xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 0d362c7fa165106b4facafb23906108a9db4206a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_gpu_trace.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gem_vm_log_entry;
25 struct msm_gpu_perfcntr;
26 struct msm_gpu_state;
27 struct msm_context;
28 
29 struct msm_gpu_config {
30 	const char *ioname;
31 	unsigned int nr_rings;
32 };
33 
34 /* So far, with hardware that I've seen to date, we can have:
35  *  + zero, one, or two z180 2d cores
36  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
37  *    for the CP seems to implement some different PM4 packet types
38  *    but the basics of cmdstream submission are the same)
39  *
40  * Which means that the eventual complete "class" hierarchy, once
41  * support for all past and present hw is in place, becomes:
42  *  + msm_gpu
43  *    + adreno_gpu
44  *      + a3xx_gpu
45  *      + a2xx_gpu
46  *    + z180_gpu
47  */
48 struct msm_gpu_funcs {
49 	int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx,
50 			 uint32_t param, uint64_t *value, uint32_t *len);
51 	int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx,
52 			 uint32_t param, uint64_t value, uint32_t len);
53 	int (*hw_init)(struct msm_gpu *gpu);
54 
55 	/**
56 	 * @ucode_load: Optional hook to upload fw to GEM objs
57 	 */
58 	int (*ucode_load)(struct msm_gpu *gpu);
59 
60 	int (*pm_suspend)(struct msm_gpu *gpu);
61 	int (*pm_resume)(struct msm_gpu *gpu);
62 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
63 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
64 	irqreturn_t (*irq)(struct msm_gpu *irq);
65 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
66 	void (*recover)(struct msm_gpu *gpu);
67 	void (*destroy)(struct msm_gpu *gpu);
68 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
69 	/* show GPU status in debugfs: */
70 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
71 			struct drm_printer *p);
72 	/* for generation specific debugfs: */
73 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
74 #endif
75 	/* note: gpu_busy() can assume that we have been pm_resumed */
76 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
77 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
78 	int (*gpu_state_put)(struct msm_gpu_state *state);
79 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
80 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
81 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
82 			     bool suspended);
83 	struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev);
84 	struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 	void (*sysprof_setup)(struct msm_gpu *gpu);
96 };
97 
98 /* Additional state for iommu faults: */
99 struct msm_gpu_fault_info {
100 	u64 ttbr0;
101 	unsigned long iova;
102 	int flags;
103 	const char *type;
104 	const char *block;
105 
106 	/* Information about what we think/expect is the current SMMU state,
107 	 * for example expected_ttbr0 should match smmu_info.ttbr0 which
108 	 * was read back from SMMU registers.
109 	 */
110 	phys_addr_t pgtbl_ttbr0;
111 	u64 ptes[4];
112 	int asid;
113 };
114 
115 /**
116  * struct msm_gpu_devfreq - devfreq related state
117  */
118 struct msm_gpu_devfreq {
119 	/** @devfreq: devfreq instance */
120 	struct devfreq *devfreq;
121 	/** @lock: lock for "suspended", "busy_cycles", and "time" */
122 	struct mutex lock;
123 	/**
124 	 * @idle_freq:
125 	 * Shadow frequency used while the GPU is idle.  From the PoV of
126 	 * the devfreq governor, we are continuing to sample busyness and
127 	 * adjust frequency while the GPU is idle, but we use this shadow
128 	 * value as the GPU is actually clamped to minimum frequency while
129 	 * it is inactive.
130 	 */
131 	unsigned long idle_freq;
132 	/**
133 	 * @boost_freq:
134 	 * A PM QoS constraint to boost min freq for a period of time
135 	 * until the boost expires.
136 	 */
137 	struct dev_pm_qos_request boost_freq;
138 	/**
139 	 * @busy_cycles: Last busy counter value, for calculating elapsed busy
140 	 * cycles since last sampling period.
141 	 */
142 	u64 busy_cycles;
143 	/** @time: Time of last sampling period.  */
144 	ktime_t time;
145 	/** @idle_time: Time of last transition to idle.  */
146 	ktime_t idle_time;
147 	/**
148 	 * @idle_work:
149 	 * Used to delay clamping to idle freq on active->idle transition.
150 	 */
151 	struct msm_hrtimer_work idle_work;
152 	/**
153 	 * @boost_work:
154 	 * Used to reset the boost_constraint after the boost period has
155 	 * elapsed
156 	 */
157 	struct msm_hrtimer_work boost_work;
158 
159 	/** @suspended: tracks if we're suspended */
160 	bool suspended;
161 };
162 
163 struct msm_gpu {
164 	const char *name;
165 	struct drm_device *dev;
166 	struct platform_device *pdev;
167 	const struct msm_gpu_funcs *funcs;
168 
169 	struct adreno_smmu_priv adreno_smmu;
170 
171 	/* performance counters (hw & sw): */
172 	spinlock_t perf_lock;
173 	bool perfcntr_active;
174 	struct {
175 		bool active;
176 		ktime_t time;
177 	} last_sample;
178 	uint32_t totaltime, activetime;    /* sw counters */
179 	uint32_t last_cntrs[5];            /* hw counters */
180 	const struct msm_gpu_perfcntr *perfcntrs;
181 	uint32_t num_perfcntrs;
182 
183 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
184 	int nr_rings;
185 
186 	/**
187 	 * sysprof_active:
188 	 *
189 	 * The count of contexts that have enabled system profiling.
190 	 */
191 	refcount_t sysprof_active;
192 
193 	/**
194 	 * lock:
195 	 *
196 	 * General lock for serializing all the gpu things.
197 	 *
198 	 * TODO move to per-ring locking where feasible (ie. submit/retire
199 	 * path, etc)
200 	 */
201 	struct mutex lock;
202 
203 	/**
204 	 * active_submits:
205 	 *
206 	 * The number of submitted but not yet retired submits, used to
207 	 * determine transitions between active and idle.
208 	 *
209 	 * Protected by active_lock
210 	 */
211 	int active_submits;
212 
213 	/** lock: protects active_submits and idle/active transitions */
214 	struct mutex active_lock;
215 
216 	/* does gpu need hw_init? */
217 	bool needs_hw_init;
218 
219 	/**
220 	 * global_faults: number of GPU hangs not attributed to a particular
221 	 * address space
222 	 */
223 	int global_faults;
224 
225 	void __iomem *mmio;
226 	int irq;
227 
228 	struct drm_gpuvm *vm;
229 
230 	/* Power Control: */
231 	struct regulator *gpu_reg, *gpu_cx;
232 	struct clk_bulk_data *grp_clks;
233 	int nr_clocks;
234 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
235 	uint32_t fast_rate;
236 
237 	/* Hang and Inactivity Detection:
238 	 */
239 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
240 
241 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
242 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
243 	struct timer_list hangcheck_timer;
244 
245 	/* work for handling GPU recovery: */
246 	struct kthread_work recover_work;
247 
248 	/** retire_event: notified when submits are retired: */
249 	wait_queue_head_t retire_event;
250 
251 	/* work for handling active-list retiring: */
252 	struct kthread_work retire_work;
253 
254 	/* worker for retire/recover: */
255 	struct kthread_worker *worker;
256 
257 	struct drm_gem_object *memptrs_bo;
258 
259 	struct msm_gpu_devfreq devfreq;
260 
261 	uint32_t suspend_count;
262 
263 	struct msm_gpu_state *crashstate;
264 
265 	/* True if the hardware supports expanded apriv (a650 and newer) */
266 	bool hw_apriv;
267 
268 	/**
269 	 * @allow_relocs: allow relocs in SUBMIT ioctl
270 	 *
271 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
272 	 * switch-over happened early enough in mesa a6xx bringup that we
273 	 * can disallow relocs for a6xx and newer.
274 	 */
275 	bool allow_relocs;
276 
277 	struct thermal_cooling_device *cooling;
278 };
279 
dev_to_gpu(struct device * dev)280 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
281 {
282 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
283 
284 	if (!adreno_smmu)
285 		return NULL;
286 
287 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
288 }
289 
290 static inline bool
adreno_smmu_has_prr(struct msm_gpu * gpu)291 adreno_smmu_has_prr(struct msm_gpu *gpu)
292 {
293 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(&gpu->pdev->dev);
294 
295 	if (!adreno_smmu)
296 		return false;
297 
298 	return adreno_smmu && adreno_smmu->set_prr_addr;
299 }
300 
301 /* It turns out that all targets use the same ringbuffer size */
302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
304 
305 #define MSM_GPU_RB_CNTL_DEFAULT \
306 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
307 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
308 
msm_gpu_active(struct msm_gpu * gpu)309 static inline bool msm_gpu_active(struct msm_gpu *gpu)
310 {
311 	int i;
312 
313 	for (i = 0; i < gpu->nr_rings; i++) {
314 		struct msm_ringbuffer *ring = gpu->rb[i];
315 
316 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
317 			return true;
318 	}
319 
320 	return false;
321 }
322 
323 /* Perf-Counters:
324  * The select_reg and select_val are just there for the benefit of the child
325  * class that actually enables the perf counter..  but msm_gpu base class
326  * will handle sampling/displaying the counters.
327  */
328 
329 struct msm_gpu_perfcntr {
330 	uint32_t select_reg;
331 	uint32_t sample_reg;
332 	uint32_t select_val;
333 	const char *name;
334 };
335 
336 /*
337  * The number of priority levels provided by drm gpu scheduler.  The
338  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
339  * cases, so we don't use it (no need for kernel generated jobs).
340  */
341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
342 
343 /**
344  * struct msm_context - per-drm_file context
345  */
346 struct msm_context {
347 	/** @queuelock: synchronizes access to submitqueues list */
348 	rwlock_t queuelock;
349 	/** @submitqueues: list of &msm_gpu_submitqueue created by userspace */
350 	struct list_head submitqueues;
351 	/**
352 	 * @queueid:
353 	 * Counter incremented each time a submitqueue is created, used to
354 	 * assign &msm_gpu_submitqueue.id
355 	 */
356 	int queueid;
357 	/**
358 	 * @closed: The device file associated with this context has been closed.
359 	 * Once the device is closed, any submits that have not been written
360 	 * to the ring buffer are no-op'd.
361 	 */
362 	bool closed;
363 	/**
364 	 * @userspace_managed_vm:
365 	 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via
366 	 * MSM_PARAM_EN_VM_BIND?
367 	 */
368 	bool userspace_managed_vm;
369 	/**
370 	 * @vm:
371 	 * The per-process GPU address-space.  Do not access directly, use
372 	 * msm_context_vm().
373 	 */
374 	struct drm_gpuvm *vm;
375 	/** @ref: the reference count */
376 	struct kref ref;
377 	/**
378 	 * @seqno:
379 	 * A unique per-process sequence number.  Used to detect context
380 	 * switches, without relying on keeping a, potentially dangling,
381 	 * pointer to the previous context.
382 	 */
383 	int seqno;
384 	/**
385 	 * @sysprof:
386 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
387 	 * intended to be used by system profiling tools like Mesa's
388 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
389 	 *
390 	 * Setting a value of 1 will preserve performance counters across
391 	 * context switches.  Setting a value of 2 will in addition
392 	 * suppress suspend.  (Performance counters lose state across
393 	 * power collapse, which is undesirable for profiling in some
394 	 * cases.)
395 	 *
396 	 * The value automatically reverts to zero when the drm device
397 	 * file is closed.
398 	 */
399 	int sysprof;
400 	/**
401 	 * @comm: Overridden task comm, see MSM_PARAM_COMM
402 	 *
403 	 * Accessed under msm_gpu::lock
404 	 */
405 	char *comm;
406 	/**
407 	 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
408 	 *
409 	 * Accessed under msm_gpu::lock
410 	 */
411 	char *cmdline;
412 	/**
413 	 * @elapsed_ns:
414 	 * The total (cumulative) elapsed time GPU was busy with rendering
415 	 * from this context in ns.
416 	 */
417 	uint64_t elapsed_ns;
418 	/**
419 	 * @cycles:
420 	 * The total (cumulative) GPU cycles elapsed attributed to this
421 	 * context.
422 	 */
423 	uint64_t cycles;
424 	/**
425 	 * @entities:
426 	 * Table of per-priority-level sched entities used by submitqueues
427 	 * associated with this &drm_file.  Because some userspace apps
428 	 * make assumptions about rendering from multiple gl contexts
429 	 * (of the same priority) within the process happening in FIFO
430 	 * order without requiring any fencing beyond MakeCurrent(), we
431 	 * create at most one &drm_sched_entity per-process per-priority-
432 	 * level.
433 	 */
434 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
435 	/**
436 	 * @ctx_mem:
437 	 * Total amount of memory of GEM buffers with handles attached for
438 	 * this context.
439 	 */
440 	atomic64_t ctx_mem;
441 };
442 
443 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx);
444 
445 /**
446  * msm_context_is_vmbind() - has userspace opted in to VM_BIND?
447  *
448  * @ctx: the drm_file context
449  *
450  * See MSM_PARAM_EN_VM_BIND.  If userspace is managing the VM, it can
451  * do sparse binding including having multiple, potentially partial,
452  * mappings in the VM.  Therefore certain legacy uabi (ie. GET_IOVA,
453  * SET_IOVA) are rejected because they don't have a sensible meaning.
454  *
455  * Returns: %true if userspace is managing the VM, %false otherwise.
456  */
457 static inline bool
msm_context_is_vmbind(struct msm_context * ctx)458 msm_context_is_vmbind(struct msm_context *ctx)
459 {
460 	return ctx->userspace_managed_vm;
461 }
462 
463 /**
464  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
465  *
466  * @gpu:        the gpu instance
467  * @prio:       the userspace priority level
468  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
469  * @sched_prio: [out] the gpu scheduler priority level which the userspace
470  *              priority maps to
471  *
472  * With drm/scheduler providing it's own level of prioritization, our total
473  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
474  * Each ring is associated with it's own scheduler instance.  However, our
475  * UABI is that lower numerical values are higher priority.  So mapping the
476  * single userspace priority level into ring_nr and sched_prio takes some
477  * care.  The userspace provided priority (when a submitqueue is created)
478  * is mapped to ring nr and scheduler priority as such:
479  *
480  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
481  *   sched_prio = NR_SCHED_PRIORITIES -
482  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
483  *
484  * This allows generations without preemption (nr_rings==1) to have some
485  * amount of prioritization, and provides more priority levels for gens
486  * that do have preemption.
487  *
488  * Returns: %0 on success, %-errno on error.
489  */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)490 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
491 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
492 {
493 	unsigned rn, sp;
494 
495 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
496 
497 	/* invert sched priority to map to higher-numeric-is-higher-
498 	 * priority convention
499 	 */
500 	sp = NR_SCHED_PRIORITIES - sp - 1;
501 
502 	if (rn >= gpu->nr_rings)
503 		return -EINVAL;
504 
505 	*ring_nr = rn;
506 	*sched_prio = sp;
507 
508 	return 0;
509 }
510 
511 /**
512  * struct msm_gpu_submitqueue - Userspace created context.
513  *
514  * A submitqueue is associated with a gl context or vk queue (or equiv)
515  * in userspace.
516  *
517  * @id:        userspace id for the submitqueue, unique within the drm_file
518  * @flags:     userspace flags for the submitqueue, specified at creation
519  *             (currently unusued)
520  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
521  *             by the submitqueue's priority
522  * @faults:    the number of GPU hangs associated with this submitqueue
523  * @last_fence: the sequence number of the last allocated fence (for error
524  *             checking)
525  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
526  *             which set of pgtables do submits jobs associated with the
527  *             submitqueue use)
528  * @node:      node in the context's list of submitqueues
529  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
530  *             seqno, protected by submitqueue lock
531  * @idr_lock:  for serializing access to fence_idr
532  * @lock:      submitqueue lock for serializing submits on a queue
533  * @ref:       reference count
534  * @entity:    the submit job-queue
535  */
536 struct msm_gpu_submitqueue {
537 	int id;
538 	u32 flags;
539 	u32 ring_nr;
540 	int faults;
541 	uint32_t last_fence;
542 	struct msm_context *ctx;
543 	struct list_head node;
544 	struct idr fence_idr;
545 	struct spinlock idr_lock;
546 	struct mutex lock;
547 	struct kref ref;
548 	struct drm_sched_entity *entity;
549 
550 	/** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */
551 	struct drm_sched_entity _vm_bind_entity[0];
552 };
553 
554 struct msm_gpu_state_bo {
555 	u64 iova;
556 	size_t size;
557 	u32 flags;
558 	void *data;
559 	bool encoded;
560 	char name[32];
561 };
562 
563 struct msm_gpu_state {
564 	struct kref ref;
565 	struct timespec64 time;
566 
567 	struct {
568 		u64 iova;
569 		u32 fence;
570 		u32 seqno;
571 		u32 rptr;
572 		u32 wptr;
573 		void *data;
574 		int data_size;
575 		bool encoded;
576 	} ring[MSM_GPU_MAX_RINGS];
577 
578 	int nr_registers;
579 	u32 *registers;
580 
581 	u32 rbbm_status;
582 
583 	char *comm;
584 	char *cmd;
585 
586 	struct msm_gpu_fault_info fault_info;
587 
588 	int nr_vm_logs;
589 	struct msm_gem_vm_log_entry *vm_logs;
590 
591 	int nr_bos;
592 	struct msm_gpu_state_bo *bos;
593 };
594 
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)595 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
596 {
597 	trace_msm_gpu_regaccess(reg);
598 	writel(data, gpu->mmio + (reg << 2));
599 }
600 
gpu_read(struct msm_gpu * gpu,u32 reg)601 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
602 {
603 	trace_msm_gpu_regaccess(reg);
604 	return readl(gpu->mmio + (reg << 2));
605 }
606 
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)607 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
608 {
609 	trace_msm_gpu_regaccess(reg);
610 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
611 }
612 
gpu_read64(struct msm_gpu * gpu,u32 reg)613 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
614 {
615 	u64 val;
616 
617 	/*
618 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
619 	 * not quad word aligned and 2) the GPU hardware designers have a bit
620 	 * of a history of putting registers where they fit, especially in
621 	 * spins. The longer a GPU family goes the higher the chance that
622 	 * we'll get burned.  We could do a series of validity checks if we
623 	 * wanted to, but really is a readq() that much better? Nah.
624 	 */
625 
626 	/*
627 	 * For some lo/hi registers (like perfcounters), the hi value is latched
628 	 * when the lo is read, so make sure to read the lo first to trigger
629 	 * that
630 	 */
631 	trace_msm_gpu_regaccess(reg);
632 	val = (u64) readl(gpu->mmio + (reg << 2));
633 	trace_msm_gpu_regaccess(reg+1);
634 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
635 
636 	return val;
637 }
638 
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)639 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
640 {
641 	trace_msm_gpu_regaccess(reg);
642 	/* Why not a writeq here? Read the screed above */
643 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
644 	trace_msm_gpu_regaccess(reg+1);
645 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
646 }
647 
648 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
649 int msm_gpu_pm_resume(struct msm_gpu *gpu);
650 
651 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx,
652 			 struct drm_printer *p);
653 
654 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx);
655 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx,
656 		u32 id);
657 int msm_submitqueue_create(struct drm_device *drm,
658 		struct msm_context *ctx,
659 		u32 prio, u32 flags, u32 *id);
660 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx,
661 		struct drm_msm_submitqueue_query *args);
662 int msm_submitqueue_remove(struct msm_context *ctx, u32 id);
663 void msm_submitqueue_close(struct msm_context *ctx);
664 
665 void msm_submitqueue_destroy(struct kref *kref);
666 
667 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof);
668 void __msm_context_destroy(struct kref *kref);
669 
msm_context_put(struct msm_context * ctx)670 static inline void msm_context_put(struct msm_context *ctx)
671 {
672 	kref_put(&ctx->ref, __msm_context_destroy);
673 }
674 
msm_context_get(struct msm_context * ctx)675 static inline struct msm_context *msm_context_get(
676 	struct msm_context *ctx)
677 {
678 	kref_get(&ctx->ref);
679 	return ctx;
680 }
681 
682 void msm_devfreq_init(struct msm_gpu *gpu);
683 void msm_devfreq_cleanup(struct msm_gpu *gpu);
684 void msm_devfreq_resume(struct msm_gpu *gpu);
685 void msm_devfreq_suspend(struct msm_gpu *gpu);
686 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
687 void msm_devfreq_active(struct msm_gpu *gpu);
688 void msm_devfreq_idle(struct msm_gpu *gpu);
689 
690 int msm_gpu_hw_init(struct msm_gpu *gpu);
691 
692 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
693 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
694 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
695 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
696 
697 void msm_gpu_retire(struct msm_gpu *gpu);
698 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
699 
700 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
701 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
702 		const char *name, struct msm_gpu_config *config);
703 
704 struct drm_gpuvm *
705 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task,
706 			  bool kernel_managed);
707 
708 void msm_gpu_cleanup(struct msm_gpu *gpu);
709 
710 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
711 bool adreno_has_gpu(struct device_node *node);
712 void __init adreno_register(void);
713 void __exit adreno_unregister(void);
714 
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)715 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
716 {
717 	if (queue)
718 		kref_put(&queue->ref, msm_submitqueue_destroy);
719 }
720 
msm_gpu_crashstate_get(struct msm_gpu * gpu)721 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
722 {
723 	struct msm_gpu_state *state = NULL;
724 
725 	mutex_lock(&gpu->lock);
726 
727 	if (gpu->crashstate) {
728 		kref_get(&gpu->crashstate->ref);
729 		state = gpu->crashstate;
730 	}
731 
732 	mutex_unlock(&gpu->lock);
733 
734 	return state;
735 }
736 
msm_gpu_crashstate_put(struct msm_gpu * gpu)737 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
738 {
739 	mutex_lock(&gpu->lock);
740 
741 	if (gpu->crashstate) {
742 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
743 			gpu->crashstate = NULL;
744 	}
745 
746 	mutex_unlock(&gpu->lock);
747 }
748 
749 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
750 
751 /*
752  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
753  * support expanded privileges
754  */
755 #define check_apriv(gpu, flags) \
756 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
757 
758 
759 #endif /* __MSM_GPU_H__ */
760