1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 #include <net/tls_prot.h> 43 44 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 45 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 46 47 #define __TLS_INC_STATS(net, field) \ 48 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 49 #define TLS_INC_STATS(net, field) \ 50 SNMP_INC_STATS((net)->mib.tls_statistics, field) 51 #define TLS_DEC_STATS(net, field) \ 52 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 53 54 struct tls_cipher_desc { 55 unsigned int nonce; 56 unsigned int iv; 57 unsigned int key; 58 unsigned int salt; 59 unsigned int tag; 60 unsigned int rec_seq; 61 unsigned int iv_offset; 62 unsigned int key_offset; 63 unsigned int salt_offset; 64 unsigned int rec_seq_offset; 65 char *cipher_name; 66 bool offloadable; 67 size_t crypto_info; 68 }; 69 70 #define TLS_CIPHER_MIN TLS_CIPHER_AES_GCM_128 71 #define TLS_CIPHER_MAX TLS_CIPHER_ARIA_GCM_256 72 extern const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN]; 73 74 static inline const struct tls_cipher_desc *get_cipher_desc(u16 cipher_type) 75 { 76 if (cipher_type < TLS_CIPHER_MIN || cipher_type > TLS_CIPHER_MAX) 77 return NULL; 78 79 return &tls_cipher_desc[cipher_type - TLS_CIPHER_MIN]; 80 } 81 82 static inline char *crypto_info_iv(struct tls_crypto_info *crypto_info, 83 const struct tls_cipher_desc *cipher_desc) 84 { 85 return (char *)crypto_info + cipher_desc->iv_offset; 86 } 87 88 static inline char *crypto_info_key(struct tls_crypto_info *crypto_info, 89 const struct tls_cipher_desc *cipher_desc) 90 { 91 return (char *)crypto_info + cipher_desc->key_offset; 92 } 93 94 static inline char *crypto_info_salt(struct tls_crypto_info *crypto_info, 95 const struct tls_cipher_desc *cipher_desc) 96 { 97 return (char *)crypto_info + cipher_desc->salt_offset; 98 } 99 100 static inline char *crypto_info_rec_seq(struct tls_crypto_info *crypto_info, 101 const struct tls_cipher_desc *cipher_desc) 102 { 103 return (char *)crypto_info + cipher_desc->rec_seq_offset; 104 } 105 106 107 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 108 * allocated or mapped for each TLS record. After encryption, the records are 109 * stores in a linked list. 110 */ 111 struct tls_rec { 112 struct list_head list; 113 int tx_ready; 114 int tx_flags; 115 116 struct sk_msg msg_plaintext; 117 struct sk_msg msg_encrypted; 118 119 /* AAD | msg_plaintext.sg.data | sg_tag */ 120 struct scatterlist sg_aead_in[2]; 121 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 122 struct scatterlist sg_aead_out[2]; 123 124 char content_type; 125 struct scatterlist sg_content_type; 126 127 struct sock *sk; 128 129 char aad_space[TLS_AAD_SPACE_SIZE]; 130 u8 iv_data[TLS_MAX_IV_SIZE]; 131 132 /* Must be last --ends in a flexible-array member. */ 133 struct aead_request aead_req; 134 }; 135 136 int __net_init tls_proc_init(struct net *net); 137 void __net_exit tls_proc_fini(struct net *net); 138 139 struct tls_context *tls_ctx_create(struct sock *sk); 140 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 141 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 142 143 int wait_on_pending_writer(struct sock *sk, long *timeo); 144 void tls_err_abort(struct sock *sk, int err); 145 void tls_strp_abort_strp(struct tls_strparser *strp, int err); 146 147 int init_prot_info(struct tls_prot_info *prot, 148 const struct tls_crypto_info *crypto_info, 149 const struct tls_cipher_desc *cipher_desc); 150 int tls_set_sw_offload(struct sock *sk, int tx, 151 struct tls_crypto_info *new_crypto_info); 152 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 153 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 154 void tls_sw_strparser_done(struct tls_context *tls_ctx); 155 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 156 void tls_sw_splice_eof(struct socket *sock); 157 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 158 void tls_sw_release_resources_tx(struct sock *sk); 159 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 160 void tls_sw_free_resources_rx(struct sock *sk); 161 void tls_sw_release_resources_rx(struct sock *sk); 162 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 163 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 164 int flags, int *addr_len); 165 bool tls_sw_sock_is_readable(struct sock *sk); 166 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 167 struct pipe_inode_info *pipe, 168 size_t len, unsigned int flags); 169 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 170 sk_read_actor_t read_actor); 171 172 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 173 void tls_device_splice_eof(struct socket *sock); 174 int tls_tx_records(struct sock *sk, int flags); 175 176 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 177 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 178 179 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 180 unsigned char *record_type); 181 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 182 183 int tls_sw_fallback_init(struct sock *sk, 184 struct tls_offload_context_tx *offload_ctx, 185 struct tls_crypto_info *crypto_info); 186 187 int tls_strp_dev_init(void); 188 void tls_strp_dev_exit(void); 189 190 void tls_strp_done(struct tls_strparser *strp); 191 void tls_strp_stop(struct tls_strparser *strp); 192 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 193 void tls_strp_data_ready(struct tls_strparser *strp); 194 195 void tls_strp_check_rcv(struct tls_strparser *strp); 196 void tls_strp_msg_done(struct tls_strparser *strp); 197 198 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 199 void tls_rx_msg_ready(struct tls_strparser *strp); 200 201 bool tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 202 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 203 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 204 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 205 206 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 207 { 208 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 209 210 return &scb->tls; 211 } 212 213 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 214 { 215 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 216 return ctx->strp.anchor; 217 } 218 219 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 220 { 221 return READ_ONCE(ctx->strp.msg_ready); 222 } 223 224 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 225 { 226 return ctx->strp.mixed_decrypted; 227 } 228 229 #ifdef CONFIG_TLS_DEVICE 230 int tls_device_init(void); 231 void tls_device_cleanup(void); 232 int tls_set_device_offload(struct sock *sk); 233 void tls_device_free_resources_tx(struct sock *sk); 234 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 235 void tls_device_offload_cleanup_rx(struct sock *sk); 236 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 237 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 238 #else 239 static inline int tls_device_init(void) { return 0; } 240 static inline void tls_device_cleanup(void) {} 241 242 static inline int 243 tls_set_device_offload(struct sock *sk) 244 { 245 return -EOPNOTSUPP; 246 } 247 248 static inline void tls_device_free_resources_tx(struct sock *sk) {} 249 250 static inline int 251 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 252 { 253 return -EOPNOTSUPP; 254 } 255 256 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 257 static inline void 258 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 259 260 static inline int 261 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 262 { 263 return 0; 264 } 265 #endif 266 267 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 268 struct scatterlist *sg, u16 first_offset, 269 int flags); 270 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 271 int flags); 272 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 273 274 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 275 { 276 return !!ctx->partially_sent_record; 277 } 278 279 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 280 { 281 return tls_ctx->pending_open_record_frags; 282 } 283 284 static inline bool tls_bigint_increment(unsigned char *seq, int len) 285 { 286 int i; 287 288 for (i = len - 1; i >= 0; i--) { 289 ++seq[i]; 290 if (seq[i] != 0) 291 break; 292 } 293 294 return (i == -1); 295 } 296 297 static inline void tls_bigint_subtract(unsigned char *seq, int n) 298 { 299 u64 rcd_sn; 300 __be64 *p; 301 302 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 303 304 p = (__be64 *)seq; 305 rcd_sn = be64_to_cpu(*p); 306 *p = cpu_to_be64(rcd_sn - n); 307 } 308 309 static inline void 310 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 311 struct cipher_context *ctx) 312 { 313 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 314 tls_err_abort(sk, -EBADMSG); 315 316 if (prot->version != TLS_1_3_VERSION && 317 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 318 tls_bigint_increment(ctx->iv + prot->salt_size, 319 prot->iv_size); 320 } 321 322 static inline void 323 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 324 { 325 int i; 326 327 if (prot->version == TLS_1_3_VERSION || 328 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 329 for (i = 0; i < 8; i++) 330 iv[i + 4] ^= seq[i]; 331 } 332 } 333 334 static inline void 335 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 336 unsigned char record_type) 337 { 338 struct tls_prot_info *prot = &ctx->prot_info; 339 size_t pkt_len, iv_size = prot->iv_size; 340 341 pkt_len = plaintext_len + prot->tag_size; 342 if (prot->version != TLS_1_3_VERSION && 343 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 344 pkt_len += iv_size; 345 346 memcpy(buf + TLS_NONCE_OFFSET, 347 ctx->tx.iv + prot->salt_size, iv_size); 348 } 349 350 /* we cover nonce explicit here as well, so buf should be of 351 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 352 */ 353 buf[0] = prot->version == TLS_1_3_VERSION ? 354 TLS_RECORD_TYPE_DATA : record_type; 355 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 356 buf[1] = TLS_1_2_VERSION_MINOR; 357 buf[2] = TLS_1_2_VERSION_MAJOR; 358 /* we can use IV for nonce explicit according to spec */ 359 buf[3] = pkt_len >> 8; 360 buf[4] = pkt_len & 0xFF; 361 } 362 363 static inline 364 void tls_make_aad(char *buf, size_t size, char *record_sequence, 365 unsigned char record_type, struct tls_prot_info *prot) 366 { 367 if (prot->version != TLS_1_3_VERSION) { 368 memcpy(buf, record_sequence, prot->rec_seq_size); 369 buf += 8; 370 } else { 371 size += prot->tag_size; 372 } 373 374 buf[0] = prot->version == TLS_1_3_VERSION ? 375 TLS_RECORD_TYPE_DATA : record_type; 376 buf[1] = TLS_1_2_VERSION_MAJOR; 377 buf[2] = TLS_1_2_VERSION_MINOR; 378 buf[3] = size >> 8; 379 buf[4] = size & 0xFF; 380 } 381 382 #endif 383