xref: /linux/drivers/iio/adc/ti-adc0832.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADC0831/ADC0832/ADC0834/ADC0838 8-bit ADC driver
4  *
5  * Copyright (c) 2016 Akinobu Mita <akinobu.mita@gmail.com>
6  *
7  * Datasheet: https://www.ti.com/lit/ds/symlink/adc0832-n.pdf
8  */
9 
10 #include <linux/module.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/spi/spi.h>
13 #include <linux/iio/iio.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/iio/buffer.h>
16 #include <linux/iio/trigger.h>
17 #include <linux/iio/triggered_buffer.h>
18 #include <linux/iio/trigger_consumer.h>
19 
20 enum {
21 	adc0831,
22 	adc0832,
23 	adc0834,
24 	adc0838,
25 };
26 
27 struct adc0832 {
28 	struct spi_device *spi;
29 	struct regulator *reg;
30 	struct mutex lock;
31 	u8 mux_bits;
32 	/*
33 	 * Max size needed: 16x 1 byte ADC data + 8 bytes timestamp
34 	 * May be shorter if not all channels are enabled subject
35 	 * to the timestamp remaining 8 byte aligned.
36 	 */
37 	u8 data[24] __aligned(8);
38 
39 	u8 tx_buf[2] __aligned(IIO_DMA_MINALIGN);
40 	u8 rx_buf[2];
41 };
42 
43 #define ADC0832_VOLTAGE_CHANNEL(chan)					\
44 	{								\
45 		.type = IIO_VOLTAGE,					\
46 		.indexed = 1,						\
47 		.channel = chan,					\
48 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
49 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
50 		.scan_index = chan,					\
51 		.scan_type = {						\
52 			.sign = 'u',					\
53 			.realbits = 8,					\
54 			.storagebits = 8,				\
55 		},							\
56 	}
57 
58 #define ADC0832_VOLTAGE_CHANNEL_DIFF(chan1, chan2, si)			\
59 	{								\
60 		.type = IIO_VOLTAGE,					\
61 		.indexed = 1,						\
62 		.channel = (chan1),					\
63 		.channel2 = (chan2),					\
64 		.differential = 1,					\
65 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
66 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
67 		.scan_index = si,					\
68 		.scan_type = {						\
69 			.sign = 'u',					\
70 			.realbits = 8,					\
71 			.storagebits = 8,				\
72 		},							\
73 	}
74 
75 static const struct iio_chan_spec adc0831_channels[] = {
76 	ADC0832_VOLTAGE_CHANNEL_DIFF(0, 1, 0),
77 	IIO_CHAN_SOFT_TIMESTAMP(1),
78 };
79 
80 static const struct iio_chan_spec adc0832_channels[] = {
81 	ADC0832_VOLTAGE_CHANNEL(0),
82 	ADC0832_VOLTAGE_CHANNEL(1),
83 	ADC0832_VOLTAGE_CHANNEL_DIFF(0, 1, 2),
84 	ADC0832_VOLTAGE_CHANNEL_DIFF(1, 0, 3),
85 	IIO_CHAN_SOFT_TIMESTAMP(4),
86 };
87 
88 static const struct iio_chan_spec adc0834_channels[] = {
89 	ADC0832_VOLTAGE_CHANNEL(0),
90 	ADC0832_VOLTAGE_CHANNEL(1),
91 	ADC0832_VOLTAGE_CHANNEL(2),
92 	ADC0832_VOLTAGE_CHANNEL(3),
93 	ADC0832_VOLTAGE_CHANNEL_DIFF(0, 1, 4),
94 	ADC0832_VOLTAGE_CHANNEL_DIFF(1, 0, 5),
95 	ADC0832_VOLTAGE_CHANNEL_DIFF(2, 3, 6),
96 	ADC0832_VOLTAGE_CHANNEL_DIFF(3, 2, 7),
97 	IIO_CHAN_SOFT_TIMESTAMP(8),
98 };
99 
100 static const struct iio_chan_spec adc0838_channels[] = {
101 	ADC0832_VOLTAGE_CHANNEL(0),
102 	ADC0832_VOLTAGE_CHANNEL(1),
103 	ADC0832_VOLTAGE_CHANNEL(2),
104 	ADC0832_VOLTAGE_CHANNEL(3),
105 	ADC0832_VOLTAGE_CHANNEL(4),
106 	ADC0832_VOLTAGE_CHANNEL(5),
107 	ADC0832_VOLTAGE_CHANNEL(6),
108 	ADC0832_VOLTAGE_CHANNEL(7),
109 	ADC0832_VOLTAGE_CHANNEL_DIFF(0, 1, 8),
110 	ADC0832_VOLTAGE_CHANNEL_DIFF(1, 0, 9),
111 	ADC0832_VOLTAGE_CHANNEL_DIFF(2, 3, 10),
112 	ADC0832_VOLTAGE_CHANNEL_DIFF(3, 2, 11),
113 	ADC0832_VOLTAGE_CHANNEL_DIFF(4, 5, 12),
114 	ADC0832_VOLTAGE_CHANNEL_DIFF(5, 4, 13),
115 	ADC0832_VOLTAGE_CHANNEL_DIFF(6, 7, 14),
116 	ADC0832_VOLTAGE_CHANNEL_DIFF(7, 6, 15),
117 	IIO_CHAN_SOFT_TIMESTAMP(16),
118 };
119 
adc0831_adc_conversion(struct adc0832 * adc)120 static int adc0831_adc_conversion(struct adc0832 *adc)
121 {
122 	struct spi_device *spi = adc->spi;
123 	int ret;
124 
125 	ret = spi_read(spi, &adc->rx_buf, 2);
126 	if (ret)
127 		return ret;
128 
129 	/*
130 	 * Skip TRI-STATE and a leading zero
131 	 */
132 	return (adc->rx_buf[0] << 2 & 0xff) | (adc->rx_buf[1] >> 6);
133 }
134 
adc0832_adc_conversion(struct adc0832 * adc,int channel,bool differential)135 static int adc0832_adc_conversion(struct adc0832 *adc, int channel,
136 				bool differential)
137 {
138 	struct spi_device *spi = adc->spi;
139 	struct spi_transfer xfer = {
140 		.tx_buf = adc->tx_buf,
141 		.rx_buf = adc->rx_buf,
142 		.len = 2,
143 	};
144 	int ret;
145 
146 	if (!adc->mux_bits)
147 		return adc0831_adc_conversion(adc);
148 
149 	/* start bit */
150 	adc->tx_buf[0] = 1 << (adc->mux_bits + 1);
151 	/* single-ended or differential */
152 	adc->tx_buf[0] |= differential ? 0 : (1 << adc->mux_bits);
153 	/* odd / sign */
154 	adc->tx_buf[0] |= (channel % 2) << (adc->mux_bits - 1);
155 	/* select */
156 	if (adc->mux_bits > 1)
157 		adc->tx_buf[0] |= channel / 2;
158 
159 	/* align Data output BIT7 (MSB) to 8-bit boundary */
160 	adc->tx_buf[0] <<= 1;
161 
162 	ret = spi_sync_transfer(spi, &xfer, 1);
163 	if (ret)
164 		return ret;
165 
166 	return adc->rx_buf[1];
167 }
168 
adc0832_read_raw(struct iio_dev * iio,struct iio_chan_spec const * channel,int * value,int * shift,long mask)169 static int adc0832_read_raw(struct iio_dev *iio,
170 			struct iio_chan_spec const *channel, int *value,
171 			int *shift, long mask)
172 {
173 	struct adc0832 *adc = iio_priv(iio);
174 
175 	switch (mask) {
176 	case IIO_CHAN_INFO_RAW:
177 		mutex_lock(&adc->lock);
178 		*value = adc0832_adc_conversion(adc, channel->channel,
179 						channel->differential);
180 		mutex_unlock(&adc->lock);
181 		if (*value < 0)
182 			return *value;
183 
184 		return IIO_VAL_INT;
185 	case IIO_CHAN_INFO_SCALE:
186 		*value = regulator_get_voltage(adc->reg);
187 		if (*value < 0)
188 			return *value;
189 
190 		/* convert regulator output voltage to mV */
191 		*value /= 1000;
192 		*shift = 8;
193 
194 		return IIO_VAL_FRACTIONAL_LOG2;
195 	}
196 
197 	return -EINVAL;
198 }
199 
200 static const struct iio_info adc0832_info = {
201 	.read_raw = adc0832_read_raw,
202 };
203 
adc0832_trigger_handler(int irq,void * p)204 static irqreturn_t adc0832_trigger_handler(int irq, void *p)
205 {
206 	struct iio_poll_func *pf = p;
207 	struct iio_dev *indio_dev = pf->indio_dev;
208 	struct adc0832 *adc = iio_priv(indio_dev);
209 	int scan_index;
210 	int i = 0;
211 
212 	mutex_lock(&adc->lock);
213 
214 	iio_for_each_active_channel(indio_dev, scan_index) {
215 		const struct iio_chan_spec *scan_chan =
216 				&indio_dev->channels[scan_index];
217 		int ret = adc0832_adc_conversion(adc, scan_chan->channel,
218 						 scan_chan->differential);
219 		if (ret < 0) {
220 			dev_warn(&adc->spi->dev,
221 				 "failed to get conversion data\n");
222 			goto out;
223 		}
224 
225 		adc->data[i] = ret;
226 		i++;
227 	}
228 	iio_push_to_buffers_with_timestamp(indio_dev, adc->data,
229 					   iio_get_time_ns(indio_dev));
230 out:
231 	mutex_unlock(&adc->lock);
232 
233 	iio_trigger_notify_done(indio_dev->trig);
234 
235 	return IRQ_HANDLED;
236 }
237 
adc0832_reg_disable(void * reg)238 static void adc0832_reg_disable(void *reg)
239 {
240 	regulator_disable(reg);
241 }
242 
adc0832_probe(struct spi_device * spi)243 static int adc0832_probe(struct spi_device *spi)
244 {
245 	struct iio_dev *indio_dev;
246 	struct adc0832 *adc;
247 	int ret;
248 
249 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*adc));
250 	if (!indio_dev)
251 		return -ENOMEM;
252 
253 	adc = iio_priv(indio_dev);
254 	adc->spi = spi;
255 	mutex_init(&adc->lock);
256 
257 	indio_dev->name = spi_get_device_id(spi)->name;
258 	indio_dev->info = &adc0832_info;
259 	indio_dev->modes = INDIO_DIRECT_MODE;
260 
261 	switch (spi_get_device_id(spi)->driver_data) {
262 	case adc0831:
263 		adc->mux_bits = 0;
264 		indio_dev->channels = adc0831_channels;
265 		indio_dev->num_channels = ARRAY_SIZE(adc0831_channels);
266 		break;
267 	case adc0832:
268 		adc->mux_bits = 1;
269 		indio_dev->channels = adc0832_channels;
270 		indio_dev->num_channels = ARRAY_SIZE(adc0832_channels);
271 		break;
272 	case adc0834:
273 		adc->mux_bits = 2;
274 		indio_dev->channels = adc0834_channels;
275 		indio_dev->num_channels = ARRAY_SIZE(adc0834_channels);
276 		break;
277 	case adc0838:
278 		adc->mux_bits = 3;
279 		indio_dev->channels = adc0838_channels;
280 		indio_dev->num_channels = ARRAY_SIZE(adc0838_channels);
281 		break;
282 	default:
283 		return -EINVAL;
284 	}
285 
286 	adc->reg = devm_regulator_get(&spi->dev, "vref");
287 	if (IS_ERR(adc->reg))
288 		return PTR_ERR(adc->reg);
289 
290 	ret = regulator_enable(adc->reg);
291 	if (ret)
292 		return ret;
293 
294 	ret = devm_add_action_or_reset(&spi->dev, adc0832_reg_disable,
295 				       adc->reg);
296 	if (ret)
297 		return ret;
298 
299 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, NULL,
300 					      adc0832_trigger_handler, NULL);
301 	if (ret)
302 		return ret;
303 
304 	return devm_iio_device_register(&spi->dev, indio_dev);
305 }
306 
307 static const struct of_device_id adc0832_dt_ids[] = {
308 	{ .compatible = "ti,adc0831", },
309 	{ .compatible = "ti,adc0832", },
310 	{ .compatible = "ti,adc0834", },
311 	{ .compatible = "ti,adc0838", },
312 	{ }
313 };
314 MODULE_DEVICE_TABLE(of, adc0832_dt_ids);
315 
316 static const struct spi_device_id adc0832_id[] = {
317 	{ "adc0831", adc0831 },
318 	{ "adc0832", adc0832 },
319 	{ "adc0834", adc0834 },
320 	{ "adc0838", adc0838 },
321 	{ }
322 };
323 MODULE_DEVICE_TABLE(spi, adc0832_id);
324 
325 static struct spi_driver adc0832_driver = {
326 	.driver = {
327 		.name = "adc0832",
328 		.of_match_table = adc0832_dt_ids,
329 	},
330 	.probe = adc0832_probe,
331 	.id_table = adc0832_id,
332 };
333 module_spi_driver(adc0832_driver);
334 
335 MODULE_AUTHOR("Akinobu Mita <akinobu.mita@gmail.com>");
336 MODULE_DESCRIPTION("ADC0831/ADC0832/ADC0834/ADC0838 driver");
337 MODULE_LICENSE("GPL v2");
338