1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/fs_struct.h>
13 #include <linux/pagemap.h>
14 #include <linux/highmem.h>
15 #include <linux/time.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/xattr.h>
22 #include <linux/posix_acl.h>
23 #include <linux/falloc.h>
24 #include <linux/slab.h>
25 #include <linux/ratelimit.h>
26 #include <linux/btrfs.h>
27 #include <linux/blkdev.h>
28 #include <linux/posix_acl_xattr.h>
29 #include <linux/uio.h>
30 #include <linux/magic.h>
31 #include <linux/iversion.h>
32 #include <linux/swap.h>
33 #include <linux/migrate.h>
34 #include <linux/sched/mm.h>
35 #include <linux/iomap.h>
36 #include <linux/unaligned.h>
37 #include <linux/fsverity.h>
38 #include "misc.h"
39 #include "ctree.h"
40 #include "disk-io.h"
41 #include "transaction.h"
42 #include "btrfs_inode.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56 #include "inode-item.h"
57 #include "fs.h"
58 #include "accessors.h"
59 #include "extent-tree.h"
60 #include "root-tree.h"
61 #include "defrag.h"
62 #include "dir-item.h"
63 #include "file-item.h"
64 #include "uuid-tree.h"
65 #include "ioctl.h"
66 #include "file.h"
67 #include "acl.h"
68 #include "relocation.h"
69 #include "verity.h"
70 #include "super.h"
71 #include "orphan.h"
72 #include "backref.h"
73 #include "raid-stripe-tree.h"
74 #include "fiemap.h"
75 #include "delayed-inode.h"
76
77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0)
78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1)
79
80 struct btrfs_iget_args {
81 u64 ino;
82 struct btrfs_root *root;
83 };
84
85 struct btrfs_rename_ctx {
86 /* Output field. Stores the index number of the old directory entry. */
87 u64 index;
88 };
89
90 /*
91 * Used by data_reloc_print_warning_inode() to pass needed info for filename
92 * resolution and output of error message.
93 */
94 struct data_reloc_warn {
95 struct btrfs_path path;
96 struct btrfs_fs_info *fs_info;
97 u64 extent_item_size;
98 u64 logical;
99 int mirror_num;
100 };
101
102 /*
103 * For the file_extent_tree, we want to hold the inode lock when we lookup and
104 * update the disk_i_size, but lockdep will complain because our io_tree we hold
105 * the tree lock and get the inode lock when setting delalloc. These two things
106 * are unrelated, so make a class for the file_extent_tree so we don't get the
107 * two locking patterns mixed up.
108 */
109 static struct lock_class_key file_extent_tree_class;
110
111 static const struct inode_operations btrfs_dir_inode_operations;
112 static const struct inode_operations btrfs_symlink_inode_operations;
113 static const struct inode_operations btrfs_special_inode_operations;
114 static const struct inode_operations btrfs_file_inode_operations;
115 static const struct address_space_operations btrfs_aops;
116 static const struct file_operations btrfs_dir_file_operations;
117
118 static struct kmem_cache *btrfs_inode_cachep;
119
120 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
122
123 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
124 struct folio *locked_folio, u64 start,
125 u64 end, struct writeback_control *wbc,
126 bool pages_dirty);
127
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
129 u64 root, void *warn_ctx)
130 {
131 struct data_reloc_warn *warn = warn_ctx;
132 struct btrfs_fs_info *fs_info = warn->fs_info;
133 struct extent_buffer *eb;
134 struct btrfs_inode_item *inode_item;
135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
136 struct btrfs_root *local_root;
137 struct btrfs_key key;
138 unsigned int nofs_flag;
139 u32 nlink;
140 int ret;
141
142 local_root = btrfs_get_fs_root(fs_info, root, true);
143 if (IS_ERR(local_root)) {
144 ret = PTR_ERR(local_root);
145 goto err;
146 }
147
148 /* This makes the path point to (inum INODE_ITEM ioff). */
149 key.objectid = inum;
150 key.type = BTRFS_INODE_ITEM_KEY;
151 key.offset = 0;
152
153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
154 if (ret) {
155 btrfs_put_root(local_root);
156 btrfs_release_path(&warn->path);
157 goto err;
158 }
159
160 eb = warn->path.nodes[0];
161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
162 nlink = btrfs_inode_nlink(eb, inode_item);
163 btrfs_release_path(&warn->path);
164
165 nofs_flag = memalloc_nofs_save();
166 ipath = init_ipath(4096, local_root, &warn->path);
167 memalloc_nofs_restore(nofs_flag);
168 if (IS_ERR(ipath)) {
169 btrfs_put_root(local_root);
170 ret = PTR_ERR(ipath);
171 ipath = NULL;
172 /*
173 * -ENOMEM, not a critical error, just output an generic error
174 * without filename.
175 */
176 btrfs_warn(fs_info,
177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
178 warn->logical, warn->mirror_num, root, inum, offset);
179 return ret;
180 }
181 ret = paths_from_inode(inum, ipath);
182 if (ret < 0) {
183 btrfs_put_root(local_root);
184 goto err;
185 }
186
187 /*
188 * We deliberately ignore the bit ipath might have been too small to
189 * hold all of the paths here
190 */
191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
192 btrfs_warn(fs_info,
193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
194 warn->logical, warn->mirror_num, root, inum, offset,
195 fs_info->sectorsize, nlink,
196 (char *)(unsigned long)ipath->fspath->val[i]);
197 }
198
199 btrfs_put_root(local_root);
200 return 0;
201
202 err:
203 btrfs_warn(fs_info,
204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
205 warn->logical, warn->mirror_num, root, inum, offset, ret);
206
207 return ret;
208 }
209
210 /*
211 * Do extra user-friendly error output (e.g. lookup all the affected files).
212 *
213 * Return true if we succeeded doing the backref lookup.
214 * Return false if such lookup failed, and has to fallback to the old error message.
215 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
217 const u8 *csum, const u8 *csum_expected,
218 int mirror_num)
219 {
220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
221 struct btrfs_path path = { 0 };
222 struct btrfs_key found_key = { 0 };
223 struct extent_buffer *eb;
224 struct btrfs_extent_item *ei;
225 const u32 csum_size = fs_info->csum_size;
226 u64 logical;
227 u64 flags;
228 u32 item_size;
229 int ret;
230
231 mutex_lock(&fs_info->reloc_mutex);
232 logical = btrfs_get_reloc_bg_bytenr(fs_info);
233 mutex_unlock(&fs_info->reloc_mutex);
234
235 if (logical == U64_MAX) {
236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
237 btrfs_warn_rl(fs_info,
238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
240 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
242 mirror_num);
243 return;
244 }
245
246 logical += file_off;
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
249 btrfs_root_id(inode->root),
250 btrfs_ino(inode), file_off, logical,
251 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
253 mirror_num);
254
255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
256 if (ret < 0) {
257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
258 logical, ret);
259 btrfs_release_path(&path);
260 return;
261 }
262 eb = path.nodes[0];
263 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
264 item_size = btrfs_item_size(eb, path.slots[0]);
265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
266 unsigned long ptr = 0;
267 u64 ref_root;
268 u8 ref_level;
269
270 while (true) {
271 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
272 item_size, &ref_root,
273 &ref_level);
274 if (ret < 0) {
275 btrfs_warn_rl(fs_info,
276 "failed to resolve tree backref for logical %llu: %d",
277 logical, ret);
278 break;
279 }
280 if (ret > 0)
281 break;
282
283 btrfs_warn_rl(fs_info,
284 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
285 logical, mirror_num,
286 (ref_level ? "node" : "leaf"),
287 ref_level, ref_root);
288 }
289 btrfs_release_path(&path);
290 } else {
291 struct btrfs_backref_walk_ctx ctx = { 0 };
292 struct data_reloc_warn reloc_warn = { 0 };
293
294 btrfs_release_path(&path);
295
296 ctx.bytenr = found_key.objectid;
297 ctx.extent_item_pos = logical - found_key.objectid;
298 ctx.fs_info = fs_info;
299
300 reloc_warn.logical = logical;
301 reloc_warn.extent_item_size = found_key.offset;
302 reloc_warn.mirror_num = mirror_num;
303 reloc_warn.fs_info = fs_info;
304
305 iterate_extent_inodes(&ctx, true,
306 data_reloc_print_warning_inode, &reloc_warn);
307 }
308 }
309
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)310 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
311 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
312 {
313 struct btrfs_root *root = inode->root;
314 const u32 csum_size = root->fs_info->csum_size;
315
316 /* For data reloc tree, it's better to do a backref lookup instead. */
317 if (btrfs_is_data_reloc_root(root))
318 return print_data_reloc_error(inode, logical_start, csum,
319 csum_expected, mirror_num);
320
321 /* Output without objectid, which is more meaningful */
322 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
323 btrfs_warn_rl(root->fs_info,
324 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
325 btrfs_root_id(root), btrfs_ino(inode),
326 logical_start,
327 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
328 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
329 mirror_num);
330 } else {
331 btrfs_warn_rl(root->fs_info,
332 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
333 btrfs_root_id(root), btrfs_ino(inode),
334 logical_start,
335 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
336 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
337 mirror_num);
338 }
339 }
340
341 /*
342 * Lock inode i_rwsem based on arguments passed.
343 *
344 * ilock_flags can have the following bit set:
345 *
346 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
347 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
348 * return -EAGAIN
349 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
350 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)351 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
352 {
353 if (ilock_flags & BTRFS_ILOCK_SHARED) {
354 if (ilock_flags & BTRFS_ILOCK_TRY) {
355 if (!inode_trylock_shared(&inode->vfs_inode))
356 return -EAGAIN;
357 else
358 return 0;
359 }
360 inode_lock_shared(&inode->vfs_inode);
361 } else {
362 if (ilock_flags & BTRFS_ILOCK_TRY) {
363 if (!inode_trylock(&inode->vfs_inode))
364 return -EAGAIN;
365 else
366 return 0;
367 }
368 inode_lock(&inode->vfs_inode);
369 }
370 if (ilock_flags & BTRFS_ILOCK_MMAP)
371 down_write(&inode->i_mmap_lock);
372 return 0;
373 }
374
375 /*
376 * Unlock inode i_rwsem.
377 *
378 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
379 * to decide whether the lock acquired is shared or exclusive.
380 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)381 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
382 {
383 if (ilock_flags & BTRFS_ILOCK_MMAP)
384 up_write(&inode->i_mmap_lock);
385 if (ilock_flags & BTRFS_ILOCK_SHARED)
386 inode_unlock_shared(&inode->vfs_inode);
387 else
388 inode_unlock(&inode->vfs_inode);
389 }
390
391 /*
392 * Cleanup all submitted ordered extents in specified range to handle errors
393 * from the btrfs_run_delalloc_range() callback.
394 *
395 * NOTE: caller must ensure that when an error happens, it can not call
396 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
397 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
398 * to be released, which we want to happen only when finishing the ordered
399 * extent (btrfs_finish_ordered_io()).
400 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)401 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
402 u64 offset, u64 bytes)
403 {
404 pgoff_t index = offset >> PAGE_SHIFT;
405 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
406 struct folio *folio;
407
408 while (index <= end_index) {
409 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
410 if (IS_ERR(folio)) {
411 index++;
412 continue;
413 }
414
415 index = folio_next_index(folio);
416 /*
417 * Here we just clear all Ordered bits for every page in the
418 * range, then btrfs_mark_ordered_io_finished() will handle
419 * the ordered extent accounting for the range.
420 */
421 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
422 offset, bytes);
423 folio_put(folio);
424 }
425
426 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
427 }
428
429 static int btrfs_dirty_inode(struct btrfs_inode *inode);
430
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)431 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
432 struct btrfs_new_inode_args *args)
433 {
434 int ret;
435
436 if (args->default_acl) {
437 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
438 ACL_TYPE_DEFAULT);
439 if (ret)
440 return ret;
441 }
442 if (args->acl) {
443 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
444 if (ret)
445 return ret;
446 }
447 if (!args->default_acl && !args->acl)
448 cache_no_acl(args->inode);
449 return btrfs_xattr_security_init(trans, args->inode, args->dir,
450 &args->dentry->d_name);
451 }
452
453 /*
454 * this does all the hard work for inserting an inline extent into
455 * the btree. The caller should have done a btrfs_drop_extents so that
456 * no overlapping inline items exist in the btree
457 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)458 static int insert_inline_extent(struct btrfs_trans_handle *trans,
459 struct btrfs_path *path,
460 struct btrfs_inode *inode, bool extent_inserted,
461 size_t size, size_t compressed_size,
462 int compress_type,
463 struct folio *compressed_folio,
464 bool update_i_size)
465 {
466 struct btrfs_root *root = inode->root;
467 struct extent_buffer *leaf;
468 const u32 sectorsize = trans->fs_info->sectorsize;
469 char *kaddr;
470 unsigned long ptr;
471 struct btrfs_file_extent_item *ei;
472 int ret;
473 size_t cur_size = size;
474 u64 i_size;
475
476 /*
477 * The decompressed size must still be no larger than a sector. Under
478 * heavy race, we can have size == 0 passed in, but that shouldn't be a
479 * big deal and we can continue the insertion.
480 */
481 ASSERT(size <= sectorsize);
482
483 /*
484 * The compressed size also needs to be no larger than a page.
485 * That's also why we only need one folio as the parameter.
486 */
487 if (compressed_folio) {
488 ASSERT(compressed_size <= sectorsize);
489 ASSERT(compressed_size <= PAGE_SIZE);
490 } else {
491 ASSERT(compressed_size == 0);
492 }
493
494 if (compressed_size && compressed_folio)
495 cur_size = compressed_size;
496
497 if (!extent_inserted) {
498 struct btrfs_key key;
499 size_t datasize;
500
501 key.objectid = btrfs_ino(inode);
502 key.type = BTRFS_EXTENT_DATA_KEY;
503 key.offset = 0;
504
505 datasize = btrfs_file_extent_calc_inline_size(cur_size);
506 ret = btrfs_insert_empty_item(trans, root, path, &key,
507 datasize);
508 if (ret)
509 goto fail;
510 }
511 leaf = path->nodes[0];
512 ei = btrfs_item_ptr(leaf, path->slots[0],
513 struct btrfs_file_extent_item);
514 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
515 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
516 btrfs_set_file_extent_encryption(leaf, ei, 0);
517 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
518 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
519 ptr = btrfs_file_extent_inline_start(ei);
520
521 if (compress_type != BTRFS_COMPRESS_NONE) {
522 kaddr = kmap_local_folio(compressed_folio, 0);
523 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
524 kunmap_local(kaddr);
525
526 btrfs_set_file_extent_compression(leaf, ei,
527 compress_type);
528 } else {
529 struct folio *folio;
530
531 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
532 ASSERT(!IS_ERR(folio));
533 btrfs_set_file_extent_compression(leaf, ei, 0);
534 kaddr = kmap_local_folio(folio, 0);
535 write_extent_buffer(leaf, kaddr, ptr, size);
536 kunmap_local(kaddr);
537 folio_put(folio);
538 }
539 btrfs_release_path(path);
540
541 /*
542 * We align size to sectorsize for inline extents just for simplicity
543 * sake.
544 */
545 ret = btrfs_inode_set_file_extent_range(inode, 0,
546 ALIGN(size, root->fs_info->sectorsize));
547 if (ret)
548 goto fail;
549
550 /*
551 * We're an inline extent, so nobody can extend the file past i_size
552 * without locking a page we already have locked.
553 *
554 * We must do any i_size and inode updates before we unlock the pages.
555 * Otherwise we could end up racing with unlink.
556 */
557 i_size = i_size_read(&inode->vfs_inode);
558 if (update_i_size && size > i_size) {
559 i_size_write(&inode->vfs_inode, size);
560 i_size = size;
561 }
562 inode->disk_i_size = i_size;
563
564 fail:
565 return ret;
566 }
567
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)568 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
569 u64 offset, u64 size,
570 size_t compressed_size)
571 {
572 struct btrfs_fs_info *fs_info = inode->root->fs_info;
573 u64 data_len = (compressed_size ?: size);
574
575 /* Inline extents must start at offset 0. */
576 if (offset != 0)
577 return false;
578
579 /*
580 * Even for bs > ps cases, cow_file_range_inline() can only accept a
581 * single folio.
582 *
583 * This can be problematic and cause access beyond page boundary if a
584 * page sized folio is passed into that function.
585 * And encoded write is doing exactly that.
586 * So here limits the inlined extent size to PAGE_SIZE.
587 */
588 if (size > PAGE_SIZE || compressed_size > PAGE_SIZE)
589 return false;
590
591 /* Inline extents are limited to sectorsize. */
592 if (size > fs_info->sectorsize)
593 return false;
594
595 /* We do not allow a non-compressed extent to be as large as block size. */
596 if (data_len >= fs_info->sectorsize)
597 return false;
598
599 /* We cannot exceed the maximum inline data size. */
600 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
601 return false;
602
603 /* We cannot exceed the user specified max_inline size. */
604 if (data_len > fs_info->max_inline)
605 return false;
606
607 /* Inline extents must be the entirety of the file. */
608 if (size < i_size_read(&inode->vfs_inode))
609 return false;
610
611 /* Encrypted file cannot be inlined. */
612 if (IS_ENCRYPTED(&inode->vfs_inode))
613 return false;
614
615 return true;
616 }
617
618 /*
619 * conditionally insert an inline extent into the file. This
620 * does the checks required to make sure the data is small enough
621 * to fit as an inline extent.
622 *
623 * If being used directly, you must have already checked we're allowed to cow
624 * the range by getting true from can_cow_file_range_inline().
625 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)626 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
627 u64 size, size_t compressed_size,
628 int compress_type,
629 struct folio *compressed_folio,
630 bool update_i_size)
631 {
632 struct btrfs_drop_extents_args drop_args = { 0 };
633 struct btrfs_root *root = inode->root;
634 struct btrfs_fs_info *fs_info = root->fs_info;
635 struct btrfs_trans_handle *trans = NULL;
636 u64 data_len = (compressed_size ?: size);
637 int ret;
638 struct btrfs_path *path;
639
640 path = btrfs_alloc_path();
641 if (!path) {
642 ret = -ENOMEM;
643 goto out;
644 }
645
646 trans = btrfs_join_transaction(root);
647 if (IS_ERR(trans)) {
648 ret = PTR_ERR(trans);
649 trans = NULL;
650 goto out;
651 }
652 trans->block_rsv = &inode->block_rsv;
653
654 drop_args.path = path;
655 drop_args.start = 0;
656 drop_args.end = fs_info->sectorsize;
657 drop_args.drop_cache = true;
658 drop_args.replace_extent = true;
659 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
660 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
661 if (unlikely(ret)) {
662 btrfs_abort_transaction(trans, ret);
663 goto out;
664 }
665
666 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
667 size, compressed_size, compress_type,
668 compressed_folio, update_i_size);
669 if (unlikely(ret && ret != -ENOSPC)) {
670 btrfs_abort_transaction(trans, ret);
671 goto out;
672 } else if (ret == -ENOSPC) {
673 ret = 1;
674 goto out;
675 }
676
677 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
678 ret = btrfs_update_inode(trans, inode);
679 if (unlikely(ret && ret != -ENOSPC)) {
680 btrfs_abort_transaction(trans, ret);
681 goto out;
682 } else if (ret == -ENOSPC) {
683 ret = 1;
684 goto out;
685 }
686
687 btrfs_set_inode_full_sync(inode);
688 out:
689 /*
690 * Don't forget to free the reserved space, as for inlined extent
691 * it won't count as data extent, free them directly here.
692 * And at reserve time, it's always aligned to page size, so
693 * just free one page here.
694 *
695 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need
696 * to keep the data reservation.
697 */
698 if (ret <= 0)
699 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
700 btrfs_free_path(path);
701 if (trans)
702 btrfs_end_transaction(trans);
703 return ret;
704 }
705
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)706 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
707 struct folio *locked_folio,
708 u64 offset, u64 end,
709 size_t compressed_size,
710 int compress_type,
711 struct folio *compressed_folio,
712 bool update_i_size)
713 {
714 struct extent_state *cached = NULL;
715 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
716 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
717 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
718 int ret;
719
720 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
721 return 1;
722
723 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
724 ret = __cow_file_range_inline(inode, size, compressed_size,
725 compress_type, compressed_folio,
726 update_i_size);
727 if (ret > 0) {
728 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
729 return ret;
730 }
731
732 /*
733 * In the successful case (ret == 0 here), cow_file_range will return 1.
734 *
735 * Quite a bit further up the callstack in extent_writepage(), ret == 1
736 * is treated as a short circuited success and does not unlock the folio,
737 * so we must do it here.
738 *
739 * In the failure case, the locked_folio does get unlocked by
740 * btrfs_folio_end_all_writers, which asserts that it is still locked
741 * at that point, so we must *not* unlock it here.
742 *
743 * The other two callsites in compress_file_range do not have a
744 * locked_folio, so they are not relevant to this logic.
745 */
746 if (ret == 0)
747 locked_folio = NULL;
748
749 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
750 clear_flags, PAGE_UNLOCK |
751 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
752 return ret;
753 }
754
755 struct async_extent {
756 u64 start;
757 u64 ram_size;
758 u64 compressed_size;
759 struct folio **folios;
760 unsigned long nr_folios;
761 int compress_type;
762 struct list_head list;
763 };
764
765 struct async_chunk {
766 struct btrfs_inode *inode;
767 struct folio *locked_folio;
768 u64 start;
769 u64 end;
770 blk_opf_t write_flags;
771 struct list_head extents;
772 struct cgroup_subsys_state *blkcg_css;
773 struct btrfs_work work;
774 struct async_cow *async_cow;
775 };
776
777 struct async_cow {
778 atomic_t num_chunks;
779 struct async_chunk chunks[];
780 };
781
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)782 static noinline int add_async_extent(struct async_chunk *cow,
783 u64 start, u64 ram_size,
784 u64 compressed_size,
785 struct folio **folios,
786 unsigned long nr_folios,
787 int compress_type)
788 {
789 struct async_extent *async_extent;
790
791 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
792 if (!async_extent)
793 return -ENOMEM;
794 async_extent->start = start;
795 async_extent->ram_size = ram_size;
796 async_extent->compressed_size = compressed_size;
797 async_extent->folios = folios;
798 async_extent->nr_folios = nr_folios;
799 async_extent->compress_type = compress_type;
800 list_add_tail(&async_extent->list, &cow->extents);
801 return 0;
802 }
803
804 /*
805 * Check if the inode needs to be submitted to compression, based on mount
806 * options, defragmentation, properties or heuristics.
807 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)808 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
809 u64 end)
810 {
811 struct btrfs_fs_info *fs_info = inode->root->fs_info;
812
813 if (!btrfs_inode_can_compress(inode)) {
814 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
815 return 0;
816 }
817
818 /* Defrag ioctl takes precedence over mount options and properties. */
819 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
820 return 0;
821 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
822 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
823 return 1;
824 /* force compress */
825 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
826 return 1;
827 /* bad compression ratios */
828 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
829 return 0;
830 if (btrfs_test_opt(fs_info, COMPRESS) ||
831 inode->flags & BTRFS_INODE_COMPRESS ||
832 inode->prop_compress)
833 return btrfs_compress_heuristic(inode, start, end);
834 return 0;
835 }
836
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)837 static inline void inode_should_defrag(struct btrfs_inode *inode,
838 u64 start, u64 end, u64 num_bytes, u32 small_write)
839 {
840 /* If this is a small write inside eof, kick off a defrag */
841 if (num_bytes < small_write &&
842 (start > 0 || end + 1 < inode->disk_i_size))
843 btrfs_add_inode_defrag(inode, small_write);
844 }
845
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)846 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
847 {
848 const pgoff_t end_index = end >> PAGE_SHIFT;
849 struct folio *folio;
850 int ret = 0;
851
852 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
853 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
854 if (IS_ERR(folio)) {
855 if (!ret)
856 ret = PTR_ERR(folio);
857 continue;
858 }
859 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
860 end + 1 - start);
861 folio_put(folio);
862 }
863 return ret;
864 }
865
866 /*
867 * Work queue call back to started compression on a file and pages.
868 *
869 * This is done inside an ordered work queue, and the compression is spread
870 * across many cpus. The actual IO submission is step two, and the ordered work
871 * queue takes care of making sure that happens in the same order things were
872 * put onto the queue by writepages and friends.
873 *
874 * If this code finds it can't get good compression, it puts an entry onto the
875 * work queue to write the uncompressed bytes. This makes sure that both
876 * compressed inodes and uncompressed inodes are written in the same order that
877 * the flusher thread sent them down.
878 */
compress_file_range(struct btrfs_work * work)879 static void compress_file_range(struct btrfs_work *work)
880 {
881 struct async_chunk *async_chunk =
882 container_of(work, struct async_chunk, work);
883 struct btrfs_inode *inode = async_chunk->inode;
884 struct btrfs_fs_info *fs_info = inode->root->fs_info;
885 struct address_space *mapping = inode->vfs_inode.i_mapping;
886 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
887 const u32 min_folio_size = btrfs_min_folio_size(fs_info);
888 u64 blocksize = fs_info->sectorsize;
889 u64 start = async_chunk->start;
890 u64 end = async_chunk->end;
891 u64 actual_end;
892 u64 i_size;
893 int ret = 0;
894 struct folio **folios = NULL;
895 unsigned long nr_folios;
896 unsigned long total_compressed = 0;
897 unsigned long total_in = 0;
898 unsigned int loff;
899 int i;
900 int compress_type = fs_info->compress_type;
901 int compress_level = fs_info->compress_level;
902
903 if (unlikely(btrfs_is_shutdown(fs_info)))
904 goto cleanup_and_bail_uncompressed;
905
906 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
907
908 /*
909 * We need to call clear_page_dirty_for_io on each page in the range.
910 * Otherwise applications with the file mmap'd can wander in and change
911 * the page contents while we are compressing them.
912 */
913 ret = extent_range_clear_dirty_for_io(inode, start, end);
914
915 /*
916 * All the folios should have been locked thus no failure.
917 *
918 * And even if some folios are missing, btrfs_compress_folios()
919 * would handle them correctly, so here just do an ASSERT() check for
920 * early logic errors.
921 */
922 ASSERT(ret == 0);
923
924 /*
925 * We need to save i_size before now because it could change in between
926 * us evaluating the size and assigning it. This is because we lock and
927 * unlock the page in truncate and fallocate, and then modify the i_size
928 * later on.
929 *
930 * The barriers are to emulate READ_ONCE, remove that once i_size_read
931 * does that for us.
932 */
933 barrier();
934 i_size = i_size_read(&inode->vfs_inode);
935 barrier();
936 actual_end = min_t(u64, i_size, end + 1);
937 again:
938 folios = NULL;
939 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1;
940 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift);
941
942 /*
943 * we don't want to send crud past the end of i_size through
944 * compression, that's just a waste of CPU time. So, if the
945 * end of the file is before the start of our current
946 * requested range of bytes, we bail out to the uncompressed
947 * cleanup code that can deal with all of this.
948 *
949 * It isn't really the fastest way to fix things, but this is a
950 * very uncommon corner.
951 */
952 if (actual_end <= start)
953 goto cleanup_and_bail_uncompressed;
954
955 total_compressed = actual_end - start;
956
957 /*
958 * Skip compression for a small file range(<=blocksize) that
959 * isn't an inline extent, since it doesn't save disk space at all.
960 */
961 if (total_compressed <= blocksize &&
962 (start > 0 || end + 1 < inode->disk_i_size))
963 goto cleanup_and_bail_uncompressed;
964
965 total_compressed = min_t(unsigned long, total_compressed,
966 BTRFS_MAX_UNCOMPRESSED);
967 total_in = 0;
968 ret = 0;
969
970 /*
971 * We do compression for mount -o compress and when the inode has not
972 * been flagged as NOCOMPRESS. This flag can change at any time if we
973 * discover bad compression ratios.
974 */
975 if (!inode_need_compress(inode, start, end))
976 goto cleanup_and_bail_uncompressed;
977
978 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
979 if (!folios) {
980 /*
981 * Memory allocation failure is not a fatal error, we can fall
982 * back to uncompressed code.
983 */
984 goto cleanup_and_bail_uncompressed;
985 }
986
987 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
988 compress_type = inode->defrag_compress;
989 compress_level = inode->defrag_compress_level;
990 } else if (inode->prop_compress) {
991 compress_type = inode->prop_compress;
992 }
993
994 /* Compression level is applied here. */
995 ret = btrfs_compress_folios(compress_type, compress_level,
996 inode, start, folios, &nr_folios, &total_in,
997 &total_compressed);
998 if (ret)
999 goto mark_incompressible;
1000
1001 /*
1002 * Zero the tail end of the last folio, as we might be sending it down
1003 * to disk.
1004 */
1005 loff = (total_compressed & (min_folio_size - 1));
1006 if (loff)
1007 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff);
1008
1009 /*
1010 * Try to create an inline extent.
1011 *
1012 * If we didn't compress the entire range, try to create an uncompressed
1013 * inline extent, else a compressed one.
1014 *
1015 * Check cow_file_range() for why we don't even try to create inline
1016 * extent for the subpage case.
1017 */
1018 if (total_in < actual_end)
1019 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1020 BTRFS_COMPRESS_NONE, NULL, false);
1021 else
1022 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1023 compress_type, folios[0], false);
1024 if (ret <= 0) {
1025 if (ret < 0)
1026 mapping_set_error(mapping, -EIO);
1027 goto free_pages;
1028 }
1029
1030 /*
1031 * We aren't doing an inline extent. Round the compressed size up to a
1032 * block size boundary so the allocator does sane things.
1033 */
1034 total_compressed = ALIGN(total_compressed, blocksize);
1035
1036 /*
1037 * One last check to make sure the compression is really a win, compare
1038 * the page count read with the blocks on disk, compression must free at
1039 * least one sector.
1040 */
1041 total_in = round_up(total_in, fs_info->sectorsize);
1042 if (total_compressed + blocksize > total_in)
1043 goto mark_incompressible;
1044
1045 /*
1046 * The async work queues will take care of doing actual allocation on
1047 * disk for these compressed pages, and will submit the bios.
1048 */
1049 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1050 nr_folios, compress_type);
1051 BUG_ON(ret);
1052 if (start + total_in < end) {
1053 start += total_in;
1054 cond_resched();
1055 goto again;
1056 }
1057 return;
1058
1059 mark_incompressible:
1060 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1061 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1062 cleanup_and_bail_uncompressed:
1063 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1064 BTRFS_COMPRESS_NONE);
1065 BUG_ON(ret);
1066 free_pages:
1067 if (folios) {
1068 for (i = 0; i < nr_folios; i++) {
1069 WARN_ON(folios[i]->mapping);
1070 btrfs_free_compr_folio(folios[i]);
1071 }
1072 kfree(folios);
1073 }
1074 }
1075
free_async_extent_pages(struct async_extent * async_extent)1076 static void free_async_extent_pages(struct async_extent *async_extent)
1077 {
1078 int i;
1079
1080 if (!async_extent->folios)
1081 return;
1082
1083 for (i = 0; i < async_extent->nr_folios; i++) {
1084 WARN_ON(async_extent->folios[i]->mapping);
1085 btrfs_free_compr_folio(async_extent->folios[i]);
1086 }
1087 kfree(async_extent->folios);
1088 async_extent->nr_folios = 0;
1089 async_extent->folios = NULL;
1090 }
1091
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1092 static void submit_uncompressed_range(struct btrfs_inode *inode,
1093 struct async_extent *async_extent,
1094 struct folio *locked_folio)
1095 {
1096 u64 start = async_extent->start;
1097 u64 end = async_extent->start + async_extent->ram_size - 1;
1098 int ret;
1099 struct writeback_control wbc = {
1100 .sync_mode = WB_SYNC_ALL,
1101 .range_start = start,
1102 .range_end = end,
1103 .no_cgroup_owner = 1,
1104 };
1105
1106 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1107 ret = run_delalloc_cow(inode, locked_folio, start, end,
1108 &wbc, false);
1109 wbc_detach_inode(&wbc);
1110 if (ret < 0) {
1111 if (locked_folio)
1112 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1113 start, async_extent->ram_size);
1114 btrfs_err_rl(inode->root->fs_info,
1115 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1116 __func__, btrfs_root_id(inode->root),
1117 btrfs_ino(inode), start, async_extent->ram_size, ret);
1118 }
1119 }
1120
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1121 static void submit_one_async_extent(struct async_chunk *async_chunk,
1122 struct async_extent *async_extent,
1123 u64 *alloc_hint)
1124 {
1125 struct btrfs_inode *inode = async_chunk->inode;
1126 struct extent_io_tree *io_tree = &inode->io_tree;
1127 struct btrfs_root *root = inode->root;
1128 struct btrfs_fs_info *fs_info = root->fs_info;
1129 struct btrfs_ordered_extent *ordered;
1130 struct btrfs_file_extent file_extent;
1131 struct btrfs_key ins;
1132 struct folio *locked_folio = NULL;
1133 struct extent_state *cached = NULL;
1134 struct extent_map *em;
1135 int ret = 0;
1136 bool free_pages = false;
1137 u64 start = async_extent->start;
1138 u64 end = async_extent->start + async_extent->ram_size - 1;
1139
1140 if (async_chunk->blkcg_css)
1141 kthread_associate_blkcg(async_chunk->blkcg_css);
1142
1143 /*
1144 * If async_chunk->locked_folio is in the async_extent range, we need to
1145 * handle it.
1146 */
1147 if (async_chunk->locked_folio) {
1148 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1149 u64 locked_folio_end = locked_folio_start +
1150 folio_size(async_chunk->locked_folio) - 1;
1151
1152 if (!(start >= locked_folio_end || end <= locked_folio_start))
1153 locked_folio = async_chunk->locked_folio;
1154 }
1155
1156 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1157 ASSERT(!async_extent->folios);
1158 ASSERT(async_extent->nr_folios == 0);
1159 submit_uncompressed_range(inode, async_extent, locked_folio);
1160 free_pages = true;
1161 goto done;
1162 }
1163
1164 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1165 async_extent->compressed_size,
1166 async_extent->compressed_size,
1167 0, *alloc_hint, &ins, true, true);
1168 if (ret) {
1169 /*
1170 * We can't reserve contiguous space for the compressed size.
1171 * Unlikely, but it's possible that we could have enough
1172 * non-contiguous space for the uncompressed size instead. So
1173 * fall back to uncompressed.
1174 */
1175 submit_uncompressed_range(inode, async_extent, locked_folio);
1176 free_pages = true;
1177 goto done;
1178 }
1179
1180 btrfs_lock_extent(io_tree, start, end, &cached);
1181
1182 /* Here we're doing allocation and writeback of the compressed pages */
1183 file_extent.disk_bytenr = ins.objectid;
1184 file_extent.disk_num_bytes = ins.offset;
1185 file_extent.ram_bytes = async_extent->ram_size;
1186 file_extent.num_bytes = async_extent->ram_size;
1187 file_extent.offset = 0;
1188 file_extent.compression = async_extent->compress_type;
1189
1190 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1191 if (IS_ERR(em)) {
1192 ret = PTR_ERR(em);
1193 goto out_free_reserve;
1194 }
1195 btrfs_free_extent_map(em);
1196
1197 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1198 1U << BTRFS_ORDERED_COMPRESSED);
1199 if (IS_ERR(ordered)) {
1200 btrfs_drop_extent_map_range(inode, start, end, false);
1201 ret = PTR_ERR(ordered);
1202 goto out_free_reserve;
1203 }
1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1205
1206 /* Clear dirty, set writeback and unlock the pages. */
1207 extent_clear_unlock_delalloc(inode, start, end,
1208 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1209 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1210 btrfs_submit_compressed_write(ordered,
1211 async_extent->folios, /* compressed_folios */
1212 async_extent->nr_folios,
1213 async_chunk->write_flags, true);
1214 *alloc_hint = ins.objectid + ins.offset;
1215 done:
1216 if (async_chunk->blkcg_css)
1217 kthread_associate_blkcg(NULL);
1218 if (free_pages)
1219 free_async_extent_pages(async_extent);
1220 kfree(async_extent);
1221 return;
1222
1223 out_free_reserve:
1224 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1225 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1226 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1227 extent_clear_unlock_delalloc(inode, start, end,
1228 NULL, &cached,
1229 EXTENT_LOCKED | EXTENT_DELALLOC |
1230 EXTENT_DELALLOC_NEW |
1231 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1232 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1233 PAGE_END_WRITEBACK);
1234 free_async_extent_pages(async_extent);
1235 if (async_chunk->blkcg_css)
1236 kthread_associate_blkcg(NULL);
1237 btrfs_debug(fs_info,
1238 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1239 btrfs_root_id(root), btrfs_ino(inode), start,
1240 async_extent->ram_size, ret);
1241 kfree(async_extent);
1242 }
1243
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1244 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1245 u64 num_bytes)
1246 {
1247 struct extent_map_tree *em_tree = &inode->extent_tree;
1248 struct extent_map *em;
1249 u64 alloc_hint = 0;
1250
1251 read_lock(&em_tree->lock);
1252 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1253 if (em) {
1254 /*
1255 * if block start isn't an actual block number then find the
1256 * first block in this inode and use that as a hint. If that
1257 * block is also bogus then just don't worry about it.
1258 */
1259 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1260 btrfs_free_extent_map(em);
1261 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1262 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1263 alloc_hint = btrfs_extent_map_block_start(em);
1264 if (em)
1265 btrfs_free_extent_map(em);
1266 } else {
1267 alloc_hint = btrfs_extent_map_block_start(em);
1268 btrfs_free_extent_map(em);
1269 }
1270 }
1271 read_unlock(&em_tree->lock);
1272
1273 return alloc_hint;
1274 }
1275
1276 /*
1277 * when extent_io.c finds a delayed allocation range in the file,
1278 * the call backs end up in this code. The basic idea is to
1279 * allocate extents on disk for the range, and create ordered data structs
1280 * in ram to track those extents.
1281 *
1282 * locked_folio is the folio that writepage had locked already. We use
1283 * it to make sure we don't do extra locks or unlocks.
1284 *
1285 * When this function fails, it unlocks all folios except @locked_folio.
1286 *
1287 * When this function successfully creates an inline extent, it returns 1 and
1288 * unlocks all folios including locked_folio and starts I/O on them.
1289 * (In reality inline extents are limited to a single block, so locked_folio is
1290 * the only folio handled anyway).
1291 *
1292 * When this function succeed and creates a normal extent, the folio locking
1293 * status depends on the passed in flags:
1294 *
1295 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked.
1296 * - Else all folios except for @locked_folio are unlocked.
1297 *
1298 * When a failure happens in the second or later iteration of the
1299 * while-loop, the ordered extents created in previous iterations are cleaned up.
1300 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,unsigned long flags)1301 static noinline int cow_file_range(struct btrfs_inode *inode,
1302 struct folio *locked_folio, u64 start,
1303 u64 end, u64 *done_offset,
1304 unsigned long flags)
1305 {
1306 struct btrfs_root *root = inode->root;
1307 struct btrfs_fs_info *fs_info = root->fs_info;
1308 struct extent_state *cached = NULL;
1309 u64 alloc_hint = 0;
1310 u64 orig_start = start;
1311 u64 num_bytes;
1312 u64 cur_alloc_size = 0;
1313 u64 min_alloc_size;
1314 u64 blocksize = fs_info->sectorsize;
1315 struct btrfs_key ins;
1316 struct extent_map *em;
1317 unsigned clear_bits;
1318 unsigned long page_ops;
1319 int ret = 0;
1320
1321 if (unlikely(btrfs_is_shutdown(fs_info))) {
1322 ret = -EIO;
1323 goto out_unlock;
1324 }
1325
1326 if (btrfs_is_free_space_inode(inode)) {
1327 ret = -EINVAL;
1328 goto out_unlock;
1329 }
1330
1331 num_bytes = ALIGN(end - start + 1, blocksize);
1332 num_bytes = max(blocksize, num_bytes);
1333 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1334
1335 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1336
1337 if (!(flags & COW_FILE_RANGE_NO_INLINE)) {
1338 /* lets try to make an inline extent */
1339 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1340 BTRFS_COMPRESS_NONE, NULL, false);
1341 if (ret <= 0) {
1342 /*
1343 * We succeeded, return 1 so the caller knows we're done
1344 * with this page and already handled the IO.
1345 *
1346 * If there was an error then cow_file_range_inline() has
1347 * already done the cleanup.
1348 */
1349 if (ret == 0)
1350 ret = 1;
1351 goto done;
1352 }
1353 }
1354
1355 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1356
1357 /*
1358 * We're not doing compressed IO, don't unlock the first page (which
1359 * the caller expects to stay locked), don't clear any dirty bits and
1360 * don't set any writeback bits.
1361 *
1362 * Do set the Ordered (Private2) bit so we know this page was properly
1363 * setup for writepage.
1364 */
1365 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK);
1366 page_ops |= PAGE_SET_ORDERED;
1367
1368 /*
1369 * Relocation relies on the relocated extents to have exactly the same
1370 * size as the original extents. Normally writeback for relocation data
1371 * extents follows a NOCOW path because relocation preallocates the
1372 * extents. However, due to an operation such as scrub turning a block
1373 * group to RO mode, it may fallback to COW mode, so we must make sure
1374 * an extent allocated during COW has exactly the requested size and can
1375 * not be split into smaller extents, otherwise relocation breaks and
1376 * fails during the stage where it updates the bytenr of file extent
1377 * items.
1378 */
1379 if (btrfs_is_data_reloc_root(root))
1380 min_alloc_size = num_bytes;
1381 else
1382 min_alloc_size = fs_info->sectorsize;
1383
1384 while (num_bytes > 0) {
1385 struct btrfs_ordered_extent *ordered;
1386 struct btrfs_file_extent file_extent;
1387
1388 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1389 min_alloc_size, 0, alloc_hint,
1390 &ins, true, true);
1391 if (ret == -EAGAIN) {
1392 /*
1393 * btrfs_reserve_extent only returns -EAGAIN for zoned
1394 * file systems, which is an indication that there are
1395 * no active zones to allocate from at the moment.
1396 *
1397 * If this is the first loop iteration, wait for at
1398 * least one zone to finish before retrying the
1399 * allocation. Otherwise ask the caller to write out
1400 * the already allocated blocks before coming back to
1401 * us, or return -ENOSPC if it can't handle retries.
1402 */
1403 ASSERT(btrfs_is_zoned(fs_info));
1404 if (start == orig_start) {
1405 wait_on_bit_io(&inode->root->fs_info->flags,
1406 BTRFS_FS_NEED_ZONE_FINISH,
1407 TASK_UNINTERRUPTIBLE);
1408 continue;
1409 }
1410 if (done_offset) {
1411 /*
1412 * Move @end to the end of the processed range,
1413 * and exit the loop to unlock the processed extents.
1414 */
1415 end = start - 1;
1416 ret = 0;
1417 break;
1418 }
1419 ret = -ENOSPC;
1420 }
1421 if (ret < 0)
1422 goto out_unlock;
1423 cur_alloc_size = ins.offset;
1424
1425 file_extent.disk_bytenr = ins.objectid;
1426 file_extent.disk_num_bytes = ins.offset;
1427 file_extent.num_bytes = ins.offset;
1428 file_extent.ram_bytes = ins.offset;
1429 file_extent.offset = 0;
1430 file_extent.compression = BTRFS_COMPRESS_NONE;
1431
1432 /*
1433 * Locked range will be released either during error clean up or
1434 * after the whole range is finished.
1435 */
1436 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1437 &cached);
1438
1439 em = btrfs_create_io_em(inode, start, &file_extent,
1440 BTRFS_ORDERED_REGULAR);
1441 if (IS_ERR(em)) {
1442 btrfs_unlock_extent(&inode->io_tree, start,
1443 start + cur_alloc_size - 1, &cached);
1444 ret = PTR_ERR(em);
1445 goto out_reserve;
1446 }
1447 btrfs_free_extent_map(em);
1448
1449 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1450 1U << BTRFS_ORDERED_REGULAR);
1451 if (IS_ERR(ordered)) {
1452 btrfs_unlock_extent(&inode->io_tree, start,
1453 start + cur_alloc_size - 1, &cached);
1454 ret = PTR_ERR(ordered);
1455 goto out_drop_extent_cache;
1456 }
1457
1458 if (btrfs_is_data_reloc_root(root)) {
1459 ret = btrfs_reloc_clone_csums(ordered);
1460
1461 /*
1462 * Only drop cache here, and process as normal.
1463 *
1464 * We must not allow extent_clear_unlock_delalloc()
1465 * at out_unlock label to free meta of this ordered
1466 * extent, as its meta should be freed by
1467 * btrfs_finish_ordered_io().
1468 *
1469 * So we must continue until @start is increased to
1470 * skip current ordered extent.
1471 */
1472 if (ret)
1473 btrfs_drop_extent_map_range(inode, start,
1474 start + cur_alloc_size - 1,
1475 false);
1476 }
1477 btrfs_put_ordered_extent(ordered);
1478
1479 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1480
1481 if (num_bytes < cur_alloc_size)
1482 num_bytes = 0;
1483 else
1484 num_bytes -= cur_alloc_size;
1485 alloc_hint = ins.objectid + ins.offset;
1486 start += cur_alloc_size;
1487 cur_alloc_size = 0;
1488
1489 /*
1490 * btrfs_reloc_clone_csums() error, since start is increased
1491 * extent_clear_unlock_delalloc() at out_unlock label won't
1492 * free metadata of current ordered extent, we're OK to exit.
1493 */
1494 if (ret)
1495 goto out_unlock;
1496 }
1497 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1498 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1499 done:
1500 if (done_offset)
1501 *done_offset = end;
1502 return ret;
1503
1504 out_drop_extent_cache:
1505 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1506 out_reserve:
1507 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1508 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1509 out_unlock:
1510 /*
1511 * Now, we have three regions to clean up:
1512 *
1513 * |-------(1)----|---(2)---|-------------(3)----------|
1514 * `- orig_start `- start `- start + cur_alloc_size `- end
1515 *
1516 * We process each region below.
1517 */
1518
1519 /*
1520 * For the range (1). We have already instantiated the ordered extents
1521 * for this region, thus we need to cleanup those ordered extents.
1522 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1523 * are also handled by the ordered extents cleanup.
1524 *
1525 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1526 * finish the writeback of the involved folios, which will be never submitted.
1527 */
1528 if (orig_start < start) {
1529 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1530 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1531
1532 if (!locked_folio)
1533 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1534
1535 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1536 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1537 locked_folio, NULL, clear_bits, page_ops);
1538 }
1539
1540 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1541 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1542 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1543
1544 /*
1545 * For the range (2). If we reserved an extent for our delalloc range
1546 * (or a subrange) and failed to create the respective ordered extent,
1547 * then it means that when we reserved the extent we decremented the
1548 * extent's size from the data space_info's bytes_may_use counter and
1549 * incremented the space_info's bytes_reserved counter by the same
1550 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1551 * to decrement again the data space_info's bytes_may_use counter,
1552 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1553 */
1554 if (cur_alloc_size) {
1555 extent_clear_unlock_delalloc(inode, start,
1556 start + cur_alloc_size - 1,
1557 locked_folio, &cached, clear_bits,
1558 page_ops);
1559 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1560 }
1561
1562 /*
1563 * For the range (3). We never touched the region. In addition to the
1564 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1565 * space_info's bytes_may_use counter, reserved in
1566 * btrfs_check_data_free_space().
1567 */
1568 if (start + cur_alloc_size < end) {
1569 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1570 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1571 end, locked_folio,
1572 &cached, clear_bits, page_ops);
1573 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1574 end - start - cur_alloc_size + 1, NULL);
1575 }
1576 btrfs_err(fs_info,
1577 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d",
1578 __func__, btrfs_root_id(inode->root),
1579 btrfs_ino(inode), orig_start, end + 1 - orig_start,
1580 start, cur_alloc_size, ret);
1581 return ret;
1582 }
1583
1584 /*
1585 * Phase two of compressed writeback. This is the ordered portion of the code,
1586 * which only gets called in the order the work was queued. We walk all the
1587 * async extents created by compress_file_range and send them down to the disk.
1588 *
1589 * If called with @do_free == true then it'll try to finish the work and free
1590 * the work struct eventually.
1591 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1592 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1593 {
1594 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1595 work);
1596 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1597 struct async_extent *async_extent;
1598 unsigned long nr_pages;
1599 u64 alloc_hint = 0;
1600
1601 if (do_free) {
1602 struct async_cow *async_cow;
1603
1604 btrfs_add_delayed_iput(async_chunk->inode);
1605 if (async_chunk->blkcg_css)
1606 css_put(async_chunk->blkcg_css);
1607
1608 async_cow = async_chunk->async_cow;
1609 if (atomic_dec_and_test(&async_cow->num_chunks))
1610 kvfree(async_cow);
1611 return;
1612 }
1613
1614 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1615 PAGE_SHIFT;
1616
1617 while (!list_empty(&async_chunk->extents)) {
1618 async_extent = list_first_entry(&async_chunk->extents,
1619 struct async_extent, list);
1620 list_del(&async_extent->list);
1621 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1622 }
1623
1624 /* atomic_sub_return implies a barrier */
1625 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1626 5 * SZ_1M)
1627 cond_wake_up_nomb(&fs_info->async_submit_wait);
1628 }
1629
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1630 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1631 struct folio *locked_folio, u64 start,
1632 u64 end, struct writeback_control *wbc)
1633 {
1634 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1635 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1636 struct async_cow *ctx;
1637 struct async_chunk *async_chunk;
1638 unsigned long nr_pages;
1639 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1640 int i;
1641 unsigned nofs_flag;
1642 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1643
1644 nofs_flag = memalloc_nofs_save();
1645 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1646 memalloc_nofs_restore(nofs_flag);
1647 if (!ctx)
1648 return false;
1649
1650 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1651
1652 async_chunk = ctx->chunks;
1653 atomic_set(&ctx->num_chunks, num_chunks);
1654
1655 for (i = 0; i < num_chunks; i++) {
1656 u64 cur_end = min(end, start + SZ_512K - 1);
1657
1658 /*
1659 * igrab is called higher up in the call chain, take only the
1660 * lightweight reference for the callback lifetime
1661 */
1662 ihold(&inode->vfs_inode);
1663 async_chunk[i].async_cow = ctx;
1664 async_chunk[i].inode = inode;
1665 async_chunk[i].start = start;
1666 async_chunk[i].end = cur_end;
1667 async_chunk[i].write_flags = write_flags;
1668 INIT_LIST_HEAD(&async_chunk[i].extents);
1669
1670 /*
1671 * The locked_folio comes all the way from writepage and its
1672 * the original folio we were actually given. As we spread
1673 * this large delalloc region across multiple async_chunk
1674 * structs, only the first struct needs a pointer to
1675 * locked_folio.
1676 *
1677 * This way we don't need racey decisions about who is supposed
1678 * to unlock it.
1679 */
1680 if (locked_folio) {
1681 /*
1682 * Depending on the compressibility, the pages might or
1683 * might not go through async. We want all of them to
1684 * be accounted against wbc once. Let's do it here
1685 * before the paths diverge. wbc accounting is used
1686 * only for foreign writeback detection and doesn't
1687 * need full accuracy. Just account the whole thing
1688 * against the first page.
1689 */
1690 wbc_account_cgroup_owner(wbc, locked_folio,
1691 cur_end - start);
1692 async_chunk[i].locked_folio = locked_folio;
1693 locked_folio = NULL;
1694 } else {
1695 async_chunk[i].locked_folio = NULL;
1696 }
1697
1698 if (blkcg_css != blkcg_root_css) {
1699 css_get(blkcg_css);
1700 async_chunk[i].blkcg_css = blkcg_css;
1701 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1702 } else {
1703 async_chunk[i].blkcg_css = NULL;
1704 }
1705
1706 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1707 submit_compressed_extents);
1708
1709 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1710 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1711
1712 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1713
1714 start = cur_end + 1;
1715 }
1716 return true;
1717 }
1718
1719 /*
1720 * Run the delalloc range from start to end, and write back any dirty pages
1721 * covered by the range.
1722 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1723 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1724 struct folio *locked_folio, u64 start,
1725 u64 end, struct writeback_control *wbc,
1726 bool pages_dirty)
1727 {
1728 u64 done_offset = end;
1729 int ret;
1730
1731 while (start <= end) {
1732 ret = cow_file_range(inode, locked_folio, start, end,
1733 &done_offset, COW_FILE_RANGE_KEEP_LOCKED);
1734 if (ret)
1735 return ret;
1736 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1737 start, done_offset, wbc, pages_dirty);
1738 start = done_offset + 1;
1739 }
1740
1741 return 1;
1742 }
1743
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1744 static int fallback_to_cow(struct btrfs_inode *inode,
1745 struct folio *locked_folio, const u64 start,
1746 const u64 end)
1747 {
1748 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1749 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1750 const u64 range_bytes = end + 1 - start;
1751 struct extent_io_tree *io_tree = &inode->io_tree;
1752 struct extent_state *cached_state = NULL;
1753 u64 range_start = start;
1754 u64 count;
1755 int ret;
1756
1757 /*
1758 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 * made we had not enough available data space and therefore we did not
1760 * reserve data space for it, since we though we could do NOCOW for the
1761 * respective file range (either there is prealloc extent or the inode
1762 * has the NOCOW bit set).
1763 *
1764 * However when we need to fallback to COW mode (because for example the
1765 * block group for the corresponding extent was turned to RO mode by a
1766 * scrub or relocation) we need to do the following:
1767 *
1768 * 1) We increment the bytes_may_use counter of the data space info.
1769 * If COW succeeds, it allocates a new data extent and after doing
1770 * that it decrements the space info's bytes_may_use counter and
1771 * increments its bytes_reserved counter by the same amount (we do
1772 * this at btrfs_add_reserved_bytes()). So we need to increment the
1773 * bytes_may_use counter to compensate (when space is reserved at
1774 * buffered write time, the bytes_may_use counter is incremented);
1775 *
1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 * that if the COW path fails for any reason, it decrements (through
1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 * data space info, which we incremented in the step above.
1780 *
1781 * If we need to fallback to cow and the inode corresponds to a free
1782 * space cache inode or an inode of the data relocation tree, we must
1783 * also increment bytes_may_use of the data space_info for the same
1784 * reason. Space caches and relocated data extents always get a prealloc
1785 * extent for them, however scrub or balance may have set the block
1786 * group that contains that extent to RO mode and therefore force COW
1787 * when starting writeback.
1788 */
1789 btrfs_lock_extent(io_tree, start, end, &cached_state);
1790 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1791 EXTENT_NORESERVE, 0, NULL);
1792 if (count > 0 || is_space_ino || is_reloc_ino) {
1793 u64 bytes = count;
1794 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1795 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1796
1797 if (is_space_ino || is_reloc_ino)
1798 bytes = range_bytes;
1799
1800 spin_lock(&sinfo->lock);
1801 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1802 spin_unlock(&sinfo->lock);
1803
1804 if (count > 0)
1805 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1806 &cached_state);
1807 }
1808 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1809
1810 /*
1811 * Don't try to create inline extents, as a mix of inline extent that
1812 * is written out and unlocked directly and a normal NOCOW extent
1813 * doesn't work.
1814 *
1815 * And here we do not unlock the folio after a successful run.
1816 * The folios will be unlocked after everything is finished, or by error handling.
1817 *
1818 * This is to ensure error handling won't need to clear dirty/ordered flags without
1819 * a locked folio, which can race with writeback.
1820 */
1821 ret = cow_file_range(inode, locked_folio, start, end, NULL,
1822 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED);
1823 ASSERT(ret != 1);
1824 return ret;
1825 }
1826
1827 struct can_nocow_file_extent_args {
1828 /* Input fields. */
1829
1830 /* Start file offset of the range we want to NOCOW. */
1831 u64 start;
1832 /* End file offset (inclusive) of the range we want to NOCOW. */
1833 u64 end;
1834 bool writeback_path;
1835 /*
1836 * Free the path passed to can_nocow_file_extent() once it's not needed
1837 * anymore.
1838 */
1839 bool free_path;
1840
1841 /*
1842 * Output fields. Only set when can_nocow_file_extent() returns 1.
1843 * The expected file extent for the NOCOW write.
1844 */
1845 struct btrfs_file_extent file_extent;
1846 };
1847
1848 /*
1849 * Check if we can NOCOW the file extent that the path points to.
1850 * This function may return with the path released, so the caller should check
1851 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1852 *
1853 * Returns: < 0 on error
1854 * 0 if we can not NOCOW
1855 * 1 if we can NOCOW
1856 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1857 static int can_nocow_file_extent(struct btrfs_path *path,
1858 struct btrfs_key *key,
1859 struct btrfs_inode *inode,
1860 struct can_nocow_file_extent_args *args)
1861 {
1862 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1863 struct extent_buffer *leaf = path->nodes[0];
1864 struct btrfs_root *root = inode->root;
1865 struct btrfs_file_extent_item *fi;
1866 struct btrfs_root *csum_root;
1867 u64 io_start;
1868 u64 extent_end;
1869 u8 extent_type;
1870 int can_nocow = 0;
1871 int ret = 0;
1872 bool nowait = path->nowait;
1873
1874 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1875 extent_type = btrfs_file_extent_type(leaf, fi);
1876
1877 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1878 goto out;
1879
1880 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1881 extent_type == BTRFS_FILE_EXTENT_REG)
1882 goto out;
1883
1884 /*
1885 * If the extent was created before the generation where the last snapshot
1886 * for its subvolume was created, then this implies the extent is shared,
1887 * hence we must COW.
1888 */
1889 if (btrfs_file_extent_generation(leaf, fi) <=
1890 btrfs_root_last_snapshot(&root->root_item))
1891 goto out;
1892
1893 /* An explicit hole, must COW. */
1894 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1895 goto out;
1896
1897 /* Compressed/encrypted/encoded extents must be COWed. */
1898 if (btrfs_file_extent_compression(leaf, fi) ||
1899 btrfs_file_extent_encryption(leaf, fi) ||
1900 btrfs_file_extent_other_encoding(leaf, fi))
1901 goto out;
1902
1903 extent_end = btrfs_file_extent_end(path);
1904
1905 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1906 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1907 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1908 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1909 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1910
1911 /*
1912 * The following checks can be expensive, as they need to take other
1913 * locks and do btree or rbtree searches, so release the path to avoid
1914 * blocking other tasks for too long.
1915 */
1916 btrfs_release_path(path);
1917
1918 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1919 args->file_extent.disk_bytenr, path);
1920 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1921 if (ret != 0)
1922 goto out;
1923
1924 if (args->free_path) {
1925 /*
1926 * We don't need the path anymore, plus through the
1927 * btrfs_lookup_csums_list() call below we will end up allocating
1928 * another path. So free the path to avoid unnecessary extra
1929 * memory usage.
1930 */
1931 btrfs_free_path(path);
1932 path = NULL;
1933 }
1934
1935 /* If there are pending snapshots for this root, we must COW. */
1936 if (args->writeback_path && !is_freespace_inode &&
1937 atomic_read(&root->snapshot_force_cow))
1938 goto out;
1939
1940 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1941 args->file_extent.offset += args->start - key->offset;
1942 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1943
1944 /*
1945 * Force COW if csums exist in the range. This ensures that csums for a
1946 * given extent are either valid or do not exist.
1947 */
1948
1949 csum_root = btrfs_csum_root(root->fs_info, io_start);
1950 ret = btrfs_lookup_csums_list(csum_root, io_start,
1951 io_start + args->file_extent.num_bytes - 1,
1952 NULL, nowait);
1953 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1954 if (ret != 0)
1955 goto out;
1956
1957 can_nocow = 1;
1958 out:
1959 if (args->free_path && path)
1960 btrfs_free_path(path);
1961
1962 return ret < 0 ? ret : can_nocow;
1963 }
1964
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1965 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1966 struct extent_state **cached,
1967 struct can_nocow_file_extent_args *nocow_args,
1968 u64 file_pos, bool is_prealloc)
1969 {
1970 struct btrfs_ordered_extent *ordered;
1971 const u64 len = nocow_args->file_extent.num_bytes;
1972 const u64 end = file_pos + len - 1;
1973 int ret = 0;
1974
1975 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1976
1977 if (is_prealloc) {
1978 struct extent_map *em;
1979
1980 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1981 BTRFS_ORDERED_PREALLOC);
1982 if (IS_ERR(em)) {
1983 ret = PTR_ERR(em);
1984 goto error;
1985 }
1986 btrfs_free_extent_map(em);
1987 }
1988
1989 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1990 is_prealloc
1991 ? (1U << BTRFS_ORDERED_PREALLOC)
1992 : (1U << BTRFS_ORDERED_NOCOW));
1993 if (IS_ERR(ordered)) {
1994 if (is_prealloc)
1995 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1996 ret = PTR_ERR(ordered);
1997 goto error;
1998 }
1999
2000 if (btrfs_is_data_reloc_root(inode->root))
2001 /*
2002 * Errors are handled later, as we must prevent
2003 * extent_clear_unlock_delalloc() in error handler from freeing
2004 * metadata of the created ordered extent.
2005 */
2006 ret = btrfs_reloc_clone_csums(ordered);
2007 btrfs_put_ordered_extent(ordered);
2008
2009 if (ret < 0)
2010 goto error;
2011 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2012 EXTENT_LOCKED | EXTENT_DELALLOC |
2013 EXTENT_CLEAR_DATA_RESV,
2014 PAGE_SET_ORDERED);
2015 return ret;
2016
2017 error:
2018 btrfs_cleanup_ordered_extents(inode, file_pos, len);
2019 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2020 EXTENT_LOCKED | EXTENT_DELALLOC |
2021 EXTENT_CLEAR_DATA_RESV,
2022 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2023 PAGE_END_WRITEBACK);
2024 btrfs_err(inode->root->fs_info,
2025 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d",
2026 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2027 file_pos, len, ret);
2028 return ret;
2029 }
2030
2031 /*
2032 * When nocow writeback calls back. This checks for snapshots or COW copies
2033 * of the extents that exist in the file, and COWs the file as required.
2034 *
2035 * If no cow copies or snapshots exist, we write directly to the existing
2036 * blocks on disk
2037 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2038 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2039 struct folio *locked_folio,
2040 const u64 start, const u64 end)
2041 {
2042 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2043 struct btrfs_root *root = inode->root;
2044 struct btrfs_path *path = NULL;
2045 u64 cow_start = (u64)-1;
2046 /*
2047 * If not 0, represents the inclusive end of the last fallback_to_cow()
2048 * range. Only for error handling.
2049 *
2050 * The same for nocow_end, it's to avoid double cleaning up the range
2051 * already cleaned by nocow_one_range().
2052 */
2053 u64 cow_end = 0;
2054 u64 nocow_end = 0;
2055 u64 cur_offset = start;
2056 int ret;
2057 bool check_prev = true;
2058 u64 ino = btrfs_ino(inode);
2059 struct can_nocow_file_extent_args nocow_args = { 0 };
2060 /* The range that has ordered extent(s). */
2061 u64 oe_cleanup_start;
2062 u64 oe_cleanup_len = 0;
2063 /* The range that is untouched. */
2064 u64 untouched_start;
2065 u64 untouched_len = 0;
2066
2067 /*
2068 * Normally on a zoned device we're only doing COW writes, but in case
2069 * of relocation on a zoned filesystem serializes I/O so that we're only
2070 * writing sequentially and can end up here as well.
2071 */
2072 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2073
2074 if (unlikely(btrfs_is_shutdown(fs_info))) {
2075 ret = -EIO;
2076 goto error;
2077 }
2078 path = btrfs_alloc_path();
2079 if (!path) {
2080 ret = -ENOMEM;
2081 goto error;
2082 }
2083
2084 nocow_args.end = end;
2085 nocow_args.writeback_path = true;
2086
2087 while (cur_offset <= end) {
2088 struct btrfs_block_group *nocow_bg = NULL;
2089 struct btrfs_key found_key;
2090 struct btrfs_file_extent_item *fi;
2091 struct extent_buffer *leaf;
2092 struct extent_state *cached_state = NULL;
2093 u64 extent_end;
2094 int extent_type;
2095
2096 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2097 cur_offset, 0);
2098 if (ret < 0)
2099 goto error;
2100
2101 /*
2102 * If there is no extent for our range when doing the initial
2103 * search, then go back to the previous slot as it will be the
2104 * one containing the search offset
2105 */
2106 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2107 leaf = path->nodes[0];
2108 btrfs_item_key_to_cpu(leaf, &found_key,
2109 path->slots[0] - 1);
2110 if (found_key.objectid == ino &&
2111 found_key.type == BTRFS_EXTENT_DATA_KEY)
2112 path->slots[0]--;
2113 }
2114 check_prev = false;
2115 next_slot:
2116 /* Go to next leaf if we have exhausted the current one */
2117 leaf = path->nodes[0];
2118 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2119 ret = btrfs_next_leaf(root, path);
2120 if (ret < 0)
2121 goto error;
2122 if (ret > 0)
2123 break;
2124 leaf = path->nodes[0];
2125 }
2126
2127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2128
2129 /* Didn't find anything for our INO */
2130 if (found_key.objectid > ino)
2131 break;
2132 /*
2133 * Keep searching until we find an EXTENT_ITEM or there are no
2134 * more extents for this inode
2135 */
2136 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2137 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2138 path->slots[0]++;
2139 goto next_slot;
2140 }
2141
2142 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2143 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2144 found_key.offset > end)
2145 break;
2146
2147 /*
2148 * If the found extent starts after requested offset, then
2149 * adjust cur_offset to be right before this extent begins.
2150 */
2151 if (found_key.offset > cur_offset) {
2152 if (cow_start == (u64)-1)
2153 cow_start = cur_offset;
2154 cur_offset = found_key.offset;
2155 goto next_slot;
2156 }
2157
2158 /*
2159 * Found extent which begins before our range and potentially
2160 * intersect it
2161 */
2162 fi = btrfs_item_ptr(leaf, path->slots[0],
2163 struct btrfs_file_extent_item);
2164 extent_type = btrfs_file_extent_type(leaf, fi);
2165 /* If this is triggered then we have a memory corruption. */
2166 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2167 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2168 ret = -EUCLEAN;
2169 goto error;
2170 }
2171 extent_end = btrfs_file_extent_end(path);
2172
2173 /*
2174 * If the extent we got ends before our current offset, skip to
2175 * the next extent.
2176 */
2177 if (extent_end <= cur_offset) {
2178 path->slots[0]++;
2179 goto next_slot;
2180 }
2181
2182 nocow_args.start = cur_offset;
2183 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2184 if (ret < 0)
2185 goto error;
2186 if (ret == 0)
2187 goto must_cow;
2188
2189 ret = 0;
2190 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2191 nocow_args.file_extent.disk_bytenr +
2192 nocow_args.file_extent.offset);
2193 if (!nocow_bg) {
2194 must_cow:
2195 /*
2196 * If we can't perform NOCOW writeback for the range,
2197 * then record the beginning of the range that needs to
2198 * be COWed. It will be written out before the next
2199 * NOCOW range if we find one, or when exiting this
2200 * loop.
2201 */
2202 if (cow_start == (u64)-1)
2203 cow_start = cur_offset;
2204 cur_offset = extent_end;
2205 if (cur_offset > end)
2206 break;
2207 if (!path->nodes[0])
2208 continue;
2209 path->slots[0]++;
2210 goto next_slot;
2211 }
2212
2213 /*
2214 * COW range from cow_start to found_key.offset - 1. As the key
2215 * will contain the beginning of the first extent that can be
2216 * NOCOW, following one which needs to be COW'ed
2217 */
2218 if (cow_start != (u64)-1) {
2219 ret = fallback_to_cow(inode, locked_folio, cow_start,
2220 found_key.offset - 1);
2221 if (ret) {
2222 cow_end = found_key.offset - 1;
2223 btrfs_dec_nocow_writers(nocow_bg);
2224 goto error;
2225 }
2226 cow_start = (u64)-1;
2227 }
2228
2229 ret = nocow_one_range(inode, locked_folio, &cached_state,
2230 &nocow_args, cur_offset,
2231 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2232 btrfs_dec_nocow_writers(nocow_bg);
2233 if (ret < 0) {
2234 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2235 goto error;
2236 }
2237 cur_offset = extent_end;
2238 }
2239 btrfs_release_path(path);
2240
2241 if (cur_offset <= end && cow_start == (u64)-1)
2242 cow_start = cur_offset;
2243
2244 if (cow_start != (u64)-1) {
2245 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2246 if (ret) {
2247 cow_end = end;
2248 goto error;
2249 }
2250 cow_start = (u64)-1;
2251 }
2252
2253 /*
2254 * Everything is finished without an error, can unlock the folios now.
2255 *
2256 * No need to touch the io tree range nor set folio ordered flag, as
2257 * fallback_to_cow() and nocow_one_range() have already handled them.
2258 */
2259 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK);
2260
2261 btrfs_free_path(path);
2262 return 0;
2263
2264 error:
2265 if (cow_start == (u64)-1) {
2266 /*
2267 * case a)
2268 * start cur_offset end
2269 * | OE cleanup | Untouched |
2270 *
2271 * We finished a fallback_to_cow() or nocow_one_range() call,
2272 * but failed to check the next range.
2273 *
2274 * or
2275 * start cur_offset nocow_end end
2276 * | OE cleanup | Skip | Untouched |
2277 *
2278 * nocow_one_range() failed, the range [cur_offset, nocow_end] is
2279 * already cleaned up.
2280 */
2281 oe_cleanup_start = start;
2282 oe_cleanup_len = cur_offset - start;
2283 if (nocow_end)
2284 untouched_start = nocow_end + 1;
2285 else
2286 untouched_start = cur_offset;
2287 untouched_len = end + 1 - untouched_start;
2288 } else if (cow_start != (u64)-1 && cow_end == 0) {
2289 /*
2290 * case b)
2291 * start cow_start cur_offset end
2292 * | OE cleanup | Untouched |
2293 *
2294 * We got a range that needs COW, but before we hit the next NOCOW range,
2295 * thus [cow_start, cur_offset) doesn't yet have any OE.
2296 */
2297 oe_cleanup_start = start;
2298 oe_cleanup_len = cow_start - start;
2299 untouched_start = cow_start;
2300 untouched_len = end + 1 - untouched_start;
2301 } else {
2302 /*
2303 * case c)
2304 * start cow_start cow_end end
2305 * | OE cleanup | Skip | Untouched |
2306 *
2307 * fallback_to_cow() failed, and fallback_to_cow() will do the
2308 * cleanup for its range, we shouldn't touch the range
2309 * [cow_start, cow_end].
2310 */
2311 ASSERT(cow_start != (u64)-1 && cow_end != 0);
2312 oe_cleanup_start = start;
2313 oe_cleanup_len = cow_start - start;
2314 untouched_start = cow_end + 1;
2315 untouched_len = end + 1 - untouched_start;
2316 }
2317
2318 if (oe_cleanup_len) {
2319 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1;
2320 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len);
2321 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end,
2322 locked_folio, NULL,
2323 EXTENT_LOCKED | EXTENT_DELALLOC,
2324 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2325 PAGE_END_WRITEBACK);
2326 }
2327
2328 if (untouched_len) {
2329 struct extent_state *cached = NULL;
2330 const u64 untouched_end = untouched_start + untouched_len - 1;
2331
2332 /*
2333 * We need to lock the extent here because we're clearing DELALLOC and
2334 * we're not locked at this point.
2335 */
2336 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached);
2337 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end,
2338 locked_folio, &cached,
2339 EXTENT_LOCKED | EXTENT_DELALLOC |
2340 EXTENT_DEFRAG |
2341 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2342 PAGE_START_WRITEBACK |
2343 PAGE_END_WRITEBACK);
2344 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL);
2345 }
2346 btrfs_free_path(path);
2347 btrfs_err(fs_info,
2348 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d",
2349 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2350 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len,
2351 untouched_start, untouched_len, ret);
2352 return ret;
2353 }
2354
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2355 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2356 {
2357 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2358 if (inode->defrag_bytes &&
2359 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2360 return false;
2361 return true;
2362 }
2363 return false;
2364 }
2365
2366 /*
2367 * Function to process delayed allocation (create CoW) for ranges which are
2368 * being touched for the first time.
2369 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2370 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2371 u64 start, u64 end, struct writeback_control *wbc)
2372 {
2373 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2374 int ret;
2375
2376 /*
2377 * The range must cover part of the @locked_folio, or a return of 1
2378 * can confuse the caller.
2379 */
2380 ASSERT(!(end <= folio_pos(locked_folio) ||
2381 start >= folio_next_pos(locked_folio)));
2382
2383 if (should_nocow(inode, start, end)) {
2384 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2385 return ret;
2386 }
2387
2388 if (btrfs_inode_can_compress(inode) &&
2389 inode_need_compress(inode, start, end) &&
2390 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2391 return 1;
2392
2393 if (zoned)
2394 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2395 true);
2396 else
2397 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0);
2398 return ret;
2399 }
2400
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2401 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2402 struct extent_state *orig, u64 split)
2403 {
2404 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2405 u64 size;
2406
2407 lockdep_assert_held(&inode->io_tree.lock);
2408
2409 /* not delalloc, ignore it */
2410 if (!(orig->state & EXTENT_DELALLOC))
2411 return;
2412
2413 size = orig->end - orig->start + 1;
2414 if (size > fs_info->max_extent_size) {
2415 u32 num_extents;
2416 u64 new_size;
2417
2418 /*
2419 * See the explanation in btrfs_merge_delalloc_extent, the same
2420 * applies here, just in reverse.
2421 */
2422 new_size = orig->end - split + 1;
2423 num_extents = count_max_extents(fs_info, new_size);
2424 new_size = split - orig->start;
2425 num_extents += count_max_extents(fs_info, new_size);
2426 if (count_max_extents(fs_info, size) >= num_extents)
2427 return;
2428 }
2429
2430 spin_lock(&inode->lock);
2431 btrfs_mod_outstanding_extents(inode, 1);
2432 spin_unlock(&inode->lock);
2433 }
2434
2435 /*
2436 * Handle merged delayed allocation extents so we can keep track of new extents
2437 * that are just merged onto old extents, such as when we are doing sequential
2438 * writes, so we can properly account for the metadata space we'll need.
2439 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2440 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2441 struct extent_state *other)
2442 {
2443 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2444 u64 new_size, old_size;
2445 u32 num_extents;
2446
2447 lockdep_assert_held(&inode->io_tree.lock);
2448
2449 /* not delalloc, ignore it */
2450 if (!(other->state & EXTENT_DELALLOC))
2451 return;
2452
2453 if (new->start > other->start)
2454 new_size = new->end - other->start + 1;
2455 else
2456 new_size = other->end - new->start + 1;
2457
2458 /* we're not bigger than the max, unreserve the space and go */
2459 if (new_size <= fs_info->max_extent_size) {
2460 spin_lock(&inode->lock);
2461 btrfs_mod_outstanding_extents(inode, -1);
2462 spin_unlock(&inode->lock);
2463 return;
2464 }
2465
2466 /*
2467 * We have to add up either side to figure out how many extents were
2468 * accounted for before we merged into one big extent. If the number of
2469 * extents we accounted for is <= the amount we need for the new range
2470 * then we can return, otherwise drop. Think of it like this
2471 *
2472 * [ 4k][MAX_SIZE]
2473 *
2474 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2475 * need 2 outstanding extents, on one side we have 1 and the other side
2476 * we have 1 so they are == and we can return. But in this case
2477 *
2478 * [MAX_SIZE+4k][MAX_SIZE+4k]
2479 *
2480 * Each range on their own accounts for 2 extents, but merged together
2481 * they are only 3 extents worth of accounting, so we need to drop in
2482 * this case.
2483 */
2484 old_size = other->end - other->start + 1;
2485 num_extents = count_max_extents(fs_info, old_size);
2486 old_size = new->end - new->start + 1;
2487 num_extents += count_max_extents(fs_info, old_size);
2488 if (count_max_extents(fs_info, new_size) >= num_extents)
2489 return;
2490
2491 spin_lock(&inode->lock);
2492 btrfs_mod_outstanding_extents(inode, -1);
2493 spin_unlock(&inode->lock);
2494 }
2495
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2496 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2497 {
2498 struct btrfs_root *root = inode->root;
2499 struct btrfs_fs_info *fs_info = root->fs_info;
2500
2501 spin_lock(&root->delalloc_lock);
2502 ASSERT(list_empty(&inode->delalloc_inodes));
2503 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2504 root->nr_delalloc_inodes++;
2505 if (root->nr_delalloc_inodes == 1) {
2506 spin_lock(&fs_info->delalloc_root_lock);
2507 ASSERT(list_empty(&root->delalloc_root));
2508 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2509 spin_unlock(&fs_info->delalloc_root_lock);
2510 }
2511 spin_unlock(&root->delalloc_lock);
2512 }
2513
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2514 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2515 {
2516 struct btrfs_root *root = inode->root;
2517 struct btrfs_fs_info *fs_info = root->fs_info;
2518
2519 lockdep_assert_held(&root->delalloc_lock);
2520
2521 /*
2522 * We may be called after the inode was already deleted from the list,
2523 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2524 * and then later through btrfs_clear_delalloc_extent() while the inode
2525 * still has ->delalloc_bytes > 0.
2526 */
2527 if (!list_empty(&inode->delalloc_inodes)) {
2528 list_del_init(&inode->delalloc_inodes);
2529 root->nr_delalloc_inodes--;
2530 if (!root->nr_delalloc_inodes) {
2531 ASSERT(list_empty(&root->delalloc_inodes));
2532 spin_lock(&fs_info->delalloc_root_lock);
2533 ASSERT(!list_empty(&root->delalloc_root));
2534 list_del_init(&root->delalloc_root);
2535 spin_unlock(&fs_info->delalloc_root_lock);
2536 }
2537 }
2538 }
2539
2540 /*
2541 * Properly track delayed allocation bytes in the inode and to maintain the
2542 * list of inodes that have pending delalloc work to be done.
2543 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2544 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2545 u32 bits)
2546 {
2547 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2548
2549 lockdep_assert_held(&inode->io_tree.lock);
2550
2551 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2552 WARN_ON(1);
2553 /*
2554 * set_bit and clear bit hooks normally require _irqsave/restore
2555 * but in this case, we are only testing for the DELALLOC
2556 * bit, which is only set or cleared with irqs on
2557 */
2558 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2559 u64 len = state->end + 1 - state->start;
2560 u64 prev_delalloc_bytes;
2561 u32 num_extents = count_max_extents(fs_info, len);
2562
2563 spin_lock(&inode->lock);
2564 btrfs_mod_outstanding_extents(inode, num_extents);
2565 spin_unlock(&inode->lock);
2566
2567 /* For sanity tests */
2568 if (btrfs_is_testing(fs_info))
2569 return;
2570
2571 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2572 fs_info->delalloc_batch);
2573 spin_lock(&inode->lock);
2574 prev_delalloc_bytes = inode->delalloc_bytes;
2575 inode->delalloc_bytes += len;
2576 if (bits & EXTENT_DEFRAG)
2577 inode->defrag_bytes += len;
2578 spin_unlock(&inode->lock);
2579
2580 /*
2581 * We don't need to be under the protection of the inode's lock,
2582 * because we are called while holding the inode's io_tree lock
2583 * and are therefore protected against concurrent calls of this
2584 * function and btrfs_clear_delalloc_extent().
2585 */
2586 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2587 btrfs_add_delalloc_inode(inode);
2588 }
2589
2590 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2591 (bits & EXTENT_DELALLOC_NEW)) {
2592 spin_lock(&inode->lock);
2593 inode->new_delalloc_bytes += state->end + 1 - state->start;
2594 spin_unlock(&inode->lock);
2595 }
2596 }
2597
2598 /*
2599 * Once a range is no longer delalloc this function ensures that proper
2600 * accounting happens.
2601 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2602 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2603 struct extent_state *state, u32 bits)
2604 {
2605 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2606 u64 len = state->end + 1 - state->start;
2607 u32 num_extents = count_max_extents(fs_info, len);
2608
2609 lockdep_assert_held(&inode->io_tree.lock);
2610
2611 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2612 spin_lock(&inode->lock);
2613 inode->defrag_bytes -= len;
2614 spin_unlock(&inode->lock);
2615 }
2616
2617 /*
2618 * set_bit and clear bit hooks normally require _irqsave/restore
2619 * but in this case, we are only testing for the DELALLOC
2620 * bit, which is only set or cleared with irqs on
2621 */
2622 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2623 struct btrfs_root *root = inode->root;
2624 u64 new_delalloc_bytes;
2625
2626 spin_lock(&inode->lock);
2627 btrfs_mod_outstanding_extents(inode, -num_extents);
2628 spin_unlock(&inode->lock);
2629
2630 /*
2631 * We don't reserve metadata space for space cache inodes so we
2632 * don't need to call delalloc_release_metadata if there is an
2633 * error.
2634 */
2635 if (bits & EXTENT_CLEAR_META_RESV &&
2636 root != fs_info->tree_root)
2637 btrfs_delalloc_release_metadata(inode, len, true);
2638
2639 /* For sanity tests. */
2640 if (btrfs_is_testing(fs_info))
2641 return;
2642
2643 if (!btrfs_is_data_reloc_root(root) &&
2644 !btrfs_is_free_space_inode(inode) &&
2645 !(state->state & EXTENT_NORESERVE) &&
2646 (bits & EXTENT_CLEAR_DATA_RESV))
2647 btrfs_free_reserved_data_space_noquota(inode, len);
2648
2649 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2650 fs_info->delalloc_batch);
2651 spin_lock(&inode->lock);
2652 inode->delalloc_bytes -= len;
2653 new_delalloc_bytes = inode->delalloc_bytes;
2654 spin_unlock(&inode->lock);
2655
2656 /*
2657 * We don't need to be under the protection of the inode's lock,
2658 * because we are called while holding the inode's io_tree lock
2659 * and are therefore protected against concurrent calls of this
2660 * function and btrfs_set_delalloc_extent().
2661 */
2662 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2663 spin_lock(&root->delalloc_lock);
2664 btrfs_del_delalloc_inode(inode);
2665 spin_unlock(&root->delalloc_lock);
2666 }
2667 }
2668
2669 if ((state->state & EXTENT_DELALLOC_NEW) &&
2670 (bits & EXTENT_DELALLOC_NEW)) {
2671 spin_lock(&inode->lock);
2672 ASSERT(inode->new_delalloc_bytes >= len);
2673 inode->new_delalloc_bytes -= len;
2674 if (bits & EXTENT_ADD_INODE_BYTES)
2675 inode_add_bytes(&inode->vfs_inode, len);
2676 spin_unlock(&inode->lock);
2677 }
2678 }
2679
2680 /*
2681 * given a list of ordered sums record them in the inode. This happens
2682 * at IO completion time based on sums calculated at bio submission time.
2683 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2684 static int add_pending_csums(struct btrfs_trans_handle *trans,
2685 struct list_head *list)
2686 {
2687 struct btrfs_ordered_sum *sum;
2688 struct btrfs_root *csum_root = NULL;
2689 int ret;
2690
2691 list_for_each_entry(sum, list, list) {
2692 trans->adding_csums = true;
2693 if (!csum_root)
2694 csum_root = btrfs_csum_root(trans->fs_info,
2695 sum->logical);
2696 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2697 trans->adding_csums = false;
2698 if (ret)
2699 return ret;
2700 }
2701 return 0;
2702 }
2703
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2704 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2705 const u64 start,
2706 const u64 len,
2707 struct extent_state **cached_state)
2708 {
2709 u64 search_start = start;
2710 const u64 end = start + len - 1;
2711
2712 while (search_start < end) {
2713 const u64 search_len = end - search_start + 1;
2714 struct extent_map *em;
2715 u64 em_len;
2716 int ret = 0;
2717
2718 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2719 if (IS_ERR(em))
2720 return PTR_ERR(em);
2721
2722 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2723 goto next;
2724
2725 em_len = em->len;
2726 if (em->start < search_start)
2727 em_len -= search_start - em->start;
2728 if (em_len > search_len)
2729 em_len = search_len;
2730
2731 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2732 search_start + em_len - 1,
2733 EXTENT_DELALLOC_NEW, cached_state);
2734 next:
2735 search_start = btrfs_extent_map_end(em);
2736 btrfs_free_extent_map(em);
2737 if (ret)
2738 return ret;
2739 }
2740 return 0;
2741 }
2742
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2743 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2744 unsigned int extra_bits,
2745 struct extent_state **cached_state)
2746 {
2747 WARN_ON(PAGE_ALIGNED(end));
2748
2749 if (start >= i_size_read(&inode->vfs_inode) &&
2750 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2751 /*
2752 * There can't be any extents following eof in this case so just
2753 * set the delalloc new bit for the range directly.
2754 */
2755 extra_bits |= EXTENT_DELALLOC_NEW;
2756 } else {
2757 int ret;
2758
2759 ret = btrfs_find_new_delalloc_bytes(inode, start,
2760 end + 1 - start,
2761 cached_state);
2762 if (ret)
2763 return ret;
2764 }
2765
2766 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2767 EXTENT_DELALLOC | extra_bits, cached_state);
2768 }
2769
2770 /* see btrfs_writepage_start_hook for details on why this is required */
2771 struct btrfs_writepage_fixup {
2772 struct folio *folio;
2773 struct btrfs_inode *inode;
2774 struct btrfs_work work;
2775 };
2776
btrfs_writepage_fixup_worker(struct btrfs_work * work)2777 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2778 {
2779 struct btrfs_writepage_fixup *fixup =
2780 container_of(work, struct btrfs_writepage_fixup, work);
2781 struct btrfs_ordered_extent *ordered;
2782 struct extent_state *cached_state = NULL;
2783 struct extent_changeset *data_reserved = NULL;
2784 struct folio *folio = fixup->folio;
2785 struct btrfs_inode *inode = fixup->inode;
2786 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2787 u64 page_start = folio_pos(folio);
2788 u64 page_end = folio_next_pos(folio) - 1;
2789 int ret = 0;
2790 bool free_delalloc_space = true;
2791
2792 /*
2793 * This is similar to page_mkwrite, we need to reserve the space before
2794 * we take the folio lock.
2795 */
2796 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2797 folio_size(folio));
2798 again:
2799 folio_lock(folio);
2800
2801 /*
2802 * Before we queued this fixup, we took a reference on the folio.
2803 * folio->mapping may go NULL, but it shouldn't be moved to a different
2804 * address space.
2805 */
2806 if (!folio->mapping || !folio_test_dirty(folio) ||
2807 !folio_test_checked(folio)) {
2808 /*
2809 * Unfortunately this is a little tricky, either
2810 *
2811 * 1) We got here and our folio had already been dealt with and
2812 * we reserved our space, thus ret == 0, so we need to just
2813 * drop our space reservation and bail. This can happen the
2814 * first time we come into the fixup worker, or could happen
2815 * while waiting for the ordered extent.
2816 * 2) Our folio was already dealt with, but we happened to get an
2817 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2818 * this case we obviously don't have anything to release, but
2819 * because the folio was already dealt with we don't want to
2820 * mark the folio with an error, so make sure we're resetting
2821 * ret to 0. This is why we have this check _before_ the ret
2822 * check, because we do not want to have a surprise ENOSPC
2823 * when the folio was already properly dealt with.
2824 */
2825 if (!ret) {
2826 btrfs_delalloc_release_extents(inode, folio_size(folio));
2827 btrfs_delalloc_release_space(inode, data_reserved,
2828 page_start, folio_size(folio),
2829 true);
2830 }
2831 ret = 0;
2832 goto out_page;
2833 }
2834
2835 /*
2836 * We can't mess with the folio state unless it is locked, so now that
2837 * it is locked bail if we failed to make our space reservation.
2838 */
2839 if (ret)
2840 goto out_page;
2841
2842 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2843
2844 /* already ordered? We're done */
2845 if (folio_test_ordered(folio))
2846 goto out_reserved;
2847
2848 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2849 if (ordered) {
2850 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2851 &cached_state);
2852 folio_unlock(folio);
2853 btrfs_start_ordered_extent(ordered);
2854 btrfs_put_ordered_extent(ordered);
2855 goto again;
2856 }
2857
2858 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2859 &cached_state);
2860 if (ret)
2861 goto out_reserved;
2862
2863 /*
2864 * Everything went as planned, we're now the owner of a dirty page with
2865 * delayed allocation bits set and space reserved for our COW
2866 * destination.
2867 *
2868 * The page was dirty when we started, nothing should have cleaned it.
2869 */
2870 BUG_ON(!folio_test_dirty(folio));
2871 free_delalloc_space = false;
2872 out_reserved:
2873 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2874 if (free_delalloc_space)
2875 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2876 PAGE_SIZE, true);
2877 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2878 out_page:
2879 if (ret) {
2880 /*
2881 * We hit ENOSPC or other errors. Update the mapping and page
2882 * to reflect the errors and clean the page.
2883 */
2884 mapping_set_error(folio->mapping, ret);
2885 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2886 folio_size(folio), !ret);
2887 folio_clear_dirty_for_io(folio);
2888 }
2889 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2890 folio_unlock(folio);
2891 folio_put(folio);
2892 kfree(fixup);
2893 extent_changeset_free(data_reserved);
2894 /*
2895 * As a precaution, do a delayed iput in case it would be the last iput
2896 * that could need flushing space. Recursing back to fixup worker would
2897 * deadlock.
2898 */
2899 btrfs_add_delayed_iput(inode);
2900 }
2901
2902 /*
2903 * There are a few paths in the higher layers of the kernel that directly
2904 * set the folio dirty bit without asking the filesystem if it is a
2905 * good idea. This causes problems because we want to make sure COW
2906 * properly happens and the data=ordered rules are followed.
2907 *
2908 * In our case any range that doesn't have the ORDERED bit set
2909 * hasn't been properly setup for IO. We kick off an async process
2910 * to fix it up. The async helper will wait for ordered extents, set
2911 * the delalloc bit and make it safe to write the folio.
2912 */
btrfs_writepage_cow_fixup(struct folio * folio)2913 int btrfs_writepage_cow_fixup(struct folio *folio)
2914 {
2915 struct inode *inode = folio->mapping->host;
2916 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2917 struct btrfs_writepage_fixup *fixup;
2918
2919 /* This folio has ordered extent covering it already */
2920 if (folio_test_ordered(folio))
2921 return 0;
2922
2923 /*
2924 * For experimental build, we error out instead of EAGAIN.
2925 *
2926 * We should not hit such out-of-band dirty folios anymore.
2927 */
2928 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2929 DEBUG_WARN();
2930 btrfs_err_rl(fs_info,
2931 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2932 btrfs_root_id(BTRFS_I(inode)->root),
2933 btrfs_ino(BTRFS_I(inode)),
2934 folio_pos(folio));
2935 return -EUCLEAN;
2936 }
2937
2938 /*
2939 * folio_checked is set below when we create a fixup worker for this
2940 * folio, don't try to create another one if we're already
2941 * folio_test_checked.
2942 *
2943 * The extent_io writepage code will redirty the foio if we send back
2944 * EAGAIN.
2945 */
2946 if (folio_test_checked(folio))
2947 return -EAGAIN;
2948
2949 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2950 if (!fixup)
2951 return -EAGAIN;
2952
2953 /*
2954 * We are already holding a reference to this inode from
2955 * write_cache_pages. We need to hold it because the space reservation
2956 * takes place outside of the folio lock, and we can't trust
2957 * folio->mapping outside of the folio lock.
2958 */
2959 ihold(inode);
2960 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2961 folio_get(folio);
2962 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2963 fixup->folio = folio;
2964 fixup->inode = BTRFS_I(inode);
2965 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2966
2967 return -EAGAIN;
2968 }
2969
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2970 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2971 struct btrfs_inode *inode, u64 file_pos,
2972 struct btrfs_file_extent_item *stack_fi,
2973 const bool update_inode_bytes,
2974 u64 qgroup_reserved)
2975 {
2976 struct btrfs_root *root = inode->root;
2977 const u64 sectorsize = root->fs_info->sectorsize;
2978 BTRFS_PATH_AUTO_FREE(path);
2979 struct extent_buffer *leaf;
2980 struct btrfs_key ins;
2981 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2982 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2983 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2984 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2985 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2986 struct btrfs_drop_extents_args drop_args = { 0 };
2987 int ret;
2988
2989 path = btrfs_alloc_path();
2990 if (!path)
2991 return -ENOMEM;
2992
2993 /*
2994 * we may be replacing one extent in the tree with another.
2995 * The new extent is pinned in the extent map, and we don't want
2996 * to drop it from the cache until it is completely in the btree.
2997 *
2998 * So, tell btrfs_drop_extents to leave this extent in the cache.
2999 * the caller is expected to unpin it and allow it to be merged
3000 * with the others.
3001 */
3002 drop_args.path = path;
3003 drop_args.start = file_pos;
3004 drop_args.end = file_pos + num_bytes;
3005 drop_args.replace_extent = true;
3006 drop_args.extent_item_size = sizeof(*stack_fi);
3007 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3008 if (ret)
3009 goto out;
3010
3011 if (!drop_args.extent_inserted) {
3012 ins.objectid = btrfs_ino(inode);
3013 ins.type = BTRFS_EXTENT_DATA_KEY;
3014 ins.offset = file_pos;
3015
3016 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3017 sizeof(*stack_fi));
3018 if (ret)
3019 goto out;
3020 }
3021 leaf = path->nodes[0];
3022 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3023 write_extent_buffer(leaf, stack_fi,
3024 btrfs_item_ptr_offset(leaf, path->slots[0]),
3025 sizeof(struct btrfs_file_extent_item));
3026
3027 btrfs_release_path(path);
3028
3029 /*
3030 * If we dropped an inline extent here, we know the range where it is
3031 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3032 * number of bytes only for that range containing the inline extent.
3033 * The remaining of the range will be processed when clearing the
3034 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3035 */
3036 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3037 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3038
3039 inline_size = drop_args.bytes_found - inline_size;
3040 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3041 drop_args.bytes_found -= inline_size;
3042 num_bytes -= sectorsize;
3043 }
3044
3045 if (update_inode_bytes)
3046 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3047
3048 ins.objectid = disk_bytenr;
3049 ins.type = BTRFS_EXTENT_ITEM_KEY;
3050 ins.offset = disk_num_bytes;
3051
3052 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3053 if (ret)
3054 goto out;
3055
3056 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3057 file_pos - offset,
3058 qgroup_reserved, &ins);
3059 out:
3060 return ret;
3061 }
3062
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3063 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3064 u64 start, u64 len)
3065 {
3066 struct btrfs_block_group *cache;
3067
3068 cache = btrfs_lookup_block_group(fs_info, start);
3069 ASSERT(cache);
3070
3071 spin_lock(&cache->lock);
3072 cache->delalloc_bytes -= len;
3073 spin_unlock(&cache->lock);
3074
3075 btrfs_put_block_group(cache);
3076 }
3077
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3078 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3079 struct btrfs_ordered_extent *oe)
3080 {
3081 struct btrfs_file_extent_item stack_fi;
3082 bool update_inode_bytes;
3083 u64 num_bytes = oe->num_bytes;
3084 u64 ram_bytes = oe->ram_bytes;
3085
3086 memset(&stack_fi, 0, sizeof(stack_fi));
3087 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3088 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3089 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3090 oe->disk_num_bytes);
3091 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3092 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3093 num_bytes = oe->truncated_len;
3094 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3095 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3096 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3097 /* Encryption and other encoding is reserved and all 0 */
3098
3099 /*
3100 * For delalloc, when completing an ordered extent we update the inode's
3101 * bytes when clearing the range in the inode's io tree, so pass false
3102 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3103 * except if the ordered extent was truncated.
3104 */
3105 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3106 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3107 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3108
3109 return insert_reserved_file_extent(trans, oe->inode,
3110 oe->file_offset, &stack_fi,
3111 update_inode_bytes, oe->qgroup_rsv);
3112 }
3113
3114 /*
3115 * As ordered data IO finishes, this gets called so we can finish
3116 * an ordered extent if the range of bytes in the file it covers are
3117 * fully written.
3118 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3119 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3120 {
3121 struct btrfs_inode *inode = ordered_extent->inode;
3122 struct btrfs_root *root = inode->root;
3123 struct btrfs_fs_info *fs_info = root->fs_info;
3124 struct btrfs_trans_handle *trans = NULL;
3125 struct extent_io_tree *io_tree = &inode->io_tree;
3126 struct extent_state *cached_state = NULL;
3127 u64 start, end;
3128 int compress_type = 0;
3129 int ret = 0;
3130 u64 logical_len = ordered_extent->num_bytes;
3131 bool freespace_inode;
3132 bool truncated = false;
3133 bool clear_reserved_extent = true;
3134 unsigned int clear_bits = EXTENT_DEFRAG;
3135
3136 start = ordered_extent->file_offset;
3137 end = start + ordered_extent->num_bytes - 1;
3138
3139 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3140 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3141 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3142 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3143 clear_bits |= EXTENT_DELALLOC_NEW;
3144
3145 freespace_inode = btrfs_is_free_space_inode(inode);
3146 if (!freespace_inode)
3147 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3148
3149 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) {
3150 ret = -EIO;
3151 goto out;
3152 }
3153
3154 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3155 ordered_extent->disk_num_bytes);
3156 if (ret)
3157 goto out;
3158
3159 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3160 truncated = true;
3161 logical_len = ordered_extent->truncated_len;
3162 /* Truncated the entire extent, don't bother adding */
3163 if (!logical_len)
3164 goto out;
3165 }
3166
3167 /*
3168 * If it's a COW write we need to lock the extent range as we will be
3169 * inserting/replacing file extent items and unpinning an extent map.
3170 * This must be taken before joining a transaction, as it's a higher
3171 * level lock (like the inode's VFS lock), otherwise we can run into an
3172 * ABBA deadlock with other tasks (transactions work like a lock,
3173 * depending on their current state).
3174 */
3175 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3176 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3177 btrfs_lock_extent_bits(io_tree, start, end,
3178 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3179 &cached_state);
3180 }
3181
3182 if (freespace_inode)
3183 trans = btrfs_join_transaction_spacecache(root);
3184 else
3185 trans = btrfs_join_transaction(root);
3186 if (IS_ERR(trans)) {
3187 ret = PTR_ERR(trans);
3188 trans = NULL;
3189 goto out;
3190 }
3191
3192 trans->block_rsv = &inode->block_rsv;
3193
3194 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3195 if (unlikely(ret)) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
3199
3200 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3201 /* Logic error */
3202 ASSERT(list_empty(&ordered_extent->list));
3203 if (unlikely(!list_empty(&ordered_extent->list))) {
3204 ret = -EINVAL;
3205 btrfs_abort_transaction(trans, ret);
3206 goto out;
3207 }
3208
3209 btrfs_inode_safe_disk_i_size_write(inode, 0);
3210 ret = btrfs_update_inode_fallback(trans, inode);
3211 if (unlikely(ret)) {
3212 /* -ENOMEM or corruption */
3213 btrfs_abort_transaction(trans, ret);
3214 }
3215 goto out;
3216 }
3217
3218 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3219 compress_type = ordered_extent->compress_type;
3220 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3221 BUG_ON(compress_type);
3222 ret = btrfs_mark_extent_written(trans, inode,
3223 ordered_extent->file_offset,
3224 ordered_extent->file_offset +
3225 logical_len);
3226 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3227 ordered_extent->disk_num_bytes);
3228 } else {
3229 BUG_ON(root == fs_info->tree_root);
3230 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3231 if (!ret) {
3232 clear_reserved_extent = false;
3233 btrfs_release_delalloc_bytes(fs_info,
3234 ordered_extent->disk_bytenr,
3235 ordered_extent->disk_num_bytes);
3236 }
3237 }
3238 if (unlikely(ret < 0)) {
3239 btrfs_abort_transaction(trans, ret);
3240 goto out;
3241 }
3242
3243 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3244 ordered_extent->num_bytes, trans->transid);
3245 if (unlikely(ret < 0)) {
3246 btrfs_abort_transaction(trans, ret);
3247 goto out;
3248 }
3249
3250 ret = add_pending_csums(trans, &ordered_extent->list);
3251 if (unlikely(ret)) {
3252 btrfs_abort_transaction(trans, ret);
3253 goto out;
3254 }
3255
3256 /*
3257 * If this is a new delalloc range, clear its new delalloc flag to
3258 * update the inode's number of bytes. This needs to be done first
3259 * before updating the inode item.
3260 */
3261 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3262 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3263 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3264 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3265 &cached_state);
3266
3267 btrfs_inode_safe_disk_i_size_write(inode, 0);
3268 ret = btrfs_update_inode_fallback(trans, inode);
3269 if (unlikely(ret)) { /* -ENOMEM or corruption */
3270 btrfs_abort_transaction(trans, ret);
3271 goto out;
3272 }
3273 out:
3274 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3275 &cached_state);
3276
3277 if (trans)
3278 btrfs_end_transaction(trans);
3279
3280 if (ret || truncated) {
3281 /*
3282 * If we failed to finish this ordered extent for any reason we
3283 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3284 * extent, and mark the inode with the error if it wasn't
3285 * already set. Any error during writeback would have already
3286 * set the mapping error, so we need to set it if we're the ones
3287 * marking this ordered extent as failed.
3288 */
3289 if (ret)
3290 btrfs_mark_ordered_extent_error(ordered_extent);
3291
3292 /*
3293 * Drop extent maps for the part of the extent we didn't write.
3294 *
3295 * We have an exception here for the free_space_inode, this is
3296 * because when we do btrfs_get_extent() on the free space inode
3297 * we will search the commit root. If this is a new block group
3298 * we won't find anything, and we will trip over the assert in
3299 * writepage where we do ASSERT(em->block_start !=
3300 * EXTENT_MAP_HOLE).
3301 *
3302 * Theoretically we could also skip this for any NOCOW extent as
3303 * we don't mess with the extent map tree in the NOCOW case, but
3304 * for now simply skip this if we are the free space inode.
3305 */
3306 if (!btrfs_is_free_space_inode(inode)) {
3307 u64 unwritten_start = start;
3308
3309 if (truncated)
3310 unwritten_start += logical_len;
3311
3312 btrfs_drop_extent_map_range(inode, unwritten_start,
3313 end, false);
3314 }
3315
3316 /*
3317 * If the ordered extent had an IOERR or something else went
3318 * wrong we need to return the space for this ordered extent
3319 * back to the allocator. We only free the extent in the
3320 * truncated case if we didn't write out the extent at all.
3321 *
3322 * If we made it past insert_reserved_file_extent before we
3323 * errored out then we don't need to do this as the accounting
3324 * has already been done.
3325 */
3326 if ((ret || !logical_len) &&
3327 clear_reserved_extent &&
3328 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3329 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3330 /*
3331 * Discard the range before returning it back to the
3332 * free space pool
3333 */
3334 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3335 btrfs_discard_extent(fs_info,
3336 ordered_extent->disk_bytenr,
3337 ordered_extent->disk_num_bytes,
3338 NULL);
3339 btrfs_free_reserved_extent(fs_info,
3340 ordered_extent->disk_bytenr,
3341 ordered_extent->disk_num_bytes, true);
3342 /*
3343 * Actually free the qgroup rsv which was released when
3344 * the ordered extent was created.
3345 */
3346 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3347 ordered_extent->qgroup_rsv,
3348 BTRFS_QGROUP_RSV_DATA);
3349 }
3350 }
3351
3352 /*
3353 * This needs to be done to make sure anybody waiting knows we are done
3354 * updating everything for this ordered extent.
3355 */
3356 btrfs_remove_ordered_extent(inode, ordered_extent);
3357
3358 /* once for us */
3359 btrfs_put_ordered_extent(ordered_extent);
3360 /* once for the tree */
3361 btrfs_put_ordered_extent(ordered_extent);
3362
3363 return ret;
3364 }
3365
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3366 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3367 {
3368 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3369 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3370 list_empty(&ordered->bioc_list))
3371 btrfs_finish_ordered_zoned(ordered);
3372 return btrfs_finish_one_ordered(ordered);
3373 }
3374
3375 /*
3376 * Calculate the checksum of an fs block at physical memory address @paddr,
3377 * and save the result to @dest.
3378 *
3379 * The folio containing @paddr must be large enough to contain a full fs block.
3380 */
btrfs_calculate_block_csum_folio(struct btrfs_fs_info * fs_info,const phys_addr_t paddr,u8 * dest)3381 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info,
3382 const phys_addr_t paddr, u8 *dest)
3383 {
3384 struct folio *folio = page_folio(phys_to_page(paddr));
3385 const u32 blocksize = fs_info->sectorsize;
3386 const u32 step = min(blocksize, PAGE_SIZE);
3387 const u32 nr_steps = blocksize / step;
3388 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
3389
3390 /* The full block must be inside the folio. */
3391 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3392
3393 for (int i = 0; i < nr_steps; i++) {
3394 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT;
3395
3396 /*
3397 * For bs <= ps cases, we will only run the loop once, so the offset
3398 * inside the page will only added to paddrs[0].
3399 *
3400 * For bs > ps cases, the block must be page aligned, thus offset
3401 * inside the page will always be 0.
3402 */
3403 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr);
3404 }
3405 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest);
3406 }
3407
3408 /*
3409 * Calculate the checksum of a fs block backed by multiple noncontiguous pages
3410 * at @paddrs[] and save the result to @dest.
3411 *
3412 * The folio containing @paddr must be large enough to contain a full fs block.
3413 */
btrfs_calculate_block_csum_pages(struct btrfs_fs_info * fs_info,const phys_addr_t paddrs[],u8 * dest)3414 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info,
3415 const phys_addr_t paddrs[], u8 *dest)
3416 {
3417 const u32 blocksize = fs_info->sectorsize;
3418 const u32 step = min(blocksize, PAGE_SIZE);
3419 const u32 nr_steps = blocksize / step;
3420 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3421
3422 shash->tfm = fs_info->csum_shash;
3423 crypto_shash_init(shash);
3424 for (int i = 0; i < nr_steps; i++) {
3425 const phys_addr_t paddr = paddrs[i];
3426 void *kaddr;
3427
3428 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE);
3429 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
3430 crypto_shash_update(shash, kaddr, step);
3431 kunmap_local(kaddr);
3432 }
3433 crypto_shash_final(shash, dest);
3434 }
3435
3436 /*
3437 * Verify the checksum for a single sector without any extra action that depend
3438 * on the type of I/O.
3439 *
3440 * @kaddr must be a properly kmapped address.
3441 */
btrfs_check_block_csum(struct btrfs_fs_info * fs_info,phys_addr_t paddr,u8 * csum,const u8 * const csum_expected)3442 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum,
3443 const u8 * const csum_expected)
3444 {
3445 btrfs_calculate_block_csum_folio(fs_info, paddr, csum);
3446 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3447 return -EIO;
3448 return 0;
3449 }
3450
3451 /*
3452 * Verify the checksum of a single data sector, which can be scattered at
3453 * different noncontiguous pages.
3454 *
3455 * @bbio: btrfs_io_bio which contains the csum
3456 * @dev: device the sector is on
3457 * @bio_offset: offset to the beginning of the bio (in bytes)
3458 * @paddrs: physical addresses which back the fs block
3459 *
3460 * Check if the checksum on a data block is valid. When a checksum mismatch is
3461 * detected, report the error and fill the corrupted range with zero.
3462 *
3463 * Return %true if the sector is ok or had no checksum to start with, else %false.
3464 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,const phys_addr_t paddrs[])3465 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3466 u32 bio_offset, const phys_addr_t paddrs[])
3467 {
3468 struct btrfs_inode *inode = bbio->inode;
3469 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3470 const u32 blocksize = fs_info->sectorsize;
3471 const u32 step = min(blocksize, PAGE_SIZE);
3472 const u32 nr_steps = blocksize / step;
3473 u64 file_offset = bbio->file_offset + bio_offset;
3474 u64 end = file_offset + blocksize - 1;
3475 u8 *csum_expected;
3476 u8 csum[BTRFS_CSUM_SIZE];
3477
3478 if (!bbio->csum)
3479 return true;
3480
3481 if (btrfs_is_data_reloc_root(inode->root) &&
3482 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3483 NULL)) {
3484 /* Skip the range without csum for data reloc inode */
3485 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3486 EXTENT_NODATASUM, NULL);
3487 return true;
3488 }
3489
3490 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3491 fs_info->csum_size;
3492 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum);
3493 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3494 goto zeroit;
3495 return true;
3496
3497 zeroit:
3498 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3499 bbio->mirror_num);
3500 if (dev)
3501 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3502 for (int i = 0; i < nr_steps; i++)
3503 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step);
3504 return false;
3505 }
3506
3507 /*
3508 * Perform a delayed iput on @inode.
3509 *
3510 * @inode: The inode we want to perform iput on
3511 *
3512 * This function uses the generic vfs_inode::i_count to track whether we should
3513 * just decrement it (in case it's > 1) or if this is the last iput then link
3514 * the inode to the delayed iput machinery. Delayed iputs are processed at
3515 * transaction commit time/superblock commit/cleaner kthread.
3516 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3517 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3518 {
3519 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3520 unsigned long flags;
3521
3522 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3523 return;
3524
3525 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3526 atomic_inc(&fs_info->nr_delayed_iputs);
3527 /*
3528 * Need to be irq safe here because we can be called from either an irq
3529 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3530 * context.
3531 */
3532 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3533 ASSERT(list_empty(&inode->delayed_iput));
3534 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3535 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3536 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3537 wake_up_process(fs_info->cleaner_kthread);
3538 }
3539
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3540 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3541 struct btrfs_inode *inode)
3542 {
3543 list_del_init(&inode->delayed_iput);
3544 spin_unlock_irq(&fs_info->delayed_iput_lock);
3545 iput(&inode->vfs_inode);
3546 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3547 wake_up(&fs_info->delayed_iputs_wait);
3548 spin_lock_irq(&fs_info->delayed_iput_lock);
3549 }
3550
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3551 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3552 struct btrfs_inode *inode)
3553 {
3554 if (!list_empty(&inode->delayed_iput)) {
3555 spin_lock_irq(&fs_info->delayed_iput_lock);
3556 if (!list_empty(&inode->delayed_iput))
3557 run_delayed_iput_locked(fs_info, inode);
3558 spin_unlock_irq(&fs_info->delayed_iput_lock);
3559 }
3560 }
3561
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3562 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3563 {
3564 /*
3565 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3566 * calls btrfs_add_delayed_iput() and that needs to lock
3567 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3568 * prevent a deadlock.
3569 */
3570 spin_lock_irq(&fs_info->delayed_iput_lock);
3571 while (!list_empty(&fs_info->delayed_iputs)) {
3572 struct btrfs_inode *inode;
3573
3574 inode = list_first_entry(&fs_info->delayed_iputs,
3575 struct btrfs_inode, delayed_iput);
3576 run_delayed_iput_locked(fs_info, inode);
3577 if (need_resched()) {
3578 spin_unlock_irq(&fs_info->delayed_iput_lock);
3579 cond_resched();
3580 spin_lock_irq(&fs_info->delayed_iput_lock);
3581 }
3582 }
3583 spin_unlock_irq(&fs_info->delayed_iput_lock);
3584 }
3585
3586 /*
3587 * Wait for flushing all delayed iputs
3588 *
3589 * @fs_info: the filesystem
3590 *
3591 * This will wait on any delayed iputs that are currently running with KILLABLE
3592 * set. Once they are all done running we will return, unless we are killed in
3593 * which case we return EINTR. This helps in user operations like fallocate etc
3594 * that might get blocked on the iputs.
3595 *
3596 * Return EINTR if we were killed, 0 if nothing's pending
3597 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3598 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3599 {
3600 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3601 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3602 if (ret)
3603 return -EINTR;
3604 return 0;
3605 }
3606
3607 /*
3608 * This creates an orphan entry for the given inode in case something goes wrong
3609 * in the middle of an unlink.
3610 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3611 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3612 struct btrfs_inode *inode)
3613 {
3614 int ret;
3615
3616 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3617 if (unlikely(ret && ret != -EEXIST)) {
3618 btrfs_abort_transaction(trans, ret);
3619 return ret;
3620 }
3621
3622 return 0;
3623 }
3624
3625 /*
3626 * We have done the delete so we can go ahead and remove the orphan item for
3627 * this particular inode.
3628 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3629 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3630 struct btrfs_inode *inode)
3631 {
3632 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3633 }
3634
3635 /*
3636 * this cleans up any orphans that may be left on the list from the last use
3637 * of this root.
3638 */
btrfs_orphan_cleanup(struct btrfs_root * root)3639 int btrfs_orphan_cleanup(struct btrfs_root *root)
3640 {
3641 struct btrfs_fs_info *fs_info = root->fs_info;
3642 BTRFS_PATH_AUTO_FREE(path);
3643 struct extent_buffer *leaf;
3644 struct btrfs_key key, found_key;
3645 struct btrfs_trans_handle *trans;
3646 u64 last_objectid = 0;
3647 int ret = 0, nr_unlink = 0;
3648
3649 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3650 return 0;
3651
3652 path = btrfs_alloc_path();
3653 if (!path) {
3654 ret = -ENOMEM;
3655 goto out;
3656 }
3657 path->reada = READA_BACK;
3658
3659 key.objectid = BTRFS_ORPHAN_OBJECTID;
3660 key.type = BTRFS_ORPHAN_ITEM_KEY;
3661 key.offset = (u64)-1;
3662
3663 while (1) {
3664 struct btrfs_inode *inode;
3665
3666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3667 if (ret < 0)
3668 goto out;
3669
3670 /*
3671 * if ret == 0 means we found what we were searching for, which
3672 * is weird, but possible, so only screw with path if we didn't
3673 * find the key and see if we have stuff that matches
3674 */
3675 if (ret > 0) {
3676 ret = 0;
3677 if (path->slots[0] == 0)
3678 break;
3679 path->slots[0]--;
3680 }
3681
3682 /* pull out the item */
3683 leaf = path->nodes[0];
3684 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3685
3686 /* make sure the item matches what we want */
3687 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3688 break;
3689 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3690 break;
3691
3692 /* release the path since we're done with it */
3693 btrfs_release_path(path);
3694
3695 /*
3696 * this is where we are basically btrfs_lookup, without the
3697 * crossing root thing. we store the inode number in the
3698 * offset of the orphan item.
3699 */
3700
3701 if (found_key.offset == last_objectid) {
3702 /*
3703 * We found the same inode as before. This means we were
3704 * not able to remove its items via eviction triggered
3705 * by an iput(). A transaction abort may have happened,
3706 * due to -ENOSPC for example, so try to grab the error
3707 * that lead to a transaction abort, if any.
3708 */
3709 btrfs_err(fs_info,
3710 "Error removing orphan entry, stopping orphan cleanup");
3711 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3712 goto out;
3713 }
3714
3715 last_objectid = found_key.offset;
3716
3717 found_key.objectid = found_key.offset;
3718 found_key.type = BTRFS_INODE_ITEM_KEY;
3719 found_key.offset = 0;
3720 inode = btrfs_iget(last_objectid, root);
3721 if (IS_ERR(inode)) {
3722 ret = PTR_ERR(inode);
3723 inode = NULL;
3724 if (ret != -ENOENT)
3725 goto out;
3726 }
3727
3728 if (!inode && root == fs_info->tree_root) {
3729 struct btrfs_root *dead_root;
3730 int is_dead_root = 0;
3731
3732 /*
3733 * This is an orphan in the tree root. Currently these
3734 * could come from 2 sources:
3735 * a) a root (snapshot/subvolume) deletion in progress
3736 * b) a free space cache inode
3737 * We need to distinguish those two, as the orphan item
3738 * for a root must not get deleted before the deletion
3739 * of the snapshot/subvolume's tree completes.
3740 *
3741 * btrfs_find_orphan_roots() ran before us, which has
3742 * found all deleted roots and loaded them into
3743 * fs_info->fs_roots_radix. So here we can find if an
3744 * orphan item corresponds to a deleted root by looking
3745 * up the root from that radix tree.
3746 */
3747
3748 spin_lock(&fs_info->fs_roots_radix_lock);
3749 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3750 (unsigned long)found_key.objectid);
3751 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3752 is_dead_root = 1;
3753 spin_unlock(&fs_info->fs_roots_radix_lock);
3754
3755 if (is_dead_root) {
3756 /* prevent this orphan from being found again */
3757 key.offset = found_key.objectid - 1;
3758 continue;
3759 }
3760
3761 }
3762
3763 /*
3764 * If we have an inode with links, there are a couple of
3765 * possibilities:
3766 *
3767 * 1. We were halfway through creating fsverity metadata for the
3768 * file. In that case, the orphan item represents incomplete
3769 * fsverity metadata which must be cleaned up with
3770 * btrfs_drop_verity_items and deleting the orphan item.
3771
3772 * 2. Old kernels (before v3.12) used to create an
3773 * orphan item for truncate indicating that there were possibly
3774 * extent items past i_size that needed to be deleted. In v3.12,
3775 * truncate was changed to update i_size in sync with the extent
3776 * items, but the (useless) orphan item was still created. Since
3777 * v4.18, we don't create the orphan item for truncate at all.
3778 *
3779 * So, this item could mean that we need to do a truncate, but
3780 * only if this filesystem was last used on a pre-v3.12 kernel
3781 * and was not cleanly unmounted. The odds of that are quite
3782 * slim, and it's a pain to do the truncate now, so just delete
3783 * the orphan item.
3784 *
3785 * It's also possible that this orphan item was supposed to be
3786 * deleted but wasn't. The inode number may have been reused,
3787 * but either way, we can delete the orphan item.
3788 */
3789 if (!inode || inode->vfs_inode.i_nlink) {
3790 if (inode) {
3791 ret = btrfs_drop_verity_items(inode);
3792 iput(&inode->vfs_inode);
3793 inode = NULL;
3794 if (ret)
3795 goto out;
3796 }
3797 trans = btrfs_start_transaction(root, 1);
3798 if (IS_ERR(trans)) {
3799 ret = PTR_ERR(trans);
3800 goto out;
3801 }
3802 btrfs_debug(fs_info, "auto deleting %Lu",
3803 found_key.objectid);
3804 ret = btrfs_del_orphan_item(trans, root,
3805 found_key.objectid);
3806 btrfs_end_transaction(trans);
3807 if (ret)
3808 goto out;
3809 continue;
3810 }
3811
3812 nr_unlink++;
3813
3814 /* this will do delete_inode and everything for us */
3815 iput(&inode->vfs_inode);
3816 }
3817 /* release the path since we're done with it */
3818 btrfs_release_path(path);
3819
3820 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3821 trans = btrfs_join_transaction(root);
3822 if (!IS_ERR(trans))
3823 btrfs_end_transaction(trans);
3824 }
3825
3826 if (nr_unlink)
3827 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3828
3829 out:
3830 if (ret)
3831 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3832 return ret;
3833 }
3834
3835 /*
3836 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3837 * can't be any ACLs.
3838 *
3839 * @leaf: the eb leaf where to search
3840 * @slot: the slot the inode is in
3841 * @objectid: the objectid of the inode
3842 *
3843 * Return true if there is xattr/ACL, false otherwise.
3844 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3845 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3846 int slot, u64 objectid,
3847 int *first_xattr_slot)
3848 {
3849 u32 nritems = btrfs_header_nritems(leaf);
3850 struct btrfs_key found_key;
3851 static u64 xattr_access = 0;
3852 static u64 xattr_default = 0;
3853 int scanned = 0;
3854
3855 if (!xattr_access) {
3856 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3857 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3858 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3859 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3860 }
3861
3862 slot++;
3863 *first_xattr_slot = -1;
3864 while (slot < nritems) {
3865 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3866
3867 /* We found a different objectid, there must be no ACLs. */
3868 if (found_key.objectid != objectid)
3869 return false;
3870
3871 /* We found an xattr, assume we've got an ACL. */
3872 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3873 if (*first_xattr_slot == -1)
3874 *first_xattr_slot = slot;
3875 if (found_key.offset == xattr_access ||
3876 found_key.offset == xattr_default)
3877 return true;
3878 }
3879
3880 /*
3881 * We found a key greater than an xattr key, there can't be any
3882 * ACLs later on.
3883 */
3884 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3885 return false;
3886
3887 slot++;
3888 scanned++;
3889
3890 /*
3891 * The item order goes like:
3892 * - inode
3893 * - inode backrefs
3894 * - xattrs
3895 * - extents,
3896 *
3897 * so if there are lots of hard links to an inode there can be
3898 * a lot of backrefs. Don't waste time searching too hard,
3899 * this is just an optimization.
3900 */
3901 if (scanned >= 8)
3902 break;
3903 }
3904 /*
3905 * We hit the end of the leaf before we found an xattr or something
3906 * larger than an xattr. We have to assume the inode has ACLs.
3907 */
3908 if (*first_xattr_slot == -1)
3909 *first_xattr_slot = slot;
3910 return true;
3911 }
3912
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3913 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3914 {
3915 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3916
3917 if (WARN_ON_ONCE(inode->file_extent_tree))
3918 return 0;
3919 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3920 return 0;
3921 if (!S_ISREG(inode->vfs_inode.i_mode))
3922 return 0;
3923 if (btrfs_is_free_space_inode(inode))
3924 return 0;
3925
3926 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3927 if (!inode->file_extent_tree)
3928 return -ENOMEM;
3929
3930 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3931 IO_TREE_INODE_FILE_EXTENT);
3932 /* Lockdep class is set only for the file extent tree. */
3933 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3934
3935 return 0;
3936 }
3937
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3938 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3939 {
3940 struct btrfs_root *root = inode->root;
3941 struct btrfs_inode *existing;
3942 const u64 ino = btrfs_ino(inode);
3943 int ret;
3944
3945 if (inode_unhashed(&inode->vfs_inode))
3946 return 0;
3947
3948 if (prealloc) {
3949 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3950 if (ret)
3951 return ret;
3952 }
3953
3954 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3955
3956 if (xa_is_err(existing)) {
3957 ret = xa_err(existing);
3958 ASSERT(ret != -EINVAL);
3959 ASSERT(ret != -ENOMEM);
3960 return ret;
3961 } else if (existing) {
3962 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING)));
3963 }
3964
3965 return 0;
3966 }
3967
3968 /*
3969 * Read a locked inode from the btree into the in-memory inode and add it to
3970 * its root list/tree.
3971 *
3972 * On failure clean up the inode.
3973 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3974 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3975 {
3976 struct btrfs_root *root = inode->root;
3977 struct btrfs_fs_info *fs_info = root->fs_info;
3978 struct extent_buffer *leaf;
3979 struct btrfs_inode_item *inode_item;
3980 struct inode *vfs_inode = &inode->vfs_inode;
3981 struct btrfs_key location;
3982 unsigned long ptr;
3983 int maybe_acls;
3984 u32 rdev;
3985 int ret;
3986 bool filled = false;
3987 int first_xattr_slot;
3988
3989 ret = btrfs_fill_inode(inode, &rdev);
3990 if (!ret)
3991 filled = true;
3992
3993 ASSERT(path);
3994
3995 btrfs_get_inode_key(inode, &location);
3996
3997 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3998 if (ret) {
3999 /*
4000 * ret > 0 can come from btrfs_search_slot called by
4001 * btrfs_lookup_inode(), this means the inode was not found.
4002 */
4003 if (ret > 0)
4004 ret = -ENOENT;
4005 goto out;
4006 }
4007
4008 leaf = path->nodes[0];
4009
4010 if (filled)
4011 goto cache_index;
4012
4013 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4014 struct btrfs_inode_item);
4015 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
4016 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
4017 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
4018 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
4019 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
4020
4021 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
4022 btrfs_timespec_nsec(leaf, &inode_item->atime));
4023
4024 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
4025 btrfs_timespec_nsec(leaf, &inode_item->mtime));
4026
4027 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
4028 btrfs_timespec_nsec(leaf, &inode_item->ctime));
4029
4030 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
4031 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
4032
4033 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
4034 inode->generation = btrfs_inode_generation(leaf, inode_item);
4035 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
4036
4037 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
4038 vfs_inode->i_generation = inode->generation;
4039 vfs_inode->i_rdev = 0;
4040 rdev = btrfs_inode_rdev(leaf, inode_item);
4041
4042 if (S_ISDIR(vfs_inode->i_mode))
4043 inode->index_cnt = (u64)-1;
4044
4045 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4046 &inode->flags, &inode->ro_flags);
4047 btrfs_update_inode_mapping_flags(inode);
4048 btrfs_set_inode_mapping_order(inode);
4049
4050 cache_index:
4051 /*
4052 * If we were modified in the current generation and evicted from memory
4053 * and then re-read we need to do a full sync since we don't have any
4054 * idea about which extents were modified before we were evicted from
4055 * cache.
4056 *
4057 * This is required for both inode re-read from disk and delayed inode
4058 * in the delayed_nodes xarray.
4059 */
4060 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
4061 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
4062
4063 /*
4064 * We don't persist the id of the transaction where an unlink operation
4065 * against the inode was last made. So here we assume the inode might
4066 * have been evicted, and therefore the exact value of last_unlink_trans
4067 * lost, and set it to last_trans to avoid metadata inconsistencies
4068 * between the inode and its parent if the inode is fsync'ed and the log
4069 * replayed. For example, in the scenario:
4070 *
4071 * touch mydir/foo
4072 * ln mydir/foo mydir/bar
4073 * sync
4074 * unlink mydir/bar
4075 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4076 * xfs_io -c fsync mydir/foo
4077 * <power failure>
4078 * mount fs, triggers fsync log replay
4079 *
4080 * We must make sure that when we fsync our inode foo we also log its
4081 * parent inode, otherwise after log replay the parent still has the
4082 * dentry with the "bar" name but our inode foo has a link count of 1
4083 * and doesn't have an inode ref with the name "bar" anymore.
4084 *
4085 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4086 * but it guarantees correctness at the expense of occasional full
4087 * transaction commits on fsync if our inode is a directory, or if our
4088 * inode is not a directory, logging its parent unnecessarily.
4089 */
4090 inode->last_unlink_trans = inode->last_trans;
4091
4092 /*
4093 * Same logic as for last_unlink_trans. We don't persist the generation
4094 * of the last transaction where this inode was used for a reflink
4095 * operation, so after eviction and reloading the inode we must be
4096 * pessimistic and assume the last transaction that modified the inode.
4097 */
4098 inode->last_reflink_trans = inode->last_trans;
4099
4100 path->slots[0]++;
4101 if (vfs_inode->i_nlink != 1 ||
4102 path->slots[0] >= btrfs_header_nritems(leaf))
4103 goto cache_acl;
4104
4105 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4106 if (location.objectid != btrfs_ino(inode))
4107 goto cache_acl;
4108
4109 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4110 if (location.type == BTRFS_INODE_REF_KEY) {
4111 struct btrfs_inode_ref *ref;
4112
4113 ref = (struct btrfs_inode_ref *)ptr;
4114 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4115 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4116 struct btrfs_inode_extref *extref;
4117
4118 extref = (struct btrfs_inode_extref *)ptr;
4119 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4120 }
4121 cache_acl:
4122 /*
4123 * try to precache a NULL acl entry for files that don't have
4124 * any xattrs or acls
4125 */
4126 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4127 btrfs_ino(inode), &first_xattr_slot);
4128 if (first_xattr_slot != -1) {
4129 path->slots[0] = first_xattr_slot;
4130 ret = btrfs_load_inode_props(inode, path);
4131 if (ret)
4132 btrfs_err(fs_info,
4133 "error loading props for ino %llu (root %llu): %d",
4134 btrfs_ino(inode), btrfs_root_id(root), ret);
4135 }
4136
4137 /*
4138 * We don't need the path anymore, so release it to avoid holding a read
4139 * lock on a leaf while calling btrfs_init_file_extent_tree(), which can
4140 * allocate memory that triggers reclaim (GFP_KERNEL) and cause a locking
4141 * dependency.
4142 */
4143 btrfs_release_path(path);
4144
4145 ret = btrfs_init_file_extent_tree(inode);
4146 if (ret)
4147 goto out;
4148 btrfs_inode_set_file_extent_range(inode, 0,
4149 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
4150
4151 if (!maybe_acls)
4152 cache_no_acl(vfs_inode);
4153
4154 switch (vfs_inode->i_mode & S_IFMT) {
4155 case S_IFREG:
4156 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4157 vfs_inode->i_fop = &btrfs_file_operations;
4158 vfs_inode->i_op = &btrfs_file_inode_operations;
4159 break;
4160 case S_IFDIR:
4161 vfs_inode->i_fop = &btrfs_dir_file_operations;
4162 vfs_inode->i_op = &btrfs_dir_inode_operations;
4163 break;
4164 case S_IFLNK:
4165 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4166 inode_nohighmem(vfs_inode);
4167 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4168 break;
4169 default:
4170 vfs_inode->i_op = &btrfs_special_inode_operations;
4171 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4172 break;
4173 }
4174
4175 btrfs_sync_inode_flags_to_i_flags(inode);
4176
4177 ret = btrfs_add_inode_to_root(inode, true);
4178 if (ret)
4179 goto out;
4180
4181 return 0;
4182 out:
4183 /*
4184 * We may have a read locked leaf and iget_failed() triggers inode
4185 * eviction which needs to release the delayed inode and that needs
4186 * to lock the delayed inode's mutex. This can cause a ABBA deadlock
4187 * with a task running delayed items, as that require first locking
4188 * the delayed inode's mutex and then modifying its subvolume btree.
4189 * So release the path before iget_failed().
4190 */
4191 btrfs_release_path(path);
4192 iget_failed(vfs_inode);
4193 return ret;
4194 }
4195
4196 /*
4197 * given a leaf and an inode, copy the inode fields into the leaf
4198 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4199 static void fill_inode_item(struct btrfs_trans_handle *trans,
4200 struct extent_buffer *leaf,
4201 struct btrfs_inode_item *item,
4202 struct inode *inode)
4203 {
4204 u64 flags;
4205
4206 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4207 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4208 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4209 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4210 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4211
4212 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4213 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4214
4215 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4216 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4217
4218 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4219 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4220
4221 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4222 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4223
4224 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4225 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4226 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4227 btrfs_set_inode_transid(leaf, item, trans->transid);
4228 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4229 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4230 BTRFS_I(inode)->ro_flags);
4231 btrfs_set_inode_flags(leaf, item, flags);
4232 btrfs_set_inode_block_group(leaf, item, 0);
4233 }
4234
4235 /*
4236 * copy everything in the in-memory inode into the btree.
4237 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4238 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4239 struct btrfs_inode *inode)
4240 {
4241 struct btrfs_inode_item *inode_item;
4242 BTRFS_PATH_AUTO_FREE(path);
4243 struct extent_buffer *leaf;
4244 struct btrfs_key key;
4245 int ret;
4246
4247 path = btrfs_alloc_path();
4248 if (!path)
4249 return -ENOMEM;
4250
4251 btrfs_get_inode_key(inode, &key);
4252 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4253 if (ret) {
4254 if (ret > 0)
4255 ret = -ENOENT;
4256 return ret;
4257 }
4258
4259 leaf = path->nodes[0];
4260 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4261 struct btrfs_inode_item);
4262
4263 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4264 btrfs_set_inode_last_trans(trans, inode);
4265 return 0;
4266 }
4267
4268 /*
4269 * copy everything in the in-memory inode into the btree.
4270 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4271 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4272 struct btrfs_inode *inode)
4273 {
4274 struct btrfs_root *root = inode->root;
4275 struct btrfs_fs_info *fs_info = root->fs_info;
4276 int ret;
4277
4278 /*
4279 * If the inode is a free space inode, we can deadlock during commit
4280 * if we put it into the delayed code.
4281 *
4282 * The data relocation inode should also be directly updated
4283 * without delay
4284 */
4285 if (!btrfs_is_free_space_inode(inode)
4286 && !btrfs_is_data_reloc_root(root)
4287 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4288 btrfs_update_root_times(trans, root);
4289
4290 ret = btrfs_delayed_update_inode(trans, inode);
4291 if (!ret)
4292 btrfs_set_inode_last_trans(trans, inode);
4293 return ret;
4294 }
4295
4296 return btrfs_update_inode_item(trans, inode);
4297 }
4298
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4299 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4300 struct btrfs_inode *inode)
4301 {
4302 int ret;
4303
4304 ret = btrfs_update_inode(trans, inode);
4305 if (ret == -ENOSPC)
4306 return btrfs_update_inode_item(trans, inode);
4307 return ret;
4308 }
4309
update_time_after_link_or_unlink(struct btrfs_inode * dir)4310 static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4311 {
4312 struct timespec64 now;
4313
4314 /*
4315 * If we are replaying a log tree, we do not want to update the mtime
4316 * and ctime of the parent directory with the current time, since the
4317 * log replay procedure is responsible for setting them to their correct
4318 * values (the ones it had when the fsync was done).
4319 */
4320 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4321 return;
4322
4323 now = inode_set_ctime_current(&dir->vfs_inode);
4324 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4325 }
4326
4327 /*
4328 * unlink helper that gets used here in inode.c and in the tree logging
4329 * recovery code. It remove a link in a directory with a given name, and
4330 * also drops the back refs in the inode to the directory
4331 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4332 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4333 struct btrfs_inode *dir,
4334 struct btrfs_inode *inode,
4335 const struct fscrypt_str *name,
4336 struct btrfs_rename_ctx *rename_ctx)
4337 {
4338 struct btrfs_root *root = dir->root;
4339 struct btrfs_fs_info *fs_info = root->fs_info;
4340 struct btrfs_path *path;
4341 int ret = 0;
4342 struct btrfs_dir_item *di;
4343 u64 index;
4344 u64 ino = btrfs_ino(inode);
4345 u64 dir_ino = btrfs_ino(dir);
4346
4347 path = btrfs_alloc_path();
4348 if (!path)
4349 return -ENOMEM;
4350
4351 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4352 if (IS_ERR_OR_NULL(di)) {
4353 btrfs_free_path(path);
4354 return di ? PTR_ERR(di) : -ENOENT;
4355 }
4356 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4357 /*
4358 * Down the call chains below we'll also need to allocate a path, so no
4359 * need to hold on to this one for longer than necessary.
4360 */
4361 btrfs_free_path(path);
4362 if (ret)
4363 return ret;
4364
4365 /*
4366 * If we don't have dir index, we have to get it by looking up
4367 * the inode ref, since we get the inode ref, remove it directly,
4368 * it is unnecessary to do delayed deletion.
4369 *
4370 * But if we have dir index, needn't search inode ref to get it.
4371 * Since the inode ref is close to the inode item, it is better
4372 * that we delay to delete it, and just do this deletion when
4373 * we update the inode item.
4374 */
4375 if (inode->dir_index) {
4376 ret = btrfs_delayed_delete_inode_ref(inode);
4377 if (!ret) {
4378 index = inode->dir_index;
4379 goto skip_backref;
4380 }
4381 }
4382
4383 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4384 if (unlikely(ret)) {
4385 btrfs_crit(fs_info,
4386 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4387 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4388 btrfs_abort_transaction(trans, ret);
4389 return ret;
4390 }
4391 skip_backref:
4392 if (rename_ctx)
4393 rename_ctx->index = index;
4394
4395 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4396 if (unlikely(ret)) {
4397 btrfs_abort_transaction(trans, ret);
4398 return ret;
4399 }
4400
4401 /*
4402 * If we are in a rename context, we don't need to update anything in the
4403 * log. That will be done later during the rename by btrfs_log_new_name().
4404 * Besides that, doing it here would only cause extra unnecessary btree
4405 * operations on the log tree, increasing latency for applications.
4406 */
4407 if (!rename_ctx) {
4408 btrfs_del_inode_ref_in_log(trans, name, inode, dir);
4409 btrfs_del_dir_entries_in_log(trans, name, dir, index);
4410 }
4411
4412 /*
4413 * If we have a pending delayed iput we could end up with the final iput
4414 * being run in btrfs-cleaner context. If we have enough of these built
4415 * up we can end up burning a lot of time in btrfs-cleaner without any
4416 * way to throttle the unlinks. Since we're currently holding a ref on
4417 * the inode we can run the delayed iput here without any issues as the
4418 * final iput won't be done until after we drop the ref we're currently
4419 * holding.
4420 */
4421 btrfs_run_delayed_iput(fs_info, inode);
4422
4423 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4424 inode_inc_iversion(&inode->vfs_inode);
4425 inode_set_ctime_current(&inode->vfs_inode);
4426 inode_inc_iversion(&dir->vfs_inode);
4427 update_time_after_link_or_unlink(dir);
4428
4429 return btrfs_update_inode(trans, dir);
4430 }
4431
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4432 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4433 struct btrfs_inode *dir, struct btrfs_inode *inode,
4434 const struct fscrypt_str *name)
4435 {
4436 int ret;
4437
4438 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4439 if (!ret) {
4440 drop_nlink(&inode->vfs_inode);
4441 ret = btrfs_update_inode(trans, inode);
4442 }
4443 return ret;
4444 }
4445
4446 /*
4447 * helper to start transaction for unlink and rmdir.
4448 *
4449 * unlink and rmdir are special in btrfs, they do not always free space, so
4450 * if we cannot make our reservations the normal way try and see if there is
4451 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4452 * allow the unlink to occur.
4453 */
__unlink_start_trans(struct btrfs_inode * dir)4454 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4455 {
4456 struct btrfs_root *root = dir->root;
4457
4458 return btrfs_start_transaction_fallback_global_rsv(root,
4459 BTRFS_UNLINK_METADATA_UNITS);
4460 }
4461
btrfs_unlink(struct inode * dir,struct dentry * dentry)4462 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4463 {
4464 struct btrfs_trans_handle *trans;
4465 struct inode *inode = d_inode(dentry);
4466 int ret;
4467 struct fscrypt_name fname;
4468
4469 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4470 if (ret)
4471 return ret;
4472
4473 /* This needs to handle no-key deletions later on */
4474
4475 trans = __unlink_start_trans(BTRFS_I(dir));
4476 if (IS_ERR(trans)) {
4477 ret = PTR_ERR(trans);
4478 goto fscrypt_free;
4479 }
4480
4481 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4482 false);
4483
4484 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4485 &fname.disk_name);
4486 if (ret)
4487 goto end_trans;
4488
4489 if (inode->i_nlink == 0) {
4490 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4491 if (ret)
4492 goto end_trans;
4493 }
4494
4495 end_trans:
4496 btrfs_end_transaction(trans);
4497 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4498 fscrypt_free:
4499 fscrypt_free_filename(&fname);
4500 return ret;
4501 }
4502
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4503 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4504 struct btrfs_inode *dir, struct dentry *dentry)
4505 {
4506 struct btrfs_root *root = dir->root;
4507 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4508 BTRFS_PATH_AUTO_FREE(path);
4509 struct extent_buffer *leaf;
4510 struct btrfs_dir_item *di;
4511 struct btrfs_key key;
4512 u64 index;
4513 int ret;
4514 u64 objectid;
4515 u64 dir_ino = btrfs_ino(dir);
4516 struct fscrypt_name fname;
4517
4518 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4519 if (ret)
4520 return ret;
4521
4522 /* This needs to handle no-key deletions later on */
4523
4524 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4525 objectid = btrfs_root_id(inode->root);
4526 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4527 objectid = inode->ref_root_id;
4528 } else {
4529 WARN_ON(1);
4530 fscrypt_free_filename(&fname);
4531 return -EINVAL;
4532 }
4533
4534 path = btrfs_alloc_path();
4535 if (!path) {
4536 ret = -ENOMEM;
4537 goto out;
4538 }
4539
4540 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4541 &fname.disk_name, -1);
4542 if (IS_ERR_OR_NULL(di)) {
4543 ret = di ? PTR_ERR(di) : -ENOENT;
4544 goto out;
4545 }
4546
4547 leaf = path->nodes[0];
4548 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4549 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4550 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4551 if (unlikely(ret)) {
4552 btrfs_abort_transaction(trans, ret);
4553 goto out;
4554 }
4555 btrfs_release_path(path);
4556
4557 /*
4558 * This is a placeholder inode for a subvolume we didn't have a
4559 * reference to at the time of the snapshot creation. In the meantime
4560 * we could have renamed the real subvol link into our snapshot, so
4561 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4562 * Instead simply lookup the dir_index_item for this entry so we can
4563 * remove it. Otherwise we know we have a ref to the root and we can
4564 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4565 */
4566 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4567 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4568 if (IS_ERR(di)) {
4569 ret = PTR_ERR(di);
4570 btrfs_abort_transaction(trans, ret);
4571 goto out;
4572 }
4573
4574 leaf = path->nodes[0];
4575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4576 index = key.offset;
4577 btrfs_release_path(path);
4578 } else {
4579 ret = btrfs_del_root_ref(trans, objectid,
4580 btrfs_root_id(root), dir_ino,
4581 &index, &fname.disk_name);
4582 if (unlikely(ret)) {
4583 btrfs_abort_transaction(trans, ret);
4584 goto out;
4585 }
4586 }
4587
4588 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4589 if (unlikely(ret)) {
4590 btrfs_abort_transaction(trans, ret);
4591 goto out;
4592 }
4593
4594 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4595 inode_inc_iversion(&dir->vfs_inode);
4596 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4597 ret = btrfs_update_inode_fallback(trans, dir);
4598 if (ret)
4599 btrfs_abort_transaction(trans, ret);
4600 out:
4601 fscrypt_free_filename(&fname);
4602 return ret;
4603 }
4604
4605 /*
4606 * Helper to check if the subvolume references other subvolumes or if it's
4607 * default.
4608 */
may_destroy_subvol(struct btrfs_root * root)4609 static noinline int may_destroy_subvol(struct btrfs_root *root)
4610 {
4611 struct btrfs_fs_info *fs_info = root->fs_info;
4612 BTRFS_PATH_AUTO_FREE(path);
4613 struct btrfs_dir_item *di;
4614 struct btrfs_key key;
4615 struct fscrypt_str name = FSTR_INIT("default", 7);
4616 u64 dir_id;
4617 int ret;
4618
4619 path = btrfs_alloc_path();
4620 if (!path)
4621 return -ENOMEM;
4622
4623 /* Make sure this root isn't set as the default subvol */
4624 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4625 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4626 dir_id, &name, 0);
4627 if (di && !IS_ERR(di)) {
4628 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4629 if (key.objectid == btrfs_root_id(root)) {
4630 ret = -EPERM;
4631 btrfs_err(fs_info,
4632 "deleting default subvolume %llu is not allowed",
4633 key.objectid);
4634 return ret;
4635 }
4636 btrfs_release_path(path);
4637 }
4638
4639 key.objectid = btrfs_root_id(root);
4640 key.type = BTRFS_ROOT_REF_KEY;
4641 key.offset = (u64)-1;
4642
4643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4644 if (ret < 0)
4645 return ret;
4646 if (unlikely(ret == 0)) {
4647 /*
4648 * Key with offset -1 found, there would have to exist a root
4649 * with such id, but this is out of valid range.
4650 */
4651 return -EUCLEAN;
4652 }
4653
4654 ret = 0;
4655 if (path->slots[0] > 0) {
4656 path->slots[0]--;
4657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4658 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4659 ret = -ENOTEMPTY;
4660 }
4661
4662 return ret;
4663 }
4664
4665 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4666 static void btrfs_prune_dentries(struct btrfs_root *root)
4667 {
4668 struct btrfs_fs_info *fs_info = root->fs_info;
4669 struct btrfs_inode *inode;
4670 u64 min_ino = 0;
4671
4672 if (!BTRFS_FS_ERROR(fs_info))
4673 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4674
4675 inode = btrfs_find_first_inode(root, min_ino);
4676 while (inode) {
4677 if (icount_read(&inode->vfs_inode) > 1)
4678 d_prune_aliases(&inode->vfs_inode);
4679
4680 min_ino = btrfs_ino(inode) + 1;
4681 /*
4682 * btrfs_drop_inode() will have it removed from the inode
4683 * cache when its usage count hits zero.
4684 */
4685 iput(&inode->vfs_inode);
4686 cond_resched();
4687 inode = btrfs_find_first_inode(root, min_ino);
4688 }
4689 }
4690
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4691 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4692 {
4693 struct btrfs_root *root = dir->root;
4694 struct btrfs_fs_info *fs_info = root->fs_info;
4695 struct inode *inode = d_inode(dentry);
4696 struct btrfs_root *dest = BTRFS_I(inode)->root;
4697 struct btrfs_trans_handle *trans;
4698 struct btrfs_block_rsv block_rsv;
4699 u64 root_flags;
4700 u64 qgroup_reserved = 0;
4701 int ret;
4702
4703 down_write(&fs_info->subvol_sem);
4704
4705 /*
4706 * Don't allow to delete a subvolume with send in progress. This is
4707 * inside the inode lock so the error handling that has to drop the bit
4708 * again is not run concurrently.
4709 */
4710 spin_lock(&dest->root_item_lock);
4711 if (dest->send_in_progress) {
4712 spin_unlock(&dest->root_item_lock);
4713 btrfs_warn(fs_info,
4714 "attempt to delete subvolume %llu during send",
4715 btrfs_root_id(dest));
4716 ret = -EPERM;
4717 goto out_up_write;
4718 }
4719 if (atomic_read(&dest->nr_swapfiles)) {
4720 spin_unlock(&dest->root_item_lock);
4721 btrfs_warn(fs_info,
4722 "attempt to delete subvolume %llu with active swapfile",
4723 btrfs_root_id(root));
4724 ret = -EPERM;
4725 goto out_up_write;
4726 }
4727 root_flags = btrfs_root_flags(&dest->root_item);
4728 btrfs_set_root_flags(&dest->root_item,
4729 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4730 spin_unlock(&dest->root_item_lock);
4731
4732 ret = may_destroy_subvol(dest);
4733 if (ret)
4734 goto out_undead;
4735
4736 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4737 /*
4738 * One for dir inode,
4739 * two for dir entries,
4740 * two for root ref/backref.
4741 */
4742 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4743 if (ret)
4744 goto out_undead;
4745 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4746
4747 trans = btrfs_start_transaction(root, 0);
4748 if (IS_ERR(trans)) {
4749 ret = PTR_ERR(trans);
4750 goto out_release;
4751 }
4752 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4753 qgroup_reserved = 0;
4754 trans->block_rsv = &block_rsv;
4755 trans->bytes_reserved = block_rsv.size;
4756
4757 btrfs_record_snapshot_destroy(trans, dir);
4758
4759 ret = btrfs_unlink_subvol(trans, dir, dentry);
4760 if (unlikely(ret)) {
4761 btrfs_abort_transaction(trans, ret);
4762 goto out_end_trans;
4763 }
4764
4765 ret = btrfs_record_root_in_trans(trans, dest);
4766 if (unlikely(ret)) {
4767 btrfs_abort_transaction(trans, ret);
4768 goto out_end_trans;
4769 }
4770
4771 memset(&dest->root_item.drop_progress, 0,
4772 sizeof(dest->root_item.drop_progress));
4773 btrfs_set_root_drop_level(&dest->root_item, 0);
4774 btrfs_set_root_refs(&dest->root_item, 0);
4775
4776 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4777 ret = btrfs_insert_orphan_item(trans,
4778 fs_info->tree_root,
4779 btrfs_root_id(dest));
4780 if (unlikely(ret)) {
4781 btrfs_abort_transaction(trans, ret);
4782 goto out_end_trans;
4783 }
4784 }
4785
4786 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4787 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4788 if (unlikely(ret && ret != -ENOENT)) {
4789 btrfs_abort_transaction(trans, ret);
4790 goto out_end_trans;
4791 }
4792 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4793 ret = btrfs_uuid_tree_remove(trans,
4794 dest->root_item.received_uuid,
4795 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4796 btrfs_root_id(dest));
4797 if (unlikely(ret && ret != -ENOENT)) {
4798 btrfs_abort_transaction(trans, ret);
4799 goto out_end_trans;
4800 }
4801 }
4802
4803 free_anon_bdev(dest->anon_dev);
4804 dest->anon_dev = 0;
4805 out_end_trans:
4806 trans->block_rsv = NULL;
4807 trans->bytes_reserved = 0;
4808 ret = btrfs_end_transaction(trans);
4809 inode->i_flags |= S_DEAD;
4810 out_release:
4811 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4812 if (qgroup_reserved)
4813 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4814 out_undead:
4815 if (ret) {
4816 spin_lock(&dest->root_item_lock);
4817 root_flags = btrfs_root_flags(&dest->root_item);
4818 btrfs_set_root_flags(&dest->root_item,
4819 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4820 spin_unlock(&dest->root_item_lock);
4821 }
4822 out_up_write:
4823 up_write(&fs_info->subvol_sem);
4824 if (!ret) {
4825 d_invalidate(dentry);
4826 btrfs_prune_dentries(dest);
4827 ASSERT(dest->send_in_progress == 0);
4828 }
4829
4830 return ret;
4831 }
4832
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4833 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4834 {
4835 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4836 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4837 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4838 int ret = 0;
4839 struct btrfs_trans_handle *trans;
4840 struct fscrypt_name fname;
4841
4842 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4843 return -ENOTEMPTY;
4844 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4845 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4846 btrfs_err(fs_info,
4847 "extent tree v2 doesn't support snapshot deletion yet");
4848 return -EOPNOTSUPP;
4849 }
4850 return btrfs_delete_subvolume(dir, dentry);
4851 }
4852
4853 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4854 if (ret)
4855 return ret;
4856
4857 /* This needs to handle no-key deletions later on */
4858
4859 trans = __unlink_start_trans(dir);
4860 if (IS_ERR(trans)) {
4861 ret = PTR_ERR(trans);
4862 goto out_notrans;
4863 }
4864
4865 /*
4866 * Propagate the last_unlink_trans value of the deleted dir to its
4867 * parent directory. This is to prevent an unrecoverable log tree in the
4868 * case we do something like this:
4869 * 1) create dir foo
4870 * 2) create snapshot under dir foo
4871 * 3) delete the snapshot
4872 * 4) rmdir foo
4873 * 5) mkdir foo
4874 * 6) fsync foo or some file inside foo
4875 *
4876 * This is because we can't unlink other roots when replaying the dir
4877 * deletes for directory foo.
4878 */
4879 if (inode->last_unlink_trans >= trans->transid)
4880 btrfs_record_snapshot_destroy(trans, dir);
4881
4882 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4883 ret = btrfs_unlink_subvol(trans, dir, dentry);
4884 goto out;
4885 }
4886
4887 ret = btrfs_orphan_add(trans, inode);
4888 if (ret)
4889 goto out;
4890
4891 /* now the directory is empty */
4892 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4893 if (!ret)
4894 btrfs_i_size_write(inode, 0);
4895 out:
4896 btrfs_end_transaction(trans);
4897 out_notrans:
4898 btrfs_btree_balance_dirty(fs_info);
4899 fscrypt_free_filename(&fname);
4900
4901 return ret;
4902 }
4903
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4904 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4905 {
4906 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4907 blockstart, blocksize);
4908
4909 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4910 return true;
4911 return false;
4912 }
4913
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4914 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4915 {
4916 const pgoff_t index = (start >> PAGE_SHIFT);
4917 struct address_space *mapping = inode->vfs_inode.i_mapping;
4918 struct folio *folio;
4919 u64 zero_start;
4920 u64 zero_end;
4921 int ret = 0;
4922
4923 again:
4924 folio = filemap_lock_folio(mapping, index);
4925 /* No folio present. */
4926 if (IS_ERR(folio))
4927 return 0;
4928
4929 if (!folio_test_uptodate(folio)) {
4930 ret = btrfs_read_folio(NULL, folio);
4931 folio_lock(folio);
4932 if (folio->mapping != mapping) {
4933 folio_unlock(folio);
4934 folio_put(folio);
4935 goto again;
4936 }
4937 if (unlikely(!folio_test_uptodate(folio))) {
4938 ret = -EIO;
4939 goto out_unlock;
4940 }
4941 }
4942 folio_wait_writeback(folio);
4943
4944 /*
4945 * We do not need to lock extents nor wait for OE, as it's already
4946 * beyond EOF.
4947 */
4948
4949 zero_start = max_t(u64, folio_pos(folio), start);
4950 zero_end = folio_next_pos(folio);
4951 folio_zero_range(folio, zero_start - folio_pos(folio),
4952 zero_end - zero_start);
4953
4954 out_unlock:
4955 folio_unlock(folio);
4956 folio_put(folio);
4957 return ret;
4958 }
4959
4960 /*
4961 * Handle the truncation of a fs block.
4962 *
4963 * @inode - inode that we're zeroing
4964 * @offset - the file offset of the block to truncate
4965 * The value must be inside [@start, @end], and the function will do
4966 * extra checks if the block that covers @offset needs to be zeroed.
4967 * @start - the start file offset of the range we want to zero
4968 * @end - the end (inclusive) file offset of the range we want to zero.
4969 *
4970 * If the range is not block aligned, read out the folio that covers @offset,
4971 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4972 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4973 * for writeback.
4974 *
4975 * This is utilized by hole punch, zero range, file expansion.
4976 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4977 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4978 {
4979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4980 struct address_space *mapping = inode->vfs_inode.i_mapping;
4981 struct extent_io_tree *io_tree = &inode->io_tree;
4982 struct btrfs_ordered_extent *ordered;
4983 struct extent_state *cached_state = NULL;
4984 struct extent_changeset *data_reserved = NULL;
4985 bool only_release_metadata = false;
4986 u32 blocksize = fs_info->sectorsize;
4987 pgoff_t index = (offset >> PAGE_SHIFT);
4988 struct folio *folio;
4989 gfp_t mask = btrfs_alloc_write_mask(mapping);
4990 int ret = 0;
4991 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4992 blocksize);
4993 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4994 blocksize);
4995 bool need_truncate_head = false;
4996 bool need_truncate_tail = false;
4997 u64 zero_start;
4998 u64 zero_end;
4999 u64 block_start;
5000 u64 block_end;
5001
5002 /* @offset should be inside the range. */
5003 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
5004 offset, start, end);
5005
5006 /* The range is aligned at both ends. */
5007 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
5008 /*
5009 * For block size < page size case, we may have polluted blocks
5010 * beyond EOF. So we also need to zero them out.
5011 */
5012 if (end == (u64)-1 && blocksize < PAGE_SIZE)
5013 ret = truncate_block_zero_beyond_eof(inode, start);
5014 goto out;
5015 }
5016
5017 /*
5018 * @offset may not be inside the head nor tail block. In that case we
5019 * don't need to do anything.
5020 */
5021 if (!in_head_block && !in_tail_block)
5022 goto out;
5023
5024 /*
5025 * Skip the truncation if the range in the target block is already aligned.
5026 * The seemingly complex check will also handle the same block case.
5027 */
5028 if (in_head_block && !IS_ALIGNED(start, blocksize))
5029 need_truncate_head = true;
5030 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
5031 need_truncate_tail = true;
5032 if (!need_truncate_head && !need_truncate_tail)
5033 goto out;
5034
5035 block_start = round_down(offset, blocksize);
5036 block_end = block_start + blocksize - 1;
5037
5038 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5039 blocksize, false);
5040 if (ret < 0) {
5041 size_t write_bytes = blocksize;
5042
5043 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
5044 /* For nocow case, no need to reserve data space. */
5045 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
5046 write_bytes, blocksize);
5047 only_release_metadata = true;
5048 } else {
5049 goto out;
5050 }
5051 }
5052 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
5053 if (ret < 0) {
5054 if (!only_release_metadata)
5055 btrfs_free_reserved_data_space(inode, data_reserved,
5056 block_start, blocksize);
5057 goto out;
5058 }
5059 again:
5060 folio = __filemap_get_folio(mapping, index,
5061 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
5062 if (IS_ERR(folio)) {
5063 if (only_release_metadata)
5064 btrfs_delalloc_release_metadata(inode, blocksize, true);
5065 else
5066 btrfs_delalloc_release_space(inode, data_reserved,
5067 block_start, blocksize, true);
5068 btrfs_delalloc_release_extents(inode, blocksize);
5069 ret = PTR_ERR(folio);
5070 goto out;
5071 }
5072
5073 if (!folio_test_uptodate(folio)) {
5074 ret = btrfs_read_folio(NULL, folio);
5075 folio_lock(folio);
5076 if (folio->mapping != mapping) {
5077 folio_unlock(folio);
5078 folio_put(folio);
5079 goto again;
5080 }
5081 if (unlikely(!folio_test_uptodate(folio))) {
5082 ret = -EIO;
5083 goto out_unlock;
5084 }
5085 }
5086
5087 /*
5088 * We unlock the page after the io is completed and then re-lock it
5089 * above. release_folio() could have come in between that and cleared
5090 * folio private, but left the page in the mapping. Set the page mapped
5091 * here to make sure it's properly set for the subpage stuff.
5092 */
5093 ret = set_folio_extent_mapped(folio);
5094 if (ret < 0)
5095 goto out_unlock;
5096
5097 folio_wait_writeback(folio);
5098
5099 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
5100
5101 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5102 if (ordered) {
5103 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5104 folio_unlock(folio);
5105 folio_put(folio);
5106 btrfs_start_ordered_extent(ordered);
5107 btrfs_put_ordered_extent(ordered);
5108 goto again;
5109 }
5110
5111 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
5112 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5113 &cached_state);
5114
5115 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5116 &cached_state);
5117 if (ret) {
5118 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5119 goto out_unlock;
5120 }
5121
5122 if (end == (u64)-1) {
5123 /*
5124 * We're truncating beyond EOF, the remaining blocks normally are
5125 * already holes thus no need to zero again, but it's possible for
5126 * fs block size < page size cases to have memory mapped writes
5127 * to pollute ranges beyond EOF.
5128 *
5129 * In that case although such polluted blocks beyond EOF will
5130 * not reach disk, it still affects our page caches.
5131 */
5132 zero_start = max_t(u64, folio_pos(folio), start);
5133 zero_end = min_t(u64, folio_next_pos(folio) - 1, end);
5134 } else {
5135 zero_start = max_t(u64, block_start, start);
5136 zero_end = min_t(u64, block_end, end);
5137 }
5138 folio_zero_range(folio, zero_start - folio_pos(folio),
5139 zero_end - zero_start + 1);
5140
5141 btrfs_folio_clear_checked(fs_info, folio, block_start,
5142 block_end + 1 - block_start);
5143 btrfs_folio_set_dirty(fs_info, folio, block_start,
5144 block_end + 1 - block_start);
5145
5146 if (only_release_metadata)
5147 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5148 EXTENT_NORESERVE, &cached_state);
5149
5150 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5151
5152 out_unlock:
5153 if (ret) {
5154 if (only_release_metadata)
5155 btrfs_delalloc_release_metadata(inode, blocksize, true);
5156 else
5157 btrfs_delalloc_release_space(inode, data_reserved,
5158 block_start, blocksize, true);
5159 }
5160 btrfs_delalloc_release_extents(inode, blocksize);
5161 folio_unlock(folio);
5162 folio_put(folio);
5163 out:
5164 if (only_release_metadata)
5165 btrfs_check_nocow_unlock(inode);
5166 extent_changeset_free(data_reserved);
5167 return ret;
5168 }
5169
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5170 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5171 {
5172 struct btrfs_root *root = inode->root;
5173 struct btrfs_fs_info *fs_info = root->fs_info;
5174 struct btrfs_trans_handle *trans;
5175 struct btrfs_drop_extents_args drop_args = { 0 };
5176 int ret;
5177
5178 /*
5179 * If NO_HOLES is enabled, we don't need to do anything.
5180 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5181 * or btrfs_update_inode() will be called, which guarantee that the next
5182 * fsync will know this inode was changed and needs to be logged.
5183 */
5184 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5185 return 0;
5186
5187 /*
5188 * 1 - for the one we're dropping
5189 * 1 - for the one we're adding
5190 * 1 - for updating the inode.
5191 */
5192 trans = btrfs_start_transaction(root, 3);
5193 if (IS_ERR(trans))
5194 return PTR_ERR(trans);
5195
5196 drop_args.start = offset;
5197 drop_args.end = offset + len;
5198 drop_args.drop_cache = true;
5199
5200 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5201 if (unlikely(ret)) {
5202 btrfs_abort_transaction(trans, ret);
5203 btrfs_end_transaction(trans);
5204 return ret;
5205 }
5206
5207 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5208 if (ret) {
5209 btrfs_abort_transaction(trans, ret);
5210 } else {
5211 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5212 btrfs_update_inode(trans, inode);
5213 }
5214 btrfs_end_transaction(trans);
5215 return ret;
5216 }
5217
5218 /*
5219 * This function puts in dummy file extents for the area we're creating a hole
5220 * for. So if we are truncating this file to a larger size we need to insert
5221 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5222 * the range between oldsize and size
5223 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5224 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5225 {
5226 struct btrfs_root *root = inode->root;
5227 struct btrfs_fs_info *fs_info = root->fs_info;
5228 struct extent_io_tree *io_tree = &inode->io_tree;
5229 struct extent_map *em = NULL;
5230 struct extent_state *cached_state = NULL;
5231 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5232 u64 block_end = ALIGN(size, fs_info->sectorsize);
5233 u64 last_byte;
5234 u64 cur_offset;
5235 u64 hole_size;
5236 int ret = 0;
5237
5238 /*
5239 * If our size started in the middle of a block we need to zero out the
5240 * rest of the block before we expand the i_size, otherwise we could
5241 * expose stale data.
5242 */
5243 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5244 if (ret)
5245 return ret;
5246
5247 if (size <= hole_start)
5248 return 0;
5249
5250 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5251 &cached_state);
5252 cur_offset = hole_start;
5253 while (1) {
5254 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5255 if (IS_ERR(em)) {
5256 ret = PTR_ERR(em);
5257 em = NULL;
5258 break;
5259 }
5260 last_byte = min(btrfs_extent_map_end(em), block_end);
5261 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5262 hole_size = last_byte - cur_offset;
5263
5264 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5265 struct extent_map *hole_em;
5266
5267 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5268 if (ret)
5269 break;
5270
5271 ret = btrfs_inode_set_file_extent_range(inode,
5272 cur_offset, hole_size);
5273 if (ret)
5274 break;
5275
5276 hole_em = btrfs_alloc_extent_map();
5277 if (!hole_em) {
5278 btrfs_drop_extent_map_range(inode, cur_offset,
5279 cur_offset + hole_size - 1,
5280 false);
5281 btrfs_set_inode_full_sync(inode);
5282 goto next;
5283 }
5284 hole_em->start = cur_offset;
5285 hole_em->len = hole_size;
5286
5287 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5288 hole_em->disk_num_bytes = 0;
5289 hole_em->ram_bytes = hole_size;
5290 hole_em->generation = btrfs_get_fs_generation(fs_info);
5291
5292 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5293 btrfs_free_extent_map(hole_em);
5294 } else {
5295 ret = btrfs_inode_set_file_extent_range(inode,
5296 cur_offset, hole_size);
5297 if (ret)
5298 break;
5299 }
5300 next:
5301 btrfs_free_extent_map(em);
5302 em = NULL;
5303 cur_offset = last_byte;
5304 if (cur_offset >= block_end)
5305 break;
5306 }
5307 btrfs_free_extent_map(em);
5308 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5309 return ret;
5310 }
5311
btrfs_setsize(struct inode * inode,struct iattr * attr)5312 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5313 {
5314 struct btrfs_root *root = BTRFS_I(inode)->root;
5315 struct btrfs_trans_handle *trans;
5316 loff_t oldsize = i_size_read(inode);
5317 loff_t newsize = attr->ia_size;
5318 int mask = attr->ia_valid;
5319 int ret;
5320
5321 /*
5322 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5323 * special case where we need to update the times despite not having
5324 * these flags set. For all other operations the VFS set these flags
5325 * explicitly if it wants a timestamp update.
5326 */
5327 if (newsize != oldsize) {
5328 inode_inc_iversion(inode);
5329 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5330 inode_set_mtime_to_ts(inode,
5331 inode_set_ctime_current(inode));
5332 }
5333 }
5334
5335 if (newsize > oldsize) {
5336 /*
5337 * Don't do an expanding truncate while snapshotting is ongoing.
5338 * This is to ensure the snapshot captures a fully consistent
5339 * state of this file - if the snapshot captures this expanding
5340 * truncation, it must capture all writes that happened before
5341 * this truncation.
5342 */
5343 btrfs_drew_write_lock(&root->snapshot_lock);
5344 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5345 if (ret) {
5346 btrfs_drew_write_unlock(&root->snapshot_lock);
5347 return ret;
5348 }
5349
5350 trans = btrfs_start_transaction(root, 1);
5351 if (IS_ERR(trans)) {
5352 btrfs_drew_write_unlock(&root->snapshot_lock);
5353 return PTR_ERR(trans);
5354 }
5355
5356 i_size_write(inode, newsize);
5357 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5358 pagecache_isize_extended(inode, oldsize, newsize);
5359 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5360 btrfs_drew_write_unlock(&root->snapshot_lock);
5361 btrfs_end_transaction(trans);
5362 } else {
5363 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5364
5365 if (btrfs_is_zoned(fs_info)) {
5366 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5367 ALIGN(newsize, fs_info->sectorsize),
5368 (u64)-1);
5369 if (ret)
5370 return ret;
5371 }
5372
5373 /*
5374 * We're truncating a file that used to have good data down to
5375 * zero. Make sure any new writes to the file get on disk
5376 * on close.
5377 */
5378 if (newsize == 0)
5379 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5380 &BTRFS_I(inode)->runtime_flags);
5381
5382 truncate_setsize(inode, newsize);
5383
5384 inode_dio_wait(inode);
5385
5386 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5387 if (ret && inode->i_nlink) {
5388 int ret2;
5389
5390 /*
5391 * Truncate failed, so fix up the in-memory size. We
5392 * adjusted disk_i_size down as we removed extents, so
5393 * wait for disk_i_size to be stable and then update the
5394 * in-memory size to match.
5395 */
5396 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5397 if (ret2)
5398 return ret2;
5399 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5400 }
5401 }
5402
5403 return ret;
5404 }
5405
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5406 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5407 struct iattr *attr)
5408 {
5409 struct inode *inode = d_inode(dentry);
5410 struct btrfs_root *root = BTRFS_I(inode)->root;
5411 int ret;
5412
5413 if (btrfs_root_readonly(root))
5414 return -EROFS;
5415
5416 ret = setattr_prepare(idmap, dentry, attr);
5417 if (ret)
5418 return ret;
5419
5420 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5421 ret = btrfs_setsize(inode, attr);
5422 if (ret)
5423 return ret;
5424 }
5425
5426 if (attr->ia_valid) {
5427 setattr_copy(idmap, inode, attr);
5428 inode_inc_iversion(inode);
5429 ret = btrfs_dirty_inode(BTRFS_I(inode));
5430
5431 if (!ret && attr->ia_valid & ATTR_MODE)
5432 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5433 }
5434
5435 return ret;
5436 }
5437
5438 /*
5439 * While truncating the inode pages during eviction, we get the VFS
5440 * calling btrfs_invalidate_folio() against each folio of the inode. This
5441 * is slow because the calls to btrfs_invalidate_folio() result in a
5442 * huge amount of calls to lock_extent() and clear_extent_bit(),
5443 * which keep merging and splitting extent_state structures over and over,
5444 * wasting lots of time.
5445 *
5446 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5447 * skip all those expensive operations on a per folio basis and do only
5448 * the ordered io finishing, while we release here the extent_map and
5449 * extent_state structures, without the excessive merging and splitting.
5450 */
evict_inode_truncate_pages(struct inode * inode)5451 static void evict_inode_truncate_pages(struct inode *inode)
5452 {
5453 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5454 struct rb_node *node;
5455
5456 ASSERT(inode_state_read_once(inode) & I_FREEING);
5457 truncate_inode_pages_final(&inode->i_data);
5458
5459 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5460
5461 /*
5462 * Keep looping until we have no more ranges in the io tree.
5463 * We can have ongoing bios started by readahead that have
5464 * their endio callback (extent_io.c:end_bio_extent_readpage)
5465 * still in progress (unlocked the pages in the bio but did not yet
5466 * unlocked the ranges in the io tree). Therefore this means some
5467 * ranges can still be locked and eviction started because before
5468 * submitting those bios, which are executed by a separate task (work
5469 * queue kthread), inode references (inode->i_count) were not taken
5470 * (which would be dropped in the end io callback of each bio).
5471 * Therefore here we effectively end up waiting for those bios and
5472 * anyone else holding locked ranges without having bumped the inode's
5473 * reference count - if we don't do it, when they access the inode's
5474 * io_tree to unlock a range it may be too late, leading to an
5475 * use-after-free issue.
5476 */
5477 spin_lock(&io_tree->lock);
5478 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5479 struct extent_state *state;
5480 struct extent_state *cached_state = NULL;
5481 u64 start;
5482 u64 end;
5483 unsigned state_flags;
5484
5485 node = rb_first(&io_tree->state);
5486 state = rb_entry(node, struct extent_state, rb_node);
5487 start = state->start;
5488 end = state->end;
5489 state_flags = state->state;
5490 spin_unlock(&io_tree->lock);
5491
5492 btrfs_lock_extent(io_tree, start, end, &cached_state);
5493
5494 /*
5495 * If still has DELALLOC flag, the extent didn't reach disk,
5496 * and its reserved space won't be freed by delayed_ref.
5497 * So we need to free its reserved space here.
5498 * (Refer to comment in btrfs_invalidate_folio, case 2)
5499 *
5500 * Note, end is the bytenr of last byte, so we need + 1 here.
5501 */
5502 if (state_flags & EXTENT_DELALLOC)
5503 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5504 end - start + 1, NULL);
5505
5506 btrfs_clear_extent_bit(io_tree, start, end,
5507 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5508 &cached_state);
5509
5510 cond_resched();
5511 spin_lock(&io_tree->lock);
5512 }
5513 spin_unlock(&io_tree->lock);
5514 }
5515
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5516 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5517 struct btrfs_block_rsv *rsv)
5518 {
5519 struct btrfs_fs_info *fs_info = root->fs_info;
5520 struct btrfs_trans_handle *trans;
5521 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5522 int ret;
5523
5524 /*
5525 * Eviction should be taking place at some place safe because of our
5526 * delayed iputs. However the normal flushing code will run delayed
5527 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5528 *
5529 * We reserve the delayed_refs_extra here again because we can't use
5530 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5531 * above. We reserve our extra bit here because we generate a ton of
5532 * delayed refs activity by truncating.
5533 *
5534 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5535 * if we fail to make this reservation we can re-try without the
5536 * delayed_refs_extra so we can make some forward progress.
5537 */
5538 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5539 BTRFS_RESERVE_FLUSH_EVICT);
5540 if (ret) {
5541 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5542 BTRFS_RESERVE_FLUSH_EVICT);
5543 if (ret) {
5544 btrfs_warn(fs_info,
5545 "could not allocate space for delete; will truncate on mount");
5546 return ERR_PTR(-ENOSPC);
5547 }
5548 delayed_refs_extra = 0;
5549 }
5550
5551 trans = btrfs_join_transaction(root);
5552 if (IS_ERR(trans))
5553 return trans;
5554
5555 if (delayed_refs_extra) {
5556 trans->block_rsv = &fs_info->trans_block_rsv;
5557 trans->bytes_reserved = delayed_refs_extra;
5558 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5559 delayed_refs_extra, true);
5560 }
5561 return trans;
5562 }
5563
btrfs_evict_inode(struct inode * inode)5564 void btrfs_evict_inode(struct inode *inode)
5565 {
5566 struct btrfs_fs_info *fs_info;
5567 struct btrfs_trans_handle *trans;
5568 struct btrfs_root *root = BTRFS_I(inode)->root;
5569 struct btrfs_block_rsv rsv;
5570 int ret;
5571
5572 trace_btrfs_inode_evict(inode);
5573
5574 if (!root) {
5575 fsverity_cleanup_inode(inode);
5576 clear_inode(inode);
5577 return;
5578 }
5579
5580 fs_info = inode_to_fs_info(inode);
5581 evict_inode_truncate_pages(inode);
5582
5583 if (inode->i_nlink &&
5584 ((btrfs_root_refs(&root->root_item) != 0 &&
5585 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5586 btrfs_is_free_space_inode(BTRFS_I(inode))))
5587 goto out;
5588
5589 if (is_bad_inode(inode))
5590 goto out;
5591
5592 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5593 goto out;
5594
5595 if (inode->i_nlink > 0) {
5596 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5597 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5598 goto out;
5599 }
5600
5601 /*
5602 * This makes sure the inode item in tree is uptodate and the space for
5603 * the inode update is released.
5604 */
5605 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5606 if (ret)
5607 goto out;
5608
5609 /*
5610 * This drops any pending insert or delete operations we have for this
5611 * inode. We could have a delayed dir index deletion queued up, but
5612 * we're removing the inode completely so that'll be taken care of in
5613 * the truncate.
5614 */
5615 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5616
5617 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5618 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5619 rsv.failfast = true;
5620
5621 btrfs_i_size_write(BTRFS_I(inode), 0);
5622
5623 while (1) {
5624 struct btrfs_truncate_control control = {
5625 .inode = BTRFS_I(inode),
5626 .ino = btrfs_ino(BTRFS_I(inode)),
5627 .new_size = 0,
5628 .min_type = 0,
5629 };
5630
5631 trans = evict_refill_and_join(root, &rsv);
5632 if (IS_ERR(trans))
5633 goto out_release;
5634
5635 trans->block_rsv = &rsv;
5636
5637 ret = btrfs_truncate_inode_items(trans, root, &control);
5638 trans->block_rsv = &fs_info->trans_block_rsv;
5639 btrfs_end_transaction(trans);
5640 /*
5641 * We have not added new delayed items for our inode after we
5642 * have flushed its delayed items, so no need to throttle on
5643 * delayed items. However we have modified extent buffers.
5644 */
5645 btrfs_btree_balance_dirty_nodelay(fs_info);
5646 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5647 goto out_release;
5648 else if (!ret)
5649 break;
5650 }
5651
5652 /*
5653 * Errors here aren't a big deal, it just means we leave orphan items in
5654 * the tree. They will be cleaned up on the next mount. If the inode
5655 * number gets reused, cleanup deletes the orphan item without doing
5656 * anything, and unlink reuses the existing orphan item.
5657 *
5658 * If it turns out that we are dropping too many of these, we might want
5659 * to add a mechanism for retrying these after a commit.
5660 */
5661 trans = evict_refill_and_join(root, &rsv);
5662 if (!IS_ERR(trans)) {
5663 trans->block_rsv = &rsv;
5664 btrfs_orphan_del(trans, BTRFS_I(inode));
5665 trans->block_rsv = &fs_info->trans_block_rsv;
5666 btrfs_end_transaction(trans);
5667 }
5668
5669 out_release:
5670 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5671 out:
5672 /*
5673 * If we didn't successfully delete, the orphan item will still be in
5674 * the tree and we'll retry on the next mount. Again, we might also want
5675 * to retry these periodically in the future.
5676 */
5677 btrfs_remove_delayed_node(BTRFS_I(inode));
5678 fsverity_cleanup_inode(inode);
5679 clear_inode(inode);
5680 }
5681
5682 /*
5683 * Return the key found in the dir entry in the location pointer, fill @type
5684 * with BTRFS_FT_*, and return 0.
5685 *
5686 * If no dir entries were found, returns -ENOENT.
5687 * If found a corrupted location in dir entry, returns -EUCLEAN.
5688 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5689 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5690 struct btrfs_key *location, u8 *type)
5691 {
5692 struct btrfs_dir_item *di;
5693 BTRFS_PATH_AUTO_FREE(path);
5694 struct btrfs_root *root = dir->root;
5695 int ret = 0;
5696 struct fscrypt_name fname;
5697
5698 path = btrfs_alloc_path();
5699 if (!path)
5700 return -ENOMEM;
5701
5702 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5703 if (ret < 0)
5704 return ret;
5705 /*
5706 * fscrypt_setup_filename() should never return a positive value, but
5707 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5708 */
5709 ASSERT(ret == 0);
5710
5711 /* This needs to handle no-key deletions later on */
5712
5713 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5714 &fname.disk_name, 0);
5715 if (IS_ERR_OR_NULL(di)) {
5716 ret = di ? PTR_ERR(di) : -ENOENT;
5717 goto out;
5718 }
5719
5720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5721 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY &&
5722 location->type != BTRFS_ROOT_ITEM_KEY)) {
5723 ret = -EUCLEAN;
5724 btrfs_warn(root->fs_info,
5725 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")",
5726 __func__, fname.disk_name.name, btrfs_ino(dir),
5727 BTRFS_KEY_FMT_VALUE(location));
5728 }
5729 if (!ret)
5730 *type = btrfs_dir_ftype(path->nodes[0], di);
5731 out:
5732 fscrypt_free_filename(&fname);
5733 return ret;
5734 }
5735
5736 /*
5737 * when we hit a tree root in a directory, the btrfs part of the inode
5738 * needs to be changed to reflect the root directory of the tree root. This
5739 * is kind of like crossing a mount point.
5740 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5741 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5742 struct btrfs_inode *dir,
5743 struct dentry *dentry,
5744 struct btrfs_key *location,
5745 struct btrfs_root **sub_root)
5746 {
5747 BTRFS_PATH_AUTO_FREE(path);
5748 struct btrfs_root *new_root;
5749 struct btrfs_root_ref *ref;
5750 struct extent_buffer *leaf;
5751 struct btrfs_key key;
5752 int ret;
5753 int err = 0;
5754 struct fscrypt_name fname;
5755
5756 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5757 if (ret)
5758 return ret;
5759
5760 path = btrfs_alloc_path();
5761 if (!path) {
5762 err = -ENOMEM;
5763 goto out;
5764 }
5765
5766 err = -ENOENT;
5767 key.objectid = btrfs_root_id(dir->root);
5768 key.type = BTRFS_ROOT_REF_KEY;
5769 key.offset = location->objectid;
5770
5771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5772 if (ret) {
5773 if (ret < 0)
5774 err = ret;
5775 goto out;
5776 }
5777
5778 leaf = path->nodes[0];
5779 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5780 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5781 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5782 goto out;
5783
5784 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5785 (unsigned long)(ref + 1), fname.disk_name.len);
5786 if (ret)
5787 goto out;
5788
5789 btrfs_release_path(path);
5790
5791 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5792 if (IS_ERR(new_root)) {
5793 err = PTR_ERR(new_root);
5794 goto out;
5795 }
5796
5797 *sub_root = new_root;
5798 location->objectid = btrfs_root_dirid(&new_root->root_item);
5799 location->type = BTRFS_INODE_ITEM_KEY;
5800 location->offset = 0;
5801 err = 0;
5802 out:
5803 fscrypt_free_filename(&fname);
5804 return err;
5805 }
5806
5807
5808
btrfs_del_inode_from_root(struct btrfs_inode * inode)5809 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5810 {
5811 struct btrfs_root *root = inode->root;
5812 struct btrfs_inode *entry;
5813 bool empty = false;
5814
5815 xa_lock(&root->inodes);
5816 /*
5817 * This btrfs_inode is being freed and has already been unhashed at this
5818 * point. It's possible that another btrfs_inode has already been
5819 * allocated for the same inode and inserted itself into the root, so
5820 * don't delete it in that case.
5821 *
5822 * Note that this shouldn't need to allocate memory, so the gfp flags
5823 * don't really matter.
5824 */
5825 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5826 GFP_ATOMIC);
5827 if (entry == inode)
5828 empty = xa_empty(&root->inodes);
5829 xa_unlock(&root->inodes);
5830
5831 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5832 xa_lock(&root->inodes);
5833 empty = xa_empty(&root->inodes);
5834 xa_unlock(&root->inodes);
5835 if (empty)
5836 btrfs_add_dead_root(root);
5837 }
5838 }
5839
5840
btrfs_init_locked_inode(struct inode * inode,void * p)5841 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5842 {
5843 struct btrfs_iget_args *args = p;
5844
5845 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5846 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5847
5848 if (args->root && args->root == args->root->fs_info->tree_root &&
5849 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5850 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5851 &BTRFS_I(inode)->runtime_flags);
5852 return 0;
5853 }
5854
btrfs_find_actor(struct inode * inode,void * opaque)5855 static int btrfs_find_actor(struct inode *inode, void *opaque)
5856 {
5857 struct btrfs_iget_args *args = opaque;
5858
5859 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5860 args->root == BTRFS_I(inode)->root;
5861 }
5862
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5863 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5864 {
5865 struct inode *inode;
5866 struct btrfs_iget_args args;
5867 unsigned long hashval = btrfs_inode_hash(ino, root);
5868
5869 args.ino = ino;
5870 args.root = root;
5871
5872 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5873 btrfs_init_locked_inode,
5874 (void *)&args);
5875 if (!inode)
5876 return NULL;
5877 return BTRFS_I(inode);
5878 }
5879
5880 /*
5881 * Get an inode object given its inode number and corresponding root. Path is
5882 * preallocated to prevent recursing back to iget through allocator.
5883 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5884 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5885 struct btrfs_path *path)
5886 {
5887 struct btrfs_inode *inode;
5888 int ret;
5889
5890 inode = btrfs_iget_locked(ino, root);
5891 if (!inode)
5892 return ERR_PTR(-ENOMEM);
5893
5894 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5895 return inode;
5896
5897 ret = btrfs_read_locked_inode(inode, path);
5898 if (ret)
5899 return ERR_PTR(ret);
5900
5901 unlock_new_inode(&inode->vfs_inode);
5902 return inode;
5903 }
5904
5905 /*
5906 * Get an inode object given its inode number and corresponding root.
5907 */
btrfs_iget(u64 ino,struct btrfs_root * root)5908 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5909 {
5910 struct btrfs_inode *inode;
5911 struct btrfs_path *path;
5912 int ret;
5913
5914 inode = btrfs_iget_locked(ino, root);
5915 if (!inode)
5916 return ERR_PTR(-ENOMEM);
5917
5918 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5919 return inode;
5920
5921 path = btrfs_alloc_path();
5922 if (!path) {
5923 iget_failed(&inode->vfs_inode);
5924 return ERR_PTR(-ENOMEM);
5925 }
5926
5927 ret = btrfs_read_locked_inode(inode, path);
5928 btrfs_free_path(path);
5929 if (ret)
5930 return ERR_PTR(ret);
5931
5932 if (S_ISDIR(inode->vfs_inode.i_mode))
5933 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC;
5934 unlock_new_inode(&inode->vfs_inode);
5935 return inode;
5936 }
5937
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5938 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5939 struct btrfs_key *key,
5940 struct btrfs_root *root)
5941 {
5942 struct timespec64 ts;
5943 struct inode *vfs_inode;
5944 struct btrfs_inode *inode;
5945
5946 vfs_inode = new_inode(dir->i_sb);
5947 if (!vfs_inode)
5948 return ERR_PTR(-ENOMEM);
5949
5950 inode = BTRFS_I(vfs_inode);
5951 inode->root = btrfs_grab_root(root);
5952 inode->ref_root_id = key->objectid;
5953 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5954 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5955
5956 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5957 /*
5958 * We only need lookup, the rest is read-only and there's no inode
5959 * associated with the dentry
5960 */
5961 vfs_inode->i_op = &simple_dir_inode_operations;
5962 vfs_inode->i_opflags &= ~IOP_XATTR;
5963 vfs_inode->i_fop = &simple_dir_operations;
5964 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5965
5966 ts = inode_set_ctime_current(vfs_inode);
5967 inode_set_mtime_to_ts(vfs_inode, ts);
5968 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5969 inode->i_otime_sec = ts.tv_sec;
5970 inode->i_otime_nsec = ts.tv_nsec;
5971
5972 vfs_inode->i_uid = dir->i_uid;
5973 vfs_inode->i_gid = dir->i_gid;
5974
5975 return inode;
5976 }
5977
5978 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5979 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5980 static_assert(BTRFS_FT_DIR == FT_DIR);
5981 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5982 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5983 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5984 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5985 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5986
btrfs_inode_type(const struct btrfs_inode * inode)5987 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5988 {
5989 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5990 }
5991
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5992 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5993 {
5994 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5995 struct btrfs_inode *inode;
5996 struct btrfs_root *root = BTRFS_I(dir)->root;
5997 struct btrfs_root *sub_root = root;
5998 struct btrfs_key location = { 0 };
5999 u8 di_type = 0;
6000 int ret = 0;
6001
6002 if (dentry->d_name.len > BTRFS_NAME_LEN)
6003 return ERR_PTR(-ENAMETOOLONG);
6004
6005 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
6006 if (ret < 0)
6007 return ERR_PTR(ret);
6008
6009 if (location.type == BTRFS_INODE_ITEM_KEY) {
6010 inode = btrfs_iget(location.objectid, root);
6011 if (IS_ERR(inode))
6012 return ERR_CAST(inode);
6013
6014 /* Do extra check against inode mode with di_type */
6015 if (unlikely(btrfs_inode_type(inode) != di_type)) {
6016 btrfs_crit(fs_info,
6017 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
6018 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
6019 di_type);
6020 iput(&inode->vfs_inode);
6021 return ERR_PTR(-EUCLEAN);
6022 }
6023 return &inode->vfs_inode;
6024 }
6025
6026 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
6027 &location, &sub_root);
6028 if (ret < 0) {
6029 if (ret != -ENOENT)
6030 inode = ERR_PTR(ret);
6031 else
6032 inode = new_simple_dir(dir, &location, root);
6033 } else {
6034 inode = btrfs_iget(location.objectid, sub_root);
6035 btrfs_put_root(sub_root);
6036
6037 if (IS_ERR(inode))
6038 return ERR_CAST(inode);
6039
6040 down_read(&fs_info->cleanup_work_sem);
6041 if (!sb_rdonly(inode->vfs_inode.i_sb))
6042 ret = btrfs_orphan_cleanup(sub_root);
6043 up_read(&fs_info->cleanup_work_sem);
6044 if (ret) {
6045 iput(&inode->vfs_inode);
6046 inode = ERR_PTR(ret);
6047 }
6048 }
6049
6050 if (IS_ERR(inode))
6051 return ERR_CAST(inode);
6052
6053 return &inode->vfs_inode;
6054 }
6055
btrfs_dentry_delete(const struct dentry * dentry)6056 static int btrfs_dentry_delete(const struct dentry *dentry)
6057 {
6058 struct btrfs_root *root;
6059 struct inode *inode = d_inode(dentry);
6060
6061 if (!inode && !IS_ROOT(dentry))
6062 inode = d_inode(dentry->d_parent);
6063
6064 if (inode) {
6065 root = BTRFS_I(inode)->root;
6066 if (btrfs_root_refs(&root->root_item) == 0)
6067 return 1;
6068
6069 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6070 return 1;
6071 }
6072 return 0;
6073 }
6074
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6075 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6076 unsigned int flags)
6077 {
6078 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6079
6080 if (inode == ERR_PTR(-ENOENT))
6081 inode = NULL;
6082 return d_splice_alias(inode, dentry);
6083 }
6084
6085 /*
6086 * Find the highest existing sequence number in a directory and then set the
6087 * in-memory index_cnt variable to the first free sequence number.
6088 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6089 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6090 {
6091 struct btrfs_root *root = inode->root;
6092 struct btrfs_key key, found_key;
6093 BTRFS_PATH_AUTO_FREE(path);
6094 struct extent_buffer *leaf;
6095 int ret;
6096
6097 key.objectid = btrfs_ino(inode);
6098 key.type = BTRFS_DIR_INDEX_KEY;
6099 key.offset = (u64)-1;
6100
6101 path = btrfs_alloc_path();
6102 if (!path)
6103 return -ENOMEM;
6104
6105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6106 if (ret < 0)
6107 return ret;
6108 /* FIXME: we should be able to handle this */
6109 if (ret == 0)
6110 return ret;
6111
6112 if (path->slots[0] == 0) {
6113 inode->index_cnt = BTRFS_DIR_START_INDEX;
6114 return 0;
6115 }
6116
6117 path->slots[0]--;
6118
6119 leaf = path->nodes[0];
6120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6121
6122 if (found_key.objectid != btrfs_ino(inode) ||
6123 found_key.type != BTRFS_DIR_INDEX_KEY) {
6124 inode->index_cnt = BTRFS_DIR_START_INDEX;
6125 return 0;
6126 }
6127
6128 inode->index_cnt = found_key.offset + 1;
6129
6130 return 0;
6131 }
6132
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6133 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6134 {
6135 int ret = 0;
6136
6137 btrfs_inode_lock(dir, 0);
6138 if (dir->index_cnt == (u64)-1) {
6139 ret = btrfs_inode_delayed_dir_index_count(dir);
6140 if (ret) {
6141 ret = btrfs_set_inode_index_count(dir);
6142 if (ret)
6143 goto out;
6144 }
6145 }
6146
6147 /* index_cnt is the index number of next new entry, so decrement it. */
6148 *index = dir->index_cnt - 1;
6149 out:
6150 btrfs_inode_unlock(dir, 0);
6151
6152 return ret;
6153 }
6154
6155 /*
6156 * All this infrastructure exists because dir_emit can fault, and we are holding
6157 * the tree lock when doing readdir. For now just allocate a buffer and copy
6158 * our information into that, and then dir_emit from the buffer. This is
6159 * similar to what NFS does, only we don't keep the buffer around in pagecache
6160 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6161 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6162 * tree lock.
6163 */
btrfs_opendir(struct inode * inode,struct file * file)6164 static int btrfs_opendir(struct inode *inode, struct file *file)
6165 {
6166 struct btrfs_file_private *private;
6167 u64 last_index;
6168 int ret;
6169
6170 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6171 if (ret)
6172 return ret;
6173
6174 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6175 if (!private)
6176 return -ENOMEM;
6177 private->last_index = last_index;
6178 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6179 if (!private->filldir_buf) {
6180 kfree(private);
6181 return -ENOMEM;
6182 }
6183 file->private_data = private;
6184 return 0;
6185 }
6186
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6187 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6188 {
6189 struct btrfs_file_private *private = file->private_data;
6190 int ret;
6191
6192 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6193 &private->last_index);
6194 if (ret)
6195 return ret;
6196
6197 return generic_file_llseek(file, offset, whence);
6198 }
6199
6200 struct dir_entry {
6201 u64 ino;
6202 u64 offset;
6203 unsigned type;
6204 int name_len;
6205 };
6206
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6207 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6208 {
6209 while (entries--) {
6210 struct dir_entry *entry = addr;
6211 char *name = (char *)(entry + 1);
6212
6213 ctx->pos = get_unaligned(&entry->offset);
6214 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6215 get_unaligned(&entry->ino),
6216 get_unaligned(&entry->type)))
6217 return 1;
6218 addr += sizeof(struct dir_entry) +
6219 get_unaligned(&entry->name_len);
6220 ctx->pos++;
6221 }
6222 return 0;
6223 }
6224
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6225 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6226 {
6227 struct inode *inode = file_inode(file);
6228 struct btrfs_root *root = BTRFS_I(inode)->root;
6229 struct btrfs_file_private *private = file->private_data;
6230 struct btrfs_dir_item *di;
6231 struct btrfs_key key;
6232 struct btrfs_key found_key;
6233 BTRFS_PATH_AUTO_FREE(path);
6234 void *addr;
6235 LIST_HEAD(ins_list);
6236 LIST_HEAD(del_list);
6237 int ret;
6238 char *name_ptr;
6239 int name_len;
6240 int entries = 0;
6241 int total_len = 0;
6242 bool put = false;
6243 struct btrfs_key location;
6244
6245 if (!dir_emit_dots(file, ctx))
6246 return 0;
6247
6248 path = btrfs_alloc_path();
6249 if (!path)
6250 return -ENOMEM;
6251
6252 addr = private->filldir_buf;
6253 path->reada = READA_FORWARD;
6254
6255 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6256 &ins_list, &del_list);
6257
6258 again:
6259 key.type = BTRFS_DIR_INDEX_KEY;
6260 key.offset = ctx->pos;
6261 key.objectid = btrfs_ino(BTRFS_I(inode));
6262
6263 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6264 struct dir_entry *entry;
6265 struct extent_buffer *leaf = path->nodes[0];
6266 u8 ftype;
6267
6268 if (found_key.objectid != key.objectid)
6269 break;
6270 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6271 break;
6272 if (found_key.offset < ctx->pos)
6273 continue;
6274 if (found_key.offset > private->last_index)
6275 break;
6276 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6277 continue;
6278 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6279 name_len = btrfs_dir_name_len(leaf, di);
6280 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6281 PAGE_SIZE) {
6282 btrfs_release_path(path);
6283 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6284 if (ret)
6285 goto nopos;
6286 addr = private->filldir_buf;
6287 entries = 0;
6288 total_len = 0;
6289 goto again;
6290 }
6291
6292 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6293 entry = addr;
6294 name_ptr = (char *)(entry + 1);
6295 read_extent_buffer(leaf, name_ptr,
6296 (unsigned long)(di + 1), name_len);
6297 put_unaligned(name_len, &entry->name_len);
6298 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6299 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6300 put_unaligned(location.objectid, &entry->ino);
6301 put_unaligned(found_key.offset, &entry->offset);
6302 entries++;
6303 addr += sizeof(struct dir_entry) + name_len;
6304 total_len += sizeof(struct dir_entry) + name_len;
6305 }
6306 /* Catch error encountered during iteration */
6307 if (ret < 0)
6308 goto err;
6309
6310 btrfs_release_path(path);
6311
6312 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6313 if (ret)
6314 goto nopos;
6315
6316 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6317 goto nopos;
6318
6319 /*
6320 * Stop new entries from being returned after we return the last
6321 * entry.
6322 *
6323 * New directory entries are assigned a strictly increasing
6324 * offset. This means that new entries created during readdir
6325 * are *guaranteed* to be seen in the future by that readdir.
6326 * This has broken buggy programs which operate on names as
6327 * they're returned by readdir. Until we reuse freed offsets
6328 * we have this hack to stop new entries from being returned
6329 * under the assumption that they'll never reach this huge
6330 * offset.
6331 *
6332 * This is being careful not to overflow 32bit loff_t unless the
6333 * last entry requires it because doing so has broken 32bit apps
6334 * in the past.
6335 */
6336 if (ctx->pos >= INT_MAX)
6337 ctx->pos = LLONG_MAX;
6338 else
6339 ctx->pos = INT_MAX;
6340 nopos:
6341 ret = 0;
6342 err:
6343 if (put)
6344 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6345 return ret;
6346 }
6347
6348 /*
6349 * This is somewhat expensive, updating the tree every time the
6350 * inode changes. But, it is most likely to find the inode in cache.
6351 * FIXME, needs more benchmarking...there are no reasons other than performance
6352 * to keep or drop this code.
6353 */
btrfs_dirty_inode(struct btrfs_inode * inode)6354 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6355 {
6356 struct btrfs_root *root = inode->root;
6357 struct btrfs_fs_info *fs_info = root->fs_info;
6358 struct btrfs_trans_handle *trans;
6359 int ret;
6360
6361 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6362 return 0;
6363
6364 trans = btrfs_join_transaction(root);
6365 if (IS_ERR(trans))
6366 return PTR_ERR(trans);
6367
6368 ret = btrfs_update_inode(trans, inode);
6369 if (ret == -ENOSPC || ret == -EDQUOT) {
6370 /* whoops, lets try again with the full transaction */
6371 btrfs_end_transaction(trans);
6372 trans = btrfs_start_transaction(root, 1);
6373 if (IS_ERR(trans))
6374 return PTR_ERR(trans);
6375
6376 ret = btrfs_update_inode(trans, inode);
6377 }
6378 btrfs_end_transaction(trans);
6379 if (inode->delayed_node)
6380 btrfs_balance_delayed_items(fs_info);
6381
6382 return ret;
6383 }
6384
6385 /*
6386 * We need our own ->update_time so that we can return error on ENOSPC for
6387 * updating the inode in the case of file write and mmap writes.
6388 */
btrfs_update_time(struct inode * inode,int flags)6389 static int btrfs_update_time(struct inode *inode, int flags)
6390 {
6391 struct btrfs_root *root = BTRFS_I(inode)->root;
6392 bool dirty;
6393
6394 if (btrfs_root_readonly(root))
6395 return -EROFS;
6396
6397 dirty = inode_update_timestamps(inode, flags);
6398 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6399 }
6400
6401 /*
6402 * helper to find a free sequence number in a given directory. This current
6403 * code is very simple, later versions will do smarter things in the btree
6404 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6405 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6406 {
6407 int ret = 0;
6408
6409 if (dir->index_cnt == (u64)-1) {
6410 ret = btrfs_inode_delayed_dir_index_count(dir);
6411 if (ret) {
6412 ret = btrfs_set_inode_index_count(dir);
6413 if (ret)
6414 return ret;
6415 }
6416 }
6417
6418 *index = dir->index_cnt;
6419 dir->index_cnt++;
6420
6421 return ret;
6422 }
6423
btrfs_insert_inode_locked(struct inode * inode)6424 static int btrfs_insert_inode_locked(struct inode *inode)
6425 {
6426 struct btrfs_iget_args args;
6427
6428 args.ino = btrfs_ino(BTRFS_I(inode));
6429 args.root = BTRFS_I(inode)->root;
6430
6431 return insert_inode_locked4(inode,
6432 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6433 btrfs_find_actor, &args);
6434 }
6435
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6436 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6437 unsigned int *trans_num_items)
6438 {
6439 struct inode *dir = args->dir;
6440 struct inode *inode = args->inode;
6441 int ret;
6442
6443 if (!args->orphan) {
6444 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6445 &args->fname);
6446 if (ret)
6447 return ret;
6448 }
6449
6450 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6451 if (ret) {
6452 fscrypt_free_filename(&args->fname);
6453 return ret;
6454 }
6455
6456 /* 1 to add inode item */
6457 *trans_num_items = 1;
6458 /* 1 to add compression property */
6459 if (BTRFS_I(dir)->prop_compress)
6460 (*trans_num_items)++;
6461 /* 1 to add default ACL xattr */
6462 if (args->default_acl)
6463 (*trans_num_items)++;
6464 /* 1 to add access ACL xattr */
6465 if (args->acl)
6466 (*trans_num_items)++;
6467 #ifdef CONFIG_SECURITY
6468 /* 1 to add LSM xattr */
6469 if (dir->i_security)
6470 (*trans_num_items)++;
6471 #endif
6472 if (args->orphan) {
6473 /* 1 to add orphan item */
6474 (*trans_num_items)++;
6475 } else {
6476 /*
6477 * 1 to add dir item
6478 * 1 to add dir index
6479 * 1 to update parent inode item
6480 *
6481 * No need for 1 unit for the inode ref item because it is
6482 * inserted in a batch together with the inode item at
6483 * btrfs_create_new_inode().
6484 */
6485 *trans_num_items += 3;
6486 }
6487 return 0;
6488 }
6489
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6490 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6491 {
6492 posix_acl_release(args->acl);
6493 posix_acl_release(args->default_acl);
6494 fscrypt_free_filename(&args->fname);
6495 }
6496
6497 /*
6498 * Inherit flags from the parent inode.
6499 *
6500 * Currently only the compression flags and the cow flags are inherited.
6501 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6502 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6503 {
6504 unsigned int flags;
6505
6506 flags = dir->flags;
6507
6508 if (flags & BTRFS_INODE_NOCOMPRESS) {
6509 inode->flags &= ~BTRFS_INODE_COMPRESS;
6510 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6511 } else if (flags & BTRFS_INODE_COMPRESS) {
6512 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6513 inode->flags |= BTRFS_INODE_COMPRESS;
6514 }
6515
6516 if (flags & BTRFS_INODE_NODATACOW) {
6517 inode->flags |= BTRFS_INODE_NODATACOW;
6518 if (S_ISREG(inode->vfs_inode.i_mode))
6519 inode->flags |= BTRFS_INODE_NODATASUM;
6520 }
6521
6522 btrfs_sync_inode_flags_to_i_flags(inode);
6523 }
6524
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6525 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6526 struct btrfs_new_inode_args *args)
6527 {
6528 struct timespec64 ts;
6529 struct inode *dir = args->dir;
6530 struct inode *inode = args->inode;
6531 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6532 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6533 struct btrfs_root *root;
6534 struct btrfs_inode_item *inode_item;
6535 struct btrfs_path *path;
6536 u64 objectid;
6537 struct btrfs_inode_ref *ref;
6538 struct btrfs_key key[2];
6539 u32 sizes[2];
6540 struct btrfs_item_batch batch;
6541 unsigned long ptr;
6542 int ret;
6543 bool xa_reserved = false;
6544
6545 path = btrfs_alloc_path();
6546 if (!path)
6547 return -ENOMEM;
6548
6549 if (!args->subvol)
6550 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6551 root = BTRFS_I(inode)->root;
6552
6553 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6554 if (ret)
6555 goto out;
6556
6557 ret = btrfs_get_free_objectid(root, &objectid);
6558 if (ret)
6559 goto out;
6560 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6561
6562 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6563 if (ret)
6564 goto out;
6565 xa_reserved = true;
6566
6567 if (args->orphan) {
6568 /*
6569 * O_TMPFILE, set link count to 0, so that after this point, we
6570 * fill in an inode item with the correct link count.
6571 */
6572 set_nlink(inode, 0);
6573 } else {
6574 trace_btrfs_inode_request(dir);
6575
6576 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6577 if (ret)
6578 goto out;
6579 }
6580
6581 if (S_ISDIR(inode->i_mode))
6582 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6583
6584 BTRFS_I(inode)->generation = trans->transid;
6585 inode->i_generation = BTRFS_I(inode)->generation;
6586
6587 /*
6588 * We don't have any capability xattrs set here yet, shortcut any
6589 * queries for the xattrs here. If we add them later via the inode
6590 * security init path or any other path this flag will be cleared.
6591 */
6592 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6593
6594 /*
6595 * Subvolumes don't inherit flags from their parent directory.
6596 * Originally this was probably by accident, but we probably can't
6597 * change it now without compatibility issues.
6598 */
6599 if (!args->subvol)
6600 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6601
6602 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6603 if (S_ISREG(inode->i_mode)) {
6604 if (btrfs_test_opt(fs_info, NODATASUM))
6605 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6606 if (btrfs_test_opt(fs_info, NODATACOW))
6607 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6608 BTRFS_INODE_NODATASUM;
6609 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6610 }
6611
6612 ret = btrfs_insert_inode_locked(inode);
6613 if (ret < 0) {
6614 if (!args->orphan)
6615 BTRFS_I(dir)->index_cnt--;
6616 goto out;
6617 }
6618
6619 /*
6620 * We could have gotten an inode number from somebody who was fsynced
6621 * and then removed in this same transaction, so let's just set full
6622 * sync since it will be a full sync anyway and this will blow away the
6623 * old info in the log.
6624 */
6625 btrfs_set_inode_full_sync(BTRFS_I(inode));
6626
6627 key[0].objectid = objectid;
6628 key[0].type = BTRFS_INODE_ITEM_KEY;
6629 key[0].offset = 0;
6630
6631 sizes[0] = sizeof(struct btrfs_inode_item);
6632
6633 if (!args->orphan) {
6634 /*
6635 * Start new inodes with an inode_ref. This is slightly more
6636 * efficient for small numbers of hard links since they will
6637 * be packed into one item. Extended refs will kick in if we
6638 * add more hard links than can fit in the ref item.
6639 */
6640 key[1].objectid = objectid;
6641 key[1].type = BTRFS_INODE_REF_KEY;
6642 if (args->subvol) {
6643 key[1].offset = objectid;
6644 sizes[1] = 2 + sizeof(*ref);
6645 } else {
6646 key[1].offset = btrfs_ino(BTRFS_I(dir));
6647 sizes[1] = name->len + sizeof(*ref);
6648 }
6649 }
6650
6651 batch.keys = &key[0];
6652 batch.data_sizes = &sizes[0];
6653 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6654 batch.nr = args->orphan ? 1 : 2;
6655 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6656 if (unlikely(ret != 0)) {
6657 btrfs_abort_transaction(trans, ret);
6658 goto discard;
6659 }
6660
6661 ts = simple_inode_init_ts(inode);
6662 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6663 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6664
6665 /*
6666 * We're going to fill the inode item now, so at this point the inode
6667 * must be fully initialized.
6668 */
6669
6670 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6671 struct btrfs_inode_item);
6672 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6673 sizeof(*inode_item));
6674 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6675
6676 if (!args->orphan) {
6677 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6678 struct btrfs_inode_ref);
6679 ptr = (unsigned long)(ref + 1);
6680 if (args->subvol) {
6681 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6682 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6683 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6684 } else {
6685 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6686 name->len);
6687 btrfs_set_inode_ref_index(path->nodes[0], ref,
6688 BTRFS_I(inode)->dir_index);
6689 write_extent_buffer(path->nodes[0], name->name, ptr,
6690 name->len);
6691 }
6692 }
6693
6694 /*
6695 * We don't need the path anymore, plus inheriting properties, adding
6696 * ACLs, security xattrs, orphan item or adding the link, will result in
6697 * allocating yet another path. So just free our path.
6698 */
6699 btrfs_free_path(path);
6700 path = NULL;
6701
6702 if (args->subvol) {
6703 struct btrfs_inode *parent;
6704
6705 /*
6706 * Subvolumes inherit properties from their parent subvolume,
6707 * not the directory they were created in.
6708 */
6709 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6710 if (IS_ERR(parent)) {
6711 ret = PTR_ERR(parent);
6712 } else {
6713 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6714 parent);
6715 iput(&parent->vfs_inode);
6716 }
6717 } else {
6718 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6719 BTRFS_I(dir));
6720 }
6721 if (ret) {
6722 btrfs_err(fs_info,
6723 "error inheriting props for ino %llu (root %llu): %d",
6724 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6725 }
6726
6727 /*
6728 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6729 * probably a bug.
6730 */
6731 if (!args->subvol) {
6732 ret = btrfs_init_inode_security(trans, args);
6733 if (unlikely(ret)) {
6734 btrfs_abort_transaction(trans, ret);
6735 goto discard;
6736 }
6737 }
6738
6739 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6740 if (WARN_ON(ret)) {
6741 /* Shouldn't happen, we used xa_reserve() before. */
6742 btrfs_abort_transaction(trans, ret);
6743 goto discard;
6744 }
6745
6746 trace_btrfs_inode_new(inode);
6747 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6748
6749 btrfs_update_root_times(trans, root);
6750
6751 if (args->orphan) {
6752 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6753 if (unlikely(ret)) {
6754 btrfs_abort_transaction(trans, ret);
6755 goto discard;
6756 }
6757 } else {
6758 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6759 0, BTRFS_I(inode)->dir_index);
6760 if (unlikely(ret)) {
6761 btrfs_abort_transaction(trans, ret);
6762 goto discard;
6763 }
6764 }
6765
6766 return 0;
6767
6768 discard:
6769 /*
6770 * discard_new_inode() calls iput(), but the caller owns the reference
6771 * to the inode.
6772 */
6773 ihold(inode);
6774 discard_new_inode(inode);
6775 out:
6776 if (xa_reserved)
6777 xa_release(&root->inodes, objectid);
6778
6779 btrfs_free_path(path);
6780 return ret;
6781 }
6782
6783 /*
6784 * utility function to add 'inode' into 'parent_inode' with
6785 * a give name and a given sequence number.
6786 * if 'add_backref' is true, also insert a backref from the
6787 * inode to the parent directory.
6788 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,bool add_backref,u64 index)6789 int btrfs_add_link(struct btrfs_trans_handle *trans,
6790 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6791 const struct fscrypt_str *name, bool add_backref, u64 index)
6792 {
6793 int ret = 0;
6794 struct btrfs_key key;
6795 struct btrfs_root *root = parent_inode->root;
6796 u64 ino = btrfs_ino(inode);
6797 u64 parent_ino = btrfs_ino(parent_inode);
6798
6799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6800 memcpy(&key, &inode->root->root_key, sizeof(key));
6801 } else {
6802 key.objectid = ino;
6803 key.type = BTRFS_INODE_ITEM_KEY;
6804 key.offset = 0;
6805 }
6806
6807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6808 ret = btrfs_add_root_ref(trans, key.objectid,
6809 btrfs_root_id(root), parent_ino,
6810 index, name);
6811 } else if (add_backref) {
6812 ret = btrfs_insert_inode_ref(trans, root, name,
6813 ino, parent_ino, index);
6814 }
6815
6816 /* Nothing to clean up yet */
6817 if (ret)
6818 return ret;
6819
6820 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6821 btrfs_inode_type(inode), index);
6822 if (ret == -EEXIST || ret == -EOVERFLOW)
6823 goto fail_dir_item;
6824 else if (unlikely(ret)) {
6825 btrfs_abort_transaction(trans, ret);
6826 return ret;
6827 }
6828
6829 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6830 name->len * 2);
6831 inode_inc_iversion(&parent_inode->vfs_inode);
6832 update_time_after_link_or_unlink(parent_inode);
6833
6834 ret = btrfs_update_inode(trans, parent_inode);
6835 if (ret)
6836 btrfs_abort_transaction(trans, ret);
6837 return ret;
6838
6839 fail_dir_item:
6840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6841 u64 local_index;
6842 int ret2;
6843
6844 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6845 parent_ino, &local_index, name);
6846 if (ret2)
6847 btrfs_abort_transaction(trans, ret2);
6848 } else if (add_backref) {
6849 int ret2;
6850
6851 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6852 if (ret2)
6853 btrfs_abort_transaction(trans, ret2);
6854 }
6855
6856 /* Return the original error code */
6857 return ret;
6858 }
6859
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6860 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6861 struct inode *inode)
6862 {
6863 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6864 struct btrfs_root *root = BTRFS_I(dir)->root;
6865 struct btrfs_new_inode_args new_inode_args = {
6866 .dir = dir,
6867 .dentry = dentry,
6868 .inode = inode,
6869 };
6870 unsigned int trans_num_items;
6871 struct btrfs_trans_handle *trans;
6872 int ret;
6873
6874 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6875 if (ret)
6876 goto out_inode;
6877
6878 trans = btrfs_start_transaction(root, trans_num_items);
6879 if (IS_ERR(trans)) {
6880 ret = PTR_ERR(trans);
6881 goto out_new_inode_args;
6882 }
6883
6884 ret = btrfs_create_new_inode(trans, &new_inode_args);
6885 if (!ret) {
6886 if (S_ISDIR(inode->i_mode))
6887 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC;
6888 d_instantiate_new(dentry, inode);
6889 }
6890
6891 btrfs_end_transaction(trans);
6892 btrfs_btree_balance_dirty(fs_info);
6893 out_new_inode_args:
6894 btrfs_new_inode_args_destroy(&new_inode_args);
6895 out_inode:
6896 if (ret)
6897 iput(inode);
6898 return ret;
6899 }
6900
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6901 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6902 struct dentry *dentry, umode_t mode, dev_t rdev)
6903 {
6904 struct inode *inode;
6905
6906 inode = new_inode(dir->i_sb);
6907 if (!inode)
6908 return -ENOMEM;
6909 inode_init_owner(idmap, inode, dir, mode);
6910 inode->i_op = &btrfs_special_inode_operations;
6911 init_special_inode(inode, inode->i_mode, rdev);
6912 return btrfs_create_common(dir, dentry, inode);
6913 }
6914
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6915 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6916 struct dentry *dentry, umode_t mode, bool excl)
6917 {
6918 struct inode *inode;
6919
6920 inode = new_inode(dir->i_sb);
6921 if (!inode)
6922 return -ENOMEM;
6923 inode_init_owner(idmap, inode, dir, mode);
6924 inode->i_fop = &btrfs_file_operations;
6925 inode->i_op = &btrfs_file_inode_operations;
6926 inode->i_mapping->a_ops = &btrfs_aops;
6927 return btrfs_create_common(dir, dentry, inode);
6928 }
6929
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6930 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6931 struct dentry *dentry)
6932 {
6933 struct btrfs_trans_handle *trans = NULL;
6934 struct btrfs_root *root = BTRFS_I(dir)->root;
6935 struct inode *inode = d_inode(old_dentry);
6936 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6937 struct fscrypt_name fname;
6938 u64 index;
6939 int ret;
6940
6941 /* do not allow sys_link's with other subvols of the same device */
6942 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6943 return -EXDEV;
6944
6945 if (inode->i_nlink >= BTRFS_LINK_MAX)
6946 return -EMLINK;
6947
6948 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6949 if (ret)
6950 goto fail;
6951
6952 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6953 if (ret)
6954 goto fail;
6955
6956 /*
6957 * 2 items for inode and inode ref
6958 * 2 items for dir items
6959 * 1 item for parent inode
6960 * 1 item for orphan item deletion if O_TMPFILE
6961 */
6962 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6963 if (IS_ERR(trans)) {
6964 ret = PTR_ERR(trans);
6965 trans = NULL;
6966 goto fail;
6967 }
6968
6969 /* There are several dir indexes for this inode, clear the cache. */
6970 BTRFS_I(inode)->dir_index = 0ULL;
6971 inode_inc_iversion(inode);
6972 inode_set_ctime_current(inode);
6973
6974 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6975 &fname.disk_name, 1, index);
6976 if (ret)
6977 goto fail;
6978
6979 /* Link added now we update the inode item with the new link count. */
6980 inc_nlink(inode);
6981 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6982 if (unlikely(ret)) {
6983 btrfs_abort_transaction(trans, ret);
6984 goto fail;
6985 }
6986
6987 if (inode->i_nlink == 1) {
6988 /*
6989 * If the new hard link count is 1, it's a file created with the
6990 * open(2) O_TMPFILE flag.
6991 */
6992 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6993 if (unlikely(ret)) {
6994 btrfs_abort_transaction(trans, ret);
6995 goto fail;
6996 }
6997 }
6998
6999 /* Grab reference for the new dentry passed to d_instantiate(). */
7000 ihold(inode);
7001 d_instantiate(dentry, inode);
7002 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent);
7003
7004 fail:
7005 fscrypt_free_filename(&fname);
7006 if (trans)
7007 btrfs_end_transaction(trans);
7008 btrfs_btree_balance_dirty(fs_info);
7009 return ret;
7010 }
7011
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)7012 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
7013 struct dentry *dentry, umode_t mode)
7014 {
7015 struct inode *inode;
7016
7017 inode = new_inode(dir->i_sb);
7018 if (!inode)
7019 return ERR_PTR(-ENOMEM);
7020 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
7021 inode->i_op = &btrfs_dir_inode_operations;
7022 inode->i_fop = &btrfs_dir_file_operations;
7023 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
7024 }
7025
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)7026 static noinline int uncompress_inline(struct btrfs_path *path,
7027 struct folio *folio,
7028 struct btrfs_file_extent_item *item)
7029 {
7030 int ret;
7031 struct extent_buffer *leaf = path->nodes[0];
7032 const u32 blocksize = leaf->fs_info->sectorsize;
7033 char *tmp;
7034 size_t max_size;
7035 unsigned long inline_size;
7036 unsigned long ptr;
7037 int compress_type;
7038
7039 compress_type = btrfs_file_extent_compression(leaf, item);
7040 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7041 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
7042 tmp = kmalloc(inline_size, GFP_NOFS);
7043 if (!tmp)
7044 return -ENOMEM;
7045 ptr = btrfs_file_extent_inline_start(item);
7046
7047 read_extent_buffer(leaf, tmp, ptr, inline_size);
7048
7049 max_size = min_t(unsigned long, blocksize, max_size);
7050 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
7051 max_size);
7052
7053 /*
7054 * decompression code contains a memset to fill in any space between the end
7055 * of the uncompressed data and the end of max_size in case the decompressed
7056 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7057 * the end of an inline extent and the beginning of the next block, so we
7058 * cover that region here.
7059 */
7060
7061 if (max_size < blocksize)
7062 folio_zero_range(folio, max_size, blocksize - max_size);
7063 kfree(tmp);
7064 return ret;
7065 }
7066
read_inline_extent(struct btrfs_path * path,struct folio * folio)7067 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
7068 {
7069 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
7070 struct btrfs_file_extent_item *fi;
7071 void *kaddr;
7072 size_t copy_size;
7073
7074 if (!folio || folio_test_uptodate(folio))
7075 return 0;
7076
7077 ASSERT(folio_pos(folio) == 0);
7078
7079 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
7080 struct btrfs_file_extent_item);
7081 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
7082 return uncompress_inline(path, folio, fi);
7083
7084 copy_size = min_t(u64, blocksize,
7085 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
7086 kaddr = kmap_local_folio(folio, 0);
7087 read_extent_buffer(path->nodes[0], kaddr,
7088 btrfs_file_extent_inline_start(fi), copy_size);
7089 kunmap_local(kaddr);
7090 if (copy_size < blocksize)
7091 folio_zero_range(folio, copy_size, blocksize - copy_size);
7092 return 0;
7093 }
7094
7095 /*
7096 * Lookup the first extent overlapping a range in a file.
7097 *
7098 * @inode: file to search in
7099 * @page: page to read extent data into if the extent is inline
7100 * @start: file offset
7101 * @len: length of range starting at @start
7102 *
7103 * Return the first &struct extent_map which overlaps the given range, reading
7104 * it from the B-tree and caching it if necessary. Note that there may be more
7105 * extents which overlap the given range after the returned extent_map.
7106 *
7107 * If @page is not NULL and the extent is inline, this also reads the extent
7108 * data directly into the page and marks the extent up to date in the io_tree.
7109 *
7110 * Return: ERR_PTR on error, non-NULL extent_map on success.
7111 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)7112 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7113 struct folio *folio, u64 start, u64 len)
7114 {
7115 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7116 int ret = 0;
7117 u64 extent_start = 0;
7118 u64 extent_end = 0;
7119 u64 objectid = btrfs_ino(inode);
7120 int extent_type = -1;
7121 struct btrfs_path *path = NULL;
7122 struct btrfs_root *root = inode->root;
7123 struct btrfs_file_extent_item *item;
7124 struct extent_buffer *leaf;
7125 struct btrfs_key found_key;
7126 struct extent_map *em = NULL;
7127 struct extent_map_tree *em_tree = &inode->extent_tree;
7128
7129 read_lock(&em_tree->lock);
7130 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7131 read_unlock(&em_tree->lock);
7132
7133 if (em) {
7134 if (em->start > start || em->start + em->len <= start)
7135 btrfs_free_extent_map(em);
7136 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7137 btrfs_free_extent_map(em);
7138 else
7139 goto out;
7140 }
7141 em = btrfs_alloc_extent_map();
7142 if (!em) {
7143 ret = -ENOMEM;
7144 goto out;
7145 }
7146 em->start = EXTENT_MAP_HOLE;
7147 em->disk_bytenr = EXTENT_MAP_HOLE;
7148 em->len = (u64)-1;
7149
7150 path = btrfs_alloc_path();
7151 if (!path) {
7152 ret = -ENOMEM;
7153 goto out;
7154 }
7155
7156 /* Chances are we'll be called again, so go ahead and do readahead */
7157 path->reada = READA_FORWARD;
7158
7159 /*
7160 * The same explanation in load_free_space_cache applies here as well,
7161 * we only read when we're loading the free space cache, and at that
7162 * point the commit_root has everything we need.
7163 */
7164 if (btrfs_is_free_space_inode(inode)) {
7165 path->search_commit_root = true;
7166 path->skip_locking = true;
7167 }
7168
7169 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7170 if (ret < 0) {
7171 goto out;
7172 } else if (ret > 0) {
7173 if (path->slots[0] == 0)
7174 goto not_found;
7175 path->slots[0]--;
7176 ret = 0;
7177 }
7178
7179 leaf = path->nodes[0];
7180 item = btrfs_item_ptr(leaf, path->slots[0],
7181 struct btrfs_file_extent_item);
7182 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7183 if (found_key.objectid != objectid ||
7184 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7185 /*
7186 * If we backup past the first extent we want to move forward
7187 * and see if there is an extent in front of us, otherwise we'll
7188 * say there is a hole for our whole search range which can
7189 * cause problems.
7190 */
7191 extent_end = start;
7192 goto next;
7193 }
7194
7195 extent_type = btrfs_file_extent_type(leaf, item);
7196 extent_start = found_key.offset;
7197 extent_end = btrfs_file_extent_end(path);
7198 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7199 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7200 /* Only regular file could have regular/prealloc extent */
7201 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) {
7202 ret = -EUCLEAN;
7203 btrfs_crit(fs_info,
7204 "regular/prealloc extent found for non-regular inode %llu",
7205 btrfs_ino(inode));
7206 goto out;
7207 }
7208 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7209 extent_start);
7210 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7211 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7212 path->slots[0],
7213 extent_start);
7214 }
7215 next:
7216 if (start >= extent_end) {
7217 path->slots[0]++;
7218 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7219 ret = btrfs_next_leaf(root, path);
7220 if (ret < 0)
7221 goto out;
7222 else if (ret > 0)
7223 goto not_found;
7224
7225 leaf = path->nodes[0];
7226 }
7227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7228 if (found_key.objectid != objectid ||
7229 found_key.type != BTRFS_EXTENT_DATA_KEY)
7230 goto not_found;
7231 if (start + len <= found_key.offset)
7232 goto not_found;
7233 if (start > found_key.offset)
7234 goto next;
7235
7236 /* New extent overlaps with existing one */
7237 em->start = start;
7238 em->len = found_key.offset - start;
7239 em->disk_bytenr = EXTENT_MAP_HOLE;
7240 goto insert;
7241 }
7242
7243 btrfs_extent_item_to_extent_map(inode, path, item, em);
7244
7245 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7246 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7247 goto insert;
7248 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7249 /*
7250 * Inline extent can only exist at file offset 0. This is
7251 * ensured by tree-checker and inline extent creation path.
7252 * Thus all members representing file offsets should be zero.
7253 */
7254 ASSERT(extent_start == 0);
7255 ASSERT(em->start == 0);
7256
7257 /*
7258 * btrfs_extent_item_to_extent_map() should have properly
7259 * initialized em members already.
7260 *
7261 * Other members are not utilized for inline extents.
7262 */
7263 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7264 ASSERT(em->len == fs_info->sectorsize);
7265
7266 ret = read_inline_extent(path, folio);
7267 if (ret < 0)
7268 goto out;
7269 goto insert;
7270 }
7271 not_found:
7272 em->start = start;
7273 em->len = len;
7274 em->disk_bytenr = EXTENT_MAP_HOLE;
7275 insert:
7276 ret = 0;
7277 btrfs_release_path(path);
7278 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) {
7279 btrfs_err(fs_info,
7280 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7281 em->start, em->len, start, len);
7282 ret = -EIO;
7283 goto out;
7284 }
7285
7286 write_lock(&em_tree->lock);
7287 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7288 write_unlock(&em_tree->lock);
7289 out:
7290 btrfs_free_path(path);
7291
7292 trace_btrfs_get_extent(root, inode, em);
7293
7294 if (ret) {
7295 btrfs_free_extent_map(em);
7296 return ERR_PTR(ret);
7297 }
7298 return em;
7299 }
7300
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7301 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7302 {
7303 struct btrfs_block_group *block_group;
7304 bool readonly = false;
7305
7306 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7307 if (!block_group || block_group->ro)
7308 readonly = true;
7309 if (block_group)
7310 btrfs_put_block_group(block_group);
7311 return readonly;
7312 }
7313
7314 /*
7315 * Check if we can do nocow write into the range [@offset, @offset + @len)
7316 *
7317 * @offset: File offset
7318 * @len: The length to write, will be updated to the nocow writeable
7319 * range
7320 * @orig_start: (optional) Return the original file offset of the file extent
7321 * @orig_len: (optional) Return the original on-disk length of the file extent
7322 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7323 *
7324 * Return:
7325 * >0 and update @len if we can do nocow write
7326 * 0 if we can't do nocow write
7327 * <0 if error happened
7328 *
7329 * NOTE: This only checks the file extents, caller is responsible to wait for
7330 * any ordered extents.
7331 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7332 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7333 struct btrfs_file_extent *file_extent,
7334 bool nowait)
7335 {
7336 struct btrfs_root *root = inode->root;
7337 struct btrfs_fs_info *fs_info = root->fs_info;
7338 struct can_nocow_file_extent_args nocow_args = { 0 };
7339 BTRFS_PATH_AUTO_FREE(path);
7340 int ret;
7341 struct extent_buffer *leaf;
7342 struct extent_io_tree *io_tree = &inode->io_tree;
7343 struct btrfs_file_extent_item *fi;
7344 struct btrfs_key key;
7345 int found_type;
7346
7347 path = btrfs_alloc_path();
7348 if (!path)
7349 return -ENOMEM;
7350 path->nowait = nowait;
7351
7352 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7353 offset, 0);
7354 if (ret < 0)
7355 return ret;
7356
7357 if (ret == 1) {
7358 if (path->slots[0] == 0) {
7359 /* Can't find the item, must COW. */
7360 return 0;
7361 }
7362 path->slots[0]--;
7363 }
7364 ret = 0;
7365 leaf = path->nodes[0];
7366 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7367 if (key.objectid != btrfs_ino(inode) ||
7368 key.type != BTRFS_EXTENT_DATA_KEY) {
7369 /* Not our file or wrong item type, must COW. */
7370 return 0;
7371 }
7372
7373 if (key.offset > offset) {
7374 /* Wrong offset, must COW. */
7375 return 0;
7376 }
7377
7378 if (btrfs_file_extent_end(path) <= offset)
7379 return 0;
7380
7381 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7382 found_type = btrfs_file_extent_type(leaf, fi);
7383
7384 nocow_args.start = offset;
7385 nocow_args.end = offset + *len - 1;
7386 nocow_args.free_path = true;
7387
7388 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7389 /* can_nocow_file_extent() has freed the path. */
7390 path = NULL;
7391
7392 if (ret != 1) {
7393 /* Treat errors as not being able to NOCOW. */
7394 return 0;
7395 }
7396
7397 if (btrfs_extent_readonly(fs_info,
7398 nocow_args.file_extent.disk_bytenr +
7399 nocow_args.file_extent.offset))
7400 return 0;
7401
7402 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7403 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7404 u64 range_end;
7405
7406 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7407 root->fs_info->sectorsize) - 1;
7408 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7409 EXTENT_DELALLOC);
7410 if (ret)
7411 return -EAGAIN;
7412 }
7413
7414 if (file_extent)
7415 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7416
7417 *len = nocow_args.file_extent.num_bytes;
7418
7419 return 1;
7420 }
7421
7422 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7423 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7424 const struct btrfs_file_extent *file_extent,
7425 int type)
7426 {
7427 struct extent_map *em;
7428 int ret;
7429
7430 /*
7431 * Note the missing NOCOW type.
7432 *
7433 * For pure NOCOW writes, we should not create an io extent map, but
7434 * just reusing the existing one.
7435 * Only PREALLOC writes (NOCOW write into preallocated range) can
7436 * create an io extent map.
7437 */
7438 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7439 type == BTRFS_ORDERED_COMPRESSED ||
7440 type == BTRFS_ORDERED_REGULAR);
7441
7442 switch (type) {
7443 case BTRFS_ORDERED_PREALLOC:
7444 /* We're only referring part of a larger preallocated extent. */
7445 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7446 break;
7447 case BTRFS_ORDERED_REGULAR:
7448 /* COW results a new extent matching our file extent size. */
7449 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7450 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7451
7452 /* Since it's a new extent, we should not have any offset. */
7453 ASSERT(file_extent->offset == 0);
7454 break;
7455 case BTRFS_ORDERED_COMPRESSED:
7456 /* Must be compressed. */
7457 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7458
7459 /*
7460 * Encoded write can make us to refer to part of the
7461 * uncompressed extent.
7462 */
7463 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7464 break;
7465 }
7466
7467 em = btrfs_alloc_extent_map();
7468 if (!em)
7469 return ERR_PTR(-ENOMEM);
7470
7471 em->start = start;
7472 em->len = file_extent->num_bytes;
7473 em->disk_bytenr = file_extent->disk_bytenr;
7474 em->disk_num_bytes = file_extent->disk_num_bytes;
7475 em->ram_bytes = file_extent->ram_bytes;
7476 em->generation = -1;
7477 em->offset = file_extent->offset;
7478 em->flags |= EXTENT_FLAG_PINNED;
7479 if (type == BTRFS_ORDERED_COMPRESSED)
7480 btrfs_extent_map_set_compression(em, file_extent->compression);
7481
7482 ret = btrfs_replace_extent_map_range(inode, em, true);
7483 if (ret) {
7484 btrfs_free_extent_map(em);
7485 return ERR_PTR(ret);
7486 }
7487
7488 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7489 return em;
7490 }
7491
7492 /*
7493 * For release_folio() and invalidate_folio() we have a race window where
7494 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7495 * If we continue to release/invalidate the page, we could cause use-after-free
7496 * for subpage spinlock. So this function is to spin and wait for subpage
7497 * spinlock.
7498 */
wait_subpage_spinlock(struct folio * folio)7499 static void wait_subpage_spinlock(struct folio *folio)
7500 {
7501 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7502 struct btrfs_folio_state *bfs;
7503
7504 if (!btrfs_is_subpage(fs_info, folio))
7505 return;
7506
7507 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7508 bfs = folio_get_private(folio);
7509
7510 /*
7511 * This may look insane as we just acquire the spinlock and release it,
7512 * without doing anything. But we just want to make sure no one is
7513 * still holding the subpage spinlock.
7514 * And since the page is not dirty nor writeback, and we have page
7515 * locked, the only possible way to hold a spinlock is from the endio
7516 * function to clear page writeback.
7517 *
7518 * Here we just acquire the spinlock so that all existing callers
7519 * should exit and we're safe to release/invalidate the page.
7520 */
7521 spin_lock_irq(&bfs->lock);
7522 spin_unlock_irq(&bfs->lock);
7523 }
7524
btrfs_launder_folio(struct folio * folio)7525 static int btrfs_launder_folio(struct folio *folio)
7526 {
7527 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7528 folio_size(folio), NULL);
7529 }
7530
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7531 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7532 {
7533 if (try_release_extent_mapping(folio, gfp_flags)) {
7534 wait_subpage_spinlock(folio);
7535 clear_folio_extent_mapped(folio);
7536 return true;
7537 }
7538 return false;
7539 }
7540
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7541 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7542 {
7543 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7544 return false;
7545 return __btrfs_release_folio(folio, gfp_flags);
7546 }
7547
7548 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7549 static int btrfs_migrate_folio(struct address_space *mapping,
7550 struct folio *dst, struct folio *src,
7551 enum migrate_mode mode)
7552 {
7553 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7554
7555 if (ret)
7556 return ret;
7557
7558 if (folio_test_ordered(src)) {
7559 folio_clear_ordered(src);
7560 folio_set_ordered(dst);
7561 }
7562
7563 return 0;
7564 }
7565 #else
7566 #define btrfs_migrate_folio NULL
7567 #endif
7568
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7569 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7570 size_t length)
7571 {
7572 struct btrfs_inode *inode = folio_to_inode(folio);
7573 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7574 struct extent_io_tree *tree = &inode->io_tree;
7575 struct extent_state *cached_state = NULL;
7576 u64 page_start = folio_pos(folio);
7577 u64 page_end = page_start + folio_size(folio) - 1;
7578 u64 cur;
7579 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING;
7580
7581 /*
7582 * We have folio locked so no new ordered extent can be created on this
7583 * page, nor bio can be submitted for this folio.
7584 *
7585 * But already submitted bio can still be finished on this folio.
7586 * Furthermore, endio function won't skip folio which has Ordered
7587 * already cleared, so it's possible for endio and
7588 * invalidate_folio to do the same ordered extent accounting twice
7589 * on one folio.
7590 *
7591 * So here we wait for any submitted bios to finish, so that we won't
7592 * do double ordered extent accounting on the same folio.
7593 */
7594 folio_wait_writeback(folio);
7595 wait_subpage_spinlock(folio);
7596
7597 /*
7598 * For subpage case, we have call sites like
7599 * btrfs_punch_hole_lock_range() which passes range not aligned to
7600 * sectorsize.
7601 * If the range doesn't cover the full folio, we don't need to and
7602 * shouldn't clear page extent mapped, as folio->private can still
7603 * record subpage dirty bits for other part of the range.
7604 *
7605 * For cases that invalidate the full folio even the range doesn't
7606 * cover the full folio, like invalidating the last folio, we're
7607 * still safe to wait for ordered extent to finish.
7608 */
7609 if (!(offset == 0 && length == folio_size(folio))) {
7610 btrfs_release_folio(folio, GFP_NOFS);
7611 return;
7612 }
7613
7614 if (!inode_evicting)
7615 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7616
7617 cur = page_start;
7618 while (cur < page_end) {
7619 struct btrfs_ordered_extent *ordered;
7620 u64 range_end;
7621 u32 range_len;
7622 u32 extra_flags = 0;
7623
7624 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7625 page_end + 1 - cur);
7626 if (!ordered) {
7627 range_end = page_end;
7628 /*
7629 * No ordered extent covering this range, we are safe
7630 * to delete all extent states in the range.
7631 */
7632 extra_flags = EXTENT_CLEAR_ALL_BITS;
7633 goto next;
7634 }
7635 if (ordered->file_offset > cur) {
7636 /*
7637 * There is a range between [cur, oe->file_offset) not
7638 * covered by any ordered extent.
7639 * We are safe to delete all extent states, and handle
7640 * the ordered extent in the next iteration.
7641 */
7642 range_end = ordered->file_offset - 1;
7643 extra_flags = EXTENT_CLEAR_ALL_BITS;
7644 goto next;
7645 }
7646
7647 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7648 page_end);
7649 ASSERT(range_end + 1 - cur < U32_MAX);
7650 range_len = range_end + 1 - cur;
7651 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7652 /*
7653 * If Ordered is cleared, it means endio has
7654 * already been executed for the range.
7655 * We can't delete the extent states as
7656 * btrfs_finish_ordered_io() may still use some of them.
7657 */
7658 goto next;
7659 }
7660 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7661
7662 /*
7663 * IO on this page will never be started, so we need to account
7664 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7665 * here, must leave that up for the ordered extent completion.
7666 *
7667 * This will also unlock the range for incoming
7668 * btrfs_finish_ordered_io().
7669 */
7670 if (!inode_evicting)
7671 btrfs_clear_extent_bit(tree, cur, range_end,
7672 EXTENT_DELALLOC |
7673 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7674 EXTENT_DEFRAG, &cached_state);
7675
7676 spin_lock(&inode->ordered_tree_lock);
7677 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7678 ordered->truncated_len = min(ordered->truncated_len,
7679 cur - ordered->file_offset);
7680 spin_unlock(&inode->ordered_tree_lock);
7681
7682 /*
7683 * If the ordered extent has finished, we're safe to delete all
7684 * the extent states of the range, otherwise
7685 * btrfs_finish_ordered_io() will get executed by endio for
7686 * other pages, so we can't delete extent states.
7687 */
7688 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7689 cur, range_end + 1 - cur)) {
7690 btrfs_finish_ordered_io(ordered);
7691 /*
7692 * The ordered extent has finished, now we're again
7693 * safe to delete all extent states of the range.
7694 */
7695 extra_flags = EXTENT_CLEAR_ALL_BITS;
7696 }
7697 next:
7698 if (ordered)
7699 btrfs_put_ordered_extent(ordered);
7700 /*
7701 * Qgroup reserved space handler
7702 * Sector(s) here will be either:
7703 *
7704 * 1) Already written to disk or bio already finished
7705 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7706 * Qgroup will be handled by its qgroup_record then.
7707 * btrfs_qgroup_free_data() call will do nothing here.
7708 *
7709 * 2) Not written to disk yet
7710 * Then btrfs_qgroup_free_data() call will clear the
7711 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7712 * reserved data space.
7713 * Since the IO will never happen for this page.
7714 */
7715 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7716 if (!inode_evicting)
7717 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7718 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7719 EXTENT_DEFRAG | extra_flags,
7720 &cached_state);
7721 cur = range_end + 1;
7722 }
7723 /*
7724 * We have iterated through all ordered extents of the page, the page
7725 * should not have Ordered anymore, or the above iteration
7726 * did something wrong.
7727 */
7728 ASSERT(!folio_test_ordered(folio));
7729 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7730 if (!inode_evicting)
7731 __btrfs_release_folio(folio, GFP_NOFS);
7732 clear_folio_extent_mapped(folio);
7733 }
7734
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7735 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7736 {
7737 struct btrfs_truncate_control control = {
7738 .inode = inode,
7739 .ino = btrfs_ino(inode),
7740 .min_type = BTRFS_EXTENT_DATA_KEY,
7741 .clear_extent_range = true,
7742 .new_size = inode->vfs_inode.i_size,
7743 };
7744 struct btrfs_root *root = inode->root;
7745 struct btrfs_fs_info *fs_info = root->fs_info;
7746 struct btrfs_block_rsv rsv;
7747 int ret;
7748 struct btrfs_trans_handle *trans;
7749 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7750 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize);
7751 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
7752
7753 /* Our inode is locked and the i_size can't be changed concurrently. */
7754 btrfs_assert_inode_locked(inode);
7755
7756 if (!skip_writeback) {
7757 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1);
7758 if (ret)
7759 return ret;
7760 }
7761
7762 /*
7763 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7764 * things going on here:
7765 *
7766 * 1) We need to reserve space to update our inode.
7767 *
7768 * 2) We need to have something to cache all the space that is going to
7769 * be free'd up by the truncate operation, but also have some slack
7770 * space reserved in case it uses space during the truncate (thank you
7771 * very much snapshotting).
7772 *
7773 * And we need these to be separate. The fact is we can use a lot of
7774 * space doing the truncate, and we have no earthly idea how much space
7775 * we will use, so we need the truncate reservation to be separate so it
7776 * doesn't end up using space reserved for updating the inode. We also
7777 * need to be able to stop the transaction and start a new one, which
7778 * means we need to be able to update the inode several times, and we
7779 * have no idea of knowing how many times that will be, so we can't just
7780 * reserve 1 item for the entirety of the operation, so that has to be
7781 * done separately as well.
7782 *
7783 * So that leaves us with
7784 *
7785 * 1) rsv - for the truncate reservation, which we will steal from the
7786 * transaction reservation.
7787 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7788 * updating the inode.
7789 */
7790 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7791 rsv.size = min_size;
7792 rsv.failfast = true;
7793
7794 /*
7795 * 1 for the truncate slack space
7796 * 1 for updating the inode.
7797 */
7798 trans = btrfs_start_transaction(root, 2);
7799 if (IS_ERR(trans)) {
7800 ret = PTR_ERR(trans);
7801 goto out;
7802 }
7803
7804 /* Migrate the slack space for the truncate to our reserve */
7805 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7806 min_size, false);
7807 /*
7808 * We have reserved 2 metadata units when we started the transaction and
7809 * min_size matches 1 unit, so this should never fail, but if it does,
7810 * it's not critical we just fail truncation.
7811 */
7812 if (WARN_ON(ret)) {
7813 btrfs_end_transaction(trans);
7814 goto out;
7815 }
7816
7817 trans->block_rsv = &rsv;
7818
7819 while (1) {
7820 struct extent_state *cached_state = NULL;
7821
7822 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7823 /*
7824 * We want to drop from the next block forward in case this new
7825 * size is not block aligned since we will be keeping the last
7826 * block of the extent just the way it is.
7827 */
7828 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false);
7829
7830 ret = btrfs_truncate_inode_items(trans, root, &control);
7831
7832 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7833 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7834
7835 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7836
7837 trans->block_rsv = &fs_info->trans_block_rsv;
7838 if (ret != -ENOSPC && ret != -EAGAIN)
7839 break;
7840
7841 ret = btrfs_update_inode(trans, inode);
7842 if (ret)
7843 break;
7844
7845 btrfs_end_transaction(trans);
7846 btrfs_btree_balance_dirty(fs_info);
7847
7848 trans = btrfs_start_transaction(root, 2);
7849 if (IS_ERR(trans)) {
7850 ret = PTR_ERR(trans);
7851 trans = NULL;
7852 break;
7853 }
7854
7855 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7856 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7857 &rsv, min_size, false);
7858 /*
7859 * We have reserved 2 metadata units when we started the
7860 * transaction and min_size matches 1 unit, so this should never
7861 * fail, but if it does, it's not critical we just fail truncation.
7862 */
7863 if (WARN_ON(ret))
7864 break;
7865
7866 trans->block_rsv = &rsv;
7867 }
7868
7869 /*
7870 * We can't call btrfs_truncate_block inside a trans handle as we could
7871 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7872 * know we've truncated everything except the last little bit, and can
7873 * do btrfs_truncate_block and then update the disk_i_size.
7874 */
7875 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7876 btrfs_end_transaction(trans);
7877 btrfs_btree_balance_dirty(fs_info);
7878
7879 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7880 inode->vfs_inode.i_size, (u64)-1);
7881 if (ret)
7882 goto out;
7883 trans = btrfs_start_transaction(root, 1);
7884 if (IS_ERR(trans)) {
7885 ret = PTR_ERR(trans);
7886 goto out;
7887 }
7888 btrfs_inode_safe_disk_i_size_write(inode, 0);
7889 }
7890
7891 if (trans) {
7892 int ret2;
7893
7894 trans->block_rsv = &fs_info->trans_block_rsv;
7895 ret2 = btrfs_update_inode(trans, inode);
7896 if (ret2 && !ret)
7897 ret = ret2;
7898
7899 ret2 = btrfs_end_transaction(trans);
7900 if (ret2 && !ret)
7901 ret = ret2;
7902 btrfs_btree_balance_dirty(fs_info);
7903 }
7904 out:
7905 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7906 /*
7907 * So if we truncate and then write and fsync we normally would just
7908 * write the extents that changed, which is a problem if we need to
7909 * first truncate that entire inode. So set this flag so we write out
7910 * all of the extents in the inode to the sync log so we're completely
7911 * safe.
7912 *
7913 * If no extents were dropped or trimmed we don't need to force the next
7914 * fsync to truncate all the inode's items from the log and re-log them
7915 * all. This means the truncate operation did not change the file size,
7916 * or changed it to a smaller size but there was only an implicit hole
7917 * between the old i_size and the new i_size, and there were no prealloc
7918 * extents beyond i_size to drop.
7919 */
7920 if (control.extents_found > 0)
7921 btrfs_set_inode_full_sync(inode);
7922
7923 return ret;
7924 }
7925
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7926 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7927 struct inode *dir)
7928 {
7929 struct inode *inode;
7930
7931 inode = new_inode(dir->i_sb);
7932 if (inode) {
7933 /*
7934 * Subvolumes don't inherit the sgid bit or the parent's gid if
7935 * the parent's sgid bit is set. This is probably a bug.
7936 */
7937 inode_init_owner(idmap, inode, NULL,
7938 S_IFDIR | (~current_umask() & S_IRWXUGO));
7939 inode->i_op = &btrfs_dir_inode_operations;
7940 inode->i_fop = &btrfs_dir_file_operations;
7941 }
7942 return inode;
7943 }
7944
btrfs_alloc_inode(struct super_block * sb)7945 struct inode *btrfs_alloc_inode(struct super_block *sb)
7946 {
7947 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7948 struct btrfs_inode *ei;
7949 struct inode *inode;
7950
7951 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7952 if (!ei)
7953 return NULL;
7954
7955 ei->root = NULL;
7956 ei->generation = 0;
7957 ei->last_trans = 0;
7958 ei->last_sub_trans = 0;
7959 ei->logged_trans = 0;
7960 ei->delalloc_bytes = 0;
7961 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7962 ei->new_delalloc_bytes = 0;
7963 ei->defrag_bytes = 0;
7964 ei->disk_i_size = 0;
7965 ei->flags = 0;
7966 ei->ro_flags = 0;
7967 /*
7968 * ->index_cnt will be properly initialized later when creating a new
7969 * inode (btrfs_create_new_inode()) or when reading an existing inode
7970 * from disk (btrfs_read_locked_inode()).
7971 */
7972 ei->csum_bytes = 0;
7973 ei->dir_index = 0;
7974 ei->last_unlink_trans = 0;
7975 ei->last_reflink_trans = 0;
7976 ei->last_log_commit = 0;
7977
7978 spin_lock_init(&ei->lock);
7979 ei->outstanding_extents = 0;
7980 if (sb->s_magic != BTRFS_TEST_MAGIC)
7981 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7982 BTRFS_BLOCK_RSV_DELALLOC);
7983 ei->runtime_flags = 0;
7984 ei->prop_compress = BTRFS_COMPRESS_NONE;
7985 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7986
7987 ei->delayed_node = NULL;
7988
7989 ei->i_otime_sec = 0;
7990 ei->i_otime_nsec = 0;
7991
7992 inode = &ei->vfs_inode;
7993 btrfs_extent_map_tree_init(&ei->extent_tree);
7994
7995 /* This io tree sets the valid inode. */
7996 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7997 ei->io_tree.inode = ei;
7998
7999 ei->file_extent_tree = NULL;
8000
8001 mutex_init(&ei->log_mutex);
8002 spin_lock_init(&ei->ordered_tree_lock);
8003 ei->ordered_tree = RB_ROOT;
8004 ei->ordered_tree_last = NULL;
8005 INIT_LIST_HEAD(&ei->delalloc_inodes);
8006 INIT_LIST_HEAD(&ei->delayed_iput);
8007 init_rwsem(&ei->i_mmap_lock);
8008
8009 return inode;
8010 }
8011
8012 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8013 void btrfs_test_destroy_inode(struct inode *inode)
8014 {
8015 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8016 kfree(BTRFS_I(inode)->file_extent_tree);
8017 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8018 }
8019 #endif
8020
btrfs_free_inode(struct inode * inode)8021 void btrfs_free_inode(struct inode *inode)
8022 {
8023 kfree(BTRFS_I(inode)->file_extent_tree);
8024 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8025 }
8026
btrfs_destroy_inode(struct inode * vfs_inode)8027 void btrfs_destroy_inode(struct inode *vfs_inode)
8028 {
8029 struct btrfs_ordered_extent *ordered;
8030 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8031 struct btrfs_root *root = inode->root;
8032 bool freespace_inode;
8033
8034 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8035 WARN_ON(vfs_inode->i_data.nrpages);
8036 WARN_ON(inode->block_rsv.reserved);
8037 WARN_ON(inode->block_rsv.size);
8038 WARN_ON(inode->outstanding_extents);
8039 if (!S_ISDIR(vfs_inode->i_mode)) {
8040 WARN_ON(inode->delalloc_bytes);
8041 WARN_ON(inode->new_delalloc_bytes);
8042 WARN_ON(inode->csum_bytes);
8043 }
8044 if (!root || !btrfs_is_data_reloc_root(root))
8045 WARN_ON(inode->defrag_bytes);
8046
8047 /*
8048 * This can happen where we create an inode, but somebody else also
8049 * created the same inode and we need to destroy the one we already
8050 * created.
8051 */
8052 if (!root)
8053 return;
8054
8055 /*
8056 * If this is a free space inode do not take the ordered extents lockdep
8057 * map.
8058 */
8059 freespace_inode = btrfs_is_free_space_inode(inode);
8060
8061 while (1) {
8062 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8063 if (!ordered)
8064 break;
8065 else {
8066 btrfs_err(root->fs_info,
8067 "found ordered extent %llu %llu on inode cleanup",
8068 ordered->file_offset, ordered->num_bytes);
8069
8070 if (!freespace_inode)
8071 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8072
8073 btrfs_remove_ordered_extent(inode, ordered);
8074 btrfs_put_ordered_extent(ordered);
8075 btrfs_put_ordered_extent(ordered);
8076 }
8077 }
8078 btrfs_qgroup_check_reserved_leak(inode);
8079 btrfs_del_inode_from_root(inode);
8080 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8081 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8082 btrfs_put_root(inode->root);
8083 }
8084
btrfs_drop_inode(struct inode * inode)8085 int btrfs_drop_inode(struct inode *inode)
8086 {
8087 struct btrfs_root *root = BTRFS_I(inode)->root;
8088
8089 if (root == NULL)
8090 return 1;
8091
8092 /* the snap/subvol tree is on deleting */
8093 if (btrfs_root_refs(&root->root_item) == 0)
8094 return 1;
8095 else
8096 return inode_generic_drop(inode);
8097 }
8098
init_once(void * foo)8099 static void init_once(void *foo)
8100 {
8101 struct btrfs_inode *ei = foo;
8102
8103 inode_init_once(&ei->vfs_inode);
8104 #ifdef CONFIG_FS_VERITY
8105 ei->i_verity_info = NULL;
8106 #endif
8107 }
8108
btrfs_destroy_cachep(void)8109 void __cold btrfs_destroy_cachep(void)
8110 {
8111 /*
8112 * Make sure all delayed rcu free inodes are flushed before we
8113 * destroy cache.
8114 */
8115 rcu_barrier();
8116 kmem_cache_destroy(btrfs_inode_cachep);
8117 }
8118
btrfs_init_cachep(void)8119 int __init btrfs_init_cachep(void)
8120 {
8121 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8122 sizeof(struct btrfs_inode), 0,
8123 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8124 init_once);
8125 if (!btrfs_inode_cachep)
8126 return -ENOMEM;
8127
8128 return 0;
8129 }
8130
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8131 static int btrfs_getattr(struct mnt_idmap *idmap,
8132 const struct path *path, struct kstat *stat,
8133 u32 request_mask, unsigned int flags)
8134 {
8135 u64 delalloc_bytes;
8136 u64 inode_bytes;
8137 struct inode *inode = d_inode(path->dentry);
8138 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8139 u32 bi_flags = BTRFS_I(inode)->flags;
8140 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8141
8142 stat->result_mask |= STATX_BTIME;
8143 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8144 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8145 if (bi_flags & BTRFS_INODE_APPEND)
8146 stat->attributes |= STATX_ATTR_APPEND;
8147 if (bi_flags & BTRFS_INODE_COMPRESS)
8148 stat->attributes |= STATX_ATTR_COMPRESSED;
8149 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8150 stat->attributes |= STATX_ATTR_IMMUTABLE;
8151 if (bi_flags & BTRFS_INODE_NODUMP)
8152 stat->attributes |= STATX_ATTR_NODUMP;
8153 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8154 stat->attributes |= STATX_ATTR_VERITY;
8155
8156 stat->attributes_mask |= (STATX_ATTR_APPEND |
8157 STATX_ATTR_COMPRESSED |
8158 STATX_ATTR_IMMUTABLE |
8159 STATX_ATTR_NODUMP);
8160
8161 generic_fillattr(idmap, request_mask, inode, stat);
8162 stat->dev = BTRFS_I(inode)->root->anon_dev;
8163
8164 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8165 stat->result_mask |= STATX_SUBVOL;
8166
8167 spin_lock(&BTRFS_I(inode)->lock);
8168 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8169 inode_bytes = inode_get_bytes(inode);
8170 spin_unlock(&BTRFS_I(inode)->lock);
8171 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8172 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8173 return 0;
8174 }
8175
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8176 static int btrfs_rename_exchange(struct inode *old_dir,
8177 struct dentry *old_dentry,
8178 struct inode *new_dir,
8179 struct dentry *new_dentry)
8180 {
8181 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8182 struct btrfs_trans_handle *trans;
8183 unsigned int trans_num_items;
8184 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8185 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8186 struct inode *new_inode = new_dentry->d_inode;
8187 struct inode *old_inode = old_dentry->d_inode;
8188 struct btrfs_rename_ctx old_rename_ctx;
8189 struct btrfs_rename_ctx new_rename_ctx;
8190 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8191 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8192 u64 old_idx = 0;
8193 u64 new_idx = 0;
8194 int ret;
8195 int ret2;
8196 bool need_abort = false;
8197 bool logs_pinned = false;
8198 struct fscrypt_name old_fname, new_fname;
8199 struct fscrypt_str *old_name, *new_name;
8200
8201 /*
8202 * For non-subvolumes allow exchange only within one subvolume, in the
8203 * same inode namespace. Two subvolumes (represented as directory) can
8204 * be exchanged as they're a logical link and have a fixed inode number.
8205 */
8206 if (root != dest &&
8207 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8208 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8209 return -EXDEV;
8210
8211 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8212 if (ret)
8213 return ret;
8214
8215 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8216 if (ret) {
8217 fscrypt_free_filename(&old_fname);
8218 return ret;
8219 }
8220
8221 old_name = &old_fname.disk_name;
8222 new_name = &new_fname.disk_name;
8223
8224 /* close the race window with snapshot create/destroy ioctl */
8225 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8226 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8227 down_read(&fs_info->subvol_sem);
8228
8229 /*
8230 * For each inode:
8231 * 1 to remove old dir item
8232 * 1 to remove old dir index
8233 * 1 to add new dir item
8234 * 1 to add new dir index
8235 * 1 to update parent inode
8236 *
8237 * If the parents are the same, we only need to account for one
8238 */
8239 trans_num_items = (old_dir == new_dir ? 9 : 10);
8240 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8241 /*
8242 * 1 to remove old root ref
8243 * 1 to remove old root backref
8244 * 1 to add new root ref
8245 * 1 to add new root backref
8246 */
8247 trans_num_items += 4;
8248 } else {
8249 /*
8250 * 1 to update inode item
8251 * 1 to remove old inode ref
8252 * 1 to add new inode ref
8253 */
8254 trans_num_items += 3;
8255 }
8256 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8257 trans_num_items += 4;
8258 else
8259 trans_num_items += 3;
8260 trans = btrfs_start_transaction(root, trans_num_items);
8261 if (IS_ERR(trans)) {
8262 ret = PTR_ERR(trans);
8263 goto out_notrans;
8264 }
8265
8266 if (dest != root) {
8267 ret = btrfs_record_root_in_trans(trans, dest);
8268 if (ret)
8269 goto out_fail;
8270 }
8271
8272 /*
8273 * We need to find a free sequence number both in the source and
8274 * in the destination directory for the exchange.
8275 */
8276 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8277 if (ret)
8278 goto out_fail;
8279 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8280 if (ret)
8281 goto out_fail;
8282
8283 BTRFS_I(old_inode)->dir_index = 0ULL;
8284 BTRFS_I(new_inode)->dir_index = 0ULL;
8285
8286 /* Reference for the source. */
8287 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8288 /* force full log commit if subvolume involved. */
8289 btrfs_set_log_full_commit(trans);
8290 } else {
8291 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8292 btrfs_ino(BTRFS_I(new_dir)),
8293 old_idx);
8294 if (ret)
8295 goto out_fail;
8296 need_abort = true;
8297 }
8298
8299 /* And now for the dest. */
8300 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8301 /* force full log commit if subvolume involved. */
8302 btrfs_set_log_full_commit(trans);
8303 } else {
8304 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8305 btrfs_ino(BTRFS_I(old_dir)),
8306 new_idx);
8307 if (ret) {
8308 if (unlikely(need_abort))
8309 btrfs_abort_transaction(trans, ret);
8310 goto out_fail;
8311 }
8312 }
8313
8314 /* Update inode version and ctime/mtime. */
8315 inode_inc_iversion(old_dir);
8316 inode_inc_iversion(new_dir);
8317 inode_inc_iversion(old_inode);
8318 inode_inc_iversion(new_inode);
8319 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8320
8321 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8322 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8323 /*
8324 * If we are renaming in the same directory (and it's not for
8325 * root entries) pin the log early to prevent any concurrent
8326 * task from logging the directory after we removed the old
8327 * entries and before we add the new entries, otherwise that
8328 * task can sync a log without any entry for the inodes we are
8329 * renaming and therefore replaying that log, if a power failure
8330 * happens after syncing the log, would result in deleting the
8331 * inodes.
8332 *
8333 * If the rename affects two different directories, we want to
8334 * make sure the that there's no log commit that contains
8335 * updates for only one of the directories but not for the
8336 * other.
8337 *
8338 * If we are renaming an entry for a root, we don't care about
8339 * log updates since we called btrfs_set_log_full_commit().
8340 */
8341 btrfs_pin_log_trans(root);
8342 btrfs_pin_log_trans(dest);
8343 logs_pinned = true;
8344 }
8345
8346 if (old_dentry->d_parent != new_dentry->d_parent) {
8347 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8348 BTRFS_I(old_inode), true);
8349 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8350 BTRFS_I(new_inode), true);
8351 }
8352
8353 /* src is a subvolume */
8354 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8355 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8356 if (unlikely(ret)) {
8357 btrfs_abort_transaction(trans, ret);
8358 goto out_fail;
8359 }
8360 } else { /* src is an inode */
8361 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8362 BTRFS_I(old_dentry->d_inode),
8363 old_name, &old_rename_ctx);
8364 if (unlikely(ret)) {
8365 btrfs_abort_transaction(trans, ret);
8366 goto out_fail;
8367 }
8368 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8369 if (unlikely(ret)) {
8370 btrfs_abort_transaction(trans, ret);
8371 goto out_fail;
8372 }
8373 }
8374
8375 /* dest is a subvolume */
8376 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8377 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8378 if (unlikely(ret)) {
8379 btrfs_abort_transaction(trans, ret);
8380 goto out_fail;
8381 }
8382 } else { /* dest is an inode */
8383 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8384 BTRFS_I(new_dentry->d_inode),
8385 new_name, &new_rename_ctx);
8386 if (unlikely(ret)) {
8387 btrfs_abort_transaction(trans, ret);
8388 goto out_fail;
8389 }
8390 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8391 if (unlikely(ret)) {
8392 btrfs_abort_transaction(trans, ret);
8393 goto out_fail;
8394 }
8395 }
8396
8397 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8398 new_name, 0, old_idx);
8399 if (unlikely(ret)) {
8400 btrfs_abort_transaction(trans, ret);
8401 goto out_fail;
8402 }
8403
8404 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8405 old_name, 0, new_idx);
8406 if (unlikely(ret)) {
8407 btrfs_abort_transaction(trans, ret);
8408 goto out_fail;
8409 }
8410
8411 if (old_inode->i_nlink == 1)
8412 BTRFS_I(old_inode)->dir_index = old_idx;
8413 if (new_inode->i_nlink == 1)
8414 BTRFS_I(new_inode)->dir_index = new_idx;
8415
8416 /*
8417 * Do the log updates for all inodes.
8418 *
8419 * If either entry is for a root we don't need to update the logs since
8420 * we've called btrfs_set_log_full_commit() before.
8421 */
8422 if (logs_pinned) {
8423 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8424 old_rename_ctx.index, new_dentry->d_parent);
8425 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8426 new_rename_ctx.index, old_dentry->d_parent);
8427 }
8428
8429 out_fail:
8430 if (logs_pinned) {
8431 btrfs_end_log_trans(root);
8432 btrfs_end_log_trans(dest);
8433 }
8434 ret2 = btrfs_end_transaction(trans);
8435 ret = ret ? ret : ret2;
8436 out_notrans:
8437 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8438 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8439 up_read(&fs_info->subvol_sem);
8440
8441 fscrypt_free_filename(&new_fname);
8442 fscrypt_free_filename(&old_fname);
8443 return ret;
8444 }
8445
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8446 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8447 struct inode *dir)
8448 {
8449 struct inode *inode;
8450
8451 inode = new_inode(dir->i_sb);
8452 if (inode) {
8453 inode_init_owner(idmap, inode, dir,
8454 S_IFCHR | WHITEOUT_MODE);
8455 inode->i_op = &btrfs_special_inode_operations;
8456 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8457 }
8458 return inode;
8459 }
8460
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8461 static int btrfs_rename(struct mnt_idmap *idmap,
8462 struct inode *old_dir, struct dentry *old_dentry,
8463 struct inode *new_dir, struct dentry *new_dentry,
8464 unsigned int flags)
8465 {
8466 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8467 struct btrfs_new_inode_args whiteout_args = {
8468 .dir = old_dir,
8469 .dentry = old_dentry,
8470 };
8471 struct btrfs_trans_handle *trans;
8472 unsigned int trans_num_items;
8473 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8474 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8475 struct inode *new_inode = d_inode(new_dentry);
8476 struct inode *old_inode = d_inode(old_dentry);
8477 struct btrfs_rename_ctx rename_ctx;
8478 u64 index = 0;
8479 int ret;
8480 int ret2;
8481 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8482 struct fscrypt_name old_fname, new_fname;
8483 bool logs_pinned = false;
8484
8485 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8486 return -EPERM;
8487
8488 /* we only allow rename subvolume link between subvolumes */
8489 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8490 return -EXDEV;
8491
8492 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8493 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8494 return -ENOTEMPTY;
8495
8496 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8497 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8498 return -ENOTEMPTY;
8499
8500 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8501 if (ret)
8502 return ret;
8503
8504 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8505 if (ret) {
8506 fscrypt_free_filename(&old_fname);
8507 return ret;
8508 }
8509
8510 /* check for collisions, even if the name isn't there */
8511 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8512 if (ret) {
8513 if (ret == -EEXIST) {
8514 /* we shouldn't get
8515 * eexist without a new_inode */
8516 if (WARN_ON(!new_inode)) {
8517 goto out_fscrypt_names;
8518 }
8519 } else {
8520 /* maybe -EOVERFLOW */
8521 goto out_fscrypt_names;
8522 }
8523 }
8524 ret = 0;
8525
8526 /*
8527 * we're using rename to replace one file with another. Start IO on it
8528 * now so we don't add too much work to the end of the transaction
8529 */
8530 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8531 filemap_flush(old_inode->i_mapping);
8532
8533 if (flags & RENAME_WHITEOUT) {
8534 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8535 if (!whiteout_args.inode) {
8536 ret = -ENOMEM;
8537 goto out_fscrypt_names;
8538 }
8539 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8540 if (ret)
8541 goto out_whiteout_inode;
8542 } else {
8543 /* 1 to update the old parent inode. */
8544 trans_num_items = 1;
8545 }
8546
8547 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8548 /* Close the race window with snapshot create/destroy ioctl */
8549 down_read(&fs_info->subvol_sem);
8550 /*
8551 * 1 to remove old root ref
8552 * 1 to remove old root backref
8553 * 1 to add new root ref
8554 * 1 to add new root backref
8555 */
8556 trans_num_items += 4;
8557 } else {
8558 /*
8559 * 1 to update inode
8560 * 1 to remove old inode ref
8561 * 1 to add new inode ref
8562 */
8563 trans_num_items += 3;
8564 }
8565 /*
8566 * 1 to remove old dir item
8567 * 1 to remove old dir index
8568 * 1 to add new dir item
8569 * 1 to add new dir index
8570 */
8571 trans_num_items += 4;
8572 /* 1 to update new parent inode if it's not the same as the old parent */
8573 if (new_dir != old_dir)
8574 trans_num_items++;
8575 if (new_inode) {
8576 /*
8577 * 1 to update inode
8578 * 1 to remove inode ref
8579 * 1 to remove dir item
8580 * 1 to remove dir index
8581 * 1 to possibly add orphan item
8582 */
8583 trans_num_items += 5;
8584 }
8585 trans = btrfs_start_transaction(root, trans_num_items);
8586 if (IS_ERR(trans)) {
8587 ret = PTR_ERR(trans);
8588 goto out_notrans;
8589 }
8590
8591 if (dest != root) {
8592 ret = btrfs_record_root_in_trans(trans, dest);
8593 if (ret)
8594 goto out_fail;
8595 }
8596
8597 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8598 if (ret)
8599 goto out_fail;
8600
8601 BTRFS_I(old_inode)->dir_index = 0ULL;
8602 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8603 /* force full log commit if subvolume involved. */
8604 btrfs_set_log_full_commit(trans);
8605 } else {
8606 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8607 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8608 index);
8609 if (ret)
8610 goto out_fail;
8611 }
8612
8613 inode_inc_iversion(old_dir);
8614 inode_inc_iversion(new_dir);
8615 inode_inc_iversion(old_inode);
8616 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8617
8618 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8619 /*
8620 * If we are renaming in the same directory (and it's not a
8621 * root entry) pin the log to prevent any concurrent task from
8622 * logging the directory after we removed the old entry and
8623 * before we add the new entry, otherwise that task can sync
8624 * a log without any entry for the inode we are renaming and
8625 * therefore replaying that log, if a power failure happens
8626 * after syncing the log, would result in deleting the inode.
8627 *
8628 * If the rename affects two different directories, we want to
8629 * make sure the that there's no log commit that contains
8630 * updates for only one of the directories but not for the
8631 * other.
8632 *
8633 * If we are renaming an entry for a root, we don't care about
8634 * log updates since we called btrfs_set_log_full_commit().
8635 */
8636 btrfs_pin_log_trans(root);
8637 btrfs_pin_log_trans(dest);
8638 logs_pinned = true;
8639 }
8640
8641 if (old_dentry->d_parent != new_dentry->d_parent)
8642 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8643 BTRFS_I(old_inode), true);
8644
8645 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8646 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8647 if (unlikely(ret)) {
8648 btrfs_abort_transaction(trans, ret);
8649 goto out_fail;
8650 }
8651 } else {
8652 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8653 BTRFS_I(d_inode(old_dentry)),
8654 &old_fname.disk_name, &rename_ctx);
8655 if (unlikely(ret)) {
8656 btrfs_abort_transaction(trans, ret);
8657 goto out_fail;
8658 }
8659 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8660 if (unlikely(ret)) {
8661 btrfs_abort_transaction(trans, ret);
8662 goto out_fail;
8663 }
8664 }
8665
8666 if (new_inode) {
8667 inode_inc_iversion(new_inode);
8668 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8669 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8670 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8671 if (unlikely(ret)) {
8672 btrfs_abort_transaction(trans, ret);
8673 goto out_fail;
8674 }
8675 BUG_ON(new_inode->i_nlink == 0);
8676 } else {
8677 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8678 BTRFS_I(d_inode(new_dentry)),
8679 &new_fname.disk_name);
8680 if (unlikely(ret)) {
8681 btrfs_abort_transaction(trans, ret);
8682 goto out_fail;
8683 }
8684 }
8685 if (new_inode->i_nlink == 0) {
8686 ret = btrfs_orphan_add(trans,
8687 BTRFS_I(d_inode(new_dentry)));
8688 if (unlikely(ret)) {
8689 btrfs_abort_transaction(trans, ret);
8690 goto out_fail;
8691 }
8692 }
8693 }
8694
8695 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8696 &new_fname.disk_name, 0, index);
8697 if (unlikely(ret)) {
8698 btrfs_abort_transaction(trans, ret);
8699 goto out_fail;
8700 }
8701
8702 if (old_inode->i_nlink == 1)
8703 BTRFS_I(old_inode)->dir_index = index;
8704
8705 if (logs_pinned)
8706 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8707 rename_ctx.index, new_dentry->d_parent);
8708
8709 if (flags & RENAME_WHITEOUT) {
8710 ret = btrfs_create_new_inode(trans, &whiteout_args);
8711 if (unlikely(ret)) {
8712 btrfs_abort_transaction(trans, ret);
8713 goto out_fail;
8714 } else {
8715 unlock_new_inode(whiteout_args.inode);
8716 iput(whiteout_args.inode);
8717 whiteout_args.inode = NULL;
8718 }
8719 }
8720 out_fail:
8721 if (logs_pinned) {
8722 btrfs_end_log_trans(root);
8723 btrfs_end_log_trans(dest);
8724 }
8725 ret2 = btrfs_end_transaction(trans);
8726 ret = ret ? ret : ret2;
8727 out_notrans:
8728 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8729 up_read(&fs_info->subvol_sem);
8730 if (flags & RENAME_WHITEOUT)
8731 btrfs_new_inode_args_destroy(&whiteout_args);
8732 out_whiteout_inode:
8733 if (flags & RENAME_WHITEOUT)
8734 iput(whiteout_args.inode);
8735 out_fscrypt_names:
8736 fscrypt_free_filename(&old_fname);
8737 fscrypt_free_filename(&new_fname);
8738 return ret;
8739 }
8740
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8741 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8742 struct dentry *old_dentry, struct inode *new_dir,
8743 struct dentry *new_dentry, unsigned int flags)
8744 {
8745 int ret;
8746
8747 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8748 return -EINVAL;
8749
8750 if (flags & RENAME_EXCHANGE)
8751 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8752 new_dentry);
8753 else
8754 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8755 new_dentry, flags);
8756
8757 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8758
8759 return ret;
8760 }
8761
8762 struct btrfs_delalloc_work {
8763 struct inode *inode;
8764 struct completion completion;
8765 struct list_head list;
8766 struct btrfs_work work;
8767 };
8768
btrfs_run_delalloc_work(struct btrfs_work * work)8769 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8770 {
8771 struct btrfs_delalloc_work *delalloc_work;
8772 struct inode *inode;
8773
8774 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8775 work);
8776 inode = delalloc_work->inode;
8777 filemap_flush(inode->i_mapping);
8778 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8779 &BTRFS_I(inode)->runtime_flags))
8780 filemap_flush(inode->i_mapping);
8781
8782 iput(inode);
8783 complete(&delalloc_work->completion);
8784 }
8785
btrfs_alloc_delalloc_work(struct inode * inode)8786 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8787 {
8788 struct btrfs_delalloc_work *work;
8789
8790 work = kmalloc(sizeof(*work), GFP_NOFS);
8791 if (!work)
8792 return NULL;
8793
8794 init_completion(&work->completion);
8795 INIT_LIST_HEAD(&work->list);
8796 work->inode = inode;
8797 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8798
8799 return work;
8800 }
8801
8802 /*
8803 * some fairly slow code that needs optimization. This walks the list
8804 * of all the inodes with pending delalloc and forces them to disk.
8805 */
start_delalloc_inodes(struct btrfs_root * root,long * nr_to_write,bool snapshot,bool in_reclaim_context)8806 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write,
8807 bool snapshot, bool in_reclaim_context)
8808 {
8809 struct btrfs_delalloc_work *work, *next;
8810 LIST_HEAD(works);
8811 LIST_HEAD(splice);
8812 int ret = 0;
8813
8814 mutex_lock(&root->delalloc_mutex);
8815 spin_lock(&root->delalloc_lock);
8816 list_splice_init(&root->delalloc_inodes, &splice);
8817 while (!list_empty(&splice)) {
8818 struct btrfs_inode *inode;
8819 struct inode *tmp_inode;
8820
8821 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8822
8823 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8824
8825 if (in_reclaim_context &&
8826 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8827 continue;
8828
8829 tmp_inode = igrab(&inode->vfs_inode);
8830 if (!tmp_inode) {
8831 cond_resched_lock(&root->delalloc_lock);
8832 continue;
8833 }
8834 spin_unlock(&root->delalloc_lock);
8835
8836 if (snapshot)
8837 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8838 if (nr_to_write == NULL) {
8839 work = btrfs_alloc_delalloc_work(tmp_inode);
8840 if (!work) {
8841 iput(tmp_inode);
8842 ret = -ENOMEM;
8843 goto out;
8844 }
8845 list_add_tail(&work->list, &works);
8846 btrfs_queue_work(root->fs_info->flush_workers,
8847 &work->work);
8848 } else {
8849 ret = filemap_flush_nr(tmp_inode->i_mapping,
8850 nr_to_write);
8851 btrfs_add_delayed_iput(inode);
8852
8853 if (ret || *nr_to_write <= 0)
8854 goto out;
8855 }
8856 cond_resched();
8857 spin_lock(&root->delalloc_lock);
8858 }
8859 spin_unlock(&root->delalloc_lock);
8860
8861 out:
8862 list_for_each_entry_safe(work, next, &works, list) {
8863 list_del_init(&work->list);
8864 wait_for_completion(&work->completion);
8865 kfree(work);
8866 }
8867
8868 if (!list_empty(&splice)) {
8869 spin_lock(&root->delalloc_lock);
8870 list_splice_tail(&splice, &root->delalloc_inodes);
8871 spin_unlock(&root->delalloc_lock);
8872 }
8873 mutex_unlock(&root->delalloc_mutex);
8874 return ret;
8875 }
8876
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8877 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8878 {
8879 struct btrfs_fs_info *fs_info = root->fs_info;
8880
8881 if (BTRFS_FS_ERROR(fs_info))
8882 return -EROFS;
8883 return start_delalloc_inodes(root, NULL, true, in_reclaim_context);
8884 }
8885
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8886 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8887 bool in_reclaim_context)
8888 {
8889 long *nr_to_write = nr == LONG_MAX ? NULL : &nr;
8890 struct btrfs_root *root;
8891 LIST_HEAD(splice);
8892 int ret;
8893
8894 if (BTRFS_FS_ERROR(fs_info))
8895 return -EROFS;
8896
8897 mutex_lock(&fs_info->delalloc_root_mutex);
8898 spin_lock(&fs_info->delalloc_root_lock);
8899 list_splice_init(&fs_info->delalloc_roots, &splice);
8900 while (!list_empty(&splice)) {
8901 root = list_first_entry(&splice, struct btrfs_root,
8902 delalloc_root);
8903 root = btrfs_grab_root(root);
8904 BUG_ON(!root);
8905 list_move_tail(&root->delalloc_root,
8906 &fs_info->delalloc_roots);
8907 spin_unlock(&fs_info->delalloc_root_lock);
8908
8909 ret = start_delalloc_inodes(root, nr_to_write, false,
8910 in_reclaim_context);
8911 btrfs_put_root(root);
8912 if (ret < 0 || nr <= 0)
8913 goto out;
8914 spin_lock(&fs_info->delalloc_root_lock);
8915 }
8916 spin_unlock(&fs_info->delalloc_root_lock);
8917
8918 ret = 0;
8919 out:
8920 if (!list_empty(&splice)) {
8921 spin_lock(&fs_info->delalloc_root_lock);
8922 list_splice_tail(&splice, &fs_info->delalloc_roots);
8923 spin_unlock(&fs_info->delalloc_root_lock);
8924 }
8925 mutex_unlock(&fs_info->delalloc_root_mutex);
8926 return ret;
8927 }
8928
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8929 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8930 struct dentry *dentry, const char *symname)
8931 {
8932 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8933 struct btrfs_trans_handle *trans;
8934 struct btrfs_root *root = BTRFS_I(dir)->root;
8935 struct btrfs_path *path;
8936 struct btrfs_key key;
8937 struct inode *inode;
8938 struct btrfs_new_inode_args new_inode_args = {
8939 .dir = dir,
8940 .dentry = dentry,
8941 };
8942 unsigned int trans_num_items;
8943 int ret;
8944 int name_len;
8945 int datasize;
8946 unsigned long ptr;
8947 struct btrfs_file_extent_item *ei;
8948 struct extent_buffer *leaf;
8949
8950 name_len = strlen(symname);
8951 /*
8952 * Symlinks utilize uncompressed inline extent data, which should not
8953 * reach block size.
8954 */
8955 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8956 name_len >= fs_info->sectorsize)
8957 return -ENAMETOOLONG;
8958
8959 inode = new_inode(dir->i_sb);
8960 if (!inode)
8961 return -ENOMEM;
8962 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8963 inode->i_op = &btrfs_symlink_inode_operations;
8964 inode_nohighmem(inode);
8965 inode->i_mapping->a_ops = &btrfs_aops;
8966 btrfs_i_size_write(BTRFS_I(inode), name_len);
8967 inode_set_bytes(inode, name_len);
8968
8969 new_inode_args.inode = inode;
8970 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8971 if (ret)
8972 goto out_inode;
8973 /* 1 additional item for the inline extent */
8974 trans_num_items++;
8975
8976 trans = btrfs_start_transaction(root, trans_num_items);
8977 if (IS_ERR(trans)) {
8978 ret = PTR_ERR(trans);
8979 goto out_new_inode_args;
8980 }
8981
8982 ret = btrfs_create_new_inode(trans, &new_inode_args);
8983 if (ret)
8984 goto out;
8985
8986 path = btrfs_alloc_path();
8987 if (unlikely(!path)) {
8988 ret = -ENOMEM;
8989 btrfs_abort_transaction(trans, ret);
8990 discard_new_inode(inode);
8991 inode = NULL;
8992 goto out;
8993 }
8994 key.objectid = btrfs_ino(BTRFS_I(inode));
8995 key.type = BTRFS_EXTENT_DATA_KEY;
8996 key.offset = 0;
8997 datasize = btrfs_file_extent_calc_inline_size(name_len);
8998 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8999 if (unlikely(ret)) {
9000 btrfs_abort_transaction(trans, ret);
9001 btrfs_free_path(path);
9002 discard_new_inode(inode);
9003 inode = NULL;
9004 goto out;
9005 }
9006 leaf = path->nodes[0];
9007 ei = btrfs_item_ptr(leaf, path->slots[0],
9008 struct btrfs_file_extent_item);
9009 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9010 btrfs_set_file_extent_type(leaf, ei,
9011 BTRFS_FILE_EXTENT_INLINE);
9012 btrfs_set_file_extent_encryption(leaf, ei, 0);
9013 btrfs_set_file_extent_compression(leaf, ei, 0);
9014 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9015 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9016
9017 ptr = btrfs_file_extent_inline_start(ei);
9018 write_extent_buffer(leaf, symname, ptr, name_len);
9019 btrfs_free_path(path);
9020
9021 d_instantiate_new(dentry, inode);
9022 ret = 0;
9023 out:
9024 btrfs_end_transaction(trans);
9025 btrfs_btree_balance_dirty(fs_info);
9026 out_new_inode_args:
9027 btrfs_new_inode_args_destroy(&new_inode_args);
9028 out_inode:
9029 if (ret)
9030 iput(inode);
9031 return ret;
9032 }
9033
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9034 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9035 struct btrfs_trans_handle *trans_in,
9036 struct btrfs_inode *inode,
9037 struct btrfs_key *ins,
9038 u64 file_offset)
9039 {
9040 struct btrfs_file_extent_item stack_fi;
9041 struct btrfs_replace_extent_info extent_info;
9042 struct btrfs_trans_handle *trans = trans_in;
9043 struct btrfs_path *path;
9044 u64 start = ins->objectid;
9045 u64 len = ins->offset;
9046 u64 qgroup_released = 0;
9047 int ret;
9048
9049 memset(&stack_fi, 0, sizeof(stack_fi));
9050
9051 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9052 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9053 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9054 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9055 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9056 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9057 /* Encryption and other encoding is reserved and all 0 */
9058
9059 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9060 if (ret < 0)
9061 return ERR_PTR(ret);
9062
9063 if (trans) {
9064 ret = insert_reserved_file_extent(trans, inode,
9065 file_offset, &stack_fi,
9066 true, qgroup_released);
9067 if (ret)
9068 goto free_qgroup;
9069 return trans;
9070 }
9071
9072 extent_info.disk_offset = start;
9073 extent_info.disk_len = len;
9074 extent_info.data_offset = 0;
9075 extent_info.data_len = len;
9076 extent_info.file_offset = file_offset;
9077 extent_info.extent_buf = (char *)&stack_fi;
9078 extent_info.is_new_extent = true;
9079 extent_info.update_times = true;
9080 extent_info.qgroup_reserved = qgroup_released;
9081 extent_info.insertions = 0;
9082
9083 path = btrfs_alloc_path();
9084 if (!path) {
9085 ret = -ENOMEM;
9086 goto free_qgroup;
9087 }
9088
9089 ret = btrfs_replace_file_extents(inode, path, file_offset,
9090 file_offset + len - 1, &extent_info,
9091 &trans);
9092 btrfs_free_path(path);
9093 if (ret)
9094 goto free_qgroup;
9095 return trans;
9096
9097 free_qgroup:
9098 /*
9099 * We have released qgroup data range at the beginning of the function,
9100 * and normally qgroup_released bytes will be freed when committing
9101 * transaction.
9102 * But if we error out early, we have to free what we have released
9103 * or we leak qgroup data reservation.
9104 */
9105 btrfs_qgroup_free_refroot(inode->root->fs_info,
9106 btrfs_root_id(inode->root), qgroup_released,
9107 BTRFS_QGROUP_RSV_DATA);
9108 return ERR_PTR(ret);
9109 }
9110
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9111 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9112 u64 start, u64 num_bytes, u64 min_size,
9113 loff_t actual_len, u64 *alloc_hint,
9114 struct btrfs_trans_handle *trans)
9115 {
9116 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9117 struct extent_map *em;
9118 struct btrfs_root *root = BTRFS_I(inode)->root;
9119 struct btrfs_key ins;
9120 u64 cur_offset = start;
9121 u64 clear_offset = start;
9122 u64 i_size;
9123 u64 cur_bytes;
9124 u64 last_alloc = (u64)-1;
9125 int ret = 0;
9126 bool own_trans = true;
9127 u64 end = start + num_bytes - 1;
9128
9129 if (trans)
9130 own_trans = false;
9131 while (num_bytes > 0) {
9132 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9133 cur_bytes = max(cur_bytes, min_size);
9134 /*
9135 * If we are severely fragmented we could end up with really
9136 * small allocations, so if the allocator is returning small
9137 * chunks lets make its job easier by only searching for those
9138 * sized chunks.
9139 */
9140 cur_bytes = min(cur_bytes, last_alloc);
9141 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9142 min_size, 0, *alloc_hint, &ins, true, false);
9143 if (ret)
9144 break;
9145
9146 /*
9147 * We've reserved this space, and thus converted it from
9148 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9149 * from here on out we will only need to clear our reservation
9150 * for the remaining unreserved area, so advance our
9151 * clear_offset by our extent size.
9152 */
9153 clear_offset += ins.offset;
9154
9155 last_alloc = ins.offset;
9156 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9157 &ins, cur_offset);
9158 /*
9159 * Now that we inserted the prealloc extent we can finally
9160 * decrement the number of reservations in the block group.
9161 * If we did it before, we could race with relocation and have
9162 * relocation miss the reserved extent, making it fail later.
9163 */
9164 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9165 if (IS_ERR(trans)) {
9166 ret = PTR_ERR(trans);
9167 btrfs_free_reserved_extent(fs_info, ins.objectid,
9168 ins.offset, false);
9169 break;
9170 }
9171
9172 em = btrfs_alloc_extent_map();
9173 if (!em) {
9174 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9175 cur_offset + ins.offset - 1, false);
9176 btrfs_set_inode_full_sync(BTRFS_I(inode));
9177 goto next;
9178 }
9179
9180 em->start = cur_offset;
9181 em->len = ins.offset;
9182 em->disk_bytenr = ins.objectid;
9183 em->offset = 0;
9184 em->disk_num_bytes = ins.offset;
9185 em->ram_bytes = ins.offset;
9186 em->flags |= EXTENT_FLAG_PREALLOC;
9187 em->generation = trans->transid;
9188
9189 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9190 btrfs_free_extent_map(em);
9191 next:
9192 num_bytes -= ins.offset;
9193 cur_offset += ins.offset;
9194 *alloc_hint = ins.objectid + ins.offset;
9195
9196 inode_inc_iversion(inode);
9197 inode_set_ctime_current(inode);
9198 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9199 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9200 (actual_len > inode->i_size) &&
9201 (cur_offset > inode->i_size)) {
9202 if (cur_offset > actual_len)
9203 i_size = actual_len;
9204 else
9205 i_size = cur_offset;
9206 i_size_write(inode, i_size);
9207 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9208 }
9209
9210 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9211
9212 if (unlikely(ret)) {
9213 btrfs_abort_transaction(trans, ret);
9214 if (own_trans)
9215 btrfs_end_transaction(trans);
9216 break;
9217 }
9218
9219 if (own_trans) {
9220 btrfs_end_transaction(trans);
9221 trans = NULL;
9222 }
9223 }
9224 if (clear_offset < end)
9225 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9226 end - clear_offset + 1);
9227 return ret;
9228 }
9229
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9230 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9231 u64 start, u64 num_bytes, u64 min_size,
9232 loff_t actual_len, u64 *alloc_hint)
9233 {
9234 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9235 min_size, actual_len, alloc_hint,
9236 NULL);
9237 }
9238
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9239 int btrfs_prealloc_file_range_trans(struct inode *inode,
9240 struct btrfs_trans_handle *trans, int mode,
9241 u64 start, u64 num_bytes, u64 min_size,
9242 loff_t actual_len, u64 *alloc_hint)
9243 {
9244 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9245 min_size, actual_len, alloc_hint, trans);
9246 }
9247
9248 /*
9249 * NOTE: in case you are adding MAY_EXEC check for directories:
9250 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to
9251 * elide calls here.
9252 */
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9253 static int btrfs_permission(struct mnt_idmap *idmap,
9254 struct inode *inode, int mask)
9255 {
9256 struct btrfs_root *root = BTRFS_I(inode)->root;
9257 umode_t mode = inode->i_mode;
9258
9259 if (mask & MAY_WRITE &&
9260 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9261 if (btrfs_root_readonly(root))
9262 return -EROFS;
9263 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9264 return -EACCES;
9265 }
9266 return generic_permission(idmap, inode, mask);
9267 }
9268
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9269 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9270 struct file *file, umode_t mode)
9271 {
9272 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9273 struct btrfs_trans_handle *trans;
9274 struct btrfs_root *root = BTRFS_I(dir)->root;
9275 struct inode *inode;
9276 struct btrfs_new_inode_args new_inode_args = {
9277 .dir = dir,
9278 .dentry = file->f_path.dentry,
9279 .orphan = true,
9280 };
9281 unsigned int trans_num_items;
9282 int ret;
9283
9284 inode = new_inode(dir->i_sb);
9285 if (!inode)
9286 return -ENOMEM;
9287 inode_init_owner(idmap, inode, dir, mode);
9288 inode->i_fop = &btrfs_file_operations;
9289 inode->i_op = &btrfs_file_inode_operations;
9290 inode->i_mapping->a_ops = &btrfs_aops;
9291
9292 new_inode_args.inode = inode;
9293 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9294 if (ret)
9295 goto out_inode;
9296
9297 trans = btrfs_start_transaction(root, trans_num_items);
9298 if (IS_ERR(trans)) {
9299 ret = PTR_ERR(trans);
9300 goto out_new_inode_args;
9301 }
9302
9303 ret = btrfs_create_new_inode(trans, &new_inode_args);
9304
9305 /*
9306 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9307 * set it to 1 because d_tmpfile() will issue a warning if the count is
9308 * 0, through:
9309 *
9310 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9311 */
9312 set_nlink(inode, 1);
9313
9314 if (!ret) {
9315 d_tmpfile(file, inode);
9316 unlock_new_inode(inode);
9317 mark_inode_dirty(inode);
9318 }
9319
9320 btrfs_end_transaction(trans);
9321 btrfs_btree_balance_dirty(fs_info);
9322 out_new_inode_args:
9323 btrfs_new_inode_args_destroy(&new_inode_args);
9324 out_inode:
9325 if (ret)
9326 iput(inode);
9327 return finish_open_simple(file, ret);
9328 }
9329
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9330 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9331 int compress_type)
9332 {
9333 switch (compress_type) {
9334 case BTRFS_COMPRESS_NONE:
9335 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9336 case BTRFS_COMPRESS_ZLIB:
9337 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9338 case BTRFS_COMPRESS_LZO:
9339 /*
9340 * The LZO format depends on the sector size. 64K is the maximum
9341 * sector size that we support.
9342 */
9343 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9344 return -EINVAL;
9345 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9346 (fs_info->sectorsize_bits - 12);
9347 case BTRFS_COMPRESS_ZSTD:
9348 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9349 default:
9350 return -EUCLEAN;
9351 }
9352 }
9353
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9354 static ssize_t btrfs_encoded_read_inline(
9355 struct kiocb *iocb,
9356 struct iov_iter *iter, u64 start,
9357 u64 lockend,
9358 struct extent_state **cached_state,
9359 u64 extent_start, size_t count,
9360 struct btrfs_ioctl_encoded_io_args *encoded,
9361 bool *unlocked)
9362 {
9363 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9364 struct btrfs_root *root = inode->root;
9365 struct btrfs_fs_info *fs_info = root->fs_info;
9366 struct extent_io_tree *io_tree = &inode->io_tree;
9367 BTRFS_PATH_AUTO_FREE(path);
9368 struct extent_buffer *leaf;
9369 struct btrfs_file_extent_item *item;
9370 u64 ram_bytes;
9371 unsigned long ptr;
9372 void *tmp;
9373 ssize_t ret;
9374 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9375
9376 path = btrfs_alloc_path();
9377 if (!path)
9378 return -ENOMEM;
9379
9380 path->nowait = nowait;
9381
9382 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9383 extent_start, 0);
9384 if (ret) {
9385 if (unlikely(ret > 0)) {
9386 /* The extent item disappeared? */
9387 return -EIO;
9388 }
9389 return ret;
9390 }
9391 leaf = path->nodes[0];
9392 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9393
9394 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9395 ptr = btrfs_file_extent_inline_start(item);
9396
9397 encoded->len = min_t(u64, extent_start + ram_bytes,
9398 inode->vfs_inode.i_size) - iocb->ki_pos;
9399 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9400 btrfs_file_extent_compression(leaf, item));
9401 if (ret < 0)
9402 return ret;
9403 encoded->compression = ret;
9404 if (encoded->compression) {
9405 size_t inline_size;
9406
9407 inline_size = btrfs_file_extent_inline_item_len(leaf,
9408 path->slots[0]);
9409 if (inline_size > count)
9410 return -ENOBUFS;
9411
9412 count = inline_size;
9413 encoded->unencoded_len = ram_bytes;
9414 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9415 } else {
9416 count = min_t(u64, count, encoded->len);
9417 encoded->len = count;
9418 encoded->unencoded_len = count;
9419 ptr += iocb->ki_pos - extent_start;
9420 }
9421
9422 tmp = kmalloc(count, GFP_NOFS);
9423 if (!tmp)
9424 return -ENOMEM;
9425
9426 read_extent_buffer(leaf, tmp, ptr, count);
9427 btrfs_release_path(path);
9428 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9429 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9430 *unlocked = true;
9431
9432 ret = copy_to_iter(tmp, count, iter);
9433 if (ret != count)
9434 ret = -EFAULT;
9435 kfree(tmp);
9436
9437 return ret;
9438 }
9439
9440 struct btrfs_encoded_read_private {
9441 struct completion *sync_reads;
9442 void *uring_ctx;
9443 refcount_t pending_refs;
9444 blk_status_t status;
9445 };
9446
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9447 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9448 {
9449 struct btrfs_encoded_read_private *priv = bbio->private;
9450
9451 if (bbio->bio.bi_status) {
9452 /*
9453 * The memory barrier implied by the refcount_dec_and_test() here
9454 * pairs with the memory barrier implied by the refcount_dec_and_test()
9455 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9456 * this write is observed before the load of status in
9457 * btrfs_encoded_read_regular_fill_pages().
9458 */
9459 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9460 }
9461 if (refcount_dec_and_test(&priv->pending_refs)) {
9462 int err = blk_status_to_errno(READ_ONCE(priv->status));
9463
9464 if (priv->uring_ctx) {
9465 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9466 kfree(priv);
9467 } else {
9468 complete(priv->sync_reads);
9469 }
9470 }
9471 bio_put(&bbio->bio);
9472 }
9473
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9474 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9475 u64 disk_bytenr, u64 disk_io_size,
9476 struct page **pages, void *uring_ctx)
9477 {
9478 struct btrfs_encoded_read_private *priv, sync_priv;
9479 struct completion sync_reads;
9480 unsigned long i = 0;
9481 struct btrfs_bio *bbio;
9482 int ret;
9483
9484 /*
9485 * Fast path for synchronous reads which completes in this call, io_uring
9486 * needs longer time span.
9487 */
9488 if (uring_ctx) {
9489 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9490 if (!priv)
9491 return -ENOMEM;
9492 } else {
9493 priv = &sync_priv;
9494 init_completion(&sync_reads);
9495 priv->sync_reads = &sync_reads;
9496 }
9497
9498 refcount_set(&priv->pending_refs, 1);
9499 priv->status = 0;
9500 priv->uring_ctx = uring_ctx;
9501
9502 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9503 btrfs_encoded_read_endio, priv);
9504 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9505
9506 do {
9507 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9508
9509 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9510 refcount_inc(&priv->pending_refs);
9511 btrfs_submit_bbio(bbio, 0);
9512
9513 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9514 btrfs_encoded_read_endio, priv);
9515 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9516 continue;
9517 }
9518
9519 i++;
9520 disk_bytenr += bytes;
9521 disk_io_size -= bytes;
9522 } while (disk_io_size);
9523
9524 refcount_inc(&priv->pending_refs);
9525 btrfs_submit_bbio(bbio, 0);
9526
9527 if (uring_ctx) {
9528 if (refcount_dec_and_test(&priv->pending_refs)) {
9529 ret = blk_status_to_errno(READ_ONCE(priv->status));
9530 btrfs_uring_read_extent_endio(uring_ctx, ret);
9531 kfree(priv);
9532 return ret;
9533 }
9534
9535 return -EIOCBQUEUED;
9536 } else {
9537 if (!refcount_dec_and_test(&priv->pending_refs))
9538 wait_for_completion_io(&sync_reads);
9539 /* See btrfs_encoded_read_endio() for ordering. */
9540 return blk_status_to_errno(READ_ONCE(priv->status));
9541 }
9542 }
9543
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9544 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9545 u64 start, u64 lockend,
9546 struct extent_state **cached_state,
9547 u64 disk_bytenr, u64 disk_io_size,
9548 size_t count, bool compressed, bool *unlocked)
9549 {
9550 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9551 struct extent_io_tree *io_tree = &inode->io_tree;
9552 struct page **pages;
9553 unsigned long nr_pages, i;
9554 u64 cur;
9555 size_t page_offset;
9556 ssize_t ret;
9557
9558 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9560 if (!pages)
9561 return -ENOMEM;
9562 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9563 if (ret) {
9564 ret = -ENOMEM;
9565 goto out;
9566 }
9567
9568 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9569 disk_io_size, pages, NULL);
9570 if (ret)
9571 goto out;
9572
9573 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9574 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9575 *unlocked = true;
9576
9577 if (compressed) {
9578 i = 0;
9579 page_offset = 0;
9580 } else {
9581 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9582 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9583 }
9584 cur = 0;
9585 while (cur < count) {
9586 size_t bytes = min_t(size_t, count - cur,
9587 PAGE_SIZE - page_offset);
9588
9589 if (copy_page_to_iter(pages[i], page_offset, bytes,
9590 iter) != bytes) {
9591 ret = -EFAULT;
9592 goto out;
9593 }
9594 i++;
9595 cur += bytes;
9596 page_offset = 0;
9597 }
9598 ret = count;
9599 out:
9600 for (i = 0; i < nr_pages; i++) {
9601 if (pages[i])
9602 __free_page(pages[i]);
9603 }
9604 kfree(pages);
9605 return ret;
9606 }
9607
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9608 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9609 struct btrfs_ioctl_encoded_io_args *encoded,
9610 struct extent_state **cached_state,
9611 u64 *disk_bytenr, u64 *disk_io_size)
9612 {
9613 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9614 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9615 struct extent_io_tree *io_tree = &inode->io_tree;
9616 ssize_t ret;
9617 size_t count = iov_iter_count(iter);
9618 u64 start, lockend;
9619 struct extent_map *em;
9620 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9621 bool unlocked = false;
9622
9623 file_accessed(iocb->ki_filp);
9624
9625 ret = btrfs_inode_lock(inode,
9626 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9627 if (ret)
9628 return ret;
9629
9630 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9631 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9632 return 0;
9633 }
9634 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9635 /*
9636 * We don't know how long the extent containing iocb->ki_pos is, but if
9637 * it's compressed we know that it won't be longer than this.
9638 */
9639 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9640
9641 if (nowait) {
9642 struct btrfs_ordered_extent *ordered;
9643
9644 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9645 start, lockend)) {
9646 ret = -EAGAIN;
9647 goto out_unlock_inode;
9648 }
9649
9650 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9651 ret = -EAGAIN;
9652 goto out_unlock_inode;
9653 }
9654
9655 ordered = btrfs_lookup_ordered_range(inode, start,
9656 lockend - start + 1);
9657 if (ordered) {
9658 btrfs_put_ordered_extent(ordered);
9659 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9660 ret = -EAGAIN;
9661 goto out_unlock_inode;
9662 }
9663 } else {
9664 for (;;) {
9665 struct btrfs_ordered_extent *ordered;
9666
9667 ret = btrfs_wait_ordered_range(inode, start,
9668 lockend - start + 1);
9669 if (ret)
9670 goto out_unlock_inode;
9671
9672 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9673 ordered = btrfs_lookup_ordered_range(inode, start,
9674 lockend - start + 1);
9675 if (!ordered)
9676 break;
9677 btrfs_put_ordered_extent(ordered);
9678 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9679 cond_resched();
9680 }
9681 }
9682
9683 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9684 if (IS_ERR(em)) {
9685 ret = PTR_ERR(em);
9686 goto out_unlock_extent;
9687 }
9688
9689 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9690 u64 extent_start = em->start;
9691
9692 /*
9693 * For inline extents we get everything we need out of the
9694 * extent item.
9695 */
9696 btrfs_free_extent_map(em);
9697 em = NULL;
9698 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9699 cached_state, extent_start,
9700 count, encoded, &unlocked);
9701 goto out_unlock_extent;
9702 }
9703
9704 /*
9705 * We only want to return up to EOF even if the extent extends beyond
9706 * that.
9707 */
9708 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9709 inode->vfs_inode.i_size) - iocb->ki_pos;
9710 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9711 (em->flags & EXTENT_FLAG_PREALLOC)) {
9712 *disk_bytenr = EXTENT_MAP_HOLE;
9713 count = min_t(u64, count, encoded->len);
9714 encoded->len = count;
9715 encoded->unencoded_len = count;
9716 } else if (btrfs_extent_map_is_compressed(em)) {
9717 *disk_bytenr = em->disk_bytenr;
9718 /*
9719 * Bail if the buffer isn't large enough to return the whole
9720 * compressed extent.
9721 */
9722 if (em->disk_num_bytes > count) {
9723 ret = -ENOBUFS;
9724 goto out_em;
9725 }
9726 *disk_io_size = em->disk_num_bytes;
9727 count = em->disk_num_bytes;
9728 encoded->unencoded_len = em->ram_bytes;
9729 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9730 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9731 btrfs_extent_map_compression(em));
9732 if (ret < 0)
9733 goto out_em;
9734 encoded->compression = ret;
9735 } else {
9736 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9737 if (encoded->len > count)
9738 encoded->len = count;
9739 /*
9740 * Don't read beyond what we locked. This also limits the page
9741 * allocations that we'll do.
9742 */
9743 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9744 count = start + *disk_io_size - iocb->ki_pos;
9745 encoded->len = count;
9746 encoded->unencoded_len = count;
9747 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9748 }
9749 btrfs_free_extent_map(em);
9750 em = NULL;
9751
9752 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9753 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9754 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9755 unlocked = true;
9756 ret = iov_iter_zero(count, iter);
9757 if (ret != count)
9758 ret = -EFAULT;
9759 } else {
9760 ret = -EIOCBQUEUED;
9761 goto out_unlock_extent;
9762 }
9763
9764 out_em:
9765 btrfs_free_extent_map(em);
9766 out_unlock_extent:
9767 /* Leave inode and extent locked if we need to do a read. */
9768 if (!unlocked && ret != -EIOCBQUEUED)
9769 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9770 out_unlock_inode:
9771 if (!unlocked && ret != -EIOCBQUEUED)
9772 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9773 return ret;
9774 }
9775
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9776 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9777 const struct btrfs_ioctl_encoded_io_args *encoded)
9778 {
9779 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9780 struct btrfs_root *root = inode->root;
9781 struct btrfs_fs_info *fs_info = root->fs_info;
9782 struct extent_io_tree *io_tree = &inode->io_tree;
9783 struct extent_changeset *data_reserved = NULL;
9784 struct extent_state *cached_state = NULL;
9785 struct btrfs_ordered_extent *ordered;
9786 struct btrfs_file_extent file_extent;
9787 int compression;
9788 size_t orig_count;
9789 u64 start, end;
9790 u64 num_bytes, ram_bytes, disk_num_bytes;
9791 unsigned long nr_folios, i;
9792 struct folio **folios;
9793 struct btrfs_key ins;
9794 bool extent_reserved = false;
9795 struct extent_map *em;
9796 ssize_t ret;
9797
9798 switch (encoded->compression) {
9799 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9800 compression = BTRFS_COMPRESS_ZLIB;
9801 break;
9802 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9803 compression = BTRFS_COMPRESS_ZSTD;
9804 break;
9805 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9806 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9807 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9808 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9809 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9810 /* The sector size must match for LZO. */
9811 if (encoded->compression -
9812 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9813 fs_info->sectorsize_bits)
9814 return -EINVAL;
9815 compression = BTRFS_COMPRESS_LZO;
9816 break;
9817 default:
9818 return -EINVAL;
9819 }
9820 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9821 return -EINVAL;
9822
9823 /*
9824 * Compressed extents should always have checksums, so error out if we
9825 * have a NOCOW file or inode was created while mounted with NODATASUM.
9826 */
9827 if (inode->flags & BTRFS_INODE_NODATASUM)
9828 return -EINVAL;
9829
9830 orig_count = iov_iter_count(from);
9831
9832 /* The extent size must be sane. */
9833 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9834 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9835 return -EINVAL;
9836
9837 /*
9838 * The compressed data must be smaller than the decompressed data.
9839 *
9840 * It's of course possible for data to compress to larger or the same
9841 * size, but the buffered I/O path falls back to no compression for such
9842 * data, and we don't want to break any assumptions by creating these
9843 * extents.
9844 *
9845 * Note that this is less strict than the current check we have that the
9846 * compressed data must be at least one sector smaller than the
9847 * decompressed data. We only want to enforce the weaker requirement
9848 * from old kernels that it is at least one byte smaller.
9849 */
9850 if (orig_count >= encoded->unencoded_len)
9851 return -EINVAL;
9852
9853 /* The extent must start on a sector boundary. */
9854 start = iocb->ki_pos;
9855 if (!IS_ALIGNED(start, fs_info->sectorsize))
9856 return -EINVAL;
9857
9858 /*
9859 * The extent must end on a sector boundary. However, we allow a write
9860 * which ends at or extends i_size to have an unaligned length; we round
9861 * up the extent size and set i_size to the unaligned end.
9862 */
9863 if (start + encoded->len < inode->vfs_inode.i_size &&
9864 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9865 return -EINVAL;
9866
9867 /* Finally, the offset in the unencoded data must be sector-aligned. */
9868 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9869 return -EINVAL;
9870
9871 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9872 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9873 end = start + num_bytes - 1;
9874
9875 /*
9876 * If the extent cannot be inline, the compressed data on disk must be
9877 * sector-aligned. For convenience, we extend it with zeroes if it
9878 * isn't.
9879 */
9880 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9881 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9882 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9883 if (!folios)
9884 return -ENOMEM;
9885 for (i = 0; i < nr_folios; i++) {
9886 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9887 char *kaddr;
9888
9889 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9890 if (!folios[i]) {
9891 ret = -ENOMEM;
9892 goto out_folios;
9893 }
9894 kaddr = kmap_local_folio(folios[i], 0);
9895 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9896 kunmap_local(kaddr);
9897 ret = -EFAULT;
9898 goto out_folios;
9899 }
9900 if (bytes < PAGE_SIZE)
9901 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9902 kunmap_local(kaddr);
9903 }
9904
9905 for (;;) {
9906 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9907 if (ret)
9908 goto out_folios;
9909 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9910 start >> PAGE_SHIFT,
9911 end >> PAGE_SHIFT);
9912 if (ret)
9913 goto out_folios;
9914 btrfs_lock_extent(io_tree, start, end, &cached_state);
9915 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9916 if (!ordered &&
9917 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9918 break;
9919 if (ordered)
9920 btrfs_put_ordered_extent(ordered);
9921 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9922 cond_resched();
9923 }
9924
9925 /*
9926 * We don't use the higher-level delalloc space functions because our
9927 * num_bytes and disk_num_bytes are different.
9928 */
9929 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9930 if (ret)
9931 goto out_unlock;
9932 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9933 if (ret)
9934 goto out_free_data_space;
9935 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9936 false);
9937 if (ret)
9938 goto out_qgroup_free_data;
9939
9940 /* Try an inline extent first. */
9941 if (encoded->unencoded_len == encoded->len &&
9942 encoded->unencoded_offset == 0 &&
9943 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9944 ret = __cow_file_range_inline(inode, encoded->len,
9945 orig_count, compression, folios[0],
9946 true);
9947 if (ret <= 0) {
9948 if (ret == 0)
9949 ret = orig_count;
9950 goto out_delalloc_release;
9951 }
9952 }
9953
9954 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9955 disk_num_bytes, 0, 0, &ins, true, true);
9956 if (ret)
9957 goto out_delalloc_release;
9958 extent_reserved = true;
9959
9960 file_extent.disk_bytenr = ins.objectid;
9961 file_extent.disk_num_bytes = ins.offset;
9962 file_extent.num_bytes = num_bytes;
9963 file_extent.ram_bytes = ram_bytes;
9964 file_extent.offset = encoded->unencoded_offset;
9965 file_extent.compression = compression;
9966 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9967 if (IS_ERR(em)) {
9968 ret = PTR_ERR(em);
9969 goto out_free_reserved;
9970 }
9971 btrfs_free_extent_map(em);
9972
9973 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9974 (1U << BTRFS_ORDERED_ENCODED) |
9975 (1U << BTRFS_ORDERED_COMPRESSED));
9976 if (IS_ERR(ordered)) {
9977 btrfs_drop_extent_map_range(inode, start, end, false);
9978 ret = PTR_ERR(ordered);
9979 goto out_free_reserved;
9980 }
9981 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9982
9983 if (start + encoded->len > inode->vfs_inode.i_size)
9984 i_size_write(&inode->vfs_inode, start + encoded->len);
9985
9986 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9987
9988 btrfs_delalloc_release_extents(inode, num_bytes);
9989
9990 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9991 ret = orig_count;
9992 goto out;
9993
9994 out_free_reserved:
9995 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9996 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9997 out_delalloc_release:
9998 btrfs_delalloc_release_extents(inode, num_bytes);
9999 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10000 out_qgroup_free_data:
10001 if (ret < 0)
10002 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10003 out_free_data_space:
10004 /*
10005 * If btrfs_reserve_extent() succeeded, then we already decremented
10006 * bytes_may_use.
10007 */
10008 if (!extent_reserved)
10009 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
10010 out_unlock:
10011 btrfs_unlock_extent(io_tree, start, end, &cached_state);
10012 out_folios:
10013 for (i = 0; i < nr_folios; i++) {
10014 if (folios[i])
10015 folio_put(folios[i]);
10016 }
10017 kvfree(folios);
10018 out:
10019 if (ret >= 0)
10020 iocb->ki_pos += encoded->len;
10021 return ret;
10022 }
10023
10024 #ifdef CONFIG_SWAP
10025 /*
10026 * Add an entry indicating a block group or device which is pinned by a
10027 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10028 * negative errno on failure.
10029 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10030 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10031 bool is_block_group)
10032 {
10033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10034 struct btrfs_swapfile_pin *sp, *entry;
10035 struct rb_node **p;
10036 struct rb_node *parent = NULL;
10037
10038 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10039 if (!sp)
10040 return -ENOMEM;
10041 sp->ptr = ptr;
10042 sp->inode = inode;
10043 sp->is_block_group = is_block_group;
10044 sp->bg_extent_count = 1;
10045
10046 spin_lock(&fs_info->swapfile_pins_lock);
10047 p = &fs_info->swapfile_pins.rb_node;
10048 while (*p) {
10049 parent = *p;
10050 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10051 if (sp->ptr < entry->ptr ||
10052 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10053 p = &(*p)->rb_left;
10054 } else if (sp->ptr > entry->ptr ||
10055 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10056 p = &(*p)->rb_right;
10057 } else {
10058 if (is_block_group)
10059 entry->bg_extent_count++;
10060 spin_unlock(&fs_info->swapfile_pins_lock);
10061 kfree(sp);
10062 return 1;
10063 }
10064 }
10065 rb_link_node(&sp->node, parent, p);
10066 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10067 spin_unlock(&fs_info->swapfile_pins_lock);
10068 return 0;
10069 }
10070
10071 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10072 static void btrfs_free_swapfile_pins(struct inode *inode)
10073 {
10074 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10075 struct btrfs_swapfile_pin *sp;
10076 struct rb_node *node, *next;
10077
10078 spin_lock(&fs_info->swapfile_pins_lock);
10079 node = rb_first(&fs_info->swapfile_pins);
10080 while (node) {
10081 next = rb_next(node);
10082 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10083 if (sp->inode == inode) {
10084 rb_erase(&sp->node, &fs_info->swapfile_pins);
10085 if (sp->is_block_group) {
10086 btrfs_dec_block_group_swap_extents(sp->ptr,
10087 sp->bg_extent_count);
10088 btrfs_put_block_group(sp->ptr);
10089 }
10090 kfree(sp);
10091 }
10092 node = next;
10093 }
10094 spin_unlock(&fs_info->swapfile_pins_lock);
10095 }
10096
10097 struct btrfs_swap_info {
10098 u64 start;
10099 u64 block_start;
10100 u64 block_len;
10101 u64 lowest_ppage;
10102 u64 highest_ppage;
10103 unsigned long nr_pages;
10104 int nr_extents;
10105 };
10106
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10107 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10108 struct btrfs_swap_info *bsi)
10109 {
10110 unsigned long nr_pages;
10111 unsigned long max_pages;
10112 u64 first_ppage, first_ppage_reported, next_ppage;
10113 int ret;
10114
10115 /*
10116 * Our swapfile may have had its size extended after the swap header was
10117 * written. In that case activating the swapfile should not go beyond
10118 * the max size set in the swap header.
10119 */
10120 if (bsi->nr_pages >= sis->max)
10121 return 0;
10122
10123 max_pages = sis->max - bsi->nr_pages;
10124 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10125 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10126
10127 if (first_ppage >= next_ppage)
10128 return 0;
10129 nr_pages = next_ppage - first_ppage;
10130 nr_pages = min(nr_pages, max_pages);
10131
10132 first_ppage_reported = first_ppage;
10133 if (bsi->start == 0)
10134 first_ppage_reported++;
10135 if (bsi->lowest_ppage > first_ppage_reported)
10136 bsi->lowest_ppage = first_ppage_reported;
10137 if (bsi->highest_ppage < (next_ppage - 1))
10138 bsi->highest_ppage = next_ppage - 1;
10139
10140 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10141 if (ret < 0)
10142 return ret;
10143 bsi->nr_extents += ret;
10144 bsi->nr_pages += nr_pages;
10145 return 0;
10146 }
10147
btrfs_swap_deactivate(struct file * file)10148 static void btrfs_swap_deactivate(struct file *file)
10149 {
10150 struct inode *inode = file_inode(file);
10151
10152 btrfs_free_swapfile_pins(inode);
10153 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10154 }
10155
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10156 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10157 sector_t *span)
10158 {
10159 struct inode *inode = file_inode(file);
10160 struct btrfs_root *root = BTRFS_I(inode)->root;
10161 struct btrfs_fs_info *fs_info = root->fs_info;
10162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10163 struct extent_state *cached_state = NULL;
10164 struct btrfs_chunk_map *map = NULL;
10165 struct btrfs_device *device = NULL;
10166 struct btrfs_swap_info bsi = {
10167 .lowest_ppage = (sector_t)-1ULL,
10168 };
10169 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10170 struct btrfs_path *path = NULL;
10171 int ret = 0;
10172 u64 isize;
10173 u64 prev_extent_end = 0;
10174
10175 /*
10176 * Acquire the inode's mmap lock to prevent races with memory mapped
10177 * writes, as they could happen after we flush delalloc below and before
10178 * we lock the extent range further below. The inode was already locked
10179 * up in the call chain.
10180 */
10181 btrfs_assert_inode_locked(BTRFS_I(inode));
10182 down_write(&BTRFS_I(inode)->i_mmap_lock);
10183
10184 /*
10185 * If the swap file was just created, make sure delalloc is done. If the
10186 * file changes again after this, the user is doing something stupid and
10187 * we don't really care.
10188 */
10189 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10190 if (ret)
10191 goto out_unlock_mmap;
10192
10193 /*
10194 * The inode is locked, so these flags won't change after we check them.
10195 */
10196 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10197 btrfs_warn(fs_info, "swapfile must not be compressed");
10198 ret = -EINVAL;
10199 goto out_unlock_mmap;
10200 }
10201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10202 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10203 ret = -EINVAL;
10204 goto out_unlock_mmap;
10205 }
10206 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10207 btrfs_warn(fs_info, "swapfile must not be checksummed");
10208 ret = -EINVAL;
10209 goto out_unlock_mmap;
10210 }
10211
10212 path = btrfs_alloc_path();
10213 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10214 if (!path || !backref_ctx) {
10215 ret = -ENOMEM;
10216 goto out_unlock_mmap;
10217 }
10218
10219 /*
10220 * Balance or device remove/replace/resize can move stuff around from
10221 * under us. The exclop protection makes sure they aren't running/won't
10222 * run concurrently while we are mapping the swap extents, and
10223 * fs_info->swapfile_pins prevents them from running while the swap
10224 * file is active and moving the extents. Note that this also prevents
10225 * a concurrent device add which isn't actually necessary, but it's not
10226 * really worth the trouble to allow it.
10227 */
10228 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10229 btrfs_warn(fs_info,
10230 "cannot activate swapfile while exclusive operation is running");
10231 ret = -EBUSY;
10232 goto out_unlock_mmap;
10233 }
10234
10235 /*
10236 * Prevent snapshot creation while we are activating the swap file.
10237 * We do not want to race with snapshot creation. If snapshot creation
10238 * already started before we bumped nr_swapfiles from 0 to 1 and
10239 * completes before the first write into the swap file after it is
10240 * activated, than that write would fallback to COW.
10241 */
10242 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10243 btrfs_exclop_finish(fs_info);
10244 btrfs_warn(fs_info,
10245 "cannot activate swapfile because snapshot creation is in progress");
10246 ret = -EINVAL;
10247 goto out_unlock_mmap;
10248 }
10249 /*
10250 * Snapshots can create extents which require COW even if NODATACOW is
10251 * set. We use this counter to prevent snapshots. We must increment it
10252 * before walking the extents because we don't want a concurrent
10253 * snapshot to run after we've already checked the extents.
10254 *
10255 * It is possible that subvolume is marked for deletion but still not
10256 * removed yet. To prevent this race, we check the root status before
10257 * activating the swapfile.
10258 */
10259 spin_lock(&root->root_item_lock);
10260 if (btrfs_root_dead(root)) {
10261 spin_unlock(&root->root_item_lock);
10262
10263 btrfs_drew_write_unlock(&root->snapshot_lock);
10264 btrfs_exclop_finish(fs_info);
10265 btrfs_warn(fs_info,
10266 "cannot activate swapfile because subvolume %llu is being deleted",
10267 btrfs_root_id(root));
10268 ret = -EPERM;
10269 goto out_unlock_mmap;
10270 }
10271 atomic_inc(&root->nr_swapfiles);
10272 spin_unlock(&root->root_item_lock);
10273
10274 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10275
10276 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10277 while (prev_extent_end < isize) {
10278 struct btrfs_key key;
10279 struct extent_buffer *leaf;
10280 struct btrfs_file_extent_item *ei;
10281 struct btrfs_block_group *bg;
10282 u64 logical_block_start;
10283 u64 physical_block_start;
10284 u64 extent_gen;
10285 u64 disk_bytenr;
10286 u64 len;
10287
10288 key.objectid = btrfs_ino(BTRFS_I(inode));
10289 key.type = BTRFS_EXTENT_DATA_KEY;
10290 key.offset = prev_extent_end;
10291
10292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10293 if (ret < 0)
10294 goto out;
10295
10296 /*
10297 * If key not found it means we have an implicit hole (NO_HOLES
10298 * is enabled).
10299 */
10300 if (ret > 0) {
10301 btrfs_warn(fs_info, "swapfile must not have holes");
10302 ret = -EINVAL;
10303 goto out;
10304 }
10305
10306 leaf = path->nodes[0];
10307 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10308
10309 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10310 /*
10311 * It's unlikely we'll ever actually find ourselves
10312 * here, as a file small enough to fit inline won't be
10313 * big enough to store more than the swap header, but in
10314 * case something changes in the future, let's catch it
10315 * here rather than later.
10316 */
10317 btrfs_warn(fs_info, "swapfile must not be inline");
10318 ret = -EINVAL;
10319 goto out;
10320 }
10321
10322 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10323 btrfs_warn(fs_info, "swapfile must not be compressed");
10324 ret = -EINVAL;
10325 goto out;
10326 }
10327
10328 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10329 if (disk_bytenr == 0) {
10330 btrfs_warn(fs_info, "swapfile must not have holes");
10331 ret = -EINVAL;
10332 goto out;
10333 }
10334
10335 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10336 extent_gen = btrfs_file_extent_generation(leaf, ei);
10337 prev_extent_end = btrfs_file_extent_end(path);
10338
10339 if (prev_extent_end > isize)
10340 len = isize - key.offset;
10341 else
10342 len = btrfs_file_extent_num_bytes(leaf, ei);
10343
10344 backref_ctx->curr_leaf_bytenr = leaf->start;
10345
10346 /*
10347 * Don't need the path anymore, release to avoid deadlocks when
10348 * calling btrfs_is_data_extent_shared() because when joining a
10349 * transaction it can block waiting for the current one's commit
10350 * which in turn may be trying to lock the same leaf to flush
10351 * delayed items for example.
10352 */
10353 btrfs_release_path(path);
10354
10355 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10356 extent_gen, backref_ctx);
10357 if (ret < 0) {
10358 goto out;
10359 } else if (ret > 0) {
10360 btrfs_warn(fs_info,
10361 "swapfile must not be copy-on-write");
10362 ret = -EINVAL;
10363 goto out;
10364 }
10365
10366 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10367 if (IS_ERR(map)) {
10368 ret = PTR_ERR(map);
10369 goto out;
10370 }
10371
10372 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10373 btrfs_warn(fs_info,
10374 "swapfile must have single data profile");
10375 ret = -EINVAL;
10376 goto out;
10377 }
10378
10379 if (device == NULL) {
10380 device = map->stripes[0].dev;
10381 ret = btrfs_add_swapfile_pin(inode, device, false);
10382 if (ret == 1)
10383 ret = 0;
10384 else if (ret)
10385 goto out;
10386 } else if (device != map->stripes[0].dev) {
10387 btrfs_warn(fs_info, "swapfile must be on one device");
10388 ret = -EINVAL;
10389 goto out;
10390 }
10391
10392 physical_block_start = (map->stripes[0].physical +
10393 (logical_block_start - map->start));
10394 btrfs_free_chunk_map(map);
10395 map = NULL;
10396
10397 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10398 if (!bg) {
10399 btrfs_warn(fs_info,
10400 "could not find block group containing swapfile");
10401 ret = -EINVAL;
10402 goto out;
10403 }
10404
10405 if (!btrfs_inc_block_group_swap_extents(bg)) {
10406 btrfs_warn(fs_info,
10407 "block group for swapfile at %llu is read-only%s",
10408 bg->start,
10409 atomic_read(&fs_info->scrubs_running) ?
10410 " (scrub running)" : "");
10411 btrfs_put_block_group(bg);
10412 ret = -EINVAL;
10413 goto out;
10414 }
10415
10416 ret = btrfs_add_swapfile_pin(inode, bg, true);
10417 if (ret) {
10418 btrfs_put_block_group(bg);
10419 if (ret == 1)
10420 ret = 0;
10421 else
10422 goto out;
10423 }
10424
10425 if (bsi.block_len &&
10426 bsi.block_start + bsi.block_len == physical_block_start) {
10427 bsi.block_len += len;
10428 } else {
10429 if (bsi.block_len) {
10430 ret = btrfs_add_swap_extent(sis, &bsi);
10431 if (ret)
10432 goto out;
10433 }
10434 bsi.start = key.offset;
10435 bsi.block_start = physical_block_start;
10436 bsi.block_len = len;
10437 }
10438
10439 if (fatal_signal_pending(current)) {
10440 ret = -EINTR;
10441 goto out;
10442 }
10443
10444 cond_resched();
10445 }
10446
10447 if (bsi.block_len)
10448 ret = btrfs_add_swap_extent(sis, &bsi);
10449
10450 out:
10451 if (!IS_ERR_OR_NULL(map))
10452 btrfs_free_chunk_map(map);
10453
10454 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10455
10456 if (ret)
10457 btrfs_swap_deactivate(file);
10458
10459 btrfs_drew_write_unlock(&root->snapshot_lock);
10460
10461 btrfs_exclop_finish(fs_info);
10462
10463 out_unlock_mmap:
10464 up_write(&BTRFS_I(inode)->i_mmap_lock);
10465 btrfs_free_backref_share_ctx(backref_ctx);
10466 btrfs_free_path(path);
10467 if (ret)
10468 return ret;
10469
10470 if (device)
10471 sis->bdev = device->bdev;
10472 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10473 sis->max = bsi.nr_pages;
10474 sis->pages = bsi.nr_pages - 1;
10475 return bsi.nr_extents;
10476 }
10477 #else
btrfs_swap_deactivate(struct file * file)10478 static void btrfs_swap_deactivate(struct file *file)
10479 {
10480 }
10481
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10482 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10483 sector_t *span)
10484 {
10485 return -EOPNOTSUPP;
10486 }
10487 #endif
10488
10489 /*
10490 * Update the number of bytes used in the VFS' inode. When we replace extents in
10491 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10492 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10493 * always get a correct value.
10494 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10495 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10496 const u64 add_bytes,
10497 const u64 del_bytes)
10498 {
10499 if (add_bytes == del_bytes)
10500 return;
10501
10502 spin_lock(&inode->lock);
10503 if (del_bytes > 0)
10504 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10505 if (add_bytes > 0)
10506 inode_add_bytes(&inode->vfs_inode, add_bytes);
10507 spin_unlock(&inode->lock);
10508 }
10509
10510 /*
10511 * Verify that there are no ordered extents for a given file range.
10512 *
10513 * @inode: The target inode.
10514 * @start: Start offset of the file range, should be sector size aligned.
10515 * @end: End offset (inclusive) of the file range, its value +1 should be
10516 * sector size aligned.
10517 *
10518 * This should typically be used for cases where we locked an inode's VFS lock in
10519 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10520 * we have flushed all delalloc in the range, we have waited for all ordered
10521 * extents in the range to complete and finally we have locked the file range in
10522 * the inode's io_tree.
10523 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10524 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10525 {
10526 struct btrfs_root *root = inode->root;
10527 struct btrfs_ordered_extent *ordered;
10528
10529 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10530 return;
10531
10532 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10533 if (ordered) {
10534 btrfs_err(root->fs_info,
10535 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10536 start, end, btrfs_ino(inode), btrfs_root_id(root),
10537 ordered->file_offset,
10538 ordered->file_offset + ordered->num_bytes - 1);
10539 btrfs_put_ordered_extent(ordered);
10540 }
10541
10542 ASSERT(ordered == NULL);
10543 }
10544
10545 /*
10546 * Find the first inode with a minimum number.
10547 *
10548 * @root: The root to search for.
10549 * @min_ino: The minimum inode number.
10550 *
10551 * Find the first inode in the @root with a number >= @min_ino and return it.
10552 * Returns NULL if no such inode found.
10553 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10554 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10555 {
10556 struct btrfs_inode *inode;
10557 unsigned long from = min_ino;
10558
10559 xa_lock(&root->inodes);
10560 while (true) {
10561 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10562 if (!inode)
10563 break;
10564 if (igrab(&inode->vfs_inode))
10565 break;
10566
10567 from = btrfs_ino(inode) + 1;
10568 cond_resched_lock(&root->inodes.xa_lock);
10569 }
10570 xa_unlock(&root->inodes);
10571
10572 return inode;
10573 }
10574
10575 static const struct inode_operations btrfs_dir_inode_operations = {
10576 .getattr = btrfs_getattr,
10577 .lookup = btrfs_lookup,
10578 .create = btrfs_create,
10579 .unlink = btrfs_unlink,
10580 .link = btrfs_link,
10581 .mkdir = btrfs_mkdir,
10582 .rmdir = btrfs_rmdir,
10583 .rename = btrfs_rename2,
10584 .symlink = btrfs_symlink,
10585 .setattr = btrfs_setattr,
10586 .mknod = btrfs_mknod,
10587 .listxattr = btrfs_listxattr,
10588 .permission = btrfs_permission,
10589 .get_inode_acl = btrfs_get_acl,
10590 .set_acl = btrfs_set_acl,
10591 .update_time = btrfs_update_time,
10592 .tmpfile = btrfs_tmpfile,
10593 .fileattr_get = btrfs_fileattr_get,
10594 .fileattr_set = btrfs_fileattr_set,
10595 };
10596
10597 static const struct file_operations btrfs_dir_file_operations = {
10598 .llseek = btrfs_dir_llseek,
10599 .read = generic_read_dir,
10600 .iterate_shared = btrfs_real_readdir,
10601 .open = btrfs_opendir,
10602 .unlocked_ioctl = btrfs_ioctl,
10603 #ifdef CONFIG_COMPAT
10604 .compat_ioctl = btrfs_compat_ioctl,
10605 #endif
10606 .release = btrfs_release_file,
10607 .fsync = btrfs_sync_file,
10608 };
10609
10610 /*
10611 * btrfs doesn't support the bmap operation because swapfiles
10612 * use bmap to make a mapping of extents in the file. They assume
10613 * these extents won't change over the life of the file and they
10614 * use the bmap result to do IO directly to the drive.
10615 *
10616 * the btrfs bmap call would return logical addresses that aren't
10617 * suitable for IO and they also will change frequently as COW
10618 * operations happen. So, swapfile + btrfs == corruption.
10619 *
10620 * For now we're avoiding this by dropping bmap.
10621 */
10622 static const struct address_space_operations btrfs_aops = {
10623 .read_folio = btrfs_read_folio,
10624 .writepages = btrfs_writepages,
10625 .readahead = btrfs_readahead,
10626 .invalidate_folio = btrfs_invalidate_folio,
10627 .launder_folio = btrfs_launder_folio,
10628 .release_folio = btrfs_release_folio,
10629 .migrate_folio = btrfs_migrate_folio,
10630 .dirty_folio = filemap_dirty_folio,
10631 .error_remove_folio = generic_error_remove_folio,
10632 .swap_activate = btrfs_swap_activate,
10633 .swap_deactivate = btrfs_swap_deactivate,
10634 };
10635
10636 static const struct inode_operations btrfs_file_inode_operations = {
10637 .getattr = btrfs_getattr,
10638 .setattr = btrfs_setattr,
10639 .listxattr = btrfs_listxattr,
10640 .permission = btrfs_permission,
10641 .fiemap = btrfs_fiemap,
10642 .get_inode_acl = btrfs_get_acl,
10643 .set_acl = btrfs_set_acl,
10644 .update_time = btrfs_update_time,
10645 .fileattr_get = btrfs_fileattr_get,
10646 .fileattr_set = btrfs_fileattr_set,
10647 };
10648 static const struct inode_operations btrfs_special_inode_operations = {
10649 .getattr = btrfs_getattr,
10650 .setattr = btrfs_setattr,
10651 .permission = btrfs_permission,
10652 .listxattr = btrfs_listxattr,
10653 .get_inode_acl = btrfs_get_acl,
10654 .set_acl = btrfs_set_acl,
10655 .update_time = btrfs_update_time,
10656 };
10657 static const struct inode_operations btrfs_symlink_inode_operations = {
10658 .get_link = page_get_link,
10659 .getattr = btrfs_getattr,
10660 .setattr = btrfs_setattr,
10661 .permission = btrfs_permission,
10662 .listxattr = btrfs_listxattr,
10663 .update_time = btrfs_update_time,
10664 };
10665
10666 const struct dentry_operations btrfs_dentry_operations = {
10667 .d_delete = btrfs_dentry_delete,
10668 };
10669