xref: /linux/mm/mm_init.c (revision 787fe1d43a21d688afac740f92485e9373d19f01)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38 
39 #include <asm/setup.h>
40 
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44 
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48 
49 /*
50  * high_memory defines the upper bound on direct map memory, then end
51  * of ZONE_NORMAL.
52  */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55 
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58 
59 /* The zonelists are simply reported, validation is manual. */
60 void __init mminit_verify_zonelist(void)
61 {
62 	int nid;
63 
64 	if (mminit_loglevel < MMINIT_VERIFY)
65 		return;
66 
67 	for_each_online_node(nid) {
68 		pg_data_t *pgdat = NODE_DATA(nid);
69 		struct zone *zone;
70 		struct zoneref *z;
71 		struct zonelist *zonelist;
72 		int i, listid, zoneid;
73 
74 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75 
76 			/* Identify the zone and nodelist */
77 			zoneid = i % MAX_NR_ZONES;
78 			listid = i / MAX_NR_ZONES;
79 			zonelist = &pgdat->node_zonelists[listid];
80 			zone = &pgdat->node_zones[zoneid];
81 			if (!populated_zone(zone))
82 				continue;
83 
84 			/* Print information about the zonelist */
85 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 				listid > 0 ? "thisnode" : "general", nid,
87 				zone->name);
88 
89 			/* Iterate the zonelist */
90 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 			pr_cont("\n");
93 		}
94 	}
95 }
96 
97 void __init mminit_verify_pageflags_layout(void)
98 {
99 	int shift, width;
100 	unsigned long or_mask, add_mask;
101 
102 	shift = BITS_PER_LONG;
103 	width = shift - NR_NON_PAGEFLAG_BITS;
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 		SECTIONS_WIDTH,
107 		NODES_WIDTH,
108 		ZONES_WIDTH,
109 		LAST_CPUPID_WIDTH,
110 		KASAN_TAG_WIDTH,
111 		LRU_GEN_WIDTH,
112 		LRU_REFS_WIDTH,
113 		NR_PAGEFLAGS);
114 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 		SECTIONS_SHIFT,
117 		NODES_SHIFT,
118 		ZONES_SHIFT,
119 		LAST_CPUPID_SHIFT,
120 		KASAN_TAG_WIDTH);
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 		(unsigned long)SECTIONS_PGSHIFT,
124 		(unsigned long)NODES_PGSHIFT,
125 		(unsigned long)ZONES_PGSHIFT,
126 		(unsigned long)LAST_CPUPID_PGSHIFT,
127 		(unsigned long)KASAN_TAG_PGSHIFT);
128 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 		"Node/Zone ID: %lu -> %lu\n",
130 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 		(unsigned long)ZONEID_PGOFF);
132 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 		"Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 		"Last cpupid not in page flags");
142 #endif
143 
144 	if (SECTIONS_WIDTH) {
145 		shift -= SECTIONS_WIDTH;
146 		BUG_ON(shift != SECTIONS_PGSHIFT);
147 	}
148 	if (NODES_WIDTH) {
149 		shift -= NODES_WIDTH;
150 		BUG_ON(shift != NODES_PGSHIFT);
151 	}
152 	if (ZONES_WIDTH) {
153 		shift -= ZONES_WIDTH;
154 		BUG_ON(shift != ZONES_PGSHIFT);
155 	}
156 
157 	/* Check for bitmask overlaps */
158 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 			(NODES_MASK << NODES_PGSHIFT) |
160 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
161 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 			(NODES_MASK << NODES_PGSHIFT) +
163 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
164 	BUG_ON(or_mask != add_mask);
165 }
166 
167 static __init int set_mminit_loglevel(char *str)
168 {
169 	get_option(&str, &mminit_loglevel);
170 	return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174 
175 struct kobject *mm_kobj;
176 
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179 
180 void mm_compute_batch(int overcommit_policy)
181 {
182 	u64 memsized_batch;
183 	s32 nr = num_present_cpus();
184 	s32 batch = max_t(s32, nr*2, 32);
185 	unsigned long ram_pages = totalram_pages();
186 
187 	/*
188 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 	 * (total memory/#cpus), and lift it to 25% for other policies
190 	 * to ease the possible lock contention for percpu_counter
191 	 * vm_committed_as, while the max limit is INT_MAX
192 	 */
193 	if (overcommit_policy == OVERCOMMIT_NEVER)
194 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 	else
196 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197 
198 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200 
201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 					unsigned long action, void *arg)
203 {
204 	switch (action) {
205 	case MEM_ONLINE:
206 	case MEM_OFFLINE:
207 		mm_compute_batch(sysctl_overcommit_memory);
208 		break;
209 	default:
210 		break;
211 	}
212 	return NOTIFY_OK;
213 }
214 
215 static int __init mm_compute_batch_init(void)
216 {
217 	mm_compute_batch(sysctl_overcommit_memory);
218 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 	return 0;
220 }
221 
222 __initcall(mm_compute_batch_init);
223 
224 #endif
225 
226 static int __init mm_sysfs_init(void)
227 {
228 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 	if (!mm_kobj)
230 		return -ENOMEM;
231 
232 	return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235 
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239 
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244 
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247 
248 static bool deferred_struct_pages __meminitdata;
249 
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251 
252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 				     unsigned long *percent)
254 {
255 	unsigned long long coremem;
256 	char *endptr;
257 
258 	if (!p)
259 		return -EINVAL;
260 
261 	/* Value may be a percentage of total memory, otherwise bytes */
262 	coremem = simple_strtoull(p, &endptr, 0);
263 	if (*endptr == '%') {
264 		/* Paranoid check for percent values greater than 100 */
265 		WARN_ON(coremem > 100);
266 
267 		*percent = coremem;
268 	} else {
269 		coremem = memparse(p, &p);
270 		/* Paranoid check that UL is enough for the coremem value */
271 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272 
273 		*core = coremem >> PAGE_SHIFT;
274 		*percent = 0UL;
275 	}
276 	return 0;
277 }
278 
279 bool mirrored_kernelcore __initdata_memblock;
280 
281 /*
282  * kernelcore=size sets the amount of memory for use for allocations that
283  * cannot be reclaimed or migrated.
284  */
285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 	/* parse kernelcore=mirror */
288 	if (parse_option_str(p, "mirror")) {
289 		mirrored_kernelcore = true;
290 		return 0;
291 	}
292 
293 	return cmdline_parse_core(p, &required_kernelcore,
294 				  &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297 
298 /*
299  * movablecore=size sets the amount of memory for use for allocations that
300  * can be reclaimed or migrated.
301  */
302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 	return cmdline_parse_core(p, &required_movablecore,
305 				  &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308 
309 /*
310  * early_calculate_totalpages()
311  * Sum pages in active regions for movable zone.
312  * Populate N_MEMORY for calculating usable_nodes.
313  */
314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 	unsigned long totalpages = 0;
317 	unsigned long start_pfn, end_pfn;
318 	int i, nid;
319 
320 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 		unsigned long pages = end_pfn - start_pfn;
322 
323 		totalpages += pages;
324 		if (pages)
325 			node_set_state(nid, N_MEMORY);
326 	}
327 	return totalpages;
328 }
329 
330 /*
331  * This finds a zone that can be used for ZONE_MOVABLE pages. The
332  * assumption is made that zones within a node are ordered in monotonic
333  * increasing memory addresses so that the "highest" populated zone is used
334  */
335 static void __init find_usable_zone_for_movable(void)
336 {
337 	int zone_index;
338 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 		if (zone_index == ZONE_MOVABLE)
340 			continue;
341 
342 		if (arch_zone_highest_possible_pfn[zone_index] >
343 				arch_zone_lowest_possible_pfn[zone_index])
344 			break;
345 	}
346 
347 	VM_BUG_ON(zone_index == -1);
348 	movable_zone = zone_index;
349 }
350 
351 /*
352  * Find the PFN the Movable zone begins in each node. Kernel memory
353  * is spread evenly between nodes as long as the nodes have enough
354  * memory. When they don't, some nodes will have more kernelcore than
355  * others
356  */
357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 	int i, nid;
360 	unsigned long usable_startpfn;
361 	unsigned long kernelcore_node, kernelcore_remaining;
362 	/* save the state before borrow the nodemask */
363 	nodemask_t saved_node_state = node_states[N_MEMORY];
364 	unsigned long totalpages = early_calculate_totalpages();
365 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 	struct memblock_region *r;
367 
368 	/* Need to find movable_zone earlier when movable_node is specified. */
369 	find_usable_zone_for_movable();
370 
371 	/*
372 	 * If movable_node is specified, ignore kernelcore and movablecore
373 	 * options.
374 	 */
375 	if (movable_node_is_enabled()) {
376 		for_each_mem_region(r) {
377 			if (!memblock_is_hotpluggable(r))
378 				continue;
379 
380 			nid = memblock_get_region_node(r);
381 
382 			usable_startpfn = memblock_region_memory_base_pfn(r);
383 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 				min(usable_startpfn, zone_movable_pfn[nid]) :
385 				usable_startpfn;
386 		}
387 
388 		goto out2;
389 	}
390 
391 	/*
392 	 * If kernelcore=mirror is specified, ignore movablecore option
393 	 */
394 	if (mirrored_kernelcore) {
395 		bool mem_below_4gb_not_mirrored = false;
396 
397 		if (!memblock_has_mirror()) {
398 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 			goto out;
400 		}
401 
402 		if (is_kdump_kernel()) {
403 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 			goto out;
405 		}
406 
407 		for_each_mem_region(r) {
408 			if (memblock_is_mirror(r))
409 				continue;
410 
411 			nid = memblock_get_region_node(r);
412 
413 			usable_startpfn = memblock_region_memory_base_pfn(r);
414 
415 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 				mem_below_4gb_not_mirrored = true;
417 				continue;
418 			}
419 
420 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 				min(usable_startpfn, zone_movable_pfn[nid]) :
422 				usable_startpfn;
423 		}
424 
425 		if (mem_below_4gb_not_mirrored)
426 			pr_warn("This configuration results in unmirrored kernel memory.\n");
427 
428 		goto out2;
429 	}
430 
431 	/*
432 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 	 * amount of necessary memory.
434 	 */
435 	if (required_kernelcore_percent)
436 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 				       10000UL;
438 	if (required_movablecore_percent)
439 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 					10000UL;
441 
442 	/*
443 	 * If movablecore= was specified, calculate what size of
444 	 * kernelcore that corresponds so that memory usable for
445 	 * any allocation type is evenly spread. If both kernelcore
446 	 * and movablecore are specified, then the value of kernelcore
447 	 * will be used for required_kernelcore if it's greater than
448 	 * what movablecore would have allowed.
449 	 */
450 	if (required_movablecore) {
451 		unsigned long corepages;
452 
453 		/*
454 		 * Round-up so that ZONE_MOVABLE is at least as large as what
455 		 * was requested by the user
456 		 */
457 		required_movablecore =
458 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 		required_movablecore = min(totalpages, required_movablecore);
460 		corepages = totalpages - required_movablecore;
461 
462 		required_kernelcore = max(required_kernelcore, corepages);
463 	}
464 
465 	/*
466 	 * If kernelcore was not specified or kernelcore size is larger
467 	 * than totalpages, there is no ZONE_MOVABLE.
468 	 */
469 	if (!required_kernelcore || required_kernelcore >= totalpages)
470 		goto out;
471 
472 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474 
475 restart:
476 	/* Spread kernelcore memory as evenly as possible throughout nodes */
477 	kernelcore_node = required_kernelcore / usable_nodes;
478 	for_each_node_state(nid, N_MEMORY) {
479 		unsigned long start_pfn, end_pfn;
480 
481 		/*
482 		 * Recalculate kernelcore_node if the division per node
483 		 * now exceeds what is necessary to satisfy the requested
484 		 * amount of memory for the kernel
485 		 */
486 		if (required_kernelcore < kernelcore_node)
487 			kernelcore_node = required_kernelcore / usable_nodes;
488 
489 		/*
490 		 * As the map is walked, we track how much memory is usable
491 		 * by the kernel using kernelcore_remaining. When it is
492 		 * 0, the rest of the node is usable by ZONE_MOVABLE
493 		 */
494 		kernelcore_remaining = kernelcore_node;
495 
496 		/* Go through each range of PFNs within this node */
497 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 			unsigned long size_pages;
499 
500 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 			if (start_pfn >= end_pfn)
502 				continue;
503 
504 			/* Account for what is only usable for kernelcore */
505 			if (start_pfn < usable_startpfn) {
506 				unsigned long kernel_pages;
507 				kernel_pages = min(end_pfn, usable_startpfn)
508 								- start_pfn;
509 
510 				kernelcore_remaining -= min(kernel_pages,
511 							kernelcore_remaining);
512 				required_kernelcore -= min(kernel_pages,
513 							required_kernelcore);
514 
515 				/* Continue if range is now fully accounted */
516 				if (end_pfn <= usable_startpfn) {
517 
518 					/*
519 					 * Push zone_movable_pfn to the end so
520 					 * that if we have to rebalance
521 					 * kernelcore across nodes, we will
522 					 * not double account here
523 					 */
524 					zone_movable_pfn[nid] = end_pfn;
525 					continue;
526 				}
527 				start_pfn = usable_startpfn;
528 			}
529 
530 			/*
531 			 * The usable PFN range for ZONE_MOVABLE is from
532 			 * start_pfn->end_pfn. Calculate size_pages as the
533 			 * number of pages used as kernelcore
534 			 */
535 			size_pages = end_pfn - start_pfn;
536 			if (size_pages > kernelcore_remaining)
537 				size_pages = kernelcore_remaining;
538 			zone_movable_pfn[nid] = start_pfn + size_pages;
539 
540 			/*
541 			 * Some kernelcore has been met, update counts and
542 			 * break if the kernelcore for this node has been
543 			 * satisfied
544 			 */
545 			required_kernelcore -= min(required_kernelcore,
546 								size_pages);
547 			kernelcore_remaining -= size_pages;
548 			if (!kernelcore_remaining)
549 				break;
550 		}
551 	}
552 
553 	/*
554 	 * If there is still required_kernelcore, we do another pass with one
555 	 * less node in the count. This will push zone_movable_pfn[nid] further
556 	 * along on the nodes that still have memory until kernelcore is
557 	 * satisfied
558 	 */
559 	usable_nodes--;
560 	if (usable_nodes && required_kernelcore > usable_nodes)
561 		goto restart;
562 
563 out2:
564 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 	for_each_node_state(nid, N_MEMORY) {
566 		unsigned long start_pfn, end_pfn;
567 
568 		zone_movable_pfn[nid] =
569 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570 
571 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 		if (zone_movable_pfn[nid] >= end_pfn)
573 			zone_movable_pfn[nid] = 0;
574 	}
575 
576 out:
577 	/* restore the node_state */
578 	node_states[N_MEMORY] = saved_node_state;
579 }
580 
581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 				unsigned long zone, int nid)
583 {
584 	mm_zero_struct_page(page);
585 	set_page_links(page, zone, nid, pfn);
586 	init_page_count(page);
587 	atomic_set(&page->_mapcount, -1);
588 	page_cpupid_reset_last(page);
589 	page_kasan_tag_reset(page);
590 
591 	INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 	if (!is_highmem_idx(zone))
595 		set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598 
599 #ifdef CONFIG_NUMA
600 /*
601  * During memory init memblocks map pfns to nids. The search is expensive and
602  * this caches recent lookups. The implementation of __early_pfn_to_nid
603  * treats start/end as pfns.
604  */
605 struct mminit_pfnnid_cache {
606 	unsigned long last_start;
607 	unsigned long last_end;
608 	int last_nid;
609 };
610 
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612 
613 /*
614  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615  */
616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 					struct mminit_pfnnid_cache *state)
618 {
619 	unsigned long start_pfn, end_pfn;
620 	int nid;
621 
622 	if (state->last_start <= pfn && pfn < state->last_end)
623 		return state->last_nid;
624 
625 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 	if (nid != NUMA_NO_NODE) {
627 		state->last_start = start_pfn;
628 		state->last_end = end_pfn;
629 		state->last_nid = nid;
630 	}
631 
632 	return nid;
633 }
634 
635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 	static DEFINE_SPINLOCK(early_pfn_lock);
638 	int nid;
639 
640 	spin_lock(&early_pfn_lock);
641 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 	if (nid < 0)
643 		nid = first_online_node;
644 	spin_unlock(&early_pfn_lock);
645 
646 	return nid;
647 }
648 
649 bool hashdist = HASHDIST_DEFAULT;
650 
651 static int __init set_hashdist(char *str)
652 {
653 	return kstrtobool(str, &hashdist) == 0;
654 }
655 __setup("hashdist=", set_hashdist);
656 
657 static inline void fixup_hashdist(void)
658 {
659 	if (num_node_state(N_MEMORY) == 1)
660 		hashdist = false;
661 }
662 #else
663 static inline void fixup_hashdist(void) {}
664 #endif /* CONFIG_NUMA */
665 
666 /*
667  * Initialize a reserved page unconditionally, finding its zone first.
668  */
669 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
670 {
671 	pg_data_t *pgdat;
672 	int zid;
673 
674 	pgdat = NODE_DATA(nid);
675 
676 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
677 		struct zone *zone = &pgdat->node_zones[zid];
678 
679 		if (zone_spans_pfn(zone, pfn))
680 			break;
681 	}
682 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
683 
684 	if (pageblock_aligned(pfn))
685 		init_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE,
686 				false);
687 }
688 
689 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
690 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
691 {
692 	pgdat->first_deferred_pfn = ULONG_MAX;
693 }
694 
695 /* Returns true if the struct page for the pfn is initialised */
696 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
697 {
698 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
699 		return false;
700 
701 	return true;
702 }
703 
704 /*
705  * Returns true when the remaining initialisation should be deferred until
706  * later in the boot cycle when it can be parallelised.
707  */
708 static bool __meminit
709 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
710 {
711 	static unsigned long prev_end_pfn, nr_initialised;
712 
713 	if (early_page_ext_enabled())
714 		return false;
715 
716 	/* Always populate low zones for address-constrained allocations */
717 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
718 		return false;
719 
720 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
721 		return true;
722 
723 	/*
724 	 * prev_end_pfn static that contains the end of previous zone
725 	 * No need to protect because called very early in boot before smp_init.
726 	 */
727 	if (prev_end_pfn != end_pfn) {
728 		prev_end_pfn = end_pfn;
729 		nr_initialised = 0;
730 	}
731 
732 	/*
733 	 * We start only with one section of pages, more pages are added as
734 	 * needed until the rest of deferred pages are initialized.
735 	 */
736 	nr_initialised++;
737 	if ((nr_initialised > PAGES_PER_SECTION) &&
738 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
739 		NODE_DATA(nid)->first_deferred_pfn = pfn;
740 		return true;
741 	}
742 	return false;
743 }
744 
745 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
746 {
747 	if (early_page_initialised(pfn, nid))
748 		return;
749 
750 	__init_page_from_nid(pfn, nid);
751 }
752 #else
753 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
754 
755 static inline bool early_page_initialised(unsigned long pfn, int nid)
756 {
757 	return true;
758 }
759 
760 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
761 {
762 	return false;
763 }
764 
765 static inline void __init_deferred_page(unsigned long pfn, int nid)
766 {
767 }
768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769 
770 void __meminit init_deferred_page(unsigned long pfn, int nid)
771 {
772 	__init_deferred_page(pfn, nid);
773 }
774 
775 /*
776  * Initialised pages do not have PageReserved set. This function is
777  * called for each range allocated by the bootmem allocator and
778  * marks the pages PageReserved. The remaining valid pages are later
779  * sent to the buddy page allocator.
780  */
781 void __meminit reserve_bootmem_region(phys_addr_t start,
782 				      phys_addr_t end, int nid)
783 {
784 	unsigned long pfn;
785 
786 	for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
787 		struct page *page = pfn_to_page(pfn);
788 
789 		__init_deferred_page(pfn, nid);
790 
791 		/*
792 		 * no need for atomic set_bit because the struct
793 		 * page is not visible yet so nobody should
794 		 * access it yet.
795 		 */
796 		__SetPageReserved(page);
797 	}
798 }
799 
800 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
801 static bool __meminit
802 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
803 {
804 	static struct memblock_region *r;
805 
806 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
807 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
808 			for_each_mem_region(r) {
809 				if (*pfn < memblock_region_memory_end_pfn(r))
810 					break;
811 			}
812 		}
813 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
814 		    memblock_is_mirror(r)) {
815 			*pfn = memblock_region_memory_end_pfn(r);
816 			return true;
817 		}
818 	}
819 	return false;
820 }
821 
822 /*
823  * Only struct pages that correspond to ranges defined by memblock.memory
824  * are zeroed and initialized by going through __init_single_page() during
825  * memmap_init_zone_range().
826  *
827  * But, there could be struct pages that correspond to holes in
828  * memblock.memory. This can happen because of the following reasons:
829  * - physical memory bank size is not necessarily the exact multiple of the
830  *   arbitrary section size
831  * - early reserved memory may not be listed in memblock.memory
832  * - non-memory regions covered by the contiguous flatmem mapping
833  * - memory layouts defined with memmap= kernel parameter may not align
834  *   nicely with memmap sections
835  *
836  * Explicitly initialize those struct pages so that:
837  * - PG_Reserved is set
838  * - zone and node links point to zone and node that span the page if the
839  *   hole is in the middle of a zone
840  * - zone and node links point to adjacent zone/node if the hole falls on
841  *   the zone boundary; the pages in such holes will be prepended to the
842  *   zone/node above the hole except for the trailing pages in the last
843  *   section that will be appended to the zone/node below.
844  */
845 static void __init init_unavailable_range(unsigned long spfn,
846 					  unsigned long epfn,
847 					  int zone, int node)
848 {
849 	unsigned long pfn;
850 	u64 pgcnt = 0;
851 
852 	for_each_valid_pfn(pfn, spfn, epfn) {
853 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
854 		__SetPageReserved(pfn_to_page(pfn));
855 		pgcnt++;
856 	}
857 
858 	if (pgcnt)
859 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
860 			node, zone_names[zone], pgcnt);
861 }
862 
863 /*
864  * Initially all pages are reserved - free ones are freed
865  * up by memblock_free_all() once the early boot process is
866  * done. Non-atomic initialization, single-pass.
867  *
868  * All aligned pageblocks are initialized to the specified migratetype
869  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
870  * zone stats (e.g., nr_isolate_pageblock) are touched.
871  */
872 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
873 		unsigned long start_pfn, unsigned long zone_end_pfn,
874 		enum meminit_context context,
875 		struct vmem_altmap *altmap, int migratetype,
876 		bool isolate_pageblock)
877 {
878 	unsigned long pfn, end_pfn = start_pfn + size;
879 	struct page *page;
880 
881 	if (highest_memmap_pfn < end_pfn - 1)
882 		highest_memmap_pfn = end_pfn - 1;
883 
884 #ifdef CONFIG_ZONE_DEVICE
885 	/*
886 	 * Honor reservation requested by the driver for this ZONE_DEVICE
887 	 * memory. We limit the total number of pages to initialize to just
888 	 * those that might contain the memory mapping. We will defer the
889 	 * ZONE_DEVICE page initialization until after we have released
890 	 * the hotplug lock.
891 	 */
892 	if (zone == ZONE_DEVICE) {
893 		if (!altmap)
894 			return;
895 
896 		if (start_pfn == altmap->base_pfn)
897 			start_pfn += altmap->reserve;
898 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
899 	}
900 #endif
901 
902 	for (pfn = start_pfn; pfn < end_pfn; ) {
903 		/*
904 		 * There can be holes in boot-time mem_map[]s handed to this
905 		 * function.  They do not exist on hotplugged memory.
906 		 */
907 		if (context == MEMINIT_EARLY) {
908 			if (overlap_memmap_init(zone, &pfn))
909 				continue;
910 			if (defer_init(nid, pfn, zone_end_pfn)) {
911 				deferred_struct_pages = true;
912 				break;
913 			}
914 		}
915 
916 		page = pfn_to_page(pfn);
917 		__init_single_page(page, pfn, zone, nid);
918 		if (context == MEMINIT_HOTPLUG) {
919 #ifdef CONFIG_ZONE_DEVICE
920 			if (zone == ZONE_DEVICE)
921 				__SetPageReserved(page);
922 			else
923 #endif
924 				__SetPageOffline(page);
925 		}
926 
927 		/*
928 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
929 		 * such that unmovable allocations won't be scattered all
930 		 * over the place during system boot.
931 		 */
932 		if (pageblock_aligned(pfn)) {
933 			init_pageblock_migratetype(page, migratetype,
934 					isolate_pageblock);
935 			cond_resched();
936 		}
937 		pfn++;
938 	}
939 }
940 
941 static void __init memmap_init_zone_range(struct zone *zone,
942 					  unsigned long start_pfn,
943 					  unsigned long end_pfn,
944 					  unsigned long *hole_pfn)
945 {
946 	unsigned long zone_start_pfn = zone->zone_start_pfn;
947 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
948 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
949 
950 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
951 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
952 
953 	if (start_pfn >= end_pfn)
954 		return;
955 
956 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
957 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE,
958 			  false);
959 
960 	if (*hole_pfn < start_pfn)
961 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
962 
963 	*hole_pfn = end_pfn;
964 }
965 
966 static void __init memmap_init(void)
967 {
968 	unsigned long start_pfn, end_pfn;
969 	unsigned long hole_pfn = 0;
970 	int i, j, zone_id = 0, nid;
971 
972 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
973 		struct pglist_data *node = NODE_DATA(nid);
974 
975 		for (j = 0; j < MAX_NR_ZONES; j++) {
976 			struct zone *zone = node->node_zones + j;
977 
978 			if (!populated_zone(zone))
979 				continue;
980 
981 			memmap_init_zone_range(zone, start_pfn, end_pfn,
982 					       &hole_pfn);
983 			zone_id = j;
984 		}
985 	}
986 
987 	/*
988 	 * Initialize the memory map for hole in the range [memory_end,
989 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
990 	 * for FLATMEM.
991 	 * Append the pages in this hole to the highest zone in the last
992 	 * node.
993 	 */
994 #ifdef CONFIG_SPARSEMEM
995 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
996 #else
997 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
998 #endif
999 	if (hole_pfn < end_pfn)
1000 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1001 }
1002 
1003 #ifdef CONFIG_ZONE_DEVICE
1004 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1005 					  unsigned long zone_idx, int nid,
1006 					  struct dev_pagemap *pgmap)
1007 {
1008 
1009 	__init_single_page(page, pfn, zone_idx, nid);
1010 
1011 	/*
1012 	 * Mark page reserved as it will need to wait for onlining
1013 	 * phase for it to be fully associated with a zone.
1014 	 *
1015 	 * We can use the non-atomic __set_bit operation for setting
1016 	 * the flag as we are still initializing the pages.
1017 	 */
1018 	__SetPageReserved(page);
1019 
1020 	/*
1021 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1022 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1023 	 * ever freed or placed on a driver-private list.
1024 	 */
1025 	page_folio(page)->pgmap = pgmap;
1026 	page->zone_device_data = NULL;
1027 
1028 	/*
1029 	 * Mark the block movable so that blocks are reserved for
1030 	 * movable at startup. This will force kernel allocations
1031 	 * to reserve their blocks rather than leaking throughout
1032 	 * the address space during boot when many long-lived
1033 	 * kernel allocations are made.
1034 	 *
1035 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1036 	 * because this is done early in section_activate()
1037 	 */
1038 	if (pageblock_aligned(pfn)) {
1039 		init_pageblock_migratetype(page, MIGRATE_MOVABLE, false);
1040 		cond_resched();
1041 	}
1042 
1043 	/*
1044 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1045 	 * directly to the driver page allocator which will set the page count
1046 	 * to 1 when allocating the page.
1047 	 *
1048 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1049 	 * their refcount reset to one whenever they are freed (ie. after
1050 	 * their refcount drops to 0).
1051 	 */
1052 	switch (pgmap->type) {
1053 	case MEMORY_DEVICE_FS_DAX:
1054 	case MEMORY_DEVICE_PRIVATE:
1055 	case MEMORY_DEVICE_COHERENT:
1056 	case MEMORY_DEVICE_PCI_P2PDMA:
1057 		set_page_count(page, 0);
1058 		break;
1059 
1060 	case MEMORY_DEVICE_GENERIC:
1061 		break;
1062 	}
1063 }
1064 
1065 /*
1066  * With compound page geometry and when struct pages are stored in ram most
1067  * tail pages are reused. Consequently, the amount of unique struct pages to
1068  * initialize is a lot smaller that the total amount of struct pages being
1069  * mapped. This is a paired / mild layering violation with explicit knowledge
1070  * of how the sparse_vmemmap internals handle compound pages in the lack
1071  * of an altmap. See vmemmap_populate_compound_pages().
1072  */
1073 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1074 					      struct dev_pagemap *pgmap)
1075 {
1076 	if (!vmemmap_can_optimize(altmap, pgmap))
1077 		return pgmap_vmemmap_nr(pgmap);
1078 
1079 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1080 }
1081 
1082 static void __ref memmap_init_compound(struct page *head,
1083 				       unsigned long head_pfn,
1084 				       unsigned long zone_idx, int nid,
1085 				       struct dev_pagemap *pgmap,
1086 				       unsigned long nr_pages)
1087 {
1088 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1089 	unsigned int order = pgmap->vmemmap_shift;
1090 
1091 	/*
1092 	 * We have to initialize the pages, including setting up page links.
1093 	 * prep_compound_page() does not take care of that, so instead we
1094 	 * open-code prep_compound_page() so we can take care of initializing
1095 	 * the pages in the same go.
1096 	 */
1097 	__SetPageHead(head);
1098 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1099 		struct page *page = pfn_to_page(pfn);
1100 
1101 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1102 		prep_compound_tail(head, pfn - head_pfn);
1103 		set_page_count(page, 0);
1104 	}
1105 	prep_compound_head(head, order);
1106 }
1107 
1108 void __ref memmap_init_zone_device(struct zone *zone,
1109 				   unsigned long start_pfn,
1110 				   unsigned long nr_pages,
1111 				   struct dev_pagemap *pgmap)
1112 {
1113 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1114 	struct pglist_data *pgdat = zone->zone_pgdat;
1115 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1116 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1117 	unsigned long zone_idx = zone_idx(zone);
1118 	unsigned long start = jiffies;
1119 	int nid = pgdat->node_id;
1120 
1121 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1122 		return;
1123 
1124 	/*
1125 	 * The call to memmap_init should have already taken care
1126 	 * of the pages reserved for the memmap, so we can just jump to
1127 	 * the end of that region and start processing the device pages.
1128 	 */
1129 	if (altmap) {
1130 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1131 		nr_pages = end_pfn - start_pfn;
1132 	}
1133 
1134 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1135 		struct page *page = pfn_to_page(pfn);
1136 
1137 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1138 
1139 		if (pfns_per_compound == 1)
1140 			continue;
1141 
1142 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1143 				     compound_nr_pages(altmap, pgmap));
1144 	}
1145 
1146 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1147 		nr_pages, jiffies_to_msecs(jiffies - start));
1148 }
1149 #endif
1150 
1151 /*
1152  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1153  * because it is sized independent of architecture. Unlike the other zones,
1154  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1155  * in each node depending on the size of each node and how evenly kernelcore
1156  * is distributed. This helper function adjusts the zone ranges
1157  * provided by the architecture for a given node by using the end of the
1158  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1159  * zones within a node are in order of monotonic increases memory addresses
1160  */
1161 static void __init adjust_zone_range_for_zone_movable(int nid,
1162 					unsigned long zone_type,
1163 					unsigned long node_end_pfn,
1164 					unsigned long *zone_start_pfn,
1165 					unsigned long *zone_end_pfn)
1166 {
1167 	/* Only adjust if ZONE_MOVABLE is on this node */
1168 	if (zone_movable_pfn[nid]) {
1169 		/* Size ZONE_MOVABLE */
1170 		if (zone_type == ZONE_MOVABLE) {
1171 			*zone_start_pfn = zone_movable_pfn[nid];
1172 			*zone_end_pfn = min(node_end_pfn,
1173 				arch_zone_highest_possible_pfn[movable_zone]);
1174 
1175 		/* Adjust for ZONE_MOVABLE starting within this range */
1176 		} else if (!mirrored_kernelcore &&
1177 			*zone_start_pfn < zone_movable_pfn[nid] &&
1178 			*zone_end_pfn > zone_movable_pfn[nid]) {
1179 			*zone_end_pfn = zone_movable_pfn[nid];
1180 
1181 		/* Check if this whole range is within ZONE_MOVABLE */
1182 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1183 			*zone_start_pfn = *zone_end_pfn;
1184 	}
1185 }
1186 
1187 /*
1188  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1189  * then all holes in the requested range will be accounted for.
1190  */
1191 static unsigned long __init __absent_pages_in_range(int nid,
1192 				unsigned long range_start_pfn,
1193 				unsigned long range_end_pfn)
1194 {
1195 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1196 	unsigned long start_pfn, end_pfn;
1197 	int i;
1198 
1199 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1200 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1201 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1202 		nr_absent -= end_pfn - start_pfn;
1203 	}
1204 	return nr_absent;
1205 }
1206 
1207 /**
1208  * absent_pages_in_range - Return number of page frames in holes within a range
1209  * @start_pfn: The start PFN to start searching for holes
1210  * @end_pfn: The end PFN to stop searching for holes
1211  *
1212  * Return: the number of pages frames in memory holes within a range.
1213  */
1214 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1215 							unsigned long end_pfn)
1216 {
1217 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1218 }
1219 
1220 /* Return the number of page frames in holes in a zone on a node */
1221 static unsigned long __init zone_absent_pages_in_node(int nid,
1222 					unsigned long zone_type,
1223 					unsigned long zone_start_pfn,
1224 					unsigned long zone_end_pfn)
1225 {
1226 	unsigned long nr_absent;
1227 
1228 	/* zone is empty, we don't have any absent pages */
1229 	if (zone_start_pfn == zone_end_pfn)
1230 		return 0;
1231 
1232 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1233 
1234 	/*
1235 	 * ZONE_MOVABLE handling.
1236 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1237 	 * and vice versa.
1238 	 */
1239 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1240 		unsigned long start_pfn, end_pfn;
1241 		struct memblock_region *r;
1242 
1243 		for_each_mem_region(r) {
1244 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1245 					  zone_start_pfn, zone_end_pfn);
1246 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1247 					zone_start_pfn, zone_end_pfn);
1248 
1249 			if (zone_type == ZONE_MOVABLE &&
1250 			    memblock_is_mirror(r))
1251 				nr_absent += end_pfn - start_pfn;
1252 
1253 			if (zone_type == ZONE_NORMAL &&
1254 			    !memblock_is_mirror(r))
1255 				nr_absent += end_pfn - start_pfn;
1256 		}
1257 	}
1258 
1259 	return nr_absent;
1260 }
1261 
1262 /*
1263  * Return the number of pages a zone spans in a node, including holes
1264  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1265  */
1266 static unsigned long __init zone_spanned_pages_in_node(int nid,
1267 					unsigned long zone_type,
1268 					unsigned long node_start_pfn,
1269 					unsigned long node_end_pfn,
1270 					unsigned long *zone_start_pfn,
1271 					unsigned long *zone_end_pfn)
1272 {
1273 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1274 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1275 
1276 	/* Get the start and end of the zone */
1277 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1278 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1279 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1280 					   zone_start_pfn, zone_end_pfn);
1281 
1282 	/* Check that this node has pages within the zone's required range */
1283 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1284 		return 0;
1285 
1286 	/* Move the zone boundaries inside the node if necessary */
1287 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1288 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1289 
1290 	/* Return the spanned pages */
1291 	return *zone_end_pfn - *zone_start_pfn;
1292 }
1293 
1294 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1295 {
1296 	struct zone *z;
1297 
1298 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1299 		z->zone_start_pfn = 0;
1300 		z->spanned_pages = 0;
1301 		z->present_pages = 0;
1302 #if defined(CONFIG_MEMORY_HOTPLUG)
1303 		z->present_early_pages = 0;
1304 #endif
1305 	}
1306 
1307 	pgdat->node_spanned_pages = 0;
1308 	pgdat->node_present_pages = 0;
1309 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1310 }
1311 
1312 static void __init calc_nr_kernel_pages(void)
1313 {
1314 	unsigned long start_pfn, end_pfn;
1315 	phys_addr_t start_addr, end_addr;
1316 	u64 u;
1317 #ifdef CONFIG_HIGHMEM
1318 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1319 #endif
1320 
1321 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1322 		start_pfn = PFN_UP(start_addr);
1323 		end_pfn   = PFN_DOWN(end_addr);
1324 
1325 		if (start_pfn < end_pfn) {
1326 			nr_all_pages += end_pfn - start_pfn;
1327 #ifdef CONFIG_HIGHMEM
1328 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1329 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1330 #endif
1331 			nr_kernel_pages += end_pfn - start_pfn;
1332 		}
1333 	}
1334 }
1335 
1336 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1337 						unsigned long node_start_pfn,
1338 						unsigned long node_end_pfn)
1339 {
1340 	unsigned long realtotalpages = 0, totalpages = 0;
1341 	enum zone_type i;
1342 
1343 	for (i = 0; i < MAX_NR_ZONES; i++) {
1344 		struct zone *zone = pgdat->node_zones + i;
1345 		unsigned long zone_start_pfn, zone_end_pfn;
1346 		unsigned long spanned, absent;
1347 		unsigned long real_size;
1348 
1349 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1350 						     node_start_pfn,
1351 						     node_end_pfn,
1352 						     &zone_start_pfn,
1353 						     &zone_end_pfn);
1354 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1355 						   zone_start_pfn,
1356 						   zone_end_pfn);
1357 
1358 		real_size = spanned - absent;
1359 
1360 		if (spanned)
1361 			zone->zone_start_pfn = zone_start_pfn;
1362 		else
1363 			zone->zone_start_pfn = 0;
1364 		zone->spanned_pages = spanned;
1365 		zone->present_pages = real_size;
1366 #if defined(CONFIG_MEMORY_HOTPLUG)
1367 		zone->present_early_pages = real_size;
1368 #endif
1369 
1370 		totalpages += spanned;
1371 		realtotalpages += real_size;
1372 	}
1373 
1374 	pgdat->node_spanned_pages = totalpages;
1375 	pgdat->node_present_pages = realtotalpages;
1376 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1377 }
1378 
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1381 {
1382 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1383 
1384 	spin_lock_init(&ds_queue->split_queue_lock);
1385 	INIT_LIST_HEAD(&ds_queue->split_queue);
1386 	ds_queue->split_queue_len = 0;
1387 }
1388 #else
1389 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1390 #endif
1391 
1392 #ifdef CONFIG_COMPACTION
1393 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1394 {
1395 	init_waitqueue_head(&pgdat->kcompactd_wait);
1396 }
1397 #else
1398 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1399 #endif
1400 
1401 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1402 {
1403 	int i;
1404 
1405 	pgdat_resize_init(pgdat);
1406 	pgdat_kswapd_lock_init(pgdat);
1407 
1408 	pgdat_init_split_queue(pgdat);
1409 	pgdat_init_kcompactd(pgdat);
1410 
1411 	init_waitqueue_head(&pgdat->kswapd_wait);
1412 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1413 
1414 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1415 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1416 
1417 	pgdat_page_ext_init(pgdat);
1418 	lruvec_init(&pgdat->__lruvec);
1419 }
1420 
1421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1422 							unsigned long remaining_pages)
1423 {
1424 	atomic_long_set(&zone->managed_pages, remaining_pages);
1425 	zone_set_nid(zone, nid);
1426 	zone->name = zone_names[idx];
1427 	zone->zone_pgdat = NODE_DATA(nid);
1428 	spin_lock_init(&zone->lock);
1429 	zone_seqlock_init(zone);
1430 	zone_pcp_init(zone);
1431 }
1432 
1433 static void __meminit zone_init_free_lists(struct zone *zone)
1434 {
1435 	unsigned int order, t;
1436 	for_each_migratetype_order(order, t) {
1437 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1438 		zone->free_area[order].nr_free = 0;
1439 	}
1440 
1441 #ifdef CONFIG_UNACCEPTED_MEMORY
1442 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1443 #endif
1444 }
1445 
1446 void __meminit init_currently_empty_zone(struct zone *zone,
1447 					unsigned long zone_start_pfn,
1448 					unsigned long size)
1449 {
1450 	struct pglist_data *pgdat = zone->zone_pgdat;
1451 	int zone_idx = zone_idx(zone) + 1;
1452 
1453 	if (zone_idx > pgdat->nr_zones)
1454 		pgdat->nr_zones = zone_idx;
1455 
1456 	zone->zone_start_pfn = zone_start_pfn;
1457 
1458 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1459 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1460 			pgdat->node_id,
1461 			(unsigned long)zone_idx(zone),
1462 			zone_start_pfn, (zone_start_pfn + size));
1463 
1464 	zone_init_free_lists(zone);
1465 	zone->initialized = 1;
1466 }
1467 
1468 #ifndef CONFIG_SPARSEMEM
1469 /*
1470  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1471  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1472  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1473  * round what is now in bits to nearest long in bits, then return it in
1474  * bytes.
1475  */
1476 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1477 {
1478 	unsigned long usemapsize;
1479 
1480 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1481 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1482 	usemapsize = usemapsize >> pageblock_order;
1483 	usemapsize *= NR_PAGEBLOCK_BITS;
1484 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1485 
1486 	return usemapsize / BITS_PER_BYTE;
1487 }
1488 
1489 static void __ref setup_usemap(struct zone *zone)
1490 {
1491 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1492 					       zone->spanned_pages);
1493 	zone->pageblock_flags = NULL;
1494 	if (usemapsize) {
1495 		zone->pageblock_flags =
1496 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1497 					    zone_to_nid(zone));
1498 		if (!zone->pageblock_flags)
1499 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1500 			      usemapsize, zone->name, zone_to_nid(zone));
1501 	}
1502 }
1503 #else
1504 static inline void setup_usemap(struct zone *zone) {}
1505 #endif /* CONFIG_SPARSEMEM */
1506 
1507 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1508 
1509 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1510 void __init set_pageblock_order(void)
1511 {
1512 	unsigned int order = PAGE_BLOCK_MAX_ORDER;
1513 
1514 	/* Check that pageblock_nr_pages has not already been setup */
1515 	if (pageblock_order)
1516 		return;
1517 
1518 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1519 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1520 		order = HUGETLB_PAGE_ORDER;
1521 
1522 	/*
1523 	 * Assume the largest contiguous order of interest is a huge page.
1524 	 * This value may be variable depending on boot parameters on powerpc.
1525 	 */
1526 	pageblock_order = order;
1527 }
1528 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1529 
1530 /*
1531  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1532  * is unused as pageblock_order is set at compile-time. See
1533  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1534  * the kernel config
1535  */
1536 void __init set_pageblock_order(void)
1537 {
1538 }
1539 
1540 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1541 
1542 /*
1543  * Set up the zone data structures
1544  * - init pgdat internals
1545  * - init all zones belonging to this node
1546  *
1547  * NOTE: this function is only called during memory hotplug
1548  */
1549 #ifdef CONFIG_MEMORY_HOTPLUG
1550 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1551 {
1552 	int nid = pgdat->node_id;
1553 	enum zone_type z;
1554 	int cpu;
1555 
1556 	pgdat_init_internals(pgdat);
1557 
1558 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1559 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1560 
1561 	/*
1562 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1563 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1564 	 * when it starts in the near future.
1565 	 */
1566 	pgdat->nr_zones = 0;
1567 	pgdat->kswapd_order = 0;
1568 	pgdat->kswapd_highest_zoneidx = 0;
1569 	pgdat->node_start_pfn = 0;
1570 	pgdat->node_present_pages = 0;
1571 
1572 	for_each_online_cpu(cpu) {
1573 		struct per_cpu_nodestat *p;
1574 
1575 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1576 		memset(p, 0, sizeof(*p));
1577 	}
1578 
1579 	/*
1580 	 * When memory is hot-added, all the memory is in offline state. So
1581 	 * clear all zones' present_pages and managed_pages because they will
1582 	 * be updated in online_pages() and offline_pages().
1583 	 */
1584 	for (z = 0; z < MAX_NR_ZONES; z++) {
1585 		struct zone *zone = pgdat->node_zones + z;
1586 
1587 		zone->present_pages = 0;
1588 		zone_init_internals(zone, z, nid, 0);
1589 	}
1590 }
1591 #endif
1592 
1593 static void __init free_area_init_core(struct pglist_data *pgdat)
1594 {
1595 	enum zone_type j;
1596 	int nid = pgdat->node_id;
1597 
1598 	pgdat_init_internals(pgdat);
1599 	pgdat->per_cpu_nodestats = &boot_nodestats;
1600 
1601 	for (j = 0; j < MAX_NR_ZONES; j++) {
1602 		struct zone *zone = pgdat->node_zones + j;
1603 		unsigned long size = zone->spanned_pages;
1604 
1605 		/*
1606 		 * Initialize zone->managed_pages as 0 , it will be reset
1607 		 * when memblock allocator frees pages into buddy system.
1608 		 */
1609 		zone_init_internals(zone, j, nid, zone->present_pages);
1610 
1611 		if (!size)
1612 			continue;
1613 
1614 		setup_usemap(zone);
1615 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1616 	}
1617 }
1618 
1619 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1620 			  phys_addr_t min_addr, int nid, bool exact_nid)
1621 {
1622 	void *ptr;
1623 
1624 	/*
1625 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1626 	 * `struct *page`,so memblock does not need to be added to the scan list.
1627 	 */
1628 	if (exact_nid)
1629 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1630 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1631 						   nid);
1632 	else
1633 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1634 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1635 						 nid);
1636 
1637 	if (ptr && size > 0)
1638 		page_init_poison(ptr, size);
1639 
1640 	return ptr;
1641 }
1642 
1643 #ifdef CONFIG_FLATMEM
1644 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1645 {
1646 	unsigned long start, offset, size, end;
1647 	struct page *map;
1648 
1649 	/* Skip empty nodes */
1650 	if (!pgdat->node_spanned_pages)
1651 		return;
1652 
1653 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1654 	offset = pgdat->node_start_pfn - start;
1655 	/*
1656 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1657 	 * aligned but the node_mem_map endpoints must be in order
1658 	 * for the buddy allocator to function correctly.
1659 	 */
1660 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1661 	size =  (end - start) * sizeof(struct page);
1662 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1663 			   pgdat->node_id, false);
1664 	if (!map)
1665 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1666 		      size, pgdat->node_id);
1667 	pgdat->node_mem_map = map + offset;
1668 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1669 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1670 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1671 		 (unsigned long)pgdat->node_mem_map);
1672 
1673 	/* the global mem_map is just set as node 0's */
1674 	WARN_ON(pgdat != NODE_DATA(0));
1675 
1676 	mem_map = pgdat->node_mem_map;
1677 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1678 		mem_map -= offset;
1679 
1680 	max_mapnr = end - start;
1681 }
1682 #else
1683 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1684 #endif /* CONFIG_FLATMEM */
1685 
1686 /**
1687  * get_pfn_range_for_nid - Return the start and end page frames for a node
1688  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1689  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1690  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1691  *
1692  * It returns the start and end page frame of a node based on information
1693  * provided by memblock_set_node(). If called for a node
1694  * with no available memory, the start and end PFNs will be 0.
1695  */
1696 void __init get_pfn_range_for_nid(unsigned int nid,
1697 			unsigned long *start_pfn, unsigned long *end_pfn)
1698 {
1699 	unsigned long this_start_pfn, this_end_pfn;
1700 	int i;
1701 
1702 	*start_pfn = -1UL;
1703 	*end_pfn = 0;
1704 
1705 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1706 		*start_pfn = min(*start_pfn, this_start_pfn);
1707 		*end_pfn = max(*end_pfn, this_end_pfn);
1708 	}
1709 
1710 	if (*start_pfn == -1UL)
1711 		*start_pfn = 0;
1712 }
1713 
1714 static void __init free_area_init_node(int nid)
1715 {
1716 	pg_data_t *pgdat = NODE_DATA(nid);
1717 	unsigned long start_pfn = 0;
1718 	unsigned long end_pfn = 0;
1719 
1720 	/* pg_data_t should be reset to zero when it's allocated */
1721 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1722 
1723 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1724 
1725 	pgdat->node_id = nid;
1726 	pgdat->node_start_pfn = start_pfn;
1727 	pgdat->per_cpu_nodestats = NULL;
1728 
1729 	if (start_pfn != end_pfn) {
1730 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1731 			(u64)start_pfn << PAGE_SHIFT,
1732 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1733 
1734 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1735 	} else {
1736 		pr_info("Initmem setup node %d as memoryless\n", nid);
1737 
1738 		reset_memoryless_node_totalpages(pgdat);
1739 	}
1740 
1741 	alloc_node_mem_map(pgdat);
1742 	pgdat_set_deferred_range(pgdat);
1743 
1744 	free_area_init_core(pgdat);
1745 	lru_gen_init_pgdat(pgdat);
1746 }
1747 
1748 /* Any regular or high memory on that node? */
1749 static void __init check_for_memory(pg_data_t *pgdat)
1750 {
1751 	enum zone_type zone_type;
1752 
1753 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1754 		struct zone *zone = &pgdat->node_zones[zone_type];
1755 		if (populated_zone(zone)) {
1756 			if (IS_ENABLED(CONFIG_HIGHMEM))
1757 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1758 			if (zone_type <= ZONE_NORMAL)
1759 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1760 			break;
1761 		}
1762 	}
1763 }
1764 
1765 #if MAX_NUMNODES > 1
1766 /*
1767  * Figure out the number of possible node ids.
1768  */
1769 void __init setup_nr_node_ids(void)
1770 {
1771 	unsigned int highest;
1772 
1773 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1774 	nr_node_ids = highest + 1;
1775 }
1776 #endif
1777 
1778 /*
1779  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1780  * such cases we allow max_zone_pfn sorted in the descending order
1781  */
1782 static bool arch_has_descending_max_zone_pfns(void)
1783 {
1784 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1785 }
1786 
1787 static void __init set_high_memory(void)
1788 {
1789 	phys_addr_t highmem = memblock_end_of_DRAM();
1790 
1791 	/*
1792 	 * Some architectures (e.g. ARM) set high_memory very early and
1793 	 * use it in arch setup code.
1794 	 * If an architecture already set high_memory don't overwrite it
1795 	 */
1796 	if (high_memory)
1797 		return;
1798 
1799 #ifdef CONFIG_HIGHMEM
1800 	if (arch_has_descending_max_zone_pfns() ||
1801 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1802 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1803 #endif
1804 
1805 	high_memory = phys_to_virt(highmem - 1) + 1;
1806 }
1807 
1808 /**
1809  * free_area_init - Initialise all pg_data_t and zone data
1810  *
1811  * This will call free_area_init_node() for each active node in the system.
1812  * Using the page ranges provided by memblock_set_node(), the size of each
1813  * zone in each node and their holes is calculated. If the maximum PFN
1814  * between two adjacent zones match, it is assumed that the zone is empty.
1815  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1816  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1817  * starts where the previous one ended. For example, ZONE_DMA32 starts
1818  * at arch_max_dma_pfn.
1819  */
1820 static void __init free_area_init(void)
1821 {
1822 	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
1823 	unsigned long start_pfn, end_pfn;
1824 	int i, nid, zone;
1825 	bool descending;
1826 
1827 	arch_zone_limits_init(max_zone_pfn);
1828 	sparse_init();
1829 
1830 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1831 	descending = arch_has_descending_max_zone_pfns();
1832 
1833 	for (i = 0; i < MAX_NR_ZONES; i++) {
1834 		if (descending)
1835 			zone = MAX_NR_ZONES - i - 1;
1836 		else
1837 			zone = i;
1838 
1839 		if (zone == ZONE_MOVABLE)
1840 			continue;
1841 
1842 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1843 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1844 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1845 
1846 		start_pfn = end_pfn;
1847 	}
1848 
1849 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1850 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1851 	find_zone_movable_pfns_for_nodes();
1852 
1853 	/* Print out the zone ranges */
1854 	pr_info("Zone ranges:\n");
1855 	for (i = 0; i < MAX_NR_ZONES; i++) {
1856 		if (i == ZONE_MOVABLE)
1857 			continue;
1858 		pr_info("  %-8s ", zone_names[i]);
1859 		if (arch_zone_lowest_possible_pfn[i] ==
1860 				arch_zone_highest_possible_pfn[i])
1861 			pr_cont("empty\n");
1862 		else
1863 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1864 				(u64)arch_zone_lowest_possible_pfn[i]
1865 					<< PAGE_SHIFT,
1866 				((u64)arch_zone_highest_possible_pfn[i]
1867 					<< PAGE_SHIFT) - 1);
1868 	}
1869 
1870 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1871 	pr_info("Movable zone start for each node\n");
1872 	for (i = 0; i < MAX_NUMNODES; i++) {
1873 		if (zone_movable_pfn[i])
1874 			pr_info("  Node %d: %#018Lx\n", i,
1875 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1876 	}
1877 
1878 	/*
1879 	 * Print out the early node map, and initialize the
1880 	 * subsection-map relative to active online memory ranges to
1881 	 * enable future "sub-section" extensions of the memory map.
1882 	 */
1883 	pr_info("Early memory node ranges\n");
1884 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1885 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1886 			(u64)start_pfn << PAGE_SHIFT,
1887 			((u64)end_pfn << PAGE_SHIFT) - 1);
1888 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1889 	}
1890 
1891 	/* Initialise every node */
1892 	mminit_verify_pageflags_layout();
1893 	setup_nr_node_ids();
1894 	set_pageblock_order();
1895 
1896 	for_each_node(nid) {
1897 		pg_data_t *pgdat;
1898 
1899 		if (!node_online(nid))
1900 			alloc_offline_node_data(nid);
1901 
1902 		pgdat = NODE_DATA(nid);
1903 		free_area_init_node(nid);
1904 
1905 		/*
1906 		 * No sysfs hierarchy will be created via register_node()
1907 		 *for memory-less node because here it's not marked as N_MEMORY
1908 		 *and won't be set online later. The benefit is userspace
1909 		 *program won't be confused by sysfs files/directories of
1910 		 *memory-less node. The pgdat will get fully initialized by
1911 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1912 		 */
1913 		if (pgdat->node_present_pages) {
1914 			node_set_state(nid, N_MEMORY);
1915 			check_for_memory(pgdat);
1916 		}
1917 	}
1918 
1919 	for_each_node_state(nid, N_MEMORY)
1920 		sparse_vmemmap_init_nid_late(nid);
1921 
1922 	calc_nr_kernel_pages();
1923 	memmap_init();
1924 
1925 	/* disable hash distribution for systems with a single node */
1926 	fixup_hashdist();
1927 
1928 	set_high_memory();
1929 }
1930 
1931 /**
1932  * node_map_pfn_alignment - determine the maximum internode alignment
1933  *
1934  * This function should be called after node map is populated and sorted.
1935  * It calculates the maximum power of two alignment which can distinguish
1936  * all the nodes.
1937  *
1938  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1939  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1940  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1941  * shifted, 1GiB is enough and this function will indicate so.
1942  *
1943  * This is used to test whether pfn -> nid mapping of the chosen memory
1944  * model has fine enough granularity to avoid incorrect mapping for the
1945  * populated node map.
1946  *
1947  * Return: the determined alignment in pfn's.  0 if there is no alignment
1948  * requirement (single node).
1949  */
1950 unsigned long __init node_map_pfn_alignment(void)
1951 {
1952 	unsigned long accl_mask = 0, last_end = 0;
1953 	unsigned long start, end, mask;
1954 	int last_nid = NUMA_NO_NODE;
1955 	int i, nid;
1956 
1957 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1958 		if (!start || last_nid < 0 || last_nid == nid) {
1959 			last_nid = nid;
1960 			last_end = end;
1961 			continue;
1962 		}
1963 
1964 		/*
1965 		 * Start with a mask granular enough to pin-point to the
1966 		 * start pfn and tick off bits one-by-one until it becomes
1967 		 * too coarse to separate the current node from the last.
1968 		 */
1969 		mask = ~((1 << __ffs(start)) - 1);
1970 		while (mask && last_end <= (start & (mask << 1)))
1971 			mask <<= 1;
1972 
1973 		/* accumulate all internode masks */
1974 		accl_mask |= mask;
1975 	}
1976 
1977 	/* convert mask to number of pages */
1978 	return ~accl_mask + 1;
1979 }
1980 
1981 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1982 static void __init deferred_free_pages(unsigned long pfn,
1983 		unsigned long nr_pages)
1984 {
1985 	struct page *page;
1986 	unsigned long i;
1987 
1988 	if (!nr_pages)
1989 		return;
1990 
1991 	page = pfn_to_page(pfn);
1992 
1993 	/* Free a large naturally-aligned chunk if possible */
1994 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1995 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1996 			init_pageblock_migratetype(page + i, MIGRATE_MOVABLE,
1997 					false);
1998 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
1999 		return;
2000 	}
2001 
2002 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2003 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2004 
2005 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2006 		if (pageblock_aligned(pfn))
2007 			init_pageblock_migratetype(page, MIGRATE_MOVABLE,
2008 					false);
2009 		__free_pages_core(page, 0, MEMINIT_EARLY);
2010 	}
2011 }
2012 
2013 /* Completion tracking for deferred_init_memmap() threads */
2014 static atomic_t pgdat_init_n_undone __initdata;
2015 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2016 
2017 static inline void __init pgdat_init_report_one_done(void)
2018 {
2019 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2020 		complete(&pgdat_init_all_done_comp);
2021 }
2022 
2023 /*
2024  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2025  * by performing it only once every MAX_ORDER_NR_PAGES.
2026  * Return number of pages initialized.
2027  */
2028 static unsigned long __init deferred_init_pages(struct zone *zone,
2029 		unsigned long pfn, unsigned long end_pfn)
2030 {
2031 	int nid = zone_to_nid(zone);
2032 	unsigned long nr_pages = end_pfn - pfn;
2033 	int zid = zone_idx(zone);
2034 	struct page *page = pfn_to_page(pfn);
2035 
2036 	for (; pfn < end_pfn; pfn++, page++)
2037 		__init_single_page(page, pfn, zid, nid);
2038 	return nr_pages;
2039 }
2040 
2041 /*
2042  * Initialize and free pages.
2043  *
2044  * At this point reserved pages and struct pages that correspond to holes in
2045  * memblock.memory are already initialized so every free range has a valid
2046  * memory map around it.
2047  * This ensures that access of pages that are ahead of the range being
2048  * initialized (computing buddy page in __free_one_page()) always reads a valid
2049  * struct page.
2050  *
2051  * In order to try and improve CPU cache locality we have the loop broken along
2052  * max page order boundaries.
2053  */
2054 static unsigned long __init
2055 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2056 			   struct zone *zone, bool can_resched)
2057 {
2058 	int nid = zone_to_nid(zone);
2059 	unsigned long nr_pages = 0;
2060 	phys_addr_t start, end;
2061 	u64 i = 0;
2062 
2063 	for_each_free_mem_range(i, nid, 0, &start, &end, NULL) {
2064 		unsigned long spfn = PFN_UP(start);
2065 		unsigned long epfn = PFN_DOWN(end);
2066 
2067 		if (spfn >= end_pfn)
2068 			break;
2069 
2070 		spfn = max(spfn, start_pfn);
2071 		epfn = min(epfn, end_pfn);
2072 
2073 		while (spfn < epfn) {
2074 			unsigned long mo_pfn = ALIGN(spfn + 1, MAX_ORDER_NR_PAGES);
2075 			unsigned long chunk_end = min(mo_pfn, epfn);
2076 
2077 			nr_pages += deferred_init_pages(zone, spfn, chunk_end);
2078 			deferred_free_pages(spfn, chunk_end - spfn);
2079 
2080 			spfn = chunk_end;
2081 
2082 			if (can_resched)
2083 				cond_resched();
2084 			else
2085 				touch_nmi_watchdog();
2086 		}
2087 	}
2088 
2089 	return nr_pages;
2090 }
2091 
2092 static void __init
2093 deferred_init_memmap_job(unsigned long start_pfn, unsigned long end_pfn,
2094 			 void *arg)
2095 {
2096 	struct zone *zone = arg;
2097 
2098 	deferred_init_memmap_chunk(start_pfn, end_pfn, zone, true);
2099 }
2100 
2101 static unsigned int __init
2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2103 {
2104 	return max(cpumask_weight(node_cpumask), 1U);
2105 }
2106 
2107 /* Initialise remaining memory on a node */
2108 static int __init deferred_init_memmap(void *data)
2109 {
2110 	pg_data_t *pgdat = data;
2111 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2112 	int max_threads = deferred_page_init_max_threads(cpumask);
2113 	unsigned long first_init_pfn, last_pfn, flags;
2114 	unsigned long start = jiffies;
2115 	struct zone *zone;
2116 
2117 	/* Bind memory initialisation thread to a local node if possible */
2118 	if (!cpumask_empty(cpumask))
2119 		set_cpus_allowed_ptr(current, cpumask);
2120 
2121 	pgdat_resize_lock(pgdat, &flags);
2122 	first_init_pfn = pgdat->first_deferred_pfn;
2123 	if (first_init_pfn == ULONG_MAX) {
2124 		pgdat_resize_unlock(pgdat, &flags);
2125 		pgdat_init_report_one_done();
2126 		return 0;
2127 	}
2128 
2129 	/* Sanity check boundaries */
2130 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2131 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2132 	pgdat->first_deferred_pfn = ULONG_MAX;
2133 
2134 	/*
2135 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2136 	 * interrupt thread must allocate this early in boot, zone must be
2137 	 * pre-grown prior to start of deferred page initialization.
2138 	 */
2139 	pgdat_resize_unlock(pgdat, &flags);
2140 
2141 	/* Only the highest zone is deferred */
2142 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2143 	last_pfn = SECTION_ALIGN_UP(zone_end_pfn(zone));
2144 
2145 	struct padata_mt_job job = {
2146 		.thread_fn   = deferred_init_memmap_job,
2147 		.fn_arg      = zone,
2148 		.start       = first_init_pfn,
2149 		.size        = last_pfn - first_init_pfn,
2150 		.align       = PAGES_PER_SECTION,
2151 		.min_chunk   = PAGES_PER_SECTION,
2152 		.max_threads = max_threads,
2153 		.numa_aware  = false,
2154 	};
2155 
2156 	padata_do_multithreaded(&job);
2157 
2158 	/* Sanity check that the next zone really is unpopulated */
2159 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2160 
2161 	pr_info("node %d deferred pages initialised in %ums\n",
2162 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2163 
2164 	pgdat_init_report_one_done();
2165 	return 0;
2166 }
2167 
2168 /*
2169  * If this zone has deferred pages, try to grow it by initializing enough
2170  * deferred pages to satisfy the allocation specified by order, rounded up to
2171  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2172  * of SECTION_SIZE bytes by initializing struct pages in increments of
2173  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2174  *
2175  * Return true when zone was grown, otherwise return false. We return true even
2176  * when we grow less than requested, to let the caller decide if there are
2177  * enough pages to satisfy the allocation.
2178  */
2179 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2180 {
2181 	unsigned long nr_pages_needed = SECTION_ALIGN_UP(1 << order);
2182 	pg_data_t *pgdat = zone->zone_pgdat;
2183 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2184 	unsigned long spfn, epfn, flags;
2185 	unsigned long nr_pages = 0;
2186 
2187 	/* Only the last zone may have deferred pages */
2188 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2189 		return false;
2190 
2191 	pgdat_resize_lock(pgdat, &flags);
2192 
2193 	/*
2194 	 * If someone grew this zone while we were waiting for spinlock, return
2195 	 * true, as there might be enough pages already.
2196 	 */
2197 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2198 		pgdat_resize_unlock(pgdat, &flags);
2199 		return true;
2200 	}
2201 
2202 	/*
2203 	 * Initialize at least nr_pages_needed in section chunks.
2204 	 * If a section has less free memory than nr_pages_needed, the next
2205 	 * section will be also initialized.
2206 	 * Note, that it still does not guarantee that allocation of order can
2207 	 * be satisfied if the sections are fragmented because of memblock
2208 	 * allocations.
2209 	 */
2210 	for (spfn = first_deferred_pfn, epfn = SECTION_ALIGN_UP(spfn + 1);
2211 	     nr_pages < nr_pages_needed && spfn < zone_end_pfn(zone);
2212 	     spfn = epfn, epfn += PAGES_PER_SECTION) {
2213 		nr_pages += deferred_init_memmap_chunk(spfn, epfn, zone, false);
2214 	}
2215 
2216 	/*
2217 	 * There were no pages to initialize and free which means the zone's
2218 	 * memory map is completely initialized.
2219 	 */
2220 	pgdat->first_deferred_pfn = nr_pages ? spfn : ULONG_MAX;
2221 
2222 	pgdat_resize_unlock(pgdat, &flags);
2223 
2224 	return nr_pages > 0;
2225 }
2226 
2227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2228 
2229 #ifdef CONFIG_CMA
2230 void __init init_cma_reserved_pageblock(struct page *page)
2231 {
2232 	unsigned i = pageblock_nr_pages;
2233 	struct page *p = page;
2234 
2235 	do {
2236 		__ClearPageReserved(p);
2237 		set_page_count(p, 0);
2238 	} while (++p, --i);
2239 
2240 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2241 	set_page_refcounted(page);
2242 	/* pages were reserved and not allocated */
2243 	clear_page_tag_ref(page);
2244 	__free_pages(page, pageblock_order);
2245 
2246 	adjust_managed_page_count(page, pageblock_nr_pages);
2247 	page_zone(page)->cma_pages += pageblock_nr_pages;
2248 }
2249 /*
2250  * Similar to above, but only set the migrate type and stats.
2251  */
2252 void __init init_cma_pageblock(struct page *page)
2253 {
2254 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2255 	adjust_managed_page_count(page, pageblock_nr_pages);
2256 	page_zone(page)->cma_pages += pageblock_nr_pages;
2257 }
2258 #endif
2259 
2260 void set_zone_contiguous(struct zone *zone)
2261 {
2262 	unsigned long block_start_pfn = zone->zone_start_pfn;
2263 	unsigned long block_end_pfn;
2264 
2265 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2266 	for (; block_start_pfn < zone_end_pfn(zone);
2267 			block_start_pfn = block_end_pfn,
2268 			 block_end_pfn += pageblock_nr_pages) {
2269 
2270 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2271 
2272 		if (!__pageblock_pfn_to_page(block_start_pfn,
2273 					     block_end_pfn, zone))
2274 			return;
2275 		cond_resched();
2276 	}
2277 
2278 	/* We confirm that there is no hole */
2279 	zone->contiguous = true;
2280 }
2281 
2282 /*
2283  * Check if a PFN range intersects multiple zones on one or more
2284  * NUMA nodes. Specify the @nid argument if it is known that this
2285  * PFN range is on one node, NUMA_NO_NODE otherwise.
2286  */
2287 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2288 			   unsigned long nr_pages)
2289 {
2290 	struct zone *zone, *izone = NULL;
2291 
2292 	for_each_zone(zone) {
2293 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2294 			continue;
2295 
2296 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2297 			if (izone != NULL)
2298 				return true;
2299 			izone = zone;
2300 		}
2301 
2302 	}
2303 
2304 	return false;
2305 }
2306 
2307 static void __init mem_init_print_info(void);
2308 void __init page_alloc_init_late(void)
2309 {
2310 	struct zone *zone;
2311 	int nid;
2312 
2313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2314 
2315 	/* There will be num_node_state(N_MEMORY) threads */
2316 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2317 	for_each_node_state(nid, N_MEMORY) {
2318 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2319 	}
2320 
2321 	/* Block until all are initialised */
2322 	wait_for_completion(&pgdat_init_all_done_comp);
2323 
2324 	/*
2325 	 * We initialized the rest of the deferred pages.  Permanently disable
2326 	 * on-demand struct page initialization.
2327 	 */
2328 	static_branch_disable(&deferred_pages);
2329 
2330 	/* Reinit limits that are based on free pages after the kernel is up */
2331 	files_maxfiles_init();
2332 #endif
2333 
2334 	/* Accounting of total+free memory is stable at this point. */
2335 	mem_init_print_info();
2336 	buffer_init();
2337 
2338 	/* Discard memblock private memory */
2339 	memblock_discard();
2340 
2341 	for_each_node_state(nid, N_MEMORY)
2342 		shuffle_free_memory(NODE_DATA(nid));
2343 
2344 	for_each_populated_zone(zone)
2345 		set_zone_contiguous(zone);
2346 
2347 	/* Initialize page ext after all struct pages are initialized. */
2348 	if (deferred_struct_pages)
2349 		page_ext_init();
2350 
2351 	page_alloc_sysctl_init();
2352 }
2353 
2354 /*
2355  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2356  * machines. As memory size is increased the scale is also increased but at
2357  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2358  * quadruples the scale is increased by one, which means the size of hash table
2359  * only doubles, instead of quadrupling as well.
2360  * Because 32-bit systems cannot have large physical memory, where this scaling
2361  * makes sense, it is disabled on such platforms.
2362  */
2363 #if __BITS_PER_LONG > 32
2364 #define ADAPT_SCALE_BASE	(64ul << 30)
2365 #define ADAPT_SCALE_SHIFT	2
2366 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2367 #endif
2368 
2369 /*
2370  * allocate a large system hash table from bootmem
2371  * - it is assumed that the hash table must contain an exact power-of-2
2372  *   quantity of entries
2373  * - limit is the number of hash buckets, not the total allocation size
2374  */
2375 void *__init alloc_large_system_hash(const char *tablename,
2376 				     unsigned long bucketsize,
2377 				     unsigned long numentries,
2378 				     int scale,
2379 				     int flags,
2380 				     unsigned int *_hash_shift,
2381 				     unsigned int *_hash_mask,
2382 				     unsigned long low_limit,
2383 				     unsigned long high_limit)
2384 {
2385 	unsigned long long max = high_limit;
2386 	unsigned long log2qty, size;
2387 	void *table;
2388 	gfp_t gfp_flags;
2389 	bool virt;
2390 	bool huge;
2391 
2392 	/* allow the kernel cmdline to have a say */
2393 	if (!numentries) {
2394 		/* round applicable memory size up to nearest megabyte */
2395 		numentries = nr_kernel_pages;
2396 
2397 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2398 		if (PAGE_SIZE < SZ_1M)
2399 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2400 
2401 #if __BITS_PER_LONG > 32
2402 		if (!high_limit) {
2403 			unsigned long adapt;
2404 
2405 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2406 			     adapt <<= ADAPT_SCALE_SHIFT)
2407 				scale++;
2408 		}
2409 #endif
2410 
2411 		/* limit to 1 bucket per 2^scale bytes of low memory */
2412 		if (scale > PAGE_SHIFT)
2413 			numentries >>= (scale - PAGE_SHIFT);
2414 		else
2415 			numentries <<= (PAGE_SHIFT - scale);
2416 
2417 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2418 			numentries = PAGE_SIZE / bucketsize;
2419 	}
2420 	numentries = roundup_pow_of_two(numentries);
2421 
2422 	/* limit allocation size to 1/16 total memory by default */
2423 	if (max == 0) {
2424 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2425 		do_div(max, bucketsize);
2426 	}
2427 	max = min(max, 0x80000000ULL);
2428 
2429 	if (numentries < low_limit)
2430 		numentries = low_limit;
2431 	if (numentries > max)
2432 		numentries = max;
2433 
2434 	log2qty = ilog2(numentries);
2435 
2436 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2437 	do {
2438 		virt = false;
2439 		size = bucketsize << log2qty;
2440 		if (flags & HASH_EARLY) {
2441 			if (flags & HASH_ZERO)
2442 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2443 			else
2444 				table = memblock_alloc_raw(size,
2445 							   SMP_CACHE_BYTES);
2446 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2447 			table = vmalloc_huge(size, gfp_flags);
2448 			virt = true;
2449 			if (table)
2450 				huge = is_vm_area_hugepages(table);
2451 		} else {
2452 			/*
2453 			 * If bucketsize is not a power-of-two, we may free
2454 			 * some pages at the end of hash table which
2455 			 * alloc_pages_exact() automatically does
2456 			 */
2457 			table = alloc_pages_exact(size, gfp_flags);
2458 			kmemleak_alloc(table, size, 1, gfp_flags);
2459 		}
2460 	} while (!table && size > PAGE_SIZE && --log2qty);
2461 
2462 	if (!table)
2463 		panic("Failed to allocate %s hash table\n", tablename);
2464 
2465 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2466 		tablename, 1UL << log2qty, get_order(size), size,
2467 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2468 
2469 	if (_hash_shift)
2470 		*_hash_shift = log2qty;
2471 	if (_hash_mask)
2472 		*_hash_mask = (1 << log2qty) - 1;
2473 
2474 	return table;
2475 }
2476 
2477 void __init memblock_free_pages(unsigned long pfn, unsigned int order)
2478 {
2479 	struct page *page = pfn_to_page(pfn);
2480 
2481 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2482 		int nid = early_pfn_to_nid(pfn);
2483 
2484 		if (!early_page_initialised(pfn, nid))
2485 			return;
2486 	}
2487 
2488 	if (!kmsan_memblock_free_pages(page, order)) {
2489 		/* KMSAN will take care of these pages. */
2490 		return;
2491 	}
2492 
2493 	/* pages were reserved and not allocated */
2494 	clear_page_tag_ref(page);
2495 	__free_pages_core(page, order, MEMINIT_EARLY);
2496 }
2497 
2498 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2499 EXPORT_SYMBOL(init_on_alloc);
2500 
2501 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2502 EXPORT_SYMBOL(init_on_free);
2503 
2504 static bool _init_on_alloc_enabled_early __read_mostly
2505 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2506 static int __init early_init_on_alloc(char *buf)
2507 {
2508 
2509 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2510 }
2511 early_param("init_on_alloc", early_init_on_alloc);
2512 
2513 static bool _init_on_free_enabled_early __read_mostly
2514 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2515 static int __init early_init_on_free(char *buf)
2516 {
2517 	return kstrtobool(buf, &_init_on_free_enabled_early);
2518 }
2519 early_param("init_on_free", early_init_on_free);
2520 
2521 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2522 
2523 static bool check_pages_enabled_early __initdata;
2524 
2525 static int __init early_check_pages(char *buf)
2526 {
2527 	return kstrtobool(buf, &check_pages_enabled_early);
2528 }
2529 early_param("check_pages", early_check_pages);
2530 
2531 /*
2532  * Enable static keys related to various memory debugging and hardening options.
2533  * Some override others, and depend on early params that are evaluated in the
2534  * order of appearance. So we need to first gather the full picture of what was
2535  * enabled, and then make decisions.
2536  */
2537 static void __init mem_debugging_and_hardening_init(void)
2538 {
2539 	bool page_poisoning_requested = false;
2540 	bool want_check_pages = check_pages_enabled_early;
2541 
2542 #ifdef CONFIG_PAGE_POISONING
2543 	/*
2544 	 * Page poisoning is debug page alloc for some arches. If
2545 	 * either of those options are enabled, enable poisoning.
2546 	 */
2547 	if (page_poisoning_enabled() ||
2548 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2549 	      debug_pagealloc_enabled())) {
2550 		static_branch_enable(&_page_poisoning_enabled);
2551 		page_poisoning_requested = true;
2552 		want_check_pages = true;
2553 	}
2554 #endif
2555 
2556 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2557 	    page_poisoning_requested) {
2558 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2559 			"will take precedence over init_on_alloc and init_on_free\n");
2560 		_init_on_alloc_enabled_early = false;
2561 		_init_on_free_enabled_early = false;
2562 	}
2563 
2564 	if (_init_on_alloc_enabled_early) {
2565 		want_check_pages = true;
2566 		static_branch_enable(&init_on_alloc);
2567 	} else {
2568 		static_branch_disable(&init_on_alloc);
2569 	}
2570 
2571 	if (_init_on_free_enabled_early) {
2572 		want_check_pages = true;
2573 		static_branch_enable(&init_on_free);
2574 	} else {
2575 		static_branch_disable(&init_on_free);
2576 	}
2577 
2578 	if (IS_ENABLED(CONFIG_KMSAN) &&
2579 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2580 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2581 
2582 #ifdef CONFIG_DEBUG_PAGEALLOC
2583 	if (debug_pagealloc_enabled()) {
2584 		want_check_pages = true;
2585 		static_branch_enable(&_debug_pagealloc_enabled);
2586 
2587 		if (debug_guardpage_minorder())
2588 			static_branch_enable(&_debug_guardpage_enabled);
2589 	}
2590 #endif
2591 
2592 	/*
2593 	 * Any page debugging or hardening option also enables sanity checking
2594 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2595 	 * enabled already.
2596 	 */
2597 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2598 		static_branch_enable(&check_pages_enabled);
2599 }
2600 
2601 /* Report memory auto-initialization states for this boot. */
2602 static void __init report_meminit(void)
2603 {
2604 	const char *stack;
2605 
2606 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2607 		stack = "all(pattern)";
2608 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2609 		stack = "all(zero)";
2610 	else
2611 		stack = "off";
2612 
2613 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2614 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2615 		str_on_off(want_init_on_free()));
2616 	if (want_init_on_free())
2617 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2618 }
2619 
2620 static void __init mem_init_print_info(void)
2621 {
2622 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2623 	unsigned long init_code_size, init_data_size;
2624 
2625 	physpages = get_num_physpages();
2626 	codesize = _etext - _stext;
2627 	datasize = _edata - _sdata;
2628 	rosize = __end_rodata - __start_rodata;
2629 	bss_size = __bss_stop - __bss_start;
2630 	init_data_size = __init_end - __init_begin;
2631 	init_code_size = _einittext - _sinittext;
2632 
2633 	/*
2634 	 * Detect special cases and adjust section sizes accordingly:
2635 	 * 1) .init.* may be embedded into .data sections
2636 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2637 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2638 	 * 3) .rodata.* may be embedded into .text or .data sections.
2639 	 */
2640 #define adj_init_size(start, end, size, pos, adj) \
2641 	do { \
2642 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2643 			size -= adj; \
2644 	} while (0)
2645 
2646 	adj_init_size(__init_begin, __init_end, init_data_size,
2647 		     _sinittext, init_code_size);
2648 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2649 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2650 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2651 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2652 
2653 #undef	adj_init_size
2654 
2655 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2656 #ifdef	CONFIG_HIGHMEM
2657 		", %luK highmem"
2658 #endif
2659 		")\n",
2660 		K(nr_free_pages()), K(physpages),
2661 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2662 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2663 		K(physpages - totalram_pages() - totalcma_pages),
2664 		K(totalcma_pages)
2665 #ifdef	CONFIG_HIGHMEM
2666 		, K(totalhigh_pages())
2667 #endif
2668 		);
2669 }
2670 
2671 void __init __weak arch_mm_preinit(void)
2672 {
2673 }
2674 
2675 void __init __weak mem_init(void)
2676 {
2677 }
2678 
2679 void __init mm_core_init_early(void)
2680 {
2681 	hugetlb_cma_reserve();
2682 	hugetlb_bootmem_alloc();
2683 
2684 	free_area_init();
2685 }
2686 
2687 /*
2688  * Set up kernel memory allocators
2689  */
2690 void __init mm_core_init(void)
2691 {
2692 	arch_mm_preinit();
2693 
2694 	/* Initializations relying on SMP setup */
2695 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2696 	build_all_zonelists(NULL);
2697 	page_alloc_init_cpuhp();
2698 	alloc_tag_sec_init();
2699 	/*
2700 	 * page_ext requires contiguous pages,
2701 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2702 	 */
2703 	page_ext_init_flatmem();
2704 	mem_debugging_and_hardening_init();
2705 	kfence_alloc_pool_and_metadata();
2706 	report_meminit();
2707 	kmsan_init_shadow();
2708 	stack_depot_early_init();
2709 
2710 	/*
2711 	 * KHO memory setup must happen while memblock is still active, but
2712 	 * as close as possible to buddy initialization
2713 	 */
2714 	kho_memory_init();
2715 
2716 	memblock_free_all();
2717 	mem_init();
2718 	kmem_cache_init();
2719 	/*
2720 	 * page_owner must be initialized after buddy is ready, and also after
2721 	 * slab is ready so that stack_depot_init() works properly
2722 	 */
2723 	page_ext_init_flatmem_late();
2724 	kmemleak_init();
2725 	ptlock_cache_init();
2726 	pgtable_cache_init();
2727 	debug_objects_mem_init();
2728 	vmalloc_init();
2729 	/* If no deferred init page_ext now, as vmap is fully initialized */
2730 	if (!deferred_struct_pages)
2731 		page_ext_init();
2732 	/* Should be run before the first non-init thread is created */
2733 	init_espfix_bsp();
2734 	/* Should be run after espfix64 is set up. */
2735 	pti_init();
2736 	kmsan_init_runtime();
2737 	mm_cache_init();
2738 	execmem_init();
2739 }
2740