xref: /linux/fs/btrfs/transaction.c (revision 92514ef226f511f2ca1fb1b8752966097518edc0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37 
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |						    Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update	    |
98  * | super blocks.				    |
99  * |						    |
100  * | At this stage, new transaction is allowed to   |
101  * | start.					    |
102  * | All new start_transaction() calls will be	    |
103  * | attached to transid N+1.			    |
104  * |						    |
105  * | To next stage:				    |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices			    |
108  * V						    |
109  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.	    | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 	[TRANS_STATE_RUNNING]		= 0U,
116 	[TRANS_STATE_COMMIT_PREP]	= 0U,
117 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
118 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOSTART),
122 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOLOCK |
126 					   __TRANS_JOIN_NOSTART),
127 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
128 					   __TRANS_ATTACH |
129 					   __TRANS_JOIN |
130 					   __TRANS_JOIN_NOLOCK |
131 					   __TRANS_JOIN_NOSTART),
132 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
133 					   __TRANS_ATTACH |
134 					   __TRANS_JOIN |
135 					   __TRANS_JOIN_NOLOCK |
136 					   __TRANS_JOIN_NOSTART),
137 };
138 
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 	WARN_ON(refcount_read(&transaction->use_count) == 0);
142 	if (refcount_dec_and_test(&transaction->use_count)) {
143 		BUG_ON(!list_empty(&transaction->list));
144 		WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 		WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 		if (transaction->delayed_refs.pending_csums)
147 			btrfs_err(transaction->fs_info,
148 				  "pending csums is %llu",
149 				  transaction->delayed_refs.pending_csums);
150 		/*
151 		 * If any block groups are found in ->deleted_bgs then it's
152 		 * because the transaction was aborted and a commit did not
153 		 * happen (things failed before writing the new superblock
154 		 * and calling btrfs_finish_extent_commit()), so we can not
155 		 * discard the physical locations of the block groups.
156 		 */
157 		while (!list_empty(&transaction->deleted_bgs)) {
158 			struct btrfs_block_group *cache;
159 
160 			cache = list_first_entry(&transaction->deleted_bgs,
161 						 struct btrfs_block_group,
162 						 bg_list);
163 			list_del_init(&cache->bg_list);
164 			btrfs_unfreeze_block_group(cache);
165 			btrfs_put_block_group(cache);
166 		}
167 		WARN_ON(!list_empty(&transaction->dev_update_list));
168 		kfree(transaction);
169 	}
170 }
171 
switch_commit_roots(struct btrfs_trans_handle * trans)172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174 	struct btrfs_transaction *cur_trans = trans->transaction;
175 	struct btrfs_fs_info *fs_info = trans->fs_info;
176 	struct btrfs_root *root, *tmp;
177 
178 	/*
179 	 * At this point no one can be using this transaction to modify any tree
180 	 * and no one can start another transaction to modify any tree either.
181 	 */
182 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183 
184 	down_write(&fs_info->commit_root_sem);
185 
186 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 		fs_info->last_reloc_trans = trans->transid;
188 
189 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 				 dirty_list) {
191 		list_del_init(&root->dirty_list);
192 		free_extent_buffer(root->commit_root);
193 		root->commit_root = btrfs_root_node(root);
194 		extent_io_tree_release(&root->dirty_log_pages);
195 		btrfs_qgroup_clean_swapped_blocks(root);
196 	}
197 
198 	/* We can free old roots now. */
199 	spin_lock(&cur_trans->dropped_roots_lock);
200 	while (!list_empty(&cur_trans->dropped_roots)) {
201 		root = list_first_entry(&cur_trans->dropped_roots,
202 					struct btrfs_root, root_list);
203 		list_del_init(&root->root_list);
204 		spin_unlock(&cur_trans->dropped_roots_lock);
205 		btrfs_free_log(trans, root);
206 		btrfs_drop_and_free_fs_root(fs_info, root);
207 		spin_lock(&cur_trans->dropped_roots_lock);
208 	}
209 	spin_unlock(&cur_trans->dropped_roots_lock);
210 
211 	up_write(&fs_info->commit_root_sem);
212 }
213 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 					 unsigned int type)
216 {
217 	if (type & TRANS_EXTWRITERS)
218 		atomic_inc(&trans->num_extwriters);
219 }
220 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 					 unsigned int type)
223 {
224 	if (type & TRANS_EXTWRITERS)
225 		atomic_dec(&trans->num_extwriters);
226 }
227 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 					  unsigned int type)
230 {
231 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233 
extwriter_counter_read(struct btrfs_transaction * trans)234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236 	return atomic_read(&trans->num_extwriters);
237 }
238 
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248 	struct btrfs_fs_info *fs_info = trans->fs_info;
249 
250 	if (!trans->chunk_bytes_reserved)
251 		return;
252 
253 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 				trans->chunk_bytes_reserved, NULL);
255 	trans->chunk_bytes_reserved = 0;
256 }
257 
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 				     unsigned int type)
263 {
264 	struct btrfs_transaction *cur_trans;
265 
266 	spin_lock(&fs_info->trans_lock);
267 loop:
268 	/* The file system has been taken offline. No new transactions. */
269 	if (BTRFS_FS_ERROR(fs_info)) {
270 		spin_unlock(&fs_info->trans_lock);
271 		return -EROFS;
272 	}
273 
274 	cur_trans = fs_info->running_transaction;
275 	if (cur_trans) {
276 		if (TRANS_ABORTED(cur_trans)) {
277 			const int abort_error = cur_trans->aborted;
278 
279 			spin_unlock(&fs_info->trans_lock);
280 			return abort_error;
281 		}
282 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 			spin_unlock(&fs_info->trans_lock);
284 			return -EBUSY;
285 		}
286 		refcount_inc(&cur_trans->use_count);
287 		atomic_inc(&cur_trans->num_writers);
288 		extwriter_counter_inc(cur_trans, type);
289 		spin_unlock(&fs_info->trans_lock);
290 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 		return 0;
293 	}
294 	spin_unlock(&fs_info->trans_lock);
295 
296 	/*
297 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 	 * current transaction, and commit it. If there is no transaction, just
299 	 * return ENOENT.
300 	 */
301 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 		return -ENOENT;
303 
304 	/*
305 	 * JOIN_NOLOCK only happens during the transaction commit, so
306 	 * it is impossible that ->running_transaction is NULL
307 	 */
308 	BUG_ON(type == TRANS_JOIN_NOLOCK);
309 
310 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 	if (!cur_trans)
312 		return -ENOMEM;
313 
314 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316 
317 	spin_lock(&fs_info->trans_lock);
318 	if (fs_info->running_transaction) {
319 		/*
320 		 * someone started a transaction after we unlocked.  Make sure
321 		 * to redo the checks above
322 		 */
323 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 		kfree(cur_trans);
326 		goto loop;
327 	} else if (BTRFS_FS_ERROR(fs_info)) {
328 		spin_unlock(&fs_info->trans_lock);
329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 		kfree(cur_trans);
332 		return -EROFS;
333 	}
334 
335 	cur_trans->fs_info = fs_info;
336 	atomic_set(&cur_trans->pending_ordered, 0);
337 	init_waitqueue_head(&cur_trans->pending_wait);
338 	atomic_set(&cur_trans->num_writers, 1);
339 	extwriter_counter_init(cur_trans, type);
340 	init_waitqueue_head(&cur_trans->writer_wait);
341 	init_waitqueue_head(&cur_trans->commit_wait);
342 	cur_trans->state = TRANS_STATE_RUNNING;
343 	/*
344 	 * One for this trans handle, one so it will live on until we
345 	 * commit the transaction.
346 	 */
347 	refcount_set(&cur_trans->use_count, 2);
348 	cur_trans->flags = 0;
349 	cur_trans->start_time = ktime_get_seconds();
350 
351 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352 
353 	xa_init(&cur_trans->delayed_refs.head_refs);
354 	xa_init(&cur_trans->delayed_refs.dirty_extents);
355 
356 	/*
357 	 * although the tree mod log is per file system and not per transaction,
358 	 * the log must never go across transaction boundaries.
359 	 */
360 	smp_mb();
361 	if (!list_empty(&fs_info->tree_mod_seq_list))
362 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 	atomic64_set(&fs_info->tree_mod_seq, 0);
366 
367 	spin_lock_init(&cur_trans->delayed_refs.lock);
368 
369 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 	INIT_LIST_HEAD(&cur_trans->switch_commits);
372 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 	INIT_LIST_HEAD(&cur_trans->io_bgs);
374 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 	mutex_init(&cur_trans->cache_write_mutex);
376 	spin_lock_init(&cur_trans->dirty_bgs_lock);
377 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 	spin_lock_init(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 			IO_TREE_TRANS_DIRTY_PAGES);
382 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 			IO_TREE_FS_PINNED_EXTENTS);
384 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385 	cur_trans->transid = fs_info->generation;
386 	fs_info->running_transaction = cur_trans;
387 	cur_trans->aborted = 0;
388 	spin_unlock(&fs_info->trans_lock);
389 
390 	return 0;
391 }
392 
393 /*
394  * This does all the record keeping required to make sure that a shareable root
395  * is properly recorded in a given transaction.  This is required to make sure
396  * the old root from before we joined the transaction is deleted when the
397  * transaction commits.
398  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 			       struct btrfs_root *root,
401 			       int force)
402 {
403 	struct btrfs_fs_info *fs_info = root->fs_info;
404 	int ret = 0;
405 
406 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
408 		WARN_ON(!force && root->commit_root != root->node);
409 
410 		/*
411 		 * see below for IN_TRANS_SETUP usage rules
412 		 * we have the reloc mutex held now, so there
413 		 * is only one writer in this function
414 		 */
415 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 
417 		/* make sure readers find IN_TRANS_SETUP before
418 		 * they find our root->last_trans update
419 		 */
420 		smp_wmb();
421 
422 		spin_lock(&fs_info->fs_roots_radix_lock);
423 		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424 			spin_unlock(&fs_info->fs_roots_radix_lock);
425 			return 0;
426 		}
427 		radix_tree_tag_set(&fs_info->fs_roots_radix,
428 				   (unsigned long)btrfs_root_id(root),
429 				   BTRFS_ROOT_TRANS_TAG);
430 		spin_unlock(&fs_info->fs_roots_radix_lock);
431 		btrfs_set_root_last_trans(root, trans->transid);
432 
433 		/* this is pretty tricky.  We don't want to
434 		 * take the relocation lock in btrfs_record_root_in_trans
435 		 * unless we're really doing the first setup for this root in
436 		 * this transaction.
437 		 *
438 		 * Normally we'd use root->last_trans as a flag to decide
439 		 * if we want to take the expensive mutex.
440 		 *
441 		 * But, we have to set root->last_trans before we
442 		 * init the relocation root, otherwise, we trip over warnings
443 		 * in ctree.c.  The solution used here is to flag ourselves
444 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
445 		 * fixing up the reloc trees and everyone must wait.
446 		 *
447 		 * When this is zero, they can trust root->last_trans and fly
448 		 * through btrfs_record_root_in_trans without having to take the
449 		 * lock.  smp_wmb() makes sure that all the writes above are
450 		 * done before we pop in the zero below
451 		 */
452 		ret = btrfs_init_reloc_root(trans, root);
453 		smp_mb__before_atomic();
454 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 	}
456 	return ret;
457 }
458 
459 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 			    struct btrfs_root *root)
462 {
463 	struct btrfs_fs_info *fs_info = root->fs_info;
464 	struct btrfs_transaction *cur_trans = trans->transaction;
465 
466 	/* Add ourselves to the transaction dropped list */
467 	spin_lock(&cur_trans->dropped_roots_lock);
468 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 	spin_unlock(&cur_trans->dropped_roots_lock);
470 
471 	/* Make sure we don't try to update the root at commit time */
472 	spin_lock(&fs_info->fs_roots_radix_lock);
473 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 			     (unsigned long)btrfs_root_id(root),
475 			     BTRFS_ROOT_TRANS_TAG);
476 	spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 			       struct btrfs_root *root)
481 {
482 	struct btrfs_fs_info *fs_info = root->fs_info;
483 	int ret;
484 
485 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 		return 0;
487 
488 	/*
489 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 	 * and barriers
491 	 */
492 	smp_rmb();
493 	if (btrfs_get_root_last_trans(root) == trans->transid &&
494 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 		return 0;
496 
497 	mutex_lock(&fs_info->reloc_mutex);
498 	ret = record_root_in_trans(trans, root, 0);
499 	mutex_unlock(&fs_info->reloc_mutex);
500 
501 	return ret;
502 }
503 
is_transaction_blocked(struct btrfs_transaction * trans)504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 {
506 	return (trans->state >= TRANS_STATE_COMMIT_START &&
507 		trans->state < TRANS_STATE_UNBLOCKED &&
508 		!TRANS_ABORTED(trans));
509 }
510 
511 /* wait for commit against the current transaction to become unblocked
512  * when this is done, it is safe to start a new transaction, but the current
513  * transaction might not be fully on disk.
514  */
wait_current_trans(struct btrfs_fs_info * fs_info)515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 {
517 	struct btrfs_transaction *cur_trans;
518 
519 	spin_lock(&fs_info->trans_lock);
520 	cur_trans = fs_info->running_transaction;
521 	if (cur_trans && is_transaction_blocked(cur_trans)) {
522 		refcount_inc(&cur_trans->use_count);
523 		spin_unlock(&fs_info->trans_lock);
524 
525 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 		wait_event(fs_info->transaction_wait,
527 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 			   TRANS_ABORTED(cur_trans));
529 		btrfs_put_transaction(cur_trans);
530 	} else {
531 		spin_unlock(&fs_info->trans_lock);
532 	}
533 }
534 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 		return 0;
539 
540 	if (type == TRANS_START)
541 		return 1;
542 
543 	return 0;
544 }
545 
need_reserve_reloc_root(struct btrfs_root * root)546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 
550 	if (!fs_info->reloc_ctl ||
551 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553 	    root->reloc_root)
554 		return false;
555 
556 	return true;
557 }
558 
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)559 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560 					enum btrfs_reserve_flush_enum flush,
561 					u64 num_bytes,
562 					u64 *delayed_refs_bytes)
563 {
564 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565 	u64 bytes = num_bytes + *delayed_refs_bytes;
566 	int ret;
567 
568 	/*
569 	 * We want to reserve all the bytes we may need all at once, so we only
570 	 * do 1 enospc flushing cycle per transaction start.
571 	 */
572 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573 
574 	/*
575 	 * If we are an emergency flush, which can steal from the global block
576 	 * reserve, then attempt to not reserve space for the delayed refs, as
577 	 * we will consume space for them from the global block reserve.
578 	 */
579 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580 		bytes -= *delayed_refs_bytes;
581 		*delayed_refs_bytes = 0;
582 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583 	}
584 
585 	return ret;
586 }
587 
588 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)589 start_transaction(struct btrfs_root *root, unsigned int num_items,
590 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
591 		  bool enforce_qgroups)
592 {
593 	struct btrfs_fs_info *fs_info = root->fs_info;
594 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596 	struct btrfs_trans_handle *h;
597 	struct btrfs_transaction *cur_trans;
598 	u64 num_bytes = 0;
599 	u64 qgroup_reserved = 0;
600 	u64 delayed_refs_bytes = 0;
601 	bool reloc_reserved = false;
602 	bool do_chunk_alloc = false;
603 	int ret;
604 
605 	if (BTRFS_FS_ERROR(fs_info))
606 		return ERR_PTR(-EROFS);
607 
608 	if (current->journal_info) {
609 		WARN_ON(type & TRANS_EXTWRITERS);
610 		h = current->journal_info;
611 		refcount_inc(&h->use_count);
612 		WARN_ON(refcount_read(&h->use_count) > 2);
613 		h->orig_rsv = h->block_rsv;
614 		h->block_rsv = NULL;
615 		goto got_it;
616 	}
617 
618 	/*
619 	 * Do the reservation before we join the transaction so we can do all
620 	 * the appropriate flushing if need be.
621 	 */
622 	if (num_items && root != fs_info->chunk_root) {
623 		qgroup_reserved = num_items * fs_info->nodesize;
624 		/*
625 		 * Use prealloc for now, as there might be a currently running
626 		 * transaction that could free this reserved space prematurely
627 		 * by committing.
628 		 */
629 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630 							 enforce_qgroups, false);
631 		if (ret)
632 			return ERR_PTR(ret);
633 
634 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635 		/*
636 		 * If we plan to insert/update/delete "num_items" from a btree,
637 		 * we will also generate delayed refs for extent buffers in the
638 		 * respective btree paths, so reserve space for the delayed refs
639 		 * that will be generated by the caller as it modifies btrees.
640 		 * Try to reserve them to avoid excessive use of the global
641 		 * block reserve.
642 		 */
643 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644 
645 		/*
646 		 * Do the reservation for the relocation root creation
647 		 */
648 		if (need_reserve_reloc_root(root)) {
649 			num_bytes += fs_info->nodesize;
650 			reloc_reserved = true;
651 		}
652 
653 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654 						   &delayed_refs_bytes);
655 		if (ret)
656 			goto reserve_fail;
657 
658 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659 
660 		if (trans_rsv->space_info->force_alloc)
661 			do_chunk_alloc = true;
662 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
664 		/*
665 		 * Some people call with btrfs_start_transaction(root, 0)
666 		 * because they can be throttled, but have some other mechanism
667 		 * for reserving space.  We still want these guys to refill the
668 		 * delayed block_rsv so just add 1 items worth of reservation
669 		 * here.
670 		 */
671 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672 		if (ret)
673 			goto reserve_fail;
674 	}
675 again:
676 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677 	if (!h) {
678 		ret = -ENOMEM;
679 		goto alloc_fail;
680 	}
681 
682 	/*
683 	 * If we are JOIN_NOLOCK we're already committing a transaction and
684 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
685 	 * because we're already holding a ref.  We need this because we could
686 	 * have raced in and did an fsync() on a file which can kick a commit
687 	 * and then we deadlock with somebody doing a freeze.
688 	 *
689 	 * If we are ATTACH, it means we just want to catch the current
690 	 * transaction and commit it, so we needn't do sb_start_intwrite().
691 	 */
692 	if (type & __TRANS_FREEZABLE)
693 		sb_start_intwrite(fs_info->sb);
694 
695 	if (may_wait_transaction(fs_info, type))
696 		wait_current_trans(fs_info);
697 
698 	do {
699 		ret = join_transaction(fs_info, type);
700 		if (ret == -EBUSY) {
701 			wait_current_trans(fs_info);
702 			if (unlikely(type == TRANS_ATTACH ||
703 				     type == TRANS_JOIN_NOSTART))
704 				ret = -ENOENT;
705 		}
706 	} while (ret == -EBUSY);
707 
708 	if (ret < 0)
709 		goto join_fail;
710 
711 	cur_trans = fs_info->running_transaction;
712 
713 	h->transid = cur_trans->transid;
714 	h->transaction = cur_trans;
715 	refcount_set(&h->use_count, 1);
716 	h->fs_info = root->fs_info;
717 
718 	h->type = type;
719 	INIT_LIST_HEAD(&h->new_bgs);
720 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721 
722 	smp_mb();
723 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724 	    may_wait_transaction(fs_info, type)) {
725 		current->journal_info = h;
726 		btrfs_commit_transaction(h);
727 		goto again;
728 	}
729 
730 	if (num_bytes) {
731 		trace_btrfs_space_reservation(fs_info, "transaction",
732 					      h->transid, num_bytes, 1);
733 		h->block_rsv = trans_rsv;
734 		h->bytes_reserved = num_bytes;
735 		if (delayed_refs_bytes > 0) {
736 			trace_btrfs_space_reservation(fs_info,
737 						      "local_delayed_refs_rsv",
738 						      h->transid,
739 						      delayed_refs_bytes, 1);
740 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742 			delayed_refs_bytes = 0;
743 		}
744 		h->reloc_reserved = reloc_reserved;
745 	}
746 
747 got_it:
748 	if (!current->journal_info)
749 		current->journal_info = h;
750 
751 	/*
752 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753 	 * ALLOC_FORCE the first run through, and then we won't allocate for
754 	 * anybody else who races in later.  We don't care about the return
755 	 * value here.
756 	 */
757 	if (do_chunk_alloc && num_bytes) {
758 		u64 flags = h->block_rsv->space_info->flags;
759 
760 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761 				  CHUNK_ALLOC_NO_FORCE);
762 	}
763 
764 	/*
765 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
766 	 * call btrfs_join_transaction() while we're also starting a
767 	 * transaction.
768 	 *
769 	 * Thus it need to be called after current->journal_info initialized,
770 	 * or we can deadlock.
771 	 */
772 	ret = btrfs_record_root_in_trans(h, root);
773 	if (ret) {
774 		/*
775 		 * The transaction handle is fully initialized and linked with
776 		 * other structures so it needs to be ended in case of errors,
777 		 * not just freed.
778 		 */
779 		btrfs_end_transaction(h);
780 		goto reserve_fail;
781 	}
782 	/*
783 	 * Now that we have found a transaction to be a part of, convert the
784 	 * qgroup reservation from prealloc to pertrans. A different transaction
785 	 * can't race in and free our pertrans out from under us.
786 	 */
787 	if (qgroup_reserved)
788 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789 
790 	return h;
791 
792 join_fail:
793 	if (type & __TRANS_FREEZABLE)
794 		sb_end_intwrite(fs_info->sb);
795 	kmem_cache_free(btrfs_trans_handle_cachep, h);
796 alloc_fail:
797 	if (num_bytes)
798 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799 	if (delayed_refs_bytes)
800 		btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
801 reserve_fail:
802 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
803 	return ERR_PTR(ret);
804 }
805 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)806 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
807 						   unsigned int num_items)
808 {
809 	return start_transaction(root, num_items, TRANS_START,
810 				 BTRFS_RESERVE_FLUSH_ALL, true);
811 }
812 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)813 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
814 					struct btrfs_root *root,
815 					unsigned int num_items)
816 {
817 	return start_transaction(root, num_items, TRANS_START,
818 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
819 }
820 
btrfs_join_transaction(struct btrfs_root * root)821 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
822 {
823 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
824 				 true);
825 }
826 
btrfs_join_transaction_spacecache(struct btrfs_root * root)827 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
828 {
829 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
830 				 BTRFS_RESERVE_NO_FLUSH, true);
831 }
832 
833 /*
834  * Similar to regular join but it never starts a transaction when none is
835  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
836  * This is similar to btrfs_attach_transaction() but it allows the join to
837  * happen if the transaction commit already started but it's not yet in the
838  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
839  */
btrfs_join_transaction_nostart(struct btrfs_root * root)840 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
841 {
842 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
843 				 BTRFS_RESERVE_NO_FLUSH, true);
844 }
845 
846 /*
847  * Catch the running transaction.
848  *
849  * It is used when we want to commit the current the transaction, but
850  * don't want to start a new one.
851  *
852  * Note: If this function return -ENOENT, it just means there is no
853  * running transaction. But it is possible that the inactive transaction
854  * is still in the memory, not fully on disk. If you hope there is no
855  * inactive transaction in the fs when -ENOENT is returned, you should
856  * invoke
857  *     btrfs_attach_transaction_barrier()
858  */
btrfs_attach_transaction(struct btrfs_root * root)859 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
860 {
861 	return start_transaction(root, 0, TRANS_ATTACH,
862 				 BTRFS_RESERVE_NO_FLUSH, true);
863 }
864 
865 /*
866  * Catch the running transaction.
867  *
868  * It is similar to the above function, the difference is this one
869  * will wait for all the inactive transactions until they fully
870  * complete.
871  */
872 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)873 btrfs_attach_transaction_barrier(struct btrfs_root *root)
874 {
875 	struct btrfs_trans_handle *trans;
876 
877 	trans = start_transaction(root, 0, TRANS_ATTACH,
878 				  BTRFS_RESERVE_NO_FLUSH, true);
879 	if (trans == ERR_PTR(-ENOENT)) {
880 		int ret;
881 
882 		ret = btrfs_wait_for_commit(root->fs_info, 0);
883 		if (ret)
884 			return ERR_PTR(ret);
885 	}
886 
887 	return trans;
888 }
889 
890 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)891 static noinline void wait_for_commit(struct btrfs_transaction *commit,
892 				     const enum btrfs_trans_state min_state)
893 {
894 	struct btrfs_fs_info *fs_info = commit->fs_info;
895 	u64 transid = commit->transid;
896 	bool put = false;
897 
898 	/*
899 	 * At the moment this function is called with min_state either being
900 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
901 	 */
902 	if (min_state == TRANS_STATE_COMPLETED)
903 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
904 	else
905 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
906 
907 	while (1) {
908 		wait_event(commit->commit_wait, commit->state >= min_state);
909 		if (put)
910 			btrfs_put_transaction(commit);
911 
912 		if (min_state < TRANS_STATE_COMPLETED)
913 			break;
914 
915 		/*
916 		 * A transaction isn't really completed until all of the
917 		 * previous transactions are completed, but with fsync we can
918 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
919 		 * transaction. Wait for those.
920 		 */
921 
922 		spin_lock(&fs_info->trans_lock);
923 		commit = list_first_entry_or_null(&fs_info->trans_list,
924 						  struct btrfs_transaction,
925 						  list);
926 		if (!commit || commit->transid > transid) {
927 			spin_unlock(&fs_info->trans_lock);
928 			break;
929 		}
930 		refcount_inc(&commit->use_count);
931 		put = true;
932 		spin_unlock(&fs_info->trans_lock);
933 	}
934 }
935 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)936 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
937 {
938 	struct btrfs_transaction *cur_trans = NULL, *t;
939 	int ret = 0;
940 
941 	if (transid) {
942 		if (transid <= btrfs_get_last_trans_committed(fs_info))
943 			goto out;
944 
945 		/* find specified transaction */
946 		spin_lock(&fs_info->trans_lock);
947 		list_for_each_entry(t, &fs_info->trans_list, list) {
948 			if (t->transid == transid) {
949 				cur_trans = t;
950 				refcount_inc(&cur_trans->use_count);
951 				ret = 0;
952 				break;
953 			}
954 			if (t->transid > transid) {
955 				ret = 0;
956 				break;
957 			}
958 		}
959 		spin_unlock(&fs_info->trans_lock);
960 
961 		/*
962 		 * The specified transaction doesn't exist, or we
963 		 * raced with btrfs_commit_transaction
964 		 */
965 		if (!cur_trans) {
966 			if (transid > btrfs_get_last_trans_committed(fs_info))
967 				ret = -EINVAL;
968 			goto out;
969 		}
970 	} else {
971 		/* find newest transaction that is committing | committed */
972 		spin_lock(&fs_info->trans_lock);
973 		list_for_each_entry_reverse(t, &fs_info->trans_list,
974 					    list) {
975 			if (t->state >= TRANS_STATE_COMMIT_START) {
976 				if (t->state == TRANS_STATE_COMPLETED)
977 					break;
978 				cur_trans = t;
979 				refcount_inc(&cur_trans->use_count);
980 				break;
981 			}
982 		}
983 		spin_unlock(&fs_info->trans_lock);
984 		if (!cur_trans)
985 			goto out;  /* nothing committing|committed */
986 	}
987 
988 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
989 	ret = cur_trans->aborted;
990 	btrfs_put_transaction(cur_trans);
991 out:
992 	return ret;
993 }
994 
btrfs_throttle(struct btrfs_fs_info * fs_info)995 void btrfs_throttle(struct btrfs_fs_info *fs_info)
996 {
997 	wait_current_trans(fs_info);
998 }
999 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1000 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1001 {
1002 	struct btrfs_transaction *cur_trans = trans->transaction;
1003 
1004 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1005 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1006 		return true;
1007 
1008 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1009 		return true;
1010 
1011 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1012 }
1013 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1014 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1015 
1016 {
1017 	struct btrfs_fs_info *fs_info = trans->fs_info;
1018 
1019 	if (!trans->block_rsv) {
1020 		ASSERT(!trans->bytes_reserved);
1021 		ASSERT(!trans->delayed_refs_bytes_reserved);
1022 		return;
1023 	}
1024 
1025 	if (!trans->bytes_reserved) {
1026 		ASSERT(!trans->delayed_refs_bytes_reserved);
1027 		return;
1028 	}
1029 
1030 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1031 	trace_btrfs_space_reservation(fs_info, "transaction",
1032 				      trans->transid, trans->bytes_reserved, 0);
1033 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1034 				trans->bytes_reserved, NULL);
1035 	trans->bytes_reserved = 0;
1036 
1037 	if (!trans->delayed_refs_bytes_reserved)
1038 		return;
1039 
1040 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1041 				      trans->transid,
1042 				      trans->delayed_refs_bytes_reserved, 0);
1043 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1044 				trans->delayed_refs_bytes_reserved, NULL);
1045 	trans->delayed_refs_bytes_reserved = 0;
1046 }
1047 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1048 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1049 				   int throttle)
1050 {
1051 	struct btrfs_fs_info *info = trans->fs_info;
1052 	struct btrfs_transaction *cur_trans = trans->transaction;
1053 	int ret = 0;
1054 
1055 	if (refcount_read(&trans->use_count) > 1) {
1056 		refcount_dec(&trans->use_count);
1057 		trans->block_rsv = trans->orig_rsv;
1058 		return 0;
1059 	}
1060 
1061 	btrfs_trans_release_metadata(trans);
1062 	trans->block_rsv = NULL;
1063 
1064 	btrfs_create_pending_block_groups(trans);
1065 
1066 	btrfs_trans_release_chunk_metadata(trans);
1067 
1068 	if (trans->type & __TRANS_FREEZABLE)
1069 		sb_end_intwrite(info->sb);
1070 
1071 	WARN_ON(cur_trans != info->running_transaction);
1072 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1073 	atomic_dec(&cur_trans->num_writers);
1074 	extwriter_counter_dec(cur_trans, trans->type);
1075 
1076 	cond_wake_up(&cur_trans->writer_wait);
1077 
1078 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1079 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1080 
1081 	btrfs_put_transaction(cur_trans);
1082 
1083 	if (current->journal_info == trans)
1084 		current->journal_info = NULL;
1085 
1086 	if (throttle)
1087 		btrfs_run_delayed_iputs(info);
1088 
1089 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1090 		wake_up_process(info->transaction_kthread);
1091 		if (TRANS_ABORTED(trans))
1092 			ret = trans->aborted;
1093 		else
1094 			ret = -EROFS;
1095 	}
1096 
1097 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1098 	return ret;
1099 }
1100 
btrfs_end_transaction(struct btrfs_trans_handle * trans)1101 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1102 {
1103 	return __btrfs_end_transaction(trans, 0);
1104 }
1105 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1106 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1107 {
1108 	return __btrfs_end_transaction(trans, 1);
1109 }
1110 
1111 /*
1112  * when btree blocks are allocated, they have some corresponding bits set for
1113  * them in one of two extent_io trees.  This is used to make sure all of
1114  * those extents are sent to disk but does not wait on them
1115  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1116 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1117 			       struct extent_io_tree *dirty_pages, int mark)
1118 {
1119 	int ret = 0;
1120 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1121 	struct extent_state *cached_state = NULL;
1122 	u64 start = 0;
1123 	u64 end;
1124 
1125 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1126 				     mark, &cached_state)) {
1127 		bool wait_writeback = false;
1128 
1129 		ret = convert_extent_bit(dirty_pages, start, end,
1130 					 EXTENT_NEED_WAIT,
1131 					 mark, &cached_state);
1132 		/*
1133 		 * convert_extent_bit can return -ENOMEM, which is most of the
1134 		 * time a temporary error. So when it happens, ignore the error
1135 		 * and wait for writeback of this range to finish - because we
1136 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1137 		 * to __btrfs_wait_marked_extents() would not know that
1138 		 * writeback for this range started and therefore wouldn't
1139 		 * wait for it to finish - we don't want to commit a
1140 		 * superblock that points to btree nodes/leafs for which
1141 		 * writeback hasn't finished yet (and without errors).
1142 		 * We cleanup any entries left in the io tree when committing
1143 		 * the transaction (through extent_io_tree_release()).
1144 		 */
1145 		if (ret == -ENOMEM) {
1146 			ret = 0;
1147 			wait_writeback = true;
1148 		}
1149 		if (!ret)
1150 			ret = filemap_fdatawrite_range(mapping, start, end);
1151 		if (!ret && wait_writeback)
1152 			ret = filemap_fdatawait_range(mapping, start, end);
1153 		free_extent_state(cached_state);
1154 		if (ret)
1155 			break;
1156 		cached_state = NULL;
1157 		cond_resched();
1158 		start = end + 1;
1159 	}
1160 	return ret;
1161 }
1162 
1163 /*
1164  * when btree blocks are allocated, they have some corresponding bits set for
1165  * them in one of two extent_io trees.  This is used to make sure all of
1166  * those extents are on disk for transaction or log commit.  We wait
1167  * on all the pages and clear them from the dirty pages state tree
1168  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1169 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1170 				       struct extent_io_tree *dirty_pages)
1171 {
1172 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1173 	struct extent_state *cached_state = NULL;
1174 	u64 start = 0;
1175 	u64 end;
1176 	int ret = 0;
1177 
1178 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1179 				     EXTENT_NEED_WAIT, &cached_state)) {
1180 		/*
1181 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1182 		 * When committing the transaction, we'll remove any entries
1183 		 * left in the io tree. For a log commit, we don't remove them
1184 		 * after committing the log because the tree can be accessed
1185 		 * concurrently - we do it only at transaction commit time when
1186 		 * it's safe to do it (through extent_io_tree_release()).
1187 		 */
1188 		ret = clear_extent_bit(dirty_pages, start, end,
1189 				       EXTENT_NEED_WAIT, &cached_state);
1190 		if (ret == -ENOMEM)
1191 			ret = 0;
1192 		if (!ret)
1193 			ret = filemap_fdatawait_range(mapping, start, end);
1194 		free_extent_state(cached_state);
1195 		if (ret)
1196 			break;
1197 		cached_state = NULL;
1198 		cond_resched();
1199 		start = end + 1;
1200 	}
1201 	return ret;
1202 }
1203 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1204 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1205 		       struct extent_io_tree *dirty_pages)
1206 {
1207 	bool errors = false;
1208 	int err;
1209 
1210 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1211 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1212 		errors = true;
1213 
1214 	if (errors && !err)
1215 		err = -EIO;
1216 	return err;
1217 }
1218 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1219 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1220 {
1221 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1222 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1223 	bool errors = false;
1224 	int err;
1225 
1226 	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1227 
1228 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1229 	if ((mark & EXTENT_DIRTY) &&
1230 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1231 		errors = true;
1232 
1233 	if ((mark & EXTENT_NEW) &&
1234 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1235 		errors = true;
1236 
1237 	if (errors && !err)
1238 		err = -EIO;
1239 	return err;
1240 }
1241 
1242 /*
1243  * When btree blocks are allocated the corresponding extents are marked dirty.
1244  * This function ensures such extents are persisted on disk for transaction or
1245  * log commit.
1246  *
1247  * @trans: transaction whose dirty pages we'd like to write
1248  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1249 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1250 {
1251 	int ret;
1252 	int ret2;
1253 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1254 	struct btrfs_fs_info *fs_info = trans->fs_info;
1255 	struct blk_plug plug;
1256 
1257 	blk_start_plug(&plug);
1258 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1259 	blk_finish_plug(&plug);
1260 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1261 
1262 	extent_io_tree_release(&trans->transaction->dirty_pages);
1263 
1264 	if (ret)
1265 		return ret;
1266 	else if (ret2)
1267 		return ret2;
1268 	else
1269 		return 0;
1270 }
1271 
1272 /*
1273  * this is used to update the root pointer in the tree of tree roots.
1274  *
1275  * But, in the case of the extent allocation tree, updating the root
1276  * pointer may allocate blocks which may change the root of the extent
1277  * allocation tree.
1278  *
1279  * So, this loops and repeats and makes sure the cowonly root didn't
1280  * change while the root pointer was being updated in the metadata.
1281  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1282 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1283 			       struct btrfs_root *root)
1284 {
1285 	int ret;
1286 	u64 old_root_bytenr;
1287 	u64 old_root_used;
1288 	struct btrfs_fs_info *fs_info = root->fs_info;
1289 	struct btrfs_root *tree_root = fs_info->tree_root;
1290 
1291 	old_root_used = btrfs_root_used(&root->root_item);
1292 
1293 	while (1) {
1294 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1295 		if (old_root_bytenr == root->node->start &&
1296 		    old_root_used == btrfs_root_used(&root->root_item))
1297 			break;
1298 
1299 		btrfs_set_root_node(&root->root_item, root->node);
1300 		ret = btrfs_update_root(trans, tree_root,
1301 					&root->root_key,
1302 					&root->root_item);
1303 		if (ret)
1304 			return ret;
1305 
1306 		old_root_used = btrfs_root_used(&root->root_item);
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * update all the cowonly tree roots on disk
1314  *
1315  * The error handling in this function may not be obvious. Any of the
1316  * failures will cause the file system to go offline. We still need
1317  * to clean up the delayed refs.
1318  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1319 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1320 {
1321 	struct btrfs_fs_info *fs_info = trans->fs_info;
1322 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1323 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1324 	struct list_head *next;
1325 	struct extent_buffer *eb;
1326 	int ret;
1327 
1328 	/*
1329 	 * At this point no one can be using this transaction to modify any tree
1330 	 * and no one can start another transaction to modify any tree either.
1331 	 */
1332 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1333 
1334 	eb = btrfs_lock_root_node(fs_info->tree_root);
1335 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1336 			      0, &eb, BTRFS_NESTING_COW);
1337 	btrfs_tree_unlock(eb);
1338 	free_extent_buffer(eb);
1339 
1340 	if (ret)
1341 		return ret;
1342 
1343 	ret = btrfs_run_dev_stats(trans);
1344 	if (ret)
1345 		return ret;
1346 	ret = btrfs_run_dev_replace(trans);
1347 	if (ret)
1348 		return ret;
1349 	ret = btrfs_run_qgroups(trans);
1350 	if (ret)
1351 		return ret;
1352 
1353 	ret = btrfs_setup_space_cache(trans);
1354 	if (ret)
1355 		return ret;
1356 
1357 again:
1358 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1359 		struct btrfs_root *root;
1360 		next = fs_info->dirty_cowonly_roots.next;
1361 		list_del_init(next);
1362 		root = list_entry(next, struct btrfs_root, dirty_list);
1363 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1364 
1365 		list_add_tail(&root->dirty_list,
1366 			      &trans->transaction->switch_commits);
1367 		ret = update_cowonly_root(trans, root);
1368 		if (ret)
1369 			return ret;
1370 	}
1371 
1372 	/* Now flush any delayed refs generated by updating all of the roots */
1373 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1374 	if (ret)
1375 		return ret;
1376 
1377 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1378 		ret = btrfs_write_dirty_block_groups(trans);
1379 		if (ret)
1380 			return ret;
1381 
1382 		/*
1383 		 * We're writing the dirty block groups, which could generate
1384 		 * delayed refs, which could generate more dirty block groups,
1385 		 * so we want to keep this flushing in this loop to make sure
1386 		 * everything gets run.
1387 		 */
1388 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1389 		if (ret)
1390 			return ret;
1391 	}
1392 
1393 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1394 		goto again;
1395 
1396 	/* Update dev-replace pointer once everything is committed */
1397 	fs_info->dev_replace.committed_cursor_left =
1398 		fs_info->dev_replace.cursor_left_last_write_of_item;
1399 
1400 	return 0;
1401 }
1402 
1403 /*
1404  * If we had a pending drop we need to see if there are any others left in our
1405  * dead roots list, and if not clear our bit and wake any waiters.
1406  */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1407 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1408 {
1409 	/*
1410 	 * We put the drop in progress roots at the front of the list, so if the
1411 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1412 	 * up.
1413 	 */
1414 	spin_lock(&fs_info->trans_lock);
1415 	if (!list_empty(&fs_info->dead_roots)) {
1416 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1417 							   struct btrfs_root,
1418 							   root_list);
1419 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1420 			spin_unlock(&fs_info->trans_lock);
1421 			return;
1422 		}
1423 	}
1424 	spin_unlock(&fs_info->trans_lock);
1425 
1426 	btrfs_wake_unfinished_drop(fs_info);
1427 }
1428 
1429 /*
1430  * dead roots are old snapshots that need to be deleted.  This allocates
1431  * a dirty root struct and adds it into the list of dead roots that need to
1432  * be deleted
1433  */
btrfs_add_dead_root(struct btrfs_root * root)1434 void btrfs_add_dead_root(struct btrfs_root *root)
1435 {
1436 	struct btrfs_fs_info *fs_info = root->fs_info;
1437 
1438 	spin_lock(&fs_info->trans_lock);
1439 	if (list_empty(&root->root_list)) {
1440 		btrfs_grab_root(root);
1441 
1442 		/* We want to process the partially complete drops first. */
1443 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1444 			list_add(&root->root_list, &fs_info->dead_roots);
1445 		else
1446 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1447 	}
1448 	spin_unlock(&fs_info->trans_lock);
1449 }
1450 
1451 /*
1452  * Update each subvolume root and its relocation root, if it exists, in the tree
1453  * of tree roots. Also free log roots if they exist.
1454  */
commit_fs_roots(struct btrfs_trans_handle * trans)1455 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1456 {
1457 	struct btrfs_fs_info *fs_info = trans->fs_info;
1458 	struct btrfs_root *gang[8];
1459 	int i;
1460 	int ret;
1461 
1462 	/*
1463 	 * At this point no one can be using this transaction to modify any tree
1464 	 * and no one can start another transaction to modify any tree either.
1465 	 */
1466 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1467 
1468 	spin_lock(&fs_info->fs_roots_radix_lock);
1469 	while (1) {
1470 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1471 						 (void **)gang, 0,
1472 						 ARRAY_SIZE(gang),
1473 						 BTRFS_ROOT_TRANS_TAG);
1474 		if (ret == 0)
1475 			break;
1476 		for (i = 0; i < ret; i++) {
1477 			struct btrfs_root *root = gang[i];
1478 			int ret2;
1479 
1480 			/*
1481 			 * At this point we can neither have tasks logging inodes
1482 			 * from a root nor trying to commit a log tree.
1483 			 */
1484 			ASSERT(atomic_read(&root->log_writers) == 0);
1485 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1486 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1487 
1488 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1489 					(unsigned long)btrfs_root_id(root),
1490 					BTRFS_ROOT_TRANS_TAG);
1491 			btrfs_qgroup_free_meta_all_pertrans(root);
1492 			spin_unlock(&fs_info->fs_roots_radix_lock);
1493 
1494 			btrfs_free_log(trans, root);
1495 			ret2 = btrfs_update_reloc_root(trans, root);
1496 			if (ret2)
1497 				return ret2;
1498 
1499 			/* see comments in should_cow_block() */
1500 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1501 			smp_mb__after_atomic();
1502 
1503 			if (root->commit_root != root->node) {
1504 				list_add_tail(&root->dirty_list,
1505 					&trans->transaction->switch_commits);
1506 				btrfs_set_root_node(&root->root_item,
1507 						    root->node);
1508 			}
1509 
1510 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1511 						&root->root_key,
1512 						&root->root_item);
1513 			if (ret2)
1514 				return ret2;
1515 			spin_lock(&fs_info->fs_roots_radix_lock);
1516 		}
1517 	}
1518 	spin_unlock(&fs_info->fs_roots_radix_lock);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Do all special snapshot related qgroup dirty hack.
1524  *
1525  * Will do all needed qgroup inherit and dirty hack like switch commit
1526  * roots inside one transaction and write all btree into disk, to make
1527  * qgroup works.
1528  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1529 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1530 				   struct btrfs_root *src,
1531 				   struct btrfs_root *parent,
1532 				   struct btrfs_qgroup_inherit *inherit,
1533 				   u64 dst_objectid)
1534 {
1535 	struct btrfs_fs_info *fs_info = src->fs_info;
1536 	int ret;
1537 
1538 	/*
1539 	 * Save some performance in the case that qgroups are not enabled. If
1540 	 * this check races with the ioctl, rescan will kick in anyway.
1541 	 */
1542 	if (!btrfs_qgroup_full_accounting(fs_info))
1543 		return 0;
1544 
1545 	/*
1546 	 * Ensure dirty @src will be committed.  Or, after coming
1547 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1548 	 * recorded root will never be updated again, causing an outdated root
1549 	 * item.
1550 	 */
1551 	ret = record_root_in_trans(trans, src, 1);
1552 	if (ret)
1553 		return ret;
1554 
1555 	/*
1556 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1557 	 * src root, so we must run the delayed refs here.
1558 	 *
1559 	 * However this isn't particularly fool proof, because there's no
1560 	 * synchronization keeping us from changing the tree after this point
1561 	 * before we do the qgroup_inherit, or even from making changes while
1562 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1563 	 * for now flush the delayed refs to narrow the race window where the
1564 	 * qgroup counters could end up wrong.
1565 	 */
1566 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1567 	if (ret) {
1568 		btrfs_abort_transaction(trans, ret);
1569 		return ret;
1570 	}
1571 
1572 	ret = commit_fs_roots(trans);
1573 	if (ret)
1574 		goto out;
1575 	ret = btrfs_qgroup_account_extents(trans);
1576 	if (ret < 0)
1577 		goto out;
1578 
1579 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1580 	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1581 				   btrfs_root_id(parent), inherit);
1582 	if (ret < 0)
1583 		goto out;
1584 
1585 	/*
1586 	 * Now we do a simplified commit transaction, which will:
1587 	 * 1) commit all subvolume and extent tree
1588 	 *    To ensure all subvolume and extent tree have a valid
1589 	 *    commit_root to accounting later insert_dir_item()
1590 	 * 2) write all btree blocks onto disk
1591 	 *    This is to make sure later btree modification will be cowed
1592 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1593 	 * In this simplified commit, we don't really care about other trees
1594 	 * like chunk and root tree, as they won't affect qgroup.
1595 	 * And we don't write super to avoid half committed status.
1596 	 */
1597 	ret = commit_cowonly_roots(trans);
1598 	if (ret)
1599 		goto out;
1600 	switch_commit_roots(trans);
1601 	ret = btrfs_write_and_wait_transaction(trans);
1602 	if (ret)
1603 		btrfs_handle_fs_error(fs_info, ret,
1604 			"Error while writing out transaction for qgroup");
1605 
1606 out:
1607 	/*
1608 	 * Force parent root to be updated, as we recorded it before so its
1609 	 * last_trans == cur_transid.
1610 	 * Or it won't be committed again onto disk after later
1611 	 * insert_dir_item()
1612 	 */
1613 	if (!ret)
1614 		ret = record_root_in_trans(trans, parent, 1);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * new snapshots need to be created at a very specific time in the
1620  * transaction commit.  This does the actual creation.
1621  *
1622  * Note:
1623  * If the error which may affect the commitment of the current transaction
1624  * happens, we should return the error number. If the error which just affect
1625  * the creation of the pending snapshots, just return 0.
1626  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1627 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1628 				   struct btrfs_pending_snapshot *pending)
1629 {
1630 
1631 	struct btrfs_fs_info *fs_info = trans->fs_info;
1632 	struct btrfs_key key;
1633 	struct btrfs_root_item *new_root_item;
1634 	struct btrfs_root *tree_root = fs_info->tree_root;
1635 	struct btrfs_root *root = pending->root;
1636 	struct btrfs_root *parent_root;
1637 	struct btrfs_block_rsv *rsv;
1638 	struct inode *parent_inode = &pending->dir->vfs_inode;
1639 	struct btrfs_path *path;
1640 	struct btrfs_dir_item *dir_item;
1641 	struct extent_buffer *tmp;
1642 	struct extent_buffer *old;
1643 	struct timespec64 cur_time;
1644 	int ret = 0;
1645 	u64 to_reserve = 0;
1646 	u64 index = 0;
1647 	u64 objectid;
1648 	u64 root_flags;
1649 	unsigned int nofs_flags;
1650 	struct fscrypt_name fname;
1651 
1652 	ASSERT(pending->path);
1653 	path = pending->path;
1654 
1655 	ASSERT(pending->root_item);
1656 	new_root_item = pending->root_item;
1657 
1658 	/*
1659 	 * We're inside a transaction and must make sure that any potential
1660 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1661 	 * filesystem.
1662 	 */
1663 	nofs_flags = memalloc_nofs_save();
1664 	pending->error = fscrypt_setup_filename(parent_inode,
1665 						&pending->dentry->d_name, 0,
1666 						&fname);
1667 	memalloc_nofs_restore(nofs_flags);
1668 	if (pending->error)
1669 		goto free_pending;
1670 
1671 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1672 	if (pending->error)
1673 		goto free_fname;
1674 
1675 	/*
1676 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1677 	 * accounted by later btrfs_qgroup_inherit().
1678 	 */
1679 	btrfs_set_skip_qgroup(trans, objectid);
1680 
1681 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1682 
1683 	if (to_reserve > 0) {
1684 		pending->error = btrfs_block_rsv_add(fs_info,
1685 						     &pending->block_rsv,
1686 						     to_reserve,
1687 						     BTRFS_RESERVE_NO_FLUSH);
1688 		if (pending->error)
1689 			goto clear_skip_qgroup;
1690 	}
1691 
1692 	key.objectid = objectid;
1693 	key.offset = (u64)-1;
1694 	key.type = BTRFS_ROOT_ITEM_KEY;
1695 
1696 	rsv = trans->block_rsv;
1697 	trans->block_rsv = &pending->block_rsv;
1698 	trans->bytes_reserved = trans->block_rsv->reserved;
1699 	trace_btrfs_space_reservation(fs_info, "transaction",
1700 				      trans->transid,
1701 				      trans->bytes_reserved, 1);
1702 	parent_root = BTRFS_I(parent_inode)->root;
1703 	ret = record_root_in_trans(trans, parent_root, 0);
1704 	if (ret)
1705 		goto fail;
1706 	cur_time = current_time(parent_inode);
1707 
1708 	/*
1709 	 * insert the directory item
1710 	 */
1711 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1712 	if (ret) {
1713 		btrfs_abort_transaction(trans, ret);
1714 		goto fail;
1715 	}
1716 
1717 	/* check if there is a file/dir which has the same name. */
1718 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1719 					 btrfs_ino(BTRFS_I(parent_inode)),
1720 					 &fname.disk_name, 0);
1721 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1722 		pending->error = -EEXIST;
1723 		goto dir_item_existed;
1724 	} else if (IS_ERR(dir_item)) {
1725 		ret = PTR_ERR(dir_item);
1726 		btrfs_abort_transaction(trans, ret);
1727 		goto fail;
1728 	}
1729 	btrfs_release_path(path);
1730 
1731 	ret = btrfs_create_qgroup(trans, objectid);
1732 	if (ret && ret != -EEXIST) {
1733 		btrfs_abort_transaction(trans, ret);
1734 		goto fail;
1735 	}
1736 
1737 	/*
1738 	 * pull in the delayed directory update
1739 	 * and the delayed inode item
1740 	 * otherwise we corrupt the FS during
1741 	 * snapshot
1742 	 */
1743 	ret = btrfs_run_delayed_items(trans);
1744 	if (ret) {	/* Transaction aborted */
1745 		btrfs_abort_transaction(trans, ret);
1746 		goto fail;
1747 	}
1748 
1749 	ret = record_root_in_trans(trans, root, 0);
1750 	if (ret) {
1751 		btrfs_abort_transaction(trans, ret);
1752 		goto fail;
1753 	}
1754 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1755 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1756 	btrfs_check_and_init_root_item(new_root_item);
1757 
1758 	root_flags = btrfs_root_flags(new_root_item);
1759 	if (pending->readonly)
1760 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1761 	else
1762 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1763 	btrfs_set_root_flags(new_root_item, root_flags);
1764 
1765 	btrfs_set_root_generation_v2(new_root_item,
1766 			trans->transid);
1767 	generate_random_guid(new_root_item->uuid);
1768 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1769 			BTRFS_UUID_SIZE);
1770 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1771 		memset(new_root_item->received_uuid, 0,
1772 		       sizeof(new_root_item->received_uuid));
1773 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1774 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1775 		btrfs_set_root_stransid(new_root_item, 0);
1776 		btrfs_set_root_rtransid(new_root_item, 0);
1777 	}
1778 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1779 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1780 	btrfs_set_root_otransid(new_root_item, trans->transid);
1781 
1782 	old = btrfs_lock_root_node(root);
1783 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1784 			      BTRFS_NESTING_COW);
1785 	if (ret) {
1786 		btrfs_tree_unlock(old);
1787 		free_extent_buffer(old);
1788 		btrfs_abort_transaction(trans, ret);
1789 		goto fail;
1790 	}
1791 
1792 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1793 	/* clean up in any case */
1794 	btrfs_tree_unlock(old);
1795 	free_extent_buffer(old);
1796 	if (ret) {
1797 		btrfs_abort_transaction(trans, ret);
1798 		goto fail;
1799 	}
1800 	/* see comments in should_cow_block() */
1801 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1802 	smp_wmb();
1803 
1804 	btrfs_set_root_node(new_root_item, tmp);
1805 	/* record when the snapshot was created in key.offset */
1806 	key.offset = trans->transid;
1807 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1808 	btrfs_tree_unlock(tmp);
1809 	free_extent_buffer(tmp);
1810 	if (ret) {
1811 		btrfs_abort_transaction(trans, ret);
1812 		goto fail;
1813 	}
1814 
1815 	/*
1816 	 * insert root back/forward references
1817 	 */
1818 	ret = btrfs_add_root_ref(trans, objectid,
1819 				 btrfs_root_id(parent_root),
1820 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1821 				 &fname.disk_name);
1822 	if (ret) {
1823 		btrfs_abort_transaction(trans, ret);
1824 		goto fail;
1825 	}
1826 
1827 	key.offset = (u64)-1;
1828 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1829 	if (IS_ERR(pending->snap)) {
1830 		ret = PTR_ERR(pending->snap);
1831 		pending->snap = NULL;
1832 		btrfs_abort_transaction(trans, ret);
1833 		goto fail;
1834 	}
1835 
1836 	ret = btrfs_reloc_post_snapshot(trans, pending);
1837 	if (ret) {
1838 		btrfs_abort_transaction(trans, ret);
1839 		goto fail;
1840 	}
1841 
1842 	/*
1843 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1844 	 * snapshot hack to do fast snapshot.
1845 	 * To co-operate with that hack, we do hack again.
1846 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1847 	 */
1848 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1849 		ret = qgroup_account_snapshot(trans, root, parent_root,
1850 					      pending->inherit, objectid);
1851 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1852 		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1853 					   btrfs_root_id(parent_root), pending->inherit);
1854 	if (ret < 0)
1855 		goto fail;
1856 
1857 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1858 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1859 				    index);
1860 	if (ret) {
1861 		btrfs_abort_transaction(trans, ret);
1862 		goto fail;
1863 	}
1864 
1865 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1866 						  fname.disk_name.len * 2);
1867 	inode_set_mtime_to_ts(parent_inode,
1868 			      inode_set_ctime_current(parent_inode));
1869 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1870 	if (ret) {
1871 		btrfs_abort_transaction(trans, ret);
1872 		goto fail;
1873 	}
1874 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1875 				  BTRFS_UUID_KEY_SUBVOL,
1876 				  objectid);
1877 	if (ret) {
1878 		btrfs_abort_transaction(trans, ret);
1879 		goto fail;
1880 	}
1881 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1882 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1883 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1884 					  objectid);
1885 		if (ret && ret != -EEXIST) {
1886 			btrfs_abort_transaction(trans, ret);
1887 			goto fail;
1888 		}
1889 	}
1890 
1891 fail:
1892 	pending->error = ret;
1893 dir_item_existed:
1894 	trans->block_rsv = rsv;
1895 	trans->bytes_reserved = 0;
1896 clear_skip_qgroup:
1897 	btrfs_clear_skip_qgroup(trans);
1898 free_fname:
1899 	fscrypt_free_filename(&fname);
1900 free_pending:
1901 	kfree(new_root_item);
1902 	pending->root_item = NULL;
1903 	btrfs_free_path(path);
1904 	pending->path = NULL;
1905 
1906 	return ret;
1907 }
1908 
1909 /*
1910  * create all the snapshots we've scheduled for creation
1911  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1912 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1913 {
1914 	struct btrfs_pending_snapshot *pending, *next;
1915 	struct list_head *head = &trans->transaction->pending_snapshots;
1916 	int ret = 0;
1917 
1918 	list_for_each_entry_safe(pending, next, head, list) {
1919 		list_del(&pending->list);
1920 		ret = create_pending_snapshot(trans, pending);
1921 		if (ret)
1922 			break;
1923 	}
1924 	return ret;
1925 }
1926 
update_super_roots(struct btrfs_fs_info * fs_info)1927 static void update_super_roots(struct btrfs_fs_info *fs_info)
1928 {
1929 	struct btrfs_root_item *root_item;
1930 	struct btrfs_super_block *super;
1931 
1932 	super = fs_info->super_copy;
1933 
1934 	root_item = &fs_info->chunk_root->root_item;
1935 	super->chunk_root = root_item->bytenr;
1936 	super->chunk_root_generation = root_item->generation;
1937 	super->chunk_root_level = root_item->level;
1938 
1939 	root_item = &fs_info->tree_root->root_item;
1940 	super->root = root_item->bytenr;
1941 	super->generation = root_item->generation;
1942 	super->root_level = root_item->level;
1943 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1944 		super->cache_generation = root_item->generation;
1945 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1946 		super->cache_generation = 0;
1947 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1948 		super->uuid_tree_generation = root_item->generation;
1949 }
1950 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1951 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1952 {
1953 	struct btrfs_transaction *trans;
1954 	int ret = 0;
1955 
1956 	spin_lock(&info->trans_lock);
1957 	trans = info->running_transaction;
1958 	if (trans)
1959 		ret = is_transaction_blocked(trans);
1960 	spin_unlock(&info->trans_lock);
1961 	return ret;
1962 }
1963 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1964 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1965 {
1966 	struct btrfs_fs_info *fs_info = trans->fs_info;
1967 	struct btrfs_transaction *cur_trans;
1968 
1969 	/* Kick the transaction kthread. */
1970 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1971 	wake_up_process(fs_info->transaction_kthread);
1972 
1973 	/* take transaction reference */
1974 	cur_trans = trans->transaction;
1975 	refcount_inc(&cur_trans->use_count);
1976 
1977 	btrfs_end_transaction(trans);
1978 
1979 	/*
1980 	 * Wait for the current transaction commit to start and block
1981 	 * subsequent transaction joins
1982 	 */
1983 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1984 	wait_event(fs_info->transaction_blocked_wait,
1985 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1986 		   TRANS_ABORTED(cur_trans));
1987 	btrfs_put_transaction(cur_trans);
1988 }
1989 
1990 /*
1991  * If there is a running transaction commit it or if it's already committing,
1992  * wait for its commit to complete. Does not start and commit a new transaction
1993  * if there isn't any running.
1994  */
btrfs_commit_current_transaction(struct btrfs_root * root)1995 int btrfs_commit_current_transaction(struct btrfs_root *root)
1996 {
1997 	struct btrfs_trans_handle *trans;
1998 
1999 	trans = btrfs_attach_transaction_barrier(root);
2000 	if (IS_ERR(trans)) {
2001 		int ret = PTR_ERR(trans);
2002 
2003 		return (ret == -ENOENT) ? 0 : ret;
2004 	}
2005 
2006 	return btrfs_commit_transaction(trans);
2007 }
2008 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2009 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2010 {
2011 	struct btrfs_fs_info *fs_info = trans->fs_info;
2012 	struct btrfs_transaction *cur_trans = trans->transaction;
2013 
2014 	WARN_ON(refcount_read(&trans->use_count) > 1);
2015 
2016 	btrfs_abort_transaction(trans, err);
2017 
2018 	spin_lock(&fs_info->trans_lock);
2019 
2020 	/*
2021 	 * If the transaction is removed from the list, it means this
2022 	 * transaction has been committed successfully, so it is impossible
2023 	 * to call the cleanup function.
2024 	 */
2025 	BUG_ON(list_empty(&cur_trans->list));
2026 
2027 	if (cur_trans == fs_info->running_transaction) {
2028 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2029 		spin_unlock(&fs_info->trans_lock);
2030 
2031 		/*
2032 		 * The thread has already released the lockdep map as reader
2033 		 * already in btrfs_commit_transaction().
2034 		 */
2035 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2036 		wait_event(cur_trans->writer_wait,
2037 			   atomic_read(&cur_trans->num_writers) == 1);
2038 
2039 		spin_lock(&fs_info->trans_lock);
2040 	}
2041 
2042 	/*
2043 	 * Now that we know no one else is still using the transaction we can
2044 	 * remove the transaction from the list of transactions. This avoids
2045 	 * the transaction kthread from cleaning up the transaction while some
2046 	 * other task is still using it, which could result in a use-after-free
2047 	 * on things like log trees, as it forces the transaction kthread to
2048 	 * wait for this transaction to be cleaned up by us.
2049 	 */
2050 	list_del_init(&cur_trans->list);
2051 
2052 	spin_unlock(&fs_info->trans_lock);
2053 
2054 	btrfs_cleanup_one_transaction(trans->transaction);
2055 
2056 	spin_lock(&fs_info->trans_lock);
2057 	if (cur_trans == fs_info->running_transaction)
2058 		fs_info->running_transaction = NULL;
2059 	spin_unlock(&fs_info->trans_lock);
2060 
2061 	if (trans->type & __TRANS_FREEZABLE)
2062 		sb_end_intwrite(fs_info->sb);
2063 	btrfs_put_transaction(cur_trans);
2064 	btrfs_put_transaction(cur_trans);
2065 
2066 	trace_btrfs_transaction_commit(fs_info);
2067 
2068 	if (current->journal_info == trans)
2069 		current->journal_info = NULL;
2070 
2071 	/*
2072 	 * If relocation is running, we can't cancel scrub because that will
2073 	 * result in a deadlock. Before relocating a block group, relocation
2074 	 * pauses scrub, then starts and commits a transaction before unpausing
2075 	 * scrub. If the transaction commit is being done by the relocation
2076 	 * task or triggered by another task and the relocation task is waiting
2077 	 * for the commit, and we end up here due to an error in the commit
2078 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2079 	 * asking for scrub to stop while having it asked to be paused higher
2080 	 * above in relocation code.
2081 	 */
2082 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2083 		btrfs_scrub_cancel(fs_info);
2084 
2085 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2086 }
2087 
2088 /*
2089  * Release reserved delayed ref space of all pending block groups of the
2090  * transaction and remove them from the list
2091  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2092 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2093 {
2094        struct btrfs_fs_info *fs_info = trans->fs_info;
2095        struct btrfs_block_group *block_group, *tmp;
2096 
2097        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2098                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2099                list_del_init(&block_group->bg_list);
2100        }
2101 }
2102 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2103 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2104 {
2105 	/*
2106 	 * We use try_to_writeback_inodes_sb() here because if we used
2107 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2108 	 * Currently are holding the fs freeze lock, if we do an async flush
2109 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2110 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2111 	 * from already being in a transaction and our join_transaction doesn't
2112 	 * have to re-take the fs freeze lock.
2113 	 *
2114 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2115 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2116 	 * except when the filesystem is being unmounted or being frozen, but in
2117 	 * those cases sync_filesystem() is called, which results in calling
2118 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2119 	 * Note that we don't call writeback_inodes_sb() directly, because it
2120 	 * will emit a warning if sb->s_umount is not locked.
2121 	 */
2122 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2123 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2124 	return 0;
2125 }
2126 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2127 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2128 {
2129 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2130 		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2131 }
2132 
2133 /*
2134  * Add a pending snapshot associated with the given transaction handle to the
2135  * respective handle. This must be called after the transaction commit started
2136  * and while holding fs_info->trans_lock.
2137  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2138  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2139  * returns an error.
2140  */
add_pending_snapshot(struct btrfs_trans_handle * trans)2141 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2142 {
2143 	struct btrfs_transaction *cur_trans = trans->transaction;
2144 
2145 	if (!trans->pending_snapshot)
2146 		return;
2147 
2148 	lockdep_assert_held(&trans->fs_info->trans_lock);
2149 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2150 
2151 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2152 }
2153 
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2154 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2155 {
2156 	fs_info->commit_stats.commit_count++;
2157 	fs_info->commit_stats.last_commit_dur = interval;
2158 	fs_info->commit_stats.max_commit_dur =
2159 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2160 	fs_info->commit_stats.total_commit_dur += interval;
2161 }
2162 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2163 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2164 {
2165 	struct btrfs_fs_info *fs_info = trans->fs_info;
2166 	struct btrfs_transaction *cur_trans = trans->transaction;
2167 	struct btrfs_transaction *prev_trans = NULL;
2168 	int ret;
2169 	ktime_t start_time;
2170 	ktime_t interval;
2171 
2172 	ASSERT(refcount_read(&trans->use_count) == 1);
2173 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2174 
2175 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2176 
2177 	/* Stop the commit early if ->aborted is set */
2178 	if (TRANS_ABORTED(cur_trans)) {
2179 		ret = cur_trans->aborted;
2180 		goto lockdep_trans_commit_start_release;
2181 	}
2182 
2183 	btrfs_trans_release_metadata(trans);
2184 	trans->block_rsv = NULL;
2185 
2186 	/*
2187 	 * We only want one transaction commit doing the flushing so we do not
2188 	 * waste a bunch of time on lock contention on the extent root node.
2189 	 */
2190 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2191 			      &cur_trans->delayed_refs.flags)) {
2192 		/*
2193 		 * Make a pass through all the delayed refs we have so far.
2194 		 * Any running threads may add more while we are here.
2195 		 */
2196 		ret = btrfs_run_delayed_refs(trans, 0);
2197 		if (ret)
2198 			goto lockdep_trans_commit_start_release;
2199 	}
2200 
2201 	btrfs_create_pending_block_groups(trans);
2202 
2203 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2204 		int run_it = 0;
2205 
2206 		/* this mutex is also taken before trying to set
2207 		 * block groups readonly.  We need to make sure
2208 		 * that nobody has set a block group readonly
2209 		 * after a extents from that block group have been
2210 		 * allocated for cache files.  btrfs_set_block_group_ro
2211 		 * will wait for the transaction to commit if it
2212 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2213 		 *
2214 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2215 		 * only one process starts all the block group IO.  It wouldn't
2216 		 * hurt to have more than one go through, but there's no
2217 		 * real advantage to it either.
2218 		 */
2219 		mutex_lock(&fs_info->ro_block_group_mutex);
2220 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2221 				      &cur_trans->flags))
2222 			run_it = 1;
2223 		mutex_unlock(&fs_info->ro_block_group_mutex);
2224 
2225 		if (run_it) {
2226 			ret = btrfs_start_dirty_block_groups(trans);
2227 			if (ret)
2228 				goto lockdep_trans_commit_start_release;
2229 		}
2230 	}
2231 
2232 	spin_lock(&fs_info->trans_lock);
2233 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2234 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2235 
2236 		add_pending_snapshot(trans);
2237 
2238 		spin_unlock(&fs_info->trans_lock);
2239 		refcount_inc(&cur_trans->use_count);
2240 
2241 		if (trans->in_fsync)
2242 			want_state = TRANS_STATE_SUPER_COMMITTED;
2243 
2244 		btrfs_trans_state_lockdep_release(fs_info,
2245 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2246 		ret = btrfs_end_transaction(trans);
2247 		wait_for_commit(cur_trans, want_state);
2248 
2249 		if (TRANS_ABORTED(cur_trans))
2250 			ret = cur_trans->aborted;
2251 
2252 		btrfs_put_transaction(cur_trans);
2253 
2254 		return ret;
2255 	}
2256 
2257 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2258 	wake_up(&fs_info->transaction_blocked_wait);
2259 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2260 
2261 	if (cur_trans->list.prev != &fs_info->trans_list) {
2262 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2263 
2264 		if (trans->in_fsync)
2265 			want_state = TRANS_STATE_SUPER_COMMITTED;
2266 
2267 		prev_trans = list_entry(cur_trans->list.prev,
2268 					struct btrfs_transaction, list);
2269 		if (prev_trans->state < want_state) {
2270 			refcount_inc(&prev_trans->use_count);
2271 			spin_unlock(&fs_info->trans_lock);
2272 
2273 			wait_for_commit(prev_trans, want_state);
2274 
2275 			ret = READ_ONCE(prev_trans->aborted);
2276 
2277 			btrfs_put_transaction(prev_trans);
2278 			if (ret)
2279 				goto lockdep_release;
2280 			spin_lock(&fs_info->trans_lock);
2281 		}
2282 	} else {
2283 		/*
2284 		 * The previous transaction was aborted and was already removed
2285 		 * from the list of transactions at fs_info->trans_list. So we
2286 		 * abort to prevent writing a new superblock that reflects a
2287 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2288 		 */
2289 		if (BTRFS_FS_ERROR(fs_info)) {
2290 			spin_unlock(&fs_info->trans_lock);
2291 			ret = -EROFS;
2292 			goto lockdep_release;
2293 		}
2294 	}
2295 
2296 	cur_trans->state = TRANS_STATE_COMMIT_START;
2297 	wake_up(&fs_info->transaction_blocked_wait);
2298 	spin_unlock(&fs_info->trans_lock);
2299 
2300 	/*
2301 	 * Get the time spent on the work done by the commit thread and not
2302 	 * the time spent waiting on a previous commit
2303 	 */
2304 	start_time = ktime_get_ns();
2305 
2306 	extwriter_counter_dec(cur_trans, trans->type);
2307 
2308 	ret = btrfs_start_delalloc_flush(fs_info);
2309 	if (ret)
2310 		goto lockdep_release;
2311 
2312 	ret = btrfs_run_delayed_items(trans);
2313 	if (ret)
2314 		goto lockdep_release;
2315 
2316 	/*
2317 	 * The thread has started/joined the transaction thus it holds the
2318 	 * lockdep map as a reader. It has to release it before acquiring the
2319 	 * lockdep map as a writer.
2320 	 */
2321 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2322 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2323 	wait_event(cur_trans->writer_wait,
2324 		   extwriter_counter_read(cur_trans) == 0);
2325 
2326 	/* some pending stuffs might be added after the previous flush. */
2327 	ret = btrfs_run_delayed_items(trans);
2328 	if (ret) {
2329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2330 		goto cleanup_transaction;
2331 	}
2332 
2333 	btrfs_wait_delalloc_flush(fs_info);
2334 
2335 	/*
2336 	 * Wait for all ordered extents started by a fast fsync that joined this
2337 	 * transaction. Otherwise if this transaction commits before the ordered
2338 	 * extents complete we lose logged data after a power failure.
2339 	 */
2340 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2341 	wait_event(cur_trans->pending_wait,
2342 		   atomic_read(&cur_trans->pending_ordered) == 0);
2343 
2344 	btrfs_scrub_pause(fs_info);
2345 	/*
2346 	 * Ok now we need to make sure to block out any other joins while we
2347 	 * commit the transaction.  We could have started a join before setting
2348 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2349 	 */
2350 	spin_lock(&fs_info->trans_lock);
2351 	add_pending_snapshot(trans);
2352 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2353 	spin_unlock(&fs_info->trans_lock);
2354 
2355 	/*
2356 	 * The thread has started/joined the transaction thus it holds the
2357 	 * lockdep map as a reader. It has to release it before acquiring the
2358 	 * lockdep map as a writer.
2359 	 */
2360 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2361 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2362 	wait_event(cur_trans->writer_wait,
2363 		   atomic_read(&cur_trans->num_writers) == 1);
2364 
2365 	/*
2366 	 * Make lockdep happy by acquiring the state locks after
2367 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2368 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2369 	 * complain because we did not follow the reverse order unlocking rule.
2370 	 */
2371 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2372 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2373 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374 
2375 	/*
2376 	 * We've started the commit, clear the flag in case we were triggered to
2377 	 * do an async commit but somebody else started before the transaction
2378 	 * kthread could do the work.
2379 	 */
2380 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2381 
2382 	if (TRANS_ABORTED(cur_trans)) {
2383 		ret = cur_trans->aborted;
2384 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2385 		goto scrub_continue;
2386 	}
2387 	/*
2388 	 * the reloc mutex makes sure that we stop
2389 	 * the balancing code from coming in and moving
2390 	 * extents around in the middle of the commit
2391 	 */
2392 	mutex_lock(&fs_info->reloc_mutex);
2393 
2394 	/*
2395 	 * We needn't worry about the delayed items because we will
2396 	 * deal with them in create_pending_snapshot(), which is the
2397 	 * core function of the snapshot creation.
2398 	 */
2399 	ret = create_pending_snapshots(trans);
2400 	if (ret)
2401 		goto unlock_reloc;
2402 
2403 	/*
2404 	 * We insert the dir indexes of the snapshots and update the inode
2405 	 * of the snapshots' parents after the snapshot creation, so there
2406 	 * are some delayed items which are not dealt with. Now deal with
2407 	 * them.
2408 	 *
2409 	 * We needn't worry that this operation will corrupt the snapshots,
2410 	 * because all the tree which are snapshoted will be forced to COW
2411 	 * the nodes and leaves.
2412 	 */
2413 	ret = btrfs_run_delayed_items(trans);
2414 	if (ret)
2415 		goto unlock_reloc;
2416 
2417 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2418 	if (ret)
2419 		goto unlock_reloc;
2420 
2421 	/*
2422 	 * make sure none of the code above managed to slip in a
2423 	 * delayed item
2424 	 */
2425 	btrfs_assert_delayed_root_empty(fs_info);
2426 
2427 	WARN_ON(cur_trans != trans->transaction);
2428 
2429 	ret = commit_fs_roots(trans);
2430 	if (ret)
2431 		goto unlock_reloc;
2432 
2433 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2434 	 * safe to free the root of tree log roots
2435 	 */
2436 	btrfs_free_log_root_tree(trans, fs_info);
2437 
2438 	/*
2439 	 * Since fs roots are all committed, we can get a quite accurate
2440 	 * new_roots. So let's do quota accounting.
2441 	 */
2442 	ret = btrfs_qgroup_account_extents(trans);
2443 	if (ret < 0)
2444 		goto unlock_reloc;
2445 
2446 	ret = commit_cowonly_roots(trans);
2447 	if (ret)
2448 		goto unlock_reloc;
2449 
2450 	/*
2451 	 * The tasks which save the space cache and inode cache may also
2452 	 * update ->aborted, check it.
2453 	 */
2454 	if (TRANS_ABORTED(cur_trans)) {
2455 		ret = cur_trans->aborted;
2456 		goto unlock_reloc;
2457 	}
2458 
2459 	cur_trans = fs_info->running_transaction;
2460 
2461 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2462 			    fs_info->tree_root->node);
2463 	list_add_tail(&fs_info->tree_root->dirty_list,
2464 		      &cur_trans->switch_commits);
2465 
2466 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2467 			    fs_info->chunk_root->node);
2468 	list_add_tail(&fs_info->chunk_root->dirty_list,
2469 		      &cur_trans->switch_commits);
2470 
2471 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2472 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2473 				    fs_info->block_group_root->node);
2474 		list_add_tail(&fs_info->block_group_root->dirty_list,
2475 			      &cur_trans->switch_commits);
2476 	}
2477 
2478 	switch_commit_roots(trans);
2479 
2480 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2481 	ASSERT(list_empty(&cur_trans->io_bgs));
2482 	update_super_roots(fs_info);
2483 
2484 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2485 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2486 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2487 	       sizeof(*fs_info->super_copy));
2488 
2489 	btrfs_commit_device_sizes(cur_trans);
2490 
2491 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2492 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2493 
2494 	btrfs_trans_release_chunk_metadata(trans);
2495 
2496 	/*
2497 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2498 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2499 	 * make sure that before we commit our superblock, no other task can
2500 	 * start a new transaction and commit a log tree before we commit our
2501 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2502 	 * writing its superblock.
2503 	 */
2504 	mutex_lock(&fs_info->tree_log_mutex);
2505 
2506 	spin_lock(&fs_info->trans_lock);
2507 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2508 	fs_info->running_transaction = NULL;
2509 	spin_unlock(&fs_info->trans_lock);
2510 	mutex_unlock(&fs_info->reloc_mutex);
2511 
2512 	wake_up(&fs_info->transaction_wait);
2513 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2514 
2515 	/* If we have features changed, wake up the cleaner to update sysfs. */
2516 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2517 	    fs_info->cleaner_kthread)
2518 		wake_up_process(fs_info->cleaner_kthread);
2519 
2520 	ret = btrfs_write_and_wait_transaction(trans);
2521 	if (ret) {
2522 		btrfs_handle_fs_error(fs_info, ret,
2523 				      "Error while writing out transaction");
2524 		mutex_unlock(&fs_info->tree_log_mutex);
2525 		goto scrub_continue;
2526 	}
2527 
2528 	ret = write_all_supers(fs_info, 0);
2529 	/*
2530 	 * the super is written, we can safely allow the tree-loggers
2531 	 * to go about their business
2532 	 */
2533 	mutex_unlock(&fs_info->tree_log_mutex);
2534 	if (ret)
2535 		goto scrub_continue;
2536 
2537 	/*
2538 	 * We needn't acquire the lock here because there is no other task
2539 	 * which can change it.
2540 	 */
2541 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2542 	wake_up(&cur_trans->commit_wait);
2543 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2544 
2545 	btrfs_finish_extent_commit(trans);
2546 
2547 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2548 		btrfs_clear_space_info_full(fs_info);
2549 
2550 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2551 	/*
2552 	 * We needn't acquire the lock here because there is no other task
2553 	 * which can change it.
2554 	 */
2555 	cur_trans->state = TRANS_STATE_COMPLETED;
2556 	wake_up(&cur_trans->commit_wait);
2557 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2558 
2559 	spin_lock(&fs_info->trans_lock);
2560 	list_del_init(&cur_trans->list);
2561 	spin_unlock(&fs_info->trans_lock);
2562 
2563 	btrfs_put_transaction(cur_trans);
2564 	btrfs_put_transaction(cur_trans);
2565 
2566 	if (trans->type & __TRANS_FREEZABLE)
2567 		sb_end_intwrite(fs_info->sb);
2568 
2569 	trace_btrfs_transaction_commit(fs_info);
2570 
2571 	interval = ktime_get_ns() - start_time;
2572 
2573 	btrfs_scrub_continue(fs_info);
2574 
2575 	if (current->journal_info == trans)
2576 		current->journal_info = NULL;
2577 
2578 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2579 
2580 	update_commit_stats(fs_info, interval);
2581 
2582 	return ret;
2583 
2584 unlock_reloc:
2585 	mutex_unlock(&fs_info->reloc_mutex);
2586 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2587 scrub_continue:
2588 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2589 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2590 	btrfs_scrub_continue(fs_info);
2591 cleanup_transaction:
2592 	btrfs_trans_release_metadata(trans);
2593 	btrfs_cleanup_pending_block_groups(trans);
2594 	btrfs_trans_release_chunk_metadata(trans);
2595 	trans->block_rsv = NULL;
2596 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2597 	if (current->journal_info == trans)
2598 		current->journal_info = NULL;
2599 	cleanup_transaction(trans, ret);
2600 
2601 	return ret;
2602 
2603 lockdep_release:
2604 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2605 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2606 	goto cleanup_transaction;
2607 
2608 lockdep_trans_commit_start_release:
2609 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2610 	btrfs_end_transaction(trans);
2611 	return ret;
2612 }
2613 
2614 /*
2615  * return < 0 if error
2616  * 0 if there are no more dead_roots at the time of call
2617  * 1 there are more to be processed, call me again
2618  *
2619  * The return value indicates there are certainly more snapshots to delete, but
2620  * if there comes a new one during processing, it may return 0. We don't mind,
2621  * because btrfs_commit_super will poke cleaner thread and it will process it a
2622  * few seconds later.
2623  */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2624 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2625 {
2626 	struct btrfs_root *root;
2627 	int ret;
2628 
2629 	spin_lock(&fs_info->trans_lock);
2630 	if (list_empty(&fs_info->dead_roots)) {
2631 		spin_unlock(&fs_info->trans_lock);
2632 		return 0;
2633 	}
2634 	root = list_first_entry(&fs_info->dead_roots,
2635 			struct btrfs_root, root_list);
2636 	list_del_init(&root->root_list);
2637 	spin_unlock(&fs_info->trans_lock);
2638 
2639 	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2640 
2641 	btrfs_kill_all_delayed_nodes(root);
2642 
2643 	if (btrfs_header_backref_rev(root->node) <
2644 			BTRFS_MIXED_BACKREF_REV)
2645 		ret = btrfs_drop_snapshot(root, 0, 0);
2646 	else
2647 		ret = btrfs_drop_snapshot(root, 1, 0);
2648 
2649 	btrfs_put_root(root);
2650 	return (ret < 0) ? 0 : 1;
2651 }
2652 
2653 /*
2654  * We only mark the transaction aborted and then set the file system read-only.
2655  * This will prevent new transactions from starting or trying to join this
2656  * one.
2657  *
2658  * This means that error recovery at the call site is limited to freeing
2659  * any local memory allocations and passing the error code up without
2660  * further cleanup. The transaction should complete as it normally would
2661  * in the call path but will return -EIO.
2662  *
2663  * We'll complete the cleanup in btrfs_end_transaction and
2664  * btrfs_commit_transaction.
2665  */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2666 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2667 				      const char *function,
2668 				      unsigned int line, int error, bool first_hit)
2669 {
2670 	struct btrfs_fs_info *fs_info = trans->fs_info;
2671 
2672 	WRITE_ONCE(trans->aborted, error);
2673 	WRITE_ONCE(trans->transaction->aborted, error);
2674 	if (first_hit && error == -ENOSPC)
2675 		btrfs_dump_space_info_for_trans_abort(fs_info);
2676 	/* Wake up anybody who may be waiting on this transaction */
2677 	wake_up(&fs_info->transaction_wait);
2678 	wake_up(&fs_info->transaction_blocked_wait);
2679 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2680 }
2681 
btrfs_transaction_init(void)2682 int __init btrfs_transaction_init(void)
2683 {
2684 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2685 	if (!btrfs_trans_handle_cachep)
2686 		return -ENOMEM;
2687 	return 0;
2688 }
2689 
btrfs_transaction_exit(void)2690 void __cold btrfs_transaction_exit(void)
2691 {
2692 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2693 }
2694