1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include "db8500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS 0x0
147 #define MB2H_AUTO_PWR 0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC 0x0
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230 * Wakeups/IRQs
231 */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354 static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365 } mb0_transfer;
366
367 /*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374 static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384 } mb1_transfer;
385
386 /*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395 static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403 } mb2_transfer;
404
405 /*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411 static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422 static struct {
423 struct mutex lock;
424 struct completion work;
425 } mb4_transfer;
426
427 /*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433 static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457 };
458
459 enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518 };
519
520 struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542 };
543
db8500_prcmu_read(unsigned int reg)544 u32 db8500_prcmu_read(unsigned int reg)
545 {
546 return readl(prcmu_base + reg);
547 }
548
db8500_prcmu_write(unsigned int reg,u32 value)549 void db8500_prcmu_write(unsigned int reg, u32 value)
550 {
551 unsigned long flags;
552
553 spin_lock_irqsave(&prcmu_lock, flags);
554 writel(value, (prcmu_base + reg));
555 spin_unlock_irqrestore(&prcmu_lock, flags);
556 }
557
db8500_prcmu_write_masked(unsigned int reg,u32 mask,u32 value)558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559 {
560 u32 val;
561 unsigned long flags;
562
563 spin_lock_irqsave(&prcmu_lock, flags);
564 val = readl(prcmu_base + reg);
565 val = ((val & ~mask) | (value & mask));
566 writel(val, (prcmu_base + reg));
567 spin_unlock_irqrestore(&prcmu_lock, flags);
568 }
569
prcmu_get_fw_version(void)570 struct prcmu_fw_version *prcmu_get_fw_version(void)
571 {
572 return fw_info.valid ? &fw_info.version : NULL;
573 }
574
prcmu_is_ulppll_disabled(void)575 static bool prcmu_is_ulppll_disabled(void)
576 {
577 struct prcmu_fw_version *ver;
578
579 ver = prcmu_get_fw_version();
580 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581 }
582
prcmu_has_arm_maxopp(void)583 bool prcmu_has_arm_maxopp(void)
584 {
585 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587 }
588
589 /**
590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
591 * @val: Value to be set, i.e. transition requested
592 * Returns: 0 on success, -EINVAL on invalid argument
593 *
594 * This function is used to run the following power state sequences -
595 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596 */
prcmu_set_rc_a2p(enum romcode_write val)597 int prcmu_set_rc_a2p(enum romcode_write val)
598 {
599 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600 return -EINVAL;
601 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602 return 0;
603 }
604
605 /**
606 * prcmu_get_rc_p2a - This function is used to get power state sequences
607 * Returns: the power transition that has last happened
608 *
609 * This function can return the following transitions-
610 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611 */
prcmu_get_rc_p2a(void)612 enum romcode_read prcmu_get_rc_p2a(void)
613 {
614 return readb(tcdm_base + PRCM_ROMCODE_P2A);
615 }
616
617 /**
618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
619 * Returns: Returns the current AP(ARM) power mode: init,
620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621 */
prcmu_get_xp70_current_state(void)622 enum ap_pwrst prcmu_get_xp70_current_state(void)
623 {
624 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625 }
626
627 /**
628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
629 * @clkout: The CLKOUT number (0 or 1).
630 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
631 * @div: The divider to be applied.
632 *
633 * Configures one of the programmable clock outputs (CLKOUTs).
634 * @div should be in the range [1,63] to request a configuration, or 0 to
635 * inform that the configuration is no longer requested.
636 */
prcmu_config_clkout(u8 clkout,u8 source,u8 div)637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638 {
639 static int requests[2];
640 int r = 0;
641 unsigned long flags;
642 u32 val;
643 u32 bits;
644 u32 mask;
645 u32 div_mask;
646
647 BUG_ON(clkout > 1);
648 BUG_ON(div > 63);
649 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650
651 if (!div && !requests[clkout])
652 return -EINVAL;
653
654 if (clkout == 0) {
655 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659 } else {
660 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662 PRCM_CLKOCR_CLK1TYPE);
663 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665 }
666 bits &= mask;
667
668 spin_lock_irqsave(&clkout_lock, flags);
669
670 val = readl(PRCM_CLKOCR);
671 if (val & div_mask) {
672 if (div) {
673 if ((val & mask) != bits) {
674 r = -EBUSY;
675 goto unlock_and_return;
676 }
677 } else {
678 if ((val & mask & ~div_mask) != bits) {
679 r = -EINVAL;
680 goto unlock_and_return;
681 }
682 }
683 }
684 writel((bits | (val & ~mask)), PRCM_CLKOCR);
685 requests[clkout] += (div ? 1 : -1);
686
687 unlock_and_return:
688 spin_unlock_irqrestore(&clkout_lock, flags);
689
690 return r;
691 }
692
db8500_prcmu_set_power_state(u8 state,bool keep_ulp_clk,bool keep_ap_pll)693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694 {
695 unsigned long flags;
696
697 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698
699 spin_lock_irqsave(&mb0_transfer.lock, flags);
700
701 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702 cpu_relax();
703
704 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707 writeb((keep_ulp_clk ? 1 : 0),
708 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711
712 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713
714 return 0;
715 }
716
db8500_prcmu_get_power_state_result(void)717 u8 db8500_prcmu_get_power_state_result(void)
718 {
719 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720 }
721
722 /* This function should only be called while mb0_transfer.lock is held. */
config_wakeups(void)723 static void config_wakeups(void)
724 {
725 const u8 header[2] = {
726 MB0H_CONFIG_WAKEUPS_EXE,
727 MB0H_CONFIG_WAKEUPS_SLEEP
728 };
729 static u32 last_dbb_events;
730 static u32 last_abb_events;
731 u32 dbb_events;
732 u32 abb_events;
733 unsigned int i;
734
735 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737
738 abb_events = mb0_transfer.req.abb_events;
739
740 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741 return;
742
743 for (i = 0; i < 2; i++) {
744 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745 cpu_relax();
746 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750 }
751 last_dbb_events = dbb_events;
752 last_abb_events = abb_events;
753 }
754
db8500_prcmu_enable_wakeups(u32 wakeups)755 void db8500_prcmu_enable_wakeups(u32 wakeups)
756 {
757 unsigned long flags;
758 u32 bits;
759 int i;
760
761 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762
763 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764 if (wakeups & BIT(i))
765 bits |= prcmu_wakeup_bit[i];
766 }
767
768 spin_lock_irqsave(&mb0_transfer.lock, flags);
769
770 mb0_transfer.req.dbb_wakeups = bits;
771 config_wakeups();
772
773 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774 }
775
db8500_prcmu_config_abb_event_readout(u32 abb_events)776 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777 {
778 unsigned long flags;
779
780 spin_lock_irqsave(&mb0_transfer.lock, flags);
781
782 mb0_transfer.req.abb_events = abb_events;
783 config_wakeups();
784
785 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786 }
787
db8500_prcmu_get_abb_event_buffer(void __iomem ** buf)788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789 {
790 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792 else
793 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794 }
795
796 /**
797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798 * @opp: The new ARM operating point to which transition is to be made
799 * Returns: 0 on success, non-zero on failure
800 *
801 * This function sets the operating point of the ARM.
802 */
db8500_prcmu_set_arm_opp(u8 opp)803 int db8500_prcmu_set_arm_opp(u8 opp)
804 {
805 int r;
806
807 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808 return -EINVAL;
809
810 r = 0;
811
812 mutex_lock(&mb1_transfer.lock);
813
814 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815 cpu_relax();
816
817 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820
821 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822 wait_for_completion(&mb1_transfer.work);
823
824 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825 (mb1_transfer.ack.arm_opp != opp))
826 r = -EIO;
827
828 mutex_unlock(&mb1_transfer.lock);
829
830 return r;
831 }
832
833 /**
834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
835 *
836 * Returns: the current ARM OPP
837 */
db8500_prcmu_get_arm_opp(void)838 int db8500_prcmu_get_arm_opp(void)
839 {
840 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841 }
842
843 /**
844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845 *
846 * Returns: the current DDR OPP
847 */
db8500_prcmu_get_ddr_opp(void)848 int db8500_prcmu_get_ddr_opp(void)
849 {
850 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851 }
852
853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
request_even_slower_clocks(bool enable)854 static void request_even_slower_clocks(bool enable)
855 {
856 u32 clock_reg[] = {
857 PRCM_ACLK_MGT,
858 PRCM_DMACLK_MGT
859 };
860 unsigned long flags;
861 unsigned int i;
862
863 spin_lock_irqsave(&clk_mgt_lock, flags);
864
865 /* Grab the HW semaphore. */
866 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867 cpu_relax();
868
869 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870 u32 val;
871 u32 div;
872
873 val = readl(prcmu_base + clock_reg[i]);
874 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875 if (enable) {
876 if ((div <= 1) || (div > 15)) {
877 pr_err("prcmu: Bad clock divider %d in %s\n",
878 div, __func__);
879 goto unlock_and_return;
880 }
881 div <<= 1;
882 } else {
883 if (div <= 2)
884 goto unlock_and_return;
885 div >>= 1;
886 }
887 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889 writel(val, prcmu_base + clock_reg[i]);
890 }
891
892 unlock_and_return:
893 /* Release the HW semaphore. */
894 writel(0, PRCM_SEM);
895
896 spin_unlock_irqrestore(&clk_mgt_lock, flags);
897 }
898
899 /**
900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901 * @opp: The new APE operating point to which transition is to be made
902 * Returns: 0 on success, non-zero on failure
903 *
904 * This function sets the operating point of the APE.
905 */
db8500_prcmu_set_ape_opp(u8 opp)906 int db8500_prcmu_set_ape_opp(u8 opp)
907 {
908 int r = 0;
909
910 if (opp == mb1_transfer.ape_opp)
911 return 0;
912
913 mutex_lock(&mb1_transfer.lock);
914
915 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916 request_even_slower_clocks(false);
917
918 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919 goto skip_message;
920
921 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922 cpu_relax();
923
924 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930 wait_for_completion(&mb1_transfer.work);
931
932 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933 (mb1_transfer.ack.ape_opp != opp))
934 r = -EIO;
935
936 skip_message:
937 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939 request_even_slower_clocks(true);
940 if (!r)
941 mb1_transfer.ape_opp = opp;
942
943 mutex_unlock(&mb1_transfer.lock);
944
945 return r;
946 }
947
948 /**
949 * db8500_prcmu_get_ape_opp - get the current APE OPP
950 *
951 * Returns: the current APE OPP
952 */
db8500_prcmu_get_ape_opp(void)953 int db8500_prcmu_get_ape_opp(void)
954 {
955 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956 }
957
958 /**
959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960 * @enable: true to request the higher voltage, false to drop a request.
961 *
962 * Calls to this function to enable and disable requests must be balanced.
963 */
db8500_prcmu_request_ape_opp_100_voltage(bool enable)964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965 {
966 int r = 0;
967 u8 header;
968 static unsigned int requests;
969
970 mutex_lock(&mb1_transfer.lock);
971
972 if (enable) {
973 if (0 != requests++)
974 goto unlock_and_return;
975 header = MB1H_REQUEST_APE_OPP_100_VOLT;
976 } else {
977 if (requests == 0) {
978 r = -EIO;
979 goto unlock_and_return;
980 } else if (1 != requests--) {
981 goto unlock_and_return;
982 }
983 header = MB1H_RELEASE_APE_OPP_100_VOLT;
984 }
985
986 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987 cpu_relax();
988
989 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990
991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992 wait_for_completion(&mb1_transfer.work);
993
994 if ((mb1_transfer.ack.header != header) ||
995 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996 r = -EIO;
997
998 unlock_and_return:
999 mutex_unlock(&mb1_transfer.lock);
1000
1001 return r;
1002 }
1003
1004 /**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
prcmu_release_usb_wakeup_state(void)1009 int prcmu_release_usb_wakeup_state(void)
1010 {
1011 int r = 0;
1012
1013 mutex_lock(&mb1_transfer.lock);
1014
1015 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016 cpu_relax();
1017
1018 writeb(MB1H_RELEASE_USB_WAKEUP,
1019 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022 wait_for_completion(&mb1_transfer.work);
1023
1024 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026 r = -EIO;
1027
1028 mutex_unlock(&mb1_transfer.lock);
1029
1030 return r;
1031 }
1032
request_pll(u8 clock,bool enable)1033 static int request_pll(u8 clock, bool enable)
1034 {
1035 int r = 0;
1036
1037 if (clock == PRCMU_PLLSOC0)
1038 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039 else if (clock == PRCMU_PLLSOC1)
1040 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041 else
1042 return -EINVAL;
1043
1044 mutex_lock(&mb1_transfer.lock);
1045
1046 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047 cpu_relax();
1048
1049 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053 wait_for_completion(&mb1_transfer.work);
1054
1055 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056 r = -EIO;
1057
1058 mutex_unlock(&mb1_transfer.lock);
1059
1060 return r;
1061 }
1062
1063 /**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
db8500_prcmu_set_epod(u16 epod_id,u8 epod_state)1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072 {
1073 int r = 0;
1074 bool ram_retention = false;
1075 int i;
1076
1077 /* check argument */
1078 BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080 /* set flag if retention is possible */
1081 switch (epod_id) {
1082 case EPOD_ID_SVAMMDSP:
1083 case EPOD_ID_SIAMMDSP:
1084 case EPOD_ID_ESRAM12:
1085 case EPOD_ID_ESRAM34:
1086 ram_retention = true;
1087 break;
1088 }
1089
1090 /* check argument */
1091 BUG_ON(epod_state > EPOD_STATE_ON);
1092 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094 /* get lock */
1095 mutex_lock(&mb2_transfer.lock);
1096
1097 /* wait for mailbox */
1098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099 cpu_relax();
1100
1101 /* fill in mailbox */
1102 for (i = 0; i < NUM_EPOD_ID; i++)
1103 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110 /*
1111 * The current firmware version does not handle errors correctly,
1112 * and we cannot recover if there is an error.
1113 * This is expected to change when the firmware is updated.
1114 */
1115 if (!wait_for_completion_timeout(&mb2_transfer.work,
1116 msecs_to_jiffies(20000))) {
1117 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118 __func__);
1119 r = -EIO;
1120 goto unlock_and_return;
1121 }
1122
1123 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124 r = -EIO;
1125
1126 unlock_and_return:
1127 mutex_unlock(&mb2_transfer.lock);
1128 return r;
1129 }
1130
1131 /**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle: Configuration for ApIdle.
1135 */
prcmu_configure_auto_pm(struct prcmu_auto_pm_config * sleep,struct prcmu_auto_pm_config * idle)1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137 struct prcmu_auto_pm_config *idle)
1138 {
1139 u32 sleep_cfg;
1140 u32 idle_cfg;
1141 unsigned long flags;
1142
1143 BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161 /*
1162 * The autonomous power management configuration is done through
1163 * fields in mailbox 2, but these fields are only used as shared
1164 * variables - i.e. there is no need to send a message.
1165 */
1166 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169 mb2_transfer.auto_pm_enabled =
1170 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176 }
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
prcmu_is_auto_pm_enabled(void)1179 bool prcmu_is_auto_pm_enabled(void)
1180 {
1181 return mb2_transfer.auto_pm_enabled;
1182 }
1183
request_sysclk(bool enable)1184 static int request_sysclk(bool enable)
1185 {
1186 int r;
1187 unsigned long flags;
1188
1189 r = 0;
1190
1191 mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193 spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196 cpu_relax();
1197
1198 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205 /*
1206 * The firmware only sends an ACK if we want to enable the
1207 * SysClk, and it succeeds.
1208 */
1209 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210 msecs_to_jiffies(20000))) {
1211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212 __func__);
1213 r = -EIO;
1214 }
1215
1216 mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218 return r;
1219 }
1220
request_timclk(bool enable)1221 static int request_timclk(bool enable)
1222 {
1223 u32 val;
1224
1225 /*
1226 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227 * PLL is disabled so we cannot use doze mode, this will
1228 * stop the clock on this firmware.
1229 */
1230 if (prcmu_is_ulppll_disabled())
1231 val = 0;
1232 else
1233 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235 if (!enable)
1236 val |= PRCM_TCR_STOP_TIMERS |
1237 PRCM_TCR_DOZE_MODE |
1238 PRCM_TCR_TENSEL_MASK;
1239
1240 writel(val, PRCM_TCR);
1241
1242 return 0;
1243 }
1244
request_clock(u8 clock,bool enable)1245 static int request_clock(u8 clock, bool enable)
1246 {
1247 u32 val;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252 /* Grab the HW semaphore. */
1253 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254 cpu_relax();
1255
1256 val = readl(prcmu_base + clk_mgt[clock].offset);
1257 if (enable) {
1258 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259 } else {
1260 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 }
1263 writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265 /* Release the HW semaphore. */
1266 writel(0, PRCM_SEM);
1267
1268 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270 return 0;
1271 }
1272
request_sga_clock(u8 clock,bool enable)1273 static int request_sga_clock(u8 clock, bool enable)
1274 {
1275 u32 val;
1276 int ret;
1277
1278 if (enable) {
1279 val = readl(PRCM_CGATING_BYPASS);
1280 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281 }
1282
1283 ret = request_clock(clock, enable);
1284
1285 if (!ret && !enable) {
1286 val = readl(PRCM_CGATING_BYPASS);
1287 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288 }
1289
1290 return ret;
1291 }
1292
plldsi_locked(void)1293 static inline bool plldsi_locked(void)
1294 {
1295 return (readl(PRCM_PLLDSI_LOCKP) &
1296 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300 }
1301
request_plldsi(bool enable)1302 static int request_plldsi(bool enable)
1303 {
1304 int r = 0;
1305 u32 val;
1306
1307 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311 val = readl(PRCM_PLLDSI_ENABLE);
1312 if (enable)
1313 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314 else
1315 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316 writel(val, PRCM_PLLDSI_ENABLE);
1317
1318 if (enable) {
1319 unsigned int i;
1320 bool locked = plldsi_locked();
1321
1322 for (i = 10; !locked && (i > 0); --i) {
1323 udelay(100);
1324 locked = plldsi_locked();
1325 }
1326 if (locked) {
1327 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328 PRCM_APE_RESETN_SET);
1329 } else {
1330 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332 PRCM_MMIP_LS_CLAMP_SET);
1333 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334 writel(val, PRCM_PLLDSI_ENABLE);
1335 r = -EAGAIN;
1336 }
1337 } else {
1338 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339 }
1340 return r;
1341 }
1342
request_dsiclk(u8 n,bool enable)1343 static int request_dsiclk(u8 n, bool enable)
1344 {
1345 u32 val;
1346
1347 val = readl(PRCM_DSI_PLLOUT_SEL);
1348 val &= ~dsiclk[n].divsel_mask;
1349 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350 dsiclk[n].divsel_shift);
1351 writel(val, PRCM_DSI_PLLOUT_SEL);
1352 return 0;
1353 }
1354
request_dsiescclk(u8 n,bool enable)1355 static int request_dsiescclk(u8 n, bool enable)
1356 {
1357 u32 val;
1358
1359 val = readl(PRCM_DSITVCLK_DIV);
1360 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361 writel(val, PRCM_DSITVCLK_DIV);
1362 return 0;
1363 }
1364
1365 /**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock: The clock for which the request is made.
1368 * @enable: Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
db8500_prcmu_request_clock(u8 clock,bool enable)1373 int db8500_prcmu_request_clock(u8 clock, bool enable)
1374 {
1375 if (clock == PRCMU_SGACLK)
1376 return request_sga_clock(clock, enable);
1377 else if (clock < PRCMU_NUM_REG_CLOCKS)
1378 return request_clock(clock, enable);
1379 else if (clock == PRCMU_TIMCLK)
1380 return request_timclk(enable);
1381 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385 else if (clock == PRCMU_PLLDSI)
1386 return request_plldsi(enable);
1387 else if (clock == PRCMU_SYSCLK)
1388 return request_sysclk(enable);
1389 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390 return request_pll(clock, enable);
1391 else
1392 return -EINVAL;
1393 }
1394
pll_rate(void __iomem * reg,unsigned long src_rate,int branch)1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396 int branch)
1397 {
1398 u64 rate;
1399 u32 val;
1400 u32 d;
1401 u32 div = 1;
1402
1403 val = readl(reg);
1404
1405 rate = src_rate;
1406 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409 if (d > 1)
1410 div *= d;
1411
1412 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413 if (d > 1)
1414 div *= d;
1415
1416 if (val & PRCM_PLL_FREQ_SELDIV2)
1417 div *= 2;
1418
1419 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420 (val & PRCM_PLL_FREQ_DIV2EN) &&
1421 ((reg == PRCM_PLLSOC0_FREQ) ||
1422 (reg == PRCM_PLLARM_FREQ) ||
1423 (reg == PRCM_PLLDDR_FREQ))))
1424 div *= 2;
1425
1426 (void)do_div(rate, div);
1427
1428 return (unsigned long)rate;
1429 }
1430
1431 #define ROOT_CLOCK_RATE 38400000
1432
clock_rate(u8 clock)1433 static unsigned long clock_rate(u8 clock)
1434 {
1435 u32 val;
1436 u32 pllsw;
1437 unsigned long rate = ROOT_CLOCK_RATE;
1438
1439 val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441 if (val & PRCM_CLK_MGT_CLK38) {
1442 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443 rate /= 2;
1444 return rate;
1445 }
1446
1447 val |= clk_mgt[clock].pllsw;
1448 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456 else
1457 return 0;
1458
1459 if ((clock == PRCMU_SGACLK) &&
1460 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461 u64 r = (rate * 10);
1462
1463 (void)do_div(r, 25);
1464 return (unsigned long)r;
1465 }
1466 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467 if (val)
1468 return rate / val;
1469 else
1470 return 0;
1471 }
1472
armss_rate(void)1473 static unsigned long armss_rate(void)
1474 {
1475 u32 r;
1476 unsigned long rate;
1477
1478 r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481 /* External ARMCLKFIX clock */
1482
1483 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485 /* Check PRCM_ARM_CHGCLKREQ divider */
1486 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487 rate /= 2;
1488
1489 /* Check PRCM_ARMCLKFIX_MGT divider */
1490 r = readl(PRCM_ARMCLKFIX_MGT);
1491 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492 rate /= r;
1493
1494 } else {/* ARM PLL */
1495 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496 }
1497
1498 return rate;
1499 }
1500
dsiclk_rate(u8 n)1501 static unsigned long dsiclk_rate(u8 n)
1502 {
1503 u32 divsel;
1504 u32 div = 1;
1505
1506 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510 divsel = dsiclk[n].divsel;
1511 else
1512 dsiclk[n].divsel = divsel;
1513
1514 switch (divsel) {
1515 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516 div *= 2;
1517 fallthrough;
1518 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519 div *= 2;
1520 fallthrough;
1521 case PRCM_DSI_PLLOUT_SEL_PHI:
1522 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523 PLL_RAW) / div;
1524 default:
1525 return 0;
1526 }
1527 }
1528
dsiescclk_rate(u8 n)1529 static unsigned long dsiescclk_rate(u8 n)
1530 {
1531 u32 div;
1532
1533 div = readl(PRCM_DSITVCLK_DIV);
1534 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536 }
1537
prcmu_clock_rate(u8 clock)1538 unsigned long prcmu_clock_rate(u8 clock)
1539 {
1540 if (clock < PRCMU_NUM_REG_CLOCKS)
1541 return clock_rate(clock);
1542 else if (clock == PRCMU_TIMCLK)
1543 return prcmu_is_ulppll_disabled() ?
1544 32768 : ROOT_CLOCK_RATE / 16;
1545 else if (clock == PRCMU_SYSCLK)
1546 return ROOT_CLOCK_RATE;
1547 else if (clock == PRCMU_PLLSOC0)
1548 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549 else if (clock == PRCMU_PLLSOC1)
1550 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551 else if (clock == PRCMU_ARMSS)
1552 return armss_rate();
1553 else if (clock == PRCMU_PLLDDR)
1554 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555 else if (clock == PRCMU_PLLDSI)
1556 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557 PLL_RAW);
1558 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562 else
1563 return 0;
1564 }
1565
clock_source_rate(u32 clk_mgt_val,int branch)1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567 {
1568 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569 return ROOT_CLOCK_RATE;
1570 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577 else
1578 return 0;
1579 }
1580
clock_divider(unsigned long src_rate,unsigned long rate)1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582 {
1583 u32 div;
1584
1585 div = (src_rate / rate);
1586 if (div == 0)
1587 return 1;
1588 if (rate < (src_rate / div))
1589 div++;
1590 return div;
1591 }
1592
round_clock_rate(u8 clock,unsigned long rate)1593 static long round_clock_rate(u8 clock, unsigned long rate)
1594 {
1595 u32 val;
1596 u32 div;
1597 unsigned long src_rate;
1598 long rounded_rate;
1599
1600 val = readl(prcmu_base + clk_mgt[clock].offset);
1601 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602 clk_mgt[clock].branch);
1603 div = clock_divider(src_rate, rate);
1604 if (val & PRCM_CLK_MGT_CLK38) {
1605 if (clk_mgt[clock].clk38div) {
1606 if (div > 2)
1607 div = 2;
1608 } else {
1609 div = 1;
1610 }
1611 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612 u64 r = (src_rate * 10);
1613
1614 (void)do_div(r, 25);
1615 if (r <= rate)
1616 return (unsigned long)r;
1617 }
1618 rounded_rate = (src_rate / min(div, (u32)31));
1619
1620 return rounded_rate;
1621 }
1622
1623 static const unsigned long db8500_armss_freqs[] = {
1624 199680000,
1625 399360000,
1626 798720000,
1627 998400000
1628 };
1629
1630 /* The DB8520 has slightly higher ARMSS max frequency */
1631 static const unsigned long db8520_armss_freqs[] = {
1632 199680000,
1633 399360000,
1634 798720000,
1635 1152000000
1636 };
1637
round_armss_rate(unsigned long rate)1638 static long round_armss_rate(unsigned long rate)
1639 {
1640 unsigned long freq = 0;
1641 const unsigned long *freqs;
1642 int nfreqs;
1643 int i;
1644
1645 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646 freqs = db8520_armss_freqs;
1647 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648 } else {
1649 freqs = db8500_armss_freqs;
1650 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651 }
1652
1653 /* Find the corresponding arm opp from the cpufreq table. */
1654 for (i = 0; i < nfreqs; i++) {
1655 freq = freqs[i];
1656 if (rate <= freq)
1657 break;
1658 }
1659
1660 /* Return the last valid value, even if a match was not found. */
1661 return freq;
1662 }
1663
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1666
round_plldsi_rate(unsigned long rate)1667 static long round_plldsi_rate(unsigned long rate)
1668 {
1669 long rounded_rate = 0;
1670 unsigned long src_rate;
1671 unsigned long rem;
1672 u32 r;
1673
1674 src_rate = clock_rate(PRCMU_HDMICLK);
1675 rem = rate;
1676
1677 for (r = 7; (rem > 0) && (r > 0); r--) {
1678 u64 d;
1679
1680 d = (r * rate);
1681 (void)do_div(d, src_rate);
1682 if (d < 6)
1683 d = 6;
1684 else if (d > 255)
1685 d = 255;
1686 d *= src_rate;
1687 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689 continue;
1690 (void)do_div(d, r);
1691 if (rate < d) {
1692 if (rounded_rate == 0)
1693 rounded_rate = (long)d;
1694 break;
1695 }
1696 if ((rate - d) < rem) {
1697 rem = (rate - d);
1698 rounded_rate = (long)d;
1699 }
1700 }
1701 return rounded_rate;
1702 }
1703
round_dsiclk_rate(unsigned long rate)1704 static long round_dsiclk_rate(unsigned long rate)
1705 {
1706 u32 div;
1707 unsigned long src_rate;
1708 long rounded_rate;
1709
1710 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711 PLL_RAW);
1712 div = clock_divider(src_rate, rate);
1713 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715 return rounded_rate;
1716 }
1717
round_dsiescclk_rate(unsigned long rate)1718 static long round_dsiescclk_rate(unsigned long rate)
1719 {
1720 u32 div;
1721 unsigned long src_rate;
1722 long rounded_rate;
1723
1724 src_rate = clock_rate(PRCMU_TVCLK);
1725 div = clock_divider(src_rate, rate);
1726 rounded_rate = (src_rate / min(div, (u32)255));
1727
1728 return rounded_rate;
1729 }
1730
prcmu_round_clock_rate(u8 clock,unsigned long rate)1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732 {
1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return round_clock_rate(clock, rate);
1735 else if (clock == PRCMU_ARMSS)
1736 return round_armss_rate(rate);
1737 else if (clock == PRCMU_PLLDSI)
1738 return round_plldsi_rate(rate);
1739 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740 return round_dsiclk_rate(rate);
1741 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742 return round_dsiescclk_rate(rate);
1743 else
1744 return (long)prcmu_clock_rate(clock);
1745 }
1746
set_clock_rate(u8 clock,unsigned long rate)1747 static void set_clock_rate(u8 clock, unsigned long rate)
1748 {
1749 u32 val;
1750 u32 div;
1751 unsigned long src_rate;
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756 /* Grab the HW semaphore. */
1757 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758 cpu_relax();
1759
1760 val = readl(prcmu_base + clk_mgt[clock].offset);
1761 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762 clk_mgt[clock].branch);
1763 div = clock_divider(src_rate, rate);
1764 if (val & PRCM_CLK_MGT_CLK38) {
1765 if (clk_mgt[clock].clk38div) {
1766 if (div > 1)
1767 val |= PRCM_CLK_MGT_CLK38DIV;
1768 else
1769 val &= ~PRCM_CLK_MGT_CLK38DIV;
1770 }
1771 } else if (clock == PRCMU_SGACLK) {
1772 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774 if (div == 3) {
1775 u64 r = (src_rate * 10);
1776
1777 (void)do_div(r, 25);
1778 if (r <= rate) {
1779 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780 div = 0;
1781 }
1782 }
1783 val |= min(div, (u32)31);
1784 } else {
1785 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786 val |= min(div, (u32)31);
1787 }
1788 writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790 /* Release the HW semaphore. */
1791 writel(0, PRCM_SEM);
1792
1793 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794 }
1795
set_armss_rate(unsigned long rate)1796 static int set_armss_rate(unsigned long rate)
1797 {
1798 unsigned long freq;
1799 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800 const unsigned long *freqs;
1801 int nfreqs;
1802 int i;
1803
1804 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805 freqs = db8520_armss_freqs;
1806 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807 } else {
1808 freqs = db8500_armss_freqs;
1809 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810 }
1811
1812 /* Find the corresponding arm opp from the cpufreq table. */
1813 for (i = 0; i < nfreqs; i++) {
1814 freq = freqs[i];
1815 if (rate == freq)
1816 break;
1817 }
1818
1819 if (rate != freq)
1820 return -EINVAL;
1821
1822 /* Set the new arm opp. */
1823 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824 return db8500_prcmu_set_arm_opp(opps[i]);
1825 }
1826
set_plldsi_rate(unsigned long rate)1827 static int set_plldsi_rate(unsigned long rate)
1828 {
1829 unsigned long src_rate;
1830 unsigned long rem;
1831 u32 pll_freq = 0;
1832 u32 r;
1833
1834 src_rate = clock_rate(PRCMU_HDMICLK);
1835 rem = rate;
1836
1837 for (r = 7; (rem > 0) && (r > 0); r--) {
1838 u64 d;
1839 u64 hwrate;
1840
1841 d = (r * rate);
1842 (void)do_div(d, src_rate);
1843 if (d < 6)
1844 d = 6;
1845 else if (d > 255)
1846 d = 255;
1847 hwrate = (d * src_rate);
1848 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850 continue;
1851 (void)do_div(hwrate, r);
1852 if (rate < hwrate) {
1853 if (pll_freq == 0)
1854 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855 (r << PRCM_PLL_FREQ_R_SHIFT));
1856 break;
1857 }
1858 if ((rate - hwrate) < rem) {
1859 rem = (rate - hwrate);
1860 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861 (r << PRCM_PLL_FREQ_R_SHIFT));
1862 }
1863 }
1864 if (pll_freq == 0)
1865 return -EINVAL;
1866
1867 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868 writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870 return 0;
1871 }
1872
set_dsiclk_rate(u8 n,unsigned long rate)1873 static void set_dsiclk_rate(u8 n, unsigned long rate)
1874 {
1875 u32 val;
1876 u32 div;
1877
1878 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885 val = readl(PRCM_DSI_PLLOUT_SEL);
1886 val &= ~dsiclk[n].divsel_mask;
1887 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888 writel(val, PRCM_DSI_PLLOUT_SEL);
1889 }
1890
set_dsiescclk_rate(u8 n,unsigned long rate)1891 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892 {
1893 u32 val;
1894 u32 div;
1895
1896 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897 val = readl(PRCM_DSITVCLK_DIV);
1898 val &= ~dsiescclk[n].div_mask;
1899 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900 writel(val, PRCM_DSITVCLK_DIV);
1901 }
1902
prcmu_set_clock_rate(u8 clock,unsigned long rate)1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904 {
1905 if (clock < PRCMU_NUM_REG_CLOCKS)
1906 set_clock_rate(clock, rate);
1907 else if (clock == PRCMU_ARMSS)
1908 return set_armss_rate(rate);
1909 else if (clock == PRCMU_PLLDSI)
1910 return set_plldsi_rate(rate);
1911 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915 return 0;
1916 }
1917
db8500_prcmu_config_esram0_deep_sleep(u8 state)1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919 {
1920 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922 return -EINVAL;
1923
1924 mutex_lock(&mb4_transfer.lock);
1925
1926 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927 cpu_relax();
1928
1929 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932 writeb(DDR_PWR_STATE_ON,
1933 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937 wait_for_completion(&mb4_transfer.work);
1938
1939 mutex_unlock(&mb4_transfer.lock);
1940
1941 return 0;
1942 }
1943
db8500_prcmu_config_hotdog(u8 threshold)1944 int db8500_prcmu_config_hotdog(u8 threshold)
1945 {
1946 mutex_lock(&mb4_transfer.lock);
1947
1948 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949 cpu_relax();
1950
1951 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955 wait_for_completion(&mb4_transfer.work);
1956
1957 mutex_unlock(&mb4_transfer.lock);
1958
1959 return 0;
1960 }
1961
db8500_prcmu_config_hotmon(u8 low,u8 high)1962 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963 {
1964 mutex_lock(&mb4_transfer.lock);
1965
1966 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967 cpu_relax();
1968
1969 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976 wait_for_completion(&mb4_transfer.work);
1977
1978 mutex_unlock(&mb4_transfer.lock);
1979
1980 return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
config_hot_period(u16 val)1984 static int config_hot_period(u16 val)
1985 {
1986 mutex_lock(&mb4_transfer.lock);
1987
1988 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989 cpu_relax();
1990
1991 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995 wait_for_completion(&mb4_transfer.work);
1996
1997 mutex_unlock(&mb4_transfer.lock);
1998
1999 return 0;
2000 }
2001
db8500_prcmu_start_temp_sense(u16 cycles32k)2002 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003 {
2004 if (cycles32k == 0xFFFF)
2005 return -EINVAL;
2006
2007 return config_hot_period(cycles32k);
2008 }
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
db8500_prcmu_stop_temp_sense(void)2011 int db8500_prcmu_stop_temp_sense(void)
2012 {
2013 return config_hot_period(0xFFFF);
2014 }
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
prcmu_a9wdog(u8 cmd,u8 d0,u8 d1,u8 d2,u8 d3)2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018 {
2019
2020 mutex_lock(&mb4_transfer.lock);
2021
2022 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023 cpu_relax();
2024
2025 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033 wait_for_completion(&mb4_transfer.work);
2034
2035 mutex_unlock(&mb4_transfer.lock);
2036
2037 return 0;
2038
2039 }
2040
db8500_prcmu_config_a9wdog(u8 num,bool sleep_auto_off)2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042 {
2043 BUG_ON(num == 0 || num > 0xf);
2044 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046 A9WDOG_AUTO_OFF_DIS);
2047 }
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
db8500_prcmu_enable_a9wdog(u8 id)2050 int db8500_prcmu_enable_a9wdog(u8 id)
2051 {
2052 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053 }
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
db8500_prcmu_disable_a9wdog(u8 id)2056 int db8500_prcmu_disable_a9wdog(u8 id)
2057 {
2058 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059 }
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
db8500_prcmu_kick_a9wdog(u8 id)2062 int db8500_prcmu_kick_a9wdog(u8 id)
2063 {
2064 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065 }
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068 /*
2069 * timeout is 28 bit, in ms.
2070 */
db8500_prcmu_load_a9wdog(u8 id,u32 timeout)2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072 {
2073 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074 (id & A9WDOG_ID_MASK) |
2075 /*
2076 * Put the lowest 28 bits of timeout at
2077 * offset 4. Four first bits are used for id.
2078 */
2079 (u8)((timeout << 4) & 0xf0),
2080 (u8)((timeout >> 4) & 0xff),
2081 (u8)((timeout >> 12) & 0xff),
2082 (u8)((timeout >> 20) & 0xff));
2083 }
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086 /**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave: The I2C slave address.
2089 * @reg: The (start) register address.
2090 * @value: The read out value(s).
2091 * @size: The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
prcmu_abb_read(u8 slave,u8 reg,u8 * value,u8 size)2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097 {
2098 int r;
2099
2100 if (size != 1)
2101 return -EINVAL;
2102
2103 mutex_lock(&mb5_transfer.lock);
2104
2105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106 cpu_relax();
2107
2108 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116 if (!wait_for_completion_timeout(&mb5_transfer.work,
2117 msecs_to_jiffies(20000))) {
2118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119 __func__);
2120 r = -EIO;
2121 } else {
2122 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123 }
2124
2125 if (!r)
2126 *value = mb5_transfer.ack.value;
2127
2128 mutex_unlock(&mb5_transfer.lock);
2129
2130 return r;
2131 }
2132
2133 /**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave: The I2C slave address.
2136 * @reg: The (start) register address.
2137 * @value: The value(s) to write.
2138 * @mask: The mask(s) to use.
2139 * @size: The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
prcmu_abb_write_masked(u8 slave,u8 reg,u8 * value,u8 * mask,u8 size)2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147 {
2148 int r;
2149
2150 if (size != 1)
2151 return -EINVAL;
2152
2153 mutex_lock(&mb5_transfer.lock);
2154
2155 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156 cpu_relax();
2157
2158 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166 if (!wait_for_completion_timeout(&mb5_transfer.work,
2167 msecs_to_jiffies(20000))) {
2168 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169 __func__);
2170 r = -EIO;
2171 } else {
2172 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173 }
2174
2175 mutex_unlock(&mb5_transfer.lock);
2176
2177 return r;
2178 }
2179
2180 /**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave: The I2C slave address.
2183 * @reg: The (start) register address.
2184 * @value: The value(s) to write.
2185 * @size: The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
prcmu_abb_write(u8 slave,u8 reg,u8 * value,u8 size)2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191 {
2192 u8 mask = ~0;
2193
2194 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195 }
2196
2197 /**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
prcmu_ac_wake_req(void)2200 int prcmu_ac_wake_req(void)
2201 {
2202 u32 val;
2203 int ret = 0;
2204
2205 mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207 val = readl(PRCM_HOSTACCESS_REQ);
2208 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209 goto unlock_and_return;
2210
2211 atomic_set(&ac_wake_req_state, 1);
2212
2213 /*
2214 * Force Modem Wake-up before hostaccess_req ping-pong.
2215 * It prevents Modem to enter in Sleep while acking the hostaccess
2216 * request. The 31us delay has been calculated by HWI.
2217 */
2218 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219 writel(val, PRCM_HOSTACCESS_REQ);
2220
2221 udelay(31);
2222
2223 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224 writel(val, PRCM_HOSTACCESS_REQ);
2225
2226 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227 msecs_to_jiffies(5000))) {
2228 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229 __func__);
2230 ret = -EFAULT;
2231 }
2232
2233 unlock_and_return:
2234 mutex_unlock(&mb0_transfer.ac_wake_lock);
2235 return ret;
2236 }
2237
2238 /**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
prcmu_ac_sleep_req(void)2241 void prcmu_ac_sleep_req(void)
2242 {
2243 u32 val;
2244
2245 mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247 val = readl(PRCM_HOSTACCESS_REQ);
2248 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249 goto unlock_and_return;
2250
2251 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252 PRCM_HOSTACCESS_REQ);
2253
2254 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255 msecs_to_jiffies(5000))) {
2256 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257 __func__);
2258 }
2259
2260 atomic_set(&ac_wake_req_state, 0);
2261
2262 unlock_and_return:
2263 mutex_unlock(&mb0_transfer.ac_wake_lock);
2264 }
2265
db8500_prcmu_is_ac_wake_requested(void)2266 bool db8500_prcmu_is_ac_wake_requested(void)
2267 {
2268 return (atomic_read(&ac_wake_req_state) != 0);
2269 }
2270
2271 /**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
db8500_prcmu_system_reset(u16 reset_code)2279 void db8500_prcmu_system_reset(u16 reset_code)
2280 {
2281 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282 writel(1, PRCM_APE_SOFTRST);
2283 }
2284
2285 /**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
db8500_prcmu_get_reset_code(void)2291 u16 db8500_prcmu_get_reset_code(void)
2292 {
2293 return readw(tcdm_base + PRCM_SW_RST_REASON);
2294 }
2295
2296 /**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
db8500_prcmu_modem_reset(void)2299 void db8500_prcmu_modem_reset(void)
2300 {
2301 mutex_lock(&mb1_transfer.lock);
2302
2303 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304 cpu_relax();
2305
2306 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308 wait_for_completion(&mb1_transfer.work);
2309
2310 /*
2311 * No need to check return from PRCMU as modem should go in reset state
2312 * This state is already managed by upper layer
2313 */
2314
2315 mutex_unlock(&mb1_transfer.lock);
2316 }
2317
ack_dbb_wakeup(void)2318 static void ack_dbb_wakeup(void)
2319 {
2320 unsigned long flags;
2321
2322 spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325 cpu_relax();
2326
2327 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331 }
2332
print_unknown_header_warning(u8 n,u8 header)2333 static inline void print_unknown_header_warning(u8 n, u8 header)
2334 {
2335 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336 header, n);
2337 }
2338
read_mailbox_0(void)2339 static bool read_mailbox_0(void)
2340 {
2341 bool r;
2342 u32 ev;
2343 unsigned int n;
2344 u8 header;
2345
2346 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347 switch (header) {
2348 case MB0H_WAKEUP_EXE:
2349 case MB0H_WAKEUP_SLEEP:
2350 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352 else
2353 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356 complete(&mb0_transfer.ac_wake_work);
2357 if (ev & WAKEUP_BIT_SYSCLK_OK)
2358 complete(&mb3_transfer.sysclk_work);
2359
2360 ev &= mb0_transfer.req.dbb_irqs;
2361
2362 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363 if (ev & prcmu_irq_bit[n])
2364 generic_handle_domain_irq(db8500_irq_domain, n);
2365 }
2366 r = true;
2367 break;
2368 default:
2369 print_unknown_header_warning(0, header);
2370 r = false;
2371 break;
2372 }
2373 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374 return r;
2375 }
2376
read_mailbox_1(void)2377 static bool read_mailbox_1(void)
2378 {
2379 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383 PRCM_ACK_MB1_CURRENT_APE_OPP);
2384 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387 complete(&mb1_transfer.work);
2388 return false;
2389 }
2390
read_mailbox_2(void)2391 static bool read_mailbox_2(void)
2392 {
2393 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395 complete(&mb2_transfer.work);
2396 return false;
2397 }
2398
read_mailbox_3(void)2399 static bool read_mailbox_3(void)
2400 {
2401 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402 return false;
2403 }
2404
read_mailbox_4(void)2405 static bool read_mailbox_4(void)
2406 {
2407 u8 header;
2408 bool do_complete = true;
2409
2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411 switch (header) {
2412 case MB4H_MEM_ST:
2413 case MB4H_HOTDOG:
2414 case MB4H_HOTMON:
2415 case MB4H_HOT_PERIOD:
2416 case MB4H_A9WDOG_CONF:
2417 case MB4H_A9WDOG_EN:
2418 case MB4H_A9WDOG_DIS:
2419 case MB4H_A9WDOG_LOAD:
2420 case MB4H_A9WDOG_KICK:
2421 break;
2422 default:
2423 print_unknown_header_warning(4, header);
2424 do_complete = false;
2425 break;
2426 }
2427
2428 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430 if (do_complete)
2431 complete(&mb4_transfer.work);
2432
2433 return false;
2434 }
2435
read_mailbox_5(void)2436 static bool read_mailbox_5(void)
2437 {
2438 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441 complete(&mb5_transfer.work);
2442 return false;
2443 }
2444
read_mailbox_6(void)2445 static bool read_mailbox_6(void)
2446 {
2447 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448 return false;
2449 }
2450
read_mailbox_7(void)2451 static bool read_mailbox_7(void)
2452 {
2453 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454 return false;
2455 }
2456
2457 static bool (* const read_mailbox[NUM_MB])(void) = {
2458 read_mailbox_0,
2459 read_mailbox_1,
2460 read_mailbox_2,
2461 read_mailbox_3,
2462 read_mailbox_4,
2463 read_mailbox_5,
2464 read_mailbox_6,
2465 read_mailbox_7
2466 };
2467
prcmu_irq_handler(int irq,void * data)2468 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469 {
2470 u32 bits;
2471 u8 n;
2472 irqreturn_t r;
2473
2474 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475 if (unlikely(!bits))
2476 return IRQ_NONE;
2477
2478 r = IRQ_HANDLED;
2479 for (n = 0; bits; n++) {
2480 if (bits & MBOX_BIT(n)) {
2481 bits -= MBOX_BIT(n);
2482 if (read_mailbox[n]())
2483 r = IRQ_WAKE_THREAD;
2484 }
2485 }
2486 return r;
2487 }
2488
prcmu_irq_thread_fn(int irq,void * data)2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490 {
2491 ack_dbb_wakeup();
2492 return IRQ_HANDLED;
2493 }
2494
prcmu_mask_work(struct work_struct * work)2495 static void prcmu_mask_work(struct work_struct *work)
2496 {
2497 unsigned long flags;
2498
2499 spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501 config_wakeups();
2502
2503 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504 }
2505
prcmu_irq_mask(struct irq_data * d)2506 static void prcmu_irq_mask(struct irq_data *d)
2507 {
2508 unsigned long flags;
2509
2510 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517 schedule_work(&mb0_transfer.mask_work);
2518 }
2519
prcmu_irq_unmask(struct irq_data * d)2520 static void prcmu_irq_unmask(struct irq_data *d)
2521 {
2522 unsigned long flags;
2523
2524 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531 schedule_work(&mb0_transfer.mask_work);
2532 }
2533
noop(struct irq_data * d)2534 static void noop(struct irq_data *d)
2535 {
2536 }
2537
2538 static struct irq_chip prcmu_irq_chip = {
2539 .name = "prcmu",
2540 .irq_disable = prcmu_irq_mask,
2541 .irq_ack = noop,
2542 .irq_mask = prcmu_irq_mask,
2543 .irq_unmask = prcmu_irq_unmask,
2544 };
2545
fw_project_name(u32 project)2546 static char *fw_project_name(u32 project)
2547 {
2548 switch (project) {
2549 case PRCMU_FW_PROJECT_U8500:
2550 return "U8500";
2551 case PRCMU_FW_PROJECT_U8400:
2552 return "U8400";
2553 case PRCMU_FW_PROJECT_U9500:
2554 return "U9500";
2555 case PRCMU_FW_PROJECT_U8500_MBB:
2556 return "U8500 MBB";
2557 case PRCMU_FW_PROJECT_U8500_C1:
2558 return "U8500 C1";
2559 case PRCMU_FW_PROJECT_U8500_C2:
2560 return "U8500 C2";
2561 case PRCMU_FW_PROJECT_U8500_C3:
2562 return "U8500 C3";
2563 case PRCMU_FW_PROJECT_U8500_C4:
2564 return "U8500 C4";
2565 case PRCMU_FW_PROJECT_U9500_MBL:
2566 return "U9500 MBL";
2567 case PRCMU_FW_PROJECT_U8500_SSG1:
2568 return "U8500 Samsung 1";
2569 case PRCMU_FW_PROJECT_U8500_MBL2:
2570 return "U8500 MBL2";
2571 case PRCMU_FW_PROJECT_U8520:
2572 return "U8520 MBL";
2573 case PRCMU_FW_PROJECT_U8420:
2574 return "U8420";
2575 case PRCMU_FW_PROJECT_U8500_SSG2:
2576 return "U8500 Samsung 2";
2577 case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578 return "U8420-sysclk";
2579 case PRCMU_FW_PROJECT_U9540:
2580 return "U9540";
2581 case PRCMU_FW_PROJECT_A9420:
2582 return "A9420";
2583 case PRCMU_FW_PROJECT_L8540:
2584 return "L8540";
2585 case PRCMU_FW_PROJECT_L8580:
2586 return "L8580";
2587 default:
2588 return "Unknown";
2589 }
2590 }
2591
db8500_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hwirq)2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593 irq_hw_number_t hwirq)
2594 {
2595 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596 handle_simple_irq);
2597
2598 return 0;
2599 }
2600
2601 static const struct irq_domain_ops db8500_irq_ops = {
2602 .map = db8500_irq_map,
2603 .xlate = irq_domain_xlate_twocell,
2604 };
2605
db8500_irq_init(struct device_node * np)2606 static int db8500_irq_init(struct device_node *np)
2607 {
2608 int i;
2609
2610 db8500_irq_domain = irq_domain_add_simple(
2611 np, NUM_PRCMU_WAKEUPS, 0,
2612 &db8500_irq_ops, NULL);
2613
2614 if (!db8500_irq_domain) {
2615 pr_err("Failed to create irqdomain\n");
2616 return -ENOSYS;
2617 }
2618
2619 /* All wakeups will be used, so create mappings for all */
2620 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621 irq_create_mapping(db8500_irq_domain, i);
2622
2623 return 0;
2624 }
2625
dbx500_fw_version_init(struct device_node * np)2626 static void dbx500_fw_version_init(struct device_node *np)
2627 {
2628 void __iomem *tcpm_base;
2629 u32 version;
2630
2631 tcpm_base = of_iomap(np, 1);
2632 if (!tcpm_base) {
2633 pr_err("no prcmu tcpm mem region provided\n");
2634 return;
2635 }
2636
2637 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638 fw_info.version.project = (version & 0xFF);
2639 fw_info.version.api_version = (version >> 8) & 0xFF;
2640 fw_info.version.func_version = (version >> 16) & 0xFF;
2641 fw_info.version.errata = (version >> 24) & 0xFF;
2642 strscpy(fw_info.version.project_name,
2643 fw_project_name(fw_info.version.project),
2644 sizeof(fw_info.version.project_name));
2645 fw_info.valid = true;
2646 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647 fw_info.version.project_name,
2648 fw_info.version.project,
2649 fw_info.version.api_version,
2650 fw_info.version.func_version,
2651 fw_info.version.errata);
2652 iounmap(tcpm_base);
2653 }
2654
db8500_prcmu_early_init(void)2655 void __init db8500_prcmu_early_init(void)
2656 {
2657 /*
2658 * This is a temporary remap to bring up the clocks. It is
2659 * subsequently replaces with a real remap. After the merge of
2660 * the mailbox subsystem all of this early code goes away, and the
2661 * clock driver can probe independently. An early initcall will
2662 * still be needed, but it can be diverted into drivers/clk/ux500.
2663 */
2664 struct device_node *np;
2665
2666 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667 prcmu_base = of_iomap(np, 0);
2668 if (!prcmu_base) {
2669 of_node_put(np);
2670 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671 return;
2672 }
2673 dbx500_fw_version_init(np);
2674 of_node_put(np);
2675
2676 spin_lock_init(&mb0_transfer.lock);
2677 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678 mutex_init(&mb0_transfer.ac_wake_lock);
2679 init_completion(&mb0_transfer.ac_wake_work);
2680 mutex_init(&mb1_transfer.lock);
2681 init_completion(&mb1_transfer.work);
2682 mb1_transfer.ape_opp = APE_NO_CHANGE;
2683 mutex_init(&mb2_transfer.lock);
2684 init_completion(&mb2_transfer.work);
2685 spin_lock_init(&mb2_transfer.auto_pm_lock);
2686 spin_lock_init(&mb3_transfer.lock);
2687 mutex_init(&mb3_transfer.sysclk_lock);
2688 init_completion(&mb3_transfer.sysclk_work);
2689 mutex_init(&mb4_transfer.lock);
2690 init_completion(&mb4_transfer.work);
2691 mutex_init(&mb5_transfer.lock);
2692 init_completion(&mb5_transfer.work);
2693
2694 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695 }
2696
init_prcm_registers(void)2697 static void init_prcm_registers(void)
2698 {
2699 u32 val;
2700
2701 val = readl(PRCM_A9PL_FORCE_CLKEN);
2702 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705 }
2706
2707 /*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711 REGULATOR_SUPPLY("v-ape", NULL),
2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717 /* "v-mmc" changed to "vcore" in the mainline kernel */
2718 REGULATOR_SUPPLY("vcore", "sdi0"),
2719 REGULATOR_SUPPLY("vcore", "sdi1"),
2720 REGULATOR_SUPPLY("vcore", "sdi2"),
2721 REGULATOR_SUPPLY("vcore", "sdi3"),
2722 REGULATOR_SUPPLY("vcore", "sdi4"),
2723 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725 /* "v-uart" changed to "vcore" in the mainline kernel */
2726 REGULATOR_SUPPLY("vcore", "uart0"),
2727 REGULATOR_SUPPLY("vcore", "uart1"),
2728 REGULATOR_SUPPLY("vcore", "uart2"),
2729 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732 };
2733
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736 /* AV8100 regulator */
2737 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738 };
2739
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742 REGULATOR_SUPPLY("vsupply", "mcde"),
2743 };
2744
2745 /* SVA MMDSP regulator switch */
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748 };
2749
2750 /* SVA pipe regulator switch */
2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753 };
2754
2755 /* SIA MMDSP regulator switch */
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758 };
2759
2760 /* SIA pipe regulator switch */
2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763 };
2764
2765 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766 REGULATOR_SUPPLY("v-mali", NULL),
2767 };
2768
2769 /* ESRAM1 and 2 regulator switch */
2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771 REGULATOR_SUPPLY("esram12", "cm_control"),
2772 };
2773
2774 /* ESRAM3 and 4 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776 REGULATOR_SUPPLY("v-esram34", "mcde"),
2777 REGULATOR_SUPPLY("esram34", "cm_control"),
2778 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779 };
2780
2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782 [DB8500_REGULATOR_VAPE] = {
2783 .constraints = {
2784 .name = "db8500-vape",
2785 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786 .always_on = true,
2787 },
2788 .consumer_supplies = db8500_vape_consumers,
2789 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790 },
2791 [DB8500_REGULATOR_VARM] = {
2792 .constraints = {
2793 .name = "db8500-varm",
2794 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795 },
2796 },
2797 [DB8500_REGULATOR_VMODEM] = {
2798 .constraints = {
2799 .name = "db8500-vmodem",
2800 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801 },
2802 },
2803 [DB8500_REGULATOR_VPLL] = {
2804 .constraints = {
2805 .name = "db8500-vpll",
2806 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807 },
2808 },
2809 [DB8500_REGULATOR_VSMPS1] = {
2810 .constraints = {
2811 .name = "db8500-vsmps1",
2812 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813 },
2814 },
2815 [DB8500_REGULATOR_VSMPS2] = {
2816 .constraints = {
2817 .name = "db8500-vsmps2",
2818 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819 },
2820 .consumer_supplies = db8500_vsmps2_consumers,
2821 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822 },
2823 [DB8500_REGULATOR_VSMPS3] = {
2824 .constraints = {
2825 .name = "db8500-vsmps3",
2826 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827 },
2828 },
2829 [DB8500_REGULATOR_VRF1] = {
2830 .constraints = {
2831 .name = "db8500-vrf1",
2832 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833 },
2834 },
2835 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836 /* dependency to u8500-vape is handled outside regulator framework */
2837 .constraints = {
2838 .name = "db8500-sva-mmdsp",
2839 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840 },
2841 .consumer_supplies = db8500_svammdsp_consumers,
2842 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843 },
2844 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845 .constraints = {
2846 /* "ret" means "retention" */
2847 .name = "db8500-sva-mmdsp-ret",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852 /* dependency to u8500-vape is handled outside regulator framework */
2853 .constraints = {
2854 .name = "db8500-sva-pipe",
2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 },
2857 .consumer_supplies = db8500_svapipe_consumers,
2858 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859 },
2860 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861 /* dependency to u8500-vape is handled outside regulator framework */
2862 .constraints = {
2863 .name = "db8500-sia-mmdsp",
2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 },
2866 .consumer_supplies = db8500_siammdsp_consumers,
2867 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868 },
2869 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870 .constraints = {
2871 .name = "db8500-sia-mmdsp-ret",
2872 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873 },
2874 },
2875 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876 /* dependency to u8500-vape is handled outside regulator framework */
2877 .constraints = {
2878 .name = "db8500-sia-pipe",
2879 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880 },
2881 .consumer_supplies = db8500_siapipe_consumers,
2882 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883 },
2884 [DB8500_REGULATOR_SWITCH_SGA] = {
2885 .supply_regulator = "db8500-vape",
2886 .constraints = {
2887 .name = "db8500-sga",
2888 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889 },
2890 .consumer_supplies = db8500_sga_consumers,
2891 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893 },
2894 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895 .supply_regulator = "db8500-vape",
2896 .constraints = {
2897 .name = "db8500-b2r2-mcde",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 },
2900 .consumer_supplies = db8500_b2r2_mcde_consumers,
2901 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902 },
2903 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904 /*
2905 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906 * no need to hold Vape
2907 */
2908 .constraints = {
2909 .name = "db8500-esram12",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
2912 .consumer_supplies = db8500_esram12_consumers,
2913 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914 },
2915 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916 .constraints = {
2917 .name = "db8500-esram12-ret",
2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 },
2920 },
2921 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922 /*
2923 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924 * no need to hold Vape
2925 */
2926 .constraints = {
2927 .name = "db8500-esram34",
2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 },
2930 .consumer_supplies = db8500_esram34_consumers,
2931 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932 },
2933 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934 .constraints = {
2935 .name = "db8500-esram34-ret",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 },
2938 },
2939 };
2940
2941 static const struct mfd_cell common_prcmu_devs[] = {
2942 MFD_CELL_NAME("db8500_wdt"),
2943 MFD_CELL_NAME("db8500-cpuidle"),
2944 };
2945
2946 static const struct mfd_cell db8500_prcmu_devs[] = {
2947 MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948 &db8500_regulators, sizeof(db8500_regulators), 0,
2949 "stericsson,db8500-prcmu-regulator"),
2950 MFD_CELL_OF("db8500-thermal",
2951 NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952 };
2953
db8500_prcmu_register_ab8500(struct device * parent)2954 static int db8500_prcmu_register_ab8500(struct device *parent)
2955 {
2956 struct device_node *np;
2957 struct resource ab850x_resource;
2958 const struct mfd_cell ab8500_cell = {
2959 .name = "ab8500-core",
2960 .of_compatible = "stericsson,ab8500",
2961 .id = AB8500_VERSION_AB8500,
2962 .resources = &ab850x_resource,
2963 .num_resources = 1,
2964 };
2965 const struct mfd_cell ab8505_cell = {
2966 .name = "ab8505-core",
2967 .of_compatible = "stericsson,ab8505",
2968 .id = AB8500_VERSION_AB8505,
2969 .resources = &ab850x_resource,
2970 .num_resources = 1,
2971 };
2972 const struct mfd_cell *ab850x_cell;
2973
2974 if (!parent->of_node)
2975 return -ENODEV;
2976
2977 /* Look up the device node, sneak the IRQ out of it */
2978 for_each_child_of_node(parent->of_node, np) {
2979 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980 ab850x_cell = &ab8500_cell;
2981 break;
2982 }
2983 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984 ab850x_cell = &ab8505_cell;
2985 break;
2986 }
2987 }
2988 if (!np) {
2989 dev_info(parent, "could not find AB850X node in the device tree\n");
2990 return -ENODEV;
2991 }
2992 of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995 }
2996
db8500_prcmu_probe(struct platform_device * pdev)2997 static int db8500_prcmu_probe(struct platform_device *pdev)
2998 {
2999 struct device_node *np = pdev->dev.of_node;
3000 int irq = 0, err = 0;
3001 struct resource *res;
3002
3003 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004 if (!res) {
3005 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006 return -EINVAL;
3007 }
3008 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009 if (!prcmu_base) {
3010 dev_err(&pdev->dev,
3011 "failed to ioremap prcmu register memory\n");
3012 return -ENOMEM;
3013 }
3014 init_prcm_registers();
3015 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016 if (!res) {
3017 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018 return -EINVAL;
3019 }
3020 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021 resource_size(res));
3022 if (!tcdm_base) {
3023 dev_err(&pdev->dev,
3024 "failed to ioremap prcmu-tcdm register memory\n");
3025 return -ENOMEM;
3026 }
3027
3028 /* Clean up the mailbox interrupts after pre-kernel code. */
3029 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031 irq = platform_get_irq(pdev, 0);
3032 if (irq <= 0)
3033 return irq;
3034
3035 err = request_threaded_irq(irq, prcmu_irq_handler,
3036 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037 if (err < 0) {
3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039 return err;
3040 }
3041
3042 db8500_irq_init(np);
3043
3044 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048 if (err) {
3049 pr_err("prcmu: Failed to add subdevices\n");
3050 return err;
3051 }
3052
3053 /* TODO: Remove restriction when clk definitions are available. */
3054 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057 db8500_irq_domain);
3058 if (err) {
3059 mfd_remove_devices(&pdev->dev);
3060 pr_err("prcmu: Failed to add subdevices\n");
3061 return err;
3062 }
3063 }
3064
3065 err = db8500_prcmu_register_ab8500(&pdev->dev);
3066 if (err) {
3067 mfd_remove_devices(&pdev->dev);
3068 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069 return err;
3070 }
3071
3072 pr_info("DB8500 PRCMU initialized\n");
3073 return err;
3074 }
3075 static const struct of_device_id db8500_prcmu_match[] = {
3076 { .compatible = "stericsson,db8500-prcmu"},
3077 { },
3078 };
3079
3080 static struct platform_driver db8500_prcmu_driver = {
3081 .driver = {
3082 .name = "db8500-prcmu",
3083 .of_match_table = db8500_prcmu_match,
3084 },
3085 .probe = db8500_prcmu_probe,
3086 };
3087
db8500_prcmu_init(void)3088 static int __init db8500_prcmu_init(void)
3089 {
3090 return platform_driver_register(&db8500_prcmu_driver);
3091 }
3092 core_initcall(db8500_prcmu_init);
3093