xref: /linux/kernel/cgroup/cpuset.c (revision bba0b6a1c4006f8cf8736c1eafc62640b31c498b)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cpuset-internal.h"
25 
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 #include <linux/mempolicy.h>
30 #include <linux/mm.h>
31 #include <linux/memory.h>
32 #include <linux/export.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/sched/deadline.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/task.h>
38 #include <linux/security.h>
39 #include <linux/oom.h>
40 #include <linux/sched/isolation.h>
41 #include <linux/wait.h>
42 #include <linux/workqueue.h>
43 #include <linux/task_work.h>
44 
45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47 
48 /*
49  * There could be abnormal cpuset configurations for cpu or memory
50  * node binding, add this key to provide a quick low-cost judgment
51  * of the situation.
52  */
53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54 
55 static const char * const perr_strings[] = {
56 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
57 	[PERR_INVPARENT] = "Parent is an invalid partition root",
58 	[PERR_NOTPART]   = "Parent is not a partition root",
59 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
60 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
61 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
62 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
64 	[PERR_ACCESS]    = "Enable partition not permitted",
65 	[PERR_REMOTE]    = "Have remote partition underneath",
66 };
67 
68 /*
69  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
70  * in update_parent_effective_cpumask(). For remote partitions, it is done in
71  * the remote_partition_*() and remote_cpus_update() helpers.
72  */
73 /*
74  * Exclusive CPUs distributed out to local or remote sub-partitions of
75  * top_cpuset
76  */
77 static cpumask_var_t	subpartitions_cpus;
78 
79 /*
80  * Exclusive CPUs in isolated partitions
81  */
82 static cpumask_var_t	isolated_cpus;
83 
84 /*
85  * isolated_cpus updating flag (protected by cpuset_mutex)
86  * Set if isolated_cpus is going to be updated in the current
87  * cpuset_mutex crtical section.
88  */
89 static bool isolated_cpus_updating;
90 
91 /*
92  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
93  */
94 static cpumask_var_t	boot_hk_cpus;
95 static bool		have_boot_isolcpus;
96 
97 /*
98  * A flag to force sched domain rebuild at the end of an operation.
99  * It can be set in
100  *  - update_partition_sd_lb()
101  *  - update_cpumasks_hier()
102  *  - cpuset_update_flag()
103  *  - cpuset_hotplug_update_tasks()
104  *  - cpuset_handle_hotplug()
105  *
106  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
107  *
108  * Note that update_relax_domain_level() in cpuset-v1.c can still call
109  * rebuild_sched_domains_locked() directly without using this flag.
110  */
111 static bool force_sd_rebuild;
112 
113 /*
114  * Partition root states:
115  *
116  *   0 - member (not a partition root)
117  *   1 - partition root
118  *   2 - partition root without load balancing (isolated)
119  *  -1 - invalid partition root
120  *  -2 - invalid isolated partition root
121  *
122  *  There are 2 types of partitions - local or remote. Local partitions are
123  *  those whose parents are partition root themselves. Setting of
124  *  cpuset.cpus.exclusive are optional in setting up local partitions.
125  *  Remote partitions are those whose parents are not partition roots. Passing
126  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
127  *  nodes are mandatory in creating a remote partition.
128  *
129  *  For simplicity, a local partition can be created under a local or remote
130  *  partition but a remote partition cannot have any partition root in its
131  *  ancestor chain except the cgroup root.
132  */
133 #define PRS_MEMBER		0
134 #define PRS_ROOT		1
135 #define PRS_ISOLATED		2
136 #define PRS_INVALID_ROOT	-1
137 #define PRS_INVALID_ISOLATED	-2
138 
139 /*
140  * Temporary cpumasks for working with partitions that are passed among
141  * functions to avoid memory allocation in inner functions.
142  */
143 struct tmpmasks {
144 	cpumask_var_t addmask, delmask;	/* For partition root */
145 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
146 };
147 
inc_dl_tasks_cs(struct task_struct * p)148 void inc_dl_tasks_cs(struct task_struct *p)
149 {
150 	struct cpuset *cs = task_cs(p);
151 
152 	cs->nr_deadline_tasks++;
153 }
154 
dec_dl_tasks_cs(struct task_struct * p)155 void dec_dl_tasks_cs(struct task_struct *p)
156 {
157 	struct cpuset *cs = task_cs(p);
158 
159 	cs->nr_deadline_tasks--;
160 }
161 
is_partition_valid(const struct cpuset * cs)162 static inline bool is_partition_valid(const struct cpuset *cs)
163 {
164 	return cs->partition_root_state > 0;
165 }
166 
is_partition_invalid(const struct cpuset * cs)167 static inline bool is_partition_invalid(const struct cpuset *cs)
168 {
169 	return cs->partition_root_state < 0;
170 }
171 
cs_is_member(const struct cpuset * cs)172 static inline bool cs_is_member(const struct cpuset *cs)
173 {
174 	return cs->partition_root_state == PRS_MEMBER;
175 }
176 
177 /*
178  * Callers should hold callback_lock to modify partition_root_state.
179  */
make_partition_invalid(struct cpuset * cs)180 static inline void make_partition_invalid(struct cpuset *cs)
181 {
182 	if (cs->partition_root_state > 0)
183 		cs->partition_root_state = -cs->partition_root_state;
184 }
185 
186 /*
187  * Send notification event of whenever partition_root_state changes.
188  */
notify_partition_change(struct cpuset * cs,int old_prs)189 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
190 {
191 	if (old_prs == cs->partition_root_state)
192 		return;
193 	cgroup_file_notify(&cs->partition_file);
194 
195 	/* Reset prs_err if not invalid */
196 	if (is_partition_valid(cs))
197 		WRITE_ONCE(cs->prs_err, PERR_NONE);
198 }
199 
200 /*
201  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
202  * using cpu_online_mask as much as possible. An active CPU is always an online
203  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
204  * during hotplug operations. A CPU is marked active at the last stage of CPU
205  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
206  * will be called to update the sched domains so that the scheduler can move
207  * a normal task to a newly active CPU or remove tasks away from a newly
208  * inactivated CPU. The online bit is set much earlier in the CPU bringup
209  * process and cleared much later in CPU teardown.
210  *
211  * If cpu_online_mask is used while a hotunplug operation is happening in
212  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
213  */
214 static struct cpuset top_cpuset = {
215 	.flags = BIT(CS_CPU_EXCLUSIVE) |
216 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
217 	.partition_root_state = PRS_ROOT,
218 	.relax_domain_level = -1,
219 	.remote_partition = false,
220 };
221 
222 /*
223  * There are two global locks guarding cpuset structures - cpuset_mutex and
224  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
225  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
226  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
227  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
228  * correctness.
229  *
230  * A task must hold both locks to modify cpusets.  If a task holds
231  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
232  * also acquire callback_lock and be able to modify cpusets.  It can perform
233  * various checks on the cpuset structure first, knowing nothing will change.
234  * It can also allocate memory while just holding cpuset_mutex.  While it is
235  * performing these checks, various callback routines can briefly acquire
236  * callback_lock to query cpusets.  Once it is ready to make the changes, it
237  * takes callback_lock, blocking everyone else.
238  *
239  * Calls to the kernel memory allocator can not be made while holding
240  * callback_lock, as that would risk double tripping on callback_lock
241  * from one of the callbacks into the cpuset code from within
242  * __alloc_pages().
243  *
244  * If a task is only holding callback_lock, then it has read-only
245  * access to cpusets.
246  *
247  * Now, the task_struct fields mems_allowed and mempolicy may be changed
248  * by other task, we use alloc_lock in the task_struct fields to protect
249  * them.
250  *
251  * The cpuset_common_seq_show() handlers only hold callback_lock across
252  * small pieces of code, such as when reading out possibly multi-word
253  * cpumasks and nodemasks.
254  */
255 
256 static DEFINE_MUTEX(cpuset_mutex);
257 
258 /**
259  * cpuset_lock - Acquire the global cpuset mutex
260  *
261  * This locks the global cpuset mutex to prevent modifications to cpuset
262  * hierarchy and configurations. This helper is not enough to make modification.
263  */
cpuset_lock(void)264 void cpuset_lock(void)
265 {
266 	mutex_lock(&cpuset_mutex);
267 }
268 
cpuset_unlock(void)269 void cpuset_unlock(void)
270 {
271 	mutex_unlock(&cpuset_mutex);
272 }
273 
274 /**
275  * cpuset_full_lock - Acquire full protection for cpuset modification
276  *
277  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
278  * to safely modify cpuset data.
279  */
cpuset_full_lock(void)280 void cpuset_full_lock(void)
281 {
282 	cpus_read_lock();
283 	mutex_lock(&cpuset_mutex);
284 }
285 
cpuset_full_unlock(void)286 void cpuset_full_unlock(void)
287 {
288 	mutex_unlock(&cpuset_mutex);
289 	cpus_read_unlock();
290 }
291 
292 static DEFINE_SPINLOCK(callback_lock);
293 
cpuset_callback_lock_irq(void)294 void cpuset_callback_lock_irq(void)
295 {
296 	spin_lock_irq(&callback_lock);
297 }
298 
cpuset_callback_unlock_irq(void)299 void cpuset_callback_unlock_irq(void)
300 {
301 	spin_unlock_irq(&callback_lock);
302 }
303 
304 static struct workqueue_struct *cpuset_migrate_mm_wq;
305 
306 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
307 
check_insane_mems_config(nodemask_t * nodes)308 static inline void check_insane_mems_config(nodemask_t *nodes)
309 {
310 	if (!cpusets_insane_config() &&
311 		movable_only_nodes(nodes)) {
312 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
313 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
314 			"Cpuset allocations might fail even with a lot of memory available.\n",
315 			nodemask_pr_args(nodes));
316 	}
317 }
318 
319 /*
320  * decrease cs->attach_in_progress.
321  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
322  */
dec_attach_in_progress_locked(struct cpuset * cs)323 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
324 {
325 	lockdep_assert_held(&cpuset_mutex);
326 
327 	cs->attach_in_progress--;
328 	if (!cs->attach_in_progress)
329 		wake_up(&cpuset_attach_wq);
330 }
331 
dec_attach_in_progress(struct cpuset * cs)332 static inline void dec_attach_in_progress(struct cpuset *cs)
333 {
334 	mutex_lock(&cpuset_mutex);
335 	dec_attach_in_progress_locked(cs);
336 	mutex_unlock(&cpuset_mutex);
337 }
338 
cpuset_v2(void)339 static inline bool cpuset_v2(void)
340 {
341 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
342 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
343 }
344 
345 /*
346  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
347  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
348  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
349  * With v2 behavior, "cpus" and "mems" are always what the users have
350  * requested and won't be changed by hotplug events. Only the effective
351  * cpus or mems will be affected.
352  */
is_in_v2_mode(void)353 static inline bool is_in_v2_mode(void)
354 {
355 	return cpuset_v2() ||
356 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
357 }
358 
cpuset_is_populated(struct cpuset * cs)359 static inline bool cpuset_is_populated(struct cpuset *cs)
360 {
361 	lockdep_assert_held(&cpuset_mutex);
362 
363 	/* Cpusets in the process of attaching should be considered as populated */
364 	return cgroup_is_populated(cs->css.cgroup) ||
365 		cs->attach_in_progress;
366 }
367 
368 /**
369  * partition_is_populated - check if partition has tasks
370  * @cs: partition root to be checked
371  * @excluded_child: a child cpuset to be excluded in task checking
372  * Return: true if there are tasks, false otherwise
373  *
374  * @cs should be a valid partition root or going to become a partition root.
375  * @excluded_child should be non-NULL when this cpuset is going to become a
376  * partition itself.
377  *
378  * Note that a remote partition is not allowed underneath a valid local
379  * or remote partition. So if a non-partition root child is populated,
380  * the whole partition is considered populated.
381  */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)382 static inline bool partition_is_populated(struct cpuset *cs,
383 					  struct cpuset *excluded_child)
384 {
385 	struct cpuset *cp;
386 	struct cgroup_subsys_state *pos_css;
387 
388 	/*
389 	 * We cannot call cs_is_populated(cs) directly, as
390 	 * nr_populated_domain_children may include populated
391 	 * csets from descendants that are partitions.
392 	 */
393 	if (cs->css.cgroup->nr_populated_csets ||
394 	    cs->attach_in_progress)
395 		return true;
396 
397 	rcu_read_lock();
398 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
399 		if (cp == cs || cp == excluded_child)
400 			continue;
401 
402 		if (is_partition_valid(cp)) {
403 			pos_css = css_rightmost_descendant(pos_css);
404 			continue;
405 		}
406 
407 		if (cpuset_is_populated(cp)) {
408 			rcu_read_unlock();
409 			return true;
410 		}
411 	}
412 	rcu_read_unlock();
413 	return false;
414 }
415 
416 /*
417  * Return in pmask the portion of a task's cpusets's cpus_allowed that
418  * are online and are capable of running the task.  If none are found,
419  * walk up the cpuset hierarchy until we find one that does have some
420  * appropriate cpus.
421  *
422  * One way or another, we guarantee to return some non-empty subset
423  * of cpu_active_mask.
424  *
425  * Call with callback_lock or cpuset_mutex held.
426  */
guarantee_active_cpus(struct task_struct * tsk,struct cpumask * pmask)427 static void guarantee_active_cpus(struct task_struct *tsk,
428 				  struct cpumask *pmask)
429 {
430 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
431 	struct cpuset *cs;
432 
433 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
434 		cpumask_copy(pmask, cpu_active_mask);
435 
436 	rcu_read_lock();
437 	cs = task_cs(tsk);
438 
439 	while (!cpumask_intersects(cs->effective_cpus, pmask))
440 		cs = parent_cs(cs);
441 
442 	cpumask_and(pmask, pmask, cs->effective_cpus);
443 	rcu_read_unlock();
444 }
445 
446 /*
447  * Return in *pmask the portion of a cpusets's mems_allowed that
448  * are online, with memory.  If none are online with memory, walk
449  * up the cpuset hierarchy until we find one that does have some
450  * online mems.  The top cpuset always has some mems online.
451  *
452  * One way or another, we guarantee to return some non-empty subset
453  * of node_states[N_MEMORY].
454  *
455  * Call with callback_lock or cpuset_mutex held.
456  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)457 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
458 {
459 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
460 		cs = parent_cs(cs);
461 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
462 }
463 
464 /**
465  * alloc_cpumasks - Allocate an array of cpumask variables
466  * @pmasks: Pointer to array of cpumask_var_t pointers
467  * @size: Number of cpumasks to allocate
468  * Return: 0 if successful, -ENOMEM otherwise.
469  *
470  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
471  * success, -ENOMEM on allocation failure. On failure, any previously
472  * allocated cpumasks are freed.
473  */
alloc_cpumasks(cpumask_var_t * pmasks[],u32 size)474 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
475 {
476 	int i;
477 
478 	for (i = 0; i < size; i++) {
479 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
480 			while (--i >= 0)
481 				free_cpumask_var(*pmasks[i]);
482 			return -ENOMEM;
483 		}
484 	}
485 	return 0;
486 }
487 
488 /**
489  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
490  * @tmp: Pointer to tmpmasks structure to populate
491  * Return: 0 on success, -ENOMEM on allocation failure
492  */
alloc_tmpmasks(struct tmpmasks * tmp)493 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
494 {
495 	/*
496 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
497 	 * Note: Array size must match actual number of masks (3)
498 	 */
499 	cpumask_var_t *pmask[3] = {
500 		&tmp->new_cpus,
501 		&tmp->addmask,
502 		&tmp->delmask
503 	};
504 
505 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
506 }
507 
508 /**
509  * free_tmpmasks - free cpumasks in a tmpmasks structure
510  * @tmp: the tmpmasks structure pointer
511  */
free_tmpmasks(struct tmpmasks * tmp)512 static inline void free_tmpmasks(struct tmpmasks *tmp)
513 {
514 	if (!tmp)
515 		return;
516 
517 	free_cpumask_var(tmp->new_cpus);
518 	free_cpumask_var(tmp->addmask);
519 	free_cpumask_var(tmp->delmask);
520 }
521 
522 /**
523  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
524  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
525  *
526  * Creates a new cpuset by either:
527  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
528  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
529  *
530  * Return: Pointer to newly allocated cpuset on success, NULL on failure
531  */
dup_or_alloc_cpuset(struct cpuset * cs)532 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
533 {
534 	struct cpuset *trial;
535 
536 	/* Allocate base structure */
537 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
538 		     kzalloc(sizeof(*cs), GFP_KERNEL);
539 	if (!trial)
540 		return NULL;
541 
542 	/* Setup cpumask pointer array */
543 	cpumask_var_t *pmask[4] = {
544 		&trial->cpus_allowed,
545 		&trial->effective_cpus,
546 		&trial->effective_xcpus,
547 		&trial->exclusive_cpus
548 	};
549 
550 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
551 		kfree(trial);
552 		return NULL;
553 	}
554 
555 	/* Copy masks if duplicating */
556 	if (cs) {
557 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
558 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
559 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
560 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
561 	}
562 
563 	return trial;
564 }
565 
566 /**
567  * free_cpuset - free the cpuset
568  * @cs: the cpuset to be freed
569  */
free_cpuset(struct cpuset * cs)570 static inline void free_cpuset(struct cpuset *cs)
571 {
572 	free_cpumask_var(cs->cpus_allowed);
573 	free_cpumask_var(cs->effective_cpus);
574 	free_cpumask_var(cs->effective_xcpus);
575 	free_cpumask_var(cs->exclusive_cpus);
576 	kfree(cs);
577 }
578 
579 /* Return user specified exclusive CPUs */
user_xcpus(struct cpuset * cs)580 static inline struct cpumask *user_xcpus(struct cpuset *cs)
581 {
582 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
583 						 : cs->exclusive_cpus;
584 }
585 
xcpus_empty(struct cpuset * cs)586 static inline bool xcpus_empty(struct cpuset *cs)
587 {
588 	return cpumask_empty(cs->cpus_allowed) &&
589 	       cpumask_empty(cs->exclusive_cpus);
590 }
591 
592 /*
593  * cpusets_are_exclusive() - check if two cpusets are exclusive
594  *
595  * Return true if exclusive, false if not
596  */
cpusets_are_exclusive(struct cpuset * cs1,struct cpuset * cs2)597 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
598 {
599 	struct cpumask *xcpus1 = user_xcpus(cs1);
600 	struct cpumask *xcpus2 = user_xcpus(cs2);
601 
602 	if (cpumask_intersects(xcpus1, xcpus2))
603 		return false;
604 	return true;
605 }
606 
607 /**
608  * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
609  * @cs1: first cpuset to check
610  * @cs2: second cpuset to check
611  *
612  * Returns: true if CPU exclusivity conflict exists, false otherwise
613  *
614  * Conflict detection rules:
615  * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
616  * 2. exclusive_cpus masks cannot intersect between cpusets
617  * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
618  */
cpus_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)619 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
620 {
621 	/* If either cpuset is exclusive, check if they are mutually exclusive */
622 	if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
623 		return !cpusets_are_exclusive(cs1, cs2);
624 
625 	/* Exclusive_cpus cannot intersect */
626 	if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
627 		return true;
628 
629 	/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
630 	if (!cpumask_empty(cs1->cpus_allowed) &&
631 	    cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
632 		return true;
633 
634 	if (!cpumask_empty(cs2->cpus_allowed) &&
635 	    cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
636 		return true;
637 
638 	return false;
639 }
640 
mems_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)641 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
642 {
643 	if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
644 		return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
645 	return false;
646 }
647 
648 /*
649  * validate_change() - Used to validate that any proposed cpuset change
650  *		       follows the structural rules for cpusets.
651  *
652  * If we replaced the flag and mask values of the current cpuset
653  * (cur) with those values in the trial cpuset (trial), would
654  * our various subset and exclusive rules still be valid?  Presumes
655  * cpuset_mutex held.
656  *
657  * 'cur' is the address of an actual, in-use cpuset.  Operations
658  * such as list traversal that depend on the actual address of the
659  * cpuset in the list must use cur below, not trial.
660  *
661  * 'trial' is the address of bulk structure copy of cur, with
662  * perhaps one or more of the fields cpus_allowed, mems_allowed,
663  * or flags changed to new, trial values.
664  *
665  * Return 0 if valid, -errno if not.
666  */
667 
validate_change(struct cpuset * cur,struct cpuset * trial)668 static int validate_change(struct cpuset *cur, struct cpuset *trial)
669 {
670 	struct cgroup_subsys_state *css;
671 	struct cpuset *c, *par;
672 	int ret = 0;
673 
674 	rcu_read_lock();
675 
676 	if (!is_in_v2_mode())
677 		ret = cpuset1_validate_change(cur, trial);
678 	if (ret)
679 		goto out;
680 
681 	/* Remaining checks don't apply to root cpuset */
682 	if (cur == &top_cpuset)
683 		goto out;
684 
685 	par = parent_cs(cur);
686 
687 	/*
688 	 * Cpusets with tasks - existing or newly being attached - can't
689 	 * be changed to have empty cpus_allowed or mems_allowed.
690 	 */
691 	ret = -ENOSPC;
692 	if (cpuset_is_populated(cur)) {
693 		if (!cpumask_empty(cur->cpus_allowed) &&
694 		    cpumask_empty(trial->cpus_allowed))
695 			goto out;
696 		if (!nodes_empty(cur->mems_allowed) &&
697 		    nodes_empty(trial->mems_allowed))
698 			goto out;
699 	}
700 
701 	/*
702 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
703 	 * tasks. This check is not done when scheduling is disabled as the
704 	 * users should know what they are doing.
705 	 *
706 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
707 	 * cpus_allowed.
708 	 *
709 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
710 	 * for non-isolated partition root. At this point, the target
711 	 * effective_cpus isn't computed yet. user_xcpus() is the best
712 	 * approximation.
713 	 *
714 	 * TBD: May need to precompute the real effective_cpus here in case
715 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
716 	 * becomes an issue.
717 	 */
718 	ret = -EBUSY;
719 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
720 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
721 		goto out;
722 
723 	/*
724 	 * If either I or some sibling (!= me) is exclusive, we can't
725 	 * overlap. exclusive_cpus cannot overlap with each other if set.
726 	 */
727 	ret = -EINVAL;
728 	cpuset_for_each_child(c, css, par) {
729 		if (c == cur)
730 			continue;
731 		if (cpus_excl_conflict(trial, c))
732 			goto out;
733 		if (mems_excl_conflict(trial, c))
734 			goto out;
735 	}
736 
737 	ret = 0;
738 out:
739 	rcu_read_unlock();
740 	return ret;
741 }
742 
743 #ifdef CONFIG_SMP
744 /*
745  * Helper routine for generate_sched_domains().
746  * Do cpusets a, b have overlapping effective cpus_allowed masks?
747  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)748 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
749 {
750 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
751 }
752 
753 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)754 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
755 {
756 	if (dattr->relax_domain_level < c->relax_domain_level)
757 		dattr->relax_domain_level = c->relax_domain_level;
758 	return;
759 }
760 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)761 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
762 				    struct cpuset *root_cs)
763 {
764 	struct cpuset *cp;
765 	struct cgroup_subsys_state *pos_css;
766 
767 	rcu_read_lock();
768 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
769 		/* skip the whole subtree if @cp doesn't have any CPU */
770 		if (cpumask_empty(cp->cpus_allowed)) {
771 			pos_css = css_rightmost_descendant(pos_css);
772 			continue;
773 		}
774 
775 		if (is_sched_load_balance(cp))
776 			update_domain_attr(dattr, cp);
777 	}
778 	rcu_read_unlock();
779 }
780 
781 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)782 static inline int nr_cpusets(void)
783 {
784 	/* jump label reference count + the top-level cpuset */
785 	return static_key_count(&cpusets_enabled_key.key) + 1;
786 }
787 
788 /*
789  * generate_sched_domains()
790  *
791  * This function builds a partial partition of the systems CPUs
792  * A 'partial partition' is a set of non-overlapping subsets whose
793  * union is a subset of that set.
794  * The output of this function needs to be passed to kernel/sched/core.c
795  * partition_sched_domains() routine, which will rebuild the scheduler's
796  * load balancing domains (sched domains) as specified by that partial
797  * partition.
798  *
799  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
800  * for a background explanation of this.
801  *
802  * Does not return errors, on the theory that the callers of this
803  * routine would rather not worry about failures to rebuild sched
804  * domains when operating in the severe memory shortage situations
805  * that could cause allocation failures below.
806  *
807  * Must be called with cpuset_mutex held.
808  *
809  * The three key local variables below are:
810  *    cp - cpuset pointer, used (together with pos_css) to perform a
811  *	   top-down scan of all cpusets. For our purposes, rebuilding
812  *	   the schedulers sched domains, we can ignore !is_sched_load_
813  *	   balance cpusets.
814  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
815  *	   that need to be load balanced, for convenient iterative
816  *	   access by the subsequent code that finds the best partition,
817  *	   i.e the set of domains (subsets) of CPUs such that the
818  *	   cpus_allowed of every cpuset marked is_sched_load_balance
819  *	   is a subset of one of these domains, while there are as
820  *	   many such domains as possible, each as small as possible.
821  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
822  *	   the kernel/sched/core.c routine partition_sched_domains() in a
823  *	   convenient format, that can be easily compared to the prior
824  *	   value to determine what partition elements (sched domains)
825  *	   were changed (added or removed.)
826  *
827  * Finding the best partition (set of domains):
828  *	The double nested loops below over i, j scan over the load
829  *	balanced cpusets (using the array of cpuset pointers in csa[])
830  *	looking for pairs of cpusets that have overlapping cpus_allowed
831  *	and merging them using a union-find algorithm.
832  *
833  *	The union of the cpus_allowed masks from the set of all cpusets
834  *	having the same root then form the one element of the partition
835  *	(one sched domain) to be passed to partition_sched_domains().
836  *
837  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)838 static int generate_sched_domains(cpumask_var_t **domains,
839 			struct sched_domain_attr **attributes)
840 {
841 	struct cpuset *cp;	/* top-down scan of cpusets */
842 	struct cpuset **csa;	/* array of all cpuset ptrs */
843 	int csn;		/* how many cpuset ptrs in csa so far */
844 	int i, j;		/* indices for partition finding loops */
845 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
846 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
847 	int ndoms = 0;		/* number of sched domains in result */
848 	int nslot;		/* next empty doms[] struct cpumask slot */
849 	struct cgroup_subsys_state *pos_css;
850 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
851 	bool cgrpv2 = cpuset_v2();
852 	int nslot_update;
853 
854 	doms = NULL;
855 	dattr = NULL;
856 	csa = NULL;
857 
858 	/* Special case for the 99% of systems with one, full, sched domain */
859 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
860 single_root_domain:
861 		ndoms = 1;
862 		doms = alloc_sched_domains(ndoms);
863 		if (!doms)
864 			goto done;
865 
866 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
867 		if (dattr) {
868 			*dattr = SD_ATTR_INIT;
869 			update_domain_attr_tree(dattr, &top_cpuset);
870 		}
871 		cpumask_and(doms[0], top_cpuset.effective_cpus,
872 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
873 
874 		goto done;
875 	}
876 
877 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
878 	if (!csa)
879 		goto done;
880 	csn = 0;
881 
882 	rcu_read_lock();
883 	if (root_load_balance)
884 		csa[csn++] = &top_cpuset;
885 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
886 		if (cp == &top_cpuset)
887 			continue;
888 
889 		if (cgrpv2)
890 			goto v2;
891 
892 		/*
893 		 * v1:
894 		 * Continue traversing beyond @cp iff @cp has some CPUs and
895 		 * isn't load balancing.  The former is obvious.  The
896 		 * latter: All child cpusets contain a subset of the
897 		 * parent's cpus, so just skip them, and then we call
898 		 * update_domain_attr_tree() to calc relax_domain_level of
899 		 * the corresponding sched domain.
900 		 */
901 		if (!cpumask_empty(cp->cpus_allowed) &&
902 		    !(is_sched_load_balance(cp) &&
903 		      cpumask_intersects(cp->cpus_allowed,
904 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
905 			continue;
906 
907 		if (is_sched_load_balance(cp) &&
908 		    !cpumask_empty(cp->effective_cpus))
909 			csa[csn++] = cp;
910 
911 		/* skip @cp's subtree */
912 		pos_css = css_rightmost_descendant(pos_css);
913 		continue;
914 
915 v2:
916 		/*
917 		 * Only valid partition roots that are not isolated and with
918 		 * non-empty effective_cpus will be saved into csn[].
919 		 */
920 		if ((cp->partition_root_state == PRS_ROOT) &&
921 		    !cpumask_empty(cp->effective_cpus))
922 			csa[csn++] = cp;
923 
924 		/*
925 		 * Skip @cp's subtree if not a partition root and has no
926 		 * exclusive CPUs to be granted to child cpusets.
927 		 */
928 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
929 			pos_css = css_rightmost_descendant(pos_css);
930 	}
931 	rcu_read_unlock();
932 
933 	/*
934 	 * If there are only isolated partitions underneath the cgroup root,
935 	 * we can optimize out unneeded sched domains scanning.
936 	 */
937 	if (root_load_balance && (csn == 1))
938 		goto single_root_domain;
939 
940 	for (i = 0; i < csn; i++)
941 		uf_node_init(&csa[i]->node);
942 
943 	/* Merge overlapping cpusets */
944 	for (i = 0; i < csn; i++) {
945 		for (j = i + 1; j < csn; j++) {
946 			if (cpusets_overlap(csa[i], csa[j])) {
947 				/*
948 				 * Cgroup v2 shouldn't pass down overlapping
949 				 * partition root cpusets.
950 				 */
951 				WARN_ON_ONCE(cgrpv2);
952 				uf_union(&csa[i]->node, &csa[j]->node);
953 			}
954 		}
955 	}
956 
957 	/* Count the total number of domains */
958 	for (i = 0; i < csn; i++) {
959 		if (uf_find(&csa[i]->node) == &csa[i]->node)
960 			ndoms++;
961 	}
962 
963 	/*
964 	 * Now we know how many domains to create.
965 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
966 	 */
967 	doms = alloc_sched_domains(ndoms);
968 	if (!doms)
969 		goto done;
970 
971 	/*
972 	 * The rest of the code, including the scheduler, can deal with
973 	 * dattr==NULL case. No need to abort if alloc fails.
974 	 */
975 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
976 			      GFP_KERNEL);
977 
978 	/*
979 	 * Cgroup v2 doesn't support domain attributes, just set all of them
980 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
981 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
982 	 */
983 	if (cgrpv2) {
984 		for (i = 0; i < ndoms; i++) {
985 			/*
986 			 * The top cpuset may contain some boot time isolated
987 			 * CPUs that need to be excluded from the sched domain.
988 			 */
989 			if (csa[i] == &top_cpuset)
990 				cpumask_and(doms[i], csa[i]->effective_cpus,
991 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
992 			else
993 				cpumask_copy(doms[i], csa[i]->effective_cpus);
994 			if (dattr)
995 				dattr[i] = SD_ATTR_INIT;
996 		}
997 		goto done;
998 	}
999 
1000 	for (nslot = 0, i = 0; i < csn; i++) {
1001 		nslot_update = 0;
1002 		for (j = i; j < csn; j++) {
1003 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
1004 				struct cpumask *dp = doms[nslot];
1005 
1006 				if (i == j) {
1007 					nslot_update = 1;
1008 					cpumask_clear(dp);
1009 					if (dattr)
1010 						*(dattr + nslot) = SD_ATTR_INIT;
1011 				}
1012 				cpumask_or(dp, dp, csa[j]->effective_cpus);
1013 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1014 				if (dattr)
1015 					update_domain_attr_tree(dattr + nslot, csa[j]);
1016 			}
1017 		}
1018 		if (nslot_update)
1019 			nslot++;
1020 	}
1021 	BUG_ON(nslot != ndoms);
1022 
1023 done:
1024 	kfree(csa);
1025 
1026 	/*
1027 	 * Fallback to the default domain if kmalloc() failed.
1028 	 * See comments in partition_sched_domains().
1029 	 */
1030 	if (doms == NULL)
1031 		ndoms = 1;
1032 
1033 	*domains    = doms;
1034 	*attributes = dattr;
1035 	return ndoms;
1036 }
1037 
dl_update_tasks_root_domain(struct cpuset * cs)1038 static void dl_update_tasks_root_domain(struct cpuset *cs)
1039 {
1040 	struct css_task_iter it;
1041 	struct task_struct *task;
1042 
1043 	if (cs->nr_deadline_tasks == 0)
1044 		return;
1045 
1046 	css_task_iter_start(&cs->css, 0, &it);
1047 
1048 	while ((task = css_task_iter_next(&it)))
1049 		dl_add_task_root_domain(task);
1050 
1051 	css_task_iter_end(&it);
1052 }
1053 
dl_rebuild_rd_accounting(void)1054 void dl_rebuild_rd_accounting(void)
1055 {
1056 	struct cpuset *cs = NULL;
1057 	struct cgroup_subsys_state *pos_css;
1058 	int cpu;
1059 	u64 cookie = ++dl_cookie;
1060 
1061 	lockdep_assert_held(&cpuset_mutex);
1062 	lockdep_assert_cpus_held();
1063 	lockdep_assert_held(&sched_domains_mutex);
1064 
1065 	rcu_read_lock();
1066 
1067 	for_each_possible_cpu(cpu) {
1068 		if (dl_bw_visited(cpu, cookie))
1069 			continue;
1070 
1071 		dl_clear_root_domain_cpu(cpu);
1072 	}
1073 
1074 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1075 
1076 		if (cpumask_empty(cs->effective_cpus)) {
1077 			pos_css = css_rightmost_descendant(pos_css);
1078 			continue;
1079 		}
1080 
1081 		css_get(&cs->css);
1082 
1083 		rcu_read_unlock();
1084 
1085 		dl_update_tasks_root_domain(cs);
1086 
1087 		rcu_read_lock();
1088 		css_put(&cs->css);
1089 	}
1090 	rcu_read_unlock();
1091 }
1092 
1093 /*
1094  * Rebuild scheduler domains.
1095  *
1096  * If the flag 'sched_load_balance' of any cpuset with non-empty
1097  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1098  * which has that flag enabled, or if any cpuset with a non-empty
1099  * 'cpus' is removed, then call this routine to rebuild the
1100  * scheduler's dynamic sched domains.
1101  *
1102  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1103  */
rebuild_sched_domains_locked(void)1104 void rebuild_sched_domains_locked(void)
1105 {
1106 	struct cgroup_subsys_state *pos_css;
1107 	struct sched_domain_attr *attr;
1108 	cpumask_var_t *doms;
1109 	struct cpuset *cs;
1110 	int ndoms;
1111 
1112 	lockdep_assert_cpus_held();
1113 	lockdep_assert_held(&cpuset_mutex);
1114 	force_sd_rebuild = false;
1115 
1116 	/*
1117 	 * If we have raced with CPU hotplug, return early to avoid
1118 	 * passing doms with offlined cpu to partition_sched_domains().
1119 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1120 	 *
1121 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1122 	 * should be the same as the active CPUs, so checking only top_cpuset
1123 	 * is enough to detect racing CPU offlines.
1124 	 */
1125 	if (cpumask_empty(subpartitions_cpus) &&
1126 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1127 		return;
1128 
1129 	/*
1130 	 * With subpartition CPUs, however, the effective CPUs of a partition
1131 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1132 	 * partition root could be offlined, all must be checked.
1133 	 */
1134 	if (!cpumask_empty(subpartitions_cpus)) {
1135 		rcu_read_lock();
1136 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1137 			if (!is_partition_valid(cs)) {
1138 				pos_css = css_rightmost_descendant(pos_css);
1139 				continue;
1140 			}
1141 			if (!cpumask_subset(cs->effective_cpus,
1142 					    cpu_active_mask)) {
1143 				rcu_read_unlock();
1144 				return;
1145 			}
1146 		}
1147 		rcu_read_unlock();
1148 	}
1149 
1150 	/* Generate domain masks and attrs */
1151 	ndoms = generate_sched_domains(&doms, &attr);
1152 
1153 	/* Have scheduler rebuild the domains */
1154 	partition_sched_domains(ndoms, doms, attr);
1155 }
1156 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1157 void rebuild_sched_domains_locked(void)
1158 {
1159 }
1160 #endif /* CONFIG_SMP */
1161 
rebuild_sched_domains_cpuslocked(void)1162 static void rebuild_sched_domains_cpuslocked(void)
1163 {
1164 	mutex_lock(&cpuset_mutex);
1165 	rebuild_sched_domains_locked();
1166 	mutex_unlock(&cpuset_mutex);
1167 }
1168 
rebuild_sched_domains(void)1169 void rebuild_sched_domains(void)
1170 {
1171 	cpus_read_lock();
1172 	rebuild_sched_domains_cpuslocked();
1173 	cpus_read_unlock();
1174 }
1175 
cpuset_reset_sched_domains(void)1176 void cpuset_reset_sched_domains(void)
1177 {
1178 	mutex_lock(&cpuset_mutex);
1179 	partition_sched_domains(1, NULL, NULL);
1180 	mutex_unlock(&cpuset_mutex);
1181 }
1182 
1183 /**
1184  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1185  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1186  * @new_cpus: the temp variable for the new effective_cpus mask
1187  *
1188  * Iterate through each task of @cs updating its cpus_allowed to the
1189  * effective cpuset's.  As this function is called with cpuset_mutex held,
1190  * cpuset membership stays stable.
1191  *
1192  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1193  * to make sure all offline CPUs are also included as hotplug code won't
1194  * update cpumasks for tasks in top_cpuset.
1195  *
1196  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1197  * do cpu masking per task instead of doing it once for all.
1198  */
cpuset_update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1199 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1200 {
1201 	struct css_task_iter it;
1202 	struct task_struct *task;
1203 	bool top_cs = cs == &top_cpuset;
1204 
1205 	css_task_iter_start(&cs->css, 0, &it);
1206 	while ((task = css_task_iter_next(&it))) {
1207 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1208 
1209 		if (top_cs) {
1210 			/*
1211 			 * PF_NO_SETAFFINITY tasks are ignored.
1212 			 * All per cpu kthreads should have PF_NO_SETAFFINITY
1213 			 * flag set, see kthread_set_per_cpu().
1214 			 */
1215 			if (task->flags & PF_NO_SETAFFINITY)
1216 				continue;
1217 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1218 		} else {
1219 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1220 		}
1221 		set_cpus_allowed_ptr(task, new_cpus);
1222 	}
1223 	css_task_iter_end(&it);
1224 }
1225 
1226 /**
1227  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1228  * @new_cpus: the temp variable for the new effective_cpus mask
1229  * @cs: the cpuset the need to recompute the new effective_cpus mask
1230  * @parent: the parent cpuset
1231  *
1232  * The result is valid only if the given cpuset isn't a partition root.
1233  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1234 static void compute_effective_cpumask(struct cpumask *new_cpus,
1235 				      struct cpuset *cs, struct cpuset *parent)
1236 {
1237 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1238 }
1239 
1240 /*
1241  * Commands for update_parent_effective_cpumask
1242  */
1243 enum partition_cmd {
1244 	partcmd_enable,		/* Enable partition root	  */
1245 	partcmd_enablei,	/* Enable isolated partition root */
1246 	partcmd_disable,	/* Disable partition root	  */
1247 	partcmd_update,		/* Update parent's effective_cpus */
1248 	partcmd_invalidate,	/* Make partition invalid	  */
1249 };
1250 
1251 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1252 				    struct tmpmasks *tmp);
1253 
1254 /*
1255  * Update partition exclusive flag
1256  *
1257  * Return: 0 if successful, an error code otherwise
1258  */
update_partition_exclusive_flag(struct cpuset * cs,int new_prs)1259 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1260 {
1261 	bool exclusive = (new_prs > PRS_MEMBER);
1262 
1263 	if (exclusive && !is_cpu_exclusive(cs)) {
1264 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1265 			return PERR_NOTEXCL;
1266 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1267 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1268 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1269 	}
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Update partition load balance flag and/or rebuild sched domain
1275  *
1276  * Changing load balance flag will automatically call
1277  * rebuild_sched_domains_locked().
1278  * This function is for cgroup v2 only.
1279  */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1280 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1281 {
1282 	int new_prs = cs->partition_root_state;
1283 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1284 	bool new_lb;
1285 
1286 	/*
1287 	 * If cs is not a valid partition root, the load balance state
1288 	 * will follow its parent.
1289 	 */
1290 	if (new_prs > 0) {
1291 		new_lb = (new_prs != PRS_ISOLATED);
1292 	} else {
1293 		new_lb = is_sched_load_balance(parent_cs(cs));
1294 	}
1295 	if (new_lb != !!is_sched_load_balance(cs)) {
1296 		rebuild_domains = true;
1297 		if (new_lb)
1298 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1299 		else
1300 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1301 	}
1302 
1303 	if (rebuild_domains)
1304 		cpuset_force_rebuild();
1305 }
1306 
1307 /*
1308  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1309  */
tasks_nocpu_error(struct cpuset * parent,struct cpuset * cs,struct cpumask * xcpus)1310 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1311 			      struct cpumask *xcpus)
1312 {
1313 	/*
1314 	 * A populated partition (cs or parent) can't have empty effective_cpus
1315 	 */
1316 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1317 		partition_is_populated(parent, cs)) ||
1318 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1319 		partition_is_populated(cs, NULL));
1320 }
1321 
reset_partition_data(struct cpuset * cs)1322 static void reset_partition_data(struct cpuset *cs)
1323 {
1324 	struct cpuset *parent = parent_cs(cs);
1325 
1326 	if (!cpuset_v2())
1327 		return;
1328 
1329 	lockdep_assert_held(&callback_lock);
1330 
1331 	if (cpumask_empty(cs->exclusive_cpus)) {
1332 		cpumask_clear(cs->effective_xcpus);
1333 		if (is_cpu_exclusive(cs))
1334 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1335 	}
1336 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1337 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1338 }
1339 
1340 /*
1341  * isolated_cpus_update - Update the isolated_cpus mask
1342  * @old_prs: old partition_root_state
1343  * @new_prs: new partition_root_state
1344  * @xcpus: exclusive CPUs with state change
1345  */
isolated_cpus_update(int old_prs,int new_prs,struct cpumask * xcpus)1346 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1347 {
1348 	WARN_ON_ONCE(old_prs == new_prs);
1349 	if (new_prs == PRS_ISOLATED)
1350 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1351 	else
1352 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1353 
1354 	isolated_cpus_updating = true;
1355 }
1356 
1357 /*
1358  * partition_xcpus_add - Add new exclusive CPUs to partition
1359  * @new_prs: new partition_root_state
1360  * @parent: parent cpuset
1361  * @xcpus: exclusive CPUs to be added
1362  *
1363  * Remote partition if parent == NULL
1364  */
partition_xcpus_add(int new_prs,struct cpuset * parent,struct cpumask * xcpus)1365 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1366 				struct cpumask *xcpus)
1367 {
1368 	WARN_ON_ONCE(new_prs < 0);
1369 	lockdep_assert_held(&callback_lock);
1370 	if (!parent)
1371 		parent = &top_cpuset;
1372 
1373 
1374 	if (parent == &top_cpuset)
1375 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1376 
1377 	if (new_prs != parent->partition_root_state)
1378 		isolated_cpus_update(parent->partition_root_state, new_prs,
1379 				     xcpus);
1380 
1381 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1382 }
1383 
1384 /*
1385  * partition_xcpus_del - Remove exclusive CPUs from partition
1386  * @old_prs: old partition_root_state
1387  * @parent: parent cpuset
1388  * @xcpus: exclusive CPUs to be removed
1389  *
1390  * Remote partition if parent == NULL
1391  */
partition_xcpus_del(int old_prs,struct cpuset * parent,struct cpumask * xcpus)1392 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1393 				struct cpumask *xcpus)
1394 {
1395 	WARN_ON_ONCE(old_prs < 0);
1396 	lockdep_assert_held(&callback_lock);
1397 	if (!parent)
1398 		parent = &top_cpuset;
1399 
1400 	if (parent == &top_cpuset)
1401 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1402 
1403 	if (old_prs != parent->partition_root_state)
1404 		isolated_cpus_update(old_prs, parent->partition_root_state,
1405 				     xcpus);
1406 
1407 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1408 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1409 }
1410 
1411 /*
1412  * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1413  * @add_cpus: cpu mask for cpus that are going to be isolated
1414  * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1415  * Return: false if there is conflict, true otherwise
1416  *
1417  * If nohz_full is enabled and we have isolated CPUs, their combination must
1418  * still leave housekeeping CPUs.
1419  *
1420  * TBD: Should consider merging this function into
1421  *      prstate_housekeeping_conflict().
1422  */
isolated_cpus_can_update(struct cpumask * add_cpus,struct cpumask * del_cpus)1423 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1424 				     struct cpumask *del_cpus)
1425 {
1426 	cpumask_var_t full_hk_cpus;
1427 	int res = true;
1428 
1429 	if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1430 		return true;
1431 
1432 	if (del_cpus && cpumask_weight_and(del_cpus,
1433 			housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1434 		return true;
1435 
1436 	if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1437 		return false;
1438 
1439 	cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1440 		    housekeeping_cpumask(HK_TYPE_DOMAIN));
1441 	cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1442 	cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1443 	if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1444 		res = false;
1445 
1446 	free_cpumask_var(full_hk_cpus);
1447 	return res;
1448 }
1449 
1450 /*
1451  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1452  * @prstate: partition root state to be checked
1453  * @new_cpus: cpu mask
1454  * Return: true if there is conflict, false otherwise
1455  *
1456  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1457  * isolated partition.
1458  */
prstate_housekeeping_conflict(int prstate,struct cpumask * new_cpus)1459 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1460 {
1461 	if (!have_boot_isolcpus)
1462 		return false;
1463 
1464 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1465 		return true;
1466 
1467 	return false;
1468 }
1469 
1470 /*
1471  * update_isolation_cpumasks - Update external isolation related CPU masks
1472  *
1473  * The following external CPU masks will be updated if necessary:
1474  * - workqueue unbound cpumask
1475  */
update_isolation_cpumasks(void)1476 static void update_isolation_cpumasks(void)
1477 {
1478 	int ret;
1479 
1480 	if (!isolated_cpus_updating)
1481 		return;
1482 
1483 	lockdep_assert_cpus_held();
1484 
1485 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1486 	WARN_ON_ONCE(ret < 0);
1487 
1488 	ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
1489 	WARN_ON_ONCE(ret < 0);
1490 
1491 	isolated_cpus_updating = false;
1492 }
1493 
1494 /**
1495  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1496  * @cpu: the CPU number to be checked
1497  * Return: true if CPU is used in an isolated partition, false otherwise
1498  */
cpuset_cpu_is_isolated(int cpu)1499 bool cpuset_cpu_is_isolated(int cpu)
1500 {
1501 	return cpumask_test_cpu(cpu, isolated_cpus);
1502 }
1503 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1504 
1505 /**
1506  * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1507  * @parent: Parent cpuset containing all siblings
1508  * @cs: Current cpuset (will be skipped)
1509  * @excpus:  exclusive effective CPU mask to modify
1510  *
1511  * This function ensures the given @excpus mask doesn't include any CPUs that
1512  * are exclusively allocated to sibling cpusets. It walks through all siblings
1513  * of @cs under @parent and removes their exclusive CPUs from @excpus.
1514  */
rm_siblings_excl_cpus(struct cpuset * parent,struct cpuset * cs,struct cpumask * excpus)1515 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1516 					struct cpumask *excpus)
1517 {
1518 	struct cgroup_subsys_state *css;
1519 	struct cpuset *sibling;
1520 	int retval = 0;
1521 
1522 	if (cpumask_empty(excpus))
1523 		return retval;
1524 
1525 	/*
1526 	 * Exclude exclusive CPUs from siblings
1527 	 */
1528 	rcu_read_lock();
1529 	cpuset_for_each_child(sibling, css, parent) {
1530 		if (sibling == cs)
1531 			continue;
1532 
1533 		if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1534 			cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1535 			retval++;
1536 			continue;
1537 		}
1538 		if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1539 			cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1540 			retval++;
1541 		}
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return retval;
1546 }
1547 
1548 /*
1549  * compute_excpus - compute effective exclusive CPUs
1550  * @cs: cpuset
1551  * @xcpus: effective exclusive CPUs value to be set
1552  * Return: 0 if there is no sibling conflict, > 0 otherwise
1553  *
1554  * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1555  * and exclude their exclusive_cpus or effective_xcpus as well.
1556  */
compute_excpus(struct cpuset * cs,struct cpumask * excpus)1557 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1558 {
1559 	struct cpuset *parent = parent_cs(cs);
1560 
1561 	cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1562 
1563 	if (!cpumask_empty(cs->exclusive_cpus))
1564 		return 0;
1565 
1566 	return rm_siblings_excl_cpus(parent, cs, excpus);
1567 }
1568 
1569 /*
1570  * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1571  * @trialcs: The trial cpuset containing the proposed new configuration
1572  * @cs: The original cpuset that the trial configuration is based on
1573  * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1574  *
1575  * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1576  * the real cs.
1577  */
compute_trialcs_excpus(struct cpuset * trialcs,struct cpuset * cs)1578 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1579 {
1580 	struct cpuset *parent = parent_cs(trialcs);
1581 	struct cpumask *excpus = trialcs->effective_xcpus;
1582 
1583 	/* trialcs is member, cpuset.cpus has no impact to excpus */
1584 	if (cs_is_member(cs))
1585 		cpumask_and(excpus, trialcs->exclusive_cpus,
1586 				parent->effective_xcpus);
1587 	else
1588 		cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1589 
1590 	return rm_siblings_excl_cpus(parent, cs, excpus);
1591 }
1592 
is_remote_partition(struct cpuset * cs)1593 static inline bool is_remote_partition(struct cpuset *cs)
1594 {
1595 	return cs->remote_partition;
1596 }
1597 
is_local_partition(struct cpuset * cs)1598 static inline bool is_local_partition(struct cpuset *cs)
1599 {
1600 	return is_partition_valid(cs) && !is_remote_partition(cs);
1601 }
1602 
1603 /*
1604  * remote_partition_enable - Enable current cpuset as a remote partition root
1605  * @cs: the cpuset to update
1606  * @new_prs: new partition_root_state
1607  * @tmp: temporary masks
1608  * Return: 0 if successful, errcode if error
1609  *
1610  * Enable the current cpuset to become a remote partition root taking CPUs
1611  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1612  */
remote_partition_enable(struct cpuset * cs,int new_prs,struct tmpmasks * tmp)1613 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1614 				   struct tmpmasks *tmp)
1615 {
1616 	/*
1617 	 * The user must have sysadmin privilege.
1618 	 */
1619 	if (!capable(CAP_SYS_ADMIN))
1620 		return PERR_ACCESS;
1621 
1622 	/*
1623 	 * The requested exclusive_cpus must not be allocated to other
1624 	 * partitions and it can't use up all the root's effective_cpus.
1625 	 *
1626 	 * The effective_xcpus mask can contain offline CPUs, but there must
1627 	 * be at least one or more online CPUs present before it can be enabled.
1628 	 *
1629 	 * Note that creating a remote partition with any local partition root
1630 	 * above it or remote partition root underneath it is not allowed.
1631 	 */
1632 	compute_excpus(cs, tmp->new_cpus);
1633 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1634 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1635 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1636 		return PERR_INVCPUS;
1637 	if (((new_prs == PRS_ISOLATED) &&
1638 	     !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1639 	    prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1640 		return PERR_HKEEPING;
1641 
1642 	spin_lock_irq(&callback_lock);
1643 	partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1644 	cs->remote_partition = true;
1645 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1646 	spin_unlock_irq(&callback_lock);
1647 	update_isolation_cpumasks();
1648 	cpuset_force_rebuild();
1649 	cs->prs_err = 0;
1650 
1651 	/*
1652 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1653 	 */
1654 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1655 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1656 	return 0;
1657 }
1658 
1659 /*
1660  * remote_partition_disable - Remove current cpuset from remote partition list
1661  * @cs: the cpuset to update
1662  * @tmp: temporary masks
1663  *
1664  * The effective_cpus is also updated.
1665  *
1666  * cpuset_mutex must be held by the caller.
1667  */
remote_partition_disable(struct cpuset * cs,struct tmpmasks * tmp)1668 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1669 {
1670 	WARN_ON_ONCE(!is_remote_partition(cs));
1671 	/*
1672 	 * When a CPU is offlined, top_cpuset may end up with no available CPUs,
1673 	 * which should clear subpartitions_cpus. We should not emit a warning for this
1674 	 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus
1675 	 * may already be cleared when disabling the partition.
1676 	 */
1677 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) &&
1678 		     !cpumask_empty(subpartitions_cpus));
1679 
1680 	spin_lock_irq(&callback_lock);
1681 	cs->remote_partition = false;
1682 	partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1683 	if (cs->prs_err)
1684 		cs->partition_root_state = -cs->partition_root_state;
1685 	else
1686 		cs->partition_root_state = PRS_MEMBER;
1687 
1688 	/* effective_xcpus may need to be changed */
1689 	compute_excpus(cs, cs->effective_xcpus);
1690 	reset_partition_data(cs);
1691 	spin_unlock_irq(&callback_lock);
1692 	update_isolation_cpumasks();
1693 	cpuset_force_rebuild();
1694 
1695 	/*
1696 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1697 	 */
1698 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1699 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1700 }
1701 
1702 /*
1703  * remote_cpus_update - cpus_exclusive change of remote partition
1704  * @cs: the cpuset to be updated
1705  * @xcpus: the new exclusive_cpus mask, if non-NULL
1706  * @excpus: the new effective_xcpus mask
1707  * @tmp: temporary masks
1708  *
1709  * top_cpuset and subpartitions_cpus will be updated or partition can be
1710  * invalidated.
1711  */
remote_cpus_update(struct cpuset * cs,struct cpumask * xcpus,struct cpumask * excpus,struct tmpmasks * tmp)1712 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1713 			       struct cpumask *excpus, struct tmpmasks *tmp)
1714 {
1715 	bool adding, deleting;
1716 	int prs = cs->partition_root_state;
1717 
1718 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1719 		return;
1720 
1721 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1722 
1723 	if (cpumask_empty(excpus)) {
1724 		cs->prs_err = PERR_CPUSEMPTY;
1725 		goto invalidate;
1726 	}
1727 
1728 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1729 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1730 
1731 	/*
1732 	 * Additions of remote CPUs is only allowed if those CPUs are
1733 	 * not allocated to other partitions and there are effective_cpus
1734 	 * left in the top cpuset.
1735 	 */
1736 	if (adding) {
1737 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1738 		if (!capable(CAP_SYS_ADMIN))
1739 			cs->prs_err = PERR_ACCESS;
1740 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1741 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1742 			cs->prs_err = PERR_NOCPUS;
1743 		else if ((prs == PRS_ISOLATED) &&
1744 			 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1745 			cs->prs_err = PERR_HKEEPING;
1746 		if (cs->prs_err)
1747 			goto invalidate;
1748 	}
1749 
1750 	spin_lock_irq(&callback_lock);
1751 	if (adding)
1752 		partition_xcpus_add(prs, NULL, tmp->addmask);
1753 	if (deleting)
1754 		partition_xcpus_del(prs, NULL, tmp->delmask);
1755 	/*
1756 	 * Need to update effective_xcpus and exclusive_cpus now as
1757 	 * update_sibling_cpumasks() below may iterate back to the same cs.
1758 	 */
1759 	cpumask_copy(cs->effective_xcpus, excpus);
1760 	if (xcpus)
1761 		cpumask_copy(cs->exclusive_cpus, xcpus);
1762 	spin_unlock_irq(&callback_lock);
1763 	update_isolation_cpumasks();
1764 	if (adding || deleting)
1765 		cpuset_force_rebuild();
1766 
1767 	/*
1768 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1769 	 */
1770 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1771 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1772 	return;
1773 
1774 invalidate:
1775 	remote_partition_disable(cs, tmp);
1776 }
1777 
1778 /**
1779  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1780  * @cs:      The cpuset that requests change in partition root state
1781  * @cmd:     Partition root state change command
1782  * @newmask: Optional new cpumask for partcmd_update
1783  * @tmp:     Temporary addmask and delmask
1784  * Return:   0 or a partition root state error code
1785  *
1786  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1787  * root to a partition root. The effective_xcpus (cpus_allowed if
1788  * effective_xcpus not set) mask of the given cpuset will be taken away from
1789  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1790  * in effective_xcpus can be granted or an error code will be returned.
1791  *
1792  * For partcmd_disable, the cpuset is being transformed from a partition
1793  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1794  * given back to parent's effective_cpus. 0 will always be returned.
1795  *
1796  * For partcmd_update, if the optional newmask is specified, the cpu list is
1797  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1798  * assumed to remain the same. The cpuset should either be a valid or invalid
1799  * partition root. The partition root state may change from valid to invalid
1800  * or vice versa. An error code will be returned if transitioning from
1801  * invalid to valid violates the exclusivity rule.
1802  *
1803  * For partcmd_invalidate, the current partition will be made invalid.
1804  *
1805  * The partcmd_enable* and partcmd_disable commands are used by
1806  * update_prstate(). An error code may be returned and the caller will check
1807  * for error.
1808  *
1809  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1810  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1811  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1812  * check for error and so partition_root_state and prs_err will be updated
1813  * directly.
1814  */
update_parent_effective_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1815 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1816 					   struct cpumask *newmask,
1817 					   struct tmpmasks *tmp)
1818 {
1819 	struct cpuset *parent = parent_cs(cs);
1820 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1821 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1822 	int old_prs, new_prs;
1823 	int part_error = PERR_NONE;	/* Partition error? */
1824 	struct cpumask *xcpus = user_xcpus(cs);
1825 	int parent_prs = parent->partition_root_state;
1826 	bool nocpu;
1827 
1828 	lockdep_assert_held(&cpuset_mutex);
1829 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
1830 
1831 	/*
1832 	 * new_prs will only be changed for the partcmd_update and
1833 	 * partcmd_invalidate commands.
1834 	 */
1835 	adding = deleting = false;
1836 	old_prs = new_prs = cs->partition_root_state;
1837 
1838 	if (cmd == partcmd_invalidate) {
1839 		if (is_partition_invalid(cs))
1840 			return 0;
1841 
1842 		/*
1843 		 * Make the current partition invalid.
1844 		 */
1845 		if (is_partition_valid(parent))
1846 			adding = cpumask_and(tmp->addmask,
1847 					     xcpus, parent->effective_xcpus);
1848 		if (old_prs > 0)
1849 			new_prs = -old_prs;
1850 
1851 		goto write_error;
1852 	}
1853 
1854 	/*
1855 	 * The parent must be a partition root.
1856 	 * The new cpumask, if present, or the current cpus_allowed must
1857 	 * not be empty.
1858 	 */
1859 	if (!is_partition_valid(parent)) {
1860 		return is_partition_invalid(parent)
1861 		       ? PERR_INVPARENT : PERR_NOTPART;
1862 	}
1863 	if (!newmask && xcpus_empty(cs))
1864 		return PERR_CPUSEMPTY;
1865 
1866 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1867 
1868 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1869 		/*
1870 		 * Need to call compute_excpus() in case
1871 		 * exclusive_cpus not set. Sibling conflict should only happen
1872 		 * if exclusive_cpus isn't set.
1873 		 */
1874 		xcpus = tmp->delmask;
1875 		if (compute_excpus(cs, xcpus))
1876 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1877 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1878 
1879 		/*
1880 		 * Enabling partition root is not allowed if its
1881 		 * effective_xcpus is empty.
1882 		 */
1883 		if (cpumask_empty(xcpus))
1884 			return PERR_INVCPUS;
1885 
1886 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1887 			return PERR_HKEEPING;
1888 
1889 		if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1890 		    !isolated_cpus_can_update(xcpus, NULL))
1891 			return PERR_HKEEPING;
1892 
1893 		if (tasks_nocpu_error(parent, cs, xcpus))
1894 			return PERR_NOCPUS;
1895 
1896 		/*
1897 		 * This function will only be called when all the preliminary
1898 		 * checks have passed. At this point, the following condition
1899 		 * should hold.
1900 		 *
1901 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1902 		 *
1903 		 * Warn if it is not the case.
1904 		 */
1905 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1906 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1907 
1908 		deleting = true;
1909 	} else if (cmd == partcmd_disable) {
1910 		/*
1911 		 * May need to add cpus back to parent's effective_cpus
1912 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1913 		 * for valid partition root. xcpus may contain CPUs that
1914 		 * shouldn't be removed from the two global cpumasks.
1915 		 */
1916 		if (is_partition_valid(cs)) {
1917 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
1918 			adding = true;
1919 		}
1920 		new_prs = PRS_MEMBER;
1921 	} else if (newmask) {
1922 		/*
1923 		 * Empty cpumask is not allowed
1924 		 */
1925 		if (cpumask_empty(newmask)) {
1926 			part_error = PERR_CPUSEMPTY;
1927 			goto write_error;
1928 		}
1929 
1930 		/* Check newmask again, whether cpus are available for parent/cs */
1931 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1932 
1933 		/*
1934 		 * partcmd_update with newmask:
1935 		 *
1936 		 * Compute add/delete mask to/from effective_cpus
1937 		 *
1938 		 * For valid partition:
1939 		 *   addmask = exclusive_cpus & ~newmask
1940 		 *			      & parent->effective_xcpus
1941 		 *   delmask = newmask & ~exclusive_cpus
1942 		 *		       & parent->effective_xcpus
1943 		 *
1944 		 * For invalid partition:
1945 		 *   delmask = newmask & parent->effective_xcpus
1946 		 *   The partition may become valid soon.
1947 		 */
1948 		if (is_partition_invalid(cs)) {
1949 			adding = false;
1950 			deleting = cpumask_and(tmp->delmask,
1951 					newmask, parent->effective_xcpus);
1952 		} else {
1953 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1954 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1955 					     parent->effective_xcpus);
1956 
1957 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1958 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1959 					       parent->effective_xcpus);
1960 		}
1961 
1962 		/*
1963 		 * TBD: Invalidate a currently valid child root partition may
1964 		 * still break isolated_cpus_can_update() rule if parent is an
1965 		 * isolated partition.
1966 		 */
1967 		if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1968 			if ((parent_prs == PRS_ROOT) &&
1969 			    /* Adding to parent means removing isolated CPUs */
1970 			    !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1971 				part_error = PERR_HKEEPING;
1972 			if ((parent_prs == PRS_ISOLATED) &&
1973 			    /* Adding to parent means adding isolated CPUs */
1974 			    !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1975 				part_error = PERR_HKEEPING;
1976 		}
1977 
1978 		/*
1979 		 * The new CPUs to be removed from parent's effective CPUs
1980 		 * must be present.
1981 		 */
1982 		if (deleting) {
1983 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1984 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1985 		}
1986 
1987 		/*
1988 		 * Make partition invalid if parent's effective_cpus could
1989 		 * become empty and there are tasks in the parent.
1990 		 */
1991 		if (nocpu && (!adding ||
1992 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1993 			part_error = PERR_NOCPUS;
1994 			deleting = false;
1995 			adding = cpumask_and(tmp->addmask,
1996 					     xcpus, parent->effective_xcpus);
1997 		}
1998 	} else {
1999 		/*
2000 		 * partcmd_update w/o newmask
2001 		 *
2002 		 * delmask = effective_xcpus & parent->effective_cpus
2003 		 *
2004 		 * This can be called from:
2005 		 * 1) update_cpumasks_hier()
2006 		 * 2) cpuset_hotplug_update_tasks()
2007 		 *
2008 		 * Check to see if it can be transitioned from valid to
2009 		 * invalid partition or vice versa.
2010 		 *
2011 		 * A partition error happens when parent has tasks and all
2012 		 * its effective CPUs will have to be distributed out.
2013 		 */
2014 		if (nocpu) {
2015 			part_error = PERR_NOCPUS;
2016 			if (is_partition_valid(cs))
2017 				adding = cpumask_and(tmp->addmask,
2018 						xcpus, parent->effective_xcpus);
2019 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2020 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
2021 			struct cgroup_subsys_state *css;
2022 			struct cpuset *child;
2023 			bool exclusive = true;
2024 
2025 			/*
2026 			 * Convert invalid partition to valid has to
2027 			 * pass the cpu exclusivity test.
2028 			 */
2029 			rcu_read_lock();
2030 			cpuset_for_each_child(child, css, parent) {
2031 				if (child == cs)
2032 					continue;
2033 				if (!cpusets_are_exclusive(cs, child)) {
2034 					exclusive = false;
2035 					break;
2036 				}
2037 			}
2038 			rcu_read_unlock();
2039 			if (exclusive)
2040 				deleting = cpumask_and(tmp->delmask,
2041 						xcpus, parent->effective_cpus);
2042 			else
2043 				part_error = PERR_NOTEXCL;
2044 		}
2045 	}
2046 
2047 write_error:
2048 	if (part_error)
2049 		WRITE_ONCE(cs->prs_err, part_error);
2050 
2051 	if (cmd == partcmd_update) {
2052 		/*
2053 		 * Check for possible transition between valid and invalid
2054 		 * partition root.
2055 		 */
2056 		switch (cs->partition_root_state) {
2057 		case PRS_ROOT:
2058 		case PRS_ISOLATED:
2059 			if (part_error)
2060 				new_prs = -old_prs;
2061 			break;
2062 		case PRS_INVALID_ROOT:
2063 		case PRS_INVALID_ISOLATED:
2064 			if (!part_error)
2065 				new_prs = -old_prs;
2066 			break;
2067 		}
2068 	}
2069 
2070 	if (!adding && !deleting && (new_prs == old_prs))
2071 		return 0;
2072 
2073 	/*
2074 	 * Transitioning between invalid to valid or vice versa may require
2075 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2076 	 * validate_change() has already been successfully called and
2077 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2078 	 */
2079 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2080 		int err = update_partition_exclusive_flag(cs, new_prs);
2081 
2082 		if (err)
2083 			return err;
2084 	}
2085 
2086 	/*
2087 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2088 	 * only).
2089 	 *
2090 	 * Newly added CPUs will be removed from effective_cpus and
2091 	 * newly deleted ones will be added back to effective_cpus.
2092 	 */
2093 	spin_lock_irq(&callback_lock);
2094 	if (old_prs != new_prs)
2095 		cs->partition_root_state = new_prs;
2096 
2097 	/*
2098 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2099 	 * and vice versa.
2100 	 */
2101 	if (adding)
2102 		partition_xcpus_del(old_prs, parent, tmp->addmask);
2103 	if (deleting)
2104 		partition_xcpus_add(new_prs, parent, tmp->delmask);
2105 
2106 	spin_unlock_irq(&callback_lock);
2107 	update_isolation_cpumasks();
2108 
2109 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2110 		update_partition_exclusive_flag(cs, new_prs);
2111 
2112 	if (adding || deleting) {
2113 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
2114 		update_sibling_cpumasks(parent, cs, tmp);
2115 	}
2116 
2117 	/*
2118 	 * For partcmd_update without newmask, it is being called from
2119 	 * cpuset_handle_hotplug(). Update the load balance flag and
2120 	 * scheduling domain accordingly.
2121 	 */
2122 	if ((cmd == partcmd_update) && !newmask)
2123 		update_partition_sd_lb(cs, old_prs);
2124 
2125 	notify_partition_change(cs, old_prs);
2126 	return 0;
2127 }
2128 
2129 /**
2130  * compute_partition_effective_cpumask - compute effective_cpus for partition
2131  * @cs: partition root cpuset
2132  * @new_ecpus: previously computed effective_cpus to be updated
2133  *
2134  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2135  * of child partition roots and excluding their effective_xcpus.
2136  *
2137  * This has the side effect of invalidating valid child partition roots,
2138  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2139  * or update_cpumasks_hier() where parent and children are modified
2140  * successively, we don't need to call update_parent_effective_cpumask()
2141  * and the child's effective_cpus will be updated in later iterations.
2142  *
2143  * Note that rcu_read_lock() is assumed to be held.
2144  */
compute_partition_effective_cpumask(struct cpuset * cs,struct cpumask * new_ecpus)2145 static void compute_partition_effective_cpumask(struct cpuset *cs,
2146 						struct cpumask *new_ecpus)
2147 {
2148 	struct cgroup_subsys_state *css;
2149 	struct cpuset *child;
2150 	bool populated = partition_is_populated(cs, NULL);
2151 
2152 	/*
2153 	 * Check child partition roots to see if they should be
2154 	 * invalidated when
2155 	 *  1) child effective_xcpus not a subset of new
2156 	 *     excluisve_cpus
2157 	 *  2) All the effective_cpus will be used up and cp
2158 	 *     has tasks
2159 	 */
2160 	compute_excpus(cs, new_ecpus);
2161 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2162 
2163 	rcu_read_lock();
2164 	cpuset_for_each_child(child, css, cs) {
2165 		if (!is_partition_valid(child))
2166 			continue;
2167 
2168 		/*
2169 		 * There shouldn't be a remote partition underneath another
2170 		 * partition root.
2171 		 */
2172 		WARN_ON_ONCE(is_remote_partition(child));
2173 		child->prs_err = 0;
2174 		if (!cpumask_subset(child->effective_xcpus,
2175 				    cs->effective_xcpus))
2176 			child->prs_err = PERR_INVCPUS;
2177 		else if (populated &&
2178 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2179 			child->prs_err = PERR_NOCPUS;
2180 
2181 		if (child->prs_err) {
2182 			int old_prs = child->partition_root_state;
2183 
2184 			/*
2185 			 * Invalidate child partition
2186 			 */
2187 			spin_lock_irq(&callback_lock);
2188 			make_partition_invalid(child);
2189 			spin_unlock_irq(&callback_lock);
2190 			notify_partition_change(child, old_prs);
2191 			continue;
2192 		}
2193 		cpumask_andnot(new_ecpus, new_ecpus,
2194 			       child->effective_xcpus);
2195 	}
2196 	rcu_read_unlock();
2197 }
2198 
2199 /*
2200  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2201  * @cs:  the cpuset to consider
2202  * @tmp: temp variables for calculating effective_cpus & partition setup
2203  * @force: don't skip any descendant cpusets if set
2204  *
2205  * When configured cpumask is changed, the effective cpumasks of this cpuset
2206  * and all its descendants need to be updated.
2207  *
2208  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2209  *
2210  * Called with cpuset_mutex held
2211  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,bool force)2212 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2213 				 bool force)
2214 {
2215 	struct cpuset *cp;
2216 	struct cgroup_subsys_state *pos_css;
2217 	int old_prs, new_prs;
2218 
2219 	rcu_read_lock();
2220 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2221 		struct cpuset *parent = parent_cs(cp);
2222 		bool remote = is_remote_partition(cp);
2223 		bool update_parent = false;
2224 
2225 		old_prs = new_prs = cp->partition_root_state;
2226 
2227 		/*
2228 		 * For child remote partition root (!= cs), we need to call
2229 		 * remote_cpus_update() if effective_xcpus will be changed.
2230 		 * Otherwise, we can skip the whole subtree.
2231 		 *
2232 		 * remote_cpus_update() will reuse tmp->new_cpus only after
2233 		 * its value is being processed.
2234 		 */
2235 		if (remote && (cp != cs)) {
2236 			compute_excpus(cp, tmp->new_cpus);
2237 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2238 				pos_css = css_rightmost_descendant(pos_css);
2239 				continue;
2240 			}
2241 			rcu_read_unlock();
2242 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2243 			rcu_read_lock();
2244 
2245 			/* Remote partition may be invalidated */
2246 			new_prs = cp->partition_root_state;
2247 			remote = (new_prs == old_prs);
2248 		}
2249 
2250 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2251 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2252 		else
2253 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2254 
2255 		if (remote)
2256 			goto get_css;	/* Ready to update cpuset data */
2257 
2258 		/*
2259 		 * A partition with no effective_cpus is allowed as long as
2260 		 * there is no task associated with it. Call
2261 		 * update_parent_effective_cpumask() to check it.
2262 		 */
2263 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2264 			update_parent = true;
2265 			goto update_parent_effective;
2266 		}
2267 
2268 		/*
2269 		 * If it becomes empty, inherit the effective mask of the
2270 		 * parent, which is guaranteed to have some CPUs unless
2271 		 * it is a partition root that has explicitly distributed
2272 		 * out all its CPUs.
2273 		 */
2274 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2275 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2276 
2277 		/*
2278 		 * Skip the whole subtree if
2279 		 * 1) the cpumask remains the same,
2280 		 * 2) has no partition root state,
2281 		 * 3) force flag not set, and
2282 		 * 4) for v2 load balance state same as its parent.
2283 		 */
2284 		if (!cp->partition_root_state && !force &&
2285 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2286 		    (!cpuset_v2() ||
2287 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2288 			pos_css = css_rightmost_descendant(pos_css);
2289 			continue;
2290 		}
2291 
2292 update_parent_effective:
2293 		/*
2294 		 * update_parent_effective_cpumask() should have been called
2295 		 * for cs already in update_cpumask(). We should also call
2296 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2297 		 * cpuset if the parent's effective_cpus changes.
2298 		 */
2299 		if ((cp != cs) && old_prs) {
2300 			switch (parent->partition_root_state) {
2301 			case PRS_ROOT:
2302 			case PRS_ISOLATED:
2303 				update_parent = true;
2304 				break;
2305 
2306 			default:
2307 				/*
2308 				 * When parent is not a partition root or is
2309 				 * invalid, child partition roots become
2310 				 * invalid too.
2311 				 */
2312 				if (is_partition_valid(cp))
2313 					new_prs = -cp->partition_root_state;
2314 				WRITE_ONCE(cp->prs_err,
2315 					   is_partition_invalid(parent)
2316 					   ? PERR_INVPARENT : PERR_NOTPART);
2317 				break;
2318 			}
2319 		}
2320 get_css:
2321 		if (!css_tryget_online(&cp->css))
2322 			continue;
2323 		rcu_read_unlock();
2324 
2325 		if (update_parent) {
2326 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2327 			/*
2328 			 * The cpuset partition_root_state may become
2329 			 * invalid. Capture it.
2330 			 */
2331 			new_prs = cp->partition_root_state;
2332 		}
2333 
2334 		spin_lock_irq(&callback_lock);
2335 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2336 		cp->partition_root_state = new_prs;
2337 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2338 			compute_excpus(cp, cp->effective_xcpus);
2339 
2340 		/*
2341 		 * Make sure effective_xcpus is properly set for a valid
2342 		 * partition root.
2343 		 */
2344 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2345 			cpumask_and(cp->effective_xcpus,
2346 				    cp->cpus_allowed, parent->effective_xcpus);
2347 		else if (new_prs < 0)
2348 			reset_partition_data(cp);
2349 		spin_unlock_irq(&callback_lock);
2350 
2351 		notify_partition_change(cp, old_prs);
2352 
2353 		WARN_ON(!is_in_v2_mode() &&
2354 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2355 
2356 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2357 
2358 		/*
2359 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2360 		 * from parent if current cpuset isn't a valid partition root
2361 		 * and their load balance states differ.
2362 		 */
2363 		if (cpuset_v2() && !is_partition_valid(cp) &&
2364 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2365 			if (is_sched_load_balance(parent))
2366 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2367 			else
2368 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2369 		}
2370 
2371 		/*
2372 		 * On legacy hierarchy, if the effective cpumask of any non-
2373 		 * empty cpuset is changed, we need to rebuild sched domains.
2374 		 * On default hierarchy, the cpuset needs to be a partition
2375 		 * root as well.
2376 		 */
2377 		if (!cpumask_empty(cp->cpus_allowed) &&
2378 		    is_sched_load_balance(cp) &&
2379 		   (!cpuset_v2() || is_partition_valid(cp)))
2380 			cpuset_force_rebuild();
2381 
2382 		rcu_read_lock();
2383 		css_put(&cp->css);
2384 	}
2385 	rcu_read_unlock();
2386 }
2387 
2388 /**
2389  * update_sibling_cpumasks - Update siblings cpumasks
2390  * @parent:  Parent cpuset
2391  * @cs:      Current cpuset
2392  * @tmp:     Temp variables
2393  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)2394 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2395 				    struct tmpmasks *tmp)
2396 {
2397 	struct cpuset *sibling;
2398 	struct cgroup_subsys_state *pos_css;
2399 
2400 	lockdep_assert_held(&cpuset_mutex);
2401 
2402 	/*
2403 	 * Check all its siblings and call update_cpumasks_hier()
2404 	 * if their effective_cpus will need to be changed.
2405 	 *
2406 	 * It is possible a change in parent's effective_cpus
2407 	 * due to a change in a child partition's effective_xcpus will impact
2408 	 * its siblings even if they do not inherit parent's effective_cpus
2409 	 * directly.
2410 	 *
2411 	 * The update_cpumasks_hier() function may sleep. So we have to
2412 	 * release the RCU read lock before calling it.
2413 	 */
2414 	rcu_read_lock();
2415 	cpuset_for_each_child(sibling, pos_css, parent) {
2416 		if (sibling == cs)
2417 			continue;
2418 		if (!is_partition_valid(sibling)) {
2419 			compute_effective_cpumask(tmp->new_cpus, sibling,
2420 						  parent);
2421 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2422 				continue;
2423 		} else if (is_remote_partition(sibling)) {
2424 			/*
2425 			 * Change in a sibling cpuset won't affect a remote
2426 			 * partition root.
2427 			 */
2428 			continue;
2429 		}
2430 
2431 		if (!css_tryget_online(&sibling->css))
2432 			continue;
2433 
2434 		rcu_read_unlock();
2435 		update_cpumasks_hier(sibling, tmp, false);
2436 		rcu_read_lock();
2437 		css_put(&sibling->css);
2438 	}
2439 	rcu_read_unlock();
2440 }
2441 
parse_cpuset_cpulist(const char * buf,struct cpumask * out_mask)2442 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2443 {
2444 	int retval;
2445 
2446 	retval = cpulist_parse(buf, out_mask);
2447 	if (retval < 0)
2448 		return retval;
2449 	if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2450 		return -EINVAL;
2451 
2452 	return 0;
2453 }
2454 
2455 /**
2456  * validate_partition - Validate a cpuset partition configuration
2457  * @cs: The cpuset to validate
2458  * @trialcs: The trial cpuset containing proposed configuration changes
2459  *
2460  * If any validation check fails, the appropriate error code is set in the
2461  * cpuset's prs_err field.
2462  *
2463  * Return: PRS error code (0 if valid, non-zero error code if invalid)
2464  */
validate_partition(struct cpuset * cs,struct cpuset * trialcs)2465 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2466 {
2467 	struct cpuset *parent = parent_cs(cs);
2468 
2469 	if (cs_is_member(trialcs))
2470 		return PERR_NONE;
2471 
2472 	if (cpumask_empty(trialcs->effective_xcpus))
2473 		return PERR_INVCPUS;
2474 
2475 	if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2476 					  trialcs->effective_xcpus))
2477 		return PERR_HKEEPING;
2478 
2479 	if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2480 		return PERR_NOCPUS;
2481 
2482 	return PERR_NONE;
2483 }
2484 
cpus_allowed_validate_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2485 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2486 					struct tmpmasks *tmp)
2487 {
2488 	int retval;
2489 	struct cpuset *parent = parent_cs(cs);
2490 
2491 	retval = validate_change(cs, trialcs);
2492 
2493 	if ((retval == -EINVAL) && cpuset_v2()) {
2494 		struct cgroup_subsys_state *css;
2495 		struct cpuset *cp;
2496 
2497 		/*
2498 		 * The -EINVAL error code indicates that partition sibling
2499 		 * CPU exclusivity rule has been violated. We still allow
2500 		 * the cpumask change to proceed while invalidating the
2501 		 * partition. However, any conflicting sibling partitions
2502 		 * have to be marked as invalid too.
2503 		 */
2504 		trialcs->prs_err = PERR_NOTEXCL;
2505 		rcu_read_lock();
2506 		cpuset_for_each_child(cp, css, parent) {
2507 			struct cpumask *xcpus = user_xcpus(trialcs);
2508 
2509 			if (is_partition_valid(cp) &&
2510 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2511 				rcu_read_unlock();
2512 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2513 				rcu_read_lock();
2514 			}
2515 		}
2516 		rcu_read_unlock();
2517 		retval = 0;
2518 	}
2519 	return retval;
2520 }
2521 
2522 /**
2523  * partition_cpus_change - Handle partition state changes due to CPU mask updates
2524  * @cs: The target cpuset being modified
2525  * @trialcs: The trial cpuset containing proposed configuration changes
2526  * @tmp: Temporary masks for intermediate calculations
2527  *
2528  * This function handles partition state transitions triggered by CPU mask changes.
2529  * CPU modifications may cause a partition to be disabled or require state updates.
2530  */
partition_cpus_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2531 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2532 					struct tmpmasks *tmp)
2533 {
2534 	enum prs_errcode prs_err;
2535 
2536 	if (cs_is_member(cs))
2537 		return;
2538 
2539 	prs_err = validate_partition(cs, trialcs);
2540 	if (prs_err)
2541 		trialcs->prs_err = cs->prs_err = prs_err;
2542 
2543 	if (is_remote_partition(cs)) {
2544 		if (trialcs->prs_err)
2545 			remote_partition_disable(cs, tmp);
2546 		else
2547 			remote_cpus_update(cs, trialcs->exclusive_cpus,
2548 					   trialcs->effective_xcpus, tmp);
2549 	} else {
2550 		if (trialcs->prs_err)
2551 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2552 							NULL, tmp);
2553 		else
2554 			update_parent_effective_cpumask(cs, partcmd_update,
2555 							trialcs->effective_xcpus, tmp);
2556 	}
2557 }
2558 
2559 /**
2560  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2561  * @cs: the cpuset to consider
2562  * @trialcs: trial cpuset
2563  * @buf: buffer of cpu numbers written to this cpuset
2564  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2565 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2566 			  const char *buf)
2567 {
2568 	int retval;
2569 	struct tmpmasks tmp;
2570 	bool force = false;
2571 	int old_prs = cs->partition_root_state;
2572 
2573 	retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2574 	if (retval < 0)
2575 		return retval;
2576 
2577 	/* Nothing to do if the cpus didn't change */
2578 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2579 		return 0;
2580 
2581 	if (alloc_tmpmasks(&tmp))
2582 		return -ENOMEM;
2583 
2584 	compute_trialcs_excpus(trialcs, cs);
2585 	trialcs->prs_err = PERR_NONE;
2586 
2587 	retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2588 	if (retval < 0)
2589 		goto out_free;
2590 
2591 	/*
2592 	 * Check all the descendants in update_cpumasks_hier() if
2593 	 * effective_xcpus is to be changed.
2594 	 */
2595 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2596 
2597 	partition_cpus_change(cs, trialcs, &tmp);
2598 
2599 	spin_lock_irq(&callback_lock);
2600 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2601 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2602 	if ((old_prs > 0) && !is_partition_valid(cs))
2603 		reset_partition_data(cs);
2604 	spin_unlock_irq(&callback_lock);
2605 
2606 	/* effective_cpus/effective_xcpus will be updated here */
2607 	update_cpumasks_hier(cs, &tmp, force);
2608 
2609 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2610 	if (cs->partition_root_state)
2611 		update_partition_sd_lb(cs, old_prs);
2612 out_free:
2613 	free_tmpmasks(&tmp);
2614 	return retval;
2615 }
2616 
2617 /**
2618  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2619  * @cs: the cpuset to consider
2620  * @trialcs: trial cpuset
2621  * @buf: buffer of cpu numbers written to this cpuset
2622  *
2623  * The tasks' cpumask will be updated if cs is a valid partition root.
2624  */
update_exclusive_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2625 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2626 				    const char *buf)
2627 {
2628 	int retval;
2629 	struct tmpmasks tmp;
2630 	bool force = false;
2631 	int old_prs = cs->partition_root_state;
2632 
2633 	retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2634 	if (retval < 0)
2635 		return retval;
2636 
2637 	/* Nothing to do if the CPUs didn't change */
2638 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2639 		return 0;
2640 
2641 	/*
2642 	 * Reject the change if there is exclusive CPUs conflict with
2643 	 * the siblings.
2644 	 */
2645 	if (compute_trialcs_excpus(trialcs, cs))
2646 		return -EINVAL;
2647 
2648 	/*
2649 	 * Check all the descendants in update_cpumasks_hier() if
2650 	 * effective_xcpus is to be changed.
2651 	 */
2652 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2653 
2654 	retval = validate_change(cs, trialcs);
2655 	if (retval)
2656 		return retval;
2657 
2658 	if (alloc_tmpmasks(&tmp))
2659 		return -ENOMEM;
2660 
2661 	trialcs->prs_err = PERR_NONE;
2662 	partition_cpus_change(cs, trialcs, &tmp);
2663 
2664 	spin_lock_irq(&callback_lock);
2665 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2666 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2667 	if ((old_prs > 0) && !is_partition_valid(cs))
2668 		reset_partition_data(cs);
2669 	spin_unlock_irq(&callback_lock);
2670 
2671 	/*
2672 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2673 	 * of the subtree when it is a valid partition root or effective_xcpus
2674 	 * is updated.
2675 	 */
2676 	if (is_partition_valid(cs) || force)
2677 		update_cpumasks_hier(cs, &tmp, force);
2678 
2679 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2680 	if (cs->partition_root_state)
2681 		update_partition_sd_lb(cs, old_prs);
2682 
2683 	free_tmpmasks(&tmp);
2684 	return 0;
2685 }
2686 
2687 /*
2688  * Migrate memory region from one set of nodes to another.  This is
2689  * performed asynchronously as it can be called from process migration path
2690  * holding locks involved in process management.  All mm migrations are
2691  * performed in the queued order and can be waited for by flushing
2692  * cpuset_migrate_mm_wq.
2693  */
2694 
2695 struct cpuset_migrate_mm_work {
2696 	struct work_struct	work;
2697 	struct mm_struct	*mm;
2698 	nodemask_t		from;
2699 	nodemask_t		to;
2700 };
2701 
cpuset_migrate_mm_workfn(struct work_struct * work)2702 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2703 {
2704 	struct cpuset_migrate_mm_work *mwork =
2705 		container_of(work, struct cpuset_migrate_mm_work, work);
2706 
2707 	/* on a wq worker, no need to worry about %current's mems_allowed */
2708 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2709 	mmput(mwork->mm);
2710 	kfree(mwork);
2711 }
2712 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)2713 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2714 							const nodemask_t *to)
2715 {
2716 	struct cpuset_migrate_mm_work *mwork;
2717 
2718 	if (nodes_equal(*from, *to)) {
2719 		mmput(mm);
2720 		return;
2721 	}
2722 
2723 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2724 	if (mwork) {
2725 		mwork->mm = mm;
2726 		mwork->from = *from;
2727 		mwork->to = *to;
2728 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2729 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2730 	} else {
2731 		mmput(mm);
2732 	}
2733 }
2734 
flush_migrate_mm_task_workfn(struct callback_head * head)2735 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2736 {
2737 	flush_workqueue(cpuset_migrate_mm_wq);
2738 	kfree(head);
2739 }
2740 
schedule_flush_migrate_mm(void)2741 static void schedule_flush_migrate_mm(void)
2742 {
2743 	struct callback_head *flush_cb;
2744 
2745 	flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2746 	if (!flush_cb)
2747 		return;
2748 
2749 	init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2750 
2751 	if (task_work_add(current, flush_cb, TWA_RESUME))
2752 		kfree(flush_cb);
2753 }
2754 
2755 /*
2756  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2757  * @tsk: the task to change
2758  * @newmems: new nodes that the task will be set
2759  *
2760  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2761  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2762  * parallel, it might temporarily see an empty intersection, which results in
2763  * a seqlock check and retry before OOM or allocation failure.
2764  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2765 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2766 					nodemask_t *newmems)
2767 {
2768 	task_lock(tsk);
2769 
2770 	local_irq_disable();
2771 	write_seqcount_begin(&tsk->mems_allowed_seq);
2772 
2773 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2774 	mpol_rebind_task(tsk, newmems);
2775 	tsk->mems_allowed = *newmems;
2776 
2777 	write_seqcount_end(&tsk->mems_allowed_seq);
2778 	local_irq_enable();
2779 
2780 	task_unlock(tsk);
2781 }
2782 
2783 static void *cpuset_being_rebound;
2784 
2785 /**
2786  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2787  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2788  *
2789  * Iterate through each task of @cs updating its mems_allowed to the
2790  * effective cpuset's.  As this function is called with cpuset_mutex held,
2791  * cpuset membership stays stable.
2792  */
cpuset_update_tasks_nodemask(struct cpuset * cs)2793 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2794 {
2795 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2796 	struct css_task_iter it;
2797 	struct task_struct *task;
2798 
2799 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2800 
2801 	guarantee_online_mems(cs, &newmems);
2802 
2803 	/*
2804 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2805 	 * take while holding tasklist_lock.  Forks can happen - the
2806 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2807 	 * and rebind their vma mempolicies too.  Because we still hold
2808 	 * the global cpuset_mutex, we know that no other rebind effort
2809 	 * will be contending for the global variable cpuset_being_rebound.
2810 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2811 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2812 	 */
2813 	css_task_iter_start(&cs->css, 0, &it);
2814 	while ((task = css_task_iter_next(&it))) {
2815 		struct mm_struct *mm;
2816 		bool migrate;
2817 
2818 		cpuset_change_task_nodemask(task, &newmems);
2819 
2820 		mm = get_task_mm(task);
2821 		if (!mm)
2822 			continue;
2823 
2824 		migrate = is_memory_migrate(cs);
2825 
2826 		mpol_rebind_mm(mm, &cs->mems_allowed);
2827 		if (migrate)
2828 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2829 		else
2830 			mmput(mm);
2831 	}
2832 	css_task_iter_end(&it);
2833 
2834 	/*
2835 	 * All the tasks' nodemasks have been updated, update
2836 	 * cs->old_mems_allowed.
2837 	 */
2838 	cs->old_mems_allowed = newmems;
2839 
2840 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2841 	cpuset_being_rebound = NULL;
2842 }
2843 
2844 /*
2845  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2846  * @cs: the cpuset to consider
2847  * @new_mems: a temp variable for calculating new effective_mems
2848  *
2849  * When configured nodemask is changed, the effective nodemasks of this cpuset
2850  * and all its descendants need to be updated.
2851  *
2852  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2853  *
2854  * Called with cpuset_mutex held
2855  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2856 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2857 {
2858 	struct cpuset *cp;
2859 	struct cgroup_subsys_state *pos_css;
2860 
2861 	rcu_read_lock();
2862 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2863 		struct cpuset *parent = parent_cs(cp);
2864 
2865 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2866 
2867 		/*
2868 		 * If it becomes empty, inherit the effective mask of the
2869 		 * parent, which is guaranteed to have some MEMs.
2870 		 */
2871 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2872 			*new_mems = parent->effective_mems;
2873 
2874 		/* Skip the whole subtree if the nodemask remains the same. */
2875 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2876 			pos_css = css_rightmost_descendant(pos_css);
2877 			continue;
2878 		}
2879 
2880 		if (!css_tryget_online(&cp->css))
2881 			continue;
2882 		rcu_read_unlock();
2883 
2884 		spin_lock_irq(&callback_lock);
2885 		cp->effective_mems = *new_mems;
2886 		spin_unlock_irq(&callback_lock);
2887 
2888 		WARN_ON(!is_in_v2_mode() &&
2889 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2890 
2891 		cpuset_update_tasks_nodemask(cp);
2892 
2893 		rcu_read_lock();
2894 		css_put(&cp->css);
2895 	}
2896 	rcu_read_unlock();
2897 }
2898 
2899 /*
2900  * Handle user request to change the 'mems' memory placement
2901  * of a cpuset.  Needs to validate the request, update the
2902  * cpusets mems_allowed, and for each task in the cpuset,
2903  * update mems_allowed and rebind task's mempolicy and any vma
2904  * mempolicies and if the cpuset is marked 'memory_migrate',
2905  * migrate the tasks pages to the new memory.
2906  *
2907  * Call with cpuset_mutex held. May take callback_lock during call.
2908  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2909  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2910  * their mempolicies to the cpusets new mems_allowed.
2911  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2912 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2913 			   const char *buf)
2914 {
2915 	int retval;
2916 
2917 	/*
2918 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2919 	 * The validate_change() call ensures that cpusets with tasks have memory.
2920 	 */
2921 	retval = nodelist_parse(buf, trialcs->mems_allowed);
2922 	if (retval < 0)
2923 		return retval;
2924 
2925 	if (!nodes_subset(trialcs->mems_allowed,
2926 			  top_cpuset.mems_allowed))
2927 		return -EINVAL;
2928 
2929 	/* No change? nothing to do */
2930 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2931 		return 0;
2932 
2933 	retval = validate_change(cs, trialcs);
2934 	if (retval < 0)
2935 		return retval;
2936 
2937 	check_insane_mems_config(&trialcs->mems_allowed);
2938 
2939 	spin_lock_irq(&callback_lock);
2940 	cs->mems_allowed = trialcs->mems_allowed;
2941 	spin_unlock_irq(&callback_lock);
2942 
2943 	/* use trialcs->mems_allowed as a temp variable */
2944 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2945 	return 0;
2946 }
2947 
current_cpuset_is_being_rebound(void)2948 bool current_cpuset_is_being_rebound(void)
2949 {
2950 	bool ret;
2951 
2952 	rcu_read_lock();
2953 	ret = task_cs(current) == cpuset_being_rebound;
2954 	rcu_read_unlock();
2955 
2956 	return ret;
2957 }
2958 
2959 /*
2960  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2961  * bit:		the bit to update (see cpuset_flagbits_t)
2962  * cs:		the cpuset to update
2963  * turning_on: 	whether the flag is being set or cleared
2964  *
2965  * Call with cpuset_mutex held.
2966  */
2967 
cpuset_update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2968 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2969 		       int turning_on)
2970 {
2971 	struct cpuset *trialcs;
2972 	int balance_flag_changed;
2973 	int spread_flag_changed;
2974 	int err;
2975 
2976 	trialcs = dup_or_alloc_cpuset(cs);
2977 	if (!trialcs)
2978 		return -ENOMEM;
2979 
2980 	if (turning_on)
2981 		set_bit(bit, &trialcs->flags);
2982 	else
2983 		clear_bit(bit, &trialcs->flags);
2984 
2985 	err = validate_change(cs, trialcs);
2986 	if (err < 0)
2987 		goto out;
2988 
2989 	balance_flag_changed = (is_sched_load_balance(cs) !=
2990 				is_sched_load_balance(trialcs));
2991 
2992 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2993 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2994 
2995 	spin_lock_irq(&callback_lock);
2996 	cs->flags = trialcs->flags;
2997 	spin_unlock_irq(&callback_lock);
2998 
2999 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
3000 		if (cpuset_v2())
3001 			cpuset_force_rebuild();
3002 		else
3003 			rebuild_sched_domains_locked();
3004 	}
3005 
3006 	if (spread_flag_changed)
3007 		cpuset1_update_tasks_flags(cs);
3008 out:
3009 	free_cpuset(trialcs);
3010 	return err;
3011 }
3012 
3013 /**
3014  * update_prstate - update partition_root_state
3015  * @cs: the cpuset to update
3016  * @new_prs: new partition root state
3017  * Return: 0 if successful, != 0 if error
3018  *
3019  * Call with cpuset_mutex held.
3020  */
update_prstate(struct cpuset * cs,int new_prs)3021 static int update_prstate(struct cpuset *cs, int new_prs)
3022 {
3023 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3024 	struct cpuset *parent = parent_cs(cs);
3025 	struct tmpmasks tmpmask;
3026 	bool isolcpus_updated = false;
3027 
3028 	if (old_prs == new_prs)
3029 		return 0;
3030 
3031 	/*
3032 	 * Treat a previously invalid partition root as if it is a "member".
3033 	 */
3034 	if (new_prs && is_partition_invalid(cs))
3035 		old_prs = PRS_MEMBER;
3036 
3037 	if (alloc_tmpmasks(&tmpmask))
3038 		return -ENOMEM;
3039 
3040 	err = update_partition_exclusive_flag(cs, new_prs);
3041 	if (err)
3042 		goto out;
3043 
3044 	if (!old_prs) {
3045 		/*
3046 		 * cpus_allowed and exclusive_cpus cannot be both empty.
3047 		 */
3048 		if (xcpus_empty(cs)) {
3049 			err = PERR_CPUSEMPTY;
3050 			goto out;
3051 		}
3052 
3053 		/*
3054 		 * We don't support the creation of a new local partition with
3055 		 * a remote partition underneath it. This unsupported
3056 		 * setting can happen only if parent is the top_cpuset because
3057 		 * a remote partition cannot be created underneath an existing
3058 		 * local or remote partition.
3059 		 */
3060 		if ((parent == &top_cpuset) &&
3061 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3062 			err = PERR_REMOTE;
3063 			goto out;
3064 		}
3065 
3066 		/*
3067 		 * If parent is valid partition, enable local partiion.
3068 		 * Otherwise, enable a remote partition.
3069 		 */
3070 		if (is_partition_valid(parent)) {
3071 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
3072 					       ? partcmd_enable : partcmd_enablei;
3073 
3074 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3075 		} else {
3076 			err = remote_partition_enable(cs, new_prs, &tmpmask);
3077 		}
3078 	} else if (old_prs && new_prs) {
3079 		/*
3080 		 * A change in load balance state only, no change in cpumasks.
3081 		 * Need to update isolated_cpus.
3082 		 */
3083 		if (((new_prs == PRS_ISOLATED) &&
3084 		     !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3085 		    prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3086 			err = PERR_HKEEPING;
3087 		else
3088 			isolcpus_updated = true;
3089 	} else {
3090 		/*
3091 		 * Switching back to member is always allowed even if it
3092 		 * disables child partitions.
3093 		 */
3094 		if (is_remote_partition(cs))
3095 			remote_partition_disable(cs, &tmpmask);
3096 		else
3097 			update_parent_effective_cpumask(cs, partcmd_disable,
3098 							NULL, &tmpmask);
3099 
3100 		/*
3101 		 * Invalidation of child partitions will be done in
3102 		 * update_cpumasks_hier().
3103 		 */
3104 	}
3105 out:
3106 	/*
3107 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3108 	 * happens.
3109 	 */
3110 	if (err) {
3111 		new_prs = -new_prs;
3112 		update_partition_exclusive_flag(cs, new_prs);
3113 	}
3114 
3115 	spin_lock_irq(&callback_lock);
3116 	cs->partition_root_state = new_prs;
3117 	WRITE_ONCE(cs->prs_err, err);
3118 	if (!is_partition_valid(cs))
3119 		reset_partition_data(cs);
3120 	else if (isolcpus_updated)
3121 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3122 	spin_unlock_irq(&callback_lock);
3123 	update_isolation_cpumasks();
3124 
3125 	/* Force update if switching back to member & update effective_xcpus */
3126 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
3127 
3128 	/* A newly created partition must have effective_xcpus set */
3129 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
3130 			      && cpumask_empty(cs->effective_xcpus));
3131 
3132 	/* Update sched domains and load balance flag */
3133 	update_partition_sd_lb(cs, old_prs);
3134 
3135 	notify_partition_change(cs, old_prs);
3136 	if (force_sd_rebuild)
3137 		rebuild_sched_domains_locked();
3138 	free_tmpmasks(&tmpmask);
3139 	return 0;
3140 }
3141 
3142 static struct cpuset *cpuset_attach_old_cs;
3143 
3144 /*
3145  * Check to see if a cpuset can accept a new task
3146  * For v1, cpus_allowed and mems_allowed can't be empty.
3147  * For v2, effective_cpus can't be empty.
3148  * Note that in v1, effective_cpus = cpus_allowed.
3149  */
cpuset_can_attach_check(struct cpuset * cs)3150 static int cpuset_can_attach_check(struct cpuset *cs)
3151 {
3152 	if (cpumask_empty(cs->effective_cpus) ||
3153 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3154 		return -ENOSPC;
3155 	return 0;
3156 }
3157 
reset_migrate_dl_data(struct cpuset * cs)3158 static void reset_migrate_dl_data(struct cpuset *cs)
3159 {
3160 	cs->nr_migrate_dl_tasks = 0;
3161 	cs->sum_migrate_dl_bw = 0;
3162 }
3163 
3164 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)3165 static int cpuset_can_attach(struct cgroup_taskset *tset)
3166 {
3167 	struct cgroup_subsys_state *css;
3168 	struct cpuset *cs, *oldcs;
3169 	struct task_struct *task;
3170 	bool cpus_updated, mems_updated;
3171 	int ret;
3172 
3173 	/* used later by cpuset_attach() */
3174 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3175 	oldcs = cpuset_attach_old_cs;
3176 	cs = css_cs(css);
3177 
3178 	mutex_lock(&cpuset_mutex);
3179 
3180 	/* Check to see if task is allowed in the cpuset */
3181 	ret = cpuset_can_attach_check(cs);
3182 	if (ret)
3183 		goto out_unlock;
3184 
3185 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3186 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3187 
3188 	cgroup_taskset_for_each(task, css, tset) {
3189 		ret = task_can_attach(task);
3190 		if (ret)
3191 			goto out_unlock;
3192 
3193 		/*
3194 		 * Skip rights over task check in v2 when nothing changes,
3195 		 * migration permission derives from hierarchy ownership in
3196 		 * cgroup_procs_write_permission()).
3197 		 */
3198 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3199 			ret = security_task_setscheduler(task);
3200 			if (ret)
3201 				goto out_unlock;
3202 		}
3203 
3204 		if (dl_task(task)) {
3205 			cs->nr_migrate_dl_tasks++;
3206 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3207 		}
3208 	}
3209 
3210 	if (!cs->nr_migrate_dl_tasks)
3211 		goto out_success;
3212 
3213 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3214 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3215 
3216 		if (unlikely(cpu >= nr_cpu_ids)) {
3217 			reset_migrate_dl_data(cs);
3218 			ret = -EINVAL;
3219 			goto out_unlock;
3220 		}
3221 
3222 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3223 		if (ret) {
3224 			reset_migrate_dl_data(cs);
3225 			goto out_unlock;
3226 		}
3227 	}
3228 
3229 out_success:
3230 	/*
3231 	 * Mark attach is in progress.  This makes validate_change() fail
3232 	 * changes which zero cpus/mems_allowed.
3233 	 */
3234 	cs->attach_in_progress++;
3235 out_unlock:
3236 	mutex_unlock(&cpuset_mutex);
3237 	return ret;
3238 }
3239 
cpuset_cancel_attach(struct cgroup_taskset * tset)3240 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3241 {
3242 	struct cgroup_subsys_state *css;
3243 	struct cpuset *cs;
3244 
3245 	cgroup_taskset_first(tset, &css);
3246 	cs = css_cs(css);
3247 
3248 	mutex_lock(&cpuset_mutex);
3249 	dec_attach_in_progress_locked(cs);
3250 
3251 	if (cs->nr_migrate_dl_tasks) {
3252 		int cpu = cpumask_any(cs->effective_cpus);
3253 
3254 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3255 		reset_migrate_dl_data(cs);
3256 	}
3257 
3258 	mutex_unlock(&cpuset_mutex);
3259 }
3260 
3261 /*
3262  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3263  * but we can't allocate it dynamically there.  Define it global and
3264  * allocate from cpuset_init().
3265  */
3266 static cpumask_var_t cpus_attach;
3267 static nodemask_t cpuset_attach_nodemask_to;
3268 
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)3269 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3270 {
3271 	lockdep_assert_held(&cpuset_mutex);
3272 
3273 	if (cs != &top_cpuset)
3274 		guarantee_active_cpus(task, cpus_attach);
3275 	else
3276 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3277 			       subpartitions_cpus);
3278 	/*
3279 	 * can_attach beforehand should guarantee that this doesn't
3280 	 * fail.  TODO: have a better way to handle failure here
3281 	 */
3282 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3283 
3284 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3285 	cpuset1_update_task_spread_flags(cs, task);
3286 }
3287 
cpuset_attach(struct cgroup_taskset * tset)3288 static void cpuset_attach(struct cgroup_taskset *tset)
3289 {
3290 	struct task_struct *task;
3291 	struct task_struct *leader;
3292 	struct cgroup_subsys_state *css;
3293 	struct cpuset *cs;
3294 	struct cpuset *oldcs = cpuset_attach_old_cs;
3295 	bool cpus_updated, mems_updated;
3296 	bool queue_task_work = false;
3297 
3298 	cgroup_taskset_first(tset, &css);
3299 	cs = css_cs(css);
3300 
3301 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3302 	mutex_lock(&cpuset_mutex);
3303 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3304 				      oldcs->effective_cpus);
3305 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3306 
3307 	/*
3308 	 * In the default hierarchy, enabling cpuset in the child cgroups
3309 	 * will trigger a number of cpuset_attach() calls with no change
3310 	 * in effective cpus and mems. In that case, we can optimize out
3311 	 * by skipping the task iteration and update.
3312 	 */
3313 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3314 		cpuset_attach_nodemask_to = cs->effective_mems;
3315 		goto out;
3316 	}
3317 
3318 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3319 
3320 	cgroup_taskset_for_each(task, css, tset)
3321 		cpuset_attach_task(cs, task);
3322 
3323 	/*
3324 	 * Change mm for all threadgroup leaders. This is expensive and may
3325 	 * sleep and should be moved outside migration path proper. Skip it
3326 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3327 	 * not set.
3328 	 */
3329 	cpuset_attach_nodemask_to = cs->effective_mems;
3330 	if (!is_memory_migrate(cs) && !mems_updated)
3331 		goto out;
3332 
3333 	cgroup_taskset_for_each_leader(leader, css, tset) {
3334 		struct mm_struct *mm = get_task_mm(leader);
3335 
3336 		if (mm) {
3337 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3338 
3339 			/*
3340 			 * old_mems_allowed is the same with mems_allowed
3341 			 * here, except if this task is being moved
3342 			 * automatically due to hotplug.  In that case
3343 			 * @mems_allowed has been updated and is empty, so
3344 			 * @old_mems_allowed is the right nodesets that we
3345 			 * migrate mm from.
3346 			 */
3347 			if (is_memory_migrate(cs)) {
3348 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3349 						  &cpuset_attach_nodemask_to);
3350 				queue_task_work = true;
3351 			} else
3352 				mmput(mm);
3353 		}
3354 	}
3355 
3356 out:
3357 	if (queue_task_work)
3358 		schedule_flush_migrate_mm();
3359 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3360 
3361 	if (cs->nr_migrate_dl_tasks) {
3362 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3363 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3364 		reset_migrate_dl_data(cs);
3365 	}
3366 
3367 	dec_attach_in_progress_locked(cs);
3368 
3369 	mutex_unlock(&cpuset_mutex);
3370 }
3371 
3372 /*
3373  * Common handling for a write to a "cpus" or "mems" file.
3374  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3375 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3376 				    char *buf, size_t nbytes, loff_t off)
3377 {
3378 	struct cpuset *cs = css_cs(of_css(of));
3379 	struct cpuset *trialcs;
3380 	int retval = -ENODEV;
3381 
3382 	/* root is read-only */
3383 	if (cs == &top_cpuset)
3384 		return -EACCES;
3385 
3386 	buf = strstrip(buf);
3387 	cpuset_full_lock();
3388 	if (!is_cpuset_online(cs))
3389 		goto out_unlock;
3390 
3391 	trialcs = dup_or_alloc_cpuset(cs);
3392 	if (!trialcs) {
3393 		retval = -ENOMEM;
3394 		goto out_unlock;
3395 	}
3396 
3397 	switch (of_cft(of)->private) {
3398 	case FILE_CPULIST:
3399 		retval = update_cpumask(cs, trialcs, buf);
3400 		break;
3401 	case FILE_EXCLUSIVE_CPULIST:
3402 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3403 		break;
3404 	case FILE_MEMLIST:
3405 		retval = update_nodemask(cs, trialcs, buf);
3406 		break;
3407 	default:
3408 		retval = -EINVAL;
3409 		break;
3410 	}
3411 
3412 	free_cpuset(trialcs);
3413 	if (force_sd_rebuild)
3414 		rebuild_sched_domains_locked();
3415 out_unlock:
3416 	cpuset_full_unlock();
3417 	if (of_cft(of)->private == FILE_MEMLIST)
3418 		schedule_flush_migrate_mm();
3419 	return retval ?: nbytes;
3420 }
3421 
3422 /*
3423  * These ascii lists should be read in a single call, by using a user
3424  * buffer large enough to hold the entire map.  If read in smaller
3425  * chunks, there is no guarantee of atomicity.  Since the display format
3426  * used, list of ranges of sequential numbers, is variable length,
3427  * and since these maps can change value dynamically, one could read
3428  * gibberish by doing partial reads while a list was changing.
3429  */
cpuset_common_seq_show(struct seq_file * sf,void * v)3430 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3431 {
3432 	struct cpuset *cs = css_cs(seq_css(sf));
3433 	cpuset_filetype_t type = seq_cft(sf)->private;
3434 	int ret = 0;
3435 
3436 	spin_lock_irq(&callback_lock);
3437 
3438 	switch (type) {
3439 	case FILE_CPULIST:
3440 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3441 		break;
3442 	case FILE_MEMLIST:
3443 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3444 		break;
3445 	case FILE_EFFECTIVE_CPULIST:
3446 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3447 		break;
3448 	case FILE_EFFECTIVE_MEMLIST:
3449 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3450 		break;
3451 	case FILE_EXCLUSIVE_CPULIST:
3452 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3453 		break;
3454 	case FILE_EFFECTIVE_XCPULIST:
3455 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3456 		break;
3457 	case FILE_SUBPARTS_CPULIST:
3458 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3459 		break;
3460 	case FILE_ISOLATED_CPULIST:
3461 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3462 		break;
3463 	default:
3464 		ret = -EINVAL;
3465 	}
3466 
3467 	spin_unlock_irq(&callback_lock);
3468 	return ret;
3469 }
3470 
cpuset_partition_show(struct seq_file * seq,void * v)3471 static int cpuset_partition_show(struct seq_file *seq, void *v)
3472 {
3473 	struct cpuset *cs = css_cs(seq_css(seq));
3474 	const char *err, *type = NULL;
3475 
3476 	switch (cs->partition_root_state) {
3477 	case PRS_ROOT:
3478 		seq_puts(seq, "root\n");
3479 		break;
3480 	case PRS_ISOLATED:
3481 		seq_puts(seq, "isolated\n");
3482 		break;
3483 	case PRS_MEMBER:
3484 		seq_puts(seq, "member\n");
3485 		break;
3486 	case PRS_INVALID_ROOT:
3487 		type = "root";
3488 		fallthrough;
3489 	case PRS_INVALID_ISOLATED:
3490 		if (!type)
3491 			type = "isolated";
3492 		err = perr_strings[READ_ONCE(cs->prs_err)];
3493 		if (err)
3494 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3495 		else
3496 			seq_printf(seq, "%s invalid\n", type);
3497 		break;
3498 	}
3499 	return 0;
3500 }
3501 
cpuset_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3502 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3503 				     size_t nbytes, loff_t off)
3504 {
3505 	struct cpuset *cs = css_cs(of_css(of));
3506 	int val;
3507 	int retval = -ENODEV;
3508 
3509 	buf = strstrip(buf);
3510 
3511 	if (!strcmp(buf, "root"))
3512 		val = PRS_ROOT;
3513 	else if (!strcmp(buf, "member"))
3514 		val = PRS_MEMBER;
3515 	else if (!strcmp(buf, "isolated"))
3516 		val = PRS_ISOLATED;
3517 	else
3518 		return -EINVAL;
3519 
3520 	cpuset_full_lock();
3521 	if (is_cpuset_online(cs))
3522 		retval = update_prstate(cs, val);
3523 	cpuset_full_unlock();
3524 	return retval ?: nbytes;
3525 }
3526 
3527 /*
3528  * This is currently a minimal set for the default hierarchy. It can be
3529  * expanded later on by migrating more features and control files from v1.
3530  */
3531 static struct cftype dfl_files[] = {
3532 	{
3533 		.name = "cpus",
3534 		.seq_show = cpuset_common_seq_show,
3535 		.write = cpuset_write_resmask,
3536 		.max_write_len = (100U + 6 * NR_CPUS),
3537 		.private = FILE_CPULIST,
3538 		.flags = CFTYPE_NOT_ON_ROOT,
3539 	},
3540 
3541 	{
3542 		.name = "mems",
3543 		.seq_show = cpuset_common_seq_show,
3544 		.write = cpuset_write_resmask,
3545 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3546 		.private = FILE_MEMLIST,
3547 		.flags = CFTYPE_NOT_ON_ROOT,
3548 	},
3549 
3550 	{
3551 		.name = "cpus.effective",
3552 		.seq_show = cpuset_common_seq_show,
3553 		.private = FILE_EFFECTIVE_CPULIST,
3554 	},
3555 
3556 	{
3557 		.name = "mems.effective",
3558 		.seq_show = cpuset_common_seq_show,
3559 		.private = FILE_EFFECTIVE_MEMLIST,
3560 	},
3561 
3562 	{
3563 		.name = "cpus.partition",
3564 		.seq_show = cpuset_partition_show,
3565 		.write = cpuset_partition_write,
3566 		.private = FILE_PARTITION_ROOT,
3567 		.flags = CFTYPE_NOT_ON_ROOT,
3568 		.file_offset = offsetof(struct cpuset, partition_file),
3569 	},
3570 
3571 	{
3572 		.name = "cpus.exclusive",
3573 		.seq_show = cpuset_common_seq_show,
3574 		.write = cpuset_write_resmask,
3575 		.max_write_len = (100U + 6 * NR_CPUS),
3576 		.private = FILE_EXCLUSIVE_CPULIST,
3577 		.flags = CFTYPE_NOT_ON_ROOT,
3578 	},
3579 
3580 	{
3581 		.name = "cpus.exclusive.effective",
3582 		.seq_show = cpuset_common_seq_show,
3583 		.private = FILE_EFFECTIVE_XCPULIST,
3584 		.flags = CFTYPE_NOT_ON_ROOT,
3585 	},
3586 
3587 	{
3588 		.name = "cpus.subpartitions",
3589 		.seq_show = cpuset_common_seq_show,
3590 		.private = FILE_SUBPARTS_CPULIST,
3591 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3592 	},
3593 
3594 	{
3595 		.name = "cpus.isolated",
3596 		.seq_show = cpuset_common_seq_show,
3597 		.private = FILE_ISOLATED_CPULIST,
3598 		.flags = CFTYPE_ONLY_ON_ROOT,
3599 	},
3600 
3601 	{ }	/* terminate */
3602 };
3603 
3604 
3605 /**
3606  * cpuset_css_alloc - Allocate a cpuset css
3607  * @parent_css: Parent css of the control group that the new cpuset will be
3608  *              part of
3609  * Return: cpuset css on success, -ENOMEM on failure.
3610  *
3611  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3612  * top cpuset css otherwise.
3613  */
3614 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3615 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3616 {
3617 	struct cpuset *cs;
3618 
3619 	if (!parent_css)
3620 		return &top_cpuset.css;
3621 
3622 	cs = dup_or_alloc_cpuset(NULL);
3623 	if (!cs)
3624 		return ERR_PTR(-ENOMEM);
3625 
3626 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3627 	fmeter_init(&cs->fmeter);
3628 	cs->relax_domain_level = -1;
3629 
3630 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3631 	if (cpuset_v2())
3632 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3633 
3634 	return &cs->css;
3635 }
3636 
cpuset_css_online(struct cgroup_subsys_state * css)3637 static int cpuset_css_online(struct cgroup_subsys_state *css)
3638 {
3639 	struct cpuset *cs = css_cs(css);
3640 	struct cpuset *parent = parent_cs(cs);
3641 	struct cpuset *tmp_cs;
3642 	struct cgroup_subsys_state *pos_css;
3643 
3644 	if (!parent)
3645 		return 0;
3646 
3647 	cpuset_full_lock();
3648 	if (is_spread_page(parent))
3649 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3650 	if (is_spread_slab(parent))
3651 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3652 	/*
3653 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3654 	 */
3655 	if (cpuset_v2() && !is_sched_load_balance(parent))
3656 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3657 
3658 	cpuset_inc();
3659 
3660 	spin_lock_irq(&callback_lock);
3661 	if (is_in_v2_mode()) {
3662 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3663 		cs->effective_mems = parent->effective_mems;
3664 	}
3665 	spin_unlock_irq(&callback_lock);
3666 
3667 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3668 		goto out_unlock;
3669 
3670 	/*
3671 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3672 	 * set.  This flag handling is implemented in cgroup core for
3673 	 * historical reasons - the flag may be specified during mount.
3674 	 *
3675 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3676 	 * refuse to clone the configuration - thereby refusing the task to
3677 	 * be entered, and as a result refusing the sys_unshare() or
3678 	 * clone() which initiated it.  If this becomes a problem for some
3679 	 * users who wish to allow that scenario, then this could be
3680 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3681 	 * (and likewise for mems) to the new cgroup.
3682 	 */
3683 	rcu_read_lock();
3684 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3685 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3686 			rcu_read_unlock();
3687 			goto out_unlock;
3688 		}
3689 	}
3690 	rcu_read_unlock();
3691 
3692 	spin_lock_irq(&callback_lock);
3693 	cs->mems_allowed = parent->mems_allowed;
3694 	cs->effective_mems = parent->mems_allowed;
3695 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3696 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3697 	spin_unlock_irq(&callback_lock);
3698 out_unlock:
3699 	cpuset_full_unlock();
3700 	return 0;
3701 }
3702 
3703 /*
3704  * If the cpuset being removed has its flag 'sched_load_balance'
3705  * enabled, then simulate turning sched_load_balance off, which
3706  * will call rebuild_sched_domains_locked(). That is not needed
3707  * in the default hierarchy where only changes in partition
3708  * will cause repartitioning.
3709  */
cpuset_css_offline(struct cgroup_subsys_state * css)3710 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3711 {
3712 	struct cpuset *cs = css_cs(css);
3713 
3714 	cpuset_full_lock();
3715 	if (!cpuset_v2() && is_sched_load_balance(cs))
3716 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3717 
3718 	cpuset_dec();
3719 	cpuset_full_unlock();
3720 }
3721 
3722 /*
3723  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3724  * changing it back to member to free its exclusive CPUs back to the pool to
3725  * be used by other online cpusets.
3726  */
cpuset_css_killed(struct cgroup_subsys_state * css)3727 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3728 {
3729 	struct cpuset *cs = css_cs(css);
3730 
3731 	cpuset_full_lock();
3732 	/* Reset valid partition back to member */
3733 	if (is_partition_valid(cs))
3734 		update_prstate(cs, PRS_MEMBER);
3735 	cpuset_full_unlock();
3736 }
3737 
cpuset_css_free(struct cgroup_subsys_state * css)3738 static void cpuset_css_free(struct cgroup_subsys_state *css)
3739 {
3740 	struct cpuset *cs = css_cs(css);
3741 
3742 	free_cpuset(cs);
3743 }
3744 
cpuset_bind(struct cgroup_subsys_state * root_css)3745 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3746 {
3747 	mutex_lock(&cpuset_mutex);
3748 	spin_lock_irq(&callback_lock);
3749 
3750 	if (is_in_v2_mode()) {
3751 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3752 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3753 		top_cpuset.mems_allowed = node_possible_map;
3754 	} else {
3755 		cpumask_copy(top_cpuset.cpus_allowed,
3756 			     top_cpuset.effective_cpus);
3757 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3758 	}
3759 
3760 	spin_unlock_irq(&callback_lock);
3761 	mutex_unlock(&cpuset_mutex);
3762 }
3763 
3764 /*
3765  * In case the child is cloned into a cpuset different from its parent,
3766  * additional checks are done to see if the move is allowed.
3767  */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3768 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3769 {
3770 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3771 	bool same_cs;
3772 	int ret;
3773 
3774 	rcu_read_lock();
3775 	same_cs = (cs == task_cs(current));
3776 	rcu_read_unlock();
3777 
3778 	if (same_cs)
3779 		return 0;
3780 
3781 	lockdep_assert_held(&cgroup_mutex);
3782 	mutex_lock(&cpuset_mutex);
3783 
3784 	/* Check to see if task is allowed in the cpuset */
3785 	ret = cpuset_can_attach_check(cs);
3786 	if (ret)
3787 		goto out_unlock;
3788 
3789 	ret = task_can_attach(task);
3790 	if (ret)
3791 		goto out_unlock;
3792 
3793 	ret = security_task_setscheduler(task);
3794 	if (ret)
3795 		goto out_unlock;
3796 
3797 	/*
3798 	 * Mark attach is in progress.  This makes validate_change() fail
3799 	 * changes which zero cpus/mems_allowed.
3800 	 */
3801 	cs->attach_in_progress++;
3802 out_unlock:
3803 	mutex_unlock(&cpuset_mutex);
3804 	return ret;
3805 }
3806 
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3807 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3808 {
3809 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3810 	bool same_cs;
3811 
3812 	rcu_read_lock();
3813 	same_cs = (cs == task_cs(current));
3814 	rcu_read_unlock();
3815 
3816 	if (same_cs)
3817 		return;
3818 
3819 	dec_attach_in_progress(cs);
3820 }
3821 
3822 /*
3823  * Make sure the new task conform to the current state of its parent,
3824  * which could have been changed by cpuset just after it inherits the
3825  * state from the parent and before it sits on the cgroup's task list.
3826  */
cpuset_fork(struct task_struct * task)3827 static void cpuset_fork(struct task_struct *task)
3828 {
3829 	struct cpuset *cs;
3830 	bool same_cs;
3831 
3832 	rcu_read_lock();
3833 	cs = task_cs(task);
3834 	same_cs = (cs == task_cs(current));
3835 	rcu_read_unlock();
3836 
3837 	if (same_cs) {
3838 		if (cs == &top_cpuset)
3839 			return;
3840 
3841 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3842 		task->mems_allowed = current->mems_allowed;
3843 		return;
3844 	}
3845 
3846 	/* CLONE_INTO_CGROUP */
3847 	mutex_lock(&cpuset_mutex);
3848 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3849 	cpuset_attach_task(cs, task);
3850 
3851 	dec_attach_in_progress_locked(cs);
3852 	mutex_unlock(&cpuset_mutex);
3853 }
3854 
3855 struct cgroup_subsys cpuset_cgrp_subsys = {
3856 	.css_alloc	= cpuset_css_alloc,
3857 	.css_online	= cpuset_css_online,
3858 	.css_offline	= cpuset_css_offline,
3859 	.css_killed	= cpuset_css_killed,
3860 	.css_free	= cpuset_css_free,
3861 	.can_attach	= cpuset_can_attach,
3862 	.cancel_attach	= cpuset_cancel_attach,
3863 	.attach		= cpuset_attach,
3864 	.bind		= cpuset_bind,
3865 	.can_fork	= cpuset_can_fork,
3866 	.cancel_fork	= cpuset_cancel_fork,
3867 	.fork		= cpuset_fork,
3868 #ifdef CONFIG_CPUSETS_V1
3869 	.legacy_cftypes	= cpuset1_files,
3870 #endif
3871 	.dfl_cftypes	= dfl_files,
3872 	.early_init	= true,
3873 	.threaded	= true,
3874 };
3875 
3876 /**
3877  * cpuset_init - initialize cpusets at system boot
3878  *
3879  * Description: Initialize top_cpuset
3880  **/
3881 
cpuset_init(void)3882 int __init cpuset_init(void)
3883 {
3884 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3885 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3886 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3887 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3888 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3889 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3890 
3891 	cpumask_setall(top_cpuset.cpus_allowed);
3892 	nodes_setall(top_cpuset.mems_allowed);
3893 	cpumask_setall(top_cpuset.effective_cpus);
3894 	cpumask_setall(top_cpuset.effective_xcpus);
3895 	cpumask_setall(top_cpuset.exclusive_cpus);
3896 	nodes_setall(top_cpuset.effective_mems);
3897 
3898 	fmeter_init(&top_cpuset.fmeter);
3899 
3900 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3901 
3902 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3903 	if (have_boot_isolcpus) {
3904 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3905 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3906 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3907 	}
3908 
3909 	return 0;
3910 }
3911 
3912 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3913 hotplug_update_tasks(struct cpuset *cs,
3914 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3915 		     bool cpus_updated, bool mems_updated)
3916 {
3917 	/* A partition root is allowed to have empty effective cpus */
3918 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3919 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3920 	if (nodes_empty(*new_mems))
3921 		*new_mems = parent_cs(cs)->effective_mems;
3922 
3923 	spin_lock_irq(&callback_lock);
3924 	cpumask_copy(cs->effective_cpus, new_cpus);
3925 	cs->effective_mems = *new_mems;
3926 	spin_unlock_irq(&callback_lock);
3927 
3928 	if (cpus_updated)
3929 		cpuset_update_tasks_cpumask(cs, new_cpus);
3930 	if (mems_updated)
3931 		cpuset_update_tasks_nodemask(cs);
3932 }
3933 
cpuset_force_rebuild(void)3934 void cpuset_force_rebuild(void)
3935 {
3936 	force_sd_rebuild = true;
3937 }
3938 
3939 /**
3940  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3941  * @cs: cpuset in interest
3942  * @tmp: the tmpmasks structure pointer
3943  *
3944  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3945  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3946  * all its tasks are moved to the nearest ancestor with both resources.
3947  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3948 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3949 {
3950 	static cpumask_t new_cpus;
3951 	static nodemask_t new_mems;
3952 	bool cpus_updated;
3953 	bool mems_updated;
3954 	bool remote;
3955 	int partcmd = -1;
3956 	struct cpuset *parent;
3957 retry:
3958 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3959 
3960 	mutex_lock(&cpuset_mutex);
3961 
3962 	/*
3963 	 * We have raced with task attaching. We wait until attaching
3964 	 * is finished, so we won't attach a task to an empty cpuset.
3965 	 */
3966 	if (cs->attach_in_progress) {
3967 		mutex_unlock(&cpuset_mutex);
3968 		goto retry;
3969 	}
3970 
3971 	parent = parent_cs(cs);
3972 	compute_effective_cpumask(&new_cpus, cs, parent);
3973 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3974 
3975 	if (!tmp || !cs->partition_root_state)
3976 		goto update_tasks;
3977 
3978 	/*
3979 	 * Compute effective_cpus for valid partition root, may invalidate
3980 	 * child partition roots if necessary.
3981 	 */
3982 	remote = is_remote_partition(cs);
3983 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3984 		compute_partition_effective_cpumask(cs, &new_cpus);
3985 
3986 	if (remote && (cpumask_empty(subpartitions_cpus) ||
3987 			(cpumask_empty(&new_cpus) &&
3988 			 partition_is_populated(cs, NULL)))) {
3989 		cs->prs_err = PERR_HOTPLUG;
3990 		remote_partition_disable(cs, tmp);
3991 		compute_effective_cpumask(&new_cpus, cs, parent);
3992 		remote = false;
3993 	}
3994 
3995 	/*
3996 	 * Force the partition to become invalid if either one of
3997 	 * the following conditions hold:
3998 	 * 1) empty effective cpus but not valid empty partition.
3999 	 * 2) parent is invalid or doesn't grant any cpus to child
4000 	 *    partitions.
4001 	 * 3) subpartitions_cpus is empty.
4002 	 */
4003 	if (is_local_partition(cs) &&
4004 	    (!is_partition_valid(parent) ||
4005 	     tasks_nocpu_error(parent, cs, &new_cpus) ||
4006 	     cpumask_empty(subpartitions_cpus)))
4007 		partcmd = partcmd_invalidate;
4008 	/*
4009 	 * On the other hand, an invalid partition root may be transitioned
4010 	 * back to a regular one with a non-empty effective xcpus.
4011 	 */
4012 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
4013 		 !cpumask_empty(cs->effective_xcpus))
4014 		partcmd = partcmd_update;
4015 
4016 	if (partcmd >= 0) {
4017 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4018 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4019 			compute_partition_effective_cpumask(cs, &new_cpus);
4020 			cpuset_force_rebuild();
4021 		}
4022 	}
4023 
4024 update_tasks:
4025 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4026 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4027 	if (!cpus_updated && !mems_updated)
4028 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4029 
4030 	if (mems_updated)
4031 		check_insane_mems_config(&new_mems);
4032 
4033 	if (is_in_v2_mode())
4034 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4035 				     cpus_updated, mems_updated);
4036 	else
4037 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4038 					    cpus_updated, mems_updated);
4039 
4040 unlock:
4041 	mutex_unlock(&cpuset_mutex);
4042 }
4043 
4044 /**
4045  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4046  *
4047  * This function is called after either CPU or memory configuration has
4048  * changed and updates cpuset accordingly.  The top_cpuset is always
4049  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4050  * order to make cpusets transparent (of no affect) on systems that are
4051  * actively using CPU hotplug but making no active use of cpusets.
4052  *
4053  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4054  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4055  * all descendants.
4056  *
4057  * Note that CPU offlining during suspend is ignored.  We don't modify
4058  * cpusets across suspend/resume cycles at all.
4059  *
4060  * CPU / memory hotplug is handled synchronously.
4061  */
cpuset_handle_hotplug(void)4062 static void cpuset_handle_hotplug(void)
4063 {
4064 	static cpumask_t new_cpus;
4065 	static nodemask_t new_mems;
4066 	bool cpus_updated, mems_updated;
4067 	bool on_dfl = is_in_v2_mode();
4068 	struct tmpmasks tmp, *ptmp = NULL;
4069 
4070 	if (on_dfl && !alloc_tmpmasks(&tmp))
4071 		ptmp = &tmp;
4072 
4073 	lockdep_assert_cpus_held();
4074 	mutex_lock(&cpuset_mutex);
4075 
4076 	/* fetch the available cpus/mems and find out which changed how */
4077 	cpumask_copy(&new_cpus, cpu_active_mask);
4078 	new_mems = node_states[N_MEMORY];
4079 
4080 	/*
4081 	 * If subpartitions_cpus is populated, it is likely that the check
4082 	 * below will produce a false positive on cpus_updated when the cpu
4083 	 * list isn't changed. It is extra work, but it is better to be safe.
4084 	 */
4085 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4086 		       !cpumask_empty(subpartitions_cpus);
4087 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4088 
4089 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4090 	if (cpus_updated) {
4091 		cpuset_force_rebuild();
4092 		spin_lock_irq(&callback_lock);
4093 		if (!on_dfl)
4094 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4095 		/*
4096 		 * Make sure that CPUs allocated to child partitions
4097 		 * do not show up in effective_cpus. If no CPU is left,
4098 		 * we clear the subpartitions_cpus & let the child partitions
4099 		 * fight for the CPUs again.
4100 		 */
4101 		if (!cpumask_empty(subpartitions_cpus)) {
4102 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4103 				cpumask_clear(subpartitions_cpus);
4104 			} else {
4105 				cpumask_andnot(&new_cpus, &new_cpus,
4106 					       subpartitions_cpus);
4107 			}
4108 		}
4109 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4110 		spin_unlock_irq(&callback_lock);
4111 		/* we don't mess with cpumasks of tasks in top_cpuset */
4112 	}
4113 
4114 	/* synchronize mems_allowed to N_MEMORY */
4115 	if (mems_updated) {
4116 		spin_lock_irq(&callback_lock);
4117 		if (!on_dfl)
4118 			top_cpuset.mems_allowed = new_mems;
4119 		top_cpuset.effective_mems = new_mems;
4120 		spin_unlock_irq(&callback_lock);
4121 		cpuset_update_tasks_nodemask(&top_cpuset);
4122 	}
4123 
4124 	mutex_unlock(&cpuset_mutex);
4125 
4126 	/* if cpus or mems changed, we need to propagate to descendants */
4127 	if (cpus_updated || mems_updated) {
4128 		struct cpuset *cs;
4129 		struct cgroup_subsys_state *pos_css;
4130 
4131 		rcu_read_lock();
4132 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4133 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4134 				continue;
4135 			rcu_read_unlock();
4136 
4137 			cpuset_hotplug_update_tasks(cs, ptmp);
4138 
4139 			rcu_read_lock();
4140 			css_put(&cs->css);
4141 		}
4142 		rcu_read_unlock();
4143 	}
4144 
4145 	/* rebuild sched domains if necessary */
4146 	if (force_sd_rebuild)
4147 		rebuild_sched_domains_cpuslocked();
4148 
4149 	free_tmpmasks(ptmp);
4150 }
4151 
cpuset_update_active_cpus(void)4152 void cpuset_update_active_cpus(void)
4153 {
4154 	/*
4155 	 * We're inside cpu hotplug critical region which usually nests
4156 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4157 	 * to a work item to avoid reverse locking order.
4158 	 */
4159 	cpuset_handle_hotplug();
4160 }
4161 
4162 /*
4163  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4164  * Call this routine anytime after node_states[N_MEMORY] changes.
4165  * See cpuset_update_active_cpus() for CPU hotplug handling.
4166  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)4167 static int cpuset_track_online_nodes(struct notifier_block *self,
4168 				unsigned long action, void *arg)
4169 {
4170 	cpuset_handle_hotplug();
4171 	return NOTIFY_OK;
4172 }
4173 
4174 /**
4175  * cpuset_init_smp - initialize cpus_allowed
4176  *
4177  * Description: Finish top cpuset after cpu, node maps are initialized
4178  */
cpuset_init_smp(void)4179 void __init cpuset_init_smp(void)
4180 {
4181 	/*
4182 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4183 	 * cpuset_bind() call will be reset to v1 values in another
4184 	 * cpuset_bind() call when v1 cpuset is mounted.
4185 	 */
4186 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4187 
4188 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4189 	top_cpuset.effective_mems = node_states[N_MEMORY];
4190 
4191 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4192 
4193 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4194 	BUG_ON(!cpuset_migrate_mm_wq);
4195 }
4196 
4197 /*
4198  * Return cpus_allowed mask from a task's cpuset.
4199  */
__cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4200 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4201 {
4202 	struct cpuset *cs;
4203 
4204 	cs = task_cs(tsk);
4205 	if (cs != &top_cpuset)
4206 		guarantee_active_cpus(tsk, pmask);
4207 	/*
4208 	 * Tasks in the top cpuset won't get update to their cpumasks
4209 	 * when a hotplug online/offline event happens. So we include all
4210 	 * offline cpus in the allowed cpu list.
4211 	 */
4212 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4213 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4214 
4215 		/*
4216 		 * We first exclude cpus allocated to partitions. If there is no
4217 		 * allowable online cpu left, we fall back to all possible cpus.
4218 		 */
4219 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4220 		if (!cpumask_intersects(pmask, cpu_active_mask))
4221 			cpumask_copy(pmask, possible_mask);
4222 	}
4223 }
4224 
4225 /**
4226  * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4227  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4228  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4229  *
4230  * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4231  * cpuset_mutex.
4232  */
cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4233 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4234 {
4235 	lockdep_assert_held(&cpuset_mutex);
4236 	__cpuset_cpus_allowed_locked(tsk, pmask);
4237 }
4238 
4239 /**
4240  * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4241  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4242  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4243  *
4244  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4245  * attached to the specified @tsk.  Guaranteed to return some non-empty
4246  * subset of cpu_active_mask, even if this means going outside the
4247  * tasks cpuset, except when the task is in the top cpuset.
4248  **/
4249 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)4250 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4251 {
4252 	unsigned long flags;
4253 
4254 	spin_lock_irqsave(&callback_lock, flags);
4255 	__cpuset_cpus_allowed_locked(tsk, pmask);
4256 	spin_unlock_irqrestore(&callback_lock, flags);
4257 }
4258 
4259 /**
4260  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4261  * @tsk: pointer to task_struct with which the scheduler is struggling
4262  *
4263  * Description: In the case that the scheduler cannot find an allowed cpu in
4264  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4265  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4266  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4267  * This is the absolute last resort for the scheduler and it is only used if
4268  * _every_ other avenue has been traveled.
4269  *
4270  * Returns true if the affinity of @tsk was changed, false otherwise.
4271  **/
4272 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)4273 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4274 {
4275 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4276 	const struct cpumask *cs_mask;
4277 	bool changed = false;
4278 
4279 	rcu_read_lock();
4280 	cs_mask = task_cs(tsk)->cpus_allowed;
4281 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4282 		set_cpus_allowed_force(tsk, cs_mask);
4283 		changed = true;
4284 	}
4285 	rcu_read_unlock();
4286 
4287 	/*
4288 	 * We own tsk->cpus_allowed, nobody can change it under us.
4289 	 *
4290 	 * But we used cs && cs->cpus_allowed lockless and thus can
4291 	 * race with cgroup_attach_task() or update_cpumask() and get
4292 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4293 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4294 	 * which takes task_rq_lock().
4295 	 *
4296 	 * If we are called after it dropped the lock we must see all
4297 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4298 	 * set any mask even if it is not right from task_cs() pov,
4299 	 * the pending set_cpus_allowed_ptr() will fix things.
4300 	 *
4301 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4302 	 * if required.
4303 	 */
4304 	return changed;
4305 }
4306 
cpuset_init_current_mems_allowed(void)4307 void __init cpuset_init_current_mems_allowed(void)
4308 {
4309 	nodes_setall(current->mems_allowed);
4310 }
4311 
4312 /**
4313  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4314  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4315  *
4316  * Description: Returns the nodemask_t mems_allowed of the cpuset
4317  * attached to the specified @tsk.  Guaranteed to return some non-empty
4318  * subset of node_states[N_MEMORY], even if this means going outside the
4319  * tasks cpuset.
4320  **/
4321 
cpuset_mems_allowed(struct task_struct * tsk)4322 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4323 {
4324 	nodemask_t mask;
4325 	unsigned long flags;
4326 
4327 	spin_lock_irqsave(&callback_lock, flags);
4328 	guarantee_online_mems(task_cs(tsk), &mask);
4329 	spin_unlock_irqrestore(&callback_lock, flags);
4330 
4331 	return mask;
4332 }
4333 
4334 /**
4335  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4336  * @nodemask: the nodemask to be checked
4337  *
4338  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4339  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4340 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4341 {
4342 	return nodes_intersects(*nodemask, current->mems_allowed);
4343 }
4344 
4345 /*
4346  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4347  * mem_hardwall ancestor to the specified cpuset.  Call holding
4348  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4349  * (an unusual configuration), then returns the root cpuset.
4350  */
nearest_hardwall_ancestor(struct cpuset * cs)4351 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4352 {
4353 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4354 		cs = parent_cs(cs);
4355 	return cs;
4356 }
4357 
4358 /*
4359  * cpuset_current_node_allowed - Can current task allocate on a memory node?
4360  * @node: is this an allowed node?
4361  * @gfp_mask: memory allocation flags
4362  *
4363  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4364  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4365  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4366  * yes.  If current has access to memory reserves as an oom victim, yes.
4367  * Otherwise, no.
4368  *
4369  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4370  * and do not allow allocations outside the current tasks cpuset
4371  * unless the task has been OOM killed.
4372  * GFP_KERNEL allocations are not so marked, so can escape to the
4373  * nearest enclosing hardwalled ancestor cpuset.
4374  *
4375  * Scanning up parent cpusets requires callback_lock.  The
4376  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4377  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4378  * current tasks mems_allowed came up empty on the first pass over
4379  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4380  * cpuset are short of memory, might require taking the callback_lock.
4381  *
4382  * The first call here from mm/page_alloc:get_page_from_freelist()
4383  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4384  * so no allocation on a node outside the cpuset is allowed (unless
4385  * in interrupt, of course).
4386  *
4387  * The second pass through get_page_from_freelist() doesn't even call
4388  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4389  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4390  * in alloc_flags.  That logic and the checks below have the combined
4391  * affect that:
4392  *	in_interrupt - any node ok (current task context irrelevant)
4393  *	GFP_ATOMIC   - any node ok
4394  *	tsk_is_oom_victim   - any node ok
4395  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4396  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4397  */
cpuset_current_node_allowed(int node,gfp_t gfp_mask)4398 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4399 {
4400 	struct cpuset *cs;		/* current cpuset ancestors */
4401 	bool allowed;			/* is allocation in zone z allowed? */
4402 	unsigned long flags;
4403 
4404 	if (in_interrupt())
4405 		return true;
4406 	if (node_isset(node, current->mems_allowed))
4407 		return true;
4408 	/*
4409 	 * Allow tasks that have access to memory reserves because they have
4410 	 * been OOM killed to get memory anywhere.
4411 	 */
4412 	if (unlikely(tsk_is_oom_victim(current)))
4413 		return true;
4414 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4415 		return false;
4416 
4417 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4418 		return true;
4419 
4420 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4421 	spin_lock_irqsave(&callback_lock, flags);
4422 
4423 	cs = nearest_hardwall_ancestor(task_cs(current));
4424 	allowed = node_isset(node, cs->mems_allowed);
4425 
4426 	spin_unlock_irqrestore(&callback_lock, flags);
4427 	return allowed;
4428 }
4429 
cpuset_node_allowed(struct cgroup * cgroup,int nid)4430 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4431 {
4432 	struct cgroup_subsys_state *css;
4433 	struct cpuset *cs;
4434 	bool allowed;
4435 
4436 	/*
4437 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4438 	 * and mems_allowed is likely to be empty even if we could get to it,
4439 	 * so return true to avoid taking a global lock on the empty check.
4440 	 */
4441 	if (!cpuset_v2())
4442 		return true;
4443 
4444 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4445 	if (!css)
4446 		return true;
4447 
4448 	/*
4449 	 * Normally, accessing effective_mems would require the cpuset_mutex
4450 	 * or callback_lock - but node_isset is atomic and the reference
4451 	 * taken via cgroup_get_e_css is sufficient to protect css.
4452 	 *
4453 	 * Since this interface is intended for use by migration paths, we
4454 	 * relax locking here to avoid taking global locks - while accepting
4455 	 * there may be rare scenarios where the result may be innaccurate.
4456 	 *
4457 	 * Reclaim and migration are subject to these same race conditions, and
4458 	 * cannot make strong isolation guarantees, so this is acceptable.
4459 	 */
4460 	cs = container_of(css, struct cpuset, css);
4461 	allowed = node_isset(nid, cs->effective_mems);
4462 	css_put(css);
4463 	return allowed;
4464 }
4465 
4466 /**
4467  * cpuset_spread_node() - On which node to begin search for a page
4468  * @rotor: round robin rotor
4469  *
4470  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4471  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4472  * and if the memory allocation used cpuset_mem_spread_node()
4473  * to determine on which node to start looking, as it will for
4474  * certain page cache or slab cache pages such as used for file
4475  * system buffers and inode caches, then instead of starting on the
4476  * local node to look for a free page, rather spread the starting
4477  * node around the tasks mems_allowed nodes.
4478  *
4479  * We don't have to worry about the returned node being offline
4480  * because "it can't happen", and even if it did, it would be ok.
4481  *
4482  * The routines calling guarantee_online_mems() are careful to
4483  * only set nodes in task->mems_allowed that are online.  So it
4484  * should not be possible for the following code to return an
4485  * offline node.  But if it did, that would be ok, as this routine
4486  * is not returning the node where the allocation must be, only
4487  * the node where the search should start.  The zonelist passed to
4488  * __alloc_pages() will include all nodes.  If the slab allocator
4489  * is passed an offline node, it will fall back to the local node.
4490  * See kmem_cache_alloc_node().
4491  */
cpuset_spread_node(int * rotor)4492 static int cpuset_spread_node(int *rotor)
4493 {
4494 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4495 }
4496 
4497 /**
4498  * cpuset_mem_spread_node() - On which node to begin search for a file page
4499  */
cpuset_mem_spread_node(void)4500 int cpuset_mem_spread_node(void)
4501 {
4502 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4503 		current->cpuset_mem_spread_rotor =
4504 			node_random(&current->mems_allowed);
4505 
4506 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4507 }
4508 
4509 /**
4510  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4511  * @tsk1: pointer to task_struct of some task.
4512  * @tsk2: pointer to task_struct of some other task.
4513  *
4514  * Description: Return true if @tsk1's mems_allowed intersects the
4515  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4516  * one of the task's memory usage might impact the memory available
4517  * to the other.
4518  **/
4519 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4520 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4521 				   const struct task_struct *tsk2)
4522 {
4523 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4524 }
4525 
4526 /**
4527  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4528  *
4529  * Description: Prints current's name, cpuset name, and cached copy of its
4530  * mems_allowed to the kernel log.
4531  */
cpuset_print_current_mems_allowed(void)4532 void cpuset_print_current_mems_allowed(void)
4533 {
4534 	struct cgroup *cgrp;
4535 
4536 	rcu_read_lock();
4537 
4538 	cgrp = task_cs(current)->css.cgroup;
4539 	pr_cont(",cpuset=");
4540 	pr_cont_cgroup_name(cgrp);
4541 	pr_cont(",mems_allowed=%*pbl",
4542 		nodemask_pr_args(&current->mems_allowed));
4543 
4544 	rcu_read_unlock();
4545 }
4546 
4547 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4548 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4549 {
4550 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4551 		   nodemask_pr_args(&task->mems_allowed));
4552 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4553 		   nodemask_pr_args(&task->mems_allowed));
4554 }
4555