1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38
39 #include <asm/setup.h>
40
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48
49 /*
50 * high_memory defines the upper bound on direct map memory, then end
51 * of ZONE_NORMAL.
52 */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58
59 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)60 void __init mminit_verify_zonelist(void)
61 {
62 int nid;
63
64 if (mminit_loglevel < MMINIT_VERIFY)
65 return;
66
67 for_each_online_node(nid) {
68 pg_data_t *pgdat = NODE_DATA(nid);
69 struct zone *zone;
70 struct zoneref *z;
71 struct zonelist *zonelist;
72 int i, listid, zoneid;
73
74 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75
76 /* Identify the zone and nodelist */
77 zoneid = i % MAX_NR_ZONES;
78 listid = i / MAX_NR_ZONES;
79 zonelist = &pgdat->node_zonelists[listid];
80 zone = &pgdat->node_zones[zoneid];
81 if (!populated_zone(zone))
82 continue;
83
84 /* Print information about the zonelist */
85 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 listid > 0 ? "thisnode" : "general", nid,
87 zone->name);
88
89 /* Iterate the zonelist */
90 for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 pr_cont("\n");
93 }
94 }
95 }
96
mminit_verify_pageflags_layout(void)97 void __init mminit_verify_pageflags_layout(void)
98 {
99 int shift, width;
100 unsigned long or_mask, add_mask;
101
102 shift = BITS_PER_LONG;
103 width = shift - NR_NON_PAGEFLAG_BITS;
104 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 SECTIONS_WIDTH,
107 NODES_WIDTH,
108 ZONES_WIDTH,
109 LAST_CPUPID_WIDTH,
110 KASAN_TAG_WIDTH,
111 LRU_GEN_WIDTH,
112 LRU_REFS_WIDTH,
113 NR_PAGEFLAGS);
114 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 SECTIONS_SHIFT,
117 NODES_SHIFT,
118 ZONES_SHIFT,
119 LAST_CPUPID_SHIFT,
120 KASAN_TAG_WIDTH);
121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 (unsigned long)SECTIONS_PGSHIFT,
124 (unsigned long)NODES_PGSHIFT,
125 (unsigned long)ZONES_PGSHIFT,
126 (unsigned long)LAST_CPUPID_PGSHIFT,
127 (unsigned long)KASAN_TAG_PGSHIFT);
128 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 "Node/Zone ID: %lu -> %lu\n",
130 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 (unsigned long)ZONEID_PGOFF);
132 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 "Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 "Last cpupid not in page flags");
142 #endif
143
144 if (SECTIONS_WIDTH) {
145 shift -= SECTIONS_WIDTH;
146 BUG_ON(shift != SECTIONS_PGSHIFT);
147 }
148 if (NODES_WIDTH) {
149 shift -= NODES_WIDTH;
150 BUG_ON(shift != NODES_PGSHIFT);
151 }
152 if (ZONES_WIDTH) {
153 shift -= ZONES_WIDTH;
154 BUG_ON(shift != ZONES_PGSHIFT);
155 }
156
157 /* Check for bitmask overlaps */
158 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 (NODES_MASK << NODES_PGSHIFT) |
160 (SECTIONS_MASK << SECTIONS_PGSHIFT);
161 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 (NODES_MASK << NODES_PGSHIFT) +
163 (SECTIONS_MASK << SECTIONS_PGSHIFT);
164 BUG_ON(or_mask != add_mask);
165 }
166
set_mminit_loglevel(char * str)167 static __init int set_mminit_loglevel(char *str)
168 {
169 get_option(&str, &mminit_loglevel);
170 return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174
175 struct kobject *mm_kobj;
176
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179
mm_compute_batch(int overcommit_policy)180 void mm_compute_batch(int overcommit_policy)
181 {
182 u64 memsized_batch;
183 s32 nr = num_present_cpus();
184 s32 batch = max_t(s32, nr*2, 32);
185 unsigned long ram_pages = totalram_pages();
186
187 /*
188 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 * (total memory/#cpus), and lift it to 25% for other policies
190 * to easy the possible lock contention for percpu_counter
191 * vm_committed_as, while the max limit is INT_MAX
192 */
193 if (overcommit_policy == OVERCOMMIT_NEVER)
194 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 else
196 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197
198 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 unsigned long action, void *arg)
203 {
204 switch (action) {
205 case MEM_ONLINE:
206 case MEM_OFFLINE:
207 mm_compute_batch(sysctl_overcommit_memory);
208 break;
209 default:
210 break;
211 }
212 return NOTIFY_OK;
213 }
214
mm_compute_batch_init(void)215 static int __init mm_compute_batch_init(void)
216 {
217 mm_compute_batch(sysctl_overcommit_memory);
218 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 return 0;
220 }
221
222 __initcall(mm_compute_batch_init);
223
224 #endif
225
mm_sysfs_init(void)226 static int __init mm_sysfs_init(void)
227 {
228 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 if (!mm_kobj)
230 return -ENOMEM;
231
232 return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247
248 static bool deferred_struct_pages __meminitdata;
249
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 unsigned long *percent)
254 {
255 unsigned long long coremem;
256 char *endptr;
257
258 if (!p)
259 return -EINVAL;
260
261 /* Value may be a percentage of total memory, otherwise bytes */
262 coremem = simple_strtoull(p, &endptr, 0);
263 if (*endptr == '%') {
264 /* Paranoid check for percent values greater than 100 */
265 WARN_ON(coremem > 100);
266
267 *percent = coremem;
268 } else {
269 coremem = memparse(p, &p);
270 /* Paranoid check that UL is enough for the coremem value */
271 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272
273 *core = coremem >> PAGE_SHIFT;
274 *percent = 0UL;
275 }
276 return 0;
277 }
278
279 bool mirrored_kernelcore __initdata_memblock;
280
281 /*
282 * kernelcore=size sets the amount of memory for use for allocations that
283 * cannot be reclaimed or migrated.
284 */
cmdline_parse_kernelcore(char * p)285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 /* parse kernelcore=mirror */
288 if (parse_option_str(p, "mirror")) {
289 mirrored_kernelcore = true;
290 return 0;
291 }
292
293 return cmdline_parse_core(p, &required_kernelcore,
294 &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297
298 /*
299 * movablecore=size sets the amount of memory for use for allocations that
300 * can be reclaimed or migrated.
301 */
cmdline_parse_movablecore(char * p)302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 return cmdline_parse_core(p, &required_movablecore,
305 &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308
309 /*
310 * early_calculate_totalpages()
311 * Sum pages in active regions for movable zone.
312 * Populate N_MEMORY for calculating usable_nodes.
313 */
early_calculate_totalpages(void)314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 unsigned long totalpages = 0;
317 unsigned long start_pfn, end_pfn;
318 int i, nid;
319
320 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 unsigned long pages = end_pfn - start_pfn;
322
323 totalpages += pages;
324 if (pages)
325 node_set_state(nid, N_MEMORY);
326 }
327 return totalpages;
328 }
329
330 /*
331 * This finds a zone that can be used for ZONE_MOVABLE pages. The
332 * assumption is made that zones within a node are ordered in monotonic
333 * increasing memory addresses so that the "highest" populated zone is used
334 */
find_usable_zone_for_movable(void)335 static void __init find_usable_zone_for_movable(void)
336 {
337 int zone_index;
338 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 if (zone_index == ZONE_MOVABLE)
340 continue;
341
342 if (arch_zone_highest_possible_pfn[zone_index] >
343 arch_zone_lowest_possible_pfn[zone_index])
344 break;
345 }
346
347 VM_BUG_ON(zone_index == -1);
348 movable_zone = zone_index;
349 }
350
351 /*
352 * Find the PFN the Movable zone begins in each node. Kernel memory
353 * is spread evenly between nodes as long as the nodes have enough
354 * memory. When they don't, some nodes will have more kernelcore than
355 * others
356 */
find_zone_movable_pfns_for_nodes(void)357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 int i, nid;
360 unsigned long usable_startpfn;
361 unsigned long kernelcore_node, kernelcore_remaining;
362 /* save the state before borrow the nodemask */
363 nodemask_t saved_node_state = node_states[N_MEMORY];
364 unsigned long totalpages = early_calculate_totalpages();
365 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 struct memblock_region *r;
367
368 /* Need to find movable_zone earlier when movable_node is specified. */
369 find_usable_zone_for_movable();
370
371 /*
372 * If movable_node is specified, ignore kernelcore and movablecore
373 * options.
374 */
375 if (movable_node_is_enabled()) {
376 for_each_mem_region(r) {
377 if (!memblock_is_hotpluggable(r))
378 continue;
379
380 nid = memblock_get_region_node(r);
381
382 usable_startpfn = memblock_region_memory_base_pfn(r);
383 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 min(usable_startpfn, zone_movable_pfn[nid]) :
385 usable_startpfn;
386 }
387
388 goto out2;
389 }
390
391 /*
392 * If kernelcore=mirror is specified, ignore movablecore option
393 */
394 if (mirrored_kernelcore) {
395 bool mem_below_4gb_not_mirrored = false;
396
397 if (!memblock_has_mirror()) {
398 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 goto out;
400 }
401
402 if (is_kdump_kernel()) {
403 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 goto out;
405 }
406
407 for_each_mem_region(r) {
408 if (memblock_is_mirror(r))
409 continue;
410
411 nid = memblock_get_region_node(r);
412
413 usable_startpfn = memblock_region_memory_base_pfn(r);
414
415 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 mem_below_4gb_not_mirrored = true;
417 continue;
418 }
419
420 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 min(usable_startpfn, zone_movable_pfn[nid]) :
422 usable_startpfn;
423 }
424
425 if (mem_below_4gb_not_mirrored)
426 pr_warn("This configuration results in unmirrored kernel memory.\n");
427
428 goto out2;
429 }
430
431 /*
432 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 * amount of necessary memory.
434 */
435 if (required_kernelcore_percent)
436 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 10000UL;
438 if (required_movablecore_percent)
439 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 10000UL;
441
442 /*
443 * If movablecore= was specified, calculate what size of
444 * kernelcore that corresponds so that memory usable for
445 * any allocation type is evenly spread. If both kernelcore
446 * and movablecore are specified, then the value of kernelcore
447 * will be used for required_kernelcore if it's greater than
448 * what movablecore would have allowed.
449 */
450 if (required_movablecore) {
451 unsigned long corepages;
452
453 /*
454 * Round-up so that ZONE_MOVABLE is at least as large as what
455 * was requested by the user
456 */
457 required_movablecore =
458 round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 required_movablecore = min(totalpages, required_movablecore);
460 corepages = totalpages - required_movablecore;
461
462 required_kernelcore = max(required_kernelcore, corepages);
463 }
464
465 /*
466 * If kernelcore was not specified or kernelcore size is larger
467 * than totalpages, there is no ZONE_MOVABLE.
468 */
469 if (!required_kernelcore || required_kernelcore >= totalpages)
470 goto out;
471
472 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474
475 restart:
476 /* Spread kernelcore memory as evenly as possible throughout nodes */
477 kernelcore_node = required_kernelcore / usable_nodes;
478 for_each_node_state(nid, N_MEMORY) {
479 unsigned long start_pfn, end_pfn;
480
481 /*
482 * Recalculate kernelcore_node if the division per node
483 * now exceeds what is necessary to satisfy the requested
484 * amount of memory for the kernel
485 */
486 if (required_kernelcore < kernelcore_node)
487 kernelcore_node = required_kernelcore / usable_nodes;
488
489 /*
490 * As the map is walked, we track how much memory is usable
491 * by the kernel using kernelcore_remaining. When it is
492 * 0, the rest of the node is usable by ZONE_MOVABLE
493 */
494 kernelcore_remaining = kernelcore_node;
495
496 /* Go through each range of PFNs within this node */
497 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 unsigned long size_pages;
499
500 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 if (start_pfn >= end_pfn)
502 continue;
503
504 /* Account for what is only usable for kernelcore */
505 if (start_pfn < usable_startpfn) {
506 unsigned long kernel_pages;
507 kernel_pages = min(end_pfn, usable_startpfn)
508 - start_pfn;
509
510 kernelcore_remaining -= min(kernel_pages,
511 kernelcore_remaining);
512 required_kernelcore -= min(kernel_pages,
513 required_kernelcore);
514
515 /* Continue if range is now fully accounted */
516 if (end_pfn <= usable_startpfn) {
517
518 /*
519 * Push zone_movable_pfn to the end so
520 * that if we have to rebalance
521 * kernelcore across nodes, we will
522 * not double account here
523 */
524 zone_movable_pfn[nid] = end_pfn;
525 continue;
526 }
527 start_pfn = usable_startpfn;
528 }
529
530 /*
531 * The usable PFN range for ZONE_MOVABLE is from
532 * start_pfn->end_pfn. Calculate size_pages as the
533 * number of pages used as kernelcore
534 */
535 size_pages = end_pfn - start_pfn;
536 if (size_pages > kernelcore_remaining)
537 size_pages = kernelcore_remaining;
538 zone_movable_pfn[nid] = start_pfn + size_pages;
539
540 /*
541 * Some kernelcore has been met, update counts and
542 * break if the kernelcore for this node has been
543 * satisfied
544 */
545 required_kernelcore -= min(required_kernelcore,
546 size_pages);
547 kernelcore_remaining -= size_pages;
548 if (!kernelcore_remaining)
549 break;
550 }
551 }
552
553 /*
554 * If there is still required_kernelcore, we do another pass with one
555 * less node in the count. This will push zone_movable_pfn[nid] further
556 * along on the nodes that still have memory until kernelcore is
557 * satisfied
558 */
559 usable_nodes--;
560 if (usable_nodes && required_kernelcore > usable_nodes)
561 goto restart;
562
563 out2:
564 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 for_each_node_state(nid, N_MEMORY) {
566 unsigned long start_pfn, end_pfn;
567
568 zone_movable_pfn[nid] =
569 round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570
571 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 if (zone_movable_pfn[nid] >= end_pfn)
573 zone_movable_pfn[nid] = 0;
574 }
575
576 out:
577 /* restore the node_state */
578 node_states[N_MEMORY] = saved_node_state;
579 }
580
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 unsigned long zone, int nid)
583 {
584 mm_zero_struct_page(page);
585 set_page_links(page, zone, nid, pfn);
586 init_page_count(page);
587 atomic_set(&page->_mapcount, -1);
588 page_cpupid_reset_last(page);
589 page_kasan_tag_reset(page);
590
591 INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 if (!is_highmem_idx(zone))
595 set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598
599 #ifdef CONFIG_NUMA
600 /*
601 * During memory init memblocks map pfns to nids. The search is expensive and
602 * this caches recent lookups. The implementation of __early_pfn_to_nid
603 * treats start/end as pfns.
604 */
605 struct mminit_pfnnid_cache {
606 unsigned long last_start;
607 unsigned long last_end;
608 int last_nid;
609 };
610
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612
613 /*
614 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 struct mminit_pfnnid_cache *state)
618 {
619 unsigned long start_pfn, end_pfn;
620 int nid;
621
622 if (state->last_start <= pfn && pfn < state->last_end)
623 return state->last_nid;
624
625 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 if (nid != NUMA_NO_NODE) {
627 state->last_start = start_pfn;
628 state->last_end = end_pfn;
629 state->last_nid = nid;
630 }
631
632 return nid;
633 }
634
early_pfn_to_nid(unsigned long pfn)635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 static DEFINE_SPINLOCK(early_pfn_lock);
638 int nid;
639
640 spin_lock(&early_pfn_lock);
641 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 if (nid < 0)
643 nid = first_online_node;
644 spin_unlock(&early_pfn_lock);
645
646 return nid;
647 }
648
649 int hashdist = HASHDIST_DEFAULT;
650
set_hashdist(char * str)651 static int __init set_hashdist(char *str)
652 {
653 if (!str)
654 return 0;
655 hashdist = simple_strtoul(str, &str, 0);
656 return 1;
657 }
658 __setup("hashdist=", set_hashdist);
659
fixup_hashdist(void)660 static inline void fixup_hashdist(void)
661 {
662 if (num_node_state(N_MEMORY) == 1)
663 hashdist = 0;
664 }
665 #else
fixup_hashdist(void)666 static inline void fixup_hashdist(void) {}
667 #endif /* CONFIG_NUMA */
668
669 /*
670 * Initialize a reserved page unconditionally, finding its zone first.
671 */
__init_page_from_nid(unsigned long pfn,int nid)672 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
673 {
674 pg_data_t *pgdat;
675 int zid;
676
677 pgdat = NODE_DATA(nid);
678
679 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
680 struct zone *zone = &pgdat->node_zones[zid];
681
682 if (zone_spans_pfn(zone, pfn))
683 break;
684 }
685 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
686
687 if (pageblock_aligned(pfn))
688 init_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE,
689 false);
690 }
691
692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)693 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
694 {
695 pgdat->first_deferred_pfn = ULONG_MAX;
696 }
697
698 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)699 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
700 {
701 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
702 return false;
703
704 return true;
705 }
706
707 /*
708 * Returns true when the remaining initialisation should be deferred until
709 * later in the boot cycle when it can be parallelised.
710 */
711 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)712 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
713 {
714 static unsigned long prev_end_pfn, nr_initialised;
715
716 if (early_page_ext_enabled())
717 return false;
718
719 /* Always populate low zones for address-constrained allocations */
720 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
721 return false;
722
723 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
724 return true;
725
726 /*
727 * prev_end_pfn static that contains the end of previous zone
728 * No need to protect because called very early in boot before smp_init.
729 */
730 if (prev_end_pfn != end_pfn) {
731 prev_end_pfn = end_pfn;
732 nr_initialised = 0;
733 }
734
735 /*
736 * We start only with one section of pages, more pages are added as
737 * needed until the rest of deferred pages are initialized.
738 */
739 nr_initialised++;
740 if ((nr_initialised > PAGES_PER_SECTION) &&
741 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
742 NODE_DATA(nid)->first_deferred_pfn = pfn;
743 return true;
744 }
745 return false;
746 }
747
__init_deferred_page(unsigned long pfn,int nid)748 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
749 {
750 if (early_page_initialised(pfn, nid))
751 return;
752
753 __init_page_from_nid(pfn, nid);
754 }
755 #else
pgdat_set_deferred_range(pg_data_t * pgdat)756 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
757
early_page_initialised(unsigned long pfn,int nid)758 static inline bool early_page_initialised(unsigned long pfn, int nid)
759 {
760 return true;
761 }
762
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)763 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
764 {
765 return false;
766 }
767
__init_deferred_page(unsigned long pfn,int nid)768 static inline void __init_deferred_page(unsigned long pfn, int nid)
769 {
770 }
771 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
772
init_deferred_page(unsigned long pfn,int nid)773 void __meminit init_deferred_page(unsigned long pfn, int nid)
774 {
775 __init_deferred_page(pfn, nid);
776 }
777
778 /*
779 * Initialised pages do not have PageReserved set. This function is
780 * called for each range allocated by the bootmem allocator and
781 * marks the pages PageReserved. The remaining valid pages are later
782 * sent to the buddy page allocator.
783 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)784 void __meminit reserve_bootmem_region(phys_addr_t start,
785 phys_addr_t end, int nid)
786 {
787 unsigned long pfn;
788
789 for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
790 struct page *page = pfn_to_page(pfn);
791
792 __init_deferred_page(pfn, nid);
793
794 /*
795 * no need for atomic set_bit because the struct
796 * page is not visible yet so nobody should
797 * access it yet.
798 */
799 __SetPageReserved(page);
800 }
801 }
802
803 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
804 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)805 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
806 {
807 static struct memblock_region *r;
808
809 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
810 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
811 for_each_mem_region(r) {
812 if (*pfn < memblock_region_memory_end_pfn(r))
813 break;
814 }
815 }
816 if (*pfn >= memblock_region_memory_base_pfn(r) &&
817 memblock_is_mirror(r)) {
818 *pfn = memblock_region_memory_end_pfn(r);
819 return true;
820 }
821 }
822 return false;
823 }
824
825 /*
826 * Only struct pages that correspond to ranges defined by memblock.memory
827 * are zeroed and initialized by going through __init_single_page() during
828 * memmap_init_zone_range().
829 *
830 * But, there could be struct pages that correspond to holes in
831 * memblock.memory. This can happen because of the following reasons:
832 * - physical memory bank size is not necessarily the exact multiple of the
833 * arbitrary section size
834 * - early reserved memory may not be listed in memblock.memory
835 * - non-memory regions covered by the contiguous flatmem mapping
836 * - memory layouts defined with memmap= kernel parameter may not align
837 * nicely with memmap sections
838 *
839 * Explicitly initialize those struct pages so that:
840 * - PG_Reserved is set
841 * - zone and node links point to zone and node that span the page if the
842 * hole is in the middle of a zone
843 * - zone and node links point to adjacent zone/node if the hole falls on
844 * the zone boundary; the pages in such holes will be prepended to the
845 * zone/node above the hole except for the trailing pages in the last
846 * section that will be appended to the zone/node below.
847 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)848 static void __init init_unavailable_range(unsigned long spfn,
849 unsigned long epfn,
850 int zone, int node)
851 {
852 unsigned long pfn;
853 u64 pgcnt = 0;
854
855 for_each_valid_pfn(pfn, spfn, epfn) {
856 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
857 __SetPageReserved(pfn_to_page(pfn));
858 pgcnt++;
859 }
860
861 if (pgcnt)
862 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
863 node, zone_names[zone], pgcnt);
864 }
865
866 /*
867 * Initially all pages are reserved - free ones are freed
868 * up by memblock_free_all() once the early boot process is
869 * done. Non-atomic initialization, single-pass.
870 *
871 * All aligned pageblocks are initialized to the specified migratetype
872 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
873 * zone stats (e.g., nr_isolate_pageblock) are touched.
874 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype,bool isolate_pageblock)875 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
876 unsigned long start_pfn, unsigned long zone_end_pfn,
877 enum meminit_context context,
878 struct vmem_altmap *altmap, int migratetype,
879 bool isolate_pageblock)
880 {
881 unsigned long pfn, end_pfn = start_pfn + size;
882 struct page *page;
883
884 if (highest_memmap_pfn < end_pfn - 1)
885 highest_memmap_pfn = end_pfn - 1;
886
887 #ifdef CONFIG_ZONE_DEVICE
888 /*
889 * Honor reservation requested by the driver for this ZONE_DEVICE
890 * memory. We limit the total number of pages to initialize to just
891 * those that might contain the memory mapping. We will defer the
892 * ZONE_DEVICE page initialization until after we have released
893 * the hotplug lock.
894 */
895 if (zone == ZONE_DEVICE) {
896 if (!altmap)
897 return;
898
899 if (start_pfn == altmap->base_pfn)
900 start_pfn += altmap->reserve;
901 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
902 }
903 #endif
904
905 for (pfn = start_pfn; pfn < end_pfn; ) {
906 /*
907 * There can be holes in boot-time mem_map[]s handed to this
908 * function. They do not exist on hotplugged memory.
909 */
910 if (context == MEMINIT_EARLY) {
911 if (overlap_memmap_init(zone, &pfn))
912 continue;
913 if (defer_init(nid, pfn, zone_end_pfn)) {
914 deferred_struct_pages = true;
915 break;
916 }
917 }
918
919 page = pfn_to_page(pfn);
920 __init_single_page(page, pfn, zone, nid);
921 if (context == MEMINIT_HOTPLUG) {
922 #ifdef CONFIG_ZONE_DEVICE
923 if (zone == ZONE_DEVICE)
924 __SetPageReserved(page);
925 else
926 #endif
927 __SetPageOffline(page);
928 }
929
930 /*
931 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
932 * such that unmovable allocations won't be scattered all
933 * over the place during system boot.
934 */
935 if (pageblock_aligned(pfn)) {
936 init_pageblock_migratetype(page, migratetype,
937 isolate_pageblock);
938 cond_resched();
939 }
940 pfn++;
941 }
942 }
943
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)944 static void __init memmap_init_zone_range(struct zone *zone,
945 unsigned long start_pfn,
946 unsigned long end_pfn,
947 unsigned long *hole_pfn)
948 {
949 unsigned long zone_start_pfn = zone->zone_start_pfn;
950 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
951 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
952
953 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
954 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
955
956 if (start_pfn >= end_pfn)
957 return;
958
959 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
960 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE,
961 false);
962
963 if (*hole_pfn < start_pfn)
964 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
965
966 *hole_pfn = end_pfn;
967 }
968
memmap_init(void)969 static void __init memmap_init(void)
970 {
971 unsigned long start_pfn, end_pfn;
972 unsigned long hole_pfn = 0;
973 int i, j, zone_id = 0, nid;
974
975 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
976 struct pglist_data *node = NODE_DATA(nid);
977
978 for (j = 0; j < MAX_NR_ZONES; j++) {
979 struct zone *zone = node->node_zones + j;
980
981 if (!populated_zone(zone))
982 continue;
983
984 memmap_init_zone_range(zone, start_pfn, end_pfn,
985 &hole_pfn);
986 zone_id = j;
987 }
988 }
989
990 /*
991 * Initialize the memory map for hole in the range [memory_end,
992 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
993 * for FLATMEM.
994 * Append the pages in this hole to the highest zone in the last
995 * node.
996 */
997 #ifdef CONFIG_SPARSEMEM
998 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
999 #else
1000 end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
1001 #endif
1002 if (hole_pfn < end_pfn)
1003 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1004 }
1005
1006 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)1007 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1008 unsigned long zone_idx, int nid,
1009 struct dev_pagemap *pgmap)
1010 {
1011
1012 __init_single_page(page, pfn, zone_idx, nid);
1013
1014 /*
1015 * Mark page reserved as it will need to wait for onlining
1016 * phase for it to be fully associated with a zone.
1017 *
1018 * We can use the non-atomic __set_bit operation for setting
1019 * the flag as we are still initializing the pages.
1020 */
1021 __SetPageReserved(page);
1022
1023 /*
1024 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1025 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
1026 * ever freed or placed on a driver-private list.
1027 */
1028 page_folio(page)->pgmap = pgmap;
1029 page->zone_device_data = NULL;
1030
1031 /*
1032 * Mark the block movable so that blocks are reserved for
1033 * movable at startup. This will force kernel allocations
1034 * to reserve their blocks rather than leaking throughout
1035 * the address space during boot when many long-lived
1036 * kernel allocations are made.
1037 *
1038 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1039 * because this is done early in section_activate()
1040 */
1041 if (pageblock_aligned(pfn)) {
1042 init_pageblock_migratetype(page, MIGRATE_MOVABLE, false);
1043 cond_resched();
1044 }
1045
1046 /*
1047 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1048 * directly to the driver page allocator which will set the page count
1049 * to 1 when allocating the page.
1050 *
1051 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1052 * their refcount reset to one whenever they are freed (ie. after
1053 * their refcount drops to 0).
1054 */
1055 switch (pgmap->type) {
1056 case MEMORY_DEVICE_FS_DAX:
1057 case MEMORY_DEVICE_PRIVATE:
1058 case MEMORY_DEVICE_COHERENT:
1059 case MEMORY_DEVICE_PCI_P2PDMA:
1060 set_page_count(page, 0);
1061 break;
1062
1063 case MEMORY_DEVICE_GENERIC:
1064 break;
1065 }
1066 }
1067
1068 /*
1069 * With compound page geometry and when struct pages are stored in ram most
1070 * tail pages are reused. Consequently, the amount of unique struct pages to
1071 * initialize is a lot smaller that the total amount of struct pages being
1072 * mapped. This is a paired / mild layering violation with explicit knowledge
1073 * of how the sparse_vmemmap internals handle compound pages in the lack
1074 * of an altmap. See vmemmap_populate_compound_pages().
1075 */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1076 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1077 struct dev_pagemap *pgmap)
1078 {
1079 if (!vmemmap_can_optimize(altmap, pgmap))
1080 return pgmap_vmemmap_nr(pgmap);
1081
1082 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1083 }
1084
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1085 static void __ref memmap_init_compound(struct page *head,
1086 unsigned long head_pfn,
1087 unsigned long zone_idx, int nid,
1088 struct dev_pagemap *pgmap,
1089 unsigned long nr_pages)
1090 {
1091 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1092 unsigned int order = pgmap->vmemmap_shift;
1093
1094 /*
1095 * We have to initialize the pages, including setting up page links.
1096 * prep_compound_page() does not take care of that, so instead we
1097 * open-code prep_compound_page() so we can take care of initializing
1098 * the pages in the same go.
1099 */
1100 __SetPageHead(head);
1101 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1102 struct page *page = pfn_to_page(pfn);
1103
1104 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1105 prep_compound_tail(head, pfn - head_pfn);
1106 set_page_count(page, 0);
1107 }
1108 prep_compound_head(head, order);
1109 }
1110
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1111 void __ref memmap_init_zone_device(struct zone *zone,
1112 unsigned long start_pfn,
1113 unsigned long nr_pages,
1114 struct dev_pagemap *pgmap)
1115 {
1116 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1117 struct pglist_data *pgdat = zone->zone_pgdat;
1118 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1119 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1120 unsigned long zone_idx = zone_idx(zone);
1121 unsigned long start = jiffies;
1122 int nid = pgdat->node_id;
1123
1124 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1125 return;
1126
1127 /*
1128 * The call to memmap_init should have already taken care
1129 * of the pages reserved for the memmap, so we can just jump to
1130 * the end of that region and start processing the device pages.
1131 */
1132 if (altmap) {
1133 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1134 nr_pages = end_pfn - start_pfn;
1135 }
1136
1137 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1138 struct page *page = pfn_to_page(pfn);
1139
1140 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1141
1142 if (pfns_per_compound == 1)
1143 continue;
1144
1145 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1146 compound_nr_pages(altmap, pgmap));
1147 }
1148
1149 pr_debug("%s initialised %lu pages in %ums\n", __func__,
1150 nr_pages, jiffies_to_msecs(jiffies - start));
1151 }
1152 #endif
1153
1154 /*
1155 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1156 * because it is sized independent of architecture. Unlike the other zones,
1157 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1158 * in each node depending on the size of each node and how evenly kernelcore
1159 * is distributed. This helper function adjusts the zone ranges
1160 * provided by the architecture for a given node by using the end of the
1161 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1162 * zones within a node are in order of monotonic increases memory addresses
1163 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1164 static void __init adjust_zone_range_for_zone_movable(int nid,
1165 unsigned long zone_type,
1166 unsigned long node_end_pfn,
1167 unsigned long *zone_start_pfn,
1168 unsigned long *zone_end_pfn)
1169 {
1170 /* Only adjust if ZONE_MOVABLE is on this node */
1171 if (zone_movable_pfn[nid]) {
1172 /* Size ZONE_MOVABLE */
1173 if (zone_type == ZONE_MOVABLE) {
1174 *zone_start_pfn = zone_movable_pfn[nid];
1175 *zone_end_pfn = min(node_end_pfn,
1176 arch_zone_highest_possible_pfn[movable_zone]);
1177
1178 /* Adjust for ZONE_MOVABLE starting within this range */
1179 } else if (!mirrored_kernelcore &&
1180 *zone_start_pfn < zone_movable_pfn[nid] &&
1181 *zone_end_pfn > zone_movable_pfn[nid]) {
1182 *zone_end_pfn = zone_movable_pfn[nid];
1183
1184 /* Check if this whole range is within ZONE_MOVABLE */
1185 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1186 *zone_start_pfn = *zone_end_pfn;
1187 }
1188 }
1189
1190 /*
1191 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1192 * then all holes in the requested range will be accounted for.
1193 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1194 static unsigned long __init __absent_pages_in_range(int nid,
1195 unsigned long range_start_pfn,
1196 unsigned long range_end_pfn)
1197 {
1198 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1199 unsigned long start_pfn, end_pfn;
1200 int i;
1201
1202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1203 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1204 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1205 nr_absent -= end_pfn - start_pfn;
1206 }
1207 return nr_absent;
1208 }
1209
1210 /**
1211 * absent_pages_in_range - Return number of page frames in holes within a range
1212 * @start_pfn: The start PFN to start searching for holes
1213 * @end_pfn: The end PFN to stop searching for holes
1214 *
1215 * Return: the number of pages frames in memory holes within a range.
1216 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1217 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1218 unsigned long end_pfn)
1219 {
1220 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1221 }
1222
1223 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1224 static unsigned long __init zone_absent_pages_in_node(int nid,
1225 unsigned long zone_type,
1226 unsigned long zone_start_pfn,
1227 unsigned long zone_end_pfn)
1228 {
1229 unsigned long nr_absent;
1230
1231 /* zone is empty, we don't have any absent pages */
1232 if (zone_start_pfn == zone_end_pfn)
1233 return 0;
1234
1235 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1236
1237 /*
1238 * ZONE_MOVABLE handling.
1239 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1240 * and vice versa.
1241 */
1242 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1243 unsigned long start_pfn, end_pfn;
1244 struct memblock_region *r;
1245
1246 for_each_mem_region(r) {
1247 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1248 zone_start_pfn, zone_end_pfn);
1249 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1250 zone_start_pfn, zone_end_pfn);
1251
1252 if (zone_type == ZONE_MOVABLE &&
1253 memblock_is_mirror(r))
1254 nr_absent += end_pfn - start_pfn;
1255
1256 if (zone_type == ZONE_NORMAL &&
1257 !memblock_is_mirror(r))
1258 nr_absent += end_pfn - start_pfn;
1259 }
1260 }
1261
1262 return nr_absent;
1263 }
1264
1265 /*
1266 * Return the number of pages a zone spans in a node, including holes
1267 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1268 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1269 static unsigned long __init zone_spanned_pages_in_node(int nid,
1270 unsigned long zone_type,
1271 unsigned long node_start_pfn,
1272 unsigned long node_end_pfn,
1273 unsigned long *zone_start_pfn,
1274 unsigned long *zone_end_pfn)
1275 {
1276 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1277 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1278
1279 /* Get the start and end of the zone */
1280 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1281 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1282 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1283 zone_start_pfn, zone_end_pfn);
1284
1285 /* Check that this node has pages within the zone's required range */
1286 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1287 return 0;
1288
1289 /* Move the zone boundaries inside the node if necessary */
1290 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1291 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1292
1293 /* Return the spanned pages */
1294 return *zone_end_pfn - *zone_start_pfn;
1295 }
1296
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1297 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1298 {
1299 struct zone *z;
1300
1301 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1302 z->zone_start_pfn = 0;
1303 z->spanned_pages = 0;
1304 z->present_pages = 0;
1305 #if defined(CONFIG_MEMORY_HOTPLUG)
1306 z->present_early_pages = 0;
1307 #endif
1308 }
1309
1310 pgdat->node_spanned_pages = 0;
1311 pgdat->node_present_pages = 0;
1312 pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1313 }
1314
calc_nr_kernel_pages(void)1315 static void __init calc_nr_kernel_pages(void)
1316 {
1317 unsigned long start_pfn, end_pfn;
1318 phys_addr_t start_addr, end_addr;
1319 u64 u;
1320 #ifdef CONFIG_HIGHMEM
1321 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1322 #endif
1323
1324 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1325 start_pfn = PFN_UP(start_addr);
1326 end_pfn = PFN_DOWN(end_addr);
1327
1328 if (start_pfn < end_pfn) {
1329 nr_all_pages += end_pfn - start_pfn;
1330 #ifdef CONFIG_HIGHMEM
1331 start_pfn = clamp(start_pfn, 0, high_zone_low);
1332 end_pfn = clamp(end_pfn, 0, high_zone_low);
1333 #endif
1334 nr_kernel_pages += end_pfn - start_pfn;
1335 }
1336 }
1337 }
1338
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1339 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1340 unsigned long node_start_pfn,
1341 unsigned long node_end_pfn)
1342 {
1343 unsigned long realtotalpages = 0, totalpages = 0;
1344 enum zone_type i;
1345
1346 for (i = 0; i < MAX_NR_ZONES; i++) {
1347 struct zone *zone = pgdat->node_zones + i;
1348 unsigned long zone_start_pfn, zone_end_pfn;
1349 unsigned long spanned, absent;
1350 unsigned long real_size;
1351
1352 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1353 node_start_pfn,
1354 node_end_pfn,
1355 &zone_start_pfn,
1356 &zone_end_pfn);
1357 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1358 zone_start_pfn,
1359 zone_end_pfn);
1360
1361 real_size = spanned - absent;
1362
1363 if (spanned)
1364 zone->zone_start_pfn = zone_start_pfn;
1365 else
1366 zone->zone_start_pfn = 0;
1367 zone->spanned_pages = spanned;
1368 zone->present_pages = real_size;
1369 #if defined(CONFIG_MEMORY_HOTPLUG)
1370 zone->present_early_pages = real_size;
1371 #endif
1372
1373 totalpages += spanned;
1374 realtotalpages += real_size;
1375 }
1376
1377 pgdat->node_spanned_pages = totalpages;
1378 pgdat->node_present_pages = realtotalpages;
1379 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1380 }
1381
1382 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1383 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1384 {
1385 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1386
1387 spin_lock_init(&ds_queue->split_queue_lock);
1388 INIT_LIST_HEAD(&ds_queue->split_queue);
1389 ds_queue->split_queue_len = 0;
1390 }
1391 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1392 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1393 #endif
1394
1395 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1396 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1397 {
1398 init_waitqueue_head(&pgdat->kcompactd_wait);
1399 }
1400 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1401 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1402 #endif
1403
pgdat_init_internals(struct pglist_data * pgdat)1404 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1405 {
1406 int i;
1407
1408 pgdat_resize_init(pgdat);
1409 pgdat_kswapd_lock_init(pgdat);
1410
1411 pgdat_init_split_queue(pgdat);
1412 pgdat_init_kcompactd(pgdat);
1413
1414 init_waitqueue_head(&pgdat->kswapd_wait);
1415 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1416
1417 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1418 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1419
1420 pgdat_page_ext_init(pgdat);
1421 lruvec_init(&pgdat->__lruvec);
1422 }
1423
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1424 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1425 unsigned long remaining_pages)
1426 {
1427 atomic_long_set(&zone->managed_pages, remaining_pages);
1428 zone_set_nid(zone, nid);
1429 zone->name = zone_names[idx];
1430 zone->zone_pgdat = NODE_DATA(nid);
1431 spin_lock_init(&zone->lock);
1432 zone_seqlock_init(zone);
1433 zone_pcp_init(zone);
1434 }
1435
zone_init_free_lists(struct zone * zone)1436 static void __meminit zone_init_free_lists(struct zone *zone)
1437 {
1438 unsigned int order, t;
1439 for_each_migratetype_order(order, t) {
1440 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1441 zone->free_area[order].nr_free = 0;
1442 }
1443
1444 #ifdef CONFIG_UNACCEPTED_MEMORY
1445 INIT_LIST_HEAD(&zone->unaccepted_pages);
1446 #endif
1447 }
1448
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1449 void __meminit init_currently_empty_zone(struct zone *zone,
1450 unsigned long zone_start_pfn,
1451 unsigned long size)
1452 {
1453 struct pglist_data *pgdat = zone->zone_pgdat;
1454 int zone_idx = zone_idx(zone) + 1;
1455
1456 if (zone_idx > pgdat->nr_zones)
1457 pgdat->nr_zones = zone_idx;
1458
1459 zone->zone_start_pfn = zone_start_pfn;
1460
1461 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1462 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1463 pgdat->node_id,
1464 (unsigned long)zone_idx(zone),
1465 zone_start_pfn, (zone_start_pfn + size));
1466
1467 zone_init_free_lists(zone);
1468 zone->initialized = 1;
1469 }
1470
1471 #ifndef CONFIG_SPARSEMEM
1472 /*
1473 * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1474 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1475 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1476 * round what is now in bits to nearest long in bits, then return it in
1477 * bytes.
1478 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1479 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1480 {
1481 unsigned long usemapsize;
1482
1483 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1484 usemapsize = round_up(zonesize, pageblock_nr_pages);
1485 usemapsize = usemapsize >> pageblock_order;
1486 usemapsize *= NR_PAGEBLOCK_BITS;
1487 usemapsize = round_up(usemapsize, BITS_PER_LONG);
1488
1489 return usemapsize / BITS_PER_BYTE;
1490 }
1491
setup_usemap(struct zone * zone)1492 static void __ref setup_usemap(struct zone *zone)
1493 {
1494 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1495 zone->spanned_pages);
1496 zone->pageblock_flags = NULL;
1497 if (usemapsize) {
1498 zone->pageblock_flags =
1499 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1500 zone_to_nid(zone));
1501 if (!zone->pageblock_flags)
1502 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1503 usemapsize, zone->name, zone_to_nid(zone));
1504 }
1505 }
1506 #else
setup_usemap(struct zone * zone)1507 static inline void setup_usemap(struct zone *zone) {}
1508 #endif /* CONFIG_SPARSEMEM */
1509
1510 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1511
1512 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1513 void __init set_pageblock_order(void)
1514 {
1515 unsigned int order = PAGE_BLOCK_MAX_ORDER;
1516
1517 /* Check that pageblock_nr_pages has not already been setup */
1518 if (pageblock_order)
1519 return;
1520
1521 /* Don't let pageblocks exceed the maximum allocation granularity. */
1522 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1523 order = HUGETLB_PAGE_ORDER;
1524
1525 /*
1526 * Assume the largest contiguous order of interest is a huge page.
1527 * This value may be variable depending on boot parameters on powerpc.
1528 */
1529 pageblock_order = order;
1530 }
1531 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1532
1533 /*
1534 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1535 * is unused as pageblock_order is set at compile-time. See
1536 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1537 * the kernel config
1538 */
set_pageblock_order(void)1539 void __init set_pageblock_order(void)
1540 {
1541 }
1542
1543 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1544
1545 /*
1546 * Set up the zone data structures
1547 * - init pgdat internals
1548 * - init all zones belonging to this node
1549 *
1550 * NOTE: this function is only called during memory hotplug
1551 */
1552 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1553 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1554 {
1555 int nid = pgdat->node_id;
1556 enum zone_type z;
1557 int cpu;
1558
1559 pgdat_init_internals(pgdat);
1560
1561 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1562 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1563
1564 /*
1565 * Reset the nr_zones, order and highest_zoneidx before reuse.
1566 * Note that kswapd will init kswapd_highest_zoneidx properly
1567 * when it starts in the near future.
1568 */
1569 pgdat->nr_zones = 0;
1570 pgdat->kswapd_order = 0;
1571 pgdat->kswapd_highest_zoneidx = 0;
1572 pgdat->node_start_pfn = 0;
1573 pgdat->node_present_pages = 0;
1574
1575 for_each_online_cpu(cpu) {
1576 struct per_cpu_nodestat *p;
1577
1578 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1579 memset(p, 0, sizeof(*p));
1580 }
1581
1582 /*
1583 * When memory is hot-added, all the memory is in offline state. So
1584 * clear all zones' present_pages and managed_pages because they will
1585 * be updated in online_pages() and offline_pages().
1586 */
1587 for (z = 0; z < MAX_NR_ZONES; z++) {
1588 struct zone *zone = pgdat->node_zones + z;
1589
1590 zone->present_pages = 0;
1591 zone_init_internals(zone, z, nid, 0);
1592 }
1593 }
1594 #endif
1595
free_area_init_core(struct pglist_data * pgdat)1596 static void __init free_area_init_core(struct pglist_data *pgdat)
1597 {
1598 enum zone_type j;
1599 int nid = pgdat->node_id;
1600
1601 pgdat_init_internals(pgdat);
1602 pgdat->per_cpu_nodestats = &boot_nodestats;
1603
1604 for (j = 0; j < MAX_NR_ZONES; j++) {
1605 struct zone *zone = pgdat->node_zones + j;
1606 unsigned long size = zone->spanned_pages;
1607
1608 /*
1609 * Initialize zone->managed_pages as 0 , it will be reset
1610 * when memblock allocator frees pages into buddy system.
1611 */
1612 zone_init_internals(zone, j, nid, zone->present_pages);
1613
1614 if (!size)
1615 continue;
1616
1617 setup_usemap(zone);
1618 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1619 }
1620 }
1621
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1622 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1623 phys_addr_t min_addr, int nid, bool exact_nid)
1624 {
1625 void *ptr;
1626
1627 /*
1628 * Kmemleak will explicitly scan mem_map by traversing all valid
1629 * `struct *page`,so memblock does not need to be added to the scan list.
1630 */
1631 if (exact_nid)
1632 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1633 MEMBLOCK_ALLOC_NOLEAKTRACE,
1634 nid);
1635 else
1636 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1637 MEMBLOCK_ALLOC_NOLEAKTRACE,
1638 nid);
1639
1640 if (ptr && size > 0)
1641 page_init_poison(ptr, size);
1642
1643 return ptr;
1644 }
1645
1646 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1647 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1648 {
1649 unsigned long start, offset, size, end;
1650 struct page *map;
1651
1652 /* Skip empty nodes */
1653 if (!pgdat->node_spanned_pages)
1654 return;
1655
1656 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1657 offset = pgdat->node_start_pfn - start;
1658 /*
1659 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1660 * aligned but the node_mem_map endpoints must be in order
1661 * for the buddy allocator to function correctly.
1662 */
1663 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1664 size = (end - start) * sizeof(struct page);
1665 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1666 pgdat->node_id, false);
1667 if (!map)
1668 panic("Failed to allocate %ld bytes for node %d memory map\n",
1669 size, pgdat->node_id);
1670 pgdat->node_mem_map = map + offset;
1671 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1672 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1673 __func__, pgdat->node_id, (unsigned long)pgdat,
1674 (unsigned long)pgdat->node_mem_map);
1675
1676 /* the global mem_map is just set as node 0's */
1677 WARN_ON(pgdat != NODE_DATA(0));
1678
1679 mem_map = pgdat->node_mem_map;
1680 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1681 mem_map -= offset;
1682
1683 max_mapnr = end - start;
1684 }
1685 #else
alloc_node_mem_map(struct pglist_data * pgdat)1686 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1687 #endif /* CONFIG_FLATMEM */
1688
1689 /**
1690 * get_pfn_range_for_nid - Return the start and end page frames for a node
1691 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1692 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1693 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1694 *
1695 * It returns the start and end page frame of a node based on information
1696 * provided by memblock_set_node(). If called for a node
1697 * with no available memory, the start and end PFNs will be 0.
1698 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1699 void __init get_pfn_range_for_nid(unsigned int nid,
1700 unsigned long *start_pfn, unsigned long *end_pfn)
1701 {
1702 unsigned long this_start_pfn, this_end_pfn;
1703 int i;
1704
1705 *start_pfn = -1UL;
1706 *end_pfn = 0;
1707
1708 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1709 *start_pfn = min(*start_pfn, this_start_pfn);
1710 *end_pfn = max(*end_pfn, this_end_pfn);
1711 }
1712
1713 if (*start_pfn == -1UL)
1714 *start_pfn = 0;
1715 }
1716
free_area_init_node(int nid)1717 static void __init free_area_init_node(int nid)
1718 {
1719 pg_data_t *pgdat = NODE_DATA(nid);
1720 unsigned long start_pfn = 0;
1721 unsigned long end_pfn = 0;
1722
1723 /* pg_data_t should be reset to zero when it's allocated */
1724 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1725
1726 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1727
1728 pgdat->node_id = nid;
1729 pgdat->node_start_pfn = start_pfn;
1730 pgdat->per_cpu_nodestats = NULL;
1731
1732 if (start_pfn != end_pfn) {
1733 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1734 (u64)start_pfn << PAGE_SHIFT,
1735 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1736
1737 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1738 } else {
1739 pr_info("Initmem setup node %d as memoryless\n", nid);
1740
1741 reset_memoryless_node_totalpages(pgdat);
1742 }
1743
1744 alloc_node_mem_map(pgdat);
1745 pgdat_set_deferred_range(pgdat);
1746
1747 free_area_init_core(pgdat);
1748 lru_gen_init_pgdat(pgdat);
1749 }
1750
1751 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1752 static void __init check_for_memory(pg_data_t *pgdat)
1753 {
1754 enum zone_type zone_type;
1755
1756 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1757 struct zone *zone = &pgdat->node_zones[zone_type];
1758 if (populated_zone(zone)) {
1759 if (IS_ENABLED(CONFIG_HIGHMEM))
1760 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1761 if (zone_type <= ZONE_NORMAL)
1762 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1763 break;
1764 }
1765 }
1766 }
1767
1768 #if MAX_NUMNODES > 1
1769 /*
1770 * Figure out the number of possible node ids.
1771 */
setup_nr_node_ids(void)1772 void __init setup_nr_node_ids(void)
1773 {
1774 unsigned int highest;
1775
1776 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1777 nr_node_ids = highest + 1;
1778 }
1779 #endif
1780
1781 /*
1782 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1783 * such cases we allow max_zone_pfn sorted in the descending order
1784 */
arch_has_descending_max_zone_pfns(void)1785 static bool arch_has_descending_max_zone_pfns(void)
1786 {
1787 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1788 }
1789
set_high_memory(void)1790 static void __init set_high_memory(void)
1791 {
1792 phys_addr_t highmem = memblock_end_of_DRAM();
1793
1794 /*
1795 * Some architectures (e.g. ARM) set high_memory very early and
1796 * use it in arch setup code.
1797 * If an architecture already set high_memory don't overwrite it
1798 */
1799 if (high_memory)
1800 return;
1801
1802 #ifdef CONFIG_HIGHMEM
1803 if (arch_has_descending_max_zone_pfns() ||
1804 highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1805 highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1806 #endif
1807
1808 high_memory = phys_to_virt(highmem - 1) + 1;
1809 }
1810
1811 /**
1812 * free_area_init - Initialise all pg_data_t and zone data
1813 * @max_zone_pfn: an array of max PFNs for each zone
1814 *
1815 * This will call free_area_init_node() for each active node in the system.
1816 * Using the page ranges provided by memblock_set_node(), the size of each
1817 * zone in each node and their holes is calculated. If the maximum PFN
1818 * between two adjacent zones match, it is assumed that the zone is empty.
1819 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1820 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1821 * starts where the previous one ended. For example, ZONE_DMA32 starts
1822 * at arch_max_dma_pfn.
1823 */
free_area_init(unsigned long * max_zone_pfn)1824 void __init free_area_init(unsigned long *max_zone_pfn)
1825 {
1826 unsigned long start_pfn, end_pfn;
1827 int i, nid, zone;
1828 bool descending;
1829
1830 /* Record where the zone boundaries are */
1831 memset(arch_zone_lowest_possible_pfn, 0,
1832 sizeof(arch_zone_lowest_possible_pfn));
1833 memset(arch_zone_highest_possible_pfn, 0,
1834 sizeof(arch_zone_highest_possible_pfn));
1835
1836 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1837 descending = arch_has_descending_max_zone_pfns();
1838
1839 for (i = 0; i < MAX_NR_ZONES; i++) {
1840 if (descending)
1841 zone = MAX_NR_ZONES - i - 1;
1842 else
1843 zone = i;
1844
1845 if (zone == ZONE_MOVABLE)
1846 continue;
1847
1848 end_pfn = max(max_zone_pfn[zone], start_pfn);
1849 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1850 arch_zone_highest_possible_pfn[zone] = end_pfn;
1851
1852 start_pfn = end_pfn;
1853 }
1854
1855 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1856 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1857 find_zone_movable_pfns_for_nodes();
1858
1859 /* Print out the zone ranges */
1860 pr_info("Zone ranges:\n");
1861 for (i = 0; i < MAX_NR_ZONES; i++) {
1862 if (i == ZONE_MOVABLE)
1863 continue;
1864 pr_info(" %-8s ", zone_names[i]);
1865 if (arch_zone_lowest_possible_pfn[i] ==
1866 arch_zone_highest_possible_pfn[i])
1867 pr_cont("empty\n");
1868 else
1869 pr_cont("[mem %#018Lx-%#018Lx]\n",
1870 (u64)arch_zone_lowest_possible_pfn[i]
1871 << PAGE_SHIFT,
1872 ((u64)arch_zone_highest_possible_pfn[i]
1873 << PAGE_SHIFT) - 1);
1874 }
1875
1876 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1877 pr_info("Movable zone start for each node\n");
1878 for (i = 0; i < MAX_NUMNODES; i++) {
1879 if (zone_movable_pfn[i])
1880 pr_info(" Node %d: %#018Lx\n", i,
1881 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1882 }
1883
1884 /*
1885 * Print out the early node map, and initialize the
1886 * subsection-map relative to active online memory ranges to
1887 * enable future "sub-section" extensions of the memory map.
1888 */
1889 pr_info("Early memory node ranges\n");
1890 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1891 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1892 (u64)start_pfn << PAGE_SHIFT,
1893 ((u64)end_pfn << PAGE_SHIFT) - 1);
1894 subsection_map_init(start_pfn, end_pfn - start_pfn);
1895 }
1896
1897 /* Initialise every node */
1898 mminit_verify_pageflags_layout();
1899 setup_nr_node_ids();
1900 set_pageblock_order();
1901
1902 for_each_node(nid) {
1903 pg_data_t *pgdat;
1904
1905 if (!node_online(nid))
1906 alloc_offline_node_data(nid);
1907
1908 pgdat = NODE_DATA(nid);
1909 free_area_init_node(nid);
1910
1911 /*
1912 * No sysfs hierarchy will be created via register_one_node()
1913 *for memory-less node because here it's not marked as N_MEMORY
1914 *and won't be set online later. The benefit is userspace
1915 *program won't be confused by sysfs files/directories of
1916 *memory-less node. The pgdat will get fully initialized by
1917 *hotadd_init_pgdat() when memory is hotplugged into this node.
1918 */
1919 if (pgdat->node_present_pages) {
1920 node_set_state(nid, N_MEMORY);
1921 check_for_memory(pgdat);
1922 }
1923 }
1924
1925 for_each_node_state(nid, N_MEMORY)
1926 sparse_vmemmap_init_nid_late(nid);
1927
1928 calc_nr_kernel_pages();
1929 memmap_init();
1930
1931 /* disable hash distribution for systems with a single node */
1932 fixup_hashdist();
1933
1934 set_high_memory();
1935 }
1936
1937 /**
1938 * node_map_pfn_alignment - determine the maximum internode alignment
1939 *
1940 * This function should be called after node map is populated and sorted.
1941 * It calculates the maximum power of two alignment which can distinguish
1942 * all the nodes.
1943 *
1944 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1945 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1946 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1947 * shifted, 1GiB is enough and this function will indicate so.
1948 *
1949 * This is used to test whether pfn -> nid mapping of the chosen memory
1950 * model has fine enough granularity to avoid incorrect mapping for the
1951 * populated node map.
1952 *
1953 * Return: the determined alignment in pfn's. 0 if there is no alignment
1954 * requirement (single node).
1955 */
node_map_pfn_alignment(void)1956 unsigned long __init node_map_pfn_alignment(void)
1957 {
1958 unsigned long accl_mask = 0, last_end = 0;
1959 unsigned long start, end, mask;
1960 int last_nid = NUMA_NO_NODE;
1961 int i, nid;
1962
1963 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1964 if (!start || last_nid < 0 || last_nid == nid) {
1965 last_nid = nid;
1966 last_end = end;
1967 continue;
1968 }
1969
1970 /*
1971 * Start with a mask granular enough to pin-point to the
1972 * start pfn and tick off bits one-by-one until it becomes
1973 * too coarse to separate the current node from the last.
1974 */
1975 mask = ~((1 << __ffs(start)) - 1);
1976 while (mask && last_end <= (start & (mask << 1)))
1977 mask <<= 1;
1978
1979 /* accumulate all internode masks */
1980 accl_mask |= mask;
1981 }
1982
1983 /* convert mask to number of pages */
1984 return ~accl_mask + 1;
1985 }
1986
1987 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_pages(unsigned long pfn,unsigned long nr_pages)1988 static void __init deferred_free_pages(unsigned long pfn,
1989 unsigned long nr_pages)
1990 {
1991 struct page *page;
1992 unsigned long i;
1993
1994 if (!nr_pages)
1995 return;
1996
1997 page = pfn_to_page(pfn);
1998
1999 /* Free a large naturally-aligned chunk if possible */
2000 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
2001 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
2002 init_pageblock_migratetype(page + i, MIGRATE_MOVABLE,
2003 false);
2004 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2005 return;
2006 }
2007
2008 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2009 accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2010
2011 for (i = 0; i < nr_pages; i++, page++, pfn++) {
2012 if (pageblock_aligned(pfn))
2013 init_pageblock_migratetype(page, MIGRATE_MOVABLE,
2014 false);
2015 __free_pages_core(page, 0, MEMINIT_EARLY);
2016 }
2017 }
2018
2019 /* Completion tracking for deferred_init_memmap() threads */
2020 static atomic_t pgdat_init_n_undone __initdata;
2021 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2022
pgdat_init_report_one_done(void)2023 static inline void __init pgdat_init_report_one_done(void)
2024 {
2025 if (atomic_dec_and_test(&pgdat_init_n_undone))
2026 complete(&pgdat_init_all_done_comp);
2027 }
2028
2029 /*
2030 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
2031 * by performing it only once every MAX_ORDER_NR_PAGES.
2032 * Return number of pages initialized.
2033 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2034 static unsigned long __init deferred_init_pages(struct zone *zone,
2035 unsigned long pfn, unsigned long end_pfn)
2036 {
2037 int nid = zone_to_nid(zone);
2038 unsigned long nr_pages = end_pfn - pfn;
2039 int zid = zone_idx(zone);
2040 struct page *page = pfn_to_page(pfn);
2041
2042 for (; pfn < end_pfn; pfn++, page++)
2043 __init_single_page(page, pfn, zid, nid);
2044 return nr_pages;
2045 }
2046
2047 /*
2048 * This function is meant to pre-load the iterator for the zone init from
2049 * a given point.
2050 * Specifically it walks through the ranges starting with initial index
2051 * passed to it until we are caught up to the first_init_pfn value and
2052 * exits there. If we never encounter the value we return false indicating
2053 * there are no valid ranges left.
2054 */
2055 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2056 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2057 unsigned long *spfn, unsigned long *epfn,
2058 unsigned long first_init_pfn)
2059 {
2060 u64 j = *i;
2061
2062 if (j == 0)
2063 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2064
2065 /*
2066 * Start out by walking through the ranges in this zone that have
2067 * already been initialized. We don't need to do anything with them
2068 * so we just need to flush them out of the system.
2069 */
2070 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2071 if (*epfn <= first_init_pfn)
2072 continue;
2073 if (*spfn < first_init_pfn)
2074 *spfn = first_init_pfn;
2075 *i = j;
2076 return true;
2077 }
2078
2079 return false;
2080 }
2081
2082 /*
2083 * Initialize and free pages. We do it in two loops: first we initialize
2084 * struct page, then free to buddy allocator, because while we are
2085 * freeing pages we can access pages that are ahead (computing buddy
2086 * page in __free_one_page()).
2087 *
2088 * In order to try and keep some memory in the cache we have the loop
2089 * broken along max page order boundaries. This way we will not cause
2090 * any issues with the buddy page computation.
2091 */
2092 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2093 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2094 unsigned long *end_pfn)
2095 {
2096 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2097 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2098 unsigned long nr_pages = 0;
2099 u64 j = *i;
2100
2101 /* First we loop through and initialize the page values */
2102 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2103 unsigned long t;
2104
2105 if (mo_pfn <= *start_pfn)
2106 break;
2107
2108 t = min(mo_pfn, *end_pfn);
2109 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2110
2111 if (mo_pfn < *end_pfn) {
2112 *start_pfn = mo_pfn;
2113 break;
2114 }
2115 }
2116
2117 /* Reset values and now loop through freeing pages as needed */
2118 swap(j, *i);
2119
2120 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2121 unsigned long t;
2122
2123 if (mo_pfn <= spfn)
2124 break;
2125
2126 t = min(mo_pfn, epfn);
2127 deferred_free_pages(spfn, t - spfn);
2128
2129 if (mo_pfn <= epfn)
2130 break;
2131 }
2132
2133 return nr_pages;
2134 }
2135
2136 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2137 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2138 void *arg)
2139 {
2140 unsigned long spfn, epfn;
2141 struct zone *zone = arg;
2142 u64 i = 0;
2143
2144 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2145
2146 /*
2147 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2148 * we can avoid introducing any issues with the buddy allocator.
2149 */
2150 while (spfn < end_pfn) {
2151 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2152 cond_resched();
2153 }
2154 }
2155
2156 static unsigned int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2157 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2158 {
2159 return max(cpumask_weight(node_cpumask), 1U);
2160 }
2161
2162 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2163 static int __init deferred_init_memmap(void *data)
2164 {
2165 pg_data_t *pgdat = data;
2166 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2167 unsigned long spfn = 0, epfn = 0;
2168 unsigned long first_init_pfn, flags;
2169 unsigned long start = jiffies;
2170 struct zone *zone;
2171 int max_threads;
2172 u64 i = 0;
2173
2174 /* Bind memory initialisation thread to a local node if possible */
2175 if (!cpumask_empty(cpumask))
2176 set_cpus_allowed_ptr(current, cpumask);
2177
2178 pgdat_resize_lock(pgdat, &flags);
2179 first_init_pfn = pgdat->first_deferred_pfn;
2180 if (first_init_pfn == ULONG_MAX) {
2181 pgdat_resize_unlock(pgdat, &flags);
2182 pgdat_init_report_one_done();
2183 return 0;
2184 }
2185
2186 /* Sanity check boundaries */
2187 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2188 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2189 pgdat->first_deferred_pfn = ULONG_MAX;
2190
2191 /*
2192 * Once we unlock here, the zone cannot be grown anymore, thus if an
2193 * interrupt thread must allocate this early in boot, zone must be
2194 * pre-grown prior to start of deferred page initialization.
2195 */
2196 pgdat_resize_unlock(pgdat, &flags);
2197
2198 /* Only the highest zone is deferred */
2199 zone = pgdat->node_zones + pgdat->nr_zones - 1;
2200
2201 max_threads = deferred_page_init_max_threads(cpumask);
2202
2203 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2204 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2205 struct padata_mt_job job = {
2206 .thread_fn = deferred_init_memmap_chunk,
2207 .fn_arg = zone,
2208 .start = spfn,
2209 .size = first_init_pfn - spfn,
2210 .align = PAGES_PER_SECTION,
2211 .min_chunk = PAGES_PER_SECTION,
2212 .max_threads = max_threads,
2213 .numa_aware = false,
2214 };
2215
2216 padata_do_multithreaded(&job);
2217 }
2218
2219 /* Sanity check that the next zone really is unpopulated */
2220 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2221
2222 pr_info("node %d deferred pages initialised in %ums\n",
2223 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2224
2225 pgdat_init_report_one_done();
2226 return 0;
2227 }
2228
2229 /*
2230 * If this zone has deferred pages, try to grow it by initializing enough
2231 * deferred pages to satisfy the allocation specified by order, rounded up to
2232 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2233 * of SECTION_SIZE bytes by initializing struct pages in increments of
2234 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2235 *
2236 * Return true when zone was grown, otherwise return false. We return true even
2237 * when we grow less than requested, to let the caller decide if there are
2238 * enough pages to satisfy the allocation.
2239 */
deferred_grow_zone(struct zone * zone,unsigned int order)2240 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2241 {
2242 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2243 pg_data_t *pgdat = zone->zone_pgdat;
2244 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2245 unsigned long spfn, epfn, flags;
2246 unsigned long nr_pages = 0;
2247 u64 i = 0;
2248
2249 /* Only the last zone may have deferred pages */
2250 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2251 return false;
2252
2253 pgdat_resize_lock(pgdat, &flags);
2254
2255 /*
2256 * If someone grew this zone while we were waiting for spinlock, return
2257 * true, as there might be enough pages already.
2258 */
2259 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2260 pgdat_resize_unlock(pgdat, &flags);
2261 return true;
2262 }
2263
2264 /* If the zone is empty somebody else may have cleared out the zone */
2265 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2266 first_deferred_pfn)) {
2267 pgdat->first_deferred_pfn = ULONG_MAX;
2268 pgdat_resize_unlock(pgdat, &flags);
2269 /* Retry only once. */
2270 return first_deferred_pfn != ULONG_MAX;
2271 }
2272
2273 /*
2274 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2275 * that we can avoid introducing any issues with the buddy
2276 * allocator.
2277 */
2278 while (spfn < epfn) {
2279 /* update our first deferred PFN for this section */
2280 first_deferred_pfn = spfn;
2281
2282 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2283 touch_nmi_watchdog();
2284
2285 /* We should only stop along section boundaries */
2286 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2287 continue;
2288
2289 /* If our quota has been met we can stop here */
2290 if (nr_pages >= nr_pages_needed)
2291 break;
2292 }
2293
2294 pgdat->first_deferred_pfn = spfn;
2295 pgdat_resize_unlock(pgdat, &flags);
2296
2297 return nr_pages > 0;
2298 }
2299
2300 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2301
2302 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2303 void __init init_cma_reserved_pageblock(struct page *page)
2304 {
2305 unsigned i = pageblock_nr_pages;
2306 struct page *p = page;
2307
2308 do {
2309 __ClearPageReserved(p);
2310 set_page_count(p, 0);
2311 } while (++p, --i);
2312
2313 init_pageblock_migratetype(page, MIGRATE_CMA, false);
2314 set_page_refcounted(page);
2315 /* pages were reserved and not allocated */
2316 clear_page_tag_ref(page);
2317 __free_pages(page, pageblock_order);
2318
2319 adjust_managed_page_count(page, pageblock_nr_pages);
2320 page_zone(page)->cma_pages += pageblock_nr_pages;
2321 }
2322 /*
2323 * Similar to above, but only set the migrate type and stats.
2324 */
init_cma_pageblock(struct page * page)2325 void __init init_cma_pageblock(struct page *page)
2326 {
2327 init_pageblock_migratetype(page, MIGRATE_CMA, false);
2328 adjust_managed_page_count(page, pageblock_nr_pages);
2329 page_zone(page)->cma_pages += pageblock_nr_pages;
2330 }
2331 #endif
2332
set_zone_contiguous(struct zone * zone)2333 void set_zone_contiguous(struct zone *zone)
2334 {
2335 unsigned long block_start_pfn = zone->zone_start_pfn;
2336 unsigned long block_end_pfn;
2337
2338 block_end_pfn = pageblock_end_pfn(block_start_pfn);
2339 for (; block_start_pfn < zone_end_pfn(zone);
2340 block_start_pfn = block_end_pfn,
2341 block_end_pfn += pageblock_nr_pages) {
2342
2343 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2344
2345 if (!__pageblock_pfn_to_page(block_start_pfn,
2346 block_end_pfn, zone))
2347 return;
2348 cond_resched();
2349 }
2350
2351 /* We confirm that there is no hole */
2352 zone->contiguous = true;
2353 }
2354
2355 /*
2356 * Check if a PFN range intersects multiple zones on one or more
2357 * NUMA nodes. Specify the @nid argument if it is known that this
2358 * PFN range is on one node, NUMA_NO_NODE otherwise.
2359 */
pfn_range_intersects_zones(int nid,unsigned long start_pfn,unsigned long nr_pages)2360 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2361 unsigned long nr_pages)
2362 {
2363 struct zone *zone, *izone = NULL;
2364
2365 for_each_zone(zone) {
2366 if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2367 continue;
2368
2369 if (zone_intersects(zone, start_pfn, nr_pages)) {
2370 if (izone != NULL)
2371 return true;
2372 izone = zone;
2373 }
2374
2375 }
2376
2377 return false;
2378 }
2379
2380 static void __init mem_init_print_info(void);
page_alloc_init_late(void)2381 void __init page_alloc_init_late(void)
2382 {
2383 struct zone *zone;
2384 int nid;
2385
2386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2387
2388 /* There will be num_node_state(N_MEMORY) threads */
2389 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2390 for_each_node_state(nid, N_MEMORY) {
2391 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2392 }
2393
2394 /* Block until all are initialised */
2395 wait_for_completion(&pgdat_init_all_done_comp);
2396
2397 /*
2398 * We initialized the rest of the deferred pages. Permanently disable
2399 * on-demand struct page initialization.
2400 */
2401 static_branch_disable(&deferred_pages);
2402
2403 /* Reinit limits that are based on free pages after the kernel is up */
2404 files_maxfiles_init();
2405 #endif
2406
2407 /* Accounting of total+free memory is stable at this point. */
2408 mem_init_print_info();
2409 buffer_init();
2410
2411 /* Discard memblock private memory */
2412 memblock_discard();
2413
2414 for_each_node_state(nid, N_MEMORY)
2415 shuffle_free_memory(NODE_DATA(nid));
2416
2417 for_each_populated_zone(zone)
2418 set_zone_contiguous(zone);
2419
2420 /* Initialize page ext after all struct pages are initialized. */
2421 if (deferred_struct_pages)
2422 page_ext_init();
2423
2424 page_alloc_sysctl_init();
2425 }
2426
2427 /*
2428 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2429 * machines. As memory size is increased the scale is also increased but at
2430 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2431 * quadruples the scale is increased by one, which means the size of hash table
2432 * only doubles, instead of quadrupling as well.
2433 * Because 32-bit systems cannot have large physical memory, where this scaling
2434 * makes sense, it is disabled on such platforms.
2435 */
2436 #if __BITS_PER_LONG > 32
2437 #define ADAPT_SCALE_BASE (64ul << 30)
2438 #define ADAPT_SCALE_SHIFT 2
2439 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2440 #endif
2441
2442 /*
2443 * allocate a large system hash table from bootmem
2444 * - it is assumed that the hash table must contain an exact power-of-2
2445 * quantity of entries
2446 * - limit is the number of hash buckets, not the total allocation size
2447 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2448 void *__init alloc_large_system_hash(const char *tablename,
2449 unsigned long bucketsize,
2450 unsigned long numentries,
2451 int scale,
2452 int flags,
2453 unsigned int *_hash_shift,
2454 unsigned int *_hash_mask,
2455 unsigned long low_limit,
2456 unsigned long high_limit)
2457 {
2458 unsigned long long max = high_limit;
2459 unsigned long log2qty, size;
2460 void *table;
2461 gfp_t gfp_flags;
2462 bool virt;
2463 bool huge;
2464
2465 /* allow the kernel cmdline to have a say */
2466 if (!numentries) {
2467 /* round applicable memory size up to nearest megabyte */
2468 numentries = nr_kernel_pages;
2469
2470 /* It isn't necessary when PAGE_SIZE >= 1MB */
2471 if (PAGE_SIZE < SZ_1M)
2472 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2473
2474 #if __BITS_PER_LONG > 32
2475 if (!high_limit) {
2476 unsigned long adapt;
2477
2478 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2479 adapt <<= ADAPT_SCALE_SHIFT)
2480 scale++;
2481 }
2482 #endif
2483
2484 /* limit to 1 bucket per 2^scale bytes of low memory */
2485 if (scale > PAGE_SHIFT)
2486 numentries >>= (scale - PAGE_SHIFT);
2487 else
2488 numentries <<= (PAGE_SHIFT - scale);
2489
2490 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2491 numentries = PAGE_SIZE / bucketsize;
2492 }
2493 numentries = roundup_pow_of_two(numentries);
2494
2495 /* limit allocation size to 1/16 total memory by default */
2496 if (max == 0) {
2497 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2498 do_div(max, bucketsize);
2499 }
2500 max = min(max, 0x80000000ULL);
2501
2502 if (numentries < low_limit)
2503 numentries = low_limit;
2504 if (numentries > max)
2505 numentries = max;
2506
2507 log2qty = ilog2(numentries);
2508
2509 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2510 do {
2511 virt = false;
2512 size = bucketsize << log2qty;
2513 if (flags & HASH_EARLY) {
2514 if (flags & HASH_ZERO)
2515 table = memblock_alloc(size, SMP_CACHE_BYTES);
2516 else
2517 table = memblock_alloc_raw(size,
2518 SMP_CACHE_BYTES);
2519 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2520 table = vmalloc_huge(size, gfp_flags);
2521 virt = true;
2522 if (table)
2523 huge = is_vm_area_hugepages(table);
2524 } else {
2525 /*
2526 * If bucketsize is not a power-of-two, we may free
2527 * some pages at the end of hash table which
2528 * alloc_pages_exact() automatically does
2529 */
2530 table = alloc_pages_exact(size, gfp_flags);
2531 kmemleak_alloc(table, size, 1, gfp_flags);
2532 }
2533 } while (!table && size > PAGE_SIZE && --log2qty);
2534
2535 if (!table)
2536 panic("Failed to allocate %s hash table\n", tablename);
2537
2538 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2539 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2540 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2541
2542 if (_hash_shift)
2543 *_hash_shift = log2qty;
2544 if (_hash_mask)
2545 *_hash_mask = (1 << log2qty) - 1;
2546
2547 return table;
2548 }
2549
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2550 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2551 unsigned int order)
2552 {
2553 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2554 int nid = early_pfn_to_nid(pfn);
2555
2556 if (!early_page_initialised(pfn, nid))
2557 return;
2558 }
2559
2560 if (!kmsan_memblock_free_pages(page, order)) {
2561 /* KMSAN will take care of these pages. */
2562 return;
2563 }
2564
2565 /* pages were reserved and not allocated */
2566 clear_page_tag_ref(page);
2567 __free_pages_core(page, order, MEMINIT_EARLY);
2568 }
2569
2570 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2571 EXPORT_SYMBOL(init_on_alloc);
2572
2573 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2574 EXPORT_SYMBOL(init_on_free);
2575
2576 static bool _init_on_alloc_enabled_early __read_mostly
2577 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2578 static int __init early_init_on_alloc(char *buf)
2579 {
2580
2581 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2582 }
2583 early_param("init_on_alloc", early_init_on_alloc);
2584
2585 static bool _init_on_free_enabled_early __read_mostly
2586 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2587 static int __init early_init_on_free(char *buf)
2588 {
2589 return kstrtobool(buf, &_init_on_free_enabled_early);
2590 }
2591 early_param("init_on_free", early_init_on_free);
2592
2593 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2594
2595 /*
2596 * Enable static keys related to various memory debugging and hardening options.
2597 * Some override others, and depend on early params that are evaluated in the
2598 * order of appearance. So we need to first gather the full picture of what was
2599 * enabled, and then make decisions.
2600 */
mem_debugging_and_hardening_init(void)2601 static void __init mem_debugging_and_hardening_init(void)
2602 {
2603 bool page_poisoning_requested = false;
2604 bool want_check_pages = false;
2605
2606 #ifdef CONFIG_PAGE_POISONING
2607 /*
2608 * Page poisoning is debug page alloc for some arches. If
2609 * either of those options are enabled, enable poisoning.
2610 */
2611 if (page_poisoning_enabled() ||
2612 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2613 debug_pagealloc_enabled())) {
2614 static_branch_enable(&_page_poisoning_enabled);
2615 page_poisoning_requested = true;
2616 want_check_pages = true;
2617 }
2618 #endif
2619
2620 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2621 page_poisoning_requested) {
2622 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2623 "will take precedence over init_on_alloc and init_on_free\n");
2624 _init_on_alloc_enabled_early = false;
2625 _init_on_free_enabled_early = false;
2626 }
2627
2628 if (_init_on_alloc_enabled_early) {
2629 want_check_pages = true;
2630 static_branch_enable(&init_on_alloc);
2631 } else {
2632 static_branch_disable(&init_on_alloc);
2633 }
2634
2635 if (_init_on_free_enabled_early) {
2636 want_check_pages = true;
2637 static_branch_enable(&init_on_free);
2638 } else {
2639 static_branch_disable(&init_on_free);
2640 }
2641
2642 if (IS_ENABLED(CONFIG_KMSAN) &&
2643 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2644 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2645
2646 #ifdef CONFIG_DEBUG_PAGEALLOC
2647 if (debug_pagealloc_enabled()) {
2648 want_check_pages = true;
2649 static_branch_enable(&_debug_pagealloc_enabled);
2650
2651 if (debug_guardpage_minorder())
2652 static_branch_enable(&_debug_guardpage_enabled);
2653 }
2654 #endif
2655
2656 /*
2657 * Any page debugging or hardening option also enables sanity checking
2658 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2659 * enabled already.
2660 */
2661 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2662 static_branch_enable(&check_pages_enabled);
2663 }
2664
2665 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2666 static void __init report_meminit(void)
2667 {
2668 const char *stack;
2669
2670 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2671 stack = "all(pattern)";
2672 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2673 stack = "all(zero)";
2674 else
2675 stack = "off";
2676
2677 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2678 stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2679 str_on_off(want_init_on_free()));
2680 if (want_init_on_free())
2681 pr_info("mem auto-init: clearing system memory may take some time...\n");
2682 }
2683
mem_init_print_info(void)2684 static void __init mem_init_print_info(void)
2685 {
2686 unsigned long physpages, codesize, datasize, rosize, bss_size;
2687 unsigned long init_code_size, init_data_size;
2688
2689 physpages = get_num_physpages();
2690 codesize = _etext - _stext;
2691 datasize = _edata - _sdata;
2692 rosize = __end_rodata - __start_rodata;
2693 bss_size = __bss_stop - __bss_start;
2694 init_data_size = __init_end - __init_begin;
2695 init_code_size = _einittext - _sinittext;
2696
2697 /*
2698 * Detect special cases and adjust section sizes accordingly:
2699 * 1) .init.* may be embedded into .data sections
2700 * 2) .init.text.* may be out of [__init_begin, __init_end],
2701 * please refer to arch/tile/kernel/vmlinux.lds.S.
2702 * 3) .rodata.* may be embedded into .text or .data sections.
2703 */
2704 #define adj_init_size(start, end, size, pos, adj) \
2705 do { \
2706 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2707 size -= adj; \
2708 } while (0)
2709
2710 adj_init_size(__init_begin, __init_end, init_data_size,
2711 _sinittext, init_code_size);
2712 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2713 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2714 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2715 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2716
2717 #undef adj_init_size
2718
2719 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2720 #ifdef CONFIG_HIGHMEM
2721 ", %luK highmem"
2722 #endif
2723 ")\n",
2724 K(nr_free_pages()), K(physpages),
2725 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2726 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2727 K(physpages - totalram_pages() - totalcma_pages),
2728 K(totalcma_pages)
2729 #ifdef CONFIG_HIGHMEM
2730 , K(totalhigh_pages())
2731 #endif
2732 );
2733 }
2734
arch_mm_preinit(void)2735 void __init __weak arch_mm_preinit(void)
2736 {
2737 }
2738
mem_init(void)2739 void __init __weak mem_init(void)
2740 {
2741 }
2742
2743 /*
2744 * Set up kernel memory allocators
2745 */
mm_core_init(void)2746 void __init mm_core_init(void)
2747 {
2748 arch_mm_preinit();
2749 hugetlb_bootmem_alloc();
2750
2751 /* Initializations relying on SMP setup */
2752 BUILD_BUG_ON(MAX_ZONELISTS > 2);
2753 build_all_zonelists(NULL);
2754 page_alloc_init_cpuhp();
2755 alloc_tag_sec_init();
2756 /*
2757 * page_ext requires contiguous pages,
2758 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2759 */
2760 page_ext_init_flatmem();
2761 mem_debugging_and_hardening_init();
2762 kfence_alloc_pool_and_metadata();
2763 report_meminit();
2764 kmsan_init_shadow();
2765 stack_depot_early_init();
2766
2767 /*
2768 * KHO memory setup must happen while memblock is still active, but
2769 * as close as possible to buddy initialization
2770 */
2771 kho_memory_init();
2772
2773 memblock_free_all();
2774 mem_init();
2775 kmem_cache_init();
2776 /*
2777 * page_owner must be initialized after buddy is ready, and also after
2778 * slab is ready so that stack_depot_init() works properly
2779 */
2780 page_ext_init_flatmem_late();
2781 kmemleak_init();
2782 ptlock_cache_init();
2783 pgtable_cache_init();
2784 debug_objects_mem_init();
2785 vmalloc_init();
2786 /* If no deferred init page_ext now, as vmap is fully initialized */
2787 if (!deferred_struct_pages)
2788 page_ext_init();
2789 /* Should be run before the first non-init thread is created */
2790 init_espfix_bsp();
2791 /* Should be run after espfix64 is set up. */
2792 pti_init();
2793 kmsan_init_runtime();
2794 mm_cache_init();
2795 execmem_init();
2796 }
2797