabled_tc &&
8274 mode != TC_MQPRIO_MODE_CHANNEL)
8275 return 0;
8276
8277 /* Quiesce VSI queues */
8278 i40e_quiesce_vsi(vsi);
8279
8280 if (!hw && !i40e_is_tc_mqprio_enabled(pf))
8281 i40e_remove_queue_channels(vsi);
8282
8283 /* Configure VSI for enabled TCs */
8284 ret = i40e_vsi_config_tc(vsi, enabled_tc);
8285 if (ret) {
8286 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
8287 vsi->seid);
8288 need_reset = true;
8289 goto exit;
8290 } else if (enabled_tc &&
8291 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) {
8292 netdev_info(netdev,
8293 "Failed to create channel. Override queues (%u) not power of 2\n",
8294 vsi->tc_config.tc_info[0].qcount);
8295 ret = -EINVAL;
8296 need_reset = true;
8297 goto exit;
8298 }
8299
8300 dev_info(&vsi->back->pdev->dev,
8301 "Setup channel (id:%u) utilizing num_queues %d\n",
8302 vsi->seid, vsi->tc_config.tc_info[0].qcount);
8303
8304 if (i40e_is_tc_mqprio_enabled(pf)) {
8305 if (vsi->mqprio_qopt.max_rate[0]) {
8306 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
8307 vsi->mqprio_qopt.max_rate[0]);
8308
8309 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
8310 if (!ret) {
8311 u64 credits = max_tx_rate;
8312
8313 do_div(credits, I40E_BW_CREDIT_DIVISOR);
8314 dev_dbg(&vsi->back->pdev->dev,
8315 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
8316 max_tx_rate,
8317 credits,
8318 vsi->seid);
8319 } else {
8320 need_reset = true;
8321 goto exit;
8322 }
8323 }
8324 ret = i40e_configure_queue_channels(vsi);
8325 if (ret) {
8326 vsi->num_queue_pairs = old_queue_pairs;
8327 netdev_info(netdev,
8328 "Failed configuring queue channels\n");
8329 need_reset = true;
8330 goto exit;
8331 }
8332 }
8333
8334 exit:
8335 /* Reset the configuration data to defaults, only TC0 is enabled */
8336 if (need_reset) {
8337 i40e_vsi_set_default_tc_config(vsi);
8338 need_reset = false;
8339 }
8340
8341 /* Unquiesce VSI */
8342 i40e_unquiesce_vsi(vsi);
8343 return ret;
8344 }
8345
8346 /**
8347 * i40e_set_cld_element - sets cloud filter element data
8348 * @filter: cloud filter rule
8349 * @cld: ptr to cloud filter element data
8350 *
8351 * This is helper function to copy data into cloud filter element
8352 **/
8353 static inline void
i40e_set_cld_element(struct i40e_cloud_filter * filter,struct i40e_aqc_cloud_filters_element_data * cld)8354 i40e_set_cld_element(struct i40e_cloud_filter *filter,
8355 struct i40e_aqc_cloud_filters_element_data *cld)
8356 {
8357 u32 ipa;
8358 int i;
8359
8360 memset(cld, 0, sizeof(*cld));
8361 ether_addr_copy(cld->outer_mac, filter->dst_mac);
8362 ether_addr_copy(cld->inner_mac, filter->src_mac);
8363
8364 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6)
8365 return;
8366
8367 if (filter->n_proto == ETH_P_IPV6) {
8368 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1)
8369 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) {
8370 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]);
8371
8372 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa);
8373 }
8374 } else {
8375 ipa = be32_to_cpu(filter->dst_ipv4);
8376
8377 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa));
8378 }
8379
8380 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id));
8381
8382 /* tenant_id is not supported by FW now, once the support is enabled
8383 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id)
8384 */
8385 if (filter->tenant_id)
8386 return;
8387 }
8388
8389 /**
8390 * i40e_add_del_cloud_filter - Add/del cloud filter
8391 * @vsi: pointer to VSI
8392 * @filter: cloud filter rule
8393 * @add: if true, add, if false, delete
8394 *
8395 * Add or delete a cloud filter for a specific flow spec.
8396 * Returns 0 if the filter were successfully added.
8397 **/
i40e_add_del_cloud_filter(struct i40e_vsi * vsi,struct i40e_cloud_filter * filter,bool add)8398 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
8399 struct i40e_cloud_filter *filter, bool add)
8400 {
8401 struct i40e_aqc_cloud_filters_element_data cld_filter;
8402 struct i40e_pf *pf = vsi->back;
8403 int ret;
8404 static const u16 flag_table[128] = {
8405 [I40E_CLOUD_FILTER_FLAGS_OMAC] =
8406 I40E_AQC_ADD_CLOUD_FILTER_OMAC,
8407 [I40E_CLOUD_FILTER_FLAGS_IMAC] =
8408 I40E_AQC_ADD_CLOUD_FILTER_IMAC,
8409 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] =
8410 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN,
8411 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] =
8412 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID,
8413 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] =
8414 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC,
8415 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] =
8416 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID,
8417 [I40E_CLOUD_FILTER_FLAGS_IIP] =
8418 I40E_AQC_ADD_CLOUD_FILTER_IIP,
8419 };
8420
8421 if (filter->flags >= ARRAY_SIZE(flag_table))
8422 return -EIO;
8423
8424 memset(&cld_filter, 0, sizeof(cld_filter));
8425
8426 /* copy element needed to add cloud filter from filter */
8427 i40e_set_cld_element(filter, &cld_filter);
8428
8429 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE)
8430 cld_filter.flags = cpu_to_le16(filter->tunnel_type <<
8431 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
8432
8433 if (filter->n_proto == ETH_P_IPV6)
8434 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
8435 I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
8436 else
8437 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
8438 I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
8439
8440 if (add)
8441 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid,
8442 &cld_filter, 1);
8443 else
8444 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid,
8445 &cld_filter, 1);
8446 if (ret)
8447 dev_dbg(&pf->pdev->dev,
8448 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n",
8449 add ? "add" : "delete", filter->dst_port, ret,
8450 pf->hw.aq.asq_last_status);
8451 else
8452 dev_info(&pf->pdev->dev,
8453 "%s cloud filter for VSI: %d\n",
8454 add ? "Added" : "Deleted", filter->seid);
8455 return ret;
8456 }
8457
8458 /**
8459 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf
8460 * @vsi: pointer to VSI
8461 * @filter: cloud filter rule
8462 * @add: if true, add, if false, delete
8463 *
8464 * Add or delete a cloud filter for a specific flow spec using big buffer.
8465 * Returns 0 if the filter were successfully added.
8466 **/
i40e_add_del_cloud_filter_big_buf(struct i40e_vsi * vsi,struct i40e_cloud_filter * filter,bool add)8467 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
8468 struct i40e_cloud_filter *filter,
8469 bool add)
8470 {
8471 struct i40e_aqc_cloud_filters_element_bb cld_filter;
8472 struct i40e_pf *pf = vsi->back;
8473 int ret;
8474
8475 /* Both (src/dst) valid mac_addr are not supported */
8476 if ((is_valid_ether_addr(filter->dst_mac) &&
8477 is_valid_ether_addr(filter->src_mac)) ||
8478 (is_multicast_ether_addr(filter->dst_mac) &&
8479 is_multicast_ether_addr(filter->src_mac)))
8480 return -EOPNOTSUPP;
8481
8482 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP
8483 * ports are not supported via big buffer now.
8484 */
8485 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP)
8486 return -EOPNOTSUPP;
8487
8488 /* adding filter using src_port/src_ip is not supported at this stage */
8489 if (filter->src_port ||
8490 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) ||
8491 !ipv6_addr_any(&filter->ip.v6.src_ip6))
8492 return -EOPNOTSUPP;
8493
8494 memset(&cld_filter, 0, sizeof(cld_filter));
8495
8496 /* copy element needed to add cloud filter from filter */
8497 i40e_set_cld_element(filter, &cld_filter.element);
8498
8499 if (is_valid_ether_addr(filter->dst_mac) ||
8500 is_valid_ether_addr(filter->src_mac) ||
8501 is_multicast_ether_addr(filter->dst_mac) ||
8502 is_multicast_ether_addr(filter->src_mac)) {
8503 /* MAC + IP : unsupported mode */
8504 if (filter->dst_ipv4)
8505 return -EOPNOTSUPP;
8506
8507 /* since we validated that L4 port must be valid before
8508 * we get here, start with respective "flags" value
8509 * and update if vlan is present or not
8510 */
8511 cld_filter.element.flags =
8512 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT);
8513
8514 if (filter->vlan_id) {
8515 cld_filter.element.flags =
8516 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT);
8517 }
8518
8519 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) ||
8520 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) {
8521 cld_filter.element.flags =
8522 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT);
8523 if (filter->n_proto == ETH_P_IPV6)
8524 cld_filter.element.flags |=
8525 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
8526 else
8527 cld_filter.element.flags |=
8528 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
8529 } else {
8530 dev_err(&pf->pdev->dev,
8531 "either mac or ip has to be valid for cloud filter\n");
8532 return -EINVAL;
8533 }
8534
8535 /* Now copy L4 port in Byte 6..7 in general fields */
8536 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] =
8537 be16_to_cpu(filter->dst_port);
8538
8539 if (add) {
8540 /* Validate current device switch mode, change if necessary */
8541 ret = i40e_validate_and_set_switch_mode(vsi);
8542 if (ret) {
8543 dev_err(&pf->pdev->dev,
8544 "failed to set switch mode, ret %d\n",
8545 ret);
8546 return ret;
8547 }
8548
8549 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid,
8550 &cld_filter, 1);
8551 } else {
8552 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid,
8553 &cld_filter, 1);
8554 }
8555
8556 if (ret)
8557 dev_dbg(&pf->pdev->dev,
8558 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n",
8559 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status);
8560 else
8561 dev_info(&pf->pdev->dev,
8562 "%s cloud filter for VSI: %d, L4 port: %d\n",
8563 add ? "add" : "delete", filter->seid,
8564 ntohs(filter->dst_port));
8565 return ret;
8566 }
8567
8568 /**
8569 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel
8570 * @vsi: Pointer to VSI
8571 * @f: Pointer to struct flow_cls_offload
8572 * @filter: Pointer to cloud filter structure
8573 *
8574 **/
i40e_parse_cls_flower(struct i40e_vsi * vsi,struct flow_cls_offload * f,struct i40e_cloud_filter * filter)8575 static int i40e_parse_cls_flower(struct i40e_vsi *vsi,
8576 struct flow_cls_offload *f,
8577 struct i40e_cloud_filter *filter)
8578 {
8579 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
8580 struct flow_dissector *dissector = rule->match.dissector;
8581 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
8582 struct i40e_pf *pf = vsi->back;
8583 u8 field_flags = 0;
8584
8585 if (dissector->used_keys &
8586 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
8587 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
8588 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
8589 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
8590 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
8591 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
8592 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
8593 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
8594 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n",
8595 dissector->used_keys);
8596 return -EOPNOTSUPP;
8597 }
8598
8599 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
8600 struct flow_match_enc_keyid match;
8601
8602 flow_rule_match_enc_keyid(rule, &match);
8603 if (match.mask->keyid != 0)
8604 field_flags |= I40E_CLOUD_FIELD_TEN_ID;
8605
8606 filter->tenant_id = be32_to_cpu(match.key->keyid);
8607 }
8608
8609 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
8610 struct flow_match_basic match;
8611
8612 flow_rule_match_basic(rule, &match);
8613 n_proto_key = ntohs(match.key->n_proto);
8614 n_proto_mask = ntohs(match.mask->n_proto);
8615
8616 if (n_proto_key == ETH_P_ALL) {
8617 n_proto_key = 0;
8618 n_proto_mask = 0;
8619 }
8620 filter->n_proto = n_proto_key & n_proto_mask;
8621 filter->ip_proto = match.key->ip_proto;
8622 }
8623
8624 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
8625 struct flow_match_eth_addrs match;
8626
8627 flow_rule_match_eth_addrs(rule, &match);
8628
8629 /* use is_broadcast and is_zero to check for all 0xf or 0 */
8630 if (!is_zero_ether_addr(match.mask->dst)) {
8631 if (is_broadcast_ether_addr(match.mask->dst)) {
8632 field_flags |= I40E_CLOUD_FIELD_OMAC;
8633 } else {
8634 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n",
8635 match.mask->dst);
8636 return -EIO;
8637 }
8638 }
8639
8640 if (!is_zero_ether_addr(match.mask->src)) {
8641 if (is_broadcast_ether_addr(match.mask->src)) {
8642 field_flags |= I40E_CLOUD_FIELD_IMAC;
8643 } else {
8644 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n",
8645 match.mask->src);
8646 return -EIO;
8647 }
8648 }
8649 ether_addr_copy(filter->dst_mac, match.key->dst);
8650 ether_addr_copy(filter->src_mac, match.key->src);
8651 }
8652
8653 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
8654 struct flow_match_vlan match;
8655
8656 flow_rule_match_vlan(rule, &match);
8657 if (match.mask->vlan_id) {
8658 if (match.mask->vlan_id == VLAN_VID_MASK) {
8659 field_flags |= I40E_CLOUD_FIELD_IVLAN;
8660
8661 } else {
8662 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n",
8663 match.mask->vlan_id);
8664 return -EIO;
8665 }
8666 }
8667
8668 filter->vlan_id = cpu_to_be16(match.key->vlan_id);
8669 }
8670
8671 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
8672 struct flow_match_control match;
8673
8674 flow_rule_match_control(rule, &match);
8675 addr_type = match.key->addr_type;
8676
8677 if (flow_rule_has_control_flags(match.mask->flags,
8678 f->common.extack))
8679 return -EOPNOTSUPP;
8680 }
8681
8682 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
8683 struct flow_match_ipv4_addrs match;
8684
8685 flow_rule_match_ipv4_addrs(rule, &match);
8686 if (match.mask->dst) {
8687 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
8688 field_flags |= I40E_CLOUD_FIELD_IIP;
8689 } else {
8690 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n",
8691 &match.mask->dst);
8692 return -EIO;
8693 }
8694 }
8695
8696 if (match.mask->src) {
8697 if (match.mask->src == cpu_to_be32(0xffffffff)) {
8698 field_flags |= I40E_CLOUD_FIELD_IIP;
8699 } else {
8700 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n",
8701 &match.mask->src);
8702 return -EIO;
8703 }
8704 }
8705
8706 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) {
8707 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n");
8708 return -EIO;
8709 }
8710 filter->dst_ipv4 = match.key->dst;
8711 filter->src_ipv4 = match.key->src;
8712 }
8713
8714 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
8715 struct flow_match_ipv6_addrs match;
8716
8717 flow_rule_match_ipv6_addrs(rule, &match);
8718
8719 /* src and dest IPV6 address should not be LOOPBACK
8720 * (0:0:0:0:0:0:0:1), which can be represented as ::1
8721 */
8722 if (ipv6_addr_loopback(&match.key->dst) ||
8723 ipv6_addr_loopback(&match.key->src)) {
8724 dev_err(&pf->pdev->dev,
8725 "Bad ipv6, addr is LOOPBACK\n");
8726 return -EIO;
8727 }
8728 if (!ipv6_addr_any(&match.mask->dst) ||
8729 !ipv6_addr_any(&match.mask->src))
8730 field_flags |= I40E_CLOUD_FIELD_IIP;
8731
8732 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32,
8733 sizeof(filter->src_ipv6));
8734 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32,
8735 sizeof(filter->dst_ipv6));
8736 }
8737
8738 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
8739 struct flow_match_ports match;
8740
8741 flow_rule_match_ports(rule, &match);
8742 if (match.mask->src) {
8743 if (match.mask->src == cpu_to_be16(0xffff)) {
8744 field_flags |= I40E_CLOUD_FIELD_IIP;
8745 } else {
8746 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n",
8747 be16_to_cpu(match.mask->src));
8748 return -EIO;
8749 }
8750 }
8751
8752 if (match.mask->dst) {
8753 if (match.mask->dst == cpu_to_be16(0xffff)) {
8754 field_flags |= I40E_CLOUD_FIELD_IIP;
8755 } else {
8756 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n",
8757 be16_to_cpu(match.mask->dst));
8758 return -EIO;
8759 }
8760 }
8761
8762 filter->dst_port = match.key->dst;
8763 filter->src_port = match.key->src;
8764
8765 switch (filter->ip_proto) {
8766 case IPPROTO_TCP:
8767 case IPPROTO_UDP:
8768 break;
8769 default:
8770 dev_err(&pf->pdev->dev,
8771 "Only UDP and TCP transport are supported\n");
8772 return -EINVAL;
8773 }
8774 }
8775 filter->flags = field_flags;
8776 return 0;
8777 }
8778
8779 /**
8780 * i40e_handle_tclass: Forward to a traffic class on the device
8781 * @vsi: Pointer to VSI
8782 * @tc: traffic class index on the device
8783 * @filter: Pointer to cloud filter structure
8784 *
8785 **/
i40e_handle_tclass(struct i40e_vsi * vsi,u32 tc,struct i40e_cloud_filter * filter)8786 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc,
8787 struct i40e_cloud_filter *filter)
8788 {
8789 struct i40e_channel *ch, *ch_tmp;
8790
8791 /* direct to a traffic class on the same device */
8792 if (tc == 0) {
8793 filter->seid = vsi->seid;
8794 return 0;
8795 } else if (vsi->tc_config.enabled_tc & BIT(tc)) {
8796 if (!filter->dst_port) {
8797 dev_err(&vsi->back->pdev->dev,
8798 "Specify destination port to direct to traffic class that is not default\n");
8799 return -EINVAL;
8800 }
8801 if (list_empty(&vsi->ch_list))
8802 return -EINVAL;
8803 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list,
8804 list) {
8805 if (ch->seid == vsi->tc_seid_map[tc])
8806 filter->seid = ch->seid;
8807 }
8808 return 0;
8809 }
8810 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n");
8811 return -EINVAL;
8812 }
8813
8814 /**
8815 * i40e_configure_clsflower - Configure tc flower filters
8816 * @vsi: Pointer to VSI
8817 * @cls_flower: Pointer to struct flow_cls_offload
8818 *
8819 **/
i40e_configure_clsflower(struct i40e_vsi * vsi,struct flow_cls_offload * cls_flower)8820 static int i40e_configure_clsflower(struct i40e_vsi *vsi,
8821 struct flow_cls_offload *cls_flower)
8822 {
8823 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
8824 struct i40e_cloud_filter *filter = NULL;
8825 struct i40e_pf *pf = vsi->back;
8826 int err = 0;
8827
8828 if (tc < 0) {
8829 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n");
8830 return -EOPNOTSUPP;
8831 }
8832
8833 if (!tc) {
8834 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination");
8835 return -EINVAL;
8836 }
8837
8838 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
8839 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state))
8840 return -EBUSY;
8841
8842 if (pf->fdir_pf_active_filters ||
8843 (!hlist_empty(&pf->fdir_filter_list))) {
8844 dev_err(&vsi->back->pdev->dev,
8845 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n");
8846 return -EINVAL;
8847 }
8848
8849 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) {
8850 dev_err(&vsi->back->pdev->dev,
8851 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n");
8852 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags);
8853 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags);
8854 }
8855
8856 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
8857 if (!filter)
8858 return -ENOMEM;
8859
8860 filter->cookie = cls_flower->cookie;
8861
8862 err = i40e_parse_cls_flower(vsi, cls_flower, filter);
8863 if (err < 0)
8864 goto err;
8865
8866 err = i40e_handle_tclass(vsi, tc, filter);
8867 if (err < 0)
8868 goto err;
8869
8870 /* Add cloud filter */
8871 if (filter->dst_port)
8872 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true);
8873 else
8874 err = i40e_add_del_cloud_filter(vsi, filter, true);
8875
8876 if (err) {
8877 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n",
8878 err);
8879 goto err;
8880 }
8881
8882 /* add filter to the ordered list */
8883 INIT_HLIST_NODE(&filter->cloud_node);
8884
8885 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list);
8886
8887 pf->num_cloud_filters++;
8888
8889 return err;
8890 err:
8891 kfree(filter);
8892 return err;
8893 }
8894
8895 /**
8896 * i40e_find_cloud_filter - Find the could filter in the list
8897 * @vsi: Pointer to VSI
8898 * @cookie: filter specific cookie
8899 *
8900 **/
i40e_find_cloud_filter(struct i40e_vsi * vsi,unsigned long * cookie)8901 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi,
8902 unsigned long *cookie)
8903 {
8904 struct i40e_cloud_filter *filter = NULL;
8905 struct hlist_node *node2;
8906
8907 hlist_for_each_entry_safe(filter, node2,
8908 &vsi->back->cloud_filter_list, cloud_node)
8909 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
8910 return filter;
8911 return NULL;
8912 }
8913
8914 /**
8915 * i40e_delete_clsflower - Remove tc flower filters
8916 * @vsi: Pointer to VSI
8917 * @cls_flower: Pointer to struct flow_cls_offload
8918 *
8919 **/
i40e_delete_clsflower(struct i40e_vsi * vsi,struct flow_cls_offload * cls_flower)8920 static int i40e_delete_clsflower(struct i40e_vsi *vsi,
8921 struct flow_cls_offload *cls_flower)
8922 {
8923 struct i40e_cloud_filter *filter = NULL;
8924 struct i40e_pf *pf = vsi->back;
8925 int err = 0;
8926
8927 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie);
8928
8929 if (!filter)
8930 return -EINVAL;
8931
8932 hash_del(&filter->cloud_node);
8933
8934 if (filter->dst_port)
8935 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false);
8936 else
8937 err = i40e_add_del_cloud_filter(vsi, filter, false);
8938
8939 kfree(filter);
8940 if (err) {
8941 dev_err(&pf->pdev->dev,
8942 "Failed to delete cloud filter, err %pe\n",
8943 ERR_PTR(err));
8944 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
8945 }
8946
8947 pf->num_cloud_filters--;
8948 if (!pf->num_cloud_filters)
8949 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
8950 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
8951 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
8952 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
8953 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
8954 }
8955 return 0;
8956 }
8957
8958 /**
8959 * i40e_setup_tc_cls_flower - flower classifier offloads
8960 * @np: net device to configure
8961 * @cls_flower: offload data
8962 **/
i40e_setup_tc_cls_flower(struct i40e_netdev_priv * np,struct flow_cls_offload * cls_flower)8963 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np,
8964 struct flow_cls_offload *cls_flower)
8965 {
8966 struct i40e_vsi *vsi = np->vsi;
8967
8968 switch (cls_flower->command) {
8969 case FLOW_CLS_REPLACE:
8970 return i40e_configure_clsflower(vsi, cls_flower);
8971 case FLOW_CLS_DESTROY:
8972 return i40e_delete_clsflower(vsi, cls_flower);
8973 case FLOW_CLS_STATS:
8974 return -EOPNOTSUPP;
8975 default:
8976 return -EOPNOTSUPP;
8977 }
8978 }
8979
i40e_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8980 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
8981 void *cb_priv)
8982 {
8983 struct i40e_netdev_priv *np = cb_priv;
8984
8985 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data))
8986 return -EOPNOTSUPP;
8987
8988 switch (type) {
8989 case TC_SETUP_CLSFLOWER:
8990 return i40e_setup_tc_cls_flower(np, type_data);
8991
8992 default:
8993 return -EOPNOTSUPP;
8994 }
8995 }
8996
8997 static LIST_HEAD(i40e_block_cb_list);
8998
__i40e_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8999 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9000 void *type_data)
9001 {
9002 struct i40e_netdev_priv *np = netdev_priv(netdev);
9003
9004 switch (type) {
9005 case TC_SETUP_QDISC_MQPRIO:
9006 return i40e_setup_tc(netdev, type_data);
9007 case TC_SETUP_BLOCK:
9008 return flow_block_cb_setup_simple(type_data,
9009 &i40e_block_cb_list,
9010 i40e_setup_tc_block_cb,
9011 np, np, true);
9012 default:
9013 return -EOPNOTSUPP;
9014 }
9015 }
9016
9017 /**
9018 * i40e_open - Called when a network interface is made active
9019 * @netdev: network interface device structure
9020 *
9021 * The open entry point is called when a network interface is made
9022 * active by the system (IFF_UP). At this point all resources needed
9023 * for transmit and receive operations are allocated, the interrupt
9024 * handler is registered with the OS, the netdev watchdog subtask is
9025 * enabled, and the stack is notified that the interface is ready.
9026 *
9027 * Returns 0 on success, negative value on failure
9028 **/
i40e_open(struct net_device * netdev)9029 int i40e_open(struct net_device *netdev)
9030 {
9031 struct i40e_netdev_priv *np = netdev_priv(netdev);
9032 struct i40e_vsi *vsi = np->vsi;
9033 struct i40e_pf *pf = vsi->back;
9034 int err;
9035
9036 /* disallow open during test or if eeprom is broken */
9037 if (test_bit(__I40E_TESTING, pf->state) ||
9038 test_bit(__I40E_BAD_EEPROM, pf->state))
9039 return -EBUSY;
9040
9041 netif_carrier_off(netdev);
9042
9043 if (i40e_force_link_state(pf, true))
9044 return -EAGAIN;
9045
9046 err = i40e_vsi_open(vsi);
9047 if (err)
9048 return err;
9049
9050 /* configure global TSO hardware offload settings */
9051 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
9052 TCP_FLAG_FIN) >> 16);
9053 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
9054 TCP_FLAG_FIN |
9055 TCP_FLAG_CWR) >> 16);
9056 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
9057 udp_tunnel_get_rx_info(netdev);
9058
9059 return 0;
9060 }
9061
9062 /**
9063 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues
9064 * @vsi: vsi structure
9065 *
9066 * This updates netdev's number of tx/rx queues
9067 *
9068 * Returns status of setting tx/rx queues
9069 **/
i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi * vsi)9070 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi)
9071 {
9072 int ret;
9073
9074 ret = netif_set_real_num_rx_queues(vsi->netdev,
9075 vsi->num_queue_pairs);
9076 if (ret)
9077 return ret;
9078
9079 return netif_set_real_num_tx_queues(vsi->netdev,
9080 vsi->num_queue_pairs);
9081 }
9082
9083 /**
9084 * i40e_vsi_open -
9085 * @vsi: the VSI to open
9086 *
9087 * Finish initialization of the VSI.
9088 *
9089 * Returns 0 on success, negative value on failure
9090 *
9091 * Note: expects to be called while under rtnl_lock()
9092 **/
i40e_vsi_open(struct i40e_vsi * vsi)9093 int i40e_vsi_open(struct i40e_vsi *vsi)
9094 {
9095 struct i40e_pf *pf = vsi->back;
9096 char int_name[I40E_INT_NAME_STR_LEN];
9097 int err;
9098
9099 /* allocate descriptors */
9100 err = i40e_vsi_setup_tx_resources(vsi);
9101 if (err)
9102 goto err_setup_tx;
9103 err = i40e_vsi_setup_rx_resources(vsi);
9104 if (err)
9105 goto err_setup_rx;
9106
9107 err = i40e_vsi_configure(vsi);
9108 if (err)
9109 goto err_setup_rx;
9110
9111 if (vsi->netdev) {
9112 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
9113 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
9114 err = i40e_vsi_request_irq(vsi, int_name);
9115 if (err)
9116 goto err_setup_rx;
9117
9118 /* Notify the stack of the actual queue counts. */
9119 err = i40e_netif_set_realnum_tx_rx_queues(vsi);
9120 if (err)
9121 goto err_set_queues;
9122
9123 } else if (vsi->type == I40E_VSI_FDIR) {
9124 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
9125 dev_driver_string(&pf->pdev->dev),
9126 dev_name(&pf->pdev->dev));
9127 err = i40e_vsi_request_irq(vsi, int_name);
9128 if (err)
9129 goto err_setup_rx;
9130
9131 } else {
9132 err = -EINVAL;
9133 goto err_setup_rx;
9134 }
9135
9136 err = i40e_up_complete(vsi);
9137 if (err)
9138 goto err_up_complete;
9139
9140 return 0;
9141
9142 err_up_complete:
9143 i40e_down(vsi);
9144 err_set_queues:
9145 i40e_vsi_free_irq(vsi);
9146 err_setup_rx:
9147 i40e_vsi_free_rx_resources(vsi);
9148 err_setup_tx:
9149 i40e_vsi_free_tx_resources(vsi);
9150 if (vsi->type == I40E_VSI_MAIN)
9151 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
9152
9153 return err;
9154 }
9155
9156 /**
9157 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting
9158 * @pf: Pointer to PF
9159 *
9160 * This function destroys the hlist where all the Flow Director
9161 * filters were saved.
9162 **/
i40e_fdir_filter_exit(struct i40e_pf * pf)9163 static void i40e_fdir_filter_exit(struct i40e_pf *pf)
9164 {
9165 struct i40e_fdir_filter *filter;
9166 struct i40e_flex_pit *pit_entry, *tmp;
9167 struct hlist_node *node2;
9168
9169 hlist_for_each_entry_safe(filter, node2,
9170 &pf->fdir_filter_list, fdir_node) {
9171 hlist_del(&filter->fdir_node);
9172 kfree(filter);
9173 }
9174
9175 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
9176 list_del(&pit_entry->list);
9177 kfree(pit_entry);
9178 }
9179 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
9180
9181 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
9182 list_del(&pit_entry->list);
9183 kfree(pit_entry);
9184 }
9185 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
9186
9187 pf->fdir_pf_active_filters = 0;
9188 i40e_reset_fdir_filter_cnt(pf);
9189
9190 /* Reprogram the default input set for TCP/IPv4 */
9191 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
9192 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9193 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9194
9195 /* Reprogram the default input set for TCP/IPv6 */
9196 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP,
9197 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9198 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9199
9200 /* Reprogram the default input set for UDP/IPv4 */
9201 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
9202 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9203 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9204
9205 /* Reprogram the default input set for UDP/IPv6 */
9206 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP,
9207 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9208 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9209
9210 /* Reprogram the default input set for SCTP/IPv4 */
9211 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
9212 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9213 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9214
9215 /* Reprogram the default input set for SCTP/IPv6 */
9216 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP,
9217 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9218 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9219
9220 /* Reprogram the default input set for Other/IPv4 */
9221 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
9222 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9223
9224 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4,
9225 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9226
9227 /* Reprogram the default input set for Other/IPv6 */
9228 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER,
9229 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9230
9231 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6,
9232 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9233 }
9234
9235 /**
9236 * i40e_cloud_filter_exit - Cleans up the cloud filters
9237 * @pf: Pointer to PF
9238 *
9239 * This function destroys the hlist where all the cloud filters
9240 * were saved.
9241 **/
i40e_cloud_filter_exit(struct i40e_pf * pf)9242 static void i40e_cloud_filter_exit(struct i40e_pf *pf)
9243 {
9244 struct i40e_cloud_filter *cfilter;
9245 struct hlist_node *node;
9246
9247 hlist_for_each_entry_safe(cfilter, node,
9248 &pf->cloud_filter_list, cloud_node) {
9249 hlist_del(&cfilter->cloud_node);
9250 kfree(cfilter);
9251 }
9252 pf->num_cloud_filters = 0;
9253
9254 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
9255 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
9256 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
9257 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
9258 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
9259 }
9260 }
9261
9262 /**
9263 * i40e_close - Disables a network interface
9264 * @netdev: network interface device structure
9265 *
9266 * The close entry point is called when an interface is de-activated
9267 * by the OS. The hardware is still under the driver's control, but
9268 * this netdev interface is disabled.
9269 *
9270 * Returns 0, this is not allowed to fail
9271 **/
i40e_close(struct net_device * netdev)9272 int i40e_close(struct net_device *netdev)
9273 {
9274 struct i40e_netdev_priv *np = netdev_priv(netdev);
9275 struct i40e_vsi *vsi = np->vsi;
9276
9277 i40e_vsi_close(vsi);
9278
9279 return 0;
9280 }
9281
9282 /**
9283 * i40e_do_reset - Start a PF or Core Reset sequence
9284 * @pf: board private structure
9285 * @reset_flags: which reset is requested
9286 * @lock_acquired: indicates whether or not the lock has been acquired
9287 * before this function was called.
9288 *
9289 * The essential difference in resets is that the PF Reset
9290 * doesn't clear the packet buffers, doesn't reset the PE
9291 * firmware, and doesn't bother the other PFs on the chip.
9292 **/
i40e_do_reset(struct i40e_pf * pf,u32 reset_flags,bool lock_acquired)9293 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
9294 {
9295 struct i40e_vsi *vsi;
9296 u32 val;
9297 int i;
9298
9299 /* do the biggest reset indicated */
9300 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
9301
9302 /* Request a Global Reset
9303 *
9304 * This will start the chip's countdown to the actual full
9305 * chip reset event, and a warning interrupt to be sent
9306 * to all PFs, including the requestor. Our handler
9307 * for the warning interrupt will deal with the shutdown
9308 * and recovery of the switch setup.
9309 */
9310 dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
9311 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
9312 val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
9313 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
9314
9315 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
9316
9317 /* Request a Core Reset
9318 *
9319 * Same as Global Reset, except does *not* include the MAC/PHY
9320 */
9321 dev_dbg(&pf->pdev->dev, "CoreR requested\n");
9322 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
9323 val |= I40E_GLGEN_RTRIG_CORER_MASK;
9324 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
9325 i40e_flush(&pf->hw);
9326
9327 } else if (reset_flags & I40E_PF_RESET_FLAG) {
9328
9329 /* Request a PF Reset
9330 *
9331 * Resets only the PF-specific registers
9332 *
9333 * This goes directly to the tear-down and rebuild of
9334 * the switch, since we need to do all the recovery as
9335 * for the Core Reset.
9336 */
9337 dev_dbg(&pf->pdev->dev, "PFR requested\n");
9338 i40e_handle_reset_warning(pf, lock_acquired);
9339
9340 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) {
9341 /* Request a PF Reset
9342 *
9343 * Resets PF and reinitializes PFs VSI.
9344 */
9345 i40e_prep_for_reset(pf);
9346 i40e_reset_and_rebuild(pf, true, lock_acquired);
9347 dev_info(&pf->pdev->dev,
9348 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
9349 "FW LLDP is disabled\n" :
9350 "FW LLDP is enabled\n");
9351
9352 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
9353 /* Find the VSI(s) that requested a re-init */
9354 dev_info(&pf->pdev->dev, "VSI reinit requested\n");
9355
9356 i40e_pf_for_each_vsi(pf, i, vsi) {
9357 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
9358 vsi->state))
9359 i40e_vsi_reinit_locked(vsi);
9360 }
9361 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
9362 /* Find the VSI(s) that needs to be brought down */
9363 dev_info(&pf->pdev->dev, "VSI down requested\n");
9364
9365 i40e_pf_for_each_vsi(pf, i, vsi) {
9366 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
9367 vsi->state)) {
9368 set_bit(__I40E_VSI_DOWN, vsi->state);
9369 i40e_down(vsi);
9370 }
9371 }
9372 } else {
9373 dev_info(&pf->pdev->dev,
9374 "bad reset request 0x%08x\n", reset_flags);
9375 }
9376 }
9377
9378 #ifdef CONFIG_I40E_DCB
9379 /**
9380 * i40e_dcb_need_reconfig - Check if DCB needs reconfig
9381 * @pf: board private structure
9382 * @old_cfg: current DCB config
9383 * @new_cfg: new DCB config
9384 **/
i40e_dcb_need_reconfig(struct i40e_pf * pf,struct i40e_dcbx_config * old_cfg,struct i40e_dcbx_config * new_cfg)9385 bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
9386 struct i40e_dcbx_config *old_cfg,
9387 struct i40e_dcbx_config *new_cfg)
9388 {
9389 bool need_reconfig = false;
9390
9391 /* Check if ETS configuration has changed */
9392 if (memcmp(&new_cfg->etscfg,
9393 &old_cfg->etscfg,
9394 sizeof(new_cfg->etscfg))) {
9395 /* If Priority Table has changed reconfig is needed */
9396 if (memcmp(&new_cfg->etscfg.prioritytable,
9397 &old_cfg->etscfg.prioritytable,
9398 sizeof(new_cfg->etscfg.prioritytable))) {
9399 need_reconfig = true;
9400 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
9401 }
9402
9403 if (memcmp(&new_cfg->etscfg.tcbwtable,
9404 &old_cfg->etscfg.tcbwtable,
9405 sizeof(new_cfg->etscfg.tcbwtable)))
9406 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
9407
9408 if (memcmp(&new_cfg->etscfg.tsatable,
9409 &old_cfg->etscfg.tsatable,
9410 sizeof(new_cfg->etscfg.tsatable)))
9411 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
9412 }
9413
9414 /* Check if PFC configuration has changed */
9415 if (memcmp(&new_cfg->pfc,
9416 &old_cfg->pfc,
9417 sizeof(new_cfg->pfc))) {
9418 need_reconfig = true;
9419 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
9420 }
9421
9422 /* Check if APP Table has changed */
9423 if (memcmp(&new_cfg->app,
9424 &old_cfg->app,
9425 sizeof(new_cfg->app))) {
9426 need_reconfig = true;
9427 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
9428 }
9429
9430 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
9431 return need_reconfig;
9432 }
9433
9434 /**
9435 * i40e_handle_lldp_event - Handle LLDP Change MIB event
9436 * @pf: board private structure
9437 * @e: event info posted on ARQ
9438 **/
i40e_handle_lldp_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)9439 static int i40e_handle_lldp_event(struct i40e_pf *pf,
9440 struct i40e_arq_event_info *e)
9441 {
9442 struct i40e_aqc_lldp_get_mib *mib =
9443 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw;
9444 struct i40e_hw *hw = &pf->hw;
9445 struct i40e_dcbx_config tmp_dcbx_cfg;
9446 bool need_reconfig = false;
9447 int ret = 0;
9448 u8 type;
9449
9450 /* X710-T*L 2.5G and 5G speeds don't support DCB */
9451 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
9452 (hw->phy.link_info.link_speed &
9453 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) &&
9454 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
9455 /* let firmware decide if the DCB should be disabled */
9456 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9457
9458 /* Not DCB capable or capability disabled */
9459 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
9460 return ret;
9461
9462 /* Ignore if event is not for Nearest Bridge */
9463 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
9464 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
9465 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
9466 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
9467 return ret;
9468
9469 /* Check MIB Type and return if event for Remote MIB update */
9470 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
9471 dev_dbg(&pf->pdev->dev,
9472 "LLDP event mib type %s\n", type ? "remote" : "local");
9473 if (type == I40E_AQ_LLDP_MIB_REMOTE) {
9474 /* Update the remote cached instance and return */
9475 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
9476 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
9477 &hw->remote_dcbx_config);
9478 goto exit;
9479 }
9480
9481 /* Store the old configuration */
9482 tmp_dcbx_cfg = hw->local_dcbx_config;
9483
9484 /* Reset the old DCBx configuration data */
9485 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
9486 /* Get updated DCBX data from firmware */
9487 ret = i40e_get_dcb_config(&pf->hw);
9488 if (ret) {
9489 /* X710-T*L 2.5G and 5G speeds don't support DCB */
9490 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
9491 (hw->phy.link_info.link_speed &
9492 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
9493 dev_warn(&pf->pdev->dev,
9494 "DCB is not supported for X710-T*L 2.5/5G speeds\n");
9495 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9496 } else {
9497 dev_info(&pf->pdev->dev,
9498 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n",
9499 ERR_PTR(ret),
9500 i40e_aq_str(&pf->hw,
9501 pf->hw.aq.asq_last_status));
9502 }
9503 goto exit;
9504 }
9505
9506 /* No change detected in DCBX configs */
9507 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
9508 sizeof(tmp_dcbx_cfg))) {
9509 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
9510 goto exit;
9511 }
9512
9513 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
9514 &hw->local_dcbx_config);
9515
9516 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
9517
9518 if (!need_reconfig)
9519 goto exit;
9520
9521 /* Enable DCB tagging only when more than one TC */
9522 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
9523 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
9524 else
9525 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9526
9527 set_bit(__I40E_PORT_SUSPENDED, pf->state);
9528 /* Reconfiguration needed quiesce all VSIs */
9529 i40e_pf_quiesce_all_vsi(pf);
9530
9531 /* Changes in configuration update VEB/VSI */
9532 i40e_dcb_reconfigure(pf);
9533
9534 ret = i40e_resume_port_tx(pf);
9535
9536 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
9537 /* In case of error no point in resuming VSIs */
9538 if (ret)
9539 goto exit;
9540
9541 /* Wait for the PF's queues to be disabled */
9542 ret = i40e_pf_wait_queues_disabled(pf);
9543 if (ret) {
9544 /* Schedule PF reset to recover */
9545 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
9546 i40e_service_event_schedule(pf);
9547 } else {
9548 i40e_pf_unquiesce_all_vsi(pf);
9549 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
9550 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
9551 }
9552
9553 exit:
9554 return ret;
9555 }
9556 #endif /* CONFIG_I40E_DCB */
9557
9558 /**
9559 * i40e_do_reset_safe - Protected reset path for userland calls.
9560 * @pf: board private structure
9561 * @reset_flags: which reset is requested
9562 *
9563 **/
i40e_do_reset_safe(struct i40e_pf * pf,u32 reset_flags)9564 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
9565 {
9566 rtnl_lock();
9567 i40e_do_reset(pf, reset_flags, true);
9568 rtnl_unlock();
9569 }
9570
9571 /**
9572 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
9573 * @pf: board private structure
9574 * @e: event info posted on ARQ
9575 *
9576 * Handler for LAN Queue Overflow Event generated by the firmware for PF
9577 * and VF queues
9578 **/
i40e_handle_lan_overflow_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)9579 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
9580 struct i40e_arq_event_info *e)
9581 {
9582 struct i40e_aqc_lan_overflow *data =
9583 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
9584 u32 queue = le32_to_cpu(data->prtdcb_rupto);
9585 u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
9586 struct i40e_hw *hw = &pf->hw;
9587 struct i40e_vf *vf;
9588 u16 vf_id;
9589
9590 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
9591 queue, qtx_ctl);
9592
9593 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) !=
9594 I40E_QTX_CTL_VF_QUEUE)
9595 return;
9596
9597 /* Queue belongs to VF, find the VF and issue VF reset */
9598 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl);
9599 vf_id -= hw->func_caps.vf_base_id;
9600 vf = &pf->vf[vf_id];
9601 i40e_vc_notify_vf_reset(vf);
9602 /* Allow VF to process pending reset notification */
9603 msleep(20);
9604 i40e_reset_vf(vf, false);
9605 }
9606
9607 /**
9608 * i40e_get_current_fd_count - Get total FD filters programmed for this PF
9609 * @pf: board private structure
9610 **/
i40e_get_current_fd_count(struct i40e_pf * pf)9611 u32 i40e_get_current_fd_count(struct i40e_pf *pf)
9612 {
9613 u32 val, fcnt_prog;
9614
9615 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
9616 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
9617 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val);
9618 return fcnt_prog;
9619 }
9620
9621 /**
9622 * i40e_get_global_fd_count - Get total FD filters programmed on device
9623 * @pf: board private structure
9624 **/
i40e_get_global_fd_count(struct i40e_pf * pf)9625 u32 i40e_get_global_fd_count(struct i40e_pf *pf)
9626 {
9627 u32 val, fcnt_prog;
9628
9629 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
9630 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
9631 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val);
9632 return fcnt_prog;
9633 }
9634
9635 /**
9636 * i40e_reenable_fdir_sb - Restore FDir SB capability
9637 * @pf: board private structure
9638 **/
i40e_reenable_fdir_sb(struct i40e_pf * pf)9639 static void i40e_reenable_fdir_sb(struct i40e_pf *pf)
9640 {
9641 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
9642 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
9643 (I40E_DEBUG_FD & pf->hw.debug_mask))
9644 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
9645 }
9646
9647 /**
9648 * i40e_reenable_fdir_atr - Restore FDir ATR capability
9649 * @pf: board private structure
9650 **/
i40e_reenable_fdir_atr(struct i40e_pf * pf)9651 static void i40e_reenable_fdir_atr(struct i40e_pf *pf)
9652 {
9653 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) {
9654 /* ATR uses the same filtering logic as SB rules. It only
9655 * functions properly if the input set mask is at the default
9656 * settings. It is safe to restore the default input set
9657 * because there are no active TCPv4 filter rules.
9658 */
9659 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
9660 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9661 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9662
9663 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
9664 (I40E_DEBUG_FD & pf->hw.debug_mask))
9665 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
9666 }
9667 }
9668
9669 /**
9670 * i40e_delete_invalid_filter - Delete an invalid FDIR filter
9671 * @pf: board private structure
9672 * @filter: FDir filter to remove
9673 */
i40e_delete_invalid_filter(struct i40e_pf * pf,struct i40e_fdir_filter * filter)9674 static void i40e_delete_invalid_filter(struct i40e_pf *pf,
9675 struct i40e_fdir_filter *filter)
9676 {
9677 /* Update counters */
9678 pf->fdir_pf_active_filters--;
9679 pf->fd_inv = 0;
9680
9681 switch (filter->flow_type) {
9682 case TCP_V4_FLOW:
9683 pf->fd_tcp4_filter_cnt--;
9684 break;
9685 case UDP_V4_FLOW:
9686 pf->fd_udp4_filter_cnt--;
9687 break;
9688 case SCTP_V4_FLOW:
9689 pf->fd_sctp4_filter_cnt--;
9690 break;
9691 case TCP_V6_FLOW:
9692 pf->fd_tcp6_filter_cnt--;
9693 break;
9694 case UDP_V6_FLOW:
9695 pf->fd_udp6_filter_cnt--;
9696 break;
9697 case SCTP_V6_FLOW:
9698 pf->fd_udp6_filter_cnt--;
9699 break;
9700 case IP_USER_FLOW:
9701 switch (filter->ipl4_proto) {
9702 case IPPROTO_TCP:
9703 pf->fd_tcp4_filter_cnt--;
9704 break;
9705 case IPPROTO_UDP:
9706 pf->fd_udp4_filter_cnt--;
9707 break;
9708 case IPPROTO_SCTP:
9709 pf->fd_sctp4_filter_cnt--;
9710 break;
9711 case IPPROTO_IP:
9712 pf->fd_ip4_filter_cnt--;
9713 break;
9714 }
9715 break;
9716 case IPV6_USER_FLOW:
9717 switch (filter->ipl4_proto) {
9718 case IPPROTO_TCP:
9719 pf->fd_tcp6_filter_cnt--;
9720 break;
9721 case IPPROTO_UDP:
9722 pf->fd_udp6_filter_cnt--;
9723 break;
9724 case IPPROTO_SCTP:
9725 pf->fd_sctp6_filter_cnt--;
9726 break;
9727 case IPPROTO_IP:
9728 pf->fd_ip6_filter_cnt--;
9729 break;
9730 }
9731 break;
9732 }
9733
9734 /* Remove the filter from the list and free memory */
9735 hlist_del(&filter->fdir_node);
9736 kfree(filter);
9737 }
9738
9739 /**
9740 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
9741 * @pf: board private structure
9742 **/
i40e_fdir_check_and_reenable(struct i40e_pf * pf)9743 void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
9744 {
9745 struct i40e_fdir_filter *filter;
9746 u32 fcnt_prog, fcnt_avail;
9747 struct hlist_node *node;
9748
9749 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
9750 return;
9751
9752 /* Check if we have enough room to re-enable FDir SB capability. */
9753 fcnt_prog = i40e_get_global_fd_count(pf);
9754 fcnt_avail = pf->fdir_pf_filter_count;
9755 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
9756 (pf->fd_add_err == 0) ||
9757 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt))
9758 i40e_reenable_fdir_sb(pf);
9759
9760 /* We should wait for even more space before re-enabling ATR.
9761 * Additionally, we cannot enable ATR as long as we still have TCP SB
9762 * rules active.
9763 */
9764 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
9765 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0)
9766 i40e_reenable_fdir_atr(pf);
9767
9768 /* if hw had a problem adding a filter, delete it */
9769 if (pf->fd_inv > 0) {
9770 hlist_for_each_entry_safe(filter, node,
9771 &pf->fdir_filter_list, fdir_node)
9772 if (filter->fd_id == pf->fd_inv)
9773 i40e_delete_invalid_filter(pf, filter);
9774 }
9775 }
9776
9777 #define I40E_MIN_FD_FLUSH_INTERVAL 10
9778 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
9779 /**
9780 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
9781 * @pf: board private structure
9782 **/
i40e_fdir_flush_and_replay(struct i40e_pf * pf)9783 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
9784 {
9785 unsigned long min_flush_time;
9786 int flush_wait_retry = 50;
9787 bool disable_atr = false;
9788 int fd_room;
9789 int reg;
9790
9791 if (!time_after(jiffies, pf->fd_flush_timestamp +
9792 (I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
9793 return;
9794
9795 /* If the flush is happening too quick and we have mostly SB rules we
9796 * should not re-enable ATR for some time.
9797 */
9798 min_flush_time = pf->fd_flush_timestamp +
9799 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
9800 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
9801
9802 if (!(time_after(jiffies, min_flush_time)) &&
9803 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
9804 if (I40E_DEBUG_FD & pf->hw.debug_mask)
9805 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
9806 disable_atr = true;
9807 }
9808
9809 pf->fd_flush_timestamp = jiffies;
9810 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
9811 /* flush all filters */
9812 wr32(&pf->hw, I40E_PFQF_CTL_1,
9813 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
9814 i40e_flush(&pf->hw);
9815 pf->fd_flush_cnt++;
9816 pf->fd_add_err = 0;
9817 do {
9818 /* Check FD flush status every 5-6msec */
9819 usleep_range(5000, 6000);
9820 reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
9821 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
9822 break;
9823 } while (flush_wait_retry--);
9824 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
9825 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
9826 } else {
9827 /* replay sideband filters */
9828 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf));
9829 if (!disable_atr && !pf->fd_tcp4_filter_cnt)
9830 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
9831 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
9832 if (I40E_DEBUG_FD & pf->hw.debug_mask)
9833 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
9834 }
9835 }
9836
9837 /**
9838 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed
9839 * @pf: board private structure
9840 **/
i40e_get_current_atr_cnt(struct i40e_pf * pf)9841 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
9842 {
9843 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
9844 }
9845
9846 /**
9847 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
9848 * @pf: board private structure
9849 **/
i40e_fdir_reinit_subtask(struct i40e_pf * pf)9850 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
9851 {
9852
9853 /* if interface is down do nothing */
9854 if (test_bit(__I40E_DOWN, pf->state))
9855 return;
9856
9857 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
9858 i40e_fdir_flush_and_replay(pf);
9859
9860 i40e_fdir_check_and_reenable(pf);
9861
9862 }
9863
9864 /**
9865 * i40e_vsi_link_event - notify VSI of a link event
9866 * @vsi: vsi to be notified
9867 * @link_up: link up or down
9868 **/
i40e_vsi_link_event(struct i40e_vsi * vsi,bool link_up)9869 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
9870 {
9871 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
9872 return;
9873
9874 switch (vsi->type) {
9875 case I40E_VSI_MAIN:
9876 if (!vsi->netdev || !vsi->netdev_registered)
9877 break;
9878
9879 if (link_up) {
9880 netif_carrier_on(vsi->netdev);
9881 netif_tx_wake_all_queues(vsi->netdev);
9882 } else {
9883 netif_carrier_off(vsi->netdev);
9884 netif_tx_stop_all_queues(vsi->netdev);
9885 }
9886 break;
9887
9888 case I40E_VSI_SRIOV:
9889 case I40E_VSI_VMDQ2:
9890 case I40E_VSI_CTRL:
9891 case I40E_VSI_IWARP:
9892 case I40E_VSI_MIRROR:
9893 default:
9894 /* there is no notification for other VSIs */
9895 break;
9896 }
9897 }
9898
9899 /**
9900 * i40e_veb_link_event - notify elements on the veb of a link event
9901 * @veb: veb to be notified
9902 * @link_up: link up or down
9903 **/
i40e_veb_link_event(struct i40e_veb * veb,bool link_up)9904 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
9905 {
9906 struct i40e_vsi *vsi;
9907 struct i40e_pf *pf;
9908 int i;
9909
9910 if (!veb || !veb->pf)
9911 return;
9912 pf = veb->pf;
9913
9914 /* Send link event to contained VSIs */
9915 i40e_pf_for_each_vsi(pf, i, vsi)
9916 if (vsi->uplink_seid == veb->seid)
9917 i40e_vsi_link_event(vsi, link_up);
9918 }
9919
9920 /**
9921 * i40e_link_event - Update netif_carrier status
9922 * @pf: board private structure
9923 **/
i40e_link_event(struct i40e_pf * pf)9924 static void i40e_link_event(struct i40e_pf *pf)
9925 {
9926 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
9927 struct i40e_veb *veb = i40e_pf_get_main_veb(pf);
9928 u8 new_link_speed, old_link_speed;
9929 bool new_link, old_link;
9930 int status;
9931 #ifdef CONFIG_I40E_DCB
9932 int err;
9933 #endif /* CONFIG_I40E_DCB */
9934
9935 /* set this to force the get_link_status call to refresh state */
9936 pf->hw.phy.get_link_info = true;
9937 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
9938 status = i40e_get_link_status(&pf->hw, &new_link);
9939
9940 /* On success, disable temp link polling */
9941 if (status == 0) {
9942 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state);
9943 } else {
9944 /* Enable link polling temporarily until i40e_get_link_status
9945 * returns 0
9946 */
9947 set_bit(__I40E_TEMP_LINK_POLLING, pf->state);
9948 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
9949 status);
9950 return;
9951 }
9952
9953 old_link_speed = pf->hw.phy.link_info_old.link_speed;
9954 new_link_speed = pf->hw.phy.link_info.link_speed;
9955
9956 if (new_link == old_link &&
9957 new_link_speed == old_link_speed &&
9958 (test_bit(__I40E_VSI_DOWN, vsi->state) ||
9959 new_link == netif_carrier_ok(vsi->netdev)))
9960 return;
9961
9962 i40e_print_link_message(vsi, new_link);
9963
9964 /* Notify the base of the switch tree connected to
9965 * the link. Floating VEBs are not notified.
9966 */
9967 if (veb)
9968 i40e_veb_link_event(veb, new_link);
9969 else
9970 i40e_vsi_link_event(vsi, new_link);
9971
9972 if (pf->vf)
9973 i40e_vc_notify_link_state(pf);
9974
9975 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
9976 i40e_ptp_set_increment(pf);
9977 #ifdef CONFIG_I40E_DCB
9978 if (new_link == old_link)
9979 return;
9980 /* Not SW DCB so firmware will take care of default settings */
9981 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED)
9982 return;
9983
9984 /* We cover here only link down, as after link up in case of SW DCB
9985 * SW LLDP agent will take care of setting it up
9986 */
9987 if (!new_link) {
9988 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n");
9989 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg));
9990 err = i40e_dcb_sw_default_config(pf);
9991 if (err) {
9992 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9993 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9994 } else {
9995 pf->dcbx_cap = DCB_CAP_DCBX_HOST |
9996 DCB_CAP_DCBX_VER_IEEE;
9997 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9998 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9999 }
10000 }
10001 #endif /* CONFIG_I40E_DCB */
10002 }
10003
10004 /**
10005 * i40e_watchdog_subtask - periodic checks not using event driven response
10006 * @pf: board private structure
10007 **/
i40e_watchdog_subtask(struct i40e_pf * pf)10008 static void i40e_watchdog_subtask(struct i40e_pf *pf)
10009 {
10010 struct i40e_vsi *vsi;
10011 struct i40e_veb *veb;
10012 int i;
10013
10014 /* if interface is down do nothing */
10015 if (test_bit(__I40E_DOWN, pf->state) ||
10016 test_bit(__I40E_CONFIG_BUSY, pf->state))
10017 return;
10018
10019 /* make sure we don't do these things too often */
10020 if (time_before(jiffies, (pf->service_timer_previous +
10021 pf->service_timer_period)))
10022 return;
10023 pf->service_timer_previous = jiffies;
10024
10025 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) ||
10026 test_bit(__I40E_TEMP_LINK_POLLING, pf->state))
10027 i40e_link_event(pf);
10028
10029 /* Update the stats for active netdevs so the network stack
10030 * can look at updated numbers whenever it cares to
10031 */
10032 i40e_pf_for_each_vsi(pf, i, vsi)
10033 if (vsi->netdev)
10034 i40e_update_stats(vsi);
10035
10036 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) {
10037 /* Update the stats for the active switching components */
10038 i40e_pf_for_each_veb(pf, i, veb)
10039 i40e_update_veb_stats(veb);
10040 }
10041
10042 i40e_ptp_rx_hang(pf);
10043 i40e_ptp_tx_hang(pf);
10044 }
10045
10046 /**
10047 * i40e_reset_subtask - Set up for resetting the device and driver
10048 * @pf: board private structure
10049 **/
i40e_reset_subtask(struct i40e_pf * pf)10050 static void i40e_reset_subtask(struct i40e_pf *pf)
10051 {
10052 u32 reset_flags = 0;
10053
10054 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
10055 reset_flags |= BIT(__I40E_REINIT_REQUESTED);
10056 clear_bit(__I40E_REINIT_REQUESTED, pf->state);
10057 }
10058 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
10059 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
10060 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
10061 }
10062 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
10063 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
10064 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
10065 }
10066 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
10067 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
10068 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
10069 }
10070 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
10071 reset_flags |= BIT(__I40E_DOWN_REQUESTED);
10072 clear_bit(__I40E_DOWN_REQUESTED, pf->state);
10073 }
10074
10075 /* If there's a recovery already waiting, it takes
10076 * precedence before starting a new reset sequence.
10077 */
10078 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
10079 i40e_prep_for_reset(pf);
10080 i40e_reset(pf);
10081 i40e_rebuild(pf, false, false);
10082 }
10083
10084 /* If we're already down or resetting, just bail */
10085 if (reset_flags &&
10086 !test_bit(__I40E_DOWN, pf->state) &&
10087 !test_bit(__I40E_CONFIG_BUSY, pf->state)) {
10088 i40e_do_reset(pf, reset_flags, false);
10089 }
10090 }
10091
10092 /**
10093 * i40e_handle_link_event - Handle link event
10094 * @pf: board private structure
10095 * @e: event info posted on ARQ
10096 **/
i40e_handle_link_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)10097 static void i40e_handle_link_event(struct i40e_pf *pf,
10098 struct i40e_arq_event_info *e)
10099 {
10100 struct i40e_aqc_get_link_status *status =
10101 (struct i40e_aqc_get_link_status *)&e->desc.params.raw;
10102
10103 /* Do a new status request to re-enable LSE reporting
10104 * and load new status information into the hw struct
10105 * This completely ignores any state information
10106 * in the ARQ event info, instead choosing to always
10107 * issue the AQ update link status command.
10108 */
10109 i40e_link_event(pf);
10110
10111 /* Check if module meets thermal requirements */
10112 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) {
10113 dev_err(&pf->pdev->dev,
10114 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n");
10115 dev_err(&pf->pdev->dev,
10116 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
10117 } else {
10118 /* check for unqualified module, if link is down, suppress
10119 * the message if link was forced to be down.
10120 */
10121 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
10122 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
10123 (!(status->link_info & I40E_AQ_LINK_UP)) &&
10124 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) {
10125 dev_err(&pf->pdev->dev,
10126 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n");
10127 dev_err(&pf->pdev->dev,
10128 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
10129 }
10130 }
10131 }
10132
10133 /**
10134 * i40e_clean_adminq_subtask - Clean the AdminQ rings
10135 * @pf: board private structure
10136 **/
i40e_clean_adminq_subtask(struct i40e_pf * pf)10137 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
10138 {
10139 struct i40e_arq_event_info event;
10140 struct i40e_hw *hw = &pf->hw;
10141 u16 pending, i = 0;
10142 u16 opcode;
10143 u32 oldval;
10144 int ret;
10145 u32 val;
10146
10147 /* Do not run clean AQ when PF reset fails */
10148 if (test_bit(__I40E_RESET_FAILED, pf->state))
10149 return;
10150
10151 /* check for error indications */
10152 val = rd32(&pf->hw, I40E_PF_ARQLEN);
10153 oldval = val;
10154 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
10155 if (hw->debug_mask & I40E_DEBUG_AQ)
10156 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
10157 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
10158 }
10159 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
10160 if (hw->debug_mask & I40E_DEBUG_AQ)
10161 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
10162 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
10163 pf->arq_overflows++;
10164 }
10165 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
10166 if (hw->debug_mask & I40E_DEBUG_AQ)
10167 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
10168 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
10169 }
10170 if (oldval != val)
10171 wr32(&pf->hw, I40E_PF_ARQLEN, val);
10172
10173 val = rd32(&pf->hw, I40E_PF_ATQLEN);
10174 oldval = val;
10175 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
10176 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10177 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
10178 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
10179 }
10180 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
10181 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10182 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
10183 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
10184 }
10185 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
10186 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10187 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
10188 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
10189 }
10190 if (oldval != val)
10191 wr32(&pf->hw, I40E_PF_ATQLEN, val);
10192
10193 event.buf_len = I40E_MAX_AQ_BUF_SIZE;
10194 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
10195 if (!event.msg_buf)
10196 return;
10197
10198 do {
10199 ret = i40e_clean_arq_element(hw, &event, &pending);
10200 if (ret == -EALREADY)
10201 break;
10202 else if (ret) {
10203 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
10204 break;
10205 }
10206
10207 opcode = le16_to_cpu(event.desc.opcode);
10208 switch (opcode) {
10209
10210 case i40e_aqc_opc_get_link_status:
10211 rtnl_lock();
10212 i40e_handle_link_event(pf, &event);
10213 rtnl_unlock();
10214 break;
10215 case i40e_aqc_opc_send_msg_to_pf:
10216 ret = i40e_vc_process_vf_msg(pf,
10217 le16_to_cpu(event.desc.retval),
10218 le32_to_cpu(event.desc.cookie_high),
10219 le32_to_cpu(event.desc.cookie_low),
10220 event.msg_buf,
10221 event.msg_len);
10222 break;
10223 case i40e_aqc_opc_lldp_update_mib:
10224 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
10225 #ifdef CONFIG_I40E_DCB
10226 rtnl_lock();
10227 i40e_handle_lldp_event(pf, &event);
10228 rtnl_unlock();
10229 #endif /* CONFIG_I40E_DCB */
10230 break;
10231 case i40e_aqc_opc_event_lan_overflow:
10232 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
10233 i40e_handle_lan_overflow_event(pf, &event);
10234 break;
10235 case i40e_aqc_opc_send_msg_to_peer:
10236 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
10237 break;
10238 case i40e_aqc_opc_nvm_erase:
10239 case i40e_aqc_opc_nvm_update:
10240 case i40e_aqc_opc_oem_post_update:
10241 i40e_debug(&pf->hw, I40E_DEBUG_NVM,
10242 "ARQ NVM operation 0x%04x completed\n",
10243 opcode);
10244 break;
10245 default:
10246 dev_info(&pf->pdev->dev,
10247 "ARQ: Unknown event 0x%04x ignored\n",
10248 opcode);
10249 break;
10250 }
10251 } while (i++ < I40E_AQ_WORK_LIMIT);
10252
10253 if (i < I40E_AQ_WORK_LIMIT)
10254 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
10255
10256 /* re-enable Admin queue interrupt cause */
10257 val = rd32(hw, I40E_PFINT_ICR0_ENA);
10258 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
10259 wr32(hw, I40E_PFINT_ICR0_ENA, val);
10260 i40e_flush(hw);
10261
10262 kfree(event.msg_buf);
10263 }
10264
10265 /**
10266 * i40e_verify_eeprom - make sure eeprom is good to use
10267 * @pf: board private structure
10268 **/
i40e_verify_eeprom(struct i40e_pf * pf)10269 static void i40e_verify_eeprom(struct i40e_pf *pf)
10270 {
10271 int err;
10272
10273 err = i40e_diag_eeprom_test(&pf->hw);
10274 if (err) {
10275 /* retry in case of garbage read */
10276 err = i40e_diag_eeprom_test(&pf->hw);
10277 if (err) {
10278 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
10279 err);
10280 set_bit(__I40E_BAD_EEPROM, pf->state);
10281 }
10282 }
10283
10284 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
10285 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
10286 clear_bit(__I40E_BAD_EEPROM, pf->state);
10287 }
10288 }
10289
10290 /**
10291 * i40e_enable_pf_switch_lb
10292 * @pf: pointer to the PF structure
10293 *
10294 * enable switch loop back or die - no point in a return value
10295 **/
i40e_enable_pf_switch_lb(struct i40e_pf * pf)10296 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
10297 {
10298 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10299 struct i40e_vsi_context ctxt;
10300 int ret;
10301
10302 ctxt.seid = pf->main_vsi_seid;
10303 ctxt.pf_num = pf->hw.pf_id;
10304 ctxt.vf_num = 0;
10305 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
10306 if (ret) {
10307 dev_info(&pf->pdev->dev,
10308 "couldn't get PF vsi config, err %pe aq_err %s\n",
10309 ERR_PTR(ret),
10310 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10311 return;
10312 }
10313 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
10314 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
10315 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
10316
10317 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
10318 if (ret) {
10319 dev_info(&pf->pdev->dev,
10320 "update vsi switch failed, err %pe aq_err %s\n",
10321 ERR_PTR(ret),
10322 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10323 }
10324 }
10325
10326 /**
10327 * i40e_disable_pf_switch_lb
10328 * @pf: pointer to the PF structure
10329 *
10330 * disable switch loop back or die - no point in a return value
10331 **/
i40e_disable_pf_switch_lb(struct i40e_pf * pf)10332 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
10333 {
10334 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10335 struct i40e_vsi_context ctxt;
10336 int ret;
10337
10338 ctxt.seid = pf->main_vsi_seid;
10339 ctxt.pf_num = pf->hw.pf_id;
10340 ctxt.vf_num = 0;
10341 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
10342 if (ret) {
10343 dev_info(&pf->pdev->dev,
10344 "couldn't get PF vsi config, err %pe aq_err %s\n",
10345 ERR_PTR(ret),
10346 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10347 return;
10348 }
10349 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
10350 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
10351 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
10352
10353 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
10354 if (ret) {
10355 dev_info(&pf->pdev->dev,
10356 "update vsi switch failed, err %pe aq_err %s\n",
10357 ERR_PTR(ret),
10358 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10359 }
10360 }
10361
10362 /**
10363 * i40e_config_bridge_mode - Configure the HW bridge mode
10364 * @veb: pointer to the bridge instance
10365 *
10366 * Configure the loop back mode for the LAN VSI that is downlink to the
10367 * specified HW bridge instance. It is expected this function is called
10368 * when a new HW bridge is instantiated.
10369 **/
i40e_config_bridge_mode(struct i40e_veb * veb)10370 static void i40e_config_bridge_mode(struct i40e_veb *veb)
10371 {
10372 struct i40e_pf *pf = veb->pf;
10373
10374 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
10375 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
10376 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
10377 if (veb->bridge_mode & BRIDGE_MODE_VEPA)
10378 i40e_disable_pf_switch_lb(pf);
10379 else
10380 i40e_enable_pf_switch_lb(pf);
10381 }
10382
10383 /**
10384 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it
10385 * @veb: pointer to the VEB instance
10386 *
10387 * This is a function that builds the attached VSIs. We track the connections
10388 * through our own index numbers because the seid's from the HW could change
10389 * across the reset.
10390 **/
i40e_reconstitute_veb(struct i40e_veb * veb)10391 static int i40e_reconstitute_veb(struct i40e_veb *veb)
10392 {
10393 struct i40e_vsi *ctl_vsi = NULL;
10394 struct i40e_pf *pf = veb->pf;
10395 struct i40e_vsi *vsi;
10396 int v, ret;
10397
10398 /* As we do not maintain PV (port virtualizer) switch element then
10399 * there can be only one non-floating VEB that have uplink to MAC SEID
10400 * and its control VSI is the main one.
10401 */
10402 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) {
10403 dev_err(&pf->pdev->dev,
10404 "Invalid uplink SEID for VEB %d\n", veb->idx);
10405 return -ENOENT;
10406 }
10407
10408 if (veb->uplink_seid == pf->mac_seid) {
10409 /* Check that the LAN VSI has VEB owning flag set */
10410 ctl_vsi = i40e_pf_get_main_vsi(pf);
10411
10412 if (WARN_ON(ctl_vsi->veb_idx != veb->idx ||
10413 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) {
10414 dev_err(&pf->pdev->dev,
10415 "Invalid control VSI for VEB %d\n", veb->idx);
10416 return -ENOENT;
10417 }
10418
10419 /* Add the control VSI to switch */
10420 ret = i40e_add_vsi(ctl_vsi);
10421 if (ret) {
10422 dev_err(&pf->pdev->dev,
10423 "Rebuild of owner VSI for VEB %d failed: %d\n",
10424 veb->idx, ret);
10425 return ret;
10426 }
10427
10428 i40e_vsi_reset_stats(ctl_vsi);
10429 }
10430
10431 /* create the VEB in the switch and move the VSI onto the VEB */
10432 ret = i40e_add_veb(veb, ctl_vsi);
10433 if (ret)
10434 return ret;
10435
10436 if (veb->uplink_seid) {
10437 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
10438 veb->bridge_mode = BRIDGE_MODE_VEB;
10439 else
10440 veb->bridge_mode = BRIDGE_MODE_VEPA;
10441 i40e_config_bridge_mode(veb);
10442 }
10443
10444 /* create the remaining VSIs attached to this VEB */
10445 i40e_pf_for_each_vsi(pf, v, vsi) {
10446 if (vsi == ctl_vsi)
10447 continue;
10448
10449 if (vsi->veb_idx == veb->idx) {
10450 vsi->uplink_seid = veb->seid;
10451 ret = i40e_add_vsi(vsi);
10452 if (ret) {
10453 dev_info(&pf->pdev->dev,
10454 "rebuild of vsi_idx %d failed: %d\n",
10455 v, ret);
10456 return ret;
10457 }
10458 i40e_vsi_reset_stats(vsi);
10459 }
10460 }
10461
10462 return ret;
10463 }
10464
10465 /**
10466 * i40e_get_capabilities - get info about the HW
10467 * @pf: the PF struct
10468 * @list_type: AQ capability to be queried
10469 **/
i40e_get_capabilities(struct i40e_pf * pf,enum i40e_admin_queue_opc list_type)10470 static int i40e_get_capabilities(struct i40e_pf *pf,
10471 enum i40e_admin_queue_opc list_type)
10472 {
10473 struct i40e_aqc_list_capabilities_element_resp *cap_buf;
10474 u16 data_size;
10475 int buf_len;
10476 int err;
10477
10478 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
10479 do {
10480 cap_buf = kzalloc(buf_len, GFP_KERNEL);
10481 if (!cap_buf)
10482 return -ENOMEM;
10483
10484 /* this loads the data into the hw struct for us */
10485 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
10486 &data_size, list_type,
10487 NULL);
10488 /* data loaded, buffer no longer needed */
10489 kfree(cap_buf);
10490
10491 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
10492 /* retry with a larger buffer */
10493 buf_len = data_size;
10494 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) {
10495 dev_info(&pf->pdev->dev,
10496 "capability discovery failed, err %pe aq_err %s\n",
10497 ERR_PTR(err),
10498 i40e_aq_str(&pf->hw,
10499 pf->hw.aq.asq_last_status));
10500 return -ENODEV;
10501 }
10502 } while (err);
10503
10504 if (pf->hw.debug_mask & I40E_DEBUG_USER) {
10505 if (list_type == i40e_aqc_opc_list_func_capabilities) {
10506 dev_info(&pf->pdev->dev,
10507 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
10508 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
10509 pf->hw.func_caps.num_msix_vectors,
10510 pf->hw.func_caps.num_msix_vectors_vf,
10511 pf->hw.func_caps.fd_filters_guaranteed,
10512 pf->hw.func_caps.fd_filters_best_effort,
10513 pf->hw.func_caps.num_tx_qp,
10514 pf->hw.func_caps.num_vsis);
10515 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) {
10516 dev_info(&pf->pdev->dev,
10517 "switch_mode=0x%04x, function_valid=0x%08x\n",
10518 pf->hw.dev_caps.switch_mode,
10519 pf->hw.dev_caps.valid_functions);
10520 dev_info(&pf->pdev->dev,
10521 "SR-IOV=%d, num_vfs for all function=%u\n",
10522 pf->hw.dev_caps.sr_iov_1_1,
10523 pf->hw.dev_caps.num_vfs);
10524 dev_info(&pf->pdev->dev,
10525 "num_vsis=%u, num_rx:%u, num_tx=%u\n",
10526 pf->hw.dev_caps.num_vsis,
10527 pf->hw.dev_caps.num_rx_qp,
10528 pf->hw.dev_caps.num_tx_qp);
10529 }
10530 }
10531 if (list_type == i40e_aqc_opc_list_func_capabilities) {
10532 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
10533 + pf->hw.func_caps.num_vfs)
10534 if (pf->hw.revision_id == 0 &&
10535 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) {
10536 dev_info(&pf->pdev->dev,
10537 "got num_vsis %d, setting num_vsis to %d\n",
10538 pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
10539 pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
10540 }
10541 }
10542 return 0;
10543 }
10544
10545 static int i40e_vsi_clear(struct i40e_vsi *vsi);
10546
10547 /**
10548 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
10549 * @pf: board private structure
10550 **/
i40e_fdir_sb_setup(struct i40e_pf * pf)10551 static void i40e_fdir_sb_setup(struct i40e_pf *pf)
10552 {
10553 struct i40e_vsi *main_vsi, *vsi;
10554
10555 /* quick workaround for an NVM issue that leaves a critical register
10556 * uninitialized
10557 */
10558 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
10559 static const u32 hkey[] = {
10560 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
10561 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
10562 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
10563 0x95b3a76d};
10564 int i;
10565
10566 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
10567 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
10568 }
10569
10570 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
10571 return;
10572
10573 /* find existing VSI and see if it needs configuring */
10574 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
10575
10576 /* create a new VSI if none exists */
10577 if (!vsi) {
10578 main_vsi = i40e_pf_get_main_vsi(pf);
10579 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0);
10580 if (!vsi) {
10581 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
10582 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
10583 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
10584 return;
10585 }
10586 }
10587
10588 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
10589 }
10590
10591 /**
10592 * i40e_fdir_teardown - release the Flow Director resources
10593 * @pf: board private structure
10594 **/
i40e_fdir_teardown(struct i40e_pf * pf)10595 static void i40e_fdir_teardown(struct i40e_pf *pf)
10596 {
10597 struct i40e_vsi *vsi;
10598
10599 i40e_fdir_filter_exit(pf);
10600 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
10601 if (vsi)
10602 i40e_vsi_release(vsi);
10603 }
10604
10605 /**
10606 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs
10607 * @vsi: PF main vsi
10608 * @seid: seid of main or channel VSIs
10609 *
10610 * Rebuilds cloud filters associated with main VSI and channel VSIs if they
10611 * existed before reset
10612 **/
i40e_rebuild_cloud_filters(struct i40e_vsi * vsi,u16 seid)10613 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid)
10614 {
10615 struct i40e_cloud_filter *cfilter;
10616 struct i40e_pf *pf = vsi->back;
10617 struct hlist_node *node;
10618 int ret;
10619
10620 /* Add cloud filters back if they exist */
10621 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list,
10622 cloud_node) {
10623 if (cfilter->seid != seid)
10624 continue;
10625
10626 if (cfilter->dst_port)
10627 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter,
10628 true);
10629 else
10630 ret = i40e_add_del_cloud_filter(vsi, cfilter, true);
10631
10632 if (ret) {
10633 dev_dbg(&pf->pdev->dev,
10634 "Failed to rebuild cloud filter, err %pe aq_err %s\n",
10635 ERR_PTR(ret),
10636 i40e_aq_str(&pf->hw,
10637 pf->hw.aq.asq_last_status));
10638 return ret;
10639 }
10640 }
10641 return 0;
10642 }
10643
10644 /**
10645 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset
10646 * @vsi: PF main vsi
10647 *
10648 * Rebuilds channel VSIs if they existed before reset
10649 **/
i40e_rebuild_channels(struct i40e_vsi * vsi)10650 static int i40e_rebuild_channels(struct i40e_vsi *vsi)
10651 {
10652 struct i40e_channel *ch, *ch_tmp;
10653 int ret;
10654
10655 if (list_empty(&vsi->ch_list))
10656 return 0;
10657
10658 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
10659 if (!ch->initialized)
10660 break;
10661 /* Proceed with creation of channel (VMDq2) VSI */
10662 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch);
10663 if (ret) {
10664 dev_info(&vsi->back->pdev->dev,
10665 "failed to rebuild channels using uplink_seid %u\n",
10666 vsi->uplink_seid);
10667 return ret;
10668 }
10669 /* Reconfigure TX queues using QTX_CTL register */
10670 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch);
10671 if (ret) {
10672 dev_info(&vsi->back->pdev->dev,
10673 "failed to configure TX rings for channel %u\n",
10674 ch->seid);
10675 return ret;
10676 }
10677 /* update 'next_base_queue' */
10678 vsi->next_base_queue = vsi->next_base_queue +
10679 ch->num_queue_pairs;
10680 if (ch->max_tx_rate) {
10681 u64 credits = ch->max_tx_rate;
10682
10683 if (i40e_set_bw_limit(vsi, ch->seid,
10684 ch->max_tx_rate))
10685 return -EINVAL;
10686
10687 do_div(credits, I40E_BW_CREDIT_DIVISOR);
10688 dev_dbg(&vsi->back->pdev->dev,
10689 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
10690 ch->max_tx_rate,
10691 credits,
10692 ch->seid);
10693 }
10694 ret = i40e_rebuild_cloud_filters(vsi, ch->seid);
10695 if (ret) {
10696 dev_dbg(&vsi->back->pdev->dev,
10697 "Failed to rebuild cloud filters for channel VSI %u\n",
10698 ch->seid);
10699 return ret;
10700 }
10701 }
10702 return 0;
10703 }
10704
10705 /**
10706 * i40e_clean_xps_state - clean xps state for every tx_ring
10707 * @vsi: ptr to the VSI
10708 **/
i40e_clean_xps_state(struct i40e_vsi * vsi)10709 static void i40e_clean_xps_state(struct i40e_vsi *vsi)
10710 {
10711 int i;
10712
10713 if (vsi->tx_rings)
10714 for (i = 0; i < vsi->num_queue_pairs; i++)
10715 if (vsi->tx_rings[i])
10716 clear_bit(__I40E_TX_XPS_INIT_DONE,
10717 vsi->tx_rings[i]->state);
10718 }
10719
10720 /**
10721 * i40e_prep_for_reset - prep for the core to reset
10722 * @pf: board private structure
10723 *
10724 * Close up the VFs and other things in prep for PF Reset.
10725 **/
i40e_prep_for_reset(struct i40e_pf * pf)10726 static void i40e_prep_for_reset(struct i40e_pf *pf)
10727 {
10728 struct i40e_hw *hw = &pf->hw;
10729 struct i40e_vsi *vsi;
10730 int ret = 0;
10731 u32 v;
10732
10733 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
10734 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
10735 return;
10736 if (i40e_check_asq_alive(&pf->hw))
10737 i40e_vc_notify_reset(pf);
10738
10739 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
10740
10741 /* quiesce the VSIs and their queues that are not already DOWN */
10742 i40e_pf_quiesce_all_vsi(pf);
10743
10744 i40e_pf_for_each_vsi(pf, v, vsi) {
10745 i40e_clean_xps_state(vsi);
10746 vsi->seid = 0;
10747 }
10748
10749 i40e_shutdown_adminq(&pf->hw);
10750
10751 /* call shutdown HMC */
10752 if (hw->hmc.hmc_obj) {
10753 ret = i40e_shutdown_lan_hmc(hw);
10754 if (ret)
10755 dev_warn(&pf->pdev->dev,
10756 "shutdown_lan_hmc failed: %d\n", ret);
10757 }
10758
10759 /* Save the current PTP time so that we can restore the time after the
10760 * reset completes.
10761 */
10762 i40e_ptp_save_hw_time(pf);
10763 }
10764
10765 /**
10766 * i40e_send_version - update firmware with driver version
10767 * @pf: PF struct
10768 */
i40e_send_version(struct i40e_pf * pf)10769 static void i40e_send_version(struct i40e_pf *pf)
10770 {
10771 struct i40e_driver_version dv;
10772
10773 dv.major_version = 0xff;
10774 dv.minor_version = 0xff;
10775 dv.build_version = 0xff;
10776 dv.subbuild_version = 0;
10777 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string));
10778 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
10779 }
10780
10781 /**
10782 * i40e_get_oem_version - get OEM specific version information
10783 * @hw: pointer to the hardware structure
10784 **/
i40e_get_oem_version(struct i40e_hw * hw)10785 static void i40e_get_oem_version(struct i40e_hw *hw)
10786 {
10787 u16 block_offset = 0xffff;
10788 u16 block_length = 0;
10789 u16 capabilities = 0;
10790 u16 gen_snap = 0;
10791 u16 release = 0;
10792
10793 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B
10794 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00
10795 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01
10796 #define I40E_NVM_OEM_GEN_OFFSET 0x02
10797 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03
10798 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F
10799 #define I40E_NVM_OEM_LENGTH 3
10800
10801 /* Check if pointer to OEM version block is valid. */
10802 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
10803 if (block_offset == 0xffff)
10804 return;
10805
10806 /* Check if OEM version block has correct length. */
10807 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
10808 &block_length);
10809 if (block_length < I40E_NVM_OEM_LENGTH)
10810 return;
10811
10812 /* Check if OEM version format is as expected. */
10813 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
10814 &capabilities);
10815 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
10816 return;
10817
10818 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
10819 &gen_snap);
10820 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
10821 &release);
10822 hw->nvm.oem_ver =
10823 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) |
10824 FIELD_PREP(I40E_OEM_RELEASE_MASK, release);
10825 hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
10826 }
10827
10828 /**
10829 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
10830 * @pf: board private structure
10831 **/
i40e_reset(struct i40e_pf * pf)10832 static int i40e_reset(struct i40e_pf *pf)
10833 {
10834 struct i40e_hw *hw = &pf->hw;
10835 int ret;
10836
10837 ret = i40e_pf_reset(hw);
10838 if (ret) {
10839 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
10840 set_bit(__I40E_RESET_FAILED, pf->state);
10841 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
10842 } else {
10843 pf->pfr_count++;
10844 }
10845 return ret;
10846 }
10847
10848 /**
10849 * i40e_rebuild - rebuild using a saved config
10850 * @pf: board private structure
10851 * @reinit: if the Main VSI needs to re-initialized.
10852 * @lock_acquired: indicates whether or not the lock has been acquired
10853 * before this function was called.
10854 **/
i40e_rebuild(struct i40e_pf * pf,bool reinit,bool lock_acquired)10855 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
10856 {
10857 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf);
10858 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10859 struct i40e_hw *hw = &pf->hw;
10860 struct i40e_veb *veb;
10861 int ret;
10862 u32 val;
10863 int v;
10864
10865 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) &&
10866 is_recovery_mode_reported)
10867 i40e_set_ethtool_ops(vsi->netdev);
10868
10869 if (test_bit(__I40E_DOWN, pf->state) &&
10870 !test_bit(__I40E_RECOVERY_MODE, pf->state))
10871 goto clear_recovery;
10872 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
10873
10874 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */
10875 ret = i40e_init_adminq(&pf->hw);
10876 if (ret) {
10877 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n",
10878 ERR_PTR(ret),
10879 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10880 goto clear_recovery;
10881 }
10882 i40e_get_oem_version(&pf->hw);
10883
10884 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) {
10885 /* The following delay is necessary for firmware update. */
10886 mdelay(1000);
10887 }
10888
10889 /* re-verify the eeprom if we just had an EMP reset */
10890 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
10891 i40e_verify_eeprom(pf);
10892
10893 /* if we are going out of or into recovery mode we have to act
10894 * accordingly with regard to resources initialization
10895 * and deinitialization
10896 */
10897 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
10898 if (i40e_get_capabilities(pf,
10899 i40e_aqc_opc_list_func_capabilities))
10900 goto end_unlock;
10901
10902 if (is_recovery_mode_reported) {
10903 /* we're staying in recovery mode so we'll reinitialize
10904 * misc vector here
10905 */
10906 if (i40e_setup_misc_vector_for_recovery_mode(pf))
10907 goto end_unlock;
10908 } else {
10909 if (!lock_acquired)
10910 rtnl_lock();
10911 /* we're going out of recovery mode so we'll free
10912 * the IRQ allocated specifically for recovery mode
10913 * and restore the interrupt scheme
10914 */
10915 free_irq(pf->pdev->irq, pf);
10916 i40e_clear_interrupt_scheme(pf);
10917 if (i40e_restore_interrupt_scheme(pf))
10918 goto end_unlock;
10919 }
10920
10921 /* tell the firmware that we're starting */
10922 i40e_send_version(pf);
10923
10924 /* bail out in case recovery mode was detected, as there is
10925 * no need for further configuration.
10926 */
10927 goto end_unlock;
10928 }
10929
10930 i40e_clear_pxe_mode(hw);
10931 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
10932 if (ret)
10933 goto end_core_reset;
10934
10935 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
10936 hw->func_caps.num_rx_qp, 0, 0);
10937 if (ret) {
10938 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
10939 goto end_core_reset;
10940 }
10941 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
10942 if (ret) {
10943 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
10944 goto end_core_reset;
10945 }
10946
10947 #ifdef CONFIG_I40E_DCB
10948 /* Enable FW to write a default DCB config on link-up
10949 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB
10950 * is not supported with new link speed
10951 */
10952 if (i40e_is_tc_mqprio_enabled(pf)) {
10953 i40e_aq_set_dcb_parameters(hw, false, NULL);
10954 } else {
10955 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
10956 (hw->phy.link_info.link_speed &
10957 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
10958 i40e_aq_set_dcb_parameters(hw, false, NULL);
10959 dev_warn(&pf->pdev->dev,
10960 "DCB is not supported for X710-T*L 2.5/5G speeds\n");
10961 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
10962 } else {
10963 i40e_aq_set_dcb_parameters(hw, true, NULL);
10964 ret = i40e_init_pf_dcb(pf);
10965 if (ret) {
10966 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n",
10967 ret);
10968 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
10969 /* Continue without DCB enabled */
10970 }
10971 }
10972 }
10973
10974 #endif /* CONFIG_I40E_DCB */
10975 if (!lock_acquired)
10976 rtnl_lock();
10977 ret = i40e_setup_pf_switch(pf, reinit, true);
10978 if (ret)
10979 goto end_unlock;
10980
10981 /* The driver only wants link up/down and module qualification
10982 * reports from firmware. Note the negative logic.
10983 */
10984 ret = i40e_aq_set_phy_int_mask(&pf->hw,
10985 ~(I40E_AQ_EVENT_LINK_UPDOWN |
10986 I40E_AQ_EVENT_MEDIA_NA |
10987 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
10988 if (ret)
10989 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
10990 ERR_PTR(ret),
10991 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10992
10993 /* Rebuild the VSIs and VEBs that existed before reset.
10994 * They are still in our local switch element arrays, so only
10995 * need to rebuild the switch model in the HW.
10996 *
10997 * If there were VEBs but the reconstitution failed, we'll try
10998 * to recover minimal use by getting the basic PF VSI working.
10999 */
11000 if (vsi->uplink_seid != pf->mac_seid) {
11001 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
11002
11003 /* Rebuild VEBs */
11004 i40e_pf_for_each_veb(pf, v, veb) {
11005 ret = i40e_reconstitute_veb(veb);
11006 if (!ret)
11007 continue;
11008
11009 /* If Main VEB failed, we're in deep doodoo,
11010 * so give up rebuilding the switch and set up
11011 * for minimal rebuild of PF VSI.
11012 * If orphan failed, we'll report the error
11013 * but try to keep going.
11014 */
11015 if (veb->uplink_seid == pf->mac_seid) {
11016 dev_info(&pf->pdev->dev,
11017 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
11018 ret);
11019 vsi->uplink_seid = pf->mac_seid;
11020 break;
11021 } else if (veb->uplink_seid == 0) {
11022 dev_info(&pf->pdev->dev,
11023 "rebuild of orphan VEB failed: %d\n",
11024 ret);
11025 }
11026 }
11027 }
11028
11029 if (vsi->uplink_seid == pf->mac_seid) {
11030 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
11031 /* no VEB, so rebuild only the Main VSI */
11032 ret = i40e_add_vsi(vsi);
11033 if (ret) {
11034 dev_info(&pf->pdev->dev,
11035 "rebuild of Main VSI failed: %d\n", ret);
11036 goto end_unlock;
11037 }
11038 }
11039
11040 if (vsi->mqprio_qopt.max_rate[0]) {
11041 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
11042 vsi->mqprio_qopt.max_rate[0]);
11043 u64 credits = 0;
11044
11045 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
11046 if (ret)
11047 goto end_unlock;
11048
11049 credits = max_tx_rate;
11050 do_div(credits, I40E_BW_CREDIT_DIVISOR);
11051 dev_dbg(&vsi->back->pdev->dev,
11052 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
11053 max_tx_rate,
11054 credits,
11055 vsi->seid);
11056 }
11057
11058 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid);
11059 if (ret)
11060 goto end_unlock;
11061
11062 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs
11063 * for this main VSI if they exist
11064 */
11065 ret = i40e_rebuild_channels(vsi);
11066 if (ret)
11067 goto end_unlock;
11068
11069 /* Reconfigure hardware for allowing smaller MSS in the case
11070 * of TSO, so that we avoid the MDD being fired and causing
11071 * a reset in the case of small MSS+TSO.
11072 */
11073 #define I40E_REG_MSS 0x000E64DC
11074 #define I40E_REG_MSS_MIN_MASK 0x3FF0000
11075 #define I40E_64BYTE_MSS 0x400000
11076 val = rd32(hw, I40E_REG_MSS);
11077 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
11078 val &= ~I40E_REG_MSS_MIN_MASK;
11079 val |= I40E_64BYTE_MSS;
11080 wr32(hw, I40E_REG_MSS, val);
11081 }
11082
11083 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
11084 msleep(75);
11085 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
11086 if (ret)
11087 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
11088 ERR_PTR(ret),
11089 i40e_aq_str(&pf->hw,
11090 pf->hw.aq.asq_last_status));
11091 }
11092 /* reinit the misc interrupt */
11093 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
11094 ret = i40e_setup_misc_vector(pf);
11095 if (ret)
11096 goto end_unlock;
11097 }
11098
11099 /* Add a filter to drop all Flow control frames from any VSI from being
11100 * transmitted. By doing so we stop a malicious VF from sending out
11101 * PAUSE or PFC frames and potentially controlling traffic for other
11102 * PF/VF VSIs.
11103 * The FW can still send Flow control frames if enabled.
11104 */
11105 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
11106 pf->main_vsi_seid);
11107
11108 /* restart the VSIs that were rebuilt and running before the reset */
11109 i40e_pf_unquiesce_all_vsi(pf);
11110
11111 /* Release the RTNL lock before we start resetting VFs */
11112 if (!lock_acquired)
11113 rtnl_unlock();
11114
11115 /* Restore promiscuous settings */
11116 ret = i40e_set_promiscuous(pf, pf->cur_promisc);
11117 if (ret)
11118 dev_warn(&pf->pdev->dev,
11119 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n",
11120 pf->cur_promisc ? "on" : "off",
11121 ERR_PTR(ret),
11122 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
11123
11124 i40e_reset_all_vfs(pf, true);
11125
11126 /* tell the firmware that we're starting */
11127 i40e_send_version(pf);
11128
11129 /* We've already released the lock, so don't do it again */
11130 goto end_core_reset;
11131
11132 end_unlock:
11133 if (!lock_acquired)
11134 rtnl_unlock();
11135 end_core_reset:
11136 clear_bit(__I40E_RESET_FAILED, pf->state);
11137 clear_recovery:
11138 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
11139 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state);
11140 }
11141
11142 /**
11143 * i40e_reset_and_rebuild - reset and rebuild using a saved config
11144 * @pf: board private structure
11145 * @reinit: if the Main VSI needs to re-initialized.
11146 * @lock_acquired: indicates whether or not the lock has been acquired
11147 * before this function was called.
11148 **/
i40e_reset_and_rebuild(struct i40e_pf * pf,bool reinit,bool lock_acquired)11149 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
11150 bool lock_acquired)
11151 {
11152 int ret;
11153
11154 if (test_bit(__I40E_IN_REMOVE, pf->state))
11155 return;
11156 /* Now we wait for GRST to settle out.
11157 * We don't have to delete the VEBs or VSIs from the hw switch
11158 * because the reset will make them disappear.
11159 */
11160 ret = i40e_reset(pf);
11161 if (!ret)
11162 i40e_rebuild(pf, reinit, lock_acquired);
11163 else
11164 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__);
11165 }
11166
11167 /**
11168 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
11169 * @pf: board private structure
11170 *
11171 * Close up the VFs and other things in prep for a Core Reset,
11172 * then get ready to rebuild the world.
11173 * @lock_acquired: indicates whether or not the lock has been acquired
11174 * before this function was called.
11175 **/
i40e_handle_reset_warning(struct i40e_pf * pf,bool lock_acquired)11176 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
11177 {
11178 i40e_prep_for_reset(pf);
11179 i40e_reset_and_rebuild(pf, false, lock_acquired);
11180 }
11181
11182 /**
11183 * i40e_print_vf_mdd_event - print VF Tx/Rx malicious driver detect event
11184 * @pf: board private structure
11185 * @vf: pointer to the VF structure
11186 * @is_tx: true - for Tx event, false - for Rx
11187 */
i40e_print_vf_mdd_event(struct i40e_pf * pf,struct i40e_vf * vf,bool is_tx)11188 static void i40e_print_vf_mdd_event(struct i40e_pf *pf, struct i40e_vf *vf,
11189 bool is_tx)
11190 {
11191 dev_err(&pf->pdev->dev, is_tx ?
11192 "%lld Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n" :
11193 "%lld Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n",
11194 is_tx ? vf->mdd_tx_events.count : vf->mdd_rx_events.count,
11195 pf->hw.pf_id,
11196 vf->vf_id,
11197 vf->default_lan_addr.addr,
11198 str_on_off(test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)));
11199 }
11200
11201 /**
11202 * i40e_print_vfs_mdd_events - print VFs malicious driver detect event
11203 * @pf: pointer to the PF structure
11204 *
11205 * Called from i40e_handle_mdd_event to rate limit and print VFs MDD events.
11206 */
i40e_print_vfs_mdd_events(struct i40e_pf * pf)11207 static void i40e_print_vfs_mdd_events(struct i40e_pf *pf)
11208 {
11209 unsigned int i;
11210
11211 /* check that there are pending MDD events to print */
11212 if (!test_and_clear_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state))
11213 return;
11214
11215 if (!__ratelimit(&pf->mdd_message_rate_limit))
11216 return;
11217
11218 for (i = 0; i < pf->num_alloc_vfs; i++) {
11219 struct i40e_vf *vf = &pf->vf[i];
11220 bool is_printed = false;
11221
11222 /* only print Rx MDD event message if there are new events */
11223 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
11224 vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count;
11225 i40e_print_vf_mdd_event(pf, vf, false);
11226 is_printed = true;
11227 }
11228
11229 /* only print Tx MDD event message if there are new events */
11230 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
11231 vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count;
11232 i40e_print_vf_mdd_event(pf, vf, true);
11233 is_printed = true;
11234 }
11235
11236 if (is_printed && !test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags))
11237 dev_info(&pf->pdev->dev,
11238 "Use PF Control I/F to re-enable the VF #%d\n",
11239 i);
11240 }
11241 }
11242
11243 /**
11244 * i40e_handle_mdd_event
11245 * @pf: pointer to the PF structure
11246 *
11247 * Called from the MDD irq handler to identify possibly malicious vfs
11248 **/
i40e_handle_mdd_event(struct i40e_pf * pf)11249 static void i40e_handle_mdd_event(struct i40e_pf *pf)
11250 {
11251 struct i40e_hw *hw = &pf->hw;
11252 bool mdd_detected = false;
11253 struct i40e_vf *vf;
11254 u32 reg;
11255 int i;
11256
11257 if (!test_and_clear_bit(__I40E_MDD_EVENT_PENDING, pf->state)) {
11258 /* Since the VF MDD event logging is rate limited, check if
11259 * there are pending MDD events.
11260 */
11261 i40e_print_vfs_mdd_events(pf);
11262 return;
11263 }
11264
11265 /* find what triggered the MDD event */
11266 reg = rd32(hw, I40E_GL_MDET_TX);
11267 if (reg & I40E_GL_MDET_TX_VALID_MASK) {
11268 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg);
11269 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg);
11270 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg);
11271 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) -
11272 pf->hw.func_caps.base_queue;
11273 if (netif_msg_tx_err(pf))
11274 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
11275 event, queue, pf_num, vf_num);
11276 wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
11277 mdd_detected = true;
11278 }
11279 reg = rd32(hw, I40E_GL_MDET_RX);
11280 if (reg & I40E_GL_MDET_RX_VALID_MASK) {
11281 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg);
11282 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg);
11283 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) -
11284 pf->hw.func_caps.base_queue;
11285 if (netif_msg_rx_err(pf))
11286 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
11287 event, queue, func);
11288 wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
11289 mdd_detected = true;
11290 }
11291
11292 if (mdd_detected) {
11293 reg = rd32(hw, I40E_PF_MDET_TX);
11294 if (reg & I40E_PF_MDET_TX_VALID_MASK) {
11295 wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
11296 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n");
11297 }
11298 reg = rd32(hw, I40E_PF_MDET_RX);
11299 if (reg & I40E_PF_MDET_RX_VALID_MASK) {
11300 wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
11301 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n");
11302 }
11303 }
11304
11305 /* see if one of the VFs needs its hand slapped */
11306 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
11307 bool is_mdd_on_tx = false;
11308 bool is_mdd_on_rx = false;
11309
11310 vf = &(pf->vf[i]);
11311 reg = rd32(hw, I40E_VP_MDET_TX(i));
11312 if (reg & I40E_VP_MDET_TX_VALID_MASK) {
11313 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state);
11314 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
11315 vf->mdd_tx_events.count++;
11316 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
11317 is_mdd_on_tx = true;
11318 }
11319
11320 reg = rd32(hw, I40E_VP_MDET_RX(i));
11321 if (reg & I40E_VP_MDET_RX_VALID_MASK) {
11322 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state);
11323 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
11324 vf->mdd_rx_events.count++;
11325 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
11326 is_mdd_on_rx = true;
11327 }
11328
11329 if ((is_mdd_on_tx || is_mdd_on_rx) &&
11330 test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
11331 /* VF MDD event counters will be cleared by
11332 * reset, so print the event prior to reset.
11333 */
11334 if (is_mdd_on_rx)
11335 i40e_print_vf_mdd_event(pf, vf, false);
11336 if (is_mdd_on_tx)
11337 i40e_print_vf_mdd_event(pf, vf, true);
11338
11339 i40e_vc_reset_vf(vf, true);
11340 }
11341 }
11342
11343 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
11344 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
11345 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
11346 i40e_flush(hw);
11347
11348 i40e_print_vfs_mdd_events(pf);
11349 }
11350
11351 /**
11352 * i40e_service_task - Run the driver's async subtasks
11353 * @work: pointer to work_struct containing our data
11354 **/
i40e_service_task(struct work_struct * work)11355 static void i40e_service_task(struct work_struct *work)
11356 {
11357 struct i40e_pf *pf = container_of(work,
11358 struct i40e_pf,
11359 service_task);
11360 unsigned long start_time = jiffies;
11361
11362 /* don't bother with service tasks if a reset is in progress */
11363 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
11364 test_bit(__I40E_SUSPENDED, pf->state))
11365 return;
11366
11367 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
11368 return;
11369
11370 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) {
11371 i40e_detect_recover_hung(pf);
11372 i40e_sync_filters_subtask(pf);
11373 i40e_reset_subtask(pf);
11374 i40e_handle_mdd_event(pf);
11375 i40e_vc_process_vflr_event(pf);
11376 i40e_watchdog_subtask(pf);
11377 i40e_fdir_reinit_subtask(pf);
11378 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) {
11379 /* Client subtask will reopen next time through. */
11380 i40e_notify_client_of_netdev_close(pf, true);
11381 } else {
11382 i40e_client_subtask(pf);
11383 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE,
11384 pf->state))
11385 i40e_notify_client_of_l2_param_changes(pf);
11386 }
11387 i40e_sync_filters_subtask(pf);
11388 } else {
11389 i40e_reset_subtask(pf);
11390 }
11391
11392 i40e_clean_adminq_subtask(pf);
11393
11394 /* flush memory to make sure state is correct before next watchdog */
11395 smp_mb__before_atomic();
11396 clear_bit(__I40E_SERVICE_SCHED, pf->state);
11397
11398 /* If the tasks have taken longer than one timer cycle or there
11399 * is more work to be done, reschedule the service task now
11400 * rather than wait for the timer to tick again.
11401 */
11402 if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
11403 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) ||
11404 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) ||
11405 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
11406 i40e_service_event_schedule(pf);
11407 }
11408
11409 /**
11410 * i40e_service_timer - timer callback
11411 * @t: timer list pointer
11412 **/
i40e_service_timer(struct timer_list * t)11413 static void i40e_service_timer(struct timer_list *t)
11414 {
11415 struct i40e_pf *pf = from_timer(pf, t, service_timer);
11416
11417 mod_timer(&pf->service_timer,
11418 round_jiffies(jiffies + pf->service_timer_period));
11419 i40e_service_event_schedule(pf);
11420 }
11421
11422 /**
11423 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
11424 * @vsi: the VSI being configured
11425 **/
i40e_set_num_rings_in_vsi(struct i40e_vsi * vsi)11426 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
11427 {
11428 struct i40e_pf *pf = vsi->back;
11429
11430 switch (vsi->type) {
11431 case I40E_VSI_MAIN:
11432 vsi->alloc_queue_pairs = pf->num_lan_qps;
11433 if (!vsi->num_tx_desc)
11434 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11435 I40E_REQ_DESCRIPTOR_MULTIPLE);
11436 if (!vsi->num_rx_desc)
11437 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11438 I40E_REQ_DESCRIPTOR_MULTIPLE);
11439 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
11440 vsi->num_q_vectors = pf->num_lan_msix;
11441 else
11442 vsi->num_q_vectors = 1;
11443
11444 break;
11445
11446 case I40E_VSI_FDIR:
11447 vsi->alloc_queue_pairs = 1;
11448 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT,
11449 I40E_REQ_DESCRIPTOR_MULTIPLE);
11450 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT,
11451 I40E_REQ_DESCRIPTOR_MULTIPLE);
11452 vsi->num_q_vectors = pf->num_fdsb_msix;
11453 break;
11454
11455 case I40E_VSI_VMDQ2:
11456 vsi->alloc_queue_pairs = pf->num_vmdq_qps;
11457 if (!vsi->num_tx_desc)
11458 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11459 I40E_REQ_DESCRIPTOR_MULTIPLE);
11460 if (!vsi->num_rx_desc)
11461 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11462 I40E_REQ_DESCRIPTOR_MULTIPLE);
11463 vsi->num_q_vectors = pf->num_vmdq_msix;
11464 break;
11465
11466 case I40E_VSI_SRIOV:
11467 vsi->alloc_queue_pairs = pf->num_vf_qps;
11468 if (!vsi->num_tx_desc)
11469 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11470 I40E_REQ_DESCRIPTOR_MULTIPLE);
11471 if (!vsi->num_rx_desc)
11472 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11473 I40E_REQ_DESCRIPTOR_MULTIPLE);
11474 break;
11475
11476 default:
11477 WARN_ON(1);
11478 return -ENODATA;
11479 }
11480
11481 if (is_kdump_kernel()) {
11482 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS;
11483 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS;
11484 }
11485
11486 return 0;
11487 }
11488
11489 /**
11490 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
11491 * @vsi: VSI pointer
11492 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
11493 *
11494 * On error: returns error code (negative)
11495 * On success: returns 0
11496 **/
i40e_vsi_alloc_arrays(struct i40e_vsi * vsi,bool alloc_qvectors)11497 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
11498 {
11499 struct i40e_ring **next_rings;
11500 int size;
11501 int ret = 0;
11502
11503 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */
11504 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
11505 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
11506 vsi->tx_rings = kzalloc(size, GFP_KERNEL);
11507 if (!vsi->tx_rings)
11508 return -ENOMEM;
11509 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
11510 if (i40e_enabled_xdp_vsi(vsi)) {
11511 vsi->xdp_rings = next_rings;
11512 next_rings += vsi->alloc_queue_pairs;
11513 }
11514 vsi->rx_rings = next_rings;
11515
11516 if (alloc_qvectors) {
11517 /* allocate memory for q_vector pointers */
11518 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
11519 vsi->q_vectors = kzalloc(size, GFP_KERNEL);
11520 if (!vsi->q_vectors) {
11521 ret = -ENOMEM;
11522 goto err_vectors;
11523 }
11524 }
11525 return ret;
11526
11527 err_vectors:
11528 kfree(vsi->tx_rings);
11529 return ret;
11530 }
11531
11532 /**
11533 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
11534 * @pf: board private structure
11535 * @type: type of VSI
11536 *
11537 * On error: returns error code (negative)
11538 * On success: returns vsi index in PF (positive)
11539 **/
i40e_vsi_mem_alloc(struct i40e_pf * pf,enum i40e_vsi_type type)11540 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
11541 {
11542 int ret = -ENODEV;
11543 struct i40e_vsi *vsi;
11544 int vsi_idx;
11545 int i;
11546
11547 /* Need to protect the allocation of the VSIs at the PF level */
11548 mutex_lock(&pf->switch_mutex);
11549
11550 /* VSI list may be fragmented if VSI creation/destruction has
11551 * been happening. We can afford to do a quick scan to look
11552 * for any free VSIs in the list.
11553 *
11554 * find next empty vsi slot, looping back around if necessary
11555 */
11556 i = pf->next_vsi;
11557 while (i < pf->num_alloc_vsi && pf->vsi[i])
11558 i++;
11559 if (i >= pf->num_alloc_vsi) {
11560 i = 0;
11561 while (i < pf->next_vsi && pf->vsi[i])
11562 i++;
11563 }
11564
11565 if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
11566 vsi_idx = i; /* Found one! */
11567 } else {
11568 ret = -ENODEV;
11569 goto unlock_pf; /* out of VSI slots! */
11570 }
11571 pf->next_vsi = ++i;
11572
11573 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
11574 if (!vsi) {
11575 ret = -ENOMEM;
11576 goto unlock_pf;
11577 }
11578 vsi->type = type;
11579 vsi->back = pf;
11580 set_bit(__I40E_VSI_DOWN, vsi->state);
11581 vsi->flags = 0;
11582 vsi->idx = vsi_idx;
11583 vsi->int_rate_limit = 0;
11584 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
11585 pf->rss_table_size : 64;
11586 vsi->netdev_registered = false;
11587 vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
11588 hash_init(vsi->mac_filter_hash);
11589 vsi->irqs_ready = false;
11590
11591 if (type == I40E_VSI_MAIN) {
11592 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL);
11593 if (!vsi->af_xdp_zc_qps)
11594 goto err_rings;
11595 }
11596
11597 ret = i40e_set_num_rings_in_vsi(vsi);
11598 if (ret)
11599 goto err_rings;
11600
11601 ret = i40e_vsi_alloc_arrays(vsi, true);
11602 if (ret)
11603 goto err_rings;
11604
11605 /* Setup default MSIX irq handler for VSI */
11606 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
11607
11608 /* Initialize VSI lock */
11609 spin_lock_init(&vsi->mac_filter_hash_lock);
11610 pf->vsi[vsi_idx] = vsi;
11611 ret = vsi_idx;
11612 goto unlock_pf;
11613
11614 err_rings:
11615 bitmap_free(vsi->af_xdp_zc_qps);
11616 pf->next_vsi = i - 1;
11617 kfree(vsi);
11618 unlock_pf:
11619 mutex_unlock(&pf->switch_mutex);
11620 return ret;
11621 }
11622
11623 /**
11624 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
11625 * @vsi: VSI pointer
11626 * @free_qvectors: a bool to specify if q_vectors need to be freed.
11627 *
11628 * On error: returns error code (negative)
11629 * On success: returns 0
11630 **/
i40e_vsi_free_arrays(struct i40e_vsi * vsi,bool free_qvectors)11631 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
11632 {
11633 /* free the ring and vector containers */
11634 if (free_qvectors) {
11635 kfree(vsi->q_vectors);
11636 vsi->q_vectors = NULL;
11637 }
11638 kfree(vsi->tx_rings);
11639 vsi->tx_rings = NULL;
11640 vsi->rx_rings = NULL;
11641 vsi->xdp_rings = NULL;
11642 }
11643
11644 /**
11645 * i40e_clear_rss_config_user - clear the user configured RSS hash keys
11646 * and lookup table
11647 * @vsi: Pointer to VSI structure
11648 */
i40e_clear_rss_config_user(struct i40e_vsi * vsi)11649 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
11650 {
11651 if (!vsi)
11652 return;
11653
11654 kfree(vsi->rss_hkey_user);
11655 vsi->rss_hkey_user = NULL;
11656
11657 kfree(vsi->rss_lut_user);
11658 vsi->rss_lut_user = NULL;
11659 }
11660
11661 /**
11662 * i40e_vsi_clear - Deallocate the VSI provided
11663 * @vsi: the VSI being un-configured
11664 **/
i40e_vsi_clear(struct i40e_vsi * vsi)11665 static int i40e_vsi_clear(struct i40e_vsi *vsi)
11666 {
11667 struct i40e_pf *pf;
11668
11669 if (!vsi)
11670 return 0;
11671
11672 if (!vsi->back)
11673 goto free_vsi;
11674 pf = vsi->back;
11675
11676 mutex_lock(&pf->switch_mutex);
11677 if (!pf->vsi[vsi->idx]) {
11678 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n",
11679 vsi->idx, vsi->idx, vsi->type);
11680 goto unlock_vsi;
11681 }
11682
11683 if (pf->vsi[vsi->idx] != vsi) {
11684 dev_err(&pf->pdev->dev,
11685 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n",
11686 pf->vsi[vsi->idx]->idx,
11687 pf->vsi[vsi->idx]->type,
11688 vsi->idx, vsi->type);
11689 goto unlock_vsi;
11690 }
11691
11692 /* updates the PF for this cleared vsi */
11693 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
11694 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
11695
11696 bitmap_free(vsi->af_xdp_zc_qps);
11697 i40e_vsi_free_arrays(vsi, true);
11698 i40e_clear_rss_config_user(vsi);
11699
11700 pf->vsi[vsi->idx] = NULL;
11701 if (vsi->idx < pf->next_vsi)
11702 pf->next_vsi = vsi->idx;
11703
11704 unlock_vsi:
11705 mutex_unlock(&pf->switch_mutex);
11706 free_vsi:
11707 kfree(vsi);
11708
11709 return 0;
11710 }
11711
11712 /**
11713 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
11714 * @vsi: the VSI being cleaned
11715 **/
i40e_vsi_clear_rings(struct i40e_vsi * vsi)11716 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
11717 {
11718 int i;
11719
11720 if (vsi->tx_rings && vsi->tx_rings[0]) {
11721 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
11722 kfree_rcu(vsi->tx_rings[i], rcu);
11723 WRITE_ONCE(vsi->tx_rings[i], NULL);
11724 WRITE_ONCE(vsi->rx_rings[i], NULL);
11725 if (vsi->xdp_rings)
11726 WRITE_ONCE(vsi->xdp_rings[i], NULL);
11727 }
11728 }
11729 }
11730
11731 /**
11732 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
11733 * @vsi: the VSI being configured
11734 **/
i40e_alloc_rings(struct i40e_vsi * vsi)11735 static int i40e_alloc_rings(struct i40e_vsi *vsi)
11736 {
11737 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
11738 struct i40e_pf *pf = vsi->back;
11739 struct i40e_ring *ring;
11740
11741 /* Set basic values in the rings to be used later during open() */
11742 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
11743 /* allocate space for both Tx and Rx in one shot */
11744 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
11745 if (!ring)
11746 goto err_out;
11747
11748 ring->queue_index = i;
11749 ring->reg_idx = vsi->base_queue + i;
11750 ring->ring_active = false;
11751 ring->vsi = vsi;
11752 ring->netdev = vsi->netdev;
11753 ring->dev = &pf->pdev->dev;
11754 ring->count = vsi->num_tx_desc;
11755 ring->size = 0;
11756 ring->dcb_tc = 0;
11757 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
11758 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
11759 ring->itr_setting = pf->tx_itr_default;
11760 WRITE_ONCE(vsi->tx_rings[i], ring++);
11761
11762 if (!i40e_enabled_xdp_vsi(vsi))
11763 goto setup_rx;
11764
11765 ring->queue_index = vsi->alloc_queue_pairs + i;
11766 ring->reg_idx = vsi->base_queue + ring->queue_index;
11767 ring->ring_active = false;
11768 ring->vsi = vsi;
11769 ring->netdev = NULL;
11770 ring->dev = &pf->pdev->dev;
11771 ring->count = vsi->num_tx_desc;
11772 ring->size = 0;
11773 ring->dcb_tc = 0;
11774 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
11775 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
11776 set_ring_xdp(ring);
11777 ring->itr_setting = pf->tx_itr_default;
11778 WRITE_ONCE(vsi->xdp_rings[i], ring++);
11779
11780 setup_rx:
11781 ring->queue_index = i;
11782 ring->reg_idx = vsi->base_queue + i;
11783 ring->ring_active = false;
11784 ring->vsi = vsi;
11785 ring->netdev = vsi->netdev;
11786 ring->dev = &pf->pdev->dev;
11787 ring->count = vsi->num_rx_desc;
11788 ring->size = 0;
11789 ring->dcb_tc = 0;
11790 ring->itr_setting = pf->rx_itr_default;
11791 WRITE_ONCE(vsi->rx_rings[i], ring);
11792 }
11793
11794 return 0;
11795
11796 err_out:
11797 i40e_vsi_clear_rings(vsi);
11798 return -ENOMEM;
11799 }
11800
11801 /**
11802 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
11803 * @pf: board private structure
11804 * @vectors: the number of MSI-X vectors to request
11805 *
11806 * Returns the number of vectors reserved, or error
11807 **/
i40e_reserve_msix_vectors(struct i40e_pf * pf,int vectors)11808 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
11809 {
11810 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
11811 I40E_MIN_MSIX, vectors);
11812 if (vectors < 0) {
11813 dev_info(&pf->pdev->dev,
11814 "MSI-X vector reservation failed: %d\n", vectors);
11815 vectors = 0;
11816 }
11817
11818 return vectors;
11819 }
11820
11821 /**
11822 * i40e_init_msix - Setup the MSIX capability
11823 * @pf: board private structure
11824 *
11825 * Work with the OS to set up the MSIX vectors needed.
11826 *
11827 * Returns the number of vectors reserved or negative on failure
11828 **/
i40e_init_msix(struct i40e_pf * pf)11829 static int i40e_init_msix(struct i40e_pf *pf)
11830 {
11831 struct i40e_hw *hw = &pf->hw;
11832 int cpus, extra_vectors;
11833 int vectors_left;
11834 int v_budget, i;
11835 int v_actual;
11836 int iwarp_requested = 0;
11837
11838 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
11839 return -ENODEV;
11840
11841 /* The number of vectors we'll request will be comprised of:
11842 * - Add 1 for "other" cause for Admin Queue events, etc.
11843 * - The number of LAN queue pairs
11844 * - Queues being used for RSS.
11845 * We don't need as many as max_rss_size vectors.
11846 * use rss_size instead in the calculation since that
11847 * is governed by number of cpus in the system.
11848 * - assumes symmetric Tx/Rx pairing
11849 * - The number of VMDq pairs
11850 * - The CPU count within the NUMA node if iWARP is enabled
11851 * Once we count this up, try the request.
11852 *
11853 * If we can't get what we want, we'll simplify to nearly nothing
11854 * and try again. If that still fails, we punt.
11855 */
11856 vectors_left = hw->func_caps.num_msix_vectors;
11857 v_budget = 0;
11858
11859 /* reserve one vector for miscellaneous handler */
11860 if (vectors_left) {
11861 v_budget++;
11862 vectors_left--;
11863 }
11864
11865 /* reserve some vectors for the main PF traffic queues. Initially we
11866 * only reserve at most 50% of the available vectors, in the case that
11867 * the number of online CPUs is large. This ensures that we can enable
11868 * extra features as well. Once we've enabled the other features, we
11869 * will use any remaining vectors to reach as close as we can to the
11870 * number of online CPUs.
11871 */
11872 cpus = num_online_cpus();
11873 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
11874 vectors_left -= pf->num_lan_msix;
11875
11876 /* reserve one vector for sideband flow director */
11877 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
11878 if (vectors_left) {
11879 pf->num_fdsb_msix = 1;
11880 v_budget++;
11881 vectors_left--;
11882 } else {
11883 pf->num_fdsb_msix = 0;
11884 }
11885 }
11886
11887 /* can we reserve enough for iWARP? */
11888 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
11889 iwarp_requested = pf->num_iwarp_msix;
11890
11891 if (!vectors_left)
11892 pf->num_iwarp_msix = 0;
11893 else if (vectors_left < pf->num_iwarp_msix)
11894 pf->num_iwarp_msix = 1;
11895 v_budget += pf->num_iwarp_msix;
11896 vectors_left -= pf->num_iwarp_msix;
11897 }
11898
11899 /* any vectors left over go for VMDq support */
11900 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) {
11901 if (!vectors_left) {
11902 pf->num_vmdq_msix = 0;
11903 pf->num_vmdq_qps = 0;
11904 } else {
11905 int vmdq_vecs_wanted =
11906 pf->num_vmdq_vsis * pf->num_vmdq_qps;
11907 int vmdq_vecs =
11908 min_t(int, vectors_left, vmdq_vecs_wanted);
11909
11910 /* if we're short on vectors for what's desired, we limit
11911 * the queues per vmdq. If this is still more than are
11912 * available, the user will need to change the number of
11913 * queues/vectors used by the PF later with the ethtool
11914 * channels command
11915 */
11916 if (vectors_left < vmdq_vecs_wanted) {
11917 pf->num_vmdq_qps = 1;
11918 vmdq_vecs_wanted = pf->num_vmdq_vsis;
11919 vmdq_vecs = min_t(int,
11920 vectors_left,
11921 vmdq_vecs_wanted);
11922 }
11923 pf->num_vmdq_msix = pf->num_vmdq_qps;
11924
11925 v_budget += vmdq_vecs;
11926 vectors_left -= vmdq_vecs;
11927 }
11928 }
11929
11930 /* On systems with a large number of SMP cores, we previously limited
11931 * the number of vectors for num_lan_msix to be at most 50% of the
11932 * available vectors, to allow for other features. Now, we add back
11933 * the remaining vectors. However, we ensure that the total
11934 * num_lan_msix will not exceed num_online_cpus(). To do this, we
11935 * calculate the number of vectors we can add without going over the
11936 * cap of CPUs. For systems with a small number of CPUs this will be
11937 * zero.
11938 */
11939 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
11940 pf->num_lan_msix += extra_vectors;
11941 vectors_left -= extra_vectors;
11942
11943 WARN(vectors_left < 0,
11944 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
11945
11946 v_budget += pf->num_lan_msix;
11947 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
11948 GFP_KERNEL);
11949 if (!pf->msix_entries)
11950 return -ENOMEM;
11951
11952 for (i = 0; i < v_budget; i++)
11953 pf->msix_entries[i].entry = i;
11954 v_actual = i40e_reserve_msix_vectors(pf, v_budget);
11955
11956 if (v_actual < I40E_MIN_MSIX) {
11957 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
11958 kfree(pf->msix_entries);
11959 pf->msix_entries = NULL;
11960 pci_disable_msix(pf->pdev);
11961 return -ENODEV;
11962
11963 } else if (v_actual == I40E_MIN_MSIX) {
11964 /* Adjust for minimal MSIX use */
11965 pf->num_vmdq_vsis = 0;
11966 pf->num_vmdq_qps = 0;
11967 pf->num_lan_qps = 1;
11968 pf->num_lan_msix = 1;
11969
11970 } else if (v_actual != v_budget) {
11971 /* If we have limited resources, we will start with no vectors
11972 * for the special features and then allocate vectors to some
11973 * of these features based on the policy and at the end disable
11974 * the features that did not get any vectors.
11975 */
11976 int vec;
11977
11978 dev_info(&pf->pdev->dev,
11979 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n",
11980 v_actual, v_budget);
11981 /* reserve the misc vector */
11982 vec = v_actual - 1;
11983
11984 /* Scale vector usage down */
11985 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
11986 pf->num_vmdq_vsis = 1;
11987 pf->num_vmdq_qps = 1;
11988
11989 /* partition out the remaining vectors */
11990 switch (vec) {
11991 case 2:
11992 pf->num_lan_msix = 1;
11993 break;
11994 case 3:
11995 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
11996 pf->num_lan_msix = 1;
11997 pf->num_iwarp_msix = 1;
11998 } else {
11999 pf->num_lan_msix = 2;
12000 }
12001 break;
12002 default:
12003 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
12004 pf->num_iwarp_msix = min_t(int, (vec / 3),
12005 iwarp_requested);
12006 pf->num_vmdq_vsis = min_t(int, (vec / 3),
12007 I40E_DEFAULT_NUM_VMDQ_VSI);
12008 } else {
12009 pf->num_vmdq_vsis = min_t(int, (vec / 2),
12010 I40E_DEFAULT_NUM_VMDQ_VSI);
12011 }
12012 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
12013 pf->num_fdsb_msix = 1;
12014 vec--;
12015 }
12016 pf->num_lan_msix = min_t(int,
12017 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
12018 pf->num_lan_msix);
12019 pf->num_lan_qps = pf->num_lan_msix;
12020 break;
12021 }
12022 }
12023
12024 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) {
12025 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
12026 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12027 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12028 }
12029 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) {
12030 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
12031 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
12032 }
12033
12034 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
12035 pf->num_iwarp_msix == 0) {
12036 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
12037 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12038 }
12039 i40e_debug(&pf->hw, I40E_DEBUG_INIT,
12040 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
12041 pf->num_lan_msix,
12042 pf->num_vmdq_msix * pf->num_vmdq_vsis,
12043 pf->num_fdsb_msix,
12044 pf->num_iwarp_msix);
12045
12046 return v_actual;
12047 }
12048
12049 /**
12050 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
12051 * @vsi: the VSI being configured
12052 * @v_idx: index of the vector in the vsi struct
12053 *
12054 * We allocate one q_vector. If allocation fails we return -ENOMEM.
12055 **/
i40e_vsi_alloc_q_vector(struct i40e_vsi * vsi,int v_idx)12056 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx)
12057 {
12058 struct i40e_q_vector *q_vector;
12059
12060 /* allocate q_vector */
12061 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
12062 if (!q_vector)
12063 return -ENOMEM;
12064
12065 q_vector->vsi = vsi;
12066 q_vector->v_idx = v_idx;
12067 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
12068
12069 if (vsi->netdev)
12070 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll);
12071
12072 /* tie q_vector and vsi together */
12073 vsi->q_vectors[v_idx] = q_vector;
12074
12075 return 0;
12076 }
12077
12078 /**
12079 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
12080 * @vsi: the VSI being configured
12081 *
12082 * We allocate one q_vector per queue interrupt. If allocation fails we
12083 * return -ENOMEM.
12084 **/
i40e_vsi_alloc_q_vectors(struct i40e_vsi * vsi)12085 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
12086 {
12087 struct i40e_pf *pf = vsi->back;
12088 int err, v_idx, num_q_vectors;
12089
12090 /* if not MSIX, give the one vector only to the LAN VSI */
12091 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
12092 num_q_vectors = vsi->num_q_vectors;
12093 else if (vsi->type == I40E_VSI_MAIN)
12094 num_q_vectors = 1;
12095 else
12096 return -EINVAL;
12097
12098 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
12099 err = i40e_vsi_alloc_q_vector(vsi, v_idx);
12100 if (err)
12101 goto err_out;
12102 }
12103
12104 return 0;
12105
12106 err_out:
12107 while (v_idx--)
12108 i40e_free_q_vector(vsi, v_idx);
12109
12110 return err;
12111 }
12112
12113 /**
12114 * i40e_init_interrupt_scheme - Determine proper interrupt scheme
12115 * @pf: board private structure to initialize
12116 **/
i40e_init_interrupt_scheme(struct i40e_pf * pf)12117 static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
12118 {
12119 int vectors = 0;
12120 ssize_t size;
12121
12122 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
12123 vectors = i40e_init_msix(pf);
12124 if (vectors < 0) {
12125 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12126 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12127 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
12128 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
12129 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
12130 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
12131 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12132 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
12133 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
12134 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12135
12136 /* rework the queue expectations without MSIX */
12137 i40e_determine_queue_usage(pf);
12138 }
12139 }
12140
12141 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
12142 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
12143 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
12144 vectors = pci_enable_msi(pf->pdev);
12145 if (vectors < 0) {
12146 dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
12147 vectors);
12148 clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
12149 }
12150 vectors = 1; /* one MSI or Legacy vector */
12151 }
12152
12153 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) &&
12154 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
12155 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
12156
12157 /* set up vector assignment tracking */
12158 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
12159 pf->irq_pile = kzalloc(size, GFP_KERNEL);
12160 if (!pf->irq_pile)
12161 return -ENOMEM;
12162
12163 pf->irq_pile->num_entries = vectors;
12164
12165 /* track first vector for misc interrupts, ignore return */
12166 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
12167
12168 return 0;
12169 }
12170
12171 /**
12172 * i40e_restore_interrupt_scheme - Restore the interrupt scheme
12173 * @pf: private board data structure
12174 *
12175 * Restore the interrupt scheme that was cleared when we suspended the
12176 * device. This should be called during resume to re-allocate the q_vectors
12177 * and reacquire IRQs.
12178 */
i40e_restore_interrupt_scheme(struct i40e_pf * pf)12179 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf)
12180 {
12181 struct i40e_vsi *vsi;
12182 int err, i;
12183
12184 /* We cleared the MSI and MSI-X flags when disabling the old interrupt
12185 * scheme. We need to re-enabled them here in order to attempt to
12186 * re-acquire the MSI or MSI-X vectors
12187 */
12188 set_bit(I40E_FLAG_MSI_ENA, pf->flags);
12189 set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12190
12191 err = i40e_init_interrupt_scheme(pf);
12192 if (err)
12193 return err;
12194
12195 /* Now that we've re-acquired IRQs, we need to remap the vectors and
12196 * rings together again.
12197 */
12198 i40e_pf_for_each_vsi(pf, i, vsi) {
12199 err = i40e_vsi_alloc_q_vectors(vsi);
12200 if (err)
12201 goto err_unwind;
12202
12203 i40e_vsi_map_rings_to_vectors(vsi);
12204 }
12205
12206 err = i40e_setup_misc_vector(pf);
12207 if (err)
12208 goto err_unwind;
12209
12210 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
12211 i40e_client_update_msix_info(pf);
12212
12213 return 0;
12214
12215 err_unwind:
12216 while (i--) {
12217 if (pf->vsi[i])
12218 i40e_vsi_free_q_vectors(pf->vsi[i]);
12219 }
12220
12221 return err;
12222 }
12223
12224 /**
12225 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle
12226 * non queue events in recovery mode
12227 * @pf: board private structure
12228 *
12229 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage
12230 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode.
12231 * This is handled differently than in recovery mode since no Tx/Rx resources
12232 * are being allocated.
12233 **/
i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf * pf)12234 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf)
12235 {
12236 int err;
12237
12238 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
12239 err = i40e_setup_misc_vector(pf);
12240
12241 if (err) {
12242 dev_info(&pf->pdev->dev,
12243 "MSI-X misc vector request failed, error %d\n",
12244 err);
12245 return err;
12246 }
12247 } else {
12248 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED;
12249
12250 err = request_irq(pf->pdev->irq, i40e_intr, flags,
12251 pf->int_name, pf);
12252
12253 if (err) {
12254 dev_info(&pf->pdev->dev,
12255 "MSI/legacy misc vector request failed, error %d\n",
12256 err);
12257 return err;
12258 }
12259 i40e_enable_misc_int_causes(pf);
12260 i40e_irq_dynamic_enable_icr0(pf);
12261 }
12262
12263 return 0;
12264 }
12265
12266 /**
12267 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
12268 * @pf: board private structure
12269 *
12270 * This sets up the handler for MSIX 0, which is used to manage the
12271 * non-queue interrupts, e.g. AdminQ and errors. This is not used
12272 * when in MSI or Legacy interrupt mode.
12273 **/
i40e_setup_misc_vector(struct i40e_pf * pf)12274 static int i40e_setup_misc_vector(struct i40e_pf *pf)
12275 {
12276 struct i40e_hw *hw = &pf->hw;
12277 int err = 0;
12278
12279 /* Only request the IRQ once, the first time through. */
12280 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) {
12281 err = request_irq(pf->msix_entries[0].vector,
12282 i40e_intr, 0, pf->int_name, pf);
12283 if (err) {
12284 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
12285 dev_info(&pf->pdev->dev,
12286 "request_irq for %s failed: %d\n",
12287 pf->int_name, err);
12288 return -EFAULT;
12289 }
12290 }
12291
12292 i40e_enable_misc_int_causes(pf);
12293
12294 /* associate no queues to the misc vector */
12295 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
12296 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1);
12297
12298 i40e_flush(hw);
12299
12300 i40e_irq_dynamic_enable_icr0(pf);
12301
12302 return err;
12303 }
12304
12305 /**
12306 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
12307 * @vsi: Pointer to vsi structure
12308 * @seed: Buffter to store the hash keys
12309 * @lut: Buffer to store the lookup table entries
12310 * @lut_size: Size of buffer to store the lookup table entries
12311 *
12312 * Return 0 on success, negative on failure
12313 */
i40e_get_rss_aq(struct i40e_vsi * vsi,const u8 * seed,u8 * lut,u16 lut_size)12314 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
12315 u8 *lut, u16 lut_size)
12316 {
12317 struct i40e_pf *pf = vsi->back;
12318 struct i40e_hw *hw = &pf->hw;
12319 int ret = 0;
12320
12321 if (seed) {
12322 ret = i40e_aq_get_rss_key(hw, vsi->id,
12323 (struct i40e_aqc_get_set_rss_key_data *)seed);
12324 if (ret) {
12325 dev_info(&pf->pdev->dev,
12326 "Cannot get RSS key, err %pe aq_err %s\n",
12327 ERR_PTR(ret),
12328 i40e_aq_str(&pf->hw,
12329 pf->hw.aq.asq_last_status));
12330 return ret;
12331 }
12332 }
12333
12334 if (lut) {
12335 bool pf_lut = vsi->type == I40E_VSI_MAIN;
12336
12337 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
12338 if (ret) {
12339 dev_info(&pf->pdev->dev,
12340 "Cannot get RSS lut, err %pe aq_err %s\n",
12341 ERR_PTR(ret),
12342 i40e_aq_str(&pf->hw,
12343 pf->hw.aq.asq_last_status));
12344 return ret;
12345 }
12346 }
12347
12348 return ret;
12349 }
12350
12351 /**
12352 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers
12353 * @vsi: Pointer to vsi structure
12354 * @seed: RSS hash seed
12355 * @lut: Lookup table
12356 * @lut_size: Lookup table size
12357 *
12358 * Returns 0 on success, negative on failure
12359 **/
i40e_config_rss_reg(struct i40e_vsi * vsi,const u8 * seed,const u8 * lut,u16 lut_size)12360 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
12361 const u8 *lut, u16 lut_size)
12362 {
12363 struct i40e_pf *pf = vsi->back;
12364 struct i40e_hw *hw = &pf->hw;
12365 u16 vf_id = vsi->vf_id;
12366 u8 i;
12367
12368 /* Fill out hash function seed */
12369 if (seed) {
12370 u32 *seed_dw = (u32 *)seed;
12371
12372 if (vsi->type == I40E_VSI_MAIN) {
12373 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
12374 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
12375 } else if (vsi->type == I40E_VSI_SRIOV) {
12376 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
12377 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
12378 } else {
12379 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
12380 }
12381 }
12382
12383 if (lut) {
12384 u32 *lut_dw = (u32 *)lut;
12385
12386 if (vsi->type == I40E_VSI_MAIN) {
12387 if (lut_size != I40E_HLUT_ARRAY_SIZE)
12388 return -EINVAL;
12389 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12390 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
12391 } else if (vsi->type == I40E_VSI_SRIOV) {
12392 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
12393 return -EINVAL;
12394 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
12395 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
12396 } else {
12397 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
12398 }
12399 }
12400 i40e_flush(hw);
12401
12402 return 0;
12403 }
12404
12405 /**
12406 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers
12407 * @vsi: Pointer to VSI structure
12408 * @seed: Buffer to store the keys
12409 * @lut: Buffer to store the lookup table entries
12410 * @lut_size: Size of buffer to store the lookup table entries
12411 *
12412 * Returns 0 on success, negative on failure
12413 */
i40e_get_rss_reg(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12414 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
12415 u8 *lut, u16 lut_size)
12416 {
12417 struct i40e_pf *pf = vsi->back;
12418 struct i40e_hw *hw = &pf->hw;
12419 u16 i;
12420
12421 if (seed) {
12422 u32 *seed_dw = (u32 *)seed;
12423
12424 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
12425 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
12426 }
12427 if (lut) {
12428 u32 *lut_dw = (u32 *)lut;
12429
12430 if (lut_size != I40E_HLUT_ARRAY_SIZE)
12431 return -EINVAL;
12432 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12433 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
12434 }
12435
12436 return 0;
12437 }
12438
12439 /**
12440 * i40e_config_rss - Configure RSS keys and lut
12441 * @vsi: Pointer to VSI structure
12442 * @seed: RSS hash seed
12443 * @lut: Lookup table
12444 * @lut_size: Lookup table size
12445 *
12446 * Returns 0 on success, negative on failure
12447 */
i40e_config_rss(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12448 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
12449 {
12450 struct i40e_pf *pf = vsi->back;
12451
12452 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
12453 return i40e_config_rss_aq(vsi, seed, lut, lut_size);
12454 else
12455 return i40e_config_rss_reg(vsi, seed, lut, lut_size);
12456 }
12457
12458 /**
12459 * i40e_get_rss - Get RSS keys and lut
12460 * @vsi: Pointer to VSI structure
12461 * @seed: Buffer to store the keys
12462 * @lut: Buffer to store the lookup table entries
12463 * @lut_size: Size of buffer to store the lookup table entries
12464 *
12465 * Returns 0 on success, negative on failure
12466 */
i40e_get_rss(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12467 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
12468 {
12469 struct i40e_pf *pf = vsi->back;
12470
12471 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
12472 return i40e_get_rss_aq(vsi, seed, lut, lut_size);
12473 else
12474 return i40e_get_rss_reg(vsi, seed, lut, lut_size);
12475 }
12476
12477 /**
12478 * i40e_fill_rss_lut - Fill the RSS lookup table with default values
12479 * @pf: Pointer to board private structure
12480 * @lut: Lookup table
12481 * @rss_table_size: Lookup table size
12482 * @rss_size: Range of queue number for hashing
12483 */
i40e_fill_rss_lut(struct i40e_pf * pf,u8 * lut,u16 rss_table_size,u16 rss_size)12484 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
12485 u16 rss_table_size, u16 rss_size)
12486 {
12487 u16 i;
12488
12489 for (i = 0; i < rss_table_size; i++)
12490 lut[i] = i % rss_size;
12491 }
12492
12493 /**
12494 * i40e_pf_config_rss - Prepare for RSS if used
12495 * @pf: board private structure
12496 **/
i40e_pf_config_rss(struct i40e_pf * pf)12497 static int i40e_pf_config_rss(struct i40e_pf *pf)
12498 {
12499 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
12500 u8 seed[I40E_HKEY_ARRAY_SIZE];
12501 u8 *lut;
12502 struct i40e_hw *hw = &pf->hw;
12503 u32 reg_val;
12504 u64 hena;
12505 int ret;
12506
12507 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
12508 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
12509 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
12510 hena |= i40e_pf_get_default_rss_hena(pf);
12511
12512 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
12513 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
12514
12515 /* Determine the RSS table size based on the hardware capabilities */
12516 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
12517 reg_val = (pf->rss_table_size == 512) ?
12518 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
12519 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
12520 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
12521
12522 /* Determine the RSS size of the VSI */
12523 if (!vsi->rss_size) {
12524 u16 qcount;
12525 /* If the firmware does something weird during VSI init, we
12526 * could end up with zero TCs. Check for that to avoid
12527 * divide-by-zero. It probably won't pass traffic, but it also
12528 * won't panic.
12529 */
12530 qcount = vsi->num_queue_pairs /
12531 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1);
12532 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
12533 }
12534 if (!vsi->rss_size)
12535 return -EINVAL;
12536
12537 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
12538 if (!lut)
12539 return -ENOMEM;
12540
12541 /* Use user configured lut if there is one, otherwise use default */
12542 if (vsi->rss_lut_user)
12543 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
12544 else
12545 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
12546
12547 /* Use user configured hash key if there is one, otherwise
12548 * use default.
12549 */
12550 if (vsi->rss_hkey_user)
12551 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
12552 else
12553 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
12554 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
12555 kfree(lut);
12556
12557 return ret;
12558 }
12559
12560 /**
12561 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild
12562 * @pf: board private structure
12563 * @queue_count: the requested queue count for rss.
12564 *
12565 * returns 0 if rss is not enabled, if enabled returns the final rss queue
12566 * count which may be different from the requested queue count.
12567 * Note: expects to be called while under rtnl_lock()
12568 **/
i40e_reconfig_rss_queues(struct i40e_pf * pf,int queue_count)12569 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
12570 {
12571 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
12572 int new_rss_size;
12573
12574 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags))
12575 return 0;
12576
12577 queue_count = min_t(int, queue_count, num_online_cpus());
12578 new_rss_size = min_t(int, queue_count, pf->rss_size_max);
12579
12580 if (queue_count != vsi->num_queue_pairs) {
12581 u16 qcount;
12582
12583 vsi->req_queue_pairs = queue_count;
12584 i40e_prep_for_reset(pf);
12585 if (test_bit(__I40E_IN_REMOVE, pf->state))
12586 return pf->alloc_rss_size;
12587
12588 pf->alloc_rss_size = new_rss_size;
12589
12590 i40e_reset_and_rebuild(pf, true, true);
12591
12592 /* Discard the user configured hash keys and lut, if less
12593 * queues are enabled.
12594 */
12595 if (queue_count < vsi->rss_size) {
12596 i40e_clear_rss_config_user(vsi);
12597 dev_dbg(&pf->pdev->dev,
12598 "discard user configured hash keys and lut\n");
12599 }
12600
12601 /* Reset vsi->rss_size, as number of enabled queues changed */
12602 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
12603 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
12604
12605 i40e_pf_config_rss(pf);
12606 }
12607 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n",
12608 vsi->req_queue_pairs, pf->rss_size_max);
12609 return pf->alloc_rss_size;
12610 }
12611
12612 /**
12613 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
12614 * @pf: board private structure
12615 **/
i40e_get_partition_bw_setting(struct i40e_pf * pf)12616 int i40e_get_partition_bw_setting(struct i40e_pf *pf)
12617 {
12618 bool min_valid, max_valid;
12619 u32 max_bw, min_bw;
12620 int status;
12621
12622 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
12623 &min_valid, &max_valid);
12624
12625 if (!status) {
12626 if (min_valid)
12627 pf->min_bw = min_bw;
12628 if (max_valid)
12629 pf->max_bw = max_bw;
12630 }
12631
12632 return status;
12633 }
12634
12635 /**
12636 * i40e_set_partition_bw_setting - Set BW settings for this PF partition
12637 * @pf: board private structure
12638 **/
i40e_set_partition_bw_setting(struct i40e_pf * pf)12639 int i40e_set_partition_bw_setting(struct i40e_pf *pf)
12640 {
12641 struct i40e_aqc_configure_partition_bw_data bw_data;
12642 int status;
12643
12644 memset(&bw_data, 0, sizeof(bw_data));
12645
12646 /* Set the valid bit for this PF */
12647 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
12648 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
12649 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
12650
12651 /* Set the new bandwidths */
12652 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
12653
12654 return status;
12655 }
12656
12657 /**
12658 * i40e_is_total_port_shutdown_enabled - read NVM and return value
12659 * if total port shutdown feature is enabled for this PF
12660 * @pf: board private structure
12661 **/
i40e_is_total_port_shutdown_enabled(struct i40e_pf * pf)12662 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf)
12663 {
12664 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4)
12665 #define I40E_FEATURES_ENABLE_PTR 0x2A
12666 #define I40E_CURRENT_SETTING_PTR 0x2B
12667 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D
12668 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1
12669 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0)
12670 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4
12671 u16 sr_emp_sr_settings_ptr = 0;
12672 u16 features_enable = 0;
12673 u16 link_behavior = 0;
12674 int read_status = 0;
12675 bool ret = false;
12676
12677 read_status = i40e_read_nvm_word(&pf->hw,
12678 I40E_SR_EMP_SR_SETTINGS_PTR,
12679 &sr_emp_sr_settings_ptr);
12680 if (read_status)
12681 goto err_nvm;
12682 read_status = i40e_read_nvm_word(&pf->hw,
12683 sr_emp_sr_settings_ptr +
12684 I40E_FEATURES_ENABLE_PTR,
12685 &features_enable);
12686 if (read_status)
12687 goto err_nvm;
12688 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) {
12689 read_status = i40e_read_nvm_module_data(&pf->hw,
12690 I40E_SR_EMP_SR_SETTINGS_PTR,
12691 I40E_CURRENT_SETTING_PTR,
12692 I40E_LINK_BEHAVIOR_WORD_OFFSET,
12693 I40E_LINK_BEHAVIOR_WORD_LENGTH,
12694 &link_behavior);
12695 if (read_status)
12696 goto err_nvm;
12697 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH);
12698 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior;
12699 }
12700 return ret;
12701
12702 err_nvm:
12703 dev_warn(&pf->pdev->dev,
12704 "total-port-shutdown feature is off due to read nvm error: %pe\n",
12705 ERR_PTR(read_status));
12706 return ret;
12707 }
12708
12709 /**
12710 * i40e_sw_init - Initialize general software structures (struct i40e_pf)
12711 * @pf: board private structure to initialize
12712 *
12713 * i40e_sw_init initializes the Adapter private data structure.
12714 * Fields are initialized based on PCI device information and
12715 * OS network device settings (MTU size).
12716 **/
i40e_sw_init(struct i40e_pf * pf)12717 static int i40e_sw_init(struct i40e_pf *pf)
12718 {
12719 int err = 0;
12720 int size;
12721 u16 pow;
12722
12723 /* Set default capability flags */
12724 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS);
12725 set_bit(I40E_FLAG_MSI_ENA, pf->flags);
12726 set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12727
12728 /* Set default ITR */
12729 pf->rx_itr_default = I40E_ITR_RX_DEF;
12730 pf->tx_itr_default = I40E_ITR_TX_DEF;
12731
12732 /* Depending on PF configurations, it is possible that the RSS
12733 * maximum might end up larger than the available queues
12734 */
12735 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
12736 pf->alloc_rss_size = 1;
12737 pf->rss_table_size = pf->hw.func_caps.rss_table_size;
12738 pf->rss_size_max = min_t(int, pf->rss_size_max,
12739 pf->hw.func_caps.num_tx_qp);
12740
12741 /* find the next higher power-of-2 of num cpus */
12742 pow = roundup_pow_of_two(num_online_cpus());
12743 pf->rss_size_max = min_t(int, pf->rss_size_max, pow);
12744
12745 if (pf->hw.func_caps.rss) {
12746 set_bit(I40E_FLAG_RSS_ENA, pf->flags);
12747 pf->alloc_rss_size = min_t(int, pf->rss_size_max,
12748 num_online_cpus());
12749 }
12750
12751 /* MFP mode enabled */
12752 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
12753 set_bit(I40E_FLAG_MFP_ENA, pf->flags);
12754 dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
12755 if (i40e_get_partition_bw_setting(pf)) {
12756 dev_warn(&pf->pdev->dev,
12757 "Could not get partition bw settings\n");
12758 } else {
12759 dev_info(&pf->pdev->dev,
12760 "Partition BW Min = %8.8x, Max = %8.8x\n",
12761 pf->min_bw, pf->max_bw);
12762
12763 /* nudge the Tx scheduler */
12764 i40e_set_partition_bw_setting(pf);
12765 }
12766 }
12767
12768 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
12769 (pf->hw.func_caps.fd_filters_best_effort > 0)) {
12770 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
12771 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
12772 pf->hw.num_partitions > 1)
12773 dev_info(&pf->pdev->dev,
12774 "Flow Director Sideband mode Disabled in MFP mode\n");
12775 else
12776 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12777 pf->fdir_pf_filter_count =
12778 pf->hw.func_caps.fd_filters_guaranteed;
12779 pf->hw.fdir_shared_filter_count =
12780 pf->hw.func_caps.fd_filters_best_effort;
12781 }
12782
12783 /* Enable HW ATR eviction if possible */
12784 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps))
12785 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags);
12786
12787 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) {
12788 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
12789 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
12790 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
12791 }
12792
12793 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) {
12794 set_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12795 /* IWARP needs one extra vector for CQP just like MISC.*/
12796 pf->num_iwarp_msix = (int)num_online_cpus() + 1;
12797 }
12798 /* Stopping FW LLDP engine is supported on XL710 and X722
12799 * starting from FW versions determined in i40e_init_adminq.
12800 * Stopping the FW LLDP engine is not supported on XL710
12801 * if NPAR is functioning so unset this hw flag in this case.
12802 */
12803 if (pf->hw.mac.type == I40E_MAC_XL710 &&
12804 pf->hw.func_caps.npar_enable)
12805 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps);
12806
12807 #ifdef CONFIG_PCI_IOV
12808 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
12809 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
12810 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
12811 pf->num_req_vfs = min_t(int,
12812 pf->hw.func_caps.num_vfs,
12813 I40E_MAX_VF_COUNT);
12814 }
12815 #endif /* CONFIG_PCI_IOV */
12816 pf->lan_veb = I40E_NO_VEB;
12817 pf->lan_vsi = I40E_NO_VSI;
12818
12819 /* By default FW has this off for performance reasons */
12820 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
12821
12822 /* set up queue assignment tracking */
12823 size = sizeof(struct i40e_lump_tracking)
12824 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
12825 pf->qp_pile = kzalloc(size, GFP_KERNEL);
12826 if (!pf->qp_pile) {
12827 err = -ENOMEM;
12828 goto sw_init_done;
12829 }
12830 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
12831
12832 pf->tx_timeout_recovery_level = 1;
12833
12834 if (pf->hw.mac.type != I40E_MAC_X722 &&
12835 i40e_is_total_port_shutdown_enabled(pf)) {
12836 /* Link down on close must be on when total port shutdown
12837 * is enabled for a given port
12838 */
12839 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
12840 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
12841 dev_info(&pf->pdev->dev,
12842 "total-port-shutdown was enabled, link-down-on-close is forced on\n");
12843 }
12844 mutex_init(&pf->switch_mutex);
12845
12846 sw_init_done:
12847 return err;
12848 }
12849
12850 /**
12851 * i40e_set_ntuple - set the ntuple feature flag and take action
12852 * @pf: board private structure to initialize
12853 * @features: the feature set that the stack is suggesting
12854 *
12855 * returns a bool to indicate if reset needs to happen
12856 **/
i40e_set_ntuple(struct i40e_pf * pf,netdev_features_t features)12857 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
12858 {
12859 bool need_reset = false;
12860
12861 /* Check if Flow Director n-tuple support was enabled or disabled. If
12862 * the state changed, we need to reset.
12863 */
12864 if (features & NETIF_F_NTUPLE) {
12865 /* Enable filters and mark for reset */
12866 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
12867 need_reset = true;
12868 /* enable FD_SB only if there is MSI-X vector and no cloud
12869 * filters exist
12870 */
12871 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) {
12872 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12873 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12874 }
12875 } else {
12876 /* turn off filters, mark for reset and clear SW filter list */
12877 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
12878 need_reset = true;
12879 i40e_fdir_filter_exit(pf);
12880 }
12881 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12882 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state);
12883 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12884
12885 /* reset fd counters */
12886 pf->fd_add_err = 0;
12887 pf->fd_atr_cnt = 0;
12888 /* if ATR was auto disabled it can be re-enabled. */
12889 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
12890 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
12891 (I40E_DEBUG_FD & pf->hw.debug_mask))
12892 dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
12893 }
12894 return need_reset;
12895 }
12896
12897 /**
12898 * i40e_clear_rss_lut - clear the rx hash lookup table
12899 * @vsi: the VSI being configured
12900 **/
i40e_clear_rss_lut(struct i40e_vsi * vsi)12901 static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
12902 {
12903 struct i40e_pf *pf = vsi->back;
12904 struct i40e_hw *hw = &pf->hw;
12905 u16 vf_id = vsi->vf_id;
12906 u8 i;
12907
12908 if (vsi->type == I40E_VSI_MAIN) {
12909 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12910 wr32(hw, I40E_PFQF_HLUT(i), 0);
12911 } else if (vsi->type == I40E_VSI_SRIOV) {
12912 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
12913 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
12914 } else {
12915 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
12916 }
12917 }
12918
12919 /**
12920 * i40e_set_loopback - turn on/off loopback mode on underlying PF
12921 * @vsi: ptr to VSI
12922 * @ena: flag to indicate the on/off setting
12923 */
i40e_set_loopback(struct i40e_vsi * vsi,bool ena)12924 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena)
12925 {
12926 bool if_running = netif_running(vsi->netdev) &&
12927 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state);
12928 int ret;
12929
12930 if (if_running)
12931 i40e_down(vsi);
12932
12933 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
12934 if (ret)
12935 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
12936 if (if_running)
12937 i40e_up(vsi);
12938
12939 return ret;
12940 }
12941
12942 /**
12943 * i40e_set_features - set the netdev feature flags
12944 * @netdev: ptr to the netdev being adjusted
12945 * @features: the feature set that the stack is suggesting
12946 * Note: expects to be called while under rtnl_lock()
12947 **/
i40e_set_features(struct net_device * netdev,netdev_features_t features)12948 static int i40e_set_features(struct net_device *netdev,
12949 netdev_features_t features)
12950 {
12951 struct i40e_netdev_priv *np = netdev_priv(netdev);
12952 struct i40e_vsi *vsi = np->vsi;
12953 struct i40e_pf *pf = vsi->back;
12954 bool need_reset;
12955
12956 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
12957 i40e_pf_config_rss(pf);
12958 else if (!(features & NETIF_F_RXHASH) &&
12959 netdev->features & NETIF_F_RXHASH)
12960 i40e_clear_rss_lut(vsi);
12961
12962 if (features & NETIF_F_HW_VLAN_CTAG_RX)
12963 i40e_vlan_stripping_enable(vsi);
12964 else
12965 i40e_vlan_stripping_disable(vsi);
12966
12967 if (!(features & NETIF_F_HW_TC) &&
12968 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) {
12969 dev_err(&pf->pdev->dev,
12970 "Offloaded tc filters active, can't turn hw_tc_offload off");
12971 return -EINVAL;
12972 }
12973
12974 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt)
12975 i40e_del_all_macvlans(vsi);
12976
12977 need_reset = i40e_set_ntuple(pf, features);
12978
12979 if (need_reset)
12980 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
12981
12982 if ((features ^ netdev->features) & NETIF_F_LOOPBACK)
12983 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
12984
12985 return 0;
12986 }
12987
i40e_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)12988 static int i40e_udp_tunnel_set_port(struct net_device *netdev,
12989 unsigned int table, unsigned int idx,
12990 struct udp_tunnel_info *ti)
12991 {
12992 struct i40e_netdev_priv *np = netdev_priv(netdev);
12993 struct i40e_hw *hw = &np->vsi->back->hw;
12994 u8 type, filter_index;
12995 int ret;
12996
12997 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN :
12998 I40E_AQC_TUNNEL_TYPE_NGE;
12999
13000 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index,
13001 NULL);
13002 if (ret) {
13003 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n",
13004 ERR_PTR(ret),
13005 i40e_aq_str(hw, hw->aq.asq_last_status));
13006 return -EIO;
13007 }
13008
13009 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index);
13010 return 0;
13011 }
13012
i40e_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)13013 static int i40e_udp_tunnel_unset_port(struct net_device *netdev,
13014 unsigned int table, unsigned int idx,
13015 struct udp_tunnel_info *ti)
13016 {
13017 struct i40e_netdev_priv *np = netdev_priv(netdev);
13018 struct i40e_hw *hw = &np->vsi->back->hw;
13019 int ret;
13020
13021 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL);
13022 if (ret) {
13023 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n",
13024 ERR_PTR(ret),
13025 i40e_aq_str(hw, hw->aq.asq_last_status));
13026 return -EIO;
13027 }
13028
13029 return 0;
13030 }
13031
i40e_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)13032 static int i40e_get_phys_port_id(struct net_device *netdev,
13033 struct netdev_phys_item_id *ppid)
13034 {
13035 struct i40e_netdev_priv *np = netdev_priv(netdev);
13036 struct i40e_pf *pf = np->vsi->back;
13037 struct i40e_hw *hw = &pf->hw;
13038
13039 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps))
13040 return -EOPNOTSUPP;
13041
13042 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
13043 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
13044
13045 return 0;
13046 }
13047
13048 /**
13049 * i40e_ndo_fdb_add - add an entry to the hardware database
13050 * @ndm: the input from the stack
13051 * @tb: pointer to array of nladdr (unused)
13052 * @dev: the net device pointer
13053 * @addr: the MAC address entry being added
13054 * @vid: VLAN ID
13055 * @flags: instructions from stack about fdb operation
13056 * @notified: whether notification was emitted
13057 * @extack: netlink extended ack, unused currently
13058 */
i40e_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)13059 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
13060 struct net_device *dev,
13061 const unsigned char *addr, u16 vid,
13062 u16 flags, bool *notified,
13063 struct netlink_ext_ack *extack)
13064 {
13065 struct i40e_netdev_priv *np = netdev_priv(dev);
13066 struct i40e_pf *pf = np->vsi->back;
13067 int err = 0;
13068
13069 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags))
13070 return -EOPNOTSUPP;
13071
13072 if (vid) {
13073 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
13074 return -EINVAL;
13075 }
13076
13077 /* Hardware does not support aging addresses so if a
13078 * ndm_state is given only allow permanent addresses
13079 */
13080 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
13081 netdev_info(dev, "FDB only supports static addresses\n");
13082 return -EINVAL;
13083 }
13084
13085 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
13086 err = dev_uc_add_excl(dev, addr);
13087 else if (is_multicast_ether_addr(addr))
13088 err = dev_mc_add_excl(dev, addr);
13089 else
13090 err = -EINVAL;
13091
13092 /* Only return duplicate errors if NLM_F_EXCL is set */
13093 if (err == -EEXIST && !(flags & NLM_F_EXCL))
13094 err = 0;
13095
13096 return err;
13097 }
13098
13099 /**
13100 * i40e_ndo_bridge_setlink - Set the hardware bridge mode
13101 * @dev: the netdev being configured
13102 * @nlh: RTNL message
13103 * @flags: bridge flags
13104 * @extack: netlink extended ack
13105 *
13106 * Inserts a new hardware bridge if not already created and
13107 * enables the bridging mode requested (VEB or VEPA). If the
13108 * hardware bridge has already been inserted and the request
13109 * is to change the mode then that requires a PF reset to
13110 * allow rebuild of the components with required hardware
13111 * bridge mode enabled.
13112 *
13113 * Note: expects to be called while under rtnl_lock()
13114 **/
i40e_ndo_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 flags,struct netlink_ext_ack * extack)13115 static int i40e_ndo_bridge_setlink(struct net_device *dev,
13116 struct nlmsghdr *nlh,
13117 u16 flags,
13118 struct netlink_ext_ack *extack)
13119 {
13120 struct i40e_netdev_priv *np = netdev_priv(dev);
13121 struct i40e_vsi *vsi = np->vsi;
13122 struct i40e_pf *pf = vsi->back;
13123 struct nlattr *attr, *br_spec;
13124 struct i40e_veb *veb;
13125 int rem;
13126
13127 /* Only for PF VSI for now */
13128 if (vsi->type != I40E_VSI_MAIN)
13129 return -EOPNOTSUPP;
13130
13131 /* Find the HW bridge for PF VSI */
13132 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
13133
13134 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13135 if (!br_spec)
13136 return -EINVAL;
13137
13138 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
13139 __u16 mode = nla_get_u16(attr);
13140
13141 if ((mode != BRIDGE_MODE_VEPA) &&
13142 (mode != BRIDGE_MODE_VEB))
13143 return -EINVAL;
13144
13145 /* Insert a new HW bridge */
13146 if (!veb) {
13147 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid,
13148 vsi->tc_config.enabled_tc);
13149 if (veb) {
13150 veb->bridge_mode = mode;
13151 i40e_config_bridge_mode(veb);
13152 } else {
13153 /* No Bridge HW offload available */
13154 return -ENOENT;
13155 }
13156 break;
13157 } else if (mode != veb->bridge_mode) {
13158 /* Existing HW bridge but different mode needs reset */
13159 veb->bridge_mode = mode;
13160 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
13161 if (mode == BRIDGE_MODE_VEB)
13162 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
13163 else
13164 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
13165 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
13166 break;
13167 }
13168 }
13169
13170 return 0;
13171 }
13172
13173 /**
13174 * i40e_ndo_bridge_getlink - Get the hardware bridge mode
13175 * @skb: skb buff
13176 * @pid: process id
13177 * @seq: RTNL message seq #
13178 * @dev: the netdev being configured
13179 * @filter_mask: unused
13180 * @nlflags: netlink flags passed in
13181 *
13182 * Return the mode in which the hardware bridge is operating in
13183 * i.e VEB or VEPA.
13184 **/
i40e_ndo_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 __always_unused filter_mask,int nlflags)13185 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13186 struct net_device *dev,
13187 u32 __always_unused filter_mask,
13188 int nlflags)
13189 {
13190 struct i40e_netdev_priv *np = netdev_priv(dev);
13191 struct i40e_vsi *vsi = np->vsi;
13192 struct i40e_pf *pf = vsi->back;
13193 struct i40e_veb *veb;
13194
13195 /* Only for PF VSI for now */
13196 if (vsi->type != I40E_VSI_MAIN)
13197 return -EOPNOTSUPP;
13198
13199 /* Find the HW bridge for the PF VSI */
13200 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
13201 if (!veb)
13202 return 0;
13203
13204 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
13205 0, 0, nlflags, filter_mask, NULL);
13206 }
13207
13208 /**
13209 * i40e_features_check - Validate encapsulated packet conforms to limits
13210 * @skb: skb buff
13211 * @dev: This physical port's netdev
13212 * @features: Offload features that the stack believes apply
13213 **/
i40e_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)13214 static netdev_features_t i40e_features_check(struct sk_buff *skb,
13215 struct net_device *dev,
13216 netdev_features_t features)
13217 {
13218 size_t len;
13219
13220 /* No point in doing any of this if neither checksum nor GSO are
13221 * being requested for this frame. We can rule out both by just
13222 * checking for CHECKSUM_PARTIAL
13223 */
13224 if (skb->ip_summed != CHECKSUM_PARTIAL)
13225 return features;
13226
13227 /* We cannot support GSO if the MSS is going to be less than
13228 * 64 bytes. If it is then we need to drop support for GSO.
13229 */
13230 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
13231 features &= ~NETIF_F_GSO_MASK;
13232
13233 /* MACLEN can support at most 63 words */
13234 len = skb_network_offset(skb);
13235 if (len & ~(63 * 2))
13236 goto out_err;
13237
13238 /* IPLEN and EIPLEN can support at most 127 dwords */
13239 len = skb_network_header_len(skb);
13240 if (len & ~(127 * 4))
13241 goto out_err;
13242
13243 if (skb->encapsulation) {
13244 /* L4TUNLEN can support 127 words */
13245 len = skb_inner_network_header(skb) - skb_transport_header(skb);
13246 if (len & ~(127 * 2))
13247 goto out_err;
13248
13249 /* IPLEN can support at most 127 dwords */
13250 len = skb_inner_transport_header(skb) -
13251 skb_inner_network_header(skb);
13252 if (len & ~(127 * 4))
13253 goto out_err;
13254 }
13255
13256 /* No need to validate L4LEN as TCP is the only protocol with a
13257 * flexible value and we support all possible values supported
13258 * by TCP, which is at most 15 dwords
13259 */
13260
13261 return features;
13262 out_err:
13263 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13264 }
13265
13266 /**
13267 * i40e_xdp_setup - add/remove an XDP program
13268 * @vsi: VSI to changed
13269 * @prog: XDP program
13270 * @extack: netlink extended ack
13271 **/
i40e_xdp_setup(struct i40e_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)13272 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog,
13273 struct netlink_ext_ack *extack)
13274 {
13275 int frame_size = i40e_max_vsi_frame_size(vsi, prog);
13276 struct i40e_pf *pf = vsi->back;
13277 struct bpf_prog *old_prog;
13278 bool need_reset;
13279 int i;
13280
13281 /* VSI shall be deleted in a moment, block loading new programs */
13282 if (prog && test_bit(__I40E_IN_REMOVE, pf->state))
13283 return -EINVAL;
13284
13285 /* Don't allow frames that span over multiple buffers */
13286 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) {
13287 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags");
13288 return -EINVAL;
13289 }
13290
13291 /* When turning XDP on->off/off->on we reset and rebuild the rings. */
13292 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
13293 if (need_reset)
13294 i40e_prep_for_reset(pf);
13295
13296 old_prog = xchg(&vsi->xdp_prog, prog);
13297
13298 if (need_reset) {
13299 if (!prog) {
13300 xdp_features_clear_redirect_target(vsi->netdev);
13301 /* Wait until ndo_xsk_wakeup completes. */
13302 synchronize_rcu();
13303 }
13304 i40e_reset_and_rebuild(pf, true, true);
13305 }
13306
13307 if (!i40e_enabled_xdp_vsi(vsi) && prog) {
13308 if (i40e_realloc_rx_bi_zc(vsi, true))
13309 return -ENOMEM;
13310 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) {
13311 if (i40e_realloc_rx_bi_zc(vsi, false))
13312 return -ENOMEM;
13313 }
13314
13315 for (i = 0; i < vsi->num_queue_pairs; i++)
13316 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
13317
13318 if (old_prog)
13319 bpf_prog_put(old_prog);
13320
13321 /* Kick start the NAPI context if there is an AF_XDP socket open
13322 * on that queue id. This so that receiving will start.
13323 */
13324 if (need_reset && prog) {
13325 for (i = 0; i < vsi->num_queue_pairs; i++)
13326 if (vsi->xdp_rings[i]->xsk_pool)
13327 (void)i40e_xsk_wakeup(vsi->netdev, i,
13328 XDP_WAKEUP_RX);
13329 xdp_features_set_redirect_target(vsi->netdev, true);
13330 }
13331
13332 return 0;
13333 }
13334
13335 /**
13336 * i40e_enter_busy_conf - Enters busy config state
13337 * @vsi: vsi
13338 *
13339 * Returns 0 on success, <0 for failure.
13340 **/
i40e_enter_busy_conf(struct i40e_vsi * vsi)13341 static int i40e_enter_busy_conf(struct i40e_vsi *vsi)
13342 {
13343 struct i40e_pf *pf = vsi->back;
13344 int timeout = 50;
13345
13346 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) {
13347 timeout--;
13348 if (!timeout)
13349 return -EBUSY;
13350 usleep_range(1000, 2000);
13351 }
13352
13353 return 0;
13354 }
13355
13356 /**
13357 * i40e_exit_busy_conf - Exits busy config state
13358 * @vsi: vsi
13359 **/
i40e_exit_busy_conf(struct i40e_vsi * vsi)13360 static void i40e_exit_busy_conf(struct i40e_vsi *vsi)
13361 {
13362 struct i40e_pf *pf = vsi->back;
13363
13364 clear_bit(__I40E_CONFIG_BUSY, pf->state);
13365 }
13366
13367 /**
13368 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair
13369 * @vsi: vsi
13370 * @queue_pair: queue pair
13371 **/
i40e_queue_pair_reset_stats(struct i40e_vsi * vsi,int queue_pair)13372 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair)
13373 {
13374 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0,
13375 sizeof(vsi->rx_rings[queue_pair]->rx_stats));
13376 memset(&vsi->tx_rings[queue_pair]->stats, 0,
13377 sizeof(vsi->tx_rings[queue_pair]->stats));
13378 if (i40e_enabled_xdp_vsi(vsi)) {
13379 memset(&vsi->xdp_rings[queue_pair]->stats, 0,
13380 sizeof(vsi->xdp_rings[queue_pair]->stats));
13381 }
13382 }
13383
13384 /**
13385 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair
13386 * @vsi: vsi
13387 * @queue_pair: queue pair
13388 **/
i40e_queue_pair_clean_rings(struct i40e_vsi * vsi,int queue_pair)13389 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair)
13390 {
13391 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]);
13392 if (i40e_enabled_xdp_vsi(vsi)) {
13393 /* Make sure that in-progress ndo_xdp_xmit calls are
13394 * completed.
13395 */
13396 synchronize_rcu();
13397 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]);
13398 }
13399 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
13400 }
13401
13402 /**
13403 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair
13404 * @vsi: vsi
13405 * @queue_pair: queue pair
13406 * @enable: true for enable, false for disable
13407 **/
i40e_queue_pair_toggle_napi(struct i40e_vsi * vsi,int queue_pair,bool enable)13408 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair,
13409 bool enable)
13410 {
13411 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13412 struct i40e_q_vector *q_vector = rxr->q_vector;
13413
13414 if (!vsi->netdev)
13415 return;
13416
13417 /* All rings in a qp belong to the same qvector. */
13418 if (q_vector->rx.ring || q_vector->tx.ring) {
13419 if (enable)
13420 napi_enable(&q_vector->napi);
13421 else
13422 napi_disable(&q_vector->napi);
13423 }
13424 }
13425
13426 /**
13427 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair
13428 * @vsi: vsi
13429 * @queue_pair: queue pair
13430 * @enable: true for enable, false for disable
13431 *
13432 * Returns 0 on success, <0 on failure.
13433 **/
i40e_queue_pair_toggle_rings(struct i40e_vsi * vsi,int queue_pair,bool enable)13434 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair,
13435 bool enable)
13436 {
13437 struct i40e_pf *pf = vsi->back;
13438 int pf_q, ret = 0;
13439
13440 pf_q = vsi->base_queue + queue_pair;
13441 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q,
13442 false /*is xdp*/, enable);
13443 if (ret) {
13444 dev_info(&pf->pdev->dev,
13445 "VSI seid %d Tx ring %d %sable timeout\n",
13446 vsi->seid, pf_q, (enable ? "en" : "dis"));
13447 return ret;
13448 }
13449
13450 i40e_control_rx_q(pf, pf_q, enable);
13451 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
13452 if (ret) {
13453 dev_info(&pf->pdev->dev,
13454 "VSI seid %d Rx ring %d %sable timeout\n",
13455 vsi->seid, pf_q, (enable ? "en" : "dis"));
13456 return ret;
13457 }
13458
13459 /* Due to HW errata, on Rx disable only, the register can
13460 * indicate done before it really is. Needs 50ms to be sure
13461 */
13462 if (!enable)
13463 mdelay(50);
13464
13465 if (!i40e_enabled_xdp_vsi(vsi))
13466 return ret;
13467
13468 ret = i40e_control_wait_tx_q(vsi->seid, pf,
13469 pf_q + vsi->alloc_queue_pairs,
13470 true /*is xdp*/, enable);
13471 if (ret) {
13472 dev_info(&pf->pdev->dev,
13473 "VSI seid %d XDP Tx ring %d %sable timeout\n",
13474 vsi->seid, pf_q, (enable ? "en" : "dis"));
13475 }
13476
13477 return ret;
13478 }
13479
13480 /**
13481 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair
13482 * @vsi: vsi
13483 * @queue_pair: queue_pair
13484 **/
i40e_queue_pair_enable_irq(struct i40e_vsi * vsi,int queue_pair)13485 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair)
13486 {
13487 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13488 struct i40e_pf *pf = vsi->back;
13489 struct i40e_hw *hw = &pf->hw;
13490
13491 /* All rings in a qp belong to the same qvector. */
13492 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
13493 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx);
13494 else
13495 i40e_irq_dynamic_enable_icr0(pf);
13496
13497 i40e_flush(hw);
13498 }
13499
13500 /**
13501 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair
13502 * @vsi: vsi
13503 * @queue_pair: queue_pair
13504 **/
i40e_queue_pair_disable_irq(struct i40e_vsi * vsi,int queue_pair)13505 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair)
13506 {
13507 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13508 struct i40e_pf *pf = vsi->back;
13509 struct i40e_hw *hw = &pf->hw;
13510
13511 /* For simplicity, instead of removing the qp interrupt causes
13512 * from the interrupt linked list, we simply disable the interrupt, and
13513 * leave the list intact.
13514 *
13515 * All rings in a qp belong to the same qvector.
13516 */
13517 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
13518 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx;
13519
13520 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0);
13521 i40e_flush(hw);
13522 synchronize_irq(pf->msix_entries[intpf].vector);
13523 } else {
13524 /* Legacy and MSI mode - this stops all interrupt handling */
13525 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
13526 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
13527 i40e_flush(hw);
13528 synchronize_irq(pf->pdev->irq);
13529 }
13530 }
13531
13532 /**
13533 * i40e_queue_pair_disable - Disables a queue pair
13534 * @vsi: vsi
13535 * @queue_pair: queue pair
13536 *
13537 * Returns 0 on success, <0 on failure.
13538 **/
i40e_queue_pair_disable(struct i40e_vsi * vsi,int queue_pair)13539 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair)
13540 {
13541 int err;
13542
13543 err = i40e_enter_busy_conf(vsi);
13544 if (err)
13545 return err;
13546
13547 i40e_queue_pair_disable_irq(vsi, queue_pair);
13548 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */);
13549 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */);
13550 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
13551 i40e_queue_pair_clean_rings(vsi, queue_pair);
13552 i40e_queue_pair_reset_stats(vsi, queue_pair);
13553
13554 return err;
13555 }
13556
13557 /**
13558 * i40e_queue_pair_enable - Enables a queue pair
13559 * @vsi: vsi
13560 * @queue_pair: queue pair
13561 *
13562 * Returns 0 on success, <0 on failure.
13563 **/
i40e_queue_pair_enable(struct i40e_vsi * vsi,int queue_pair)13564 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair)
13565 {
13566 int err;
13567
13568 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]);
13569 if (err)
13570 return err;
13571
13572 if (i40e_enabled_xdp_vsi(vsi)) {
13573 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]);
13574 if (err)
13575 return err;
13576 }
13577
13578 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]);
13579 if (err)
13580 return err;
13581
13582 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */);
13583 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */);
13584 i40e_queue_pair_enable_irq(vsi, queue_pair);
13585
13586 i40e_exit_busy_conf(vsi);
13587
13588 return err;
13589 }
13590
13591 /**
13592 * i40e_xdp - implements ndo_bpf for i40e
13593 * @dev: netdevice
13594 * @xdp: XDP command
13595 **/
i40e_xdp(struct net_device * dev,struct netdev_bpf * xdp)13596 static int i40e_xdp(struct net_device *dev,
13597 struct netdev_bpf *xdp)
13598 {
13599 struct i40e_netdev_priv *np = netdev_priv(dev);
13600 struct i40e_vsi *vsi = np->vsi;
13601
13602 if (vsi->type != I40E_VSI_MAIN)
13603 return -EINVAL;
13604
13605 switch (xdp->command) {
13606 case XDP_SETUP_PROG:
13607 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack);
13608 case XDP_SETUP_XSK_POOL:
13609 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool,
13610 xdp->xsk.queue_id);
13611 default:
13612 return -EINVAL;
13613 }
13614 }
13615
13616 static const struct net_device_ops i40e_netdev_ops = {
13617 .ndo_open = i40e_open,
13618 .ndo_stop = i40e_close,
13619 .ndo_start_xmit = i40e_lan_xmit_frame,
13620 .ndo_get_stats64 = i40e_get_netdev_stats_struct,
13621 .ndo_set_rx_mode = i40e_set_rx_mode,
13622 .ndo_validate_addr = eth_validate_addr,
13623 .ndo_set_mac_address = i40e_set_mac,
13624 .ndo_change_mtu = i40e_change_mtu,
13625 .ndo_eth_ioctl = i40e_ioctl,
13626 .ndo_tx_timeout = i40e_tx_timeout,
13627 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
13628 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
13629 #ifdef CONFIG_NET_POLL_CONTROLLER
13630 .ndo_poll_controller = i40e_netpoll,
13631 #endif
13632 .ndo_setup_tc = __i40e_setup_tc,
13633 .ndo_select_queue = i40e_lan_select_queue,
13634 .ndo_set_features = i40e_set_features,
13635 .ndo_set_vf_mac = i40e_ndo_set_vf_mac,
13636 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
13637 .ndo_get_vf_stats = i40e_get_vf_stats,
13638 .ndo_set_vf_rate = i40e_ndo_set_vf_bw,
13639 .ndo_get_vf_config = i40e_ndo_get_vf_config,
13640 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state,
13641 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk,
13642 .ndo_set_vf_trust = i40e_ndo_set_vf_trust,
13643 .ndo_get_phys_port_id = i40e_get_phys_port_id,
13644 .ndo_fdb_add = i40e_ndo_fdb_add,
13645 .ndo_features_check = i40e_features_check,
13646 .ndo_bridge_getlink = i40e_ndo_bridge_getlink,
13647 .ndo_bridge_setlink = i40e_ndo_bridge_setlink,
13648 .ndo_bpf = i40e_xdp,
13649 .ndo_xdp_xmit = i40e_xdp_xmit,
13650 .ndo_xsk_wakeup = i40e_xsk_wakeup,
13651 .ndo_dfwd_add_station = i40e_fwd_add,
13652 .ndo_dfwd_del_station = i40e_fwd_del,
13653 };
13654
13655 /**
13656 * i40e_config_netdev - Setup the netdev flags
13657 * @vsi: the VSI being configured
13658 *
13659 * Returns 0 on success, negative value on failure
13660 **/
i40e_config_netdev(struct i40e_vsi * vsi)13661 static int i40e_config_netdev(struct i40e_vsi *vsi)
13662 {
13663 struct i40e_pf *pf = vsi->back;
13664 struct i40e_hw *hw = &pf->hw;
13665 struct i40e_netdev_priv *np;
13666 struct net_device *netdev;
13667 u8 broadcast[ETH_ALEN];
13668 u8 mac_addr[ETH_ALEN];
13669 int etherdev_size;
13670 netdev_features_t hw_enc_features;
13671 netdev_features_t hw_features;
13672
13673 etherdev_size = sizeof(struct i40e_netdev_priv);
13674 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
13675 if (!netdev)
13676 return -ENOMEM;
13677
13678 vsi->netdev = netdev;
13679 np = netdev_priv(netdev);
13680 np->vsi = vsi;
13681
13682 hw_enc_features = NETIF_F_SG |
13683 NETIF_F_HW_CSUM |
13684 NETIF_F_HIGHDMA |
13685 NETIF_F_SOFT_FEATURES |
13686 NETIF_F_TSO |
13687 NETIF_F_TSO_ECN |
13688 NETIF_F_TSO6 |
13689 NETIF_F_GSO_GRE |
13690 NETIF_F_GSO_GRE_CSUM |
13691 NETIF_F_GSO_PARTIAL |
13692 NETIF_F_GSO_IPXIP4 |
13693 NETIF_F_GSO_IPXIP6 |
13694 NETIF_F_GSO_UDP_TUNNEL |
13695 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13696 NETIF_F_GSO_UDP_L4 |
13697 NETIF_F_SCTP_CRC |
13698 NETIF_F_RXHASH |
13699 NETIF_F_RXCSUM |
13700 0;
13701
13702 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps))
13703 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
13704
13705 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic;
13706
13707 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
13708
13709 netdev->hw_enc_features |= hw_enc_features;
13710
13711 /* record features VLANs can make use of */
13712 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
13713
13714 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
13715 NETIF_F_GSO_GRE_CSUM | \
13716 NETIF_F_GSO_IPXIP4 | \
13717 NETIF_F_GSO_IPXIP6 | \
13718 NETIF_F_GSO_UDP_TUNNEL | \
13719 NETIF_F_GSO_UDP_TUNNEL_CSUM)
13720
13721 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES;
13722 netdev->features |= NETIF_F_GSO_PARTIAL |
13723 I40E_GSO_PARTIAL_FEATURES;
13724
13725 netdev->mpls_features |= NETIF_F_SG;
13726 netdev->mpls_features |= NETIF_F_HW_CSUM;
13727 netdev->mpls_features |= NETIF_F_TSO;
13728 netdev->mpls_features |= NETIF_F_TSO6;
13729 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES;
13730
13731 /* enable macvlan offloads */
13732 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
13733
13734 hw_features = hw_enc_features |
13735 NETIF_F_HW_VLAN_CTAG_TX |
13736 NETIF_F_HW_VLAN_CTAG_RX;
13737
13738 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
13739 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC;
13740
13741 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK;
13742
13743 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
13744 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
13745
13746 netdev->features &= ~NETIF_F_HW_TC;
13747
13748 if (vsi->type == I40E_VSI_MAIN) {
13749 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
13750 ether_addr_copy(mac_addr, hw->mac.perm_addr);
13751 /* The following steps are necessary for two reasons. First,
13752 * some older NVM configurations load a default MAC-VLAN
13753 * filter that will accept any tagged packet, and we want to
13754 * replace this with a normal filter. Additionally, it is
13755 * possible our MAC address was provided by the platform using
13756 * Open Firmware or similar.
13757 *
13758 * Thus, we need to remove the default filter and install one
13759 * specific to the MAC address.
13760 */
13761 i40e_rm_default_mac_filter(vsi, mac_addr);
13762 spin_lock_bh(&vsi->mac_filter_hash_lock);
13763 i40e_add_mac_filter(vsi, mac_addr);
13764 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13765
13766 netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
13767 NETDEV_XDP_ACT_REDIRECT |
13768 NETDEV_XDP_ACT_XSK_ZEROCOPY |
13769 NETDEV_XDP_ACT_RX_SG;
13770 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD;
13771 } else {
13772 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
13773 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
13774 * the end, which is 4 bytes long, so force truncation of the
13775 * original name by IFNAMSIZ - 4
13776 */
13777 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
13778
13779 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4,
13780 main_vsi->netdev->name);
13781 eth_random_addr(mac_addr);
13782
13783 spin_lock_bh(&vsi->mac_filter_hash_lock);
13784 i40e_add_mac_filter(vsi, mac_addr);
13785 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13786 }
13787
13788 /* Add the broadcast filter so that we initially will receive
13789 * broadcast packets. Note that when a new VLAN is first added the
13790 * driver will convert all filters marked I40E_VLAN_ANY into VLAN
13791 * specific filters as part of transitioning into "vlan" operation.
13792 * When more VLANs are added, the driver will copy each existing MAC
13793 * filter and add it for the new VLAN.
13794 *
13795 * Broadcast filters are handled specially by
13796 * i40e_sync_filters_subtask, as the driver must to set the broadcast
13797 * promiscuous bit instead of adding this directly as a MAC/VLAN
13798 * filter. The subtask will update the correct broadcast promiscuous
13799 * bits as VLANs become active or inactive.
13800 */
13801 eth_broadcast_addr(broadcast);
13802 spin_lock_bh(&vsi->mac_filter_hash_lock);
13803 i40e_add_mac_filter(vsi, broadcast);
13804 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13805
13806 eth_hw_addr_set(netdev, mac_addr);
13807 ether_addr_copy(netdev->perm_addr, mac_addr);
13808
13809 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */
13810 netdev->neigh_priv_len = sizeof(u32) * 4;
13811
13812 netdev->priv_flags |= IFF_UNICAST_FLT;
13813 netdev->priv_flags |= IFF_SUPP_NOFCS;
13814 /* Setup netdev TC information */
13815 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
13816
13817 netdev->netdev_ops = &i40e_netdev_ops;
13818 netdev->watchdog_timeo = 5 * HZ;
13819 i40e_set_ethtool_ops(netdev);
13820
13821 /* MTU range: 68 - 9706 */
13822 netdev->min_mtu = ETH_MIN_MTU;
13823 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
13824
13825 return 0;
13826 }
13827
13828 /**
13829 * i40e_vsi_delete - Delete a VSI from the switch
13830 * @vsi: the VSI being removed
13831 *
13832 * Returns 0 on success, negative value on failure
13833 **/
i40e_vsi_delete(struct i40e_vsi * vsi)13834 static void i40e_vsi_delete(struct i40e_vsi *vsi)
13835 {
13836 /* remove default VSI is not allowed */
13837 if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
13838 return;
13839
13840 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
13841 }
13842
13843 /**
13844 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
13845 * @vsi: the VSI being queried
13846 *
13847 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
13848 **/
i40e_is_vsi_uplink_mode_veb(struct i40e_vsi * vsi)13849 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
13850 {
13851 struct i40e_veb *veb;
13852 struct i40e_pf *pf = vsi->back;
13853
13854 /* Uplink is not a bridge so default to VEB */
13855 if (vsi->veb_idx >= I40E_MAX_VEB)
13856 return 1;
13857
13858 veb = pf->veb[vsi->veb_idx];
13859 if (!veb) {
13860 dev_info(&pf->pdev->dev,
13861 "There is no veb associated with the bridge\n");
13862 return -ENOENT;
13863 }
13864
13865 /* Uplink is a bridge in VEPA mode */
13866 if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
13867 return 0;
13868 } else {
13869 /* Uplink is a bridge in VEB mode */
13870 return 1;
13871 }
13872
13873 /* VEPA is now default bridge, so return 0 */
13874 return 0;
13875 }
13876
13877 /**
13878 * i40e_add_vsi - Add a VSI to the switch
13879 * @vsi: the VSI being configured
13880 *
13881 * This initializes a VSI context depending on the VSI type to be added and
13882 * passes it down to the add_vsi aq command.
13883 **/
i40e_add_vsi(struct i40e_vsi * vsi)13884 static int i40e_add_vsi(struct i40e_vsi *vsi)
13885 {
13886 int ret = -ENODEV;
13887 struct i40e_pf *pf = vsi->back;
13888 struct i40e_hw *hw = &pf->hw;
13889 struct i40e_vsi_context ctxt;
13890 struct i40e_mac_filter *f;
13891 struct hlist_node *h;
13892 int bkt;
13893
13894 u8 enabled_tc = 0x1; /* TC0 enabled */
13895 int f_count = 0;
13896
13897 memset(&ctxt, 0, sizeof(ctxt));
13898 switch (vsi->type) {
13899 case I40E_VSI_MAIN:
13900 /* The PF's main VSI is already setup as part of the
13901 * device initialization, so we'll not bother with
13902 * the add_vsi call, but we will retrieve the current
13903 * VSI context.
13904 */
13905 ctxt.seid = pf->main_vsi_seid;
13906 ctxt.pf_num = pf->hw.pf_id;
13907 ctxt.vf_num = 0;
13908 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
13909 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
13910 if (ret) {
13911 dev_info(&pf->pdev->dev,
13912 "couldn't get PF vsi config, err %pe aq_err %s\n",
13913 ERR_PTR(ret),
13914 i40e_aq_str(&pf->hw,
13915 pf->hw.aq.asq_last_status));
13916 return -ENOENT;
13917 }
13918 vsi->info = ctxt.info;
13919 vsi->info.valid_sections = 0;
13920
13921 vsi->seid = ctxt.seid;
13922 vsi->id = ctxt.vsi_number;
13923
13924 enabled_tc = i40e_pf_get_tc_map(pf);
13925
13926 /* Source pruning is enabled by default, so the flag is
13927 * negative logic - if it's set, we need to fiddle with
13928 * the VSI to disable source pruning.
13929 */
13930 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) {
13931 memset(&ctxt, 0, sizeof(ctxt));
13932 ctxt.seid = pf->main_vsi_seid;
13933 ctxt.pf_num = pf->hw.pf_id;
13934 ctxt.vf_num = 0;
13935 ctxt.info.valid_sections |=
13936 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
13937 ctxt.info.switch_id =
13938 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
13939 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
13940 if (ret) {
13941 dev_info(&pf->pdev->dev,
13942 "update vsi failed, err %d aq_err %s\n",
13943 ret,
13944 i40e_aq_str(&pf->hw,
13945 pf->hw.aq.asq_last_status));
13946 ret = -ENOENT;
13947 goto err;
13948 }
13949 }
13950
13951 /* MFP mode setup queue map and update VSI */
13952 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
13953 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */
13954 memset(&ctxt, 0, sizeof(ctxt));
13955 ctxt.seid = pf->main_vsi_seid;
13956 ctxt.pf_num = pf->hw.pf_id;
13957 ctxt.vf_num = 0;
13958 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
13959 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
13960 if (ret) {
13961 dev_info(&pf->pdev->dev,
13962 "update vsi failed, err %pe aq_err %s\n",
13963 ERR_PTR(ret),
13964 i40e_aq_str(&pf->hw,
13965 pf->hw.aq.asq_last_status));
13966 ret = -ENOENT;
13967 goto err;
13968 }
13969 /* update the local VSI info queue map */
13970 i40e_vsi_update_queue_map(vsi, &ctxt);
13971 vsi->info.valid_sections = 0;
13972 } else {
13973 /* Default/Main VSI is only enabled for TC0
13974 * reconfigure it to enable all TCs that are
13975 * available on the port in SFP mode.
13976 * For MFP case the iSCSI PF would use this
13977 * flow to enable LAN+iSCSI TC.
13978 */
13979 ret = i40e_vsi_config_tc(vsi, enabled_tc);
13980 if (ret) {
13981 /* Single TC condition is not fatal,
13982 * message and continue
13983 */
13984 dev_info(&pf->pdev->dev,
13985 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n",
13986 enabled_tc,
13987 ERR_PTR(ret),
13988 i40e_aq_str(&pf->hw,
13989 pf->hw.aq.asq_last_status));
13990 }
13991 }
13992 break;
13993
13994 case I40E_VSI_FDIR:
13995 ctxt.pf_num = hw->pf_id;
13996 ctxt.vf_num = 0;
13997 ctxt.uplink_seid = vsi->uplink_seid;
13998 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
13999 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
14000 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) &&
14001 (i40e_is_vsi_uplink_mode_veb(vsi))) {
14002 ctxt.info.valid_sections |=
14003 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
14004 ctxt.info.switch_id =
14005 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
14006 }
14007 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
14008 break;
14009
14010 case I40E_VSI_VMDQ2:
14011 ctxt.pf_num = hw->pf_id;
14012 ctxt.vf_num = 0;
14013 ctxt.uplink_seid = vsi->uplink_seid;
14014 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
14015 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
14016
14017 /* This VSI is connected to VEB so the switch_id
14018 * should be set to zero by default.
14019 */
14020 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
14021 ctxt.info.valid_sections |=
14022 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
14023 ctxt.info.switch_id =
14024 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
14025 }
14026
14027 /* Setup the VSI tx/rx queue map for TC0 only for now */
14028 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
14029 break;
14030
14031 case I40E_VSI_SRIOV:
14032 ctxt.pf_num = hw->pf_id;
14033 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
14034 ctxt.uplink_seid = vsi->uplink_seid;
14035 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
14036 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
14037
14038 /* This VSI is connected to VEB so the switch_id
14039 * should be set to zero by default.
14040 */
14041 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
14042 ctxt.info.valid_sections |=
14043 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
14044 ctxt.info.switch_id =
14045 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
14046 }
14047
14048 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
14049 ctxt.info.valid_sections |=
14050 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
14051 ctxt.info.queueing_opt_flags |=
14052 (I40E_AQ_VSI_QUE_OPT_TCP_ENA |
14053 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
14054 }
14055
14056 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
14057 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
14058 if (pf->vf[vsi->vf_id].spoofchk) {
14059 ctxt.info.valid_sections |=
14060 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
14061 ctxt.info.sec_flags |=
14062 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
14063 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
14064 }
14065 /* Setup the VSI tx/rx queue map for TC0 only for now */
14066 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
14067 break;
14068
14069 case I40E_VSI_IWARP:
14070 /* send down message to iWARP */
14071 break;
14072
14073 default:
14074 return -ENODEV;
14075 }
14076
14077 if (vsi->type != I40E_VSI_MAIN) {
14078 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
14079 if (ret) {
14080 dev_info(&vsi->back->pdev->dev,
14081 "add vsi failed, err %pe aq_err %s\n",
14082 ERR_PTR(ret),
14083 i40e_aq_str(&pf->hw,
14084 pf->hw.aq.asq_last_status));
14085 ret = -ENOENT;
14086 goto err;
14087 }
14088 vsi->info = ctxt.info;
14089 vsi->info.valid_sections = 0;
14090 vsi->seid = ctxt.seid;
14091 vsi->id = ctxt.vsi_number;
14092 }
14093
14094 spin_lock_bh(&vsi->mac_filter_hash_lock);
14095 vsi->active_filters = 0;
14096 /* If macvlan filters already exist, force them to get loaded */
14097 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
14098 f->state = I40E_FILTER_NEW;
14099 f_count++;
14100 }
14101 spin_unlock_bh(&vsi->mac_filter_hash_lock);
14102 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
14103
14104 if (f_count) {
14105 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
14106 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
14107 }
14108
14109 /* Update VSI BW information */
14110 ret = i40e_vsi_get_bw_info(vsi);
14111 if (ret) {
14112 dev_info(&pf->pdev->dev,
14113 "couldn't get vsi bw info, err %pe aq_err %s\n",
14114 ERR_PTR(ret),
14115 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
14116 /* VSI is already added so not tearing that up */
14117 ret = 0;
14118 }
14119
14120 err:
14121 return ret;
14122 }
14123
14124 /**
14125 * i40e_vsi_release - Delete a VSI and free its resources
14126 * @vsi: the VSI being removed
14127 *
14128 * Returns 0 on success or < 0 on error
14129 **/
i40e_vsi_release(struct i40e_vsi * vsi)14130 int i40e_vsi_release(struct i40e_vsi *vsi)
14131 {
14132 struct i40e_mac_filter *f;
14133 struct hlist_node *h;
14134 struct i40e_veb *veb;
14135 struct i40e_pf *pf;
14136 u16 uplink_seid;
14137 int i, n, bkt;
14138
14139 pf = vsi->back;
14140
14141 /* release of a VEB-owner or last VSI is not allowed */
14142 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
14143 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
14144 vsi->seid, vsi->uplink_seid);
14145 return -ENODEV;
14146 }
14147 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) {
14148 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
14149 return -ENODEV;
14150 }
14151 set_bit(__I40E_VSI_RELEASING, vsi->state);
14152 uplink_seid = vsi->uplink_seid;
14153
14154 if (vsi->type != I40E_VSI_SRIOV) {
14155 if (vsi->netdev_registered) {
14156 vsi->netdev_registered = false;
14157 if (vsi->netdev) {
14158 /* results in a call to i40e_close() */
14159 unregister_netdev(vsi->netdev);
14160 }
14161 } else {
14162 i40e_vsi_close(vsi);
14163 }
14164 i40e_vsi_disable_irq(vsi);
14165 }
14166
14167 if (vsi->type == I40E_VSI_MAIN)
14168 i40e_devlink_destroy_port(pf);
14169
14170 spin_lock_bh(&vsi->mac_filter_hash_lock);
14171
14172 /* clear the sync flag on all filters */
14173 if (vsi->netdev) {
14174 __dev_uc_unsync(vsi->netdev, NULL);
14175 __dev_mc_unsync(vsi->netdev, NULL);
14176 }
14177
14178 /* make sure any remaining filters are marked for deletion */
14179 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
14180 __i40e_del_filter(vsi, f);
14181
14182 spin_unlock_bh(&vsi->mac_filter_hash_lock);
14183
14184 i40e_sync_vsi_filters(vsi);
14185
14186 i40e_vsi_delete(vsi);
14187 i40e_vsi_free_q_vectors(vsi);
14188 if (vsi->netdev) {
14189 free_netdev(vsi->netdev);
14190 vsi->netdev = NULL;
14191 }
14192 i40e_vsi_clear_rings(vsi);
14193 i40e_vsi_clear(vsi);
14194
14195 /* If this was the last thing on the VEB, except for the
14196 * controlling VSI, remove the VEB, which puts the controlling
14197 * VSI onto the uplink port.
14198 *
14199 * Well, okay, there's one more exception here: don't remove
14200 * the floating VEBs yet. We'll wait for an explicit remove request
14201 * from up the network stack.
14202 */
14203 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
14204 if (veb && veb->uplink_seid) {
14205 n = 0;
14206
14207 /* Count non-controlling VSIs present on the VEB */
14208 i40e_pf_for_each_vsi(pf, i, vsi)
14209 if (vsi->uplink_seid == uplink_seid &&
14210 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14211 n++;
14212
14213 /* If there is no VSI except the control one then release
14214 * the VEB and put the control VSI onto VEB uplink.
14215 */
14216 if (!n)
14217 i40e_veb_release(veb);
14218 }
14219
14220 return 0;
14221 }
14222
14223 /**
14224 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
14225 * @vsi: ptr to the VSI
14226 *
14227 * This should only be called after i40e_vsi_mem_alloc() which allocates the
14228 * corresponding SW VSI structure and initializes num_queue_pairs for the
14229 * newly allocated VSI.
14230 *
14231 * Returns 0 on success or negative on failure
14232 **/
i40e_vsi_setup_vectors(struct i40e_vsi * vsi)14233 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
14234 {
14235 int ret = -ENOENT;
14236 struct i40e_pf *pf = vsi->back;
14237
14238 if (vsi->q_vectors[0]) {
14239 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
14240 vsi->seid);
14241 return -EEXIST;
14242 }
14243
14244 if (vsi->base_vector) {
14245 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
14246 vsi->seid, vsi->base_vector);
14247 return -EEXIST;
14248 }
14249
14250 ret = i40e_vsi_alloc_q_vectors(vsi);
14251 if (ret) {
14252 dev_info(&pf->pdev->dev,
14253 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
14254 vsi->num_q_vectors, vsi->seid, ret);
14255 vsi->num_q_vectors = 0;
14256 goto vector_setup_out;
14257 }
14258
14259 /* In Legacy mode, we do not have to get any other vector since we
14260 * piggyback on the misc/ICR0 for queue interrupts.
14261 */
14262 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
14263 return ret;
14264 if (vsi->num_q_vectors)
14265 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
14266 vsi->num_q_vectors, vsi->idx);
14267 if (vsi->base_vector < 0) {
14268 dev_info(&pf->pdev->dev,
14269 "failed to get tracking for %d vectors for VSI %d, err=%d\n",
14270 vsi->num_q_vectors, vsi->seid, vsi->base_vector);
14271 i40e_vsi_free_q_vectors(vsi);
14272 ret = -ENOENT;
14273 goto vector_setup_out;
14274 }
14275
14276 vector_setup_out:
14277 return ret;
14278 }
14279
14280 /**
14281 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI
14282 * @vsi: pointer to the vsi.
14283 *
14284 * This re-allocates a vsi's queue resources.
14285 *
14286 * Returns pointer to the successfully allocated and configured VSI sw struct
14287 * on success, otherwise returns NULL on failure.
14288 **/
i40e_vsi_reinit_setup(struct i40e_vsi * vsi)14289 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
14290 {
14291 struct i40e_vsi *main_vsi;
14292 u16 alloc_queue_pairs;
14293 struct i40e_pf *pf;
14294 int ret;
14295
14296 if (!vsi)
14297 return NULL;
14298
14299 pf = vsi->back;
14300
14301 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
14302 i40e_vsi_clear_rings(vsi);
14303
14304 i40e_vsi_free_arrays(vsi, false);
14305 i40e_set_num_rings_in_vsi(vsi);
14306 ret = i40e_vsi_alloc_arrays(vsi, false);
14307 if (ret)
14308 goto err_vsi;
14309
14310 alloc_queue_pairs = vsi->alloc_queue_pairs *
14311 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
14312
14313 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
14314 if (ret < 0) {
14315 dev_info(&pf->pdev->dev,
14316 "failed to get tracking for %d queues for VSI %d err %d\n",
14317 alloc_queue_pairs, vsi->seid, ret);
14318 goto err_vsi;
14319 }
14320 vsi->base_queue = ret;
14321
14322 /* Update the FW view of the VSI. Force a reset of TC and queue
14323 * layout configurations.
14324 */
14325 main_vsi = i40e_pf_get_main_vsi(pf);
14326 main_vsi->seid = pf->main_vsi_seid;
14327 i40e_vsi_reconfig_tc(main_vsi);
14328
14329 if (vsi->type == I40E_VSI_MAIN)
14330 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
14331
14332 /* assign it some queues */
14333 ret = i40e_alloc_rings(vsi);
14334 if (ret)
14335 goto err_rings;
14336
14337 /* map all of the rings to the q_vectors */
14338 i40e_vsi_map_rings_to_vectors(vsi);
14339 return vsi;
14340
14341 err_rings:
14342 i40e_vsi_free_q_vectors(vsi);
14343 if (vsi->netdev_registered) {
14344 vsi->netdev_registered = false;
14345 unregister_netdev(vsi->netdev);
14346 free_netdev(vsi->netdev);
14347 vsi->netdev = NULL;
14348 }
14349 if (vsi->type == I40E_VSI_MAIN)
14350 i40e_devlink_destroy_port(pf);
14351 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
14352 err_vsi:
14353 i40e_vsi_clear(vsi);
14354 return NULL;
14355 }
14356
14357 /**
14358 * i40e_vsi_setup - Set up a VSI by a given type
14359 * @pf: board private structure
14360 * @type: VSI type
14361 * @uplink_seid: the switch element to link to
14362 * @param1: usage depends upon VSI type. For VF types, indicates VF id
14363 *
14364 * This allocates the sw VSI structure and its queue resources, then add a VSI
14365 * to the identified VEB.
14366 *
14367 * Returns pointer to the successfully allocated and configure VSI sw struct on
14368 * success, otherwise returns NULL on failure.
14369 **/
i40e_vsi_setup(struct i40e_pf * pf,u8 type,u16 uplink_seid,u32 param1)14370 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
14371 u16 uplink_seid, u32 param1)
14372 {
14373 struct i40e_vsi *vsi = NULL;
14374 struct i40e_veb *veb = NULL;
14375 u16 alloc_queue_pairs;
14376 int v_idx;
14377 int ret;
14378
14379 /* The requested uplink_seid must be either
14380 * - the PF's port seid
14381 * no VEB is needed because this is the PF
14382 * or this is a Flow Director special case VSI
14383 * - seid of an existing VEB
14384 * - seid of a VSI that owns an existing VEB
14385 * - seid of a VSI that doesn't own a VEB
14386 * a new VEB is created and the VSI becomes the owner
14387 * - seid of the PF VSI, which is what creates the first VEB
14388 * this is a special case of the previous
14389 *
14390 * Find which uplink_seid we were given and create a new VEB if needed
14391 */
14392 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
14393 if (!veb && uplink_seid != pf->mac_seid) {
14394 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid);
14395 if (!vsi) {
14396 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
14397 uplink_seid);
14398 return NULL;
14399 }
14400
14401 if (vsi->uplink_seid == pf->mac_seid)
14402 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid,
14403 vsi->tc_config.enabled_tc);
14404 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14405 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid,
14406 vsi->tc_config.enabled_tc);
14407 if (veb) {
14408 if (vsi->type != I40E_VSI_MAIN) {
14409 dev_info(&vsi->back->pdev->dev,
14410 "New VSI creation error, uplink seid of LAN VSI expected.\n");
14411 return NULL;
14412 }
14413 /* We come up by default in VEPA mode if SRIOV is not
14414 * already enabled, in which case we can't force VEPA
14415 * mode.
14416 */
14417 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
14418 veb->bridge_mode = BRIDGE_MODE_VEPA;
14419 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
14420 }
14421 i40e_config_bridge_mode(veb);
14422 }
14423 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
14424 if (!veb) {
14425 dev_info(&pf->pdev->dev, "couldn't add VEB\n");
14426 return NULL;
14427 }
14428
14429 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
14430 uplink_seid = veb->seid;
14431 }
14432
14433 /* get vsi sw struct */
14434 v_idx = i40e_vsi_mem_alloc(pf, type);
14435 if (v_idx < 0)
14436 goto err_alloc;
14437 vsi = pf->vsi[v_idx];
14438 if (!vsi)
14439 goto err_alloc;
14440 vsi->type = type;
14441 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
14442
14443 if (type == I40E_VSI_MAIN)
14444 pf->lan_vsi = v_idx;
14445 else if (type == I40E_VSI_SRIOV)
14446 vsi->vf_id = param1;
14447 /* assign it some queues */
14448 alloc_queue_pairs = vsi->alloc_queue_pairs *
14449 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
14450
14451 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
14452 if (ret < 0) {
14453 dev_info(&pf->pdev->dev,
14454 "failed to get tracking for %d queues for VSI %d err=%d\n",
14455 alloc_queue_pairs, vsi->seid, ret);
14456 goto err_vsi;
14457 }
14458 vsi->base_queue = ret;
14459
14460 /* get a VSI from the hardware */
14461 vsi->uplink_seid = uplink_seid;
14462 ret = i40e_add_vsi(vsi);
14463 if (ret)
14464 goto err_vsi;
14465
14466 switch (vsi->type) {
14467 /* setup the netdev if needed */
14468 case I40E_VSI_MAIN:
14469 case I40E_VSI_VMDQ2:
14470 ret = i40e_config_netdev(vsi);
14471 if (ret)
14472 goto err_netdev;
14473 ret = i40e_netif_set_realnum_tx_rx_queues(vsi);
14474 if (ret)
14475 goto err_netdev;
14476 if (vsi->type == I40E_VSI_MAIN) {
14477 ret = i40e_devlink_create_port(pf);
14478 if (ret)
14479 goto err_netdev;
14480 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
14481 }
14482 ret = register_netdev(vsi->netdev);
14483 if (ret)
14484 goto err_dl_port;
14485 vsi->netdev_registered = true;
14486 netif_carrier_off(vsi->netdev);
14487 #ifdef CONFIG_I40E_DCB
14488 /* Setup DCB netlink interface */
14489 i40e_dcbnl_setup(vsi);
14490 #endif /* CONFIG_I40E_DCB */
14491 fallthrough;
14492 case I40E_VSI_FDIR:
14493 /* set up vectors and rings if needed */
14494 ret = i40e_vsi_setup_vectors(vsi);
14495 if (ret)
14496 goto err_msix;
14497
14498 ret = i40e_alloc_rings(vsi);
14499 if (ret)
14500 goto err_rings;
14501
14502 /* map all of the rings to the q_vectors */
14503 i40e_vsi_map_rings_to_vectors(vsi);
14504
14505 i40e_vsi_reset_stats(vsi);
14506 break;
14507 default:
14508 /* no netdev or rings for the other VSI types */
14509 break;
14510 }
14511
14512 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) &&
14513 vsi->type == I40E_VSI_VMDQ2) {
14514 ret = i40e_vsi_config_rss(vsi);
14515 if (ret)
14516 goto err_config;
14517 }
14518 return vsi;
14519
14520 err_config:
14521 i40e_vsi_clear_rings(vsi);
14522 err_rings:
14523 i40e_vsi_free_q_vectors(vsi);
14524 err_msix:
14525 if (vsi->netdev_registered) {
14526 vsi->netdev_registered = false;
14527 unregister_netdev(vsi->netdev);
14528 free_netdev(vsi->netdev);
14529 vsi->netdev = NULL;
14530 }
14531 err_dl_port:
14532 if (vsi->type == I40E_VSI_MAIN)
14533 i40e_devlink_destroy_port(pf);
14534 err_netdev:
14535 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
14536 err_vsi:
14537 i40e_vsi_clear(vsi);
14538 err_alloc:
14539 return NULL;
14540 }
14541
14542 /**
14543 * i40e_veb_get_bw_info - Query VEB BW information
14544 * @veb: the veb to query
14545 *
14546 * Query the Tx scheduler BW configuration data for given VEB
14547 **/
i40e_veb_get_bw_info(struct i40e_veb * veb)14548 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
14549 {
14550 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
14551 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
14552 struct i40e_pf *pf = veb->pf;
14553 struct i40e_hw *hw = &pf->hw;
14554 u32 tc_bw_max;
14555 int ret = 0;
14556 int i;
14557
14558 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
14559 &bw_data, NULL);
14560 if (ret) {
14561 dev_info(&pf->pdev->dev,
14562 "query veb bw config failed, err %pe aq_err %s\n",
14563 ERR_PTR(ret),
14564 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
14565 goto out;
14566 }
14567
14568 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
14569 &ets_data, NULL);
14570 if (ret) {
14571 dev_info(&pf->pdev->dev,
14572 "query veb bw ets config failed, err %pe aq_err %s\n",
14573 ERR_PTR(ret),
14574 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
14575 goto out;
14576 }
14577
14578 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
14579 veb->bw_max_quanta = ets_data.tc_bw_max;
14580 veb->is_abs_credits = bw_data.absolute_credits_enable;
14581 veb->enabled_tc = ets_data.tc_valid_bits;
14582 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
14583 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
14584 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
14585 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
14586 veb->bw_tc_limit_credits[i] =
14587 le16_to_cpu(bw_data.tc_bw_limits[i]);
14588 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
14589 }
14590
14591 out:
14592 return ret;
14593 }
14594
14595 /**
14596 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
14597 * @pf: board private structure
14598 *
14599 * On error: returns error code (negative)
14600 * On success: returns vsi index in PF (positive)
14601 **/
i40e_veb_mem_alloc(struct i40e_pf * pf)14602 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
14603 {
14604 int ret = -ENOENT;
14605 struct i40e_veb *veb;
14606 int i;
14607
14608 /* Need to protect the allocation of switch elements at the PF level */
14609 mutex_lock(&pf->switch_mutex);
14610
14611 /* VEB list may be fragmented if VEB creation/destruction has
14612 * been happening. We can afford to do a quick scan to look
14613 * for any free slots in the list.
14614 *
14615 * find next empty veb slot, looping back around if necessary
14616 */
14617 i = 0;
14618 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
14619 i++;
14620 if (i >= I40E_MAX_VEB) {
14621 ret = -ENOMEM;
14622 goto err_alloc_veb; /* out of VEB slots! */
14623 }
14624
14625 veb = kzalloc(sizeof(*veb), GFP_KERNEL);
14626 if (!veb) {
14627 ret = -ENOMEM;
14628 goto err_alloc_veb;
14629 }
14630 veb->pf = pf;
14631 veb->idx = i;
14632 veb->enabled_tc = 1;
14633
14634 pf->veb[i] = veb;
14635 ret = i;
14636 err_alloc_veb:
14637 mutex_unlock(&pf->switch_mutex);
14638 return ret;
14639 }
14640
14641 /**
14642 * i40e_switch_branch_release - Delete a branch of the switch tree
14643 * @branch: where to start deleting
14644 *
14645 * This uses recursion to find the tips of the branch to be
14646 * removed, deleting until we get back to and can delete this VEB.
14647 **/
i40e_switch_branch_release(struct i40e_veb * branch)14648 static void i40e_switch_branch_release(struct i40e_veb *branch)
14649 {
14650 struct i40e_pf *pf = branch->pf;
14651 u16 branch_seid = branch->seid;
14652 u16 veb_idx = branch->idx;
14653 struct i40e_vsi *vsi;
14654 struct i40e_veb *veb;
14655 int i;
14656
14657 /* release any VEBs on this VEB - RECURSION */
14658 i40e_pf_for_each_veb(pf, i, veb)
14659 if (veb->uplink_seid == branch->seid)
14660 i40e_switch_branch_release(veb);
14661
14662 /* Release the VSIs on this VEB, but not the owner VSI.
14663 *
14664 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
14665 * the VEB itself, so don't use (*branch) after this loop.
14666 */
14667 i40e_pf_for_each_vsi(pf, i, vsi)
14668 if (vsi->uplink_seid == branch_seid &&
14669 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14670 i40e_vsi_release(vsi);
14671
14672 /* There's one corner case where the VEB might not have been
14673 * removed, so double check it here and remove it if needed.
14674 * This case happens if the veb was created from the debugfs
14675 * commands and no VSIs were added to it.
14676 */
14677 if (pf->veb[veb_idx])
14678 i40e_veb_release(pf->veb[veb_idx]);
14679 }
14680
14681 /**
14682 * i40e_veb_clear - remove veb struct
14683 * @veb: the veb to remove
14684 **/
i40e_veb_clear(struct i40e_veb * veb)14685 static void i40e_veb_clear(struct i40e_veb *veb)
14686 {
14687 if (!veb)
14688 return;
14689
14690 if (veb->pf) {
14691 struct i40e_pf *pf = veb->pf;
14692
14693 mutex_lock(&pf->switch_mutex);
14694 if (pf->veb[veb->idx] == veb)
14695 pf->veb[veb->idx] = NULL;
14696 mutex_unlock(&pf->switch_mutex);
14697 }
14698
14699 kfree(veb);
14700 }
14701
14702 /**
14703 * i40e_veb_release - Delete a VEB and free its resources
14704 * @veb: the VEB being removed
14705 **/
i40e_veb_release(struct i40e_veb * veb)14706 void i40e_veb_release(struct i40e_veb *veb)
14707 {
14708 struct i40e_vsi *vsi, *vsi_it;
14709 struct i40e_pf *pf;
14710 int i, n = 0;
14711
14712 pf = veb->pf;
14713
14714 /* find the remaining VSI and check for extras */
14715 i40e_pf_for_each_vsi(pf, i, vsi_it)
14716 if (vsi_it->uplink_seid == veb->seid) {
14717 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER)
14718 vsi = vsi_it;
14719 n++;
14720 }
14721
14722 /* Floating VEB has to be empty and regular one must have
14723 * single owner VSI.
14724 */
14725 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) {
14726 dev_info(&pf->pdev->dev,
14727 "can't remove VEB %d with %d VSIs left\n",
14728 veb->seid, n);
14729 return;
14730 }
14731
14732 /* For regular VEB move the owner VSI to uplink port */
14733 if (veb->uplink_seid) {
14734 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
14735 vsi->uplink_seid = veb->uplink_seid;
14736 vsi->veb_idx = I40E_NO_VEB;
14737 }
14738
14739 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
14740 i40e_veb_clear(veb);
14741 }
14742
14743 /**
14744 * i40e_add_veb - create the VEB in the switch
14745 * @veb: the VEB to be instantiated
14746 * @vsi: the controlling VSI
14747 **/
i40e_add_veb(struct i40e_veb * veb,struct i40e_vsi * vsi)14748 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
14749 {
14750 struct i40e_pf *pf = veb->pf;
14751 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
14752 int ret;
14753
14754 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0,
14755 veb->enabled_tc, vsi ? false : true,
14756 &veb->seid, enable_stats, NULL);
14757
14758 /* get a VEB from the hardware */
14759 if (ret) {
14760 dev_info(&pf->pdev->dev,
14761 "couldn't add VEB, err %pe aq_err %s\n",
14762 ERR_PTR(ret),
14763 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
14764 return -EPERM;
14765 }
14766
14767 /* get statistics counter */
14768 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
14769 &veb->stats_idx, NULL, NULL, NULL);
14770 if (ret) {
14771 dev_info(&pf->pdev->dev,
14772 "couldn't get VEB statistics idx, err %pe aq_err %s\n",
14773 ERR_PTR(ret),
14774 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
14775 return -EPERM;
14776 }
14777 ret = i40e_veb_get_bw_info(veb);
14778 if (ret) {
14779 dev_info(&pf->pdev->dev,
14780 "couldn't get VEB bw info, err %pe aq_err %s\n",
14781 ERR_PTR(ret),
14782 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
14783 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
14784 return -ENOENT;
14785 }
14786
14787 if (vsi) {
14788 vsi->uplink_seid = veb->seid;
14789 vsi->veb_idx = veb->idx;
14790 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
14791 }
14792
14793 return 0;
14794 }
14795
14796 /**
14797 * i40e_veb_setup - Set up a VEB
14798 * @pf: board private structure
14799 * @uplink_seid: the switch element to link to
14800 * @vsi_seid: the initial VSI seid
14801 * @enabled_tc: Enabled TC bit-map
14802 *
14803 * This allocates the sw VEB structure and links it into the switch
14804 * It is possible and legal for this to be a duplicate of an already
14805 * existing VEB. It is also possible for both uplink and vsi seids
14806 * to be zero, in order to create a floating VEB.
14807 *
14808 * Returns pointer to the successfully allocated VEB sw struct on
14809 * success, otherwise returns NULL on failure.
14810 **/
i40e_veb_setup(struct i40e_pf * pf,u16 uplink_seid,u16 vsi_seid,u8 enabled_tc)14811 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid,
14812 u16 vsi_seid, u8 enabled_tc)
14813 {
14814 struct i40e_vsi *vsi = NULL;
14815 struct i40e_veb *veb;
14816 int veb_idx;
14817 int ret;
14818
14819 /* if one seid is 0, the other must be 0 to create a floating relay */
14820 if ((uplink_seid == 0 || vsi_seid == 0) &&
14821 (uplink_seid + vsi_seid != 0)) {
14822 dev_info(&pf->pdev->dev,
14823 "one, not both seid's are 0: uplink=%d vsi=%d\n",
14824 uplink_seid, vsi_seid);
14825 return NULL;
14826 }
14827
14828 /* make sure there is such a vsi and uplink */
14829 if (vsi_seid) {
14830 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid);
14831 if (!vsi) {
14832 dev_err(&pf->pdev->dev, "vsi seid %d not found\n",
14833 vsi_seid);
14834 return NULL;
14835 }
14836 }
14837
14838 /* get veb sw struct */
14839 veb_idx = i40e_veb_mem_alloc(pf);
14840 if (veb_idx < 0)
14841 goto err_alloc;
14842 veb = pf->veb[veb_idx];
14843 veb->uplink_seid = uplink_seid;
14844 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
14845
14846 /* create the VEB in the switch */
14847 ret = i40e_add_veb(veb, vsi);
14848 if (ret)
14849 goto err_veb;
14850
14851 if (vsi && vsi->idx == pf->lan_vsi)
14852 pf->lan_veb = veb->idx;
14853
14854 return veb;
14855
14856 err_veb:
14857 i40e_veb_clear(veb);
14858 err_alloc:
14859 return NULL;
14860 }
14861
14862 /**
14863 * i40e_setup_pf_switch_element - set PF vars based on switch type
14864 * @pf: board private structure
14865 * @ele: element we are building info from
14866 * @num_reported: total number of elements
14867 * @printconfig: should we print the contents
14868 *
14869 * helper function to assist in extracting a few useful SEID values.
14870 **/
i40e_setup_pf_switch_element(struct i40e_pf * pf,struct i40e_aqc_switch_config_element_resp * ele,u16 num_reported,bool printconfig)14871 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
14872 struct i40e_aqc_switch_config_element_resp *ele,
14873 u16 num_reported, bool printconfig)
14874 {
14875 u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
14876 u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
14877 u8 element_type = ele->element_type;
14878 u16 seid = le16_to_cpu(ele->seid);
14879 struct i40e_veb *veb;
14880
14881 if (printconfig)
14882 dev_info(&pf->pdev->dev,
14883 "type=%d seid=%d uplink=%d downlink=%d\n",
14884 element_type, seid, uplink_seid, downlink_seid);
14885
14886 switch (element_type) {
14887 case I40E_SWITCH_ELEMENT_TYPE_MAC:
14888 pf->mac_seid = seid;
14889 break;
14890 case I40E_SWITCH_ELEMENT_TYPE_VEB:
14891 /* Main VEB? */
14892 if (uplink_seid != pf->mac_seid)
14893 break;
14894 veb = i40e_pf_get_main_veb(pf);
14895 if (!veb) {
14896 int v;
14897
14898 /* find existing or else empty VEB */
14899 veb = i40e_pf_get_veb_by_seid(pf, seid);
14900 if (veb) {
14901 pf->lan_veb = veb->idx;
14902 } else {
14903 v = i40e_veb_mem_alloc(pf);
14904 if (v < 0)
14905 break;
14906 pf->lan_veb = v;
14907 }
14908 }
14909
14910 /* Try to get again main VEB as pf->lan_veb may have changed */
14911 veb = i40e_pf_get_main_veb(pf);
14912 if (!veb)
14913 break;
14914
14915 veb->seid = seid;
14916 veb->uplink_seid = pf->mac_seid;
14917 veb->pf = pf;
14918 break;
14919 case I40E_SWITCH_ELEMENT_TYPE_VSI:
14920 if (num_reported != 1)
14921 break;
14922 /* This is immediately after a reset so we can assume this is
14923 * the PF's VSI
14924 */
14925 pf->mac_seid = uplink_seid;
14926 pf->main_vsi_seid = seid;
14927 if (printconfig)
14928 dev_info(&pf->pdev->dev,
14929 "pf_seid=%d main_vsi_seid=%d\n",
14930 downlink_seid, pf->main_vsi_seid);
14931 break;
14932 case I40E_SWITCH_ELEMENT_TYPE_PF:
14933 case I40E_SWITCH_ELEMENT_TYPE_VF:
14934 case I40E_SWITCH_ELEMENT_TYPE_EMP:
14935 case I40E_SWITCH_ELEMENT_TYPE_BMC:
14936 case I40E_SWITCH_ELEMENT_TYPE_PE:
14937 case I40E_SWITCH_ELEMENT_TYPE_PA:
14938 /* ignore these for now */
14939 break;
14940 default:
14941 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
14942 element_type, seid);
14943 break;
14944 }
14945 }
14946
14947 /**
14948 * i40e_fetch_switch_configuration - Get switch config from firmware
14949 * @pf: board private structure
14950 * @printconfig: should we print the contents
14951 *
14952 * Get the current switch configuration from the device and
14953 * extract a few useful SEID values.
14954 **/
i40e_fetch_switch_configuration(struct i40e_pf * pf,bool printconfig)14955 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
14956 {
14957 struct i40e_aqc_get_switch_config_resp *sw_config;
14958 u16 next_seid = 0;
14959 int ret = 0;
14960 u8 *aq_buf;
14961 int i;
14962
14963 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
14964 if (!aq_buf)
14965 return -ENOMEM;
14966
14967 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
14968 do {
14969 u16 num_reported, num_total;
14970
14971 ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
14972 I40E_AQ_LARGE_BUF,
14973 &next_seid, NULL);
14974 if (ret) {
14975 dev_info(&pf->pdev->dev,
14976 "get switch config failed err %d aq_err %s\n",
14977 ret,
14978 i40e_aq_str(&pf->hw,
14979 pf->hw.aq.asq_last_status));
14980 kfree(aq_buf);
14981 return -ENOENT;
14982 }
14983
14984 num_reported = le16_to_cpu(sw_config->header.num_reported);
14985 num_total = le16_to_cpu(sw_config->header.num_total);
14986
14987 if (printconfig)
14988 dev_info(&pf->pdev->dev,
14989 "header: %d reported %d total\n",
14990 num_reported, num_total);
14991
14992 for (i = 0; i < num_reported; i++) {
14993 struct i40e_aqc_switch_config_element_resp *ele =
14994 &sw_config->element[i];
14995
14996 i40e_setup_pf_switch_element(pf, ele, num_reported,
14997 printconfig);
14998 }
14999 } while (next_seid != 0);
15000
15001 kfree(aq_buf);
15002 return ret;
15003 }
15004
15005 /**
15006 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
15007 * @pf: board private structure
15008 * @reinit: if the Main VSI needs to re-initialized.
15009 * @lock_acquired: indicates whether or not the lock has been acquired
15010 *
15011 * Returns 0 on success, negative value on failure
15012 **/
i40e_setup_pf_switch(struct i40e_pf * pf,bool reinit,bool lock_acquired)15013 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired)
15014 {
15015 struct i40e_vsi *main_vsi;
15016 u16 flags = 0;
15017 int ret;
15018
15019 /* find out what's out there already */
15020 ret = i40e_fetch_switch_configuration(pf, false);
15021 if (ret) {
15022 dev_info(&pf->pdev->dev,
15023 "couldn't fetch switch config, err %pe aq_err %s\n",
15024 ERR_PTR(ret),
15025 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
15026 return ret;
15027 }
15028 i40e_pf_reset_stats(pf);
15029
15030 /* set the switch config bit for the whole device to
15031 * support limited promisc or true promisc
15032 * when user requests promisc. The default is limited
15033 * promisc.
15034 */
15035
15036 if ((pf->hw.pf_id == 0) &&
15037 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) {
15038 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
15039 pf->last_sw_conf_flags = flags;
15040 }
15041
15042 if (pf->hw.pf_id == 0) {
15043 u16 valid_flags;
15044
15045 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
15046 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0,
15047 NULL);
15048 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) {
15049 dev_info(&pf->pdev->dev,
15050 "couldn't set switch config bits, err %pe aq_err %s\n",
15051 ERR_PTR(ret),
15052 i40e_aq_str(&pf->hw,
15053 pf->hw.aq.asq_last_status));
15054 /* not a fatal problem, just keep going */
15055 }
15056 pf->last_sw_conf_valid_flags = valid_flags;
15057 }
15058
15059 /* first time setup */
15060 main_vsi = i40e_pf_get_main_vsi(pf);
15061 if (!main_vsi || reinit) {
15062 struct i40e_veb *veb;
15063 u16 uplink_seid;
15064
15065 /* Set up the PF VSI associated with the PF's main VSI
15066 * that is already in the HW switch
15067 */
15068 veb = i40e_pf_get_main_veb(pf);
15069 if (veb)
15070 uplink_seid = veb->seid;
15071 else
15072 uplink_seid = pf->mac_seid;
15073 if (!main_vsi)
15074 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN,
15075 uplink_seid, 0);
15076 else if (reinit)
15077 main_vsi = i40e_vsi_reinit_setup(main_vsi);
15078 if (!main_vsi) {
15079 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
15080 i40e_cloud_filter_exit(pf);
15081 i40e_fdir_teardown(pf);
15082 return -EAGAIN;
15083 }
15084 } else {
15085 /* force a reset of TC and queue layout configurations */
15086 main_vsi->seid = pf->main_vsi_seid;
15087 i40e_vsi_reconfig_tc(main_vsi);
15088 }
15089 i40e_vlan_stripping_disable(main_vsi);
15090
15091 i40e_fdir_sb_setup(pf);
15092
15093 /* Setup static PF queue filter control settings */
15094 ret = i40e_setup_pf_filter_control(pf);
15095 if (ret) {
15096 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
15097 ret);
15098 /* Failure here should not stop continuing other steps */
15099 }
15100
15101 /* enable RSS in the HW, even for only one queue, as the stack can use
15102 * the hash
15103 */
15104 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
15105 i40e_pf_config_rss(pf);
15106
15107 /* fill in link information and enable LSE reporting */
15108 i40e_link_event(pf);
15109
15110 i40e_ptp_init(pf);
15111
15112 if (!lock_acquired)
15113 rtnl_lock();
15114
15115 /* repopulate tunnel port filters */
15116 udp_tunnel_nic_reset_ntf(main_vsi->netdev);
15117
15118 if (!lock_acquired)
15119 rtnl_unlock();
15120
15121 return ret;
15122 }
15123
15124 /**
15125 * i40e_determine_queue_usage - Work out queue distribution
15126 * @pf: board private structure
15127 **/
i40e_determine_queue_usage(struct i40e_pf * pf)15128 static void i40e_determine_queue_usage(struct i40e_pf *pf)
15129 {
15130 int queues_left;
15131 int q_max;
15132
15133 pf->num_lan_qps = 0;
15134
15135 /* Find the max queues to be put into basic use. We'll always be
15136 * using TC0, whether or not DCB is running, and TC0 will get the
15137 * big RSS set.
15138 */
15139 queues_left = pf->hw.func_caps.num_tx_qp;
15140
15141 if ((queues_left == 1) ||
15142 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
15143 /* one qp for PF, no queues for anything else */
15144 queues_left = 0;
15145 pf->alloc_rss_size = pf->num_lan_qps = 1;
15146
15147 /* make sure all the fancies are disabled */
15148 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
15149 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
15150 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15151 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
15152 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15153 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15154 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
15155 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
15156 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15157 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) &&
15158 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
15159 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
15160 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) {
15161 /* one qp for PF */
15162 pf->alloc_rss_size = pf->num_lan_qps = 1;
15163 queues_left -= pf->num_lan_qps;
15164
15165 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
15166 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
15167 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15168 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
15169 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15170 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
15171 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15172 } else {
15173 /* Not enough queues for all TCs */
15174 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) &&
15175 queues_left < I40E_MAX_TRAFFIC_CLASS) {
15176 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15177 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15178 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
15179 }
15180
15181 /* limit lan qps to the smaller of qps, cpus or msix */
15182 q_max = max_t(int, pf->rss_size_max, num_online_cpus());
15183 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp);
15184 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors);
15185 pf->num_lan_qps = q_max;
15186
15187 queues_left -= pf->num_lan_qps;
15188 }
15189
15190 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
15191 if (queues_left > 1) {
15192 queues_left -= 1; /* save 1 queue for FD */
15193 } else {
15194 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15195 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15196 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
15197 }
15198 }
15199
15200 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
15201 pf->num_vf_qps && pf->num_req_vfs && queues_left) {
15202 pf->num_req_vfs = min_t(int, pf->num_req_vfs,
15203 (queues_left / pf->num_vf_qps));
15204 queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
15205 }
15206
15207 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) &&
15208 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
15209 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
15210 (queues_left / pf->num_vmdq_qps));
15211 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
15212 }
15213
15214 pf->queues_left = queues_left;
15215 dev_dbg(&pf->pdev->dev,
15216 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
15217 pf->hw.func_caps.num_tx_qp,
15218 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags),
15219 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
15220 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
15221 queues_left);
15222 }
15223
15224 /**
15225 * i40e_setup_pf_filter_control - Setup PF static filter control
15226 * @pf: PF to be setup
15227 *
15228 * i40e_setup_pf_filter_control sets up a PF's initial filter control
15229 * settings. If PE/FCoE are enabled then it will also set the per PF
15230 * based filter sizes required for them. It also enables Flow director,
15231 * ethertype and macvlan type filter settings for the pf.
15232 *
15233 * Returns 0 on success, negative on failure
15234 **/
i40e_setup_pf_filter_control(struct i40e_pf * pf)15235 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
15236 {
15237 struct i40e_filter_control_settings *settings = &pf->filter_settings;
15238
15239 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
15240
15241 /* Flow Director is enabled */
15242 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) ||
15243 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
15244 settings->enable_fdir = true;
15245
15246 /* Ethtype and MACVLAN filters enabled for PF */
15247 settings->enable_ethtype = true;
15248 settings->enable_macvlan = true;
15249
15250 if (i40e_set_filter_control(&pf->hw, settings))
15251 return -ENOENT;
15252
15253 return 0;
15254 }
15255
15256 #define INFO_STRING_LEN 255
15257 #define REMAIN(__x) (INFO_STRING_LEN - (__x))
i40e_print_features(struct i40e_pf * pf)15258 static void i40e_print_features(struct i40e_pf *pf)
15259 {
15260 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
15261 struct i40e_hw *hw = &pf->hw;
15262 char *buf;
15263 int i;
15264
15265 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
15266 if (!buf)
15267 return;
15268
15269 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
15270 #ifdef CONFIG_PCI_IOV
15271 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
15272 #endif
15273 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
15274 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs);
15275 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
15276 i += scnprintf(&buf[i], REMAIN(i), " RSS");
15277 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
15278 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR");
15279 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
15280 i += scnprintf(&buf[i], REMAIN(i), " FD_SB");
15281 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE");
15282 }
15283 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
15284 i += scnprintf(&buf[i], REMAIN(i), " DCB");
15285 i += scnprintf(&buf[i], REMAIN(i), " VxLAN");
15286 i += scnprintf(&buf[i], REMAIN(i), " Geneve");
15287 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
15288 i += scnprintf(&buf[i], REMAIN(i), " PTP");
15289 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
15290 i += scnprintf(&buf[i], REMAIN(i), " VEB");
15291 else
15292 i += scnprintf(&buf[i], REMAIN(i), " VEPA");
15293
15294 dev_info(&pf->pdev->dev, "%s\n", buf);
15295 kfree(buf);
15296 WARN_ON(i > INFO_STRING_LEN);
15297 }
15298
15299 /**
15300 * i40e_get_platform_mac_addr - get platform-specific MAC address
15301 * @pdev: PCI device information struct
15302 * @pf: board private structure
15303 *
15304 * Look up the MAC address for the device. First we'll try
15305 * eth_platform_get_mac_address, which will check Open Firmware, or arch
15306 * specific fallback. Otherwise, we'll default to the stored value in
15307 * firmware.
15308 **/
i40e_get_platform_mac_addr(struct pci_dev * pdev,struct i40e_pf * pf)15309 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
15310 {
15311 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
15312 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
15313 }
15314
15315 /**
15316 * i40e_set_fec_in_flags - helper function for setting FEC options in flags
15317 * @fec_cfg: FEC option to set in flags
15318 * @flags: ptr to flags in which we set FEC option
15319 **/
i40e_set_fec_in_flags(u8 fec_cfg,unsigned long * flags)15320 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags)
15321 {
15322 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) {
15323 set_bit(I40E_FLAG_RS_FEC, flags);
15324 set_bit(I40E_FLAG_BASE_R_FEC, flags);
15325 }
15326 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) ||
15327 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) {
15328 set_bit(I40E_FLAG_RS_FEC, flags);
15329 clear_bit(I40E_FLAG_BASE_R_FEC, flags);
15330 }
15331 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) ||
15332 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) {
15333 set_bit(I40E_FLAG_BASE_R_FEC, flags);
15334 clear_bit(I40E_FLAG_RS_FEC, flags);
15335 }
15336 if (fec_cfg == 0) {
15337 clear_bit(I40E_FLAG_RS_FEC, flags);
15338 clear_bit(I40E_FLAG_BASE_R_FEC, flags);
15339 }
15340 }
15341
15342 /**
15343 * i40e_check_recovery_mode - check if we are running transition firmware
15344 * @pf: board private structure
15345 *
15346 * Check registers indicating the firmware runs in recovery mode. Sets the
15347 * appropriate driver state.
15348 *
15349 * Returns true if the recovery mode was detected, false otherwise
15350 **/
i40e_check_recovery_mode(struct i40e_pf * pf)15351 static bool i40e_check_recovery_mode(struct i40e_pf *pf)
15352 {
15353 u32 val = rd32(&pf->hw, I40E_GL_FWSTS);
15354
15355 if (val & I40E_GL_FWSTS_FWS1B_MASK) {
15356 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n");
15357 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n");
15358 set_bit(__I40E_RECOVERY_MODE, pf->state);
15359
15360 return true;
15361 }
15362 if (test_bit(__I40E_RECOVERY_MODE, pf->state))
15363 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n");
15364
15365 return false;
15366 }
15367
15368 /**
15369 * i40e_pf_loop_reset - perform reset in a loop.
15370 * @pf: board private structure
15371 *
15372 * This function is useful when a NIC is about to enter recovery mode.
15373 * When a NIC's internal data structures are corrupted the NIC's
15374 * firmware is going to enter recovery mode.
15375 * Right after a POR it takes about 7 minutes for firmware to enter
15376 * recovery mode. Until that time a NIC is in some kind of intermediate
15377 * state. After that time period the NIC almost surely enters
15378 * recovery mode. The only way for a driver to detect intermediate
15379 * state is to issue a series of pf-resets and check a return value.
15380 * If a PF reset returns success then the firmware could be in recovery
15381 * mode so the caller of this code needs to check for recovery mode
15382 * if this function returns success. There is a little chance that
15383 * firmware will hang in intermediate state forever.
15384 * Since waiting 7 minutes is quite a lot of time this function waits
15385 * 10 seconds and then gives up by returning an error.
15386 *
15387 * Return 0 on success, negative on failure.
15388 **/
i40e_pf_loop_reset(struct i40e_pf * pf)15389 static int i40e_pf_loop_reset(struct i40e_pf *pf)
15390 {
15391 /* wait max 10 seconds for PF reset to succeed */
15392 const unsigned long time_end = jiffies + 10 * HZ;
15393 struct i40e_hw *hw = &pf->hw;
15394 int ret;
15395
15396 ret = i40e_pf_reset(hw);
15397 while (ret != 0 && time_before(jiffies, time_end)) {
15398 usleep_range(10000, 20000);
15399 ret = i40e_pf_reset(hw);
15400 }
15401
15402 if (ret == 0)
15403 pf->pfr_count++;
15404 else
15405 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret);
15406
15407 return ret;
15408 }
15409
15410 /**
15411 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset
15412 * @pf: board private structure
15413 *
15414 * Check FW registers to determine if FW issued unexpected EMP Reset.
15415 * Every time when unexpected EMP Reset occurs the FW increments
15416 * a counter of unexpected EMP Resets. When the counter reaches 10
15417 * the FW should enter the Recovery mode
15418 *
15419 * Returns true if FW issued unexpected EMP Reset
15420 **/
i40e_check_fw_empr(struct i40e_pf * pf)15421 static bool i40e_check_fw_empr(struct i40e_pf *pf)
15422 {
15423 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) &
15424 I40E_GL_FWSTS_FWS1B_MASK;
15425 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) &&
15426 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10);
15427 }
15428
15429 /**
15430 * i40e_handle_resets - handle EMP resets and PF resets
15431 * @pf: board private structure
15432 *
15433 * Handle both EMP resets and PF resets and conclude whether there are
15434 * any issues regarding these resets. If there are any issues then
15435 * generate log entry.
15436 *
15437 * Return 0 if NIC is healthy or negative value when there are issues
15438 * with resets
15439 **/
i40e_handle_resets(struct i40e_pf * pf)15440 static int i40e_handle_resets(struct i40e_pf *pf)
15441 {
15442 const int pfr = i40e_pf_loop_reset(pf);
15443 const bool is_empr = i40e_check_fw_empr(pf);
15444
15445 if (is_empr || pfr != 0)
15446 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n");
15447
15448 return is_empr ? -EIO : pfr;
15449 }
15450
15451 /**
15452 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode
15453 * @pf: board private structure
15454 * @hw: ptr to the hardware info
15455 *
15456 * This function does a minimal setup of all subsystems needed for running
15457 * recovery mode.
15458 *
15459 * Returns 0 on success, negative on failure
15460 **/
i40e_init_recovery_mode(struct i40e_pf * pf,struct i40e_hw * hw)15461 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw)
15462 {
15463 struct i40e_vsi *vsi;
15464 int err;
15465 int v_idx;
15466
15467 pci_set_drvdata(pf->pdev, pf);
15468 pci_save_state(pf->pdev);
15469
15470 /* set up periodic task facility */
15471 timer_setup(&pf->service_timer, i40e_service_timer, 0);
15472 pf->service_timer_period = HZ;
15473
15474 INIT_WORK(&pf->service_task, i40e_service_task);
15475 clear_bit(__I40E_SERVICE_SCHED, pf->state);
15476
15477 err = i40e_init_interrupt_scheme(pf);
15478 if (err)
15479 goto err_switch_setup;
15480
15481 /* The number of VSIs reported by the FW is the minimum guaranteed
15482 * to us; HW supports far more and we share the remaining pool with
15483 * the other PFs. We allocate space for more than the guarantee with
15484 * the understanding that we might not get them all later.
15485 */
15486 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
15487 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
15488 else
15489 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
15490
15491 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */
15492 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
15493 GFP_KERNEL);
15494 if (!pf->vsi) {
15495 err = -ENOMEM;
15496 goto err_switch_setup;
15497 }
15498
15499 /* We allocate one VSI which is needed as absolute minimum
15500 * in order to register the netdev
15501 */
15502 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN);
15503 if (v_idx < 0) {
15504 err = v_idx;
15505 goto err_switch_setup;
15506 }
15507 pf->lan_vsi = v_idx;
15508 vsi = pf->vsi[v_idx];
15509 if (!vsi) {
15510 err = -EFAULT;
15511 goto err_switch_setup;
15512 }
15513 vsi->alloc_queue_pairs = 1;
15514 err = i40e_config_netdev(vsi);
15515 if (err)
15516 goto err_switch_setup;
15517 err = register_netdev(vsi->netdev);
15518 if (err)
15519 goto err_switch_setup;
15520 vsi->netdev_registered = true;
15521 i40e_dbg_pf_init(pf);
15522
15523 err = i40e_setup_misc_vector_for_recovery_mode(pf);
15524 if (err)
15525 goto err_switch_setup;
15526
15527 /* tell the firmware that we're starting */
15528 i40e_send_version(pf);
15529
15530 /* since everything's happy, start the service_task timer */
15531 mod_timer(&pf->service_timer,
15532 round_jiffies(jiffies + pf->service_timer_period));
15533
15534 return 0;
15535
15536 err_switch_setup:
15537 i40e_reset_interrupt_capability(pf);
15538 timer_shutdown_sync(&pf->service_timer);
15539 i40e_shutdown_adminq(hw);
15540 iounmap(hw->hw_addr);
15541 pci_release_mem_regions(pf->pdev);
15542 pci_disable_device(pf->pdev);
15543 i40e_free_pf(pf);
15544
15545 return err;
15546 }
15547
15548 /**
15549 * i40e_set_subsystem_device_id - set subsystem device id
15550 * @hw: pointer to the hardware info
15551 *
15552 * Set PCI subsystem device id either from a pci_dev structure or
15553 * a specific FW register.
15554 **/
i40e_set_subsystem_device_id(struct i40e_hw * hw)15555 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw)
15556 {
15557 struct i40e_pf *pf = i40e_hw_to_pf(hw);
15558
15559 hw->subsystem_device_id = pf->pdev->subsystem_device ?
15560 pf->pdev->subsystem_device :
15561 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX);
15562 }
15563
15564 /**
15565 * i40e_probe - Device initialization routine
15566 * @pdev: PCI device information struct
15567 * @ent: entry in i40e_pci_tbl
15568 *
15569 * i40e_probe initializes a PF identified by a pci_dev structure.
15570 * The OS initialization, configuring of the PF private structure,
15571 * and a hardware reset occur.
15572 *
15573 * Returns 0 on success, negative on failure
15574 **/
i40e_probe(struct pci_dev * pdev,const struct pci_device_id * ent)15575 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
15576 {
15577 struct i40e_aq_get_phy_abilities_resp abilities;
15578 #ifdef CONFIG_I40E_DCB
15579 enum i40e_get_fw_lldp_status_resp lldp_status;
15580 #endif /* CONFIG_I40E_DCB */
15581 struct i40e_vsi *vsi;
15582 struct i40e_pf *pf;
15583 struct i40e_hw *hw;
15584 u16 wol_nvm_bits;
15585 char nvm_ver[32];
15586 u16 link_status;
15587 #ifdef CONFIG_I40E_DCB
15588 int status;
15589 #endif /* CONFIG_I40E_DCB */
15590 int err;
15591 u32 val;
15592
15593 err = pci_enable_device_mem(pdev);
15594 if (err)
15595 return err;
15596
15597 /* set up for high or low dma */
15598 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
15599 if (err) {
15600 dev_err(&pdev->dev,
15601 "DMA configuration failed: 0x%x\n", err);
15602 goto err_dma;
15603 }
15604
15605 /* set up pci connections */
15606 err = pci_request_mem_regions(pdev, i40e_driver_name);
15607 if (err) {
15608 dev_info(&pdev->dev,
15609 "pci_request_selected_regions failed %d\n", err);
15610 goto err_pci_reg;
15611 }
15612
15613 pci_set_master(pdev);
15614
15615 /* Now that we have a PCI connection, we need to do the
15616 * low level device setup. This is primarily setting up
15617 * the Admin Queue structures and then querying for the
15618 * device's current profile information.
15619 */
15620 pf = i40e_alloc_pf(&pdev->dev);
15621 if (!pf) {
15622 err = -ENOMEM;
15623 goto err_pf_alloc;
15624 }
15625 pf->next_vsi = 0;
15626 pf->pdev = pdev;
15627 set_bit(__I40E_DOWN, pf->state);
15628
15629 hw = &pf->hw;
15630
15631 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
15632 I40E_MAX_CSR_SPACE);
15633 /* We believe that the highest register to read is
15634 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size
15635 * is not less than that before mapping to prevent a
15636 * kernel panic.
15637 */
15638 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) {
15639 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n",
15640 pf->ioremap_len);
15641 err = -ENOMEM;
15642 goto err_ioremap;
15643 }
15644 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
15645 if (!hw->hw_addr) {
15646 err = -EIO;
15647 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
15648 (unsigned int)pci_resource_start(pdev, 0),
15649 pf->ioremap_len, err);
15650 goto err_ioremap;
15651 }
15652 hw->vendor_id = pdev->vendor;
15653 hw->device_id = pdev->device;
15654 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
15655 hw->subsystem_vendor_id = pdev->subsystem_vendor;
15656 i40e_set_subsystem_device_id(hw);
15657 hw->bus.device = PCI_SLOT(pdev->devfn);
15658 hw->bus.func = PCI_FUNC(pdev->devfn);
15659 hw->bus.bus_id = pdev->bus->number;
15660
15661 /* Select something other than the 802.1ad ethertype for the
15662 * switch to use internally and drop on ingress.
15663 */
15664 hw->switch_tag = 0xffff;
15665 hw->first_tag = ETH_P_8021AD;
15666 hw->second_tag = ETH_P_8021Q;
15667
15668 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
15669 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
15670 INIT_LIST_HEAD(&pf->ddp_old_prof);
15671
15672 /* set up the locks for the AQ, do this only once in probe
15673 * and destroy them only once in remove
15674 */
15675 mutex_init(&hw->aq.asq_mutex);
15676 mutex_init(&hw->aq.arq_mutex);
15677
15678 pf->msg_enable = netif_msg_init(debug,
15679 NETIF_MSG_DRV |
15680 NETIF_MSG_PROBE |
15681 NETIF_MSG_LINK);
15682 if (debug < -1)
15683 pf->hw.debug_mask = debug;
15684
15685 /* do a special CORER for clearing PXE mode once at init */
15686 if (hw->revision_id == 0 &&
15687 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
15688 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
15689 i40e_flush(hw);
15690 msleep(200);
15691 pf->corer_count++;
15692
15693 i40e_clear_pxe_mode(hw);
15694 }
15695
15696 /* Reset here to make sure all is clean and to define PF 'n' */
15697 i40e_clear_hw(hw);
15698
15699 err = i40e_set_mac_type(hw);
15700 if (err) {
15701 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
15702 err);
15703 goto err_pf_reset;
15704 }
15705
15706 err = i40e_handle_resets(pf);
15707 if (err)
15708 goto err_pf_reset;
15709
15710 i40e_check_recovery_mode(pf);
15711
15712 if (is_kdump_kernel()) {
15713 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN;
15714 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN;
15715 } else {
15716 hw->aq.num_arq_entries = I40E_AQ_LEN;
15717 hw->aq.num_asq_entries = I40E_AQ_LEN;
15718 }
15719 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
15720 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
15721
15722 snprintf(pf->int_name, sizeof(pf->int_name) - 1,
15723 "%s-%s:misc",
15724 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
15725
15726 err = i40e_init_shared_code(hw);
15727 if (err) {
15728 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
15729 err);
15730 goto err_pf_reset;
15731 }
15732
15733 /* set up a default setting for link flow control */
15734 pf->hw.fc.requested_mode = I40E_FC_NONE;
15735
15736 err = i40e_init_adminq(hw);
15737 if (err) {
15738 if (err == -EIO)
15739 dev_info(&pdev->dev,
15740 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n",
15741 hw->aq.api_maj_ver,
15742 hw->aq.api_min_ver,
15743 I40E_FW_API_VERSION_MAJOR,
15744 I40E_FW_MINOR_VERSION(hw));
15745 else
15746 dev_info(&pdev->dev,
15747 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
15748
15749 goto err_pf_reset;
15750 }
15751 i40e_get_oem_version(hw);
15752 i40e_get_pba_string(hw);
15753
15754 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */
15755 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver));
15756 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n",
15757 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
15758 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver,
15759 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id,
15760 hw->subsystem_device_id);
15761
15762 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR,
15763 I40E_FW_MINOR_VERSION(hw) + 1))
15764 dev_dbg(&pdev->dev,
15765 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n",
15766 hw->aq.api_maj_ver,
15767 hw->aq.api_min_ver,
15768 I40E_FW_API_VERSION_MAJOR,
15769 I40E_FW_MINOR_VERSION(hw));
15770 else if (i40e_is_aq_api_ver_lt(hw, 1, 4))
15771 dev_info(&pdev->dev,
15772 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n",
15773 hw->aq.api_maj_ver,
15774 hw->aq.api_min_ver,
15775 I40E_FW_API_VERSION_MAJOR,
15776 I40E_FW_MINOR_VERSION(hw));
15777
15778 i40e_verify_eeprom(pf);
15779
15780 /* Rev 0 hardware was never productized */
15781 if (hw->revision_id < 1)
15782 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
15783
15784 i40e_clear_pxe_mode(hw);
15785
15786 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
15787 if (err)
15788 goto err_adminq_setup;
15789
15790 err = i40e_sw_init(pf);
15791 if (err) {
15792 dev_info(&pdev->dev, "sw_init failed: %d\n", err);
15793 goto err_sw_init;
15794 }
15795
15796 if (test_bit(__I40E_RECOVERY_MODE, pf->state))
15797 return i40e_init_recovery_mode(pf, hw);
15798
15799 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
15800 hw->func_caps.num_rx_qp, 0, 0);
15801 if (err) {
15802 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
15803 goto err_init_lan_hmc;
15804 }
15805
15806 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
15807 if (err) {
15808 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
15809 err = -ENOENT;
15810 goto err_configure_lan_hmc;
15811 }
15812
15813 /* Disable LLDP for NICs that have firmware versions lower than v4.3.
15814 * Ignore error return codes because if it was already disabled via
15815 * hardware settings this will fail
15816 */
15817 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) {
15818 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
15819 i40e_aq_stop_lldp(hw, true, false, NULL);
15820 }
15821
15822 /* allow a platform config to override the HW addr */
15823 i40e_get_platform_mac_addr(pdev, pf);
15824
15825 if (!is_valid_ether_addr(hw->mac.addr)) {
15826 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
15827 err = -EIO;
15828 goto err_mac_addr;
15829 }
15830 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
15831 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
15832 i40e_get_port_mac_addr(hw, hw->mac.port_addr);
15833 if (is_valid_ether_addr(hw->mac.port_addr))
15834 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps);
15835
15836 i40e_ptp_alloc_pins(pf);
15837 pci_set_drvdata(pdev, pf);
15838 pci_save_state(pdev);
15839
15840 #ifdef CONFIG_I40E_DCB
15841 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status);
15842 (!status &&
15843 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ?
15844 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) :
15845 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags));
15846 dev_info(&pdev->dev,
15847 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
15848 "FW LLDP is disabled\n" :
15849 "FW LLDP is enabled\n");
15850
15851 /* Enable FW to write default DCB config on link-up */
15852 i40e_aq_set_dcb_parameters(hw, true, NULL);
15853
15854 err = i40e_init_pf_dcb(pf);
15855 if (err) {
15856 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
15857 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15858 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15859 /* Continue without DCB enabled */
15860 }
15861 #endif /* CONFIG_I40E_DCB */
15862
15863 /* set up periodic task facility */
15864 timer_setup(&pf->service_timer, i40e_service_timer, 0);
15865 pf->service_timer_period = HZ;
15866
15867 INIT_WORK(&pf->service_task, i40e_service_task);
15868 clear_bit(__I40E_SERVICE_SCHED, pf->state);
15869
15870 /* NVM bit on means WoL disabled for the port */
15871 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
15872 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
15873 pf->wol_en = false;
15874 else
15875 pf->wol_en = true;
15876 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
15877
15878 /* set up the main switch operations */
15879 i40e_determine_queue_usage(pf);
15880 err = i40e_init_interrupt_scheme(pf);
15881 if (err)
15882 goto err_switch_setup;
15883
15884 /* Reduce Tx and Rx pairs for kdump
15885 * When MSI-X is enabled, it's not allowed to use more TC queue
15886 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus
15887 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1.
15888 */
15889 if (is_kdump_kernel())
15890 pf->num_lan_msix = 1;
15891
15892 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port;
15893 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port;
15894 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
15895 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared;
15896 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS;
15897 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
15898 UDP_TUNNEL_TYPE_GENEVE;
15899
15900 /* The number of VSIs reported by the FW is the minimum guaranteed
15901 * to us; HW supports far more and we share the remaining pool with
15902 * the other PFs. We allocate space for more than the guarantee with
15903 * the understanding that we might not get them all later.
15904 */
15905 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
15906 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
15907 else
15908 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
15909 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
15910 dev_warn(&pf->pdev->dev,
15911 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
15912 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
15913 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
15914 }
15915
15916 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
15917 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
15918 GFP_KERNEL);
15919 if (!pf->vsi) {
15920 err = -ENOMEM;
15921 goto err_switch_setup;
15922 }
15923
15924 #ifdef CONFIG_PCI_IOV
15925 /* prep for VF support */
15926 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
15927 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
15928 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
15929 if (pci_num_vf(pdev))
15930 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
15931 }
15932 #endif
15933 err = i40e_setup_pf_switch(pf, false, false);
15934 if (err) {
15935 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
15936 goto err_vsis;
15937 }
15938
15939 vsi = i40e_pf_get_main_vsi(pf);
15940 INIT_LIST_HEAD(&vsi->ch_list);
15941
15942 /* if FDIR VSI was set up, start it now */
15943 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
15944 if (vsi)
15945 i40e_vsi_open(vsi);
15946
15947 /* The driver only wants link up/down and module qualification
15948 * reports from firmware. Note the negative logic.
15949 */
15950 err = i40e_aq_set_phy_int_mask(&pf->hw,
15951 ~(I40E_AQ_EVENT_LINK_UPDOWN |
15952 I40E_AQ_EVENT_MEDIA_NA |
15953 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
15954 if (err)
15955 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
15956 ERR_PTR(err),
15957 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
15958
15959 /* VF MDD event logs are rate limited to one second intervals */
15960 ratelimit_state_init(&pf->mdd_message_rate_limit, 1 * HZ, 1);
15961
15962 /* Reconfigure hardware for allowing smaller MSS in the case
15963 * of TSO, so that we avoid the MDD being fired and causing
15964 * a reset in the case of small MSS+TSO.
15965 */
15966 val = rd32(hw, I40E_REG_MSS);
15967 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
15968 val &= ~I40E_REG_MSS_MIN_MASK;
15969 val |= I40E_64BYTE_MSS;
15970 wr32(hw, I40E_REG_MSS, val);
15971 }
15972
15973 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
15974 msleep(75);
15975 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
15976 if (err)
15977 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
15978 ERR_PTR(err),
15979 i40e_aq_str(&pf->hw,
15980 pf->hw.aq.asq_last_status));
15981 }
15982 /* The main driver is (mostly) up and happy. We need to set this state
15983 * before setting up the misc vector or we get a race and the vector
15984 * ends up disabled forever.
15985 */
15986 clear_bit(__I40E_DOWN, pf->state);
15987
15988 /* In case of MSIX we are going to setup the misc vector right here
15989 * to handle admin queue events etc. In case of legacy and MSI
15990 * the misc functionality and queue processing is combined in
15991 * the same vector and that gets setup at open.
15992 */
15993 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
15994 err = i40e_setup_misc_vector(pf);
15995 if (err) {
15996 dev_info(&pdev->dev,
15997 "setup of misc vector failed: %d\n", err);
15998 i40e_cloud_filter_exit(pf);
15999 i40e_fdir_teardown(pf);
16000 goto err_vsis;
16001 }
16002 }
16003
16004 #ifdef CONFIG_PCI_IOV
16005 /* prep for VF support */
16006 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
16007 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
16008 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
16009 /* disable link interrupts for VFs */
16010 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
16011 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
16012 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
16013 i40e_flush(hw);
16014
16015 if (pci_num_vf(pdev)) {
16016 dev_info(&pdev->dev,
16017 "Active VFs found, allocating resources.\n");
16018 err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
16019 if (err)
16020 dev_info(&pdev->dev,
16021 "Error %d allocating resources for existing VFs\n",
16022 err);
16023 }
16024 }
16025 #endif /* CONFIG_PCI_IOV */
16026
16027 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
16028 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
16029 pf->num_iwarp_msix,
16030 I40E_IWARP_IRQ_PILE_ID);
16031 if (pf->iwarp_base_vector < 0) {
16032 dev_info(&pdev->dev,
16033 "failed to get tracking for %d vectors for IWARP err=%d\n",
16034 pf->num_iwarp_msix, pf->iwarp_base_vector);
16035 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
16036 }
16037 }
16038
16039 i40e_dbg_pf_init(pf);
16040
16041 /* tell the firmware that we're starting */
16042 i40e_send_version(pf);
16043
16044 /* since everything's happy, start the service_task timer */
16045 mod_timer(&pf->service_timer,
16046 round_jiffies(jiffies + pf->service_timer_period));
16047
16048 /* add this PF to client device list and launch a client service task */
16049 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
16050 err = i40e_lan_add_device(pf);
16051 if (err)
16052 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
16053 err);
16054 }
16055
16056 #define PCI_SPEED_SIZE 8
16057 #define PCI_WIDTH_SIZE 8
16058 /* Devices on the IOSF bus do not have this information
16059 * and will report PCI Gen 1 x 1 by default so don't bother
16060 * checking them.
16061 */
16062 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) {
16063 char speed[PCI_SPEED_SIZE] = "Unknown";
16064 char width[PCI_WIDTH_SIZE] = "Unknown";
16065
16066 /* Get the negotiated link width and speed from PCI config
16067 * space
16068 */
16069 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
16070 &link_status);
16071
16072 i40e_set_pci_config_data(hw, link_status);
16073
16074 switch (hw->bus.speed) {
16075 case i40e_bus_speed_8000:
16076 strscpy(speed, "8.0", PCI_SPEED_SIZE); break;
16077 case i40e_bus_speed_5000:
16078 strscpy(speed, "5.0", PCI_SPEED_SIZE); break;
16079 case i40e_bus_speed_2500:
16080 strscpy(speed, "2.5", PCI_SPEED_SIZE); break;
16081 default:
16082 break;
16083 }
16084 switch (hw->bus.width) {
16085 case i40e_bus_width_pcie_x8:
16086 strscpy(width, "8", PCI_WIDTH_SIZE); break;
16087 case i40e_bus_width_pcie_x4:
16088 strscpy(width, "4", PCI_WIDTH_SIZE); break;
16089 case i40e_bus_width_pcie_x2:
16090 strscpy(width, "2", PCI_WIDTH_SIZE); break;
16091 case i40e_bus_width_pcie_x1:
16092 strscpy(width, "1", PCI_WIDTH_SIZE); break;
16093 default:
16094 break;
16095 }
16096
16097 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
16098 speed, width);
16099
16100 if (hw->bus.width < i40e_bus_width_pcie_x8 ||
16101 hw->bus.speed < i40e_bus_speed_8000) {
16102 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
16103 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
16104 }
16105 }
16106
16107 /* get the requested speeds from the fw */
16108 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
16109 if (err)
16110 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n",
16111 ERR_PTR(err),
16112 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
16113 pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
16114
16115 /* set the FEC config due to the board capabilities */
16116 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags);
16117
16118 /* get the supported phy types from the fw */
16119 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
16120 if (err)
16121 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n",
16122 ERR_PTR(err),
16123 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
16124
16125 /* make sure the MFS hasn't been set lower than the default */
16126 #define MAX_FRAME_SIZE_DEFAULT 0x2600
16127 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK,
16128 rd32(&pf->hw, I40E_PRTGL_SAH));
16129 if (val < MAX_FRAME_SIZE_DEFAULT)
16130 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n",
16131 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT);
16132
16133 /* Add a filter to drop all Flow control frames from any VSI from being
16134 * transmitted. By doing so we stop a malicious VF from sending out
16135 * PAUSE or PFC frames and potentially controlling traffic for other
16136 * PF/VF VSIs.
16137 * The FW can still send Flow control frames if enabled.
16138 */
16139 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
16140 pf->main_vsi_seid);
16141
16142 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
16143 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
16144 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps);
16145 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
16146 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps);
16147 /* print a string summarizing features */
16148 i40e_print_features(pf);
16149
16150 i40e_devlink_register(pf);
16151
16152 return 0;
16153
16154 /* Unwind what we've done if something failed in the setup */
16155 err_vsis:
16156 set_bit(__I40E_DOWN, pf->state);
16157 i40e_clear_interrupt_scheme(pf);
16158 kfree(pf->vsi);
16159 err_switch_setup:
16160 i40e_reset_interrupt_capability(pf);
16161 timer_shutdown_sync(&pf->service_timer);
16162 err_mac_addr:
16163 err_configure_lan_hmc:
16164 (void)i40e_shutdown_lan_hmc(hw);
16165 err_init_lan_hmc:
16166 kfree(pf->qp_pile);
16167 err_sw_init:
16168 err_adminq_setup:
16169 err_pf_reset:
16170 iounmap(hw->hw_addr);
16171 err_ioremap:
16172 i40e_free_pf(pf);
16173 err_pf_alloc:
16174 pci_release_mem_regions(pdev);
16175 err_pci_reg:
16176 err_dma:
16177 pci_disable_device(pdev);
16178 return err;
16179 }
16180
16181 /**
16182 * i40e_remove - Device removal routine
16183 * @pdev: PCI device information struct
16184 *
16185 * i40e_remove is called by the PCI subsystem to alert the driver
16186 * that is should release a PCI device. This could be caused by a
16187 * Hot-Plug event, or because the driver is going to be removed from
16188 * memory.
16189 **/
i40e_remove(struct pci_dev * pdev)16190 static void i40e_remove(struct pci_dev *pdev)
16191 {
16192 struct i40e_pf *pf = pci_get_drvdata(pdev);
16193 struct i40e_hw *hw = &pf->hw;
16194 struct i40e_vsi *vsi;
16195 struct i40e_veb *veb;
16196 int ret_code;
16197 int i;
16198
16199 i40e_devlink_unregister(pf);
16200
16201 i40e_dbg_pf_exit(pf);
16202
16203 i40e_ptp_stop(pf);
16204
16205 /* Disable RSS in hw */
16206 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
16207 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
16208
16209 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE
16210 * flags, once they are set, i40e_rebuild should not be called as
16211 * i40e_prep_for_reset always returns early.
16212 */
16213 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
16214 usleep_range(1000, 2000);
16215 set_bit(__I40E_IN_REMOVE, pf->state);
16216
16217 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) {
16218 set_bit(__I40E_VF_RESETS_DISABLED, pf->state);
16219 i40e_free_vfs(pf);
16220 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
16221 }
16222 /* no more scheduling of any task */
16223 set_bit(__I40E_SUSPENDED, pf->state);
16224 set_bit(__I40E_DOWN, pf->state);
16225 if (pf->service_timer.function)
16226 timer_shutdown_sync(&pf->service_timer);
16227 if (pf->service_task.func)
16228 cancel_work_sync(&pf->service_task);
16229
16230 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
16231 struct i40e_vsi *vsi = pf->vsi[0];
16232
16233 /* We know that we have allocated only one vsi for this PF,
16234 * it was just for registering netdevice, so the interface
16235 * could be visible in the 'ifconfig' output
16236 */
16237 unregister_netdev(vsi->netdev);
16238 free_netdev(vsi->netdev);
16239
16240 goto unmap;
16241 }
16242
16243 /* Client close must be called explicitly here because the timer
16244 * has been stopped.
16245 */
16246 i40e_notify_client_of_netdev_close(pf, false);
16247
16248 i40e_fdir_teardown(pf);
16249
16250 /* If there is a switch structure or any orphans, remove them.
16251 * This will leave only the PF's VSI remaining.
16252 */
16253 i40e_pf_for_each_veb(pf, i, veb)
16254 if (veb->uplink_seid == pf->mac_seid ||
16255 veb->uplink_seid == 0)
16256 i40e_switch_branch_release(veb);
16257
16258 /* Now we can shutdown the PF's VSIs, just before we kill
16259 * adminq and hmc.
16260 */
16261 i40e_pf_for_each_vsi(pf, i, vsi) {
16262 i40e_vsi_close(vsi);
16263 i40e_vsi_release(vsi);
16264 pf->vsi[i] = NULL;
16265 }
16266
16267 i40e_cloud_filter_exit(pf);
16268
16269 /* remove attached clients */
16270 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
16271 ret_code = i40e_lan_del_device(pf);
16272 if (ret_code)
16273 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
16274 ret_code);
16275 }
16276
16277 /* shutdown and destroy the HMC */
16278 if (hw->hmc.hmc_obj) {
16279 ret_code = i40e_shutdown_lan_hmc(hw);
16280 if (ret_code)
16281 dev_warn(&pdev->dev,
16282 "Failed to destroy the HMC resources: %d\n",
16283 ret_code);
16284 }
16285
16286 unmap:
16287 /* Free MSI/legacy interrupt 0 when in recovery mode. */
16288 if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
16289 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
16290 free_irq(pf->pdev->irq, pf);
16291
16292 /* shutdown the adminq */
16293 i40e_shutdown_adminq(hw);
16294
16295 /* destroy the locks only once, here */
16296 mutex_destroy(&hw->aq.arq_mutex);
16297 mutex_destroy(&hw->aq.asq_mutex);
16298
16299 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
16300 rtnl_lock();
16301 i40e_clear_interrupt_scheme(pf);
16302 i40e_pf_for_each_vsi(pf, i, vsi) {
16303 if (!test_bit(__I40E_RECOVERY_MODE, pf->state))
16304 i40e_vsi_clear_rings(vsi);
16305
16306 i40e_vsi_clear(vsi);
16307 pf->vsi[i] = NULL;
16308 }
16309 rtnl_unlock();
16310
16311 i40e_pf_for_each_veb(pf, i, veb) {
16312 kfree(veb);
16313 pf->veb[i] = NULL;
16314 }
16315
16316 kfree(pf->qp_pile);
16317 kfree(pf->vsi);
16318
16319 iounmap(hw->hw_addr);
16320 i40e_free_pf(pf);
16321 pci_release_mem_regions(pdev);
16322
16323 pci_disable_device(pdev);
16324 }
16325
16326 /**
16327 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up
16328 * using the mac_address_write admin q function
16329 * @pf: pointer to i40e_pf struct
16330 **/
i40e_enable_mc_magic_wake(struct i40e_pf * pf)16331 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
16332 {
16333 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
16334 struct i40e_hw *hw = &pf->hw;
16335 u8 mac_addr[6];
16336 u16 flags = 0;
16337 int ret;
16338
16339 /* Get current MAC address in case it's an LAA */
16340 if (main_vsi && main_vsi->netdev) {
16341 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr);
16342 } else {
16343 dev_err(&pf->pdev->dev,
16344 "Failed to retrieve MAC address; using default\n");
16345 ether_addr_copy(mac_addr, hw->mac.addr);
16346 }
16347
16348 /* The FW expects the mac address write cmd to first be called with
16349 * one of these flags before calling it again with the multicast
16350 * enable flags.
16351 */
16352 flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
16353
16354 if (hw->func_caps.flex10_enable && hw->partition_id != 1)
16355 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
16356
16357 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
16358 if (ret) {
16359 dev_err(&pf->pdev->dev,
16360 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
16361 return;
16362 }
16363
16364 flags = I40E_AQC_MC_MAG_EN
16365 | I40E_AQC_WOL_PRESERVE_ON_PFR
16366 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
16367 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
16368 if (ret)
16369 dev_err(&pf->pdev->dev,
16370 "Failed to enable Multicast Magic Packet wake up\n");
16371 }
16372
16373 /**
16374 * i40e_io_suspend - suspend all IO operations
16375 * @pf: pointer to i40e_pf struct
16376 *
16377 **/
i40e_io_suspend(struct i40e_pf * pf)16378 static int i40e_io_suspend(struct i40e_pf *pf)
16379 {
16380 struct i40e_hw *hw = &pf->hw;
16381
16382 set_bit(__I40E_DOWN, pf->state);
16383
16384 /* Ensure service task will not be running */
16385 del_timer_sync(&pf->service_timer);
16386 cancel_work_sync(&pf->service_task);
16387
16388 /* Client close must be called explicitly here because the timer
16389 * has been stopped.
16390 */
16391 i40e_notify_client_of_netdev_close(pf, false);
16392
16393 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
16394 pf->wol_en)
16395 i40e_enable_mc_magic_wake(pf);
16396
16397 /* Since we're going to destroy queues during the
16398 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
16399 * whole section
16400 */
16401 rtnl_lock();
16402
16403 i40e_prep_for_reset(pf);
16404
16405 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
16406 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
16407
16408 /* Clear the interrupt scheme and release our IRQs so that the system
16409 * can safely hibernate even when there are a large number of CPUs.
16410 * Otherwise hibernation might fail when mapping all the vectors back
16411 * to CPU0.
16412 */
16413 i40e_clear_interrupt_scheme(pf);
16414
16415 rtnl_unlock();
16416
16417 return 0;
16418 }
16419
16420 /**
16421 * i40e_io_resume - resume IO operations
16422 * @pf: pointer to i40e_pf struct
16423 *
16424 **/
i40e_io_resume(struct i40e_pf * pf)16425 static int i40e_io_resume(struct i40e_pf *pf)
16426 {
16427 struct device *dev = &pf->pdev->dev;
16428 int err;
16429
16430 /* We need to hold the RTNL lock prior to restoring interrupt schemes,
16431 * since we're going to be restoring queues
16432 */
16433 rtnl_lock();
16434
16435 /* We cleared the interrupt scheme when we suspended, so we need to
16436 * restore it now to resume device functionality.
16437 */
16438 err = i40e_restore_interrupt_scheme(pf);
16439 if (err) {
16440 dev_err(dev, "Cannot restore interrupt scheme: %d\n",
16441 err);
16442 }
16443
16444 clear_bit(__I40E_DOWN, pf->state);
16445 i40e_reset_and_rebuild(pf, false, true);
16446
16447 rtnl_unlock();
16448
16449 /* Clear suspended state last after everything is recovered */
16450 clear_bit(__I40E_SUSPENDED, pf->state);
16451
16452 /* Restart the service task */
16453 mod_timer(&pf->service_timer,
16454 round_jiffies(jiffies + pf->service_timer_period));
16455
16456 return 0;
16457 }
16458
16459 /**
16460 * i40e_pci_error_detected - warning that something funky happened in PCI land
16461 * @pdev: PCI device information struct
16462 * @error: the type of PCI error
16463 *
16464 * Called to warn that something happened and the error handling steps
16465 * are in progress. Allows the driver to quiesce things, be ready for
16466 * remediation.
16467 **/
i40e_pci_error_detected(struct pci_dev * pdev,pci_channel_state_t error)16468 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
16469 pci_channel_state_t error)
16470 {
16471 struct i40e_pf *pf = pci_get_drvdata(pdev);
16472
16473 dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
16474
16475 if (!pf) {
16476 dev_info(&pdev->dev,
16477 "Cannot recover - error happened during device probe\n");
16478 return PCI_ERS_RESULT_DISCONNECT;
16479 }
16480
16481 /* shutdown all operations */
16482 if (!test_bit(__I40E_SUSPENDED, pf->state))
16483 i40e_io_suspend(pf);
16484
16485 /* Request a slot reset */
16486 return PCI_ERS_RESULT_NEED_RESET;
16487 }
16488
16489 /**
16490 * i40e_pci_error_slot_reset - a PCI slot reset just happened
16491 * @pdev: PCI device information struct
16492 *
16493 * Called to find if the driver can work with the device now that
16494 * the pci slot has been reset. If a basic connection seems good
16495 * (registers are readable and have sane content) then return a
16496 * happy little PCI_ERS_RESULT_xxx.
16497 **/
i40e_pci_error_slot_reset(struct pci_dev * pdev)16498 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
16499 {
16500 struct i40e_pf *pf = pci_get_drvdata(pdev);
16501 pci_ers_result_t result;
16502 u32 reg;
16503
16504 dev_dbg(&pdev->dev, "%s\n", __func__);
16505 /* enable I/O and memory of the device */
16506 if (pci_enable_device(pdev)) {
16507 dev_info(&pdev->dev,
16508 "Cannot re-enable PCI device after reset.\n");
16509 result = PCI_ERS_RESULT_DISCONNECT;
16510 } else {
16511 pci_set_master(pdev);
16512 pci_restore_state(pdev);
16513 pci_save_state(pdev);
16514 pci_wake_from_d3(pdev, false);
16515
16516 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
16517 if (reg == 0)
16518 result = PCI_ERS_RESULT_RECOVERED;
16519 else
16520 result = PCI_ERS_RESULT_DISCONNECT;
16521 }
16522
16523 return result;
16524 }
16525
16526 /**
16527 * i40e_pci_error_reset_prepare - prepare device driver for pci reset
16528 * @pdev: PCI device information struct
16529 */
i40e_pci_error_reset_prepare(struct pci_dev * pdev)16530 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev)
16531 {
16532 struct i40e_pf *pf = pci_get_drvdata(pdev);
16533
16534 i40e_prep_for_reset(pf);
16535 }
16536
16537 /**
16538 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin
16539 * @pdev: PCI device information struct
16540 */
i40e_pci_error_reset_done(struct pci_dev * pdev)16541 static void i40e_pci_error_reset_done(struct pci_dev *pdev)
16542 {
16543 struct i40e_pf *pf = pci_get_drvdata(pdev);
16544
16545 if (test_bit(__I40E_IN_REMOVE, pf->state))
16546 return;
16547
16548 i40e_reset_and_rebuild(pf, false, false);
16549 #ifdef CONFIG_PCI_IOV
16550 i40e_restore_all_vfs_msi_state(pdev);
16551 #endif /* CONFIG_PCI_IOV */
16552 }
16553
16554 /**
16555 * i40e_pci_error_resume - restart operations after PCI error recovery
16556 * @pdev: PCI device information struct
16557 *
16558 * Called to allow the driver to bring things back up after PCI error
16559 * and/or reset recovery has finished.
16560 **/
i40e_pci_error_resume(struct pci_dev * pdev)16561 static void i40e_pci_error_resume(struct pci_dev *pdev)
16562 {
16563 struct i40e_pf *pf = pci_get_drvdata(pdev);
16564
16565 dev_dbg(&pdev->dev, "%s\n", __func__);
16566 if (test_bit(__I40E_SUSPENDED, pf->state))
16567 return;
16568
16569 i40e_io_resume(pf);
16570 }
16571
16572 /**
16573 * i40e_shutdown - PCI callback for shutting down
16574 * @pdev: PCI device information struct
16575 **/
i40e_shutdown(struct pci_dev * pdev)16576 static void i40e_shutdown(struct pci_dev *pdev)
16577 {
16578 struct i40e_pf *pf = pci_get_drvdata(pdev);
16579 struct i40e_hw *hw = &pf->hw;
16580
16581 set_bit(__I40E_SUSPENDED, pf->state);
16582 set_bit(__I40E_DOWN, pf->state);
16583
16584 del_timer_sync(&pf->service_timer);
16585 cancel_work_sync(&pf->service_task);
16586 i40e_cloud_filter_exit(pf);
16587 i40e_fdir_teardown(pf);
16588
16589 /* Client close must be called explicitly here because the timer
16590 * has been stopped.
16591 */
16592 i40e_notify_client_of_netdev_close(pf, false);
16593
16594 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
16595 pf->wol_en)
16596 i40e_enable_mc_magic_wake(pf);
16597
16598 i40e_prep_for_reset(pf);
16599
16600 wr32(hw, I40E_PFPM_APM,
16601 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
16602 wr32(hw, I40E_PFPM_WUFC,
16603 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
16604
16605 /* Free MSI/legacy interrupt 0 when in recovery mode. */
16606 if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
16607 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
16608 free_irq(pf->pdev->irq, pf);
16609
16610 /* Since we're going to destroy queues during the
16611 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
16612 * whole section
16613 */
16614 rtnl_lock();
16615 i40e_clear_interrupt_scheme(pf);
16616 rtnl_unlock();
16617
16618 if (system_state == SYSTEM_POWER_OFF) {
16619 pci_wake_from_d3(pdev, pf->wol_en);
16620 pci_set_power_state(pdev, PCI_D3hot);
16621 }
16622 }
16623
16624 /**
16625 * i40e_suspend - PM callback for moving to D3
16626 * @dev: generic device information structure
16627 **/
i40e_suspend(struct device * dev)16628 static int i40e_suspend(struct device *dev)
16629 {
16630 struct i40e_pf *pf = dev_get_drvdata(dev);
16631
16632 /* If we're already suspended, then there is nothing to do */
16633 if (test_and_set_bit(__I40E_SUSPENDED, pf->state))
16634 return 0;
16635 return i40e_io_suspend(pf);
16636 }
16637
16638 /**
16639 * i40e_resume - PM callback for waking up from D3
16640 * @dev: generic device information structure
16641 **/
i40e_resume(struct device * dev)16642 static int i40e_resume(struct device *dev)
16643 {
16644 struct i40e_pf *pf = dev_get_drvdata(dev);
16645
16646 /* If we're not suspended, then there is nothing to do */
16647 if (!test_bit(__I40E_SUSPENDED, pf->state))
16648 return 0;
16649 return i40e_io_resume(pf);
16650 }
16651
16652 static const struct pci_error_handlers i40e_err_handler = {
16653 .error_detected = i40e_pci_error_detected,
16654 .slot_reset = i40e_pci_error_slot_reset,
16655 .reset_prepare = i40e_pci_error_reset_prepare,
16656 .reset_done = i40e_pci_error_reset_done,
16657 .resume = i40e_pci_error_resume,
16658 };
16659
16660 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume);
16661
16662 static struct pci_driver i40e_driver = {
16663 .name = i40e_driver_name,
16664 .id_table = i40e_pci_tbl,
16665 .probe = i40e_probe,
16666 .remove = i40e_remove,
16667 .driver.pm = pm_sleep_ptr(&i40e_pm_ops),
16668 .shutdown = i40e_shutdown,
16669 .err_handler = &i40e_err_handler,
16670 .sriov_configure = i40e_pci_sriov_configure,
16671 };
16672
16673 /**
16674 * i40e_init_module - Driver registration routine
16675 *
16676 * i40e_init_module is the first routine called when the driver is
16677 * loaded. All it does is register with the PCI subsystem.
16678 **/
i40e_init_module(void)16679 static int __init i40e_init_module(void)
16680 {
16681 int err;
16682
16683 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string);
16684 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
16685
16686 /* There is no need to throttle the number of active tasks because
16687 * each device limits its own task using a state bit for scheduling
16688 * the service task, and the device tasks do not interfere with each
16689 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
16690 * since we need to be able to guarantee forward progress even under
16691 * memory pressure.
16692 */
16693 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name);
16694 if (!i40e_wq) {
16695 pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
16696 return -ENOMEM;
16697 }
16698
16699 i40e_dbg_init();
16700 err = pci_register_driver(&i40e_driver);
16701 if (err) {
16702 destroy_workqueue(i40e_wq);
16703 i40e_dbg_exit();
16704 return err;
16705 }
16706
16707 return 0;
16708 }
16709 module_init(i40e_init_module);
16710
16711 /**
16712 * i40e_exit_module - Driver exit cleanup routine
16713 *
16714 * i40e_exit_module is called just before the driver is removed
16715 * from memory.
16716 **/
i40e_exit_module(void)16717 static void __exit i40e_exit_module(void)
16718 {
16719 pci_unregister_driver(&i40e_driver);
16720 destroy_workqueue(i40e_wq);
16721 ida_destroy(&i40e_client_ida);
16722 i40e_dbg_exit();
16723 }
16724 module_exit(i40e_exit_module);
16725