1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_gpu_trace.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22
23 struct msm_gem_submit;
24 struct msm_gem_vm_log_entry;
25 struct msm_gpu_perfcntr;
26 struct msm_gpu_state;
27 struct msm_context;
28
29 struct msm_gpu_config {
30 const char *ioname;
31 unsigned int nr_rings;
32 };
33
34 /* So far, with hardware that I've seen to date, we can have:
35 * + zero, one, or two z180 2d cores
36 * + a3xx or a2xx 3d core, which share a common CP (the firmware
37 * for the CP seems to implement some different PM4 packet types
38 * but the basics of cmdstream submission are the same)
39 *
40 * Which means that the eventual complete "class" hierarchy, once
41 * support for all past and present hw is in place, becomes:
42 * + msm_gpu
43 * + adreno_gpu
44 * + a3xx_gpu
45 * + a2xx_gpu
46 * + z180_gpu
47 */
48 struct msm_gpu_funcs {
49 int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx,
50 uint32_t param, uint64_t *value, uint32_t *len);
51 int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx,
52 uint32_t param, uint64_t value, uint32_t len);
53 int (*hw_init)(struct msm_gpu *gpu);
54
55 /**
56 * @ucode_load: Optional hook to upload fw to GEM objs
57 */
58 int (*ucode_load)(struct msm_gpu *gpu);
59
60 int (*pm_suspend)(struct msm_gpu *gpu);
61 int (*pm_resume)(struct msm_gpu *gpu);
62 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
63 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
64 irqreturn_t (*irq)(struct msm_gpu *irq);
65 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
66 void (*recover)(struct msm_gpu *gpu);
67 void (*destroy)(struct msm_gpu *gpu);
68 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
69 /* show GPU status in debugfs: */
70 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
71 struct drm_printer *p);
72 /* for generation specific debugfs: */
73 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
74 #endif
75 /* note: gpu_busy() can assume that we have been pm_resumed */
76 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
77 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
78 int (*gpu_state_put)(struct msm_gpu_state *state);
79 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
80 /* note: gpu_set_freq() can assume that we have been pm_resumed */
81 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
82 bool suspended);
83 struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev);
84 struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed);
85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86
87 /**
88 * progress: Has the GPU made progress?
89 *
90 * Return true if GPU position in cmdstream has advanced (or changed)
91 * since the last call. To avoid false negatives, this should account
92 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 */
94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 void (*sysprof_setup)(struct msm_gpu *gpu);
96 };
97
98 /* Additional state for iommu faults: */
99 struct msm_gpu_fault_info {
100 u64 ttbr0;
101 unsigned long iova;
102 int flags;
103 const char *type;
104 const char *block;
105
106 /* Information about what we think/expect is the current SMMU state,
107 * for example expected_ttbr0 should match smmu_info.ttbr0 which
108 * was read back from SMMU registers.
109 */
110 phys_addr_t pgtbl_ttbr0;
111 u64 ptes[4];
112 int asid;
113 };
114
115 /**
116 * struct msm_gpu_devfreq - devfreq related state
117 */
118 struct msm_gpu_devfreq {
119 /** @devfreq: devfreq instance */
120 struct devfreq *devfreq;
121 /** @lock: lock for "suspended", "busy_cycles", and "time" */
122 struct mutex lock;
123 /**
124 * @idle_freq:
125 * Shadow frequency used while the GPU is idle. From the PoV of
126 * the devfreq governor, we are continuing to sample busyness and
127 * adjust frequency while the GPU is idle, but we use this shadow
128 * value as the GPU is actually clamped to minimum frequency while
129 * it is inactive.
130 */
131 unsigned long idle_freq;
132 /**
133 * @boost_freq:
134 * A PM QoS constraint to boost min freq for a period of time
135 * until the boost expires.
136 */
137 struct dev_pm_qos_request boost_freq;
138 /**
139 * @busy_cycles: Last busy counter value, for calculating elapsed busy
140 * cycles since last sampling period.
141 */
142 u64 busy_cycles;
143 /** @time: Time of last sampling period. */
144 ktime_t time;
145 /** @idle_time: Time of last transition to idle. */
146 ktime_t idle_time;
147 /**
148 * @idle_work:
149 * Used to delay clamping to idle freq on active->idle transition.
150 */
151 struct msm_hrtimer_work idle_work;
152 /**
153 * @boost_work:
154 * Used to reset the boost_constraint after the boost period has
155 * elapsed
156 */
157 struct msm_hrtimer_work boost_work;
158
159 /** @suspended: tracks if we're suspended */
160 bool suspended;
161 };
162
163 struct msm_gpu {
164 const char *name;
165 struct drm_device *dev;
166 struct platform_device *pdev;
167 const struct msm_gpu_funcs *funcs;
168
169 struct adreno_smmu_priv adreno_smmu;
170
171 /* performance counters (hw & sw): */
172 spinlock_t perf_lock;
173 bool perfcntr_active;
174 struct {
175 bool active;
176 ktime_t time;
177 } last_sample;
178 uint32_t totaltime, activetime; /* sw counters */
179 uint32_t last_cntrs[5]; /* hw counters */
180 const struct msm_gpu_perfcntr *perfcntrs;
181 uint32_t num_perfcntrs;
182
183 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
184 int nr_rings;
185
186 /**
187 * sysprof_active:
188 *
189 * The count of contexts that have enabled system profiling.
190 */
191 refcount_t sysprof_active;
192
193 /**
194 * lock:
195 *
196 * General lock for serializing all the gpu things.
197 *
198 * TODO move to per-ring locking where feasible (ie. submit/retire
199 * path, etc)
200 */
201 struct mutex lock;
202
203 /**
204 * active_submits:
205 *
206 * The number of submitted but not yet retired submits, used to
207 * determine transitions between active and idle.
208 *
209 * Protected by active_lock
210 */
211 int active_submits;
212
213 /** lock: protects active_submits and idle/active transitions */
214 struct mutex active_lock;
215
216 /* does gpu need hw_init? */
217 bool needs_hw_init;
218
219 /**
220 * global_faults: number of GPU hangs not attributed to a particular
221 * address space
222 */
223 int global_faults;
224
225 void __iomem *mmio;
226 int irq;
227
228 struct drm_gpuvm *vm;
229
230 /* Power Control: */
231 struct regulator *gpu_reg, *gpu_cx;
232 struct clk_bulk_data *grp_clks;
233 int nr_clocks;
234 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
235 uint32_t fast_rate;
236
237 /* Hang and Inactivity Detection:
238 */
239 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
240
241 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
242 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
243 struct timer_list hangcheck_timer;
244
245 /* work for handling GPU recovery: */
246 struct kthread_work recover_work;
247
248 /** retire_event: notified when submits are retired: */
249 wait_queue_head_t retire_event;
250
251 /* work for handling active-list retiring: */
252 struct kthread_work retire_work;
253
254 /* worker for retire/recover: */
255 struct kthread_worker *worker;
256
257 struct drm_gem_object *memptrs_bo;
258
259 struct msm_gpu_devfreq devfreq;
260
261 uint32_t suspend_count;
262
263 struct msm_gpu_state *crashstate;
264
265 /* True if the hardware supports expanded apriv (a650 and newer) */
266 bool hw_apriv;
267
268 /**
269 * @allow_relocs: allow relocs in SUBMIT ioctl
270 *
271 * Mesa won't use relocs for driver version 1.4.0 and later. This
272 * switch-over happened early enough in mesa a6xx bringup that we
273 * can disallow relocs for a6xx and newer.
274 */
275 bool allow_relocs;
276
277 struct thermal_cooling_device *cooling;
278 };
279
dev_to_gpu(struct device * dev)280 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
281 {
282 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
283
284 if (!adreno_smmu)
285 return NULL;
286
287 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
288 }
289
290 static inline bool
adreno_smmu_has_prr(struct msm_gpu * gpu)291 adreno_smmu_has_prr(struct msm_gpu *gpu)
292 {
293 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(&gpu->pdev->dev);
294
295 if (!adreno_smmu)
296 return false;
297
298 return adreno_smmu && adreno_smmu->set_prr_addr;
299 }
300
301 /* It turns out that all targets use the same ringbuffer size */
302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
304
305 #define MSM_GPU_RB_CNTL_DEFAULT \
306 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
307 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
308
msm_gpu_active(struct msm_gpu * gpu)309 static inline bool msm_gpu_active(struct msm_gpu *gpu)
310 {
311 int i;
312
313 for (i = 0; i < gpu->nr_rings; i++) {
314 struct msm_ringbuffer *ring = gpu->rb[i];
315
316 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
317 return true;
318 }
319
320 return false;
321 }
322
323 /* Perf-Counters:
324 * The select_reg and select_val are just there for the benefit of the child
325 * class that actually enables the perf counter.. but msm_gpu base class
326 * will handle sampling/displaying the counters.
327 */
328
329 struct msm_gpu_perfcntr {
330 uint32_t select_reg;
331 uint32_t sample_reg;
332 uint32_t select_val;
333 const char *name;
334 };
335
336 /*
337 * The number of priority levels provided by drm gpu scheduler. The
338 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
339 * cases, so we don't use it (no need for kernel generated jobs).
340 */
341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
342
343 /**
344 * struct msm_context - per-drm_file context
345 */
346 struct msm_context {
347 /** @queuelock: synchronizes access to submitqueues list */
348 rwlock_t queuelock;
349 /** @submitqueues: list of &msm_gpu_submitqueue created by userspace */
350 struct list_head submitqueues;
351 /**
352 * @queueid:
353 * Counter incremented each time a submitqueue is created, used to
354 * assign &msm_gpu_submitqueue.id
355 */
356 int queueid;
357 /**
358 * @closed: The device file associated with this context has been closed.
359 * Once the device is closed, any submits that have not been written
360 * to the ring buffer are no-op'd.
361 */
362 bool closed;
363 /**
364 * @userspace_managed_vm:
365 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via
366 * MSM_PARAM_EN_VM_BIND?
367 */
368 bool userspace_managed_vm;
369 /**
370 * @vm:
371 * The per-process GPU address-space. Do not access directly, use
372 * msm_context_vm().
373 */
374 struct drm_gpuvm *vm;
375 /** @ref: the reference count */
376 struct kref ref;
377 /**
378 * @seqno:
379 * A unique per-process sequence number. Used to detect context
380 * switches, without relying on keeping a, potentially dangling,
381 * pointer to the previous context.
382 */
383 int seqno;
384 /**
385 * @sysprof:
386 * The value of MSM_PARAM_SYSPROF set by userspace. This is
387 * intended to be used by system profiling tools like Mesa's
388 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
389 *
390 * Setting a value of 1 will preserve performance counters across
391 * context switches. Setting a value of 2 will in addition
392 * suppress suspend. (Performance counters lose state across
393 * power collapse, which is undesirable for profiling in some
394 * cases.)
395 *
396 * The value automatically reverts to zero when the drm device
397 * file is closed.
398 */
399 int sysprof;
400 /**
401 * @comm: Overridden task comm, see MSM_PARAM_COMM
402 *
403 * Accessed under msm_gpu::lock
404 */
405 char *comm;
406 /**
407 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
408 *
409 * Accessed under msm_gpu::lock
410 */
411 char *cmdline;
412 /**
413 * @elapsed_ns:
414 * The total (cumulative) elapsed time GPU was busy with rendering
415 * from this context in ns.
416 */
417 uint64_t elapsed_ns;
418 /**
419 * @cycles:
420 * The total (cumulative) GPU cycles elapsed attributed to this
421 * context.
422 */
423 uint64_t cycles;
424 /**
425 * @entities:
426 * Table of per-priority-level sched entities used by submitqueues
427 * associated with this &drm_file. Because some userspace apps
428 * make assumptions about rendering from multiple gl contexts
429 * (of the same priority) within the process happening in FIFO
430 * order without requiring any fencing beyond MakeCurrent(), we
431 * create at most one &drm_sched_entity per-process per-priority-
432 * level.
433 */
434 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
435 /**
436 * @ctx_mem:
437 * Total amount of memory of GEM buffers with handles attached for
438 * this context.
439 */
440 atomic64_t ctx_mem;
441 };
442
443 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx);
444
445 /**
446 * msm_context_is_vmbind() - has userspace opted in to VM_BIND?
447 *
448 * @ctx: the drm_file context
449 *
450 * See MSM_PARAM_EN_VM_BIND. If userspace is managing the VM, it can
451 * do sparse binding including having multiple, potentially partial,
452 * mappings in the VM. Therefore certain legacy uabi (ie. GET_IOVA,
453 * SET_IOVA) are rejected because they don't have a sensible meaning.
454 *
455 * Returns: %true if userspace is managing the VM, %false otherwise.
456 */
457 static inline bool
msm_context_is_vmbind(struct msm_context * ctx)458 msm_context_is_vmbind(struct msm_context *ctx)
459 {
460 return ctx->userspace_managed_vm;
461 }
462
463 /**
464 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
465 *
466 * @gpu: the gpu instance
467 * @prio: the userspace priority level
468 * @ring_nr: [out] the ringbuffer the userspace priority maps to
469 * @sched_prio: [out] the gpu scheduler priority level which the userspace
470 * priority maps to
471 *
472 * With drm/scheduler providing it's own level of prioritization, our total
473 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
474 * Each ring is associated with it's own scheduler instance. However, our
475 * UABI is that lower numerical values are higher priority. So mapping the
476 * single userspace priority level into ring_nr and sched_prio takes some
477 * care. The userspace provided priority (when a submitqueue is created)
478 * is mapped to ring nr and scheduler priority as such:
479 *
480 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
481 * sched_prio = NR_SCHED_PRIORITIES -
482 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
483 *
484 * This allows generations without preemption (nr_rings==1) to have some
485 * amount of prioritization, and provides more priority levels for gens
486 * that do have preemption.
487 *
488 * Returns: %0 on success, %-errno on error.
489 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)490 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
491 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
492 {
493 unsigned rn, sp;
494
495 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
496
497 /* invert sched priority to map to higher-numeric-is-higher-
498 * priority convention
499 */
500 sp = NR_SCHED_PRIORITIES - sp - 1;
501
502 if (rn >= gpu->nr_rings)
503 return -EINVAL;
504
505 *ring_nr = rn;
506 *sched_prio = sp;
507
508 return 0;
509 }
510
511 /**
512 * struct msm_gpu_submitqueue - Userspace created context.
513 *
514 * A submitqueue is associated with a gl context or vk queue (or equiv)
515 * in userspace.
516 *
517 * @id: userspace id for the submitqueue, unique within the drm_file
518 * @flags: userspace flags for the submitqueue, specified at creation
519 * (currently unusued)
520 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
521 * by the submitqueue's priority
522 * @faults: the number of GPU hangs associated with this submitqueue
523 * @last_fence: the sequence number of the last allocated fence (for error
524 * checking)
525 * @ctx: the per-drm_file context associated with the submitqueue (ie.
526 * which set of pgtables do submits jobs associated with the
527 * submitqueue use)
528 * @node: node in the context's list of submitqueues
529 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
530 * seqno, protected by submitqueue lock
531 * @idr_lock: for serializing access to fence_idr
532 * @lock: submitqueue lock for serializing submits on a queue
533 * @ref: reference count
534 * @entity: the submit job-queue
535 */
536 struct msm_gpu_submitqueue {
537 int id;
538 u32 flags;
539 u32 ring_nr;
540 int faults;
541 uint32_t last_fence;
542 struct msm_context *ctx;
543 struct list_head node;
544 struct idr fence_idr;
545 struct spinlock idr_lock;
546 struct mutex lock;
547 struct kref ref;
548 struct drm_sched_entity *entity;
549
550 /** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */
551 struct drm_sched_entity _vm_bind_entity[0];
552 };
553
554 struct msm_gpu_state_bo {
555 u64 iova;
556 size_t size;
557 u32 flags;
558 void *data;
559 bool encoded;
560 char name[32];
561 };
562
563 struct msm_gpu_state {
564 struct kref ref;
565 struct timespec64 time;
566
567 struct {
568 u64 iova;
569 u32 fence;
570 u32 seqno;
571 u32 rptr;
572 u32 wptr;
573 void *data;
574 int data_size;
575 bool encoded;
576 } ring[MSM_GPU_MAX_RINGS];
577
578 int nr_registers;
579 u32 *registers;
580
581 u32 rbbm_status;
582
583 char *comm;
584 char *cmd;
585
586 struct msm_gpu_fault_info fault_info;
587
588 int nr_vm_logs;
589 struct msm_gem_vm_log_entry *vm_logs;
590
591 int nr_bos;
592 struct msm_gpu_state_bo *bos;
593 };
594
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)595 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
596 {
597 trace_msm_gpu_regaccess(reg);
598 writel(data, gpu->mmio + (reg << 2));
599 }
600
gpu_read(struct msm_gpu * gpu,u32 reg)601 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
602 {
603 trace_msm_gpu_regaccess(reg);
604 return readl(gpu->mmio + (reg << 2));
605 }
606
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)607 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
608 {
609 trace_msm_gpu_regaccess(reg);
610 msm_rmw(gpu->mmio + (reg << 2), mask, or);
611 }
612
gpu_read64(struct msm_gpu * gpu,u32 reg)613 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
614 {
615 u64 val;
616
617 /*
618 * Why not a readq here? Two reasons: 1) many of the LO registers are
619 * not quad word aligned and 2) the GPU hardware designers have a bit
620 * of a history of putting registers where they fit, especially in
621 * spins. The longer a GPU family goes the higher the chance that
622 * we'll get burned. We could do a series of validity checks if we
623 * wanted to, but really is a readq() that much better? Nah.
624 */
625
626 /*
627 * For some lo/hi registers (like perfcounters), the hi value is latched
628 * when the lo is read, so make sure to read the lo first to trigger
629 * that
630 */
631 trace_msm_gpu_regaccess(reg);
632 val = (u64) readl(gpu->mmio + (reg << 2));
633 trace_msm_gpu_regaccess(reg+1);
634 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
635
636 return val;
637 }
638
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)639 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
640 {
641 trace_msm_gpu_regaccess(reg);
642 /* Why not a writeq here? Read the screed above */
643 writel(lower_32_bits(val), gpu->mmio + (reg << 2));
644 trace_msm_gpu_regaccess(reg+1);
645 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
646 }
647
648 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
649 int msm_gpu_pm_resume(struct msm_gpu *gpu);
650
651 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx,
652 struct drm_printer *p);
653
654 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx);
655 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx,
656 u32 id);
657 int msm_submitqueue_create(struct drm_device *drm,
658 struct msm_context *ctx,
659 u32 prio, u32 flags, u32 *id);
660 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx,
661 struct drm_msm_submitqueue_query *args);
662 int msm_submitqueue_remove(struct msm_context *ctx, u32 id);
663 void msm_submitqueue_close(struct msm_context *ctx);
664
665 void msm_submitqueue_destroy(struct kref *kref);
666
667 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof);
668 void __msm_context_destroy(struct kref *kref);
669
msm_context_put(struct msm_context * ctx)670 static inline void msm_context_put(struct msm_context *ctx)
671 {
672 kref_put(&ctx->ref, __msm_context_destroy);
673 }
674
msm_context_get(struct msm_context * ctx)675 static inline struct msm_context *msm_context_get(
676 struct msm_context *ctx)
677 {
678 kref_get(&ctx->ref);
679 return ctx;
680 }
681
682 void msm_devfreq_init(struct msm_gpu *gpu);
683 void msm_devfreq_cleanup(struct msm_gpu *gpu);
684 void msm_devfreq_resume(struct msm_gpu *gpu);
685 void msm_devfreq_suspend(struct msm_gpu *gpu);
686 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
687 void msm_devfreq_active(struct msm_gpu *gpu);
688 void msm_devfreq_idle(struct msm_gpu *gpu);
689
690 int msm_gpu_hw_init(struct msm_gpu *gpu);
691
692 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
693 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
694 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
695 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
696
697 void msm_gpu_retire(struct msm_gpu *gpu);
698 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
699
700 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
701 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
702 const char *name, struct msm_gpu_config *config);
703
704 struct drm_gpuvm *
705 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task,
706 bool kernel_managed);
707
708 void msm_gpu_cleanup(struct msm_gpu *gpu);
709
710 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
711 bool adreno_has_gpu(struct device_node *node);
712 void __init adreno_register(void);
713 void __exit adreno_unregister(void);
714
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)715 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
716 {
717 if (queue)
718 kref_put(&queue->ref, msm_submitqueue_destroy);
719 }
720
msm_gpu_crashstate_get(struct msm_gpu * gpu)721 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
722 {
723 struct msm_gpu_state *state = NULL;
724
725 mutex_lock(&gpu->lock);
726
727 if (gpu->crashstate) {
728 kref_get(&gpu->crashstate->ref);
729 state = gpu->crashstate;
730 }
731
732 mutex_unlock(&gpu->lock);
733
734 return state;
735 }
736
msm_gpu_crashstate_put(struct msm_gpu * gpu)737 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
738 {
739 mutex_lock(&gpu->lock);
740
741 if (gpu->crashstate) {
742 if (gpu->funcs->gpu_state_put(gpu->crashstate))
743 gpu->crashstate = NULL;
744 }
745
746 mutex_unlock(&gpu->lock);
747 }
748
749 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
750
751 /*
752 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
753 * support expanded privileges
754 */
755 #define check_apriv(gpu, flags) \
756 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
757
758
759 #endif /* __MSM_GPU_H__ */
760