1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137 };
138
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170 }
171
switch_commit_roots(struct btrfs_trans_handle * trans)172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212 }
213
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216 {
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219 }
220
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223 {
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226 }
227
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230 {
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233
extwriter_counter_read(struct btrfs_transaction * trans)234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236 return atomic_read(&trans->num_extwriters);
237 }
238
239 /*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256 }
257
258 /*
259 * either allocate a new transaction or hop into the existing one
260 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263 {
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267 loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 const int abort_error = cur_trans->aborted;
278
279 spin_unlock(&fs_info->trans_lock);
280 return abort_error;
281 }
282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 spin_unlock(&fs_info->trans_lock);
284 return -EBUSY;
285 }
286 refcount_inc(&cur_trans->use_count);
287 atomic_inc(&cur_trans->num_writers);
288 extwriter_counter_inc(cur_trans, type);
289 spin_unlock(&fs_info->trans_lock);
290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 return 0;
293 }
294 spin_unlock(&fs_info->trans_lock);
295
296 /*
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
300 */
301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 return -ENOENT;
303
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 if (!cur_trans)
312 return -ENOMEM;
313
314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316
317 spin_lock(&fs_info->trans_lock);
318 if (fs_info->running_transaction) {
319 /*
320 * someone started a transaction after we unlocked. Make sure
321 * to redo the checks above
322 */
323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 kfree(cur_trans);
326 goto loop;
327 } else if (BTRFS_FS_ERROR(fs_info)) {
328 spin_unlock(&fs_info->trans_lock);
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(cur_trans);
332 return -EROFS;
333 }
334
335 cur_trans->fs_info = fs_info;
336 atomic_set(&cur_trans->pending_ordered, 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
338 atomic_set(&cur_trans->num_writers, 1);
339 extwriter_counter_init(cur_trans, type);
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
342 cur_trans->state = TRANS_STATE_RUNNING;
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
347 refcount_set(&cur_trans->use_count, 2);
348 cur_trans->flags = 0;
349 cur_trans->start_time = ktime_get_seconds();
350
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353 xa_init(&cur_trans->delayed_refs.head_refs);
354 xa_init(&cur_trans->delayed_refs.dirty_extents);
355
356 /*
357 * although the tree mod log is per file system and not per transaction,
358 * the log must never go across transaction boundaries.
359 */
360 smp_mb();
361 if (!list_empty(&fs_info->tree_mod_seq_list))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 atomic64_set(&fs_info->tree_mod_seq, 0);
366
367 spin_lock_init(&cur_trans->delayed_refs.lock);
368
369 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 INIT_LIST_HEAD(&cur_trans->switch_commits);
372 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 INIT_LIST_HEAD(&cur_trans->io_bgs);
374 INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 mutex_init(&cur_trans->cache_write_mutex);
376 spin_lock_init(&cur_trans->dirty_bgs_lock);
377 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 spin_lock_init(&cur_trans->dropped_roots_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391 }
392
393 /*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402 {
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 btrfs_get_root_last_trans(root) < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)btrfs_root_id(root),
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 btrfs_set_root_last_trans(root, trans->transid);
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457 }
458
459
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462 {
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)btrfs_root_id(root),
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481 {
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (btrfs_get_root_last_trans(root) == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502 }
503
is_transaction_blocked(struct btrfs_transaction * trans)504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 {
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509 }
510
511 /* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
wait_current_trans(struct btrfs_fs_info * fs_info)515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 {
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533 }
534
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544 }
545
need_reserve_reloc_root(struct btrfs_root * root)546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557 }
558
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)559 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560 enum btrfs_reserve_flush_enum flush,
561 u64 num_bytes,
562 u64 *delayed_refs_bytes)
563 {
564 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565 u64 bytes = num_bytes + *delayed_refs_bytes;
566 int ret;
567
568 /*
569 * We want to reserve all the bytes we may need all at once, so we only
570 * do 1 enospc flushing cycle per transaction start.
571 */
572 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573
574 /*
575 * If we are an emergency flush, which can steal from the global block
576 * reserve, then attempt to not reserve space for the delayed refs, as
577 * we will consume space for them from the global block reserve.
578 */
579 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580 bytes -= *delayed_refs_bytes;
581 *delayed_refs_bytes = 0;
582 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583 }
584
585 return ret;
586 }
587
588 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)589 start_transaction(struct btrfs_root *root, unsigned int num_items,
590 unsigned int type, enum btrfs_reserve_flush_enum flush,
591 bool enforce_qgroups)
592 {
593 struct btrfs_fs_info *fs_info = root->fs_info;
594 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596 struct btrfs_trans_handle *h;
597 struct btrfs_transaction *cur_trans;
598 u64 num_bytes = 0;
599 u64 qgroup_reserved = 0;
600 u64 delayed_refs_bytes = 0;
601 bool reloc_reserved = false;
602 bool do_chunk_alloc = false;
603 int ret;
604
605 if (BTRFS_FS_ERROR(fs_info))
606 return ERR_PTR(-EROFS);
607
608 if (current->journal_info) {
609 WARN_ON(type & TRANS_EXTWRITERS);
610 h = current->journal_info;
611 refcount_inc(&h->use_count);
612 WARN_ON(refcount_read(&h->use_count) > 2);
613 h->orig_rsv = h->block_rsv;
614 h->block_rsv = NULL;
615 goto got_it;
616 }
617
618 /*
619 * Do the reservation before we join the transaction so we can do all
620 * the appropriate flushing if need be.
621 */
622 if (num_items && root != fs_info->chunk_root) {
623 qgroup_reserved = num_items * fs_info->nodesize;
624 /*
625 * Use prealloc for now, as there might be a currently running
626 * transaction that could free this reserved space prematurely
627 * by committing.
628 */
629 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630 enforce_qgroups, false);
631 if (ret)
632 return ERR_PTR(ret);
633
634 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635 /*
636 * If we plan to insert/update/delete "num_items" from a btree,
637 * we will also generate delayed refs for extent buffers in the
638 * respective btree paths, so reserve space for the delayed refs
639 * that will be generated by the caller as it modifies btrees.
640 * Try to reserve them to avoid excessive use of the global
641 * block reserve.
642 */
643 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644
645 /*
646 * Do the reservation for the relocation root creation
647 */
648 if (need_reserve_reloc_root(root)) {
649 num_bytes += fs_info->nodesize;
650 reloc_reserved = true;
651 }
652
653 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654 &delayed_refs_bytes);
655 if (ret)
656 goto reserve_fail;
657
658 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659
660 if (trans_rsv->space_info->force_alloc)
661 do_chunk_alloc = true;
662 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663 !btrfs_block_rsv_full(delayed_refs_rsv)) {
664 /*
665 * Some people call with btrfs_start_transaction(root, 0)
666 * because they can be throttled, but have some other mechanism
667 * for reserving space. We still want these guys to refill the
668 * delayed block_rsv so just add 1 items worth of reservation
669 * here.
670 */
671 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672 if (ret)
673 goto reserve_fail;
674 }
675 again:
676 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677 if (!h) {
678 ret = -ENOMEM;
679 goto alloc_fail;
680 }
681
682 /*
683 * If we are JOIN_NOLOCK we're already committing a transaction and
684 * waiting on this guy, so we don't need to do the sb_start_intwrite
685 * because we're already holding a ref. We need this because we could
686 * have raced in and did an fsync() on a file which can kick a commit
687 * and then we deadlock with somebody doing a freeze.
688 *
689 * If we are ATTACH, it means we just want to catch the current
690 * transaction and commit it, so we needn't do sb_start_intwrite().
691 */
692 if (type & __TRANS_FREEZABLE)
693 sb_start_intwrite(fs_info->sb);
694
695 if (may_wait_transaction(fs_info, type))
696 wait_current_trans(fs_info);
697
698 do {
699 ret = join_transaction(fs_info, type);
700 if (ret == -EBUSY) {
701 wait_current_trans(fs_info);
702 if (unlikely(type == TRANS_ATTACH ||
703 type == TRANS_JOIN_NOSTART))
704 ret = -ENOENT;
705 }
706 } while (ret == -EBUSY);
707
708 if (ret < 0)
709 goto join_fail;
710
711 cur_trans = fs_info->running_transaction;
712
713 h->transid = cur_trans->transid;
714 h->transaction = cur_trans;
715 refcount_set(&h->use_count, 1);
716 h->fs_info = root->fs_info;
717
718 h->type = type;
719 INIT_LIST_HEAD(&h->new_bgs);
720 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721
722 smp_mb();
723 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724 may_wait_transaction(fs_info, type)) {
725 current->journal_info = h;
726 btrfs_commit_transaction(h);
727 goto again;
728 }
729
730 if (num_bytes) {
731 trace_btrfs_space_reservation(fs_info, "transaction",
732 h->transid, num_bytes, 1);
733 h->block_rsv = trans_rsv;
734 h->bytes_reserved = num_bytes;
735 if (delayed_refs_bytes > 0) {
736 trace_btrfs_space_reservation(fs_info,
737 "local_delayed_refs_rsv",
738 h->transid,
739 delayed_refs_bytes, 1);
740 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742 delayed_refs_bytes = 0;
743 }
744 h->reloc_reserved = reloc_reserved;
745 }
746
747 got_it:
748 if (!current->journal_info)
749 current->journal_info = h;
750
751 /*
752 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753 * ALLOC_FORCE the first run through, and then we won't allocate for
754 * anybody else who races in later. We don't care about the return
755 * value here.
756 */
757 if (do_chunk_alloc && num_bytes) {
758 u64 flags = h->block_rsv->space_info->flags;
759
760 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761 CHUNK_ALLOC_NO_FORCE);
762 }
763
764 /*
765 * btrfs_record_root_in_trans() needs to alloc new extents, and may
766 * call btrfs_join_transaction() while we're also starting a
767 * transaction.
768 *
769 * Thus it need to be called after current->journal_info initialized,
770 * or we can deadlock.
771 */
772 ret = btrfs_record_root_in_trans(h, root);
773 if (ret) {
774 /*
775 * The transaction handle is fully initialized and linked with
776 * other structures so it needs to be ended in case of errors,
777 * not just freed.
778 */
779 btrfs_end_transaction(h);
780 goto reserve_fail;
781 }
782 /*
783 * Now that we have found a transaction to be a part of, convert the
784 * qgroup reservation from prealloc to pertrans. A different transaction
785 * can't race in and free our pertrans out from under us.
786 */
787 if (qgroup_reserved)
788 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789
790 return h;
791
792 join_fail:
793 if (type & __TRANS_FREEZABLE)
794 sb_end_intwrite(fs_info->sb);
795 kmem_cache_free(btrfs_trans_handle_cachep, h);
796 alloc_fail:
797 if (num_bytes)
798 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799 if (delayed_refs_bytes)
800 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
801 reserve_fail:
802 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
803 return ERR_PTR(ret);
804 }
805
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)806 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
807 unsigned int num_items)
808 {
809 return start_transaction(root, num_items, TRANS_START,
810 BTRFS_RESERVE_FLUSH_ALL, true);
811 }
812
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)813 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
814 struct btrfs_root *root,
815 unsigned int num_items)
816 {
817 return start_transaction(root, num_items, TRANS_START,
818 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
819 }
820
btrfs_join_transaction(struct btrfs_root * root)821 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
822 {
823 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
824 true);
825 }
826
btrfs_join_transaction_spacecache(struct btrfs_root * root)827 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
828 {
829 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
830 BTRFS_RESERVE_NO_FLUSH, true);
831 }
832
833 /*
834 * Similar to regular join but it never starts a transaction when none is
835 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
836 * This is similar to btrfs_attach_transaction() but it allows the join to
837 * happen if the transaction commit already started but it's not yet in the
838 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
839 */
btrfs_join_transaction_nostart(struct btrfs_root * root)840 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
841 {
842 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
843 BTRFS_RESERVE_NO_FLUSH, true);
844 }
845
846 /*
847 * Catch the running transaction.
848 *
849 * It is used when we want to commit the current the transaction, but
850 * don't want to start a new one.
851 *
852 * Note: If this function return -ENOENT, it just means there is no
853 * running transaction. But it is possible that the inactive transaction
854 * is still in the memory, not fully on disk. If you hope there is no
855 * inactive transaction in the fs when -ENOENT is returned, you should
856 * invoke
857 * btrfs_attach_transaction_barrier()
858 */
btrfs_attach_transaction(struct btrfs_root * root)859 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
860 {
861 return start_transaction(root, 0, TRANS_ATTACH,
862 BTRFS_RESERVE_NO_FLUSH, true);
863 }
864
865 /*
866 * Catch the running transaction.
867 *
868 * It is similar to the above function, the difference is this one
869 * will wait for all the inactive transactions until they fully
870 * complete.
871 */
872 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)873 btrfs_attach_transaction_barrier(struct btrfs_root *root)
874 {
875 struct btrfs_trans_handle *trans;
876
877 trans = start_transaction(root, 0, TRANS_ATTACH,
878 BTRFS_RESERVE_NO_FLUSH, true);
879 if (trans == ERR_PTR(-ENOENT)) {
880 int ret;
881
882 ret = btrfs_wait_for_commit(root->fs_info, 0);
883 if (ret)
884 return ERR_PTR(ret);
885 }
886
887 return trans;
888 }
889
890 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)891 static noinline void wait_for_commit(struct btrfs_transaction *commit,
892 const enum btrfs_trans_state min_state)
893 {
894 struct btrfs_fs_info *fs_info = commit->fs_info;
895 u64 transid = commit->transid;
896 bool put = false;
897
898 /*
899 * At the moment this function is called with min_state either being
900 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
901 */
902 if (min_state == TRANS_STATE_COMPLETED)
903 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
904 else
905 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
906
907 while (1) {
908 wait_event(commit->commit_wait, commit->state >= min_state);
909 if (put)
910 btrfs_put_transaction(commit);
911
912 if (min_state < TRANS_STATE_COMPLETED)
913 break;
914
915 /*
916 * A transaction isn't really completed until all of the
917 * previous transactions are completed, but with fsync we can
918 * end up with SUPER_COMMITTED transactions before a COMPLETED
919 * transaction. Wait for those.
920 */
921
922 spin_lock(&fs_info->trans_lock);
923 commit = list_first_entry_or_null(&fs_info->trans_list,
924 struct btrfs_transaction,
925 list);
926 if (!commit || commit->transid > transid) {
927 spin_unlock(&fs_info->trans_lock);
928 break;
929 }
930 refcount_inc(&commit->use_count);
931 put = true;
932 spin_unlock(&fs_info->trans_lock);
933 }
934 }
935
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)936 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
937 {
938 struct btrfs_transaction *cur_trans = NULL, *t;
939 int ret = 0;
940
941 if (transid) {
942 if (transid <= btrfs_get_last_trans_committed(fs_info))
943 goto out;
944
945 /* find specified transaction */
946 spin_lock(&fs_info->trans_lock);
947 list_for_each_entry(t, &fs_info->trans_list, list) {
948 if (t->transid == transid) {
949 cur_trans = t;
950 refcount_inc(&cur_trans->use_count);
951 ret = 0;
952 break;
953 }
954 if (t->transid > transid) {
955 ret = 0;
956 break;
957 }
958 }
959 spin_unlock(&fs_info->trans_lock);
960
961 /*
962 * The specified transaction doesn't exist, or we
963 * raced with btrfs_commit_transaction
964 */
965 if (!cur_trans) {
966 if (transid > btrfs_get_last_trans_committed(fs_info))
967 ret = -EINVAL;
968 goto out;
969 }
970 } else {
971 /* find newest transaction that is committing | committed */
972 spin_lock(&fs_info->trans_lock);
973 list_for_each_entry_reverse(t, &fs_info->trans_list,
974 list) {
975 if (t->state >= TRANS_STATE_COMMIT_START) {
976 if (t->state == TRANS_STATE_COMPLETED)
977 break;
978 cur_trans = t;
979 refcount_inc(&cur_trans->use_count);
980 break;
981 }
982 }
983 spin_unlock(&fs_info->trans_lock);
984 if (!cur_trans)
985 goto out; /* nothing committing|committed */
986 }
987
988 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
989 ret = cur_trans->aborted;
990 btrfs_put_transaction(cur_trans);
991 out:
992 return ret;
993 }
994
btrfs_throttle(struct btrfs_fs_info * fs_info)995 void btrfs_throttle(struct btrfs_fs_info *fs_info)
996 {
997 wait_current_trans(fs_info);
998 }
999
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1000 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1001 {
1002 struct btrfs_transaction *cur_trans = trans->transaction;
1003
1004 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1005 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1006 return true;
1007
1008 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1009 return true;
1010
1011 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1012 }
1013
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1014 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1015
1016 {
1017 struct btrfs_fs_info *fs_info = trans->fs_info;
1018
1019 if (!trans->block_rsv) {
1020 ASSERT(!trans->bytes_reserved);
1021 ASSERT(!trans->delayed_refs_bytes_reserved);
1022 return;
1023 }
1024
1025 if (!trans->bytes_reserved) {
1026 ASSERT(!trans->delayed_refs_bytes_reserved);
1027 return;
1028 }
1029
1030 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1031 trace_btrfs_space_reservation(fs_info, "transaction",
1032 trans->transid, trans->bytes_reserved, 0);
1033 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1034 trans->bytes_reserved, NULL);
1035 trans->bytes_reserved = 0;
1036
1037 if (!trans->delayed_refs_bytes_reserved)
1038 return;
1039
1040 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1041 trans->transid,
1042 trans->delayed_refs_bytes_reserved, 0);
1043 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1044 trans->delayed_refs_bytes_reserved, NULL);
1045 trans->delayed_refs_bytes_reserved = 0;
1046 }
1047
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1048 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1049 int throttle)
1050 {
1051 struct btrfs_fs_info *info = trans->fs_info;
1052 struct btrfs_transaction *cur_trans = trans->transaction;
1053 int ret = 0;
1054
1055 if (refcount_read(&trans->use_count) > 1) {
1056 refcount_dec(&trans->use_count);
1057 trans->block_rsv = trans->orig_rsv;
1058 return 0;
1059 }
1060
1061 btrfs_trans_release_metadata(trans);
1062 trans->block_rsv = NULL;
1063
1064 btrfs_create_pending_block_groups(trans);
1065
1066 btrfs_trans_release_chunk_metadata(trans);
1067
1068 if (trans->type & __TRANS_FREEZABLE)
1069 sb_end_intwrite(info->sb);
1070
1071 WARN_ON(cur_trans != info->running_transaction);
1072 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1073 atomic_dec(&cur_trans->num_writers);
1074 extwriter_counter_dec(cur_trans, trans->type);
1075
1076 cond_wake_up(&cur_trans->writer_wait);
1077
1078 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1079 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1080
1081 btrfs_put_transaction(cur_trans);
1082
1083 if (current->journal_info == trans)
1084 current->journal_info = NULL;
1085
1086 if (throttle)
1087 btrfs_run_delayed_iputs(info);
1088
1089 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1090 wake_up_process(info->transaction_kthread);
1091 if (TRANS_ABORTED(trans))
1092 ret = trans->aborted;
1093 else
1094 ret = -EROFS;
1095 }
1096
1097 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1098 return ret;
1099 }
1100
btrfs_end_transaction(struct btrfs_trans_handle * trans)1101 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1102 {
1103 return __btrfs_end_transaction(trans, 0);
1104 }
1105
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1106 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1107 {
1108 return __btrfs_end_transaction(trans, 1);
1109 }
1110
1111 /*
1112 * when btree blocks are allocated, they have some corresponding bits set for
1113 * them in one of two extent_io trees. This is used to make sure all of
1114 * those extents are sent to disk but does not wait on them
1115 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1116 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1117 struct extent_io_tree *dirty_pages, int mark)
1118 {
1119 int ret = 0;
1120 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1121 struct extent_state *cached_state = NULL;
1122 u64 start = 0;
1123 u64 end;
1124
1125 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1126 mark, &cached_state)) {
1127 bool wait_writeback = false;
1128
1129 ret = convert_extent_bit(dirty_pages, start, end,
1130 EXTENT_NEED_WAIT,
1131 mark, &cached_state);
1132 /*
1133 * convert_extent_bit can return -ENOMEM, which is most of the
1134 * time a temporary error. So when it happens, ignore the error
1135 * and wait for writeback of this range to finish - because we
1136 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1137 * to __btrfs_wait_marked_extents() would not know that
1138 * writeback for this range started and therefore wouldn't
1139 * wait for it to finish - we don't want to commit a
1140 * superblock that points to btree nodes/leafs for which
1141 * writeback hasn't finished yet (and without errors).
1142 * We cleanup any entries left in the io tree when committing
1143 * the transaction (through extent_io_tree_release()).
1144 */
1145 if (ret == -ENOMEM) {
1146 ret = 0;
1147 wait_writeback = true;
1148 }
1149 if (!ret)
1150 ret = filemap_fdatawrite_range(mapping, start, end);
1151 if (!ret && wait_writeback)
1152 ret = filemap_fdatawait_range(mapping, start, end);
1153 free_extent_state(cached_state);
1154 if (ret)
1155 break;
1156 cached_state = NULL;
1157 cond_resched();
1158 start = end + 1;
1159 }
1160 return ret;
1161 }
1162
1163 /*
1164 * when btree blocks are allocated, they have some corresponding bits set for
1165 * them in one of two extent_io trees. This is used to make sure all of
1166 * those extents are on disk for transaction or log commit. We wait
1167 * on all the pages and clear them from the dirty pages state tree
1168 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1169 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1170 struct extent_io_tree *dirty_pages)
1171 {
1172 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1173 struct extent_state *cached_state = NULL;
1174 u64 start = 0;
1175 u64 end;
1176 int ret = 0;
1177
1178 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1179 EXTENT_NEED_WAIT, &cached_state)) {
1180 /*
1181 * Ignore -ENOMEM errors returned by clear_extent_bit().
1182 * When committing the transaction, we'll remove any entries
1183 * left in the io tree. For a log commit, we don't remove them
1184 * after committing the log because the tree can be accessed
1185 * concurrently - we do it only at transaction commit time when
1186 * it's safe to do it (through extent_io_tree_release()).
1187 */
1188 ret = clear_extent_bit(dirty_pages, start, end,
1189 EXTENT_NEED_WAIT, &cached_state);
1190 if (ret == -ENOMEM)
1191 ret = 0;
1192 if (!ret)
1193 ret = filemap_fdatawait_range(mapping, start, end);
1194 free_extent_state(cached_state);
1195 if (ret)
1196 break;
1197 cached_state = NULL;
1198 cond_resched();
1199 start = end + 1;
1200 }
1201 return ret;
1202 }
1203
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1204 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1205 struct extent_io_tree *dirty_pages)
1206 {
1207 bool errors = false;
1208 int err;
1209
1210 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1211 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1212 errors = true;
1213
1214 if (errors && !err)
1215 err = -EIO;
1216 return err;
1217 }
1218
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1219 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1220 {
1221 struct btrfs_fs_info *fs_info = log_root->fs_info;
1222 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1223 bool errors = false;
1224 int err;
1225
1226 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1227
1228 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1229 if ((mark & EXTENT_DIRTY) &&
1230 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1231 errors = true;
1232
1233 if ((mark & EXTENT_NEW) &&
1234 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1235 errors = true;
1236
1237 if (errors && !err)
1238 err = -EIO;
1239 return err;
1240 }
1241
1242 /*
1243 * When btree blocks are allocated the corresponding extents are marked dirty.
1244 * This function ensures such extents are persisted on disk for transaction or
1245 * log commit.
1246 *
1247 * @trans: transaction whose dirty pages we'd like to write
1248 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1249 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1250 {
1251 int ret;
1252 int ret2;
1253 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1254 struct btrfs_fs_info *fs_info = trans->fs_info;
1255 struct blk_plug plug;
1256
1257 blk_start_plug(&plug);
1258 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1259 blk_finish_plug(&plug);
1260 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1261
1262 extent_io_tree_release(&trans->transaction->dirty_pages);
1263
1264 if (ret)
1265 return ret;
1266 else if (ret2)
1267 return ret2;
1268 else
1269 return 0;
1270 }
1271
1272 /*
1273 * this is used to update the root pointer in the tree of tree roots.
1274 *
1275 * But, in the case of the extent allocation tree, updating the root
1276 * pointer may allocate blocks which may change the root of the extent
1277 * allocation tree.
1278 *
1279 * So, this loops and repeats and makes sure the cowonly root didn't
1280 * change while the root pointer was being updated in the metadata.
1281 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1282 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1283 struct btrfs_root *root)
1284 {
1285 int ret;
1286 u64 old_root_bytenr;
1287 u64 old_root_used;
1288 struct btrfs_fs_info *fs_info = root->fs_info;
1289 struct btrfs_root *tree_root = fs_info->tree_root;
1290
1291 old_root_used = btrfs_root_used(&root->root_item);
1292
1293 while (1) {
1294 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1295 if (old_root_bytenr == root->node->start &&
1296 old_root_used == btrfs_root_used(&root->root_item))
1297 break;
1298
1299 btrfs_set_root_node(&root->root_item, root->node);
1300 ret = btrfs_update_root(trans, tree_root,
1301 &root->root_key,
1302 &root->root_item);
1303 if (ret)
1304 return ret;
1305
1306 old_root_used = btrfs_root_used(&root->root_item);
1307 }
1308
1309 return 0;
1310 }
1311
1312 /*
1313 * update all the cowonly tree roots on disk
1314 *
1315 * The error handling in this function may not be obvious. Any of the
1316 * failures will cause the file system to go offline. We still need
1317 * to clean up the delayed refs.
1318 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1319 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1320 {
1321 struct btrfs_fs_info *fs_info = trans->fs_info;
1322 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1323 struct list_head *io_bgs = &trans->transaction->io_bgs;
1324 struct list_head *next;
1325 struct extent_buffer *eb;
1326 int ret;
1327
1328 /*
1329 * At this point no one can be using this transaction to modify any tree
1330 * and no one can start another transaction to modify any tree either.
1331 */
1332 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1333
1334 eb = btrfs_lock_root_node(fs_info->tree_root);
1335 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1336 0, &eb, BTRFS_NESTING_COW);
1337 btrfs_tree_unlock(eb);
1338 free_extent_buffer(eb);
1339
1340 if (ret)
1341 return ret;
1342
1343 ret = btrfs_run_dev_stats(trans);
1344 if (ret)
1345 return ret;
1346 ret = btrfs_run_dev_replace(trans);
1347 if (ret)
1348 return ret;
1349 ret = btrfs_run_qgroups(trans);
1350 if (ret)
1351 return ret;
1352
1353 ret = btrfs_setup_space_cache(trans);
1354 if (ret)
1355 return ret;
1356
1357 again:
1358 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1359 struct btrfs_root *root;
1360 next = fs_info->dirty_cowonly_roots.next;
1361 list_del_init(next);
1362 root = list_entry(next, struct btrfs_root, dirty_list);
1363 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1364
1365 list_add_tail(&root->dirty_list,
1366 &trans->transaction->switch_commits);
1367 ret = update_cowonly_root(trans, root);
1368 if (ret)
1369 return ret;
1370 }
1371
1372 /* Now flush any delayed refs generated by updating all of the roots */
1373 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1374 if (ret)
1375 return ret;
1376
1377 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1378 ret = btrfs_write_dirty_block_groups(trans);
1379 if (ret)
1380 return ret;
1381
1382 /*
1383 * We're writing the dirty block groups, which could generate
1384 * delayed refs, which could generate more dirty block groups,
1385 * so we want to keep this flushing in this loop to make sure
1386 * everything gets run.
1387 */
1388 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1389 if (ret)
1390 return ret;
1391 }
1392
1393 if (!list_empty(&fs_info->dirty_cowonly_roots))
1394 goto again;
1395
1396 /* Update dev-replace pointer once everything is committed */
1397 fs_info->dev_replace.committed_cursor_left =
1398 fs_info->dev_replace.cursor_left_last_write_of_item;
1399
1400 return 0;
1401 }
1402
1403 /*
1404 * If we had a pending drop we need to see if there are any others left in our
1405 * dead roots list, and if not clear our bit and wake any waiters.
1406 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1407 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1408 {
1409 /*
1410 * We put the drop in progress roots at the front of the list, so if the
1411 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1412 * up.
1413 */
1414 spin_lock(&fs_info->trans_lock);
1415 if (!list_empty(&fs_info->dead_roots)) {
1416 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1417 struct btrfs_root,
1418 root_list);
1419 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1420 spin_unlock(&fs_info->trans_lock);
1421 return;
1422 }
1423 }
1424 spin_unlock(&fs_info->trans_lock);
1425
1426 btrfs_wake_unfinished_drop(fs_info);
1427 }
1428
1429 /*
1430 * dead roots are old snapshots that need to be deleted. This allocates
1431 * a dirty root struct and adds it into the list of dead roots that need to
1432 * be deleted
1433 */
btrfs_add_dead_root(struct btrfs_root * root)1434 void btrfs_add_dead_root(struct btrfs_root *root)
1435 {
1436 struct btrfs_fs_info *fs_info = root->fs_info;
1437
1438 spin_lock(&fs_info->trans_lock);
1439 if (list_empty(&root->root_list)) {
1440 btrfs_grab_root(root);
1441
1442 /* We want to process the partially complete drops first. */
1443 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1444 list_add(&root->root_list, &fs_info->dead_roots);
1445 else
1446 list_add_tail(&root->root_list, &fs_info->dead_roots);
1447 }
1448 spin_unlock(&fs_info->trans_lock);
1449 }
1450
1451 /*
1452 * Update each subvolume root and its relocation root, if it exists, in the tree
1453 * of tree roots. Also free log roots if they exist.
1454 */
commit_fs_roots(struct btrfs_trans_handle * trans)1455 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1456 {
1457 struct btrfs_fs_info *fs_info = trans->fs_info;
1458 struct btrfs_root *gang[8];
1459 int i;
1460 int ret;
1461
1462 /*
1463 * At this point no one can be using this transaction to modify any tree
1464 * and no one can start another transaction to modify any tree either.
1465 */
1466 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1467
1468 spin_lock(&fs_info->fs_roots_radix_lock);
1469 while (1) {
1470 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1471 (void **)gang, 0,
1472 ARRAY_SIZE(gang),
1473 BTRFS_ROOT_TRANS_TAG);
1474 if (ret == 0)
1475 break;
1476 for (i = 0; i < ret; i++) {
1477 struct btrfs_root *root = gang[i];
1478 int ret2;
1479
1480 /*
1481 * At this point we can neither have tasks logging inodes
1482 * from a root nor trying to commit a log tree.
1483 */
1484 ASSERT(atomic_read(&root->log_writers) == 0);
1485 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1486 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1487
1488 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1489 (unsigned long)btrfs_root_id(root),
1490 BTRFS_ROOT_TRANS_TAG);
1491 btrfs_qgroup_free_meta_all_pertrans(root);
1492 spin_unlock(&fs_info->fs_roots_radix_lock);
1493
1494 btrfs_free_log(trans, root);
1495 ret2 = btrfs_update_reloc_root(trans, root);
1496 if (ret2)
1497 return ret2;
1498
1499 /* see comments in should_cow_block() */
1500 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1501 smp_mb__after_atomic();
1502
1503 if (root->commit_root != root->node) {
1504 list_add_tail(&root->dirty_list,
1505 &trans->transaction->switch_commits);
1506 btrfs_set_root_node(&root->root_item,
1507 root->node);
1508 }
1509
1510 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1511 &root->root_key,
1512 &root->root_item);
1513 if (ret2)
1514 return ret2;
1515 spin_lock(&fs_info->fs_roots_radix_lock);
1516 }
1517 }
1518 spin_unlock(&fs_info->fs_roots_radix_lock);
1519 return 0;
1520 }
1521
1522 /*
1523 * Do all special snapshot related qgroup dirty hack.
1524 *
1525 * Will do all needed qgroup inherit and dirty hack like switch commit
1526 * roots inside one transaction and write all btree into disk, to make
1527 * qgroup works.
1528 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1529 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *src,
1531 struct btrfs_root *parent,
1532 struct btrfs_qgroup_inherit *inherit,
1533 u64 dst_objectid)
1534 {
1535 struct btrfs_fs_info *fs_info = src->fs_info;
1536 int ret;
1537
1538 /*
1539 * Save some performance in the case that qgroups are not enabled. If
1540 * this check races with the ioctl, rescan will kick in anyway.
1541 */
1542 if (!btrfs_qgroup_full_accounting(fs_info))
1543 return 0;
1544
1545 /*
1546 * Ensure dirty @src will be committed. Or, after coming
1547 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1548 * recorded root will never be updated again, causing an outdated root
1549 * item.
1550 */
1551 ret = record_root_in_trans(trans, src, 1);
1552 if (ret)
1553 return ret;
1554
1555 /*
1556 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1557 * src root, so we must run the delayed refs here.
1558 *
1559 * However this isn't particularly fool proof, because there's no
1560 * synchronization keeping us from changing the tree after this point
1561 * before we do the qgroup_inherit, or even from making changes while
1562 * we're doing the qgroup_inherit. But that's a problem for the future,
1563 * for now flush the delayed refs to narrow the race window where the
1564 * qgroup counters could end up wrong.
1565 */
1566 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1567 if (ret) {
1568 btrfs_abort_transaction(trans, ret);
1569 return ret;
1570 }
1571
1572 ret = commit_fs_roots(trans);
1573 if (ret)
1574 goto out;
1575 ret = btrfs_qgroup_account_extents(trans);
1576 if (ret < 0)
1577 goto out;
1578
1579 /* Now qgroup are all updated, we can inherit it to new qgroups */
1580 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1581 btrfs_root_id(parent), inherit);
1582 if (ret < 0)
1583 goto out;
1584
1585 /*
1586 * Now we do a simplified commit transaction, which will:
1587 * 1) commit all subvolume and extent tree
1588 * To ensure all subvolume and extent tree have a valid
1589 * commit_root to accounting later insert_dir_item()
1590 * 2) write all btree blocks onto disk
1591 * This is to make sure later btree modification will be cowed
1592 * Or commit_root can be populated and cause wrong qgroup numbers
1593 * In this simplified commit, we don't really care about other trees
1594 * like chunk and root tree, as they won't affect qgroup.
1595 * And we don't write super to avoid half committed status.
1596 */
1597 ret = commit_cowonly_roots(trans);
1598 if (ret)
1599 goto out;
1600 switch_commit_roots(trans);
1601 ret = btrfs_write_and_wait_transaction(trans);
1602 if (ret)
1603 btrfs_handle_fs_error(fs_info, ret,
1604 "Error while writing out transaction for qgroup");
1605
1606 out:
1607 /*
1608 * Force parent root to be updated, as we recorded it before so its
1609 * last_trans == cur_transid.
1610 * Or it won't be committed again onto disk after later
1611 * insert_dir_item()
1612 */
1613 if (!ret)
1614 ret = record_root_in_trans(trans, parent, 1);
1615 return ret;
1616 }
1617
1618 /*
1619 * new snapshots need to be created at a very specific time in the
1620 * transaction commit. This does the actual creation.
1621 *
1622 * Note:
1623 * If the error which may affect the commitment of the current transaction
1624 * happens, we should return the error number. If the error which just affect
1625 * the creation of the pending snapshots, just return 0.
1626 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1627 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1628 struct btrfs_pending_snapshot *pending)
1629 {
1630
1631 struct btrfs_fs_info *fs_info = trans->fs_info;
1632 struct btrfs_key key;
1633 struct btrfs_root_item *new_root_item;
1634 struct btrfs_root *tree_root = fs_info->tree_root;
1635 struct btrfs_root *root = pending->root;
1636 struct btrfs_root *parent_root;
1637 struct btrfs_block_rsv *rsv;
1638 struct inode *parent_inode = &pending->dir->vfs_inode;
1639 struct btrfs_path *path;
1640 struct btrfs_dir_item *dir_item;
1641 struct extent_buffer *tmp;
1642 struct extent_buffer *old;
1643 struct timespec64 cur_time;
1644 int ret = 0;
1645 u64 to_reserve = 0;
1646 u64 index = 0;
1647 u64 objectid;
1648 u64 root_flags;
1649 unsigned int nofs_flags;
1650 struct fscrypt_name fname;
1651
1652 ASSERT(pending->path);
1653 path = pending->path;
1654
1655 ASSERT(pending->root_item);
1656 new_root_item = pending->root_item;
1657
1658 /*
1659 * We're inside a transaction and must make sure that any potential
1660 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1661 * filesystem.
1662 */
1663 nofs_flags = memalloc_nofs_save();
1664 pending->error = fscrypt_setup_filename(parent_inode,
1665 &pending->dentry->d_name, 0,
1666 &fname);
1667 memalloc_nofs_restore(nofs_flags);
1668 if (pending->error)
1669 goto free_pending;
1670
1671 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1672 if (pending->error)
1673 goto free_fname;
1674
1675 /*
1676 * Make qgroup to skip current new snapshot's qgroupid, as it is
1677 * accounted by later btrfs_qgroup_inherit().
1678 */
1679 btrfs_set_skip_qgroup(trans, objectid);
1680
1681 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1682
1683 if (to_reserve > 0) {
1684 pending->error = btrfs_block_rsv_add(fs_info,
1685 &pending->block_rsv,
1686 to_reserve,
1687 BTRFS_RESERVE_NO_FLUSH);
1688 if (pending->error)
1689 goto clear_skip_qgroup;
1690 }
1691
1692 key.objectid = objectid;
1693 key.offset = (u64)-1;
1694 key.type = BTRFS_ROOT_ITEM_KEY;
1695
1696 rsv = trans->block_rsv;
1697 trans->block_rsv = &pending->block_rsv;
1698 trans->bytes_reserved = trans->block_rsv->reserved;
1699 trace_btrfs_space_reservation(fs_info, "transaction",
1700 trans->transid,
1701 trans->bytes_reserved, 1);
1702 parent_root = BTRFS_I(parent_inode)->root;
1703 ret = record_root_in_trans(trans, parent_root, 0);
1704 if (ret)
1705 goto fail;
1706 cur_time = current_time(parent_inode);
1707
1708 /*
1709 * insert the directory item
1710 */
1711 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1712 if (ret) {
1713 btrfs_abort_transaction(trans, ret);
1714 goto fail;
1715 }
1716
1717 /* check if there is a file/dir which has the same name. */
1718 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1719 btrfs_ino(BTRFS_I(parent_inode)),
1720 &fname.disk_name, 0);
1721 if (dir_item != NULL && !IS_ERR(dir_item)) {
1722 pending->error = -EEXIST;
1723 goto dir_item_existed;
1724 } else if (IS_ERR(dir_item)) {
1725 ret = PTR_ERR(dir_item);
1726 btrfs_abort_transaction(trans, ret);
1727 goto fail;
1728 }
1729 btrfs_release_path(path);
1730
1731 ret = btrfs_create_qgroup(trans, objectid);
1732 if (ret && ret != -EEXIST) {
1733 btrfs_abort_transaction(trans, ret);
1734 goto fail;
1735 }
1736
1737 /*
1738 * pull in the delayed directory update
1739 * and the delayed inode item
1740 * otherwise we corrupt the FS during
1741 * snapshot
1742 */
1743 ret = btrfs_run_delayed_items(trans);
1744 if (ret) { /* Transaction aborted */
1745 btrfs_abort_transaction(trans, ret);
1746 goto fail;
1747 }
1748
1749 ret = record_root_in_trans(trans, root, 0);
1750 if (ret) {
1751 btrfs_abort_transaction(trans, ret);
1752 goto fail;
1753 }
1754 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1755 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1756 btrfs_check_and_init_root_item(new_root_item);
1757
1758 root_flags = btrfs_root_flags(new_root_item);
1759 if (pending->readonly)
1760 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1761 else
1762 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1763 btrfs_set_root_flags(new_root_item, root_flags);
1764
1765 btrfs_set_root_generation_v2(new_root_item,
1766 trans->transid);
1767 generate_random_guid(new_root_item->uuid);
1768 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1769 BTRFS_UUID_SIZE);
1770 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1771 memset(new_root_item->received_uuid, 0,
1772 sizeof(new_root_item->received_uuid));
1773 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1774 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1775 btrfs_set_root_stransid(new_root_item, 0);
1776 btrfs_set_root_rtransid(new_root_item, 0);
1777 }
1778 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1779 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1780 btrfs_set_root_otransid(new_root_item, trans->transid);
1781
1782 old = btrfs_lock_root_node(root);
1783 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1784 BTRFS_NESTING_COW);
1785 if (ret) {
1786 btrfs_tree_unlock(old);
1787 free_extent_buffer(old);
1788 btrfs_abort_transaction(trans, ret);
1789 goto fail;
1790 }
1791
1792 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1793 /* clean up in any case */
1794 btrfs_tree_unlock(old);
1795 free_extent_buffer(old);
1796 if (ret) {
1797 btrfs_abort_transaction(trans, ret);
1798 goto fail;
1799 }
1800 /* see comments in should_cow_block() */
1801 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1802 smp_wmb();
1803
1804 btrfs_set_root_node(new_root_item, tmp);
1805 /* record when the snapshot was created in key.offset */
1806 key.offset = trans->transid;
1807 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1808 btrfs_tree_unlock(tmp);
1809 free_extent_buffer(tmp);
1810 if (ret) {
1811 btrfs_abort_transaction(trans, ret);
1812 goto fail;
1813 }
1814
1815 /*
1816 * insert root back/forward references
1817 */
1818 ret = btrfs_add_root_ref(trans, objectid,
1819 btrfs_root_id(parent_root),
1820 btrfs_ino(BTRFS_I(parent_inode)), index,
1821 &fname.disk_name);
1822 if (ret) {
1823 btrfs_abort_transaction(trans, ret);
1824 goto fail;
1825 }
1826
1827 key.offset = (u64)-1;
1828 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1829 if (IS_ERR(pending->snap)) {
1830 ret = PTR_ERR(pending->snap);
1831 pending->snap = NULL;
1832 btrfs_abort_transaction(trans, ret);
1833 goto fail;
1834 }
1835
1836 ret = btrfs_reloc_post_snapshot(trans, pending);
1837 if (ret) {
1838 btrfs_abort_transaction(trans, ret);
1839 goto fail;
1840 }
1841
1842 /*
1843 * Do special qgroup accounting for snapshot, as we do some qgroup
1844 * snapshot hack to do fast snapshot.
1845 * To co-operate with that hack, we do hack again.
1846 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1847 */
1848 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1849 ret = qgroup_account_snapshot(trans, root, parent_root,
1850 pending->inherit, objectid);
1851 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1852 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1853 btrfs_root_id(parent_root), pending->inherit);
1854 if (ret < 0)
1855 goto fail;
1856
1857 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1858 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1859 index);
1860 if (ret) {
1861 btrfs_abort_transaction(trans, ret);
1862 goto fail;
1863 }
1864
1865 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1866 fname.disk_name.len * 2);
1867 inode_set_mtime_to_ts(parent_inode,
1868 inode_set_ctime_current(parent_inode));
1869 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1870 if (ret) {
1871 btrfs_abort_transaction(trans, ret);
1872 goto fail;
1873 }
1874 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1875 BTRFS_UUID_KEY_SUBVOL,
1876 objectid);
1877 if (ret) {
1878 btrfs_abort_transaction(trans, ret);
1879 goto fail;
1880 }
1881 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1882 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1883 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1884 objectid);
1885 if (ret && ret != -EEXIST) {
1886 btrfs_abort_transaction(trans, ret);
1887 goto fail;
1888 }
1889 }
1890
1891 fail:
1892 pending->error = ret;
1893 dir_item_existed:
1894 trans->block_rsv = rsv;
1895 trans->bytes_reserved = 0;
1896 clear_skip_qgroup:
1897 btrfs_clear_skip_qgroup(trans);
1898 free_fname:
1899 fscrypt_free_filename(&fname);
1900 free_pending:
1901 kfree(new_root_item);
1902 pending->root_item = NULL;
1903 btrfs_free_path(path);
1904 pending->path = NULL;
1905
1906 return ret;
1907 }
1908
1909 /*
1910 * create all the snapshots we've scheduled for creation
1911 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1912 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1913 {
1914 struct btrfs_pending_snapshot *pending, *next;
1915 struct list_head *head = &trans->transaction->pending_snapshots;
1916 int ret = 0;
1917
1918 list_for_each_entry_safe(pending, next, head, list) {
1919 list_del(&pending->list);
1920 ret = create_pending_snapshot(trans, pending);
1921 if (ret)
1922 break;
1923 }
1924 return ret;
1925 }
1926
update_super_roots(struct btrfs_fs_info * fs_info)1927 static void update_super_roots(struct btrfs_fs_info *fs_info)
1928 {
1929 struct btrfs_root_item *root_item;
1930 struct btrfs_super_block *super;
1931
1932 super = fs_info->super_copy;
1933
1934 root_item = &fs_info->chunk_root->root_item;
1935 super->chunk_root = root_item->bytenr;
1936 super->chunk_root_generation = root_item->generation;
1937 super->chunk_root_level = root_item->level;
1938
1939 root_item = &fs_info->tree_root->root_item;
1940 super->root = root_item->bytenr;
1941 super->generation = root_item->generation;
1942 super->root_level = root_item->level;
1943 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1944 super->cache_generation = root_item->generation;
1945 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1946 super->cache_generation = 0;
1947 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1948 super->uuid_tree_generation = root_item->generation;
1949 }
1950
btrfs_transaction_blocked(struct btrfs_fs_info * info)1951 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1952 {
1953 struct btrfs_transaction *trans;
1954 int ret = 0;
1955
1956 spin_lock(&info->trans_lock);
1957 trans = info->running_transaction;
1958 if (trans)
1959 ret = is_transaction_blocked(trans);
1960 spin_unlock(&info->trans_lock);
1961 return ret;
1962 }
1963
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1964 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1965 {
1966 struct btrfs_fs_info *fs_info = trans->fs_info;
1967 struct btrfs_transaction *cur_trans;
1968
1969 /* Kick the transaction kthread. */
1970 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1971 wake_up_process(fs_info->transaction_kthread);
1972
1973 /* take transaction reference */
1974 cur_trans = trans->transaction;
1975 refcount_inc(&cur_trans->use_count);
1976
1977 btrfs_end_transaction(trans);
1978
1979 /*
1980 * Wait for the current transaction commit to start and block
1981 * subsequent transaction joins
1982 */
1983 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1984 wait_event(fs_info->transaction_blocked_wait,
1985 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1986 TRANS_ABORTED(cur_trans));
1987 btrfs_put_transaction(cur_trans);
1988 }
1989
1990 /*
1991 * If there is a running transaction commit it or if it's already committing,
1992 * wait for its commit to complete. Does not start and commit a new transaction
1993 * if there isn't any running.
1994 */
btrfs_commit_current_transaction(struct btrfs_root * root)1995 int btrfs_commit_current_transaction(struct btrfs_root *root)
1996 {
1997 struct btrfs_trans_handle *trans;
1998
1999 trans = btrfs_attach_transaction_barrier(root);
2000 if (IS_ERR(trans)) {
2001 int ret = PTR_ERR(trans);
2002
2003 return (ret == -ENOENT) ? 0 : ret;
2004 }
2005
2006 return btrfs_commit_transaction(trans);
2007 }
2008
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2009 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2010 {
2011 struct btrfs_fs_info *fs_info = trans->fs_info;
2012 struct btrfs_transaction *cur_trans = trans->transaction;
2013
2014 WARN_ON(refcount_read(&trans->use_count) > 1);
2015
2016 btrfs_abort_transaction(trans, err);
2017
2018 spin_lock(&fs_info->trans_lock);
2019
2020 /*
2021 * If the transaction is removed from the list, it means this
2022 * transaction has been committed successfully, so it is impossible
2023 * to call the cleanup function.
2024 */
2025 BUG_ON(list_empty(&cur_trans->list));
2026
2027 if (cur_trans == fs_info->running_transaction) {
2028 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2029 spin_unlock(&fs_info->trans_lock);
2030
2031 /*
2032 * The thread has already released the lockdep map as reader
2033 * already in btrfs_commit_transaction().
2034 */
2035 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2036 wait_event(cur_trans->writer_wait,
2037 atomic_read(&cur_trans->num_writers) == 1);
2038
2039 spin_lock(&fs_info->trans_lock);
2040 }
2041
2042 /*
2043 * Now that we know no one else is still using the transaction we can
2044 * remove the transaction from the list of transactions. This avoids
2045 * the transaction kthread from cleaning up the transaction while some
2046 * other task is still using it, which could result in a use-after-free
2047 * on things like log trees, as it forces the transaction kthread to
2048 * wait for this transaction to be cleaned up by us.
2049 */
2050 list_del_init(&cur_trans->list);
2051
2052 spin_unlock(&fs_info->trans_lock);
2053
2054 btrfs_cleanup_one_transaction(trans->transaction);
2055
2056 spin_lock(&fs_info->trans_lock);
2057 if (cur_trans == fs_info->running_transaction)
2058 fs_info->running_transaction = NULL;
2059 spin_unlock(&fs_info->trans_lock);
2060
2061 if (trans->type & __TRANS_FREEZABLE)
2062 sb_end_intwrite(fs_info->sb);
2063 btrfs_put_transaction(cur_trans);
2064 btrfs_put_transaction(cur_trans);
2065
2066 trace_btrfs_transaction_commit(fs_info);
2067
2068 if (current->journal_info == trans)
2069 current->journal_info = NULL;
2070
2071 /*
2072 * If relocation is running, we can't cancel scrub because that will
2073 * result in a deadlock. Before relocating a block group, relocation
2074 * pauses scrub, then starts and commits a transaction before unpausing
2075 * scrub. If the transaction commit is being done by the relocation
2076 * task or triggered by another task and the relocation task is waiting
2077 * for the commit, and we end up here due to an error in the commit
2078 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2079 * asking for scrub to stop while having it asked to be paused higher
2080 * above in relocation code.
2081 */
2082 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2083 btrfs_scrub_cancel(fs_info);
2084
2085 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2086 }
2087
2088 /*
2089 * Release reserved delayed ref space of all pending block groups of the
2090 * transaction and remove them from the list
2091 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2092 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2093 {
2094 struct btrfs_fs_info *fs_info = trans->fs_info;
2095 struct btrfs_block_group *block_group, *tmp;
2096
2097 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2098 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2099 list_del_init(&block_group->bg_list);
2100 }
2101 }
2102
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2103 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2104 {
2105 /*
2106 * We use try_to_writeback_inodes_sb() here because if we used
2107 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2108 * Currently are holding the fs freeze lock, if we do an async flush
2109 * we'll do btrfs_join_transaction() and deadlock because we need to
2110 * wait for the fs freeze lock. Using the direct flushing we benefit
2111 * from already being in a transaction and our join_transaction doesn't
2112 * have to re-take the fs freeze lock.
2113 *
2114 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2115 * if it can read lock sb->s_umount. It will always be able to lock it,
2116 * except when the filesystem is being unmounted or being frozen, but in
2117 * those cases sync_filesystem() is called, which results in calling
2118 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2119 * Note that we don't call writeback_inodes_sb() directly, because it
2120 * will emit a warning if sb->s_umount is not locked.
2121 */
2122 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2123 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2124 return 0;
2125 }
2126
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2127 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2128 {
2129 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2130 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2131 }
2132
2133 /*
2134 * Add a pending snapshot associated with the given transaction handle to the
2135 * respective handle. This must be called after the transaction commit started
2136 * and while holding fs_info->trans_lock.
2137 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2138 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2139 * returns an error.
2140 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2141 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2142 {
2143 struct btrfs_transaction *cur_trans = trans->transaction;
2144
2145 if (!trans->pending_snapshot)
2146 return;
2147
2148 lockdep_assert_held(&trans->fs_info->trans_lock);
2149 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2150
2151 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2152 }
2153
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2154 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2155 {
2156 fs_info->commit_stats.commit_count++;
2157 fs_info->commit_stats.last_commit_dur = interval;
2158 fs_info->commit_stats.max_commit_dur =
2159 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2160 fs_info->commit_stats.total_commit_dur += interval;
2161 }
2162
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2163 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2164 {
2165 struct btrfs_fs_info *fs_info = trans->fs_info;
2166 struct btrfs_transaction *cur_trans = trans->transaction;
2167 struct btrfs_transaction *prev_trans = NULL;
2168 int ret;
2169 ktime_t start_time;
2170 ktime_t interval;
2171
2172 ASSERT(refcount_read(&trans->use_count) == 1);
2173 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2174
2175 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2176
2177 /* Stop the commit early if ->aborted is set */
2178 if (TRANS_ABORTED(cur_trans)) {
2179 ret = cur_trans->aborted;
2180 goto lockdep_trans_commit_start_release;
2181 }
2182
2183 btrfs_trans_release_metadata(trans);
2184 trans->block_rsv = NULL;
2185
2186 /*
2187 * We only want one transaction commit doing the flushing so we do not
2188 * waste a bunch of time on lock contention on the extent root node.
2189 */
2190 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2191 &cur_trans->delayed_refs.flags)) {
2192 /*
2193 * Make a pass through all the delayed refs we have so far.
2194 * Any running threads may add more while we are here.
2195 */
2196 ret = btrfs_run_delayed_refs(trans, 0);
2197 if (ret)
2198 goto lockdep_trans_commit_start_release;
2199 }
2200
2201 btrfs_create_pending_block_groups(trans);
2202
2203 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2204 int run_it = 0;
2205
2206 /* this mutex is also taken before trying to set
2207 * block groups readonly. We need to make sure
2208 * that nobody has set a block group readonly
2209 * after a extents from that block group have been
2210 * allocated for cache files. btrfs_set_block_group_ro
2211 * will wait for the transaction to commit if it
2212 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2213 *
2214 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2215 * only one process starts all the block group IO. It wouldn't
2216 * hurt to have more than one go through, but there's no
2217 * real advantage to it either.
2218 */
2219 mutex_lock(&fs_info->ro_block_group_mutex);
2220 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2221 &cur_trans->flags))
2222 run_it = 1;
2223 mutex_unlock(&fs_info->ro_block_group_mutex);
2224
2225 if (run_it) {
2226 ret = btrfs_start_dirty_block_groups(trans);
2227 if (ret)
2228 goto lockdep_trans_commit_start_release;
2229 }
2230 }
2231
2232 spin_lock(&fs_info->trans_lock);
2233 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2234 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2235
2236 add_pending_snapshot(trans);
2237
2238 spin_unlock(&fs_info->trans_lock);
2239 refcount_inc(&cur_trans->use_count);
2240
2241 if (trans->in_fsync)
2242 want_state = TRANS_STATE_SUPER_COMMITTED;
2243
2244 btrfs_trans_state_lockdep_release(fs_info,
2245 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2246 ret = btrfs_end_transaction(trans);
2247 wait_for_commit(cur_trans, want_state);
2248
2249 if (TRANS_ABORTED(cur_trans))
2250 ret = cur_trans->aborted;
2251
2252 btrfs_put_transaction(cur_trans);
2253
2254 return ret;
2255 }
2256
2257 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2258 wake_up(&fs_info->transaction_blocked_wait);
2259 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2260
2261 if (cur_trans->list.prev != &fs_info->trans_list) {
2262 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2263
2264 if (trans->in_fsync)
2265 want_state = TRANS_STATE_SUPER_COMMITTED;
2266
2267 prev_trans = list_entry(cur_trans->list.prev,
2268 struct btrfs_transaction, list);
2269 if (prev_trans->state < want_state) {
2270 refcount_inc(&prev_trans->use_count);
2271 spin_unlock(&fs_info->trans_lock);
2272
2273 wait_for_commit(prev_trans, want_state);
2274
2275 ret = READ_ONCE(prev_trans->aborted);
2276
2277 btrfs_put_transaction(prev_trans);
2278 if (ret)
2279 goto lockdep_release;
2280 spin_lock(&fs_info->trans_lock);
2281 }
2282 } else {
2283 /*
2284 * The previous transaction was aborted and was already removed
2285 * from the list of transactions at fs_info->trans_list. So we
2286 * abort to prevent writing a new superblock that reflects a
2287 * corrupt state (pointing to trees with unwritten nodes/leafs).
2288 */
2289 if (BTRFS_FS_ERROR(fs_info)) {
2290 spin_unlock(&fs_info->trans_lock);
2291 ret = -EROFS;
2292 goto lockdep_release;
2293 }
2294 }
2295
2296 cur_trans->state = TRANS_STATE_COMMIT_START;
2297 wake_up(&fs_info->transaction_blocked_wait);
2298 spin_unlock(&fs_info->trans_lock);
2299
2300 /*
2301 * Get the time spent on the work done by the commit thread and not
2302 * the time spent waiting on a previous commit
2303 */
2304 start_time = ktime_get_ns();
2305
2306 extwriter_counter_dec(cur_trans, trans->type);
2307
2308 ret = btrfs_start_delalloc_flush(fs_info);
2309 if (ret)
2310 goto lockdep_release;
2311
2312 ret = btrfs_run_delayed_items(trans);
2313 if (ret)
2314 goto lockdep_release;
2315
2316 /*
2317 * The thread has started/joined the transaction thus it holds the
2318 * lockdep map as a reader. It has to release it before acquiring the
2319 * lockdep map as a writer.
2320 */
2321 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2322 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2323 wait_event(cur_trans->writer_wait,
2324 extwriter_counter_read(cur_trans) == 0);
2325
2326 /* some pending stuffs might be added after the previous flush. */
2327 ret = btrfs_run_delayed_items(trans);
2328 if (ret) {
2329 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2330 goto cleanup_transaction;
2331 }
2332
2333 btrfs_wait_delalloc_flush(fs_info);
2334
2335 /*
2336 * Wait for all ordered extents started by a fast fsync that joined this
2337 * transaction. Otherwise if this transaction commits before the ordered
2338 * extents complete we lose logged data after a power failure.
2339 */
2340 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2341 wait_event(cur_trans->pending_wait,
2342 atomic_read(&cur_trans->pending_ordered) == 0);
2343
2344 btrfs_scrub_pause(fs_info);
2345 /*
2346 * Ok now we need to make sure to block out any other joins while we
2347 * commit the transaction. We could have started a join before setting
2348 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2349 */
2350 spin_lock(&fs_info->trans_lock);
2351 add_pending_snapshot(trans);
2352 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2353 spin_unlock(&fs_info->trans_lock);
2354
2355 /*
2356 * The thread has started/joined the transaction thus it holds the
2357 * lockdep map as a reader. It has to release it before acquiring the
2358 * lockdep map as a writer.
2359 */
2360 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2361 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2362 wait_event(cur_trans->writer_wait,
2363 atomic_read(&cur_trans->num_writers) == 1);
2364
2365 /*
2366 * Make lockdep happy by acquiring the state locks after
2367 * btrfs_trans_num_writers is released. If we acquired the state locks
2368 * before releasing the btrfs_trans_num_writers lock then lockdep would
2369 * complain because we did not follow the reverse order unlocking rule.
2370 */
2371 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2372 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2373 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374
2375 /*
2376 * We've started the commit, clear the flag in case we were triggered to
2377 * do an async commit but somebody else started before the transaction
2378 * kthread could do the work.
2379 */
2380 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2381
2382 if (TRANS_ABORTED(cur_trans)) {
2383 ret = cur_trans->aborted;
2384 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2385 goto scrub_continue;
2386 }
2387 /*
2388 * the reloc mutex makes sure that we stop
2389 * the balancing code from coming in and moving
2390 * extents around in the middle of the commit
2391 */
2392 mutex_lock(&fs_info->reloc_mutex);
2393
2394 /*
2395 * We needn't worry about the delayed items because we will
2396 * deal with them in create_pending_snapshot(), which is the
2397 * core function of the snapshot creation.
2398 */
2399 ret = create_pending_snapshots(trans);
2400 if (ret)
2401 goto unlock_reloc;
2402
2403 /*
2404 * We insert the dir indexes of the snapshots and update the inode
2405 * of the snapshots' parents after the snapshot creation, so there
2406 * are some delayed items which are not dealt with. Now deal with
2407 * them.
2408 *
2409 * We needn't worry that this operation will corrupt the snapshots,
2410 * because all the tree which are snapshoted will be forced to COW
2411 * the nodes and leaves.
2412 */
2413 ret = btrfs_run_delayed_items(trans);
2414 if (ret)
2415 goto unlock_reloc;
2416
2417 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2418 if (ret)
2419 goto unlock_reloc;
2420
2421 /*
2422 * make sure none of the code above managed to slip in a
2423 * delayed item
2424 */
2425 btrfs_assert_delayed_root_empty(fs_info);
2426
2427 WARN_ON(cur_trans != trans->transaction);
2428
2429 ret = commit_fs_roots(trans);
2430 if (ret)
2431 goto unlock_reloc;
2432
2433 /* commit_fs_roots gets rid of all the tree log roots, it is now
2434 * safe to free the root of tree log roots
2435 */
2436 btrfs_free_log_root_tree(trans, fs_info);
2437
2438 /*
2439 * Since fs roots are all committed, we can get a quite accurate
2440 * new_roots. So let's do quota accounting.
2441 */
2442 ret = btrfs_qgroup_account_extents(trans);
2443 if (ret < 0)
2444 goto unlock_reloc;
2445
2446 ret = commit_cowonly_roots(trans);
2447 if (ret)
2448 goto unlock_reloc;
2449
2450 /*
2451 * The tasks which save the space cache and inode cache may also
2452 * update ->aborted, check it.
2453 */
2454 if (TRANS_ABORTED(cur_trans)) {
2455 ret = cur_trans->aborted;
2456 goto unlock_reloc;
2457 }
2458
2459 cur_trans = fs_info->running_transaction;
2460
2461 btrfs_set_root_node(&fs_info->tree_root->root_item,
2462 fs_info->tree_root->node);
2463 list_add_tail(&fs_info->tree_root->dirty_list,
2464 &cur_trans->switch_commits);
2465
2466 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2467 fs_info->chunk_root->node);
2468 list_add_tail(&fs_info->chunk_root->dirty_list,
2469 &cur_trans->switch_commits);
2470
2471 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2472 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2473 fs_info->block_group_root->node);
2474 list_add_tail(&fs_info->block_group_root->dirty_list,
2475 &cur_trans->switch_commits);
2476 }
2477
2478 switch_commit_roots(trans);
2479
2480 ASSERT(list_empty(&cur_trans->dirty_bgs));
2481 ASSERT(list_empty(&cur_trans->io_bgs));
2482 update_super_roots(fs_info);
2483
2484 btrfs_set_super_log_root(fs_info->super_copy, 0);
2485 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2486 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2487 sizeof(*fs_info->super_copy));
2488
2489 btrfs_commit_device_sizes(cur_trans);
2490
2491 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2492 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2493
2494 btrfs_trans_release_chunk_metadata(trans);
2495
2496 /*
2497 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2498 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2499 * make sure that before we commit our superblock, no other task can
2500 * start a new transaction and commit a log tree before we commit our
2501 * superblock. Anyone trying to commit a log tree locks this mutex before
2502 * writing its superblock.
2503 */
2504 mutex_lock(&fs_info->tree_log_mutex);
2505
2506 spin_lock(&fs_info->trans_lock);
2507 cur_trans->state = TRANS_STATE_UNBLOCKED;
2508 fs_info->running_transaction = NULL;
2509 spin_unlock(&fs_info->trans_lock);
2510 mutex_unlock(&fs_info->reloc_mutex);
2511
2512 wake_up(&fs_info->transaction_wait);
2513 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2514
2515 /* If we have features changed, wake up the cleaner to update sysfs. */
2516 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2517 fs_info->cleaner_kthread)
2518 wake_up_process(fs_info->cleaner_kthread);
2519
2520 ret = btrfs_write_and_wait_transaction(trans);
2521 if (ret) {
2522 btrfs_handle_fs_error(fs_info, ret,
2523 "Error while writing out transaction");
2524 mutex_unlock(&fs_info->tree_log_mutex);
2525 goto scrub_continue;
2526 }
2527
2528 ret = write_all_supers(fs_info, 0);
2529 /*
2530 * the super is written, we can safely allow the tree-loggers
2531 * to go about their business
2532 */
2533 mutex_unlock(&fs_info->tree_log_mutex);
2534 if (ret)
2535 goto scrub_continue;
2536
2537 /*
2538 * We needn't acquire the lock here because there is no other task
2539 * which can change it.
2540 */
2541 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2542 wake_up(&cur_trans->commit_wait);
2543 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2544
2545 btrfs_finish_extent_commit(trans);
2546
2547 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2548 btrfs_clear_space_info_full(fs_info);
2549
2550 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2551 /*
2552 * We needn't acquire the lock here because there is no other task
2553 * which can change it.
2554 */
2555 cur_trans->state = TRANS_STATE_COMPLETED;
2556 wake_up(&cur_trans->commit_wait);
2557 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2558
2559 spin_lock(&fs_info->trans_lock);
2560 list_del_init(&cur_trans->list);
2561 spin_unlock(&fs_info->trans_lock);
2562
2563 btrfs_put_transaction(cur_trans);
2564 btrfs_put_transaction(cur_trans);
2565
2566 if (trans->type & __TRANS_FREEZABLE)
2567 sb_end_intwrite(fs_info->sb);
2568
2569 trace_btrfs_transaction_commit(fs_info);
2570
2571 interval = ktime_get_ns() - start_time;
2572
2573 btrfs_scrub_continue(fs_info);
2574
2575 if (current->journal_info == trans)
2576 current->journal_info = NULL;
2577
2578 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2579
2580 update_commit_stats(fs_info, interval);
2581
2582 return ret;
2583
2584 unlock_reloc:
2585 mutex_unlock(&fs_info->reloc_mutex);
2586 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2587 scrub_continue:
2588 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2589 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2590 btrfs_scrub_continue(fs_info);
2591 cleanup_transaction:
2592 btrfs_trans_release_metadata(trans);
2593 btrfs_cleanup_pending_block_groups(trans);
2594 btrfs_trans_release_chunk_metadata(trans);
2595 trans->block_rsv = NULL;
2596 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2597 if (current->journal_info == trans)
2598 current->journal_info = NULL;
2599 cleanup_transaction(trans, ret);
2600
2601 return ret;
2602
2603 lockdep_release:
2604 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2605 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2606 goto cleanup_transaction;
2607
2608 lockdep_trans_commit_start_release:
2609 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2610 btrfs_end_transaction(trans);
2611 return ret;
2612 }
2613
2614 /*
2615 * return < 0 if error
2616 * 0 if there are no more dead_roots at the time of call
2617 * 1 there are more to be processed, call me again
2618 *
2619 * The return value indicates there are certainly more snapshots to delete, but
2620 * if there comes a new one during processing, it may return 0. We don't mind,
2621 * because btrfs_commit_super will poke cleaner thread and it will process it a
2622 * few seconds later.
2623 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2624 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2625 {
2626 struct btrfs_root *root;
2627 int ret;
2628
2629 spin_lock(&fs_info->trans_lock);
2630 if (list_empty(&fs_info->dead_roots)) {
2631 spin_unlock(&fs_info->trans_lock);
2632 return 0;
2633 }
2634 root = list_first_entry(&fs_info->dead_roots,
2635 struct btrfs_root, root_list);
2636 list_del_init(&root->root_list);
2637 spin_unlock(&fs_info->trans_lock);
2638
2639 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2640
2641 btrfs_kill_all_delayed_nodes(root);
2642
2643 if (btrfs_header_backref_rev(root->node) <
2644 BTRFS_MIXED_BACKREF_REV)
2645 ret = btrfs_drop_snapshot(root, 0, 0);
2646 else
2647 ret = btrfs_drop_snapshot(root, 1, 0);
2648
2649 btrfs_put_root(root);
2650 return (ret < 0) ? 0 : 1;
2651 }
2652
2653 /*
2654 * We only mark the transaction aborted and then set the file system read-only.
2655 * This will prevent new transactions from starting or trying to join this
2656 * one.
2657 *
2658 * This means that error recovery at the call site is limited to freeing
2659 * any local memory allocations and passing the error code up without
2660 * further cleanup. The transaction should complete as it normally would
2661 * in the call path but will return -EIO.
2662 *
2663 * We'll complete the cleanup in btrfs_end_transaction and
2664 * btrfs_commit_transaction.
2665 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2666 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2667 const char *function,
2668 unsigned int line, int error, bool first_hit)
2669 {
2670 struct btrfs_fs_info *fs_info = trans->fs_info;
2671
2672 WRITE_ONCE(trans->aborted, error);
2673 WRITE_ONCE(trans->transaction->aborted, error);
2674 if (first_hit && error == -ENOSPC)
2675 btrfs_dump_space_info_for_trans_abort(fs_info);
2676 /* Wake up anybody who may be waiting on this transaction */
2677 wake_up(&fs_info->transaction_wait);
2678 wake_up(&fs_info->transaction_blocked_wait);
2679 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2680 }
2681
btrfs_transaction_init(void)2682 int __init btrfs_transaction_init(void)
2683 {
2684 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2685 if (!btrfs_trans_handle_cachep)
2686 return -ENOMEM;
2687 return 0;
2688 }
2689
btrfs_transaction_exit(void)2690 void __cold btrfs_transaction_exit(void)
2691 {
2692 kmem_cache_destroy(btrfs_trans_handle_cachep);
2693 }
2694