1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) 4 * 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 */ 7 8 #define pr_fmt(fmt) "ACPI: " fmt 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/ioport.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/sched.h> 16 #include <linux/pm.h> 17 #include <linux/device.h> 18 #include <linux/proc_fs.h> 19 #include <linux/acpi.h> 20 #include <linux/slab.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/workqueue.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #ifdef CONFIG_X86 26 #include <asm/mpspec.h> 27 #include <linux/dmi.h> 28 #endif 29 #include <linux/acpi_viot.h> 30 #include <linux/pci.h> 31 #include <acpi/apei.h> 32 #include <linux/suspend.h> 33 #include <linux/prmt.h> 34 35 #include "internal.h" 36 37 struct acpi_device *acpi_root; 38 struct proc_dir_entry *acpi_root_dir; 39 EXPORT_SYMBOL(acpi_root_dir); 40 41 #ifdef CONFIG_X86 42 #ifdef CONFIG_ACPI_CUSTOM_DSDT 43 static inline int set_copy_dsdt(const struct dmi_system_id *id) 44 { 45 return 0; 46 } 47 #else 48 static int set_copy_dsdt(const struct dmi_system_id *id) 49 { 50 pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); 51 acpi_gbl_copy_dsdt_locally = 1; 52 return 0; 53 } 54 #endif 55 56 static const struct dmi_system_id dsdt_dmi_table[] __initconst = { 57 /* 58 * Invoke DSDT corruption work-around on all Toshiba Satellite. 59 * https://bugzilla.kernel.org/show_bug.cgi?id=14679 60 */ 61 { 62 .callback = set_copy_dsdt, 63 .ident = "TOSHIBA Satellite", 64 .matches = { 65 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 66 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), 67 }, 68 }, 69 {} 70 }; 71 #endif 72 73 /* -------------------------------------------------------------------------- 74 Device Management 75 -------------------------------------------------------------------------- */ 76 77 acpi_status acpi_bus_get_status_handle(acpi_handle handle, 78 unsigned long long *sta) 79 { 80 acpi_status status; 81 82 status = acpi_evaluate_integer(handle, "_STA", NULL, sta); 83 if (ACPI_SUCCESS(status)) 84 return AE_OK; 85 86 if (status == AE_NOT_FOUND) { 87 *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | 88 ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; 89 return AE_OK; 90 } 91 return status; 92 } 93 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); 94 95 int acpi_bus_get_status(struct acpi_device *device) 96 { 97 acpi_status status; 98 unsigned long long sta; 99 100 if (acpi_device_override_status(device, &sta)) { 101 acpi_set_device_status(device, sta); 102 return 0; 103 } 104 105 /* Battery devices must have their deps met before calling _STA */ 106 if (acpi_device_is_battery(device) && device->dep_unmet) { 107 acpi_set_device_status(device, 0); 108 return 0; 109 } 110 111 status = acpi_bus_get_status_handle(device->handle, &sta); 112 if (ACPI_FAILURE(status)) 113 return -ENODEV; 114 115 if (!device->status.present && device->status.enabled) { 116 pr_info(FW_BUG "Device [%s] status [%08x]: not present and enabled\n", 117 device->pnp.bus_id, (u32)sta); 118 device->status.enabled = 0; 119 /* 120 * The status is clearly invalid, so clear the functional bit as 121 * well to avoid attempting to use the device. 122 */ 123 device->status.functional = 0; 124 } 125 126 acpi_set_device_status(device, sta); 127 128 if (device->status.functional && !device->status.present) { 129 pr_debug("Device [%s] status [%08x]: functional but not present\n", 130 device->pnp.bus_id, (u32)sta); 131 } 132 133 pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); 134 return 0; 135 } 136 EXPORT_SYMBOL(acpi_bus_get_status); 137 138 void acpi_bus_private_data_handler(acpi_handle handle, 139 void *context) 140 { 141 return; 142 } 143 EXPORT_SYMBOL(acpi_bus_private_data_handler); 144 145 int acpi_bus_attach_private_data(acpi_handle handle, void *data) 146 { 147 acpi_status status; 148 149 status = acpi_attach_data(handle, 150 acpi_bus_private_data_handler, data); 151 if (ACPI_FAILURE(status)) { 152 acpi_handle_debug(handle, "Error attaching device data\n"); 153 return -ENODEV; 154 } 155 156 return 0; 157 } 158 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); 159 160 int acpi_bus_get_private_data(acpi_handle handle, void **data) 161 { 162 acpi_status status; 163 164 if (!data) 165 return -EINVAL; 166 167 status = acpi_get_data(handle, acpi_bus_private_data_handler, data); 168 if (ACPI_FAILURE(status)) { 169 acpi_handle_debug(handle, "No context for object\n"); 170 return -ENODEV; 171 } 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); 176 177 void acpi_bus_detach_private_data(acpi_handle handle) 178 { 179 acpi_detach_data(handle, acpi_bus_private_data_handler); 180 } 181 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); 182 183 static void acpi_dump_osc_data(acpi_handle handle, const guid_t *guid, int rev, 184 struct acpi_buffer *cap) 185 { 186 u32 *capbuf = cap->pointer; 187 int i; 188 189 acpi_handle_debug(handle, "_OSC: UUID: %pUL, rev: %d\n", guid, rev); 190 for (i = 0; i < cap->length / sizeof(u32); i++) 191 acpi_handle_debug(handle, "_OSC: capabilities DWORD %i: [%08x]\n", 192 i, capbuf[i]); 193 } 194 195 #define OSC_ERROR_MASK (OSC_REQUEST_ERROR | OSC_INVALID_UUID_ERROR | \ 196 OSC_INVALID_REVISION_ERROR | \ 197 OSC_CAPABILITIES_MASK_ERROR) 198 199 static int acpi_eval_osc(acpi_handle handle, guid_t *guid, int rev, 200 struct acpi_buffer *cap, 201 union acpi_object in_params[at_least 4], 202 struct acpi_buffer *output) 203 { 204 struct acpi_object_list input; 205 union acpi_object *out_obj; 206 acpi_status status; 207 208 in_params[0].type = ACPI_TYPE_BUFFER; 209 in_params[0].buffer.length = sizeof(*guid); 210 in_params[0].buffer.pointer = (u8 *)guid; 211 in_params[1].type = ACPI_TYPE_INTEGER; 212 in_params[1].integer.value = rev; 213 in_params[2].type = ACPI_TYPE_INTEGER; 214 in_params[2].integer.value = cap->length / sizeof(u32); 215 in_params[3].type = ACPI_TYPE_BUFFER; 216 in_params[3].buffer.length = cap->length; 217 in_params[3].buffer.pointer = cap->pointer; 218 input.pointer = in_params; 219 input.count = 4; 220 221 output->length = ACPI_ALLOCATE_BUFFER; 222 output->pointer = NULL; 223 224 status = acpi_evaluate_object(handle, "_OSC", &input, output); 225 if (ACPI_FAILURE(status) || !output->length) 226 return -ENODATA; 227 228 out_obj = output->pointer; 229 if (out_obj->type != ACPI_TYPE_BUFFER || 230 out_obj->buffer.length != cap->length) { 231 acpi_handle_debug(handle, "Invalid _OSC return buffer\n"); 232 acpi_dump_osc_data(handle, guid, rev, cap); 233 ACPI_FREE(out_obj); 234 return -ENODATA; 235 } 236 237 return 0; 238 } 239 240 static bool acpi_osc_error_check(acpi_handle handle, guid_t *guid, int rev, 241 struct acpi_buffer *cap, u32 *retbuf) 242 { 243 /* Only take defined error bits into account. */ 244 u32 errors = retbuf[OSC_QUERY_DWORD] & OSC_ERROR_MASK; 245 u32 *capbuf = cap->pointer; 246 bool fail; 247 248 /* 249 * If OSC_QUERY_ENABLE is set, ignore the "capabilities masked" 250 * bit because it merely means that some features have not been 251 * acknowledged which is not unexpected. 252 */ 253 if (capbuf[OSC_QUERY_DWORD] & OSC_QUERY_ENABLE) 254 errors &= ~OSC_CAPABILITIES_MASK_ERROR; 255 256 if (!errors) 257 return false; 258 259 acpi_dump_osc_data(handle, guid, rev, cap); 260 /* 261 * As a rule, fail only if OSC_QUERY_ENABLE is set because otherwise the 262 * acknowledged features need to be controlled. 263 */ 264 fail = !!(capbuf[OSC_QUERY_DWORD] & OSC_QUERY_ENABLE); 265 266 if (errors & OSC_REQUEST_ERROR) 267 acpi_handle_debug(handle, "_OSC: request failed\n"); 268 269 if (errors & OSC_INVALID_UUID_ERROR) { 270 acpi_handle_debug(handle, "_OSC: invalid UUID\n"); 271 /* 272 * Always fail if this bit is set because it means that the 273 * request could not be processed. 274 */ 275 fail = true; 276 } 277 278 if (errors & OSC_INVALID_REVISION_ERROR) 279 acpi_handle_debug(handle, "_OSC: invalid revision\n"); 280 281 if (errors & OSC_CAPABILITIES_MASK_ERROR) 282 acpi_handle_debug(handle, "_OSC: capability bits masked\n"); 283 284 return fail; 285 } 286 287 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) 288 { 289 union acpi_object in_params[4], *out_obj; 290 struct acpi_buffer output; 291 acpi_status status = AE_OK; 292 guid_t guid; 293 u32 *retbuf; 294 int ret; 295 296 if (!context || !context->cap.pointer || 297 context->cap.length < 2 * sizeof(u32) || 298 guid_parse(context->uuid_str, &guid)) 299 return AE_BAD_PARAMETER; 300 301 ret = acpi_eval_osc(handle, &guid, context->rev, &context->cap, 302 in_params, &output); 303 if (ret) 304 return AE_ERROR; 305 306 out_obj = output.pointer; 307 retbuf = (u32 *)out_obj->buffer.pointer; 308 309 if (acpi_osc_error_check(handle, &guid, context->rev, &context->cap, retbuf)) { 310 status = AE_ERROR; 311 goto out; 312 } 313 314 context->ret.length = out_obj->buffer.length; 315 context->ret.pointer = kmemdup(retbuf, context->ret.length, GFP_KERNEL); 316 if (!context->ret.pointer) { 317 status = AE_NO_MEMORY; 318 goto out; 319 } 320 status = AE_OK; 321 322 out: 323 ACPI_FREE(out_obj); 324 return status; 325 } 326 EXPORT_SYMBOL(acpi_run_osc); 327 328 static int acpi_osc_handshake(acpi_handle handle, const char *uuid_str, 329 int rev, u32 *capbuf, size_t bufsize) 330 { 331 union acpi_object in_params[4], *out_obj; 332 struct acpi_object_list input; 333 struct acpi_buffer cap = { 334 .pointer = capbuf, 335 .length = bufsize * sizeof(u32), 336 }; 337 struct acpi_buffer output; 338 u32 *retbuf, test; 339 guid_t guid; 340 int ret, i; 341 342 if (!capbuf || bufsize < 2 || guid_parse(uuid_str, &guid)) 343 return -EINVAL; 344 345 /* First evaluate _OSC with OSC_QUERY_ENABLE set. */ 346 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 347 348 ret = acpi_eval_osc(handle, &guid, rev, &cap, in_params, &output); 349 if (ret) 350 return ret; 351 352 out_obj = output.pointer; 353 retbuf = (u32 *)out_obj->buffer.pointer; 354 355 if (acpi_osc_error_check(handle, &guid, rev, &cap, retbuf)) { 356 ret = -ENODATA; 357 goto out; 358 } 359 360 /* 361 * Clear the feature bits in the capabilities buffer that have not been 362 * acknowledged and clear the return buffer. 363 */ 364 for (i = OSC_QUERY_DWORD + 1, test = 0; i < bufsize; i++) { 365 capbuf[i] &= retbuf[i]; 366 test |= capbuf[i]; 367 retbuf[i] = 0; 368 } 369 /* 370 * If none of the feature bits have been acknowledged, there's nothing 371 * more to do. capbuf[] contains a feature mask of all zeros. 372 */ 373 if (!test) 374 goto out; 375 376 retbuf[OSC_QUERY_DWORD] = 0; 377 /* 378 * Now evaluate _OSC again (directly) with OSC_QUERY_ENABLE clear and 379 * the updated input and output buffers used before. Since the feature 380 * bits that were clear in the return buffer from the previous _OSC 381 * evaluation are also clear in the capabilities buffer now, this _OSC 382 * evaluation is not expected to fail. 383 */ 384 capbuf[OSC_QUERY_DWORD] = 0; 385 /* Reuse in_params[] populated by acpi_eval_osc(). */ 386 input.pointer = in_params; 387 input.count = 4; 388 389 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_OSC", &input, &output))) { 390 ret = -ENODATA; 391 goto out; 392 } 393 394 /* 395 * Clear the feature bits in capbuf[] that have not been acknowledged. 396 * After that, capbuf[] contains the resultant feature mask. 397 */ 398 for (i = OSC_QUERY_DWORD + 1; i < bufsize; i++) 399 capbuf[i] &= retbuf[i]; 400 401 if (retbuf[OSC_QUERY_DWORD] & OSC_ERROR_MASK) { 402 /* 403 * Complain about the unexpected errors and print diagnostic 404 * information related to them. 405 */ 406 acpi_handle_err(handle, "_OSC: errors while processing control request\n"); 407 acpi_handle_err(handle, "_OSC: some features may be missing\n"); 408 acpi_osc_error_check(handle, &guid, rev, &cap, retbuf); 409 } 410 411 out: 412 ACPI_FREE(out_obj); 413 return ret; 414 } 415 416 bool osc_sb_apei_support_acked; 417 418 /* 419 * ACPI 6.0 Section 8.4.4.2 Idle State Coordination 420 * OSPM supports platform coordinated low power idle(LPI) states 421 */ 422 bool osc_pc_lpi_support_confirmed; 423 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); 424 425 /* 426 * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': 427 * Starting with ACPI Specification 6.2, all _CPC registers can be in 428 * PCC, System Memory, System IO, or Functional Fixed Hardware address 429 * spaces. OSPM support for this more flexible register space scheme is 430 * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. 431 * 432 * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: 433 * - PCC or Functional Fixed Hardware address space if defined 434 * - SystemMemory address space (NULL register) if not defined 435 */ 436 bool osc_cpc_flexible_adr_space_confirmed; 437 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); 438 439 /* 440 * ACPI 6.4 Operating System Capabilities for USB. 441 */ 442 bool osc_sb_native_usb4_support_confirmed; 443 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); 444 445 bool osc_sb_cppc2_support_acked; 446 447 static void acpi_bus_osc_negotiate_platform_control(void) 448 { 449 static const u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; 450 u32 capbuf[2], feature_mask; 451 acpi_handle handle; 452 453 feature_mask = OSC_SB_PR3_SUPPORT | OSC_SB_HOTPLUG_OST_SUPPORT | 454 OSC_SB_PCLPI_SUPPORT | OSC_SB_OVER_16_PSTATES_SUPPORT | 455 OSC_SB_GED_SUPPORT | OSC_SB_IRQ_RESOURCE_SOURCE_SUPPORT; 456 457 if (IS_ENABLED(CONFIG_ARM64) || IS_ENABLED(CONFIG_X86)) 458 feature_mask |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 459 460 if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) { 461 feature_mask |= OSC_SB_CPC_SUPPORT | OSC_SB_CPCV2_SUPPORT | 462 OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 463 if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) 464 feature_mask |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; 465 } 466 467 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) 468 feature_mask |= OSC_SB_PAD_SUPPORT; 469 470 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) 471 feature_mask |= OSC_SB_PPC_OST_SUPPORT; 472 473 if (IS_ENABLED(CONFIG_ACPI_THERMAL)) 474 feature_mask |= OSC_SB_FAST_THERMAL_SAMPLING_SUPPORT; 475 476 if (IS_ENABLED(CONFIG_ACPI_BATTERY)) 477 feature_mask |= OSC_SB_BATTERY_CHARGE_LIMITING_SUPPORT; 478 479 if (IS_ENABLED(CONFIG_ACPI_PRMT)) 480 feature_mask |= OSC_SB_PRM_SUPPORT; 481 482 if (IS_ENABLED(CONFIG_ACPI_FFH)) 483 feature_mask |= OSC_SB_FFH_OPR_SUPPORT; 484 485 if (IS_ENABLED(CONFIG_USB4)) 486 feature_mask |= OSC_SB_NATIVE_USB4_SUPPORT; 487 488 if (!ghes_disable) 489 feature_mask |= OSC_SB_APEI_SUPPORT; 490 491 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 492 return; 493 494 capbuf[OSC_SUPPORT_DWORD] = feature_mask; 495 496 acpi_handle_info(handle, "platform _OSC: OS support mask [%08x]\n", feature_mask); 497 498 if (acpi_osc_handshake(handle, sb_uuid_str, 1, capbuf, ARRAY_SIZE(capbuf))) 499 return; 500 501 feature_mask = capbuf[OSC_SUPPORT_DWORD]; 502 503 acpi_handle_info(handle, "platform _OSC: OS control mask [%08x]\n", feature_mask); 504 505 osc_sb_cppc2_support_acked = feature_mask & OSC_SB_CPCV2_SUPPORT; 506 osc_sb_apei_support_acked = feature_mask & OSC_SB_APEI_SUPPORT; 507 osc_pc_lpi_support_confirmed = feature_mask & OSC_SB_PCLPI_SUPPORT; 508 osc_sb_native_usb4_support_confirmed = feature_mask & OSC_SB_NATIVE_USB4_SUPPORT; 509 osc_cpc_flexible_adr_space_confirmed = feature_mask & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 510 } 511 512 /* 513 * Native control of USB4 capabilities. If any of the tunneling bits is 514 * set it means OS is in control and we use software based connection 515 * manager. 516 */ 517 u32 osc_sb_native_usb4_control; 518 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); 519 520 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) 521 { 522 pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, 523 (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', 524 (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', 525 (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', 526 (bits & OSC_USB_XDOMAIN) ? '+' : '-'); 527 } 528 529 static void acpi_bus_osc_negotiate_usb_control(void) 530 { 531 static const u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; 532 u32 capbuf[3], control; 533 acpi_handle handle; 534 535 if (!osc_sb_native_usb4_support_confirmed) 536 return; 537 538 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 539 return; 540 541 control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | 542 OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; 543 544 capbuf[OSC_SUPPORT_DWORD] = 0; 545 capbuf[OSC_CONTROL_DWORD] = control; 546 547 if (acpi_osc_handshake(handle, sb_usb_uuid_str, 1, capbuf, ARRAY_SIZE(capbuf))) 548 return; 549 550 osc_sb_native_usb4_control = capbuf[OSC_CONTROL_DWORD]; 551 552 acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); 553 acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", osc_sb_native_usb4_control); 554 } 555 556 /* -------------------------------------------------------------------------- 557 Notification Handling 558 -------------------------------------------------------------------------- */ 559 560 /** 561 * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler 562 * @handle: Target ACPI object. 563 * @type: Notification type. 564 * @data: Ignored. 565 * 566 * This only handles notifications related to device hotplug. 567 */ 568 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) 569 { 570 struct acpi_device *adev; 571 572 switch (type) { 573 case ACPI_NOTIFY_BUS_CHECK: 574 acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); 575 break; 576 577 case ACPI_NOTIFY_DEVICE_CHECK: 578 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); 579 break; 580 581 case ACPI_NOTIFY_DEVICE_WAKE: 582 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); 583 return; 584 585 case ACPI_NOTIFY_EJECT_REQUEST: 586 acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); 587 break; 588 589 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: 590 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); 591 /* TBD: Exactly what does 'light' mean? */ 592 return; 593 594 case ACPI_NOTIFY_FREQUENCY_MISMATCH: 595 acpi_handle_err(handle, "Device cannot be configured due " 596 "to a frequency mismatch\n"); 597 return; 598 599 case ACPI_NOTIFY_BUS_MODE_MISMATCH: 600 acpi_handle_err(handle, "Device cannot be configured due " 601 "to a bus mode mismatch\n"); 602 return; 603 604 case ACPI_NOTIFY_POWER_FAULT: 605 acpi_handle_err(handle, "Device has suffered a power fault\n"); 606 return; 607 608 default: 609 acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); 610 return; 611 } 612 613 adev = acpi_get_acpi_dev(handle); 614 615 if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) 616 return; 617 618 acpi_put_acpi_dev(adev); 619 620 acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL); 621 } 622 623 static void acpi_notify_device(acpi_handle handle, u32 event, void *data) 624 { 625 struct acpi_device *device = data; 626 struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); 627 628 acpi_drv->ops.notify(device, event); 629 } 630 631 static int acpi_device_install_notify_handler(struct acpi_device *device, 632 struct acpi_driver *acpi_drv) 633 { 634 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 635 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 636 acpi_status status; 637 638 status = acpi_install_notify_handler(device->handle, type, 639 acpi_notify_device, device); 640 if (ACPI_FAILURE(status)) 641 return -EINVAL; 642 643 return 0; 644 } 645 646 static void acpi_device_remove_notify_handler(struct acpi_device *device, 647 struct acpi_driver *acpi_drv) 648 { 649 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 650 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 651 652 acpi_remove_notify_handler(device->handle, type, 653 acpi_notify_device); 654 655 acpi_os_wait_events_complete(); 656 } 657 658 int acpi_dev_install_notify_handler(struct acpi_device *adev, 659 u32 handler_type, 660 acpi_notify_handler handler, void *context) 661 { 662 acpi_status status; 663 664 status = acpi_install_notify_handler(adev->handle, handler_type, 665 handler, context); 666 if (ACPI_FAILURE(status)) 667 return -ENODEV; 668 669 return 0; 670 } 671 EXPORT_SYMBOL_GPL(acpi_dev_install_notify_handler); 672 673 void acpi_dev_remove_notify_handler(struct acpi_device *adev, 674 u32 handler_type, 675 acpi_notify_handler handler) 676 { 677 acpi_remove_notify_handler(adev->handle, handler_type, handler); 678 acpi_os_wait_events_complete(); 679 } 680 EXPORT_SYMBOL_GPL(acpi_dev_remove_notify_handler); 681 682 /* Handle events targeting \_SB device (at present only graceful shutdown) */ 683 684 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 685 #define ACPI_SB_INDICATE_INTERVAL 10000 686 687 static void sb_notify_work(struct work_struct *dummy) 688 { 689 acpi_handle sb_handle; 690 691 orderly_poweroff(true); 692 693 /* 694 * After initiating graceful shutdown, the ACPI spec requires OSPM 695 * to evaluate _OST method once every 10seconds to indicate that 696 * the shutdown is in progress 697 */ 698 acpi_get_handle(NULL, "\\_SB", &sb_handle); 699 while (1) { 700 pr_info("Graceful shutdown in progress.\n"); 701 acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, 702 ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); 703 msleep(ACPI_SB_INDICATE_INTERVAL); 704 } 705 } 706 707 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) 708 { 709 static DECLARE_WORK(acpi_sb_work, sb_notify_work); 710 711 if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { 712 if (!work_busy(&acpi_sb_work)) 713 schedule_work(&acpi_sb_work); 714 } else { 715 pr_warn("event %x is not supported by \\_SB device\n", event); 716 } 717 } 718 719 static int __init acpi_setup_sb_notify_handler(void) 720 { 721 acpi_handle sb_handle; 722 723 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) 724 return -ENXIO; 725 726 if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, 727 acpi_sb_notify, NULL))) 728 return -EINVAL; 729 730 return 0; 731 } 732 733 /* -------------------------------------------------------------------------- 734 Device Matching 735 -------------------------------------------------------------------------- */ 736 737 /** 738 * acpi_get_first_physical_node - Get first physical node of an ACPI device 739 * @adev: ACPI device in question 740 * 741 * Return: First physical node of ACPI device @adev 742 */ 743 struct device *acpi_get_first_physical_node(struct acpi_device *adev) 744 { 745 struct mutex *physical_node_lock = &adev->physical_node_lock; 746 struct device *phys_dev; 747 748 mutex_lock(physical_node_lock); 749 if (list_empty(&adev->physical_node_list)) { 750 phys_dev = NULL; 751 } else { 752 const struct acpi_device_physical_node *node; 753 754 node = list_first_entry(&adev->physical_node_list, 755 struct acpi_device_physical_node, node); 756 757 phys_dev = node->dev; 758 } 759 mutex_unlock(physical_node_lock); 760 return phys_dev; 761 } 762 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); 763 764 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, 765 const struct device *dev) 766 { 767 const struct device *phys_dev = acpi_get_first_physical_node(adev); 768 769 return phys_dev && phys_dev == dev ? adev : NULL; 770 } 771 772 /** 773 * acpi_device_is_first_physical_node - Is given dev first physical node 774 * @adev: ACPI companion device 775 * @dev: Physical device to check 776 * 777 * Function checks if given @dev is the first physical devices attached to 778 * the ACPI companion device. This distinction is needed in some cases 779 * where the same companion device is shared between many physical devices. 780 * 781 * Note that the caller have to provide valid @adev pointer. 782 */ 783 bool acpi_device_is_first_physical_node(struct acpi_device *adev, 784 const struct device *dev) 785 { 786 return !!acpi_primary_dev_companion(adev, dev); 787 } 788 789 /* 790 * acpi_companion_match() - Can we match via ACPI companion device 791 * @dev: Device in question 792 * 793 * Check if the given device has an ACPI companion and if that companion has 794 * a valid list of PNP IDs, and if the device is the first (primary) physical 795 * device associated with it. Return the companion pointer if that's the case 796 * or NULL otherwise. 797 * 798 * If multiple physical devices are attached to a single ACPI companion, we need 799 * to be careful. The usage scenario for this kind of relationship is that all 800 * of the physical devices in question use resources provided by the ACPI 801 * companion. A typical case is an MFD device where all the sub-devices share 802 * the parent's ACPI companion. In such cases we can only allow the primary 803 * (first) physical device to be matched with the help of the companion's PNP 804 * IDs. 805 * 806 * Additional physical devices sharing the ACPI companion can still use 807 * resources available from it but they will be matched normally using functions 808 * provided by their bus types (and analogously for their modalias). 809 */ 810 const struct acpi_device *acpi_companion_match(const struct device *dev) 811 { 812 struct acpi_device *adev; 813 814 adev = ACPI_COMPANION(dev); 815 if (!adev) 816 return NULL; 817 818 if (list_empty(&adev->pnp.ids)) 819 return NULL; 820 821 if (adev->pnp.type.backlight) 822 return adev; 823 824 return acpi_primary_dev_companion(adev, dev); 825 } 826 827 /** 828 * acpi_of_match_device - Match device object using the "compatible" property. 829 * @adev: ACPI device object to match. 830 * @of_match_table: List of device IDs to match against. 831 * @of_id: OF ID if matched 832 * 833 * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of 834 * identifiers and a _DSD object with the "compatible" property, use that 835 * property to match against the given list of identifiers. 836 */ 837 static bool acpi_of_match_device(const struct acpi_device *adev, 838 const struct of_device_id *of_match_table, 839 const struct of_device_id **of_id) 840 { 841 const union acpi_object *of_compatible, *obj; 842 int i, nval; 843 844 if (!adev) 845 return false; 846 847 of_compatible = adev->data.of_compatible; 848 if (!of_match_table || !of_compatible) 849 return false; 850 851 if (of_compatible->type == ACPI_TYPE_PACKAGE) { 852 nval = of_compatible->package.count; 853 obj = of_compatible->package.elements; 854 } else { /* Must be ACPI_TYPE_STRING. */ 855 nval = 1; 856 obj = of_compatible; 857 } 858 /* Now we can look for the driver DT compatible strings */ 859 for (i = 0; i < nval; i++, obj++) { 860 const struct of_device_id *id; 861 862 for (id = of_match_table; id->compatible[0]; id++) 863 if (!strcasecmp(obj->string.pointer, id->compatible)) { 864 if (of_id) 865 *of_id = id; 866 return true; 867 } 868 } 869 870 return false; 871 } 872 873 static bool acpi_of_modalias(struct acpi_device *adev, 874 char *modalias, size_t len) 875 { 876 const union acpi_object *of_compatible; 877 const union acpi_object *obj; 878 const char *str, *chr; 879 880 of_compatible = adev->data.of_compatible; 881 if (!of_compatible) 882 return false; 883 884 if (of_compatible->type == ACPI_TYPE_PACKAGE) 885 obj = of_compatible->package.elements; 886 else /* Must be ACPI_TYPE_STRING. */ 887 obj = of_compatible; 888 889 str = obj->string.pointer; 890 chr = strchr(str, ','); 891 strscpy(modalias, chr ? chr + 1 : str, len); 892 893 return true; 894 } 895 896 /** 897 * acpi_set_modalias - Set modalias using "compatible" property or supplied ID 898 * @adev: ACPI device object to match 899 * @default_id: ID string to use as default if no compatible string found 900 * @modalias: Pointer to buffer that modalias value will be copied into 901 * @len: Length of modalias buffer 902 * 903 * This is a counterpart of of_alias_from_compatible() for struct acpi_device 904 * objects. If there is a compatible string for @adev, it will be copied to 905 * @modalias with the vendor prefix stripped; otherwise, @default_id will be 906 * used. 907 */ 908 void acpi_set_modalias(struct acpi_device *adev, const char *default_id, 909 char *modalias, size_t len) 910 { 911 if (!acpi_of_modalias(adev, modalias, len)) 912 strscpy(modalias, default_id, len); 913 } 914 EXPORT_SYMBOL_GPL(acpi_set_modalias); 915 916 static bool __acpi_match_device_cls(const struct acpi_device_id *id, 917 struct acpi_hardware_id *hwid) 918 { 919 int i, msk, byte_shift; 920 char buf[3]; 921 922 if (!id->cls) 923 return false; 924 925 /* Apply class-code bitmask, before checking each class-code byte */ 926 for (i = 1; i <= 3; i++) { 927 byte_shift = 8 * (3 - i); 928 msk = (id->cls_msk >> byte_shift) & 0xFF; 929 if (!msk) 930 continue; 931 932 sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); 933 if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) 934 return false; 935 } 936 return true; 937 } 938 939 static bool __acpi_match_device(const struct acpi_device *device, 940 const struct acpi_device_id *acpi_ids, 941 const struct of_device_id *of_ids, 942 const struct acpi_device_id **acpi_id, 943 const struct of_device_id **of_id) 944 { 945 const struct acpi_device_id *id; 946 struct acpi_hardware_id *hwid; 947 948 /* 949 * If the device is not present, it is unnecessary to load device 950 * driver for it. 951 */ 952 if (!device || !device->status.present) 953 return false; 954 955 list_for_each_entry(hwid, &device->pnp.ids, list) { 956 /* First, check the ACPI/PNP IDs provided by the caller. */ 957 if (acpi_ids) { 958 for (id = acpi_ids; id->id[0] || id->cls; id++) { 959 if (id->id[0] && !strcmp((char *)id->id, hwid->id)) 960 goto out_acpi_match; 961 if (id->cls && __acpi_match_device_cls(id, hwid)) 962 goto out_acpi_match; 963 } 964 } 965 966 /* 967 * Next, check ACPI_DT_NAMESPACE_HID and try to match the 968 * "compatible" property if found. 969 */ 970 if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) 971 return acpi_of_match_device(device, of_ids, of_id); 972 } 973 return false; 974 975 out_acpi_match: 976 if (acpi_id) 977 *acpi_id = id; 978 return true; 979 } 980 981 /** 982 * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs 983 * @ids: Array of struct acpi_device_id objects to match against. 984 * @adev: The ACPI device pointer to match. 985 * 986 * Match the ACPI device @adev against a given list of ACPI IDs @ids. 987 * 988 * Return: 989 * a pointer to the first matching ACPI ID on success or %NULL on failure. 990 */ 991 const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids, 992 const struct acpi_device *adev) 993 { 994 const struct acpi_device_id *id = NULL; 995 996 __acpi_match_device(adev, ids, NULL, &id, NULL); 997 return id; 998 } 999 EXPORT_SYMBOL_GPL(acpi_match_acpi_device); 1000 1001 /** 1002 * acpi_match_device - Match a struct device against a given list of ACPI IDs 1003 * @ids: Array of struct acpi_device_id object to match against. 1004 * @dev: The device structure to match. 1005 * 1006 * Check if @dev has a valid ACPI handle and if there is a struct acpi_device 1007 * object for that handle and use that object to match against a given list of 1008 * device IDs. 1009 * 1010 * Return a pointer to the first matching ID on success or %NULL on failure. 1011 */ 1012 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, 1013 const struct device *dev) 1014 { 1015 return acpi_match_acpi_device(ids, acpi_companion_match(dev)); 1016 } 1017 EXPORT_SYMBOL_GPL(acpi_match_device); 1018 1019 const void *acpi_device_get_match_data(const struct device *dev) 1020 { 1021 const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; 1022 const struct of_device_id *of_ids = dev->driver->of_match_table; 1023 const struct acpi_device *adev = acpi_companion_match(dev); 1024 const struct acpi_device_id *acpi_id = NULL; 1025 const struct of_device_id *of_id = NULL; 1026 1027 if (!__acpi_match_device(adev, acpi_ids, of_ids, &acpi_id, &of_id)) 1028 return NULL; 1029 1030 if (acpi_id) 1031 return (const void *)acpi_id->driver_data; 1032 1033 if (of_id) 1034 return of_id->data; 1035 1036 return NULL; 1037 } 1038 EXPORT_SYMBOL_GPL(acpi_device_get_match_data); 1039 1040 int acpi_match_device_ids(struct acpi_device *device, 1041 const struct acpi_device_id *ids) 1042 { 1043 return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; 1044 } 1045 EXPORT_SYMBOL(acpi_match_device_ids); 1046 1047 bool acpi_driver_match_device(struct device *dev, 1048 const struct device_driver *drv) 1049 { 1050 const struct acpi_device_id *acpi_ids = drv->acpi_match_table; 1051 const struct of_device_id *of_ids = drv->of_match_table; 1052 1053 if (!acpi_ids) 1054 return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); 1055 1056 return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); 1057 } 1058 EXPORT_SYMBOL_GPL(acpi_driver_match_device); 1059 1060 /* -------------------------------------------------------------------------- 1061 ACPI Driver Management 1062 -------------------------------------------------------------------------- */ 1063 1064 /** 1065 * __acpi_bus_register_driver - register a driver with the ACPI bus 1066 * @driver: driver being registered 1067 * @owner: owning module/driver 1068 * 1069 * Registers a driver with the ACPI bus. Searches the namespace for all 1070 * devices that match the driver's criteria and binds. Returns zero for 1071 * success or a negative error status for failure. 1072 */ 1073 int __acpi_bus_register_driver(struct acpi_driver *driver, struct module *owner) 1074 { 1075 if (acpi_disabled) 1076 return -ENODEV; 1077 driver->drv.name = driver->name; 1078 driver->drv.bus = &acpi_bus_type; 1079 driver->drv.owner = owner; 1080 1081 return driver_register(&driver->drv); 1082 } 1083 1084 EXPORT_SYMBOL(__acpi_bus_register_driver); 1085 1086 /** 1087 * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus 1088 * @driver: driver to unregister 1089 * 1090 * Unregisters a driver with the ACPI bus. Searches the namespace for all 1091 * devices that match the driver's criteria and unbinds. 1092 */ 1093 void acpi_bus_unregister_driver(struct acpi_driver *driver) 1094 { 1095 driver_unregister(&driver->drv); 1096 } 1097 1098 EXPORT_SYMBOL(acpi_bus_unregister_driver); 1099 1100 /* -------------------------------------------------------------------------- 1101 ACPI Bus operations 1102 -------------------------------------------------------------------------- */ 1103 1104 static int acpi_bus_match(struct device *dev, const struct device_driver *drv) 1105 { 1106 struct acpi_device *acpi_dev = to_acpi_device(dev); 1107 const struct acpi_driver *acpi_drv = to_acpi_driver(drv); 1108 1109 return acpi_dev->flags.match_driver 1110 && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); 1111 } 1112 1113 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 1114 { 1115 return __acpi_device_uevent_modalias(to_acpi_device(dev), env); 1116 } 1117 1118 static int acpi_device_probe(struct device *dev) 1119 { 1120 struct acpi_device *acpi_dev = to_acpi_device(dev); 1121 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1122 int ret; 1123 1124 if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) 1125 return -EINVAL; 1126 1127 if (!acpi_drv->ops.add) 1128 return -ENOSYS; 1129 1130 ret = acpi_drv->ops.add(acpi_dev); 1131 if (ret) { 1132 acpi_dev->driver_data = NULL; 1133 return ret; 1134 } 1135 1136 pr_debug("Driver [%s] successfully bound to device [%s]\n", 1137 acpi_drv->name, acpi_dev->pnp.bus_id); 1138 1139 if (acpi_drv->ops.notify) { 1140 ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv); 1141 if (ret) { 1142 if (acpi_drv->ops.remove) 1143 acpi_drv->ops.remove(acpi_dev); 1144 1145 acpi_dev->driver_data = NULL; 1146 return ret; 1147 } 1148 } 1149 1150 pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, 1151 acpi_dev->pnp.bus_id); 1152 1153 get_device(dev); 1154 return 0; 1155 } 1156 1157 static void acpi_device_remove(struct device *dev) 1158 { 1159 struct acpi_device *acpi_dev = to_acpi_device(dev); 1160 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1161 1162 if (acpi_drv->ops.notify) 1163 acpi_device_remove_notify_handler(acpi_dev, acpi_drv); 1164 1165 if (acpi_drv->ops.remove) 1166 acpi_drv->ops.remove(acpi_dev); 1167 1168 acpi_dev->driver_data = NULL; 1169 1170 put_device(dev); 1171 } 1172 1173 const struct bus_type acpi_bus_type = { 1174 .name = "acpi", 1175 .match = acpi_bus_match, 1176 .probe = acpi_device_probe, 1177 .remove = acpi_device_remove, 1178 .uevent = acpi_device_uevent, 1179 }; 1180 1181 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) 1182 { 1183 return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); 1184 } 1185 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); 1186 1187 struct acpi_dev_walk_context { 1188 int (*fn)(struct acpi_device *, void *); 1189 void *data; 1190 }; 1191 1192 static int acpi_dev_for_one_check(struct device *dev, void *context) 1193 { 1194 struct acpi_dev_walk_context *adwc = context; 1195 1196 if (dev->bus != &acpi_bus_type) 1197 return 0; 1198 1199 return adwc->fn(to_acpi_device(dev), adwc->data); 1200 } 1201 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); 1202 1203 int acpi_dev_for_each_child(struct acpi_device *adev, 1204 int (*fn)(struct acpi_device *, void *), void *data) 1205 { 1206 struct acpi_dev_walk_context adwc = { 1207 .fn = fn, 1208 .data = data, 1209 }; 1210 1211 return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); 1212 } 1213 1214 int acpi_dev_for_each_child_reverse(struct acpi_device *adev, 1215 int (*fn)(struct acpi_device *, void *), 1216 void *data) 1217 { 1218 struct acpi_dev_walk_context adwc = { 1219 .fn = fn, 1220 .data = data, 1221 }; 1222 1223 return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); 1224 } 1225 1226 /* -------------------------------------------------------------------------- 1227 Initialization/Cleanup 1228 -------------------------------------------------------------------------- */ 1229 1230 static int __init acpi_bus_init_irq(void) 1231 { 1232 acpi_status status; 1233 char *message = NULL; 1234 1235 1236 /* 1237 * Let the system know what interrupt model we are using by 1238 * evaluating the \_PIC object, if exists. 1239 */ 1240 1241 switch (acpi_irq_model) { 1242 case ACPI_IRQ_MODEL_PIC: 1243 message = "PIC"; 1244 break; 1245 case ACPI_IRQ_MODEL_IOAPIC: 1246 message = "IOAPIC"; 1247 break; 1248 case ACPI_IRQ_MODEL_IOSAPIC: 1249 message = "IOSAPIC"; 1250 break; 1251 case ACPI_IRQ_MODEL_GIC: 1252 message = "GIC"; 1253 break; 1254 case ACPI_IRQ_MODEL_GIC_V5: 1255 message = "GICv5"; 1256 break; 1257 case ACPI_IRQ_MODEL_PLATFORM: 1258 message = "platform specific model"; 1259 break; 1260 case ACPI_IRQ_MODEL_LPIC: 1261 message = "LPIC"; 1262 break; 1263 case ACPI_IRQ_MODEL_RINTC: 1264 message = "RINTC"; 1265 break; 1266 default: 1267 pr_info("Unknown interrupt routing model\n"); 1268 return -ENODEV; 1269 } 1270 1271 pr_info("Using %s for interrupt routing\n", message); 1272 1273 status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); 1274 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 1275 pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); 1276 return -ENODEV; 1277 } 1278 1279 return 0; 1280 } 1281 1282 /** 1283 * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. 1284 * 1285 * The ACPI tables are accessible after this, but the handling of events has not 1286 * been initialized and the global lock is not available yet, so AML should not 1287 * be executed at this point. 1288 * 1289 * Doing this before switching the EFI runtime services to virtual mode allows 1290 * the EfiBootServices memory to be freed slightly earlier on boot. 1291 */ 1292 void __init acpi_early_init(void) 1293 { 1294 acpi_status status; 1295 1296 if (acpi_disabled) 1297 return; 1298 1299 pr_info("Core revision %08x\n", ACPI_CA_VERSION); 1300 1301 /* enable workarounds, unless strict ACPI spec. compliance */ 1302 if (!acpi_strict) 1303 acpi_gbl_enable_interpreter_slack = TRUE; 1304 1305 acpi_permanent_mmap = true; 1306 1307 #ifdef CONFIG_X86 1308 /* 1309 * If the machine falls into the DMI check table, 1310 * DSDT will be copied to memory. 1311 * Note that calling dmi_check_system() here on other architectures 1312 * would not be OK because only x86 initializes dmi early enough. 1313 * Thankfully only x86 systems need such quirks for now. 1314 */ 1315 dmi_check_system(dsdt_dmi_table); 1316 #endif 1317 1318 status = acpi_reallocate_root_table(); 1319 if (ACPI_FAILURE(status)) { 1320 pr_err("Unable to reallocate ACPI tables\n"); 1321 goto error0; 1322 } 1323 1324 status = acpi_initialize_subsystem(); 1325 if (ACPI_FAILURE(status)) { 1326 pr_err("Unable to initialize the ACPI Interpreter\n"); 1327 goto error0; 1328 } 1329 1330 #ifdef CONFIG_X86 1331 if (!acpi_ioapic) { 1332 /* compatible (0) means level (3) */ 1333 if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { 1334 acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; 1335 acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; 1336 } 1337 /* Set PIC-mode SCI trigger type */ 1338 acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, 1339 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); 1340 } else { 1341 /* 1342 * now that acpi_gbl_FADT is initialized, 1343 * update it with result from INT_SRC_OVR parsing 1344 */ 1345 acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; 1346 } 1347 #endif 1348 return; 1349 1350 error0: 1351 disable_acpi(); 1352 } 1353 1354 /** 1355 * acpi_subsystem_init - Finalize the early initialization of ACPI. 1356 * 1357 * Switch over the platform to the ACPI mode (if possible). 1358 * 1359 * Doing this too early is generally unsafe, but at the same time it needs to be 1360 * done before all things that really depend on ACPI. The right spot appears to 1361 * be before finalizing the EFI initialization. 1362 */ 1363 void __init acpi_subsystem_init(void) 1364 { 1365 acpi_status status; 1366 1367 if (acpi_disabled) 1368 return; 1369 1370 status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); 1371 if (ACPI_FAILURE(status)) { 1372 pr_err("Unable to enable ACPI\n"); 1373 disable_acpi(); 1374 } else { 1375 /* 1376 * If the system is using ACPI then we can be reasonably 1377 * confident that any regulators are managed by the firmware 1378 * so tell the regulator core it has everything it needs to 1379 * know. 1380 */ 1381 regulator_has_full_constraints(); 1382 } 1383 } 1384 1385 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) 1386 { 1387 if (event == ACPI_TABLE_EVENT_LOAD) 1388 acpi_scan_table_notify(); 1389 1390 return acpi_sysfs_table_handler(event, table, context); 1391 } 1392 1393 static int __init acpi_bus_init(void) 1394 { 1395 int result; 1396 acpi_status status; 1397 1398 acpi_os_initialize1(); 1399 1400 status = acpi_load_tables(); 1401 if (ACPI_FAILURE(status)) { 1402 pr_err("Unable to load the System Description Tables\n"); 1403 goto error1; 1404 } 1405 1406 /* 1407 * ACPI 2.0 requires the EC driver to be loaded and work before the EC 1408 * device is found in the namespace. 1409 * 1410 * This is accomplished by looking for the ECDT table and getting the EC 1411 * parameters out of that. 1412 * 1413 * Do that before calling acpi_initialize_objects() which may trigger EC 1414 * address space accesses. 1415 */ 1416 acpi_ec_ecdt_probe(); 1417 1418 status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); 1419 if (ACPI_FAILURE(status)) { 1420 pr_err("Unable to start the ACPI Interpreter\n"); 1421 goto error1; 1422 } 1423 1424 status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); 1425 if (ACPI_FAILURE(status)) { 1426 pr_err("Unable to initialize ACPI objects\n"); 1427 goto error1; 1428 } 1429 1430 /* 1431 * _OSC method may exist in module level code, 1432 * so it must be run after ACPI_FULL_INITIALIZATION 1433 */ 1434 acpi_bus_osc_negotiate_platform_control(); 1435 acpi_bus_osc_negotiate_usb_control(); 1436 1437 /* 1438 * _PDC control method may load dynamic SSDT tables, 1439 * and we need to install the table handler before that. 1440 */ 1441 status = acpi_install_table_handler(acpi_bus_table_handler, NULL); 1442 1443 acpi_sysfs_init(); 1444 1445 acpi_early_processor_control_setup(); 1446 1447 /* 1448 * Maybe EC region is required at bus_scan/acpi_get_devices. So it 1449 * is necessary to enable it as early as possible. 1450 */ 1451 acpi_ec_dsdt_probe(); 1452 1453 pr_info("Interpreter enabled\n"); 1454 1455 /* Initialize sleep structures */ 1456 acpi_sleep_init(); 1457 1458 /* 1459 * Get the system interrupt model and evaluate \_PIC. 1460 */ 1461 result = acpi_bus_init_irq(); 1462 if (result) 1463 goto error1; 1464 1465 /* 1466 * Register for all standard device notifications. 1467 */ 1468 status = 1469 acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, 1470 &acpi_bus_notify, NULL); 1471 if (ACPI_FAILURE(status)) { 1472 pr_err("Unable to register for system notifications\n"); 1473 goto error1; 1474 } 1475 1476 /* 1477 * Create the top ACPI proc directory 1478 */ 1479 acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); 1480 1481 result = bus_register(&acpi_bus_type); 1482 if (!result) 1483 return 0; 1484 1485 /* Mimic structured exception handling */ 1486 error1: 1487 acpi_terminate(); 1488 return -ENODEV; 1489 } 1490 1491 struct kobject *acpi_kobj; 1492 EXPORT_SYMBOL_GPL(acpi_kobj); 1493 1494 void __weak __init acpi_arch_init(void) { } 1495 1496 static int __init acpi_init(void) 1497 { 1498 int result; 1499 1500 if (acpi_disabled) { 1501 pr_info("Interpreter disabled.\n"); 1502 return -ENODEV; 1503 } 1504 1505 acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); 1506 if (!acpi_kobj) { 1507 pr_err("Failed to register kobject\n"); 1508 return -ENOMEM; 1509 } 1510 1511 init_prmt(); 1512 acpi_init_pcc(); 1513 result = acpi_bus_init(); 1514 if (result) { 1515 kobject_put(acpi_kobj); 1516 disable_acpi(); 1517 return result; 1518 } 1519 acpi_init_ffh(); 1520 1521 pci_mmcfg_late_init(); 1522 acpi_viot_early_init(); 1523 acpi_hest_init(); 1524 acpi_ghes_init(); 1525 acpi_arch_init(); 1526 acpi_scan_init(); 1527 acpi_ec_init(); 1528 acpi_debugfs_init(); 1529 acpi_sleep_proc_init(); 1530 acpi_wakeup_device_init(); 1531 acpi_debugger_init(); 1532 acpi_setup_sb_notify_handler(); 1533 acpi_viot_init(); 1534 return 0; 1535 } 1536 1537 subsys_initcall(acpi_init); 1538