xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_hfi.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/completion.h>
5 #include <linux/circ_buf.h>
6 #include <linux/list.h>
7 
8 #include <soc/qcom/cmd-db.h>
9 #include <soc/qcom/tcs.h>
10 
11 #include "a6xx_gmu.h"
12 #include "a6xx_gmu.xml.h"
13 #include "a6xx_gpu.h"
14 
15 #define HFI_MSG_ID(val) [val] = #val
16 
17 static const char * const a6xx_hfi_msg_id[] = {
18 	HFI_MSG_ID(HFI_H2F_MSG_INIT),
19 	HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
20 	HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
21 	HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
22 	HFI_MSG_ID(HFI_H2F_MSG_TEST),
23 	HFI_MSG_ID(HFI_H2F_MSG_START),
24 	HFI_MSG_ID(HFI_H2F_FEATURE_CTRL),
25 	HFI_MSG_ID(HFI_H2F_MSG_CORE_FW_START),
26 	HFI_MSG_ID(HFI_H2F_MSG_TABLE),
27 	HFI_MSG_ID(HFI_H2F_MSG_GX_BW_PERF_VOTE),
28 	HFI_MSG_ID(HFI_H2F_MSG_PREPARE_SLUMBER),
29 };
30 
a6xx_hfi_queue_read(struct a6xx_gmu * gmu,struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)31 static int a6xx_hfi_queue_read(struct a6xx_gmu *gmu,
32 	struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
33 {
34 	struct a6xx_hfi_queue_header *header = queue->header;
35 	u32 i, hdr, index = header->read_index;
36 
37 	if (header->read_index == header->write_index) {
38 		header->rx_request = 1;
39 		return 0;
40 	}
41 
42 	hdr = queue->data[index];
43 
44 	queue->history[(queue->history_idx++) % HFI_HISTORY_SZ] = index;
45 
46 	/*
47 	 * If we are to assume that the GMU firmware is in fact a rational actor
48 	 * and is programmed to not send us a larger response than we expect
49 	 * then we can also assume that if the header size is unexpectedly large
50 	 * that it is due to memory corruption and/or hardware failure. In this
51 	 * case the only reasonable course of action is to BUG() to help harden
52 	 * the failure.
53 	 */
54 
55 	BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
56 
57 	for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
58 		data[i] = queue->data[index];
59 		index = (index + 1) % header->size;
60 	}
61 
62 	if (!gmu->legacy)
63 		index = ALIGN(index, 4) % header->size;
64 
65 	header->read_index = index;
66 	return HFI_HEADER_SIZE(hdr);
67 }
68 
a6xx_hfi_queue_write(struct a6xx_gmu * gmu,struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)69 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
70 	struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
71 {
72 	struct a6xx_hfi_queue_header *header = queue->header;
73 	u32 i, space, index = header->write_index;
74 
75 	spin_lock(&queue->lock);
76 
77 	space = CIRC_SPACE(header->write_index, header->read_index,
78 		header->size);
79 	if (space < dwords) {
80 		header->dropped++;
81 		spin_unlock(&queue->lock);
82 		return -ENOSPC;
83 	}
84 
85 	queue->history[(queue->history_idx++) % HFI_HISTORY_SZ] = index;
86 
87 	for (i = 0; i < dwords; i++) {
88 		queue->data[index] = data[i];
89 		index = (index + 1) % header->size;
90 	}
91 
92 	/* Cookify any non used data at the end of the write buffer */
93 	if (!gmu->legacy) {
94 		for (; index % 4; index = (index + 1) % header->size)
95 			queue->data[index] = 0xfafafafa;
96 	}
97 
98 	header->write_index = index;
99 	spin_unlock(&queue->lock);
100 
101 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
102 	return 0;
103 }
104 
a6xx_hfi_wait_for_msg_interrupt(struct a6xx_gmu * gmu,u32 id,u32 seqnum)105 static int a6xx_hfi_wait_for_msg_interrupt(struct a6xx_gmu *gmu, u32 id, u32 seqnum)
106 {
107 	int ret;
108 	u32 val;
109 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
110 
111 	do {
112 		/* Wait for a response */
113 		ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
114 			val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 1000000);
115 
116 		if (!ret)
117 			break;
118 
119 		if (completion_done(&a6xx_gpu->base.fault_coredump_done))
120 			break;
121 
122 		/* We may timeout because the GMU is temporarily wedged from
123 		 * pending faults from the GPU and we are taking a devcoredump.
124 		 * Wait until the MMU is resumed and try again.
125 		 */
126 		wait_for_completion(&a6xx_gpu->base.fault_coredump_done);
127 	} while (true);
128 
129 	if (ret) {
130 		DRM_DEV_ERROR(gmu->dev,
131 			"Message %s id %d timed out waiting for response\n",
132 			a6xx_hfi_msg_id[id], seqnum);
133 		return -ETIMEDOUT;
134 	}
135 
136 	/* Clear the interrupt */
137 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR,
138 		A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ);
139 
140 	return 0;
141 }
142 
a6xx_hfi_wait_for_ack(struct a6xx_gmu * gmu,u32 id,u32 seqnum,u32 * payload,u32 payload_size)143 static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum,
144 		u32 *payload, u32 payload_size)
145 {
146 	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
147 	int ret;
148 
149 	ret = a6xx_hfi_wait_for_msg_interrupt(gmu, id, seqnum);
150 	if (ret)
151 		return ret;
152 
153 	for (;;) {
154 		struct a6xx_hfi_msg_response resp;
155 
156 		/* Get the next packet */
157 		ret = a6xx_hfi_queue_read(gmu, queue, (u32 *) &resp,
158 			sizeof(resp) >> 2);
159 
160 		/* If the queue is empty, there may have been previous missed
161 		 * responses that preceded the response to our packet. Wait
162 		 * further before we give up.
163 		 */
164 		if (!ret) {
165 			ret = a6xx_hfi_wait_for_msg_interrupt(gmu, id, seqnum);
166 			if (ret) {
167 				DRM_DEV_ERROR(gmu->dev,
168 					"The HFI response queue is unexpectedly empty\n");
169 				return ret;
170 			}
171 			continue;
172 		}
173 
174 		if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) {
175 			struct a6xx_hfi_msg_error *error =
176 				(struct a6xx_hfi_msg_error *) &resp;
177 
178 			DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n",
179 				error->code);
180 			continue;
181 		}
182 
183 		if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) {
184 			DRM_DEV_ERROR(gmu->dev,
185 				"Unexpected message id %d on the response queue\n",
186 				HFI_HEADER_SEQNUM(resp.ret_header));
187 			continue;
188 		}
189 
190 		if (resp.error) {
191 			DRM_DEV_ERROR(gmu->dev,
192 				"Message %s id %d returned error %d\n",
193 				a6xx_hfi_msg_id[id], seqnum, resp.error);
194 			return -EINVAL;
195 		}
196 
197 		/* All is well, copy over the buffer */
198 		if (payload && payload_size)
199 			memcpy(payload, resp.payload,
200 				min_t(u32, payload_size, sizeof(resp.payload)));
201 
202 		return 0;
203 	}
204 }
205 
a6xx_hfi_send_msg(struct a6xx_gmu * gmu,int id,void * data,u32 size,u32 * payload,u32 payload_size)206 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
207 		void *data, u32 size, u32 *payload, u32 payload_size)
208 {
209 	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
210 	int ret, dwords = size >> 2;
211 	u32 seqnum;
212 
213 	seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
214 
215 	/* First dword of the message is the message header - fill it in */
216 	*((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
217 		(dwords << 8) | id;
218 
219 	ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
220 	if (ret) {
221 		DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n",
222 			a6xx_hfi_msg_id[id], seqnum);
223 		return ret;
224 	}
225 
226 	return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size);
227 }
228 
a6xx_hfi_send_gmu_init(struct a6xx_gmu * gmu,int boot_state)229 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
230 {
231 	struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
232 
233 	msg.dbg_buffer_addr = (u32) gmu->debug.iova;
234 	msg.dbg_buffer_size = (u32) gmu->debug.size;
235 	msg.boot_state = boot_state;
236 
237 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
238 		NULL, 0);
239 }
240 
a6xx_hfi_get_fw_version(struct a6xx_gmu * gmu,u32 * version)241 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
242 {
243 	struct a6xx_hfi_msg_fw_version msg = { 0 };
244 
245 	/* Currently supporting version 1.10 */
246 	msg.supported_version = (1 << 28) | (1 << 19) | (1 << 17);
247 
248 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
249 		version, sizeof(*version));
250 }
251 
a6xx_hfi_send_perf_table_v1(struct a6xx_gmu * gmu)252 static int a6xx_hfi_send_perf_table_v1(struct a6xx_gmu *gmu)
253 {
254 	struct a6xx_hfi_msg_perf_table_v1 msg = { 0 };
255 	int i;
256 
257 	msg.num_gpu_levels = gmu->nr_gpu_freqs;
258 	msg.num_gmu_levels = gmu->nr_gmu_freqs;
259 
260 	for (i = 0; i < gmu->nr_gpu_freqs; i++) {
261 		msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
262 		msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
263 	}
264 
265 	for (i = 0; i < gmu->nr_gmu_freqs; i++) {
266 		msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
267 		msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
268 	}
269 
270 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
271 		NULL, 0);
272 }
273 
a8xx_hfi_send_perf_table(struct a6xx_gmu * gmu)274 static int a8xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
275 {
276 	unsigned int num_gx_votes = 3, num_cx_votes = 2;
277 	struct a6xx_hfi_table_entry *entry;
278 	struct a6xx_hfi_table *tbl;
279 	int ret, i;
280 	u32 size;
281 
282 	size = sizeof(*tbl) +  (2 * sizeof(tbl->entry[0])) +
283 		(gmu->nr_gpu_freqs * num_gx_votes * sizeof(gmu->gx_arc_votes[0])) +
284 		(gmu->nr_gmu_freqs * num_cx_votes * sizeof(gmu->cx_arc_votes[0]));
285 	tbl = kzalloc(size, GFP_KERNEL);
286 	tbl->type = HFI_TABLE_GPU_PERF;
287 
288 	/* First fill GX votes */
289 	entry = &tbl->entry[0];
290 	entry->count = gmu->nr_gpu_freqs;
291 	entry->stride = num_gx_votes;
292 
293 	for (i = 0; i < gmu->nr_gpu_freqs; i++) {
294 		unsigned int base = i * entry->stride;
295 
296 		entry->data[base+0] = gmu->gx_arc_votes[i];
297 		entry->data[base+1] = gmu->dep_arc_votes[i];
298 		entry->data[base+2] = gmu->gpu_freqs[i] / 1000;
299 	}
300 
301 	/* Then fill CX votes */
302 	entry = (struct a6xx_hfi_table_entry *)
303 		&tbl->entry[0].data[gmu->nr_gpu_freqs * num_gx_votes];
304 
305 	entry->count = gmu->nr_gmu_freqs;
306 	entry->stride = num_cx_votes;
307 
308 	for (i = 0; i < gmu->nr_gmu_freqs; i++) {
309 		unsigned int base = i * entry->stride;
310 
311 		entry->data[base] = gmu->cx_arc_votes[i];
312 		entry->data[base+1] = gmu->gmu_freqs[i] / 1000;
313 	}
314 
315 	ret = a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TABLE, tbl, size, NULL, 0);
316 
317 	kfree(tbl);
318 	return ret;
319 }
320 
a6xx_hfi_send_perf_table(struct a6xx_gmu * gmu)321 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
322 {
323 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
324 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
325 	struct a6xx_hfi_msg_perf_table msg = { 0 };
326 	int i;
327 
328 	if (adreno_is_a8xx(adreno_gpu))
329 		return a8xx_hfi_send_perf_table(gmu);
330 
331 	msg.num_gpu_levels = gmu->nr_gpu_freqs;
332 	msg.num_gmu_levels = gmu->nr_gmu_freqs;
333 
334 	for (i = 0; i < gmu->nr_gpu_freqs; i++) {
335 		msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
336 		msg.gx_votes[i].acd = 0xffffffff;
337 		msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
338 	}
339 
340 	for (i = 0; i < gmu->nr_gmu_freqs; i++) {
341 		msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
342 		msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
343 	}
344 
345 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
346 		NULL, 0);
347 }
348 
a6xx_generate_bw_table(const struct a6xx_info * info,struct a6xx_gmu * gmu,struct a6xx_hfi_msg_bw_table * msg)349 static void a6xx_generate_bw_table(const struct a6xx_info *info, struct a6xx_gmu *gmu,
350 				   struct a6xx_hfi_msg_bw_table *msg)
351 {
352 	unsigned int i, j;
353 
354 	for (i = 0; i < GMU_MAX_BCMS; i++) {
355 		if (!info->bcms[i].name)
356 			break;
357 		msg->ddr_cmds_addrs[i] = cmd_db_read_addr(info->bcms[i].name);
358 	}
359 	msg->ddr_cmds_num = i;
360 
361 	for (i = 0; i < gmu->nr_gpu_bws; ++i)
362 		for (j = 0; j < msg->ddr_cmds_num; j++)
363 			msg->ddr_cmds_data[i][j] = gmu->gpu_ib_votes[i][j];
364 	msg->bw_level_num = gmu->nr_gpu_bws;
365 
366 	/* Compute the wait bitmask with each BCM having the commit bit */
367 	msg->ddr_wait_bitmask = 0;
368 	for (j = 0; j < msg->ddr_cmds_num; j++)
369 		if (msg->ddr_cmds_data[0][j] & BCM_TCS_CMD_COMMIT_MASK)
370 			msg->ddr_wait_bitmask |= BIT(j);
371 
372 	/*
373 	 * These are the CX (CNOC) votes - these are used by the GMU
374 	 * The 'CN0' BCM is used on all targets, and votes are basically
375 	 * 'off' and 'on' states with first bit to enable the path.
376 	 */
377 
378 	msg->cnoc_cmds_addrs[0] = cmd_db_read_addr("CN0");
379 	msg->cnoc_cmds_num = 1;
380 
381 	msg->cnoc_cmds_data[0][0] = BCM_TCS_CMD(true, false, 0, 0);
382 	msg->cnoc_cmds_data[1][0] = BCM_TCS_CMD(true, true, 0, BIT(0));
383 
384 	/* Compute the wait bitmask with each BCM having the commit bit */
385 	msg->cnoc_wait_bitmask = 0;
386 	for (j = 0; j < msg->cnoc_cmds_num; j++)
387 		if (msg->cnoc_cmds_data[0][j] & BCM_TCS_CMD_COMMIT_MASK)
388 			msg->cnoc_wait_bitmask |= BIT(j);
389 }
390 
a618_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)391 static void a618_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
392 {
393 	/* Send a single "off" entry since the 618 GMU doesn't do bus scaling */
394 	msg->bw_level_num = 1;
395 
396 	msg->ddr_cmds_num = 3;
397 	msg->ddr_wait_bitmask = 0x01;
398 
399 	msg->ddr_cmds_addrs[0] = 0x50000;
400 	msg->ddr_cmds_addrs[1] = 0x5003c;
401 	msg->ddr_cmds_addrs[2] = 0x5000c;
402 
403 	msg->ddr_cmds_data[0][0] =  0x40000000;
404 	msg->ddr_cmds_data[0][1] =  0x40000000;
405 	msg->ddr_cmds_data[0][2] =  0x40000000;
406 
407 	/*
408 	 * These are the CX (CNOC) votes - these are used by the GMU but the
409 	 * votes are known and fixed for the target
410 	 */
411 	msg->cnoc_cmds_num = 1;
412 	msg->cnoc_wait_bitmask = 0x01;
413 
414 	msg->cnoc_cmds_addrs[0] = 0x5007c;
415 	msg->cnoc_cmds_data[0][0] =  0x40000000;
416 	msg->cnoc_cmds_data[1][0] =  0x60000001;
417 }
418 
a619_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)419 static void a619_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
420 {
421 	msg->bw_level_num = 13;
422 
423 	msg->ddr_cmds_num = 3;
424 	msg->ddr_wait_bitmask = 0x0;
425 
426 	msg->ddr_cmds_addrs[0] = 0x50000;
427 	msg->ddr_cmds_addrs[1] = 0x50004;
428 	msg->ddr_cmds_addrs[2] = 0x50080;
429 
430 	msg->ddr_cmds_data[0][0]  = 0x40000000;
431 	msg->ddr_cmds_data[0][1]  = 0x40000000;
432 	msg->ddr_cmds_data[0][2]  = 0x40000000;
433 	msg->ddr_cmds_data[1][0]  = 0x6000030c;
434 	msg->ddr_cmds_data[1][1]  = 0x600000db;
435 	msg->ddr_cmds_data[1][2]  = 0x60000008;
436 	msg->ddr_cmds_data[2][0]  = 0x60000618;
437 	msg->ddr_cmds_data[2][1]  = 0x600001b6;
438 	msg->ddr_cmds_data[2][2]  = 0x60000008;
439 	msg->ddr_cmds_data[3][0]  = 0x60000925;
440 	msg->ddr_cmds_data[3][1]  = 0x60000291;
441 	msg->ddr_cmds_data[3][2]  = 0x60000008;
442 	msg->ddr_cmds_data[4][0]  = 0x60000dc1;
443 	msg->ddr_cmds_data[4][1]  = 0x600003dc;
444 	msg->ddr_cmds_data[4][2]  = 0x60000008;
445 	msg->ddr_cmds_data[5][0]  = 0x600010ad;
446 	msg->ddr_cmds_data[5][1]  = 0x600004ae;
447 	msg->ddr_cmds_data[5][2]  = 0x60000008;
448 	msg->ddr_cmds_data[6][0]  = 0x600014c3;
449 	msg->ddr_cmds_data[6][1]  = 0x600005d4;
450 	msg->ddr_cmds_data[6][2]  = 0x60000008;
451 	msg->ddr_cmds_data[7][0]  = 0x6000176a;
452 	msg->ddr_cmds_data[7][1]  = 0x60000693;
453 	msg->ddr_cmds_data[7][2]  = 0x60000008;
454 	msg->ddr_cmds_data[8][0]  = 0x60001f01;
455 	msg->ddr_cmds_data[8][1]  = 0x600008b5;
456 	msg->ddr_cmds_data[8][2]  = 0x60000008;
457 	msg->ddr_cmds_data[9][0]  = 0x60002940;
458 	msg->ddr_cmds_data[9][1]  = 0x60000b95;
459 	msg->ddr_cmds_data[9][2]  = 0x60000008;
460 	msg->ddr_cmds_data[10][0] = 0x60002f68;
461 	msg->ddr_cmds_data[10][1] = 0x60000d50;
462 	msg->ddr_cmds_data[10][2] = 0x60000008;
463 	msg->ddr_cmds_data[11][0] = 0x60003700;
464 	msg->ddr_cmds_data[11][1] = 0x60000f71;
465 	msg->ddr_cmds_data[11][2] = 0x60000008;
466 	msg->ddr_cmds_data[12][0] = 0x60003fce;
467 	msg->ddr_cmds_data[12][1] = 0x600011ea;
468 	msg->ddr_cmds_data[12][2] = 0x60000008;
469 
470 	msg->cnoc_cmds_num = 1;
471 	msg->cnoc_wait_bitmask = 0x0;
472 
473 	msg->cnoc_cmds_addrs[0] = 0x50054;
474 
475 	msg->cnoc_cmds_data[0][0] = 0x40000000;
476 }
477 
a640_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)478 static void a640_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
479 {
480 	/*
481 	 * Send a single "off" entry just to get things running
482 	 * TODO: bus scaling
483 	 */
484 	msg->bw_level_num = 1;
485 
486 	msg->ddr_cmds_num = 3;
487 	msg->ddr_wait_bitmask = 0x01;
488 
489 	msg->ddr_cmds_addrs[0] = 0x50000;
490 	msg->ddr_cmds_addrs[1] = 0x5003c;
491 	msg->ddr_cmds_addrs[2] = 0x5000c;
492 
493 	msg->ddr_cmds_data[0][0] =  0x40000000;
494 	msg->ddr_cmds_data[0][1] =  0x40000000;
495 	msg->ddr_cmds_data[0][2] =  0x40000000;
496 
497 	/*
498 	 * These are the CX (CNOC) votes - these are used by the GMU but the
499 	 * votes are known and fixed for the target
500 	 */
501 	msg->cnoc_cmds_num = 3;
502 	msg->cnoc_wait_bitmask = 0x01;
503 
504 	msg->cnoc_cmds_addrs[0] = 0x50034;
505 	msg->cnoc_cmds_addrs[1] = 0x5007c;
506 	msg->cnoc_cmds_addrs[2] = 0x5004c;
507 
508 	msg->cnoc_cmds_data[0][0] =  0x40000000;
509 	msg->cnoc_cmds_data[0][1] =  0x00000000;
510 	msg->cnoc_cmds_data[0][2] =  0x40000000;
511 
512 	msg->cnoc_cmds_data[1][0] =  0x60000001;
513 	msg->cnoc_cmds_data[1][1] =  0x20000001;
514 	msg->cnoc_cmds_data[1][2] =  0x60000001;
515 }
516 
a650_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)517 static void a650_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
518 {
519 	/*
520 	 * Send a single "off" entry just to get things running
521 	 * TODO: bus scaling
522 	 */
523 	msg->bw_level_num = 1;
524 
525 	msg->ddr_cmds_num = 3;
526 	msg->ddr_wait_bitmask = 0x01;
527 
528 	msg->ddr_cmds_addrs[0] = 0x50000;
529 	msg->ddr_cmds_addrs[1] = 0x50004;
530 	msg->ddr_cmds_addrs[2] = 0x5007c;
531 
532 	msg->ddr_cmds_data[0][0] =  0x40000000;
533 	msg->ddr_cmds_data[0][1] =  0x40000000;
534 	msg->ddr_cmds_data[0][2] =  0x40000000;
535 
536 	/*
537 	 * These are the CX (CNOC) votes - these are used by the GMU but the
538 	 * votes are known and fixed for the target
539 	 */
540 	msg->cnoc_cmds_num = 1;
541 	msg->cnoc_wait_bitmask = 0x01;
542 
543 	msg->cnoc_cmds_addrs[0] = 0x500a4;
544 	msg->cnoc_cmds_data[0][0] =  0x40000000;
545 	msg->cnoc_cmds_data[1][0] =  0x60000001;
546 }
547 
a690_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)548 static void a690_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
549 {
550 	/*
551 	 * Send a single "off" entry just to get things running
552 	 * TODO: bus scaling
553 	 */
554 	msg->bw_level_num = 1;
555 
556 	msg->ddr_cmds_num = 3;
557 	msg->ddr_wait_bitmask = 0x01;
558 
559 	msg->ddr_cmds_addrs[0] = 0x50004;
560 	msg->ddr_cmds_addrs[1] = 0x50000;
561 	msg->ddr_cmds_addrs[2] = 0x500ac;
562 
563 	msg->ddr_cmds_data[0][0] =  0x40000000;
564 	msg->ddr_cmds_data[0][1] =  0x40000000;
565 	msg->ddr_cmds_data[0][2] =  0x40000000;
566 
567 	/*
568 	 * These are the CX (CNOC) votes - these are used by the GMU but the
569 	 * votes are known and fixed for the target
570 	 */
571 	msg->cnoc_cmds_num = 1;
572 	msg->cnoc_wait_bitmask = 0x01;
573 
574 	msg->cnoc_cmds_addrs[0] = 0x5003c;
575 	msg->cnoc_cmds_data[0][0] =  0x40000000;
576 	msg->cnoc_cmds_data[1][0] =  0x60000001;
577 }
578 
a660_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)579 static void a660_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
580 {
581 	/*
582 	 * Send a single "off" entry just to get things running
583 	 * TODO: bus scaling
584 	 */
585 	msg->bw_level_num = 1;
586 
587 	msg->ddr_cmds_num = 3;
588 	msg->ddr_wait_bitmask = 0x01;
589 
590 	msg->ddr_cmds_addrs[0] = 0x50004;
591 	msg->ddr_cmds_addrs[1] = 0x500a0;
592 	msg->ddr_cmds_addrs[2] = 0x50000;
593 
594 	msg->ddr_cmds_data[0][0] =  0x40000000;
595 	msg->ddr_cmds_data[0][1] =  0x40000000;
596 	msg->ddr_cmds_data[0][2] =  0x40000000;
597 
598 	/*
599 	 * These are the CX (CNOC) votes - these are used by the GMU but the
600 	 * votes are known and fixed for the target
601 	 */
602 	msg->cnoc_cmds_num = 1;
603 	msg->cnoc_wait_bitmask = 0x01;
604 
605 	msg->cnoc_cmds_addrs[0] = 0x50070;
606 	msg->cnoc_cmds_data[0][0] =  0x40000000;
607 	msg->cnoc_cmds_data[1][0] =  0x60000001;
608 }
609 
a663_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)610 static void a663_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
611 {
612 	/*
613 	 * Send a single "off" entry just to get things running
614 	 * TODO: bus scaling
615 	 */
616 	msg->bw_level_num = 1;
617 
618 	msg->ddr_cmds_num = 3;
619 	msg->ddr_wait_bitmask = 0x07;
620 
621 	msg->ddr_cmds_addrs[0] = 0x50004;
622 	msg->ddr_cmds_addrs[1] = 0x50000;
623 	msg->ddr_cmds_addrs[2] = 0x500b4;
624 
625 	msg->ddr_cmds_data[0][0] =  0x40000000;
626 	msg->ddr_cmds_data[0][1] =  0x40000000;
627 	msg->ddr_cmds_data[0][2] =  0x40000000;
628 
629 	/*
630 	 * These are the CX (CNOC) votes - these are used by the GMU but the
631 	 * votes are known and fixed for the target
632 	 */
633 	msg->cnoc_cmds_num = 1;
634 	msg->cnoc_wait_bitmask = 0x01;
635 
636 	msg->cnoc_cmds_addrs[0] = 0x50058;
637 	msg->cnoc_cmds_data[0][0] =  0x40000000;
638 	msg->cnoc_cmds_data[1][0] =  0x60000001;
639 }
640 
adreno_7c3_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)641 static void adreno_7c3_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
642 {
643 	/*
644 	 * Send a single "off" entry just to get things running
645 	 * TODO: bus scaling
646 	 */
647 	msg->bw_level_num = 1;
648 
649 	msg->ddr_cmds_num = 3;
650 	msg->ddr_wait_bitmask = 0x07;
651 
652 	msg->ddr_cmds_addrs[0] = 0x50004;
653 	msg->ddr_cmds_addrs[1] = 0x50000;
654 	msg->ddr_cmds_addrs[2] = 0x50088;
655 
656 	msg->ddr_cmds_data[0][0] =  0x40000000;
657 	msg->ddr_cmds_data[0][1] =  0x40000000;
658 	msg->ddr_cmds_data[0][2] =  0x40000000;
659 
660 	/*
661 	 * These are the CX (CNOC) votes - these are used by the GMU but the
662 	 * votes are known and fixed for the target
663 	 */
664 	msg->cnoc_cmds_num = 1;
665 	msg->cnoc_wait_bitmask = 0x01;
666 
667 	msg->cnoc_cmds_addrs[0] = 0x5006c;
668 	msg->cnoc_cmds_data[0][0] =  0x40000000;
669 	msg->cnoc_cmds_data[1][0] =  0x60000001;
670 }
671 
a730_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)672 static void a730_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
673 {
674 	msg->bw_level_num = 12;
675 
676 	msg->ddr_cmds_num = 3;
677 	msg->ddr_wait_bitmask = 0x7;
678 
679 	msg->ddr_cmds_addrs[0] = cmd_db_read_addr("SH0");
680 	msg->ddr_cmds_addrs[1] = cmd_db_read_addr("MC0");
681 	msg->ddr_cmds_addrs[2] = cmd_db_read_addr("ACV");
682 
683 	msg->ddr_cmds_data[0][0] = 0x40000000;
684 	msg->ddr_cmds_data[0][1] = 0x40000000;
685 	msg->ddr_cmds_data[0][2] = 0x40000000;
686 	msg->ddr_cmds_data[1][0] = 0x600002e8;
687 	msg->ddr_cmds_data[1][1] = 0x600003d0;
688 	msg->ddr_cmds_data[1][2] = 0x60000008;
689 	msg->ddr_cmds_data[2][0] = 0x6000068d;
690 	msg->ddr_cmds_data[2][1] = 0x6000089a;
691 	msg->ddr_cmds_data[2][2] = 0x60000008;
692 	msg->ddr_cmds_data[3][0] = 0x600007f2;
693 	msg->ddr_cmds_data[3][1] = 0x60000a6e;
694 	msg->ddr_cmds_data[3][2] = 0x60000008;
695 	msg->ddr_cmds_data[4][0] = 0x600009e5;
696 	msg->ddr_cmds_data[4][1] = 0x60000cfd;
697 	msg->ddr_cmds_data[4][2] = 0x60000008;
698 	msg->ddr_cmds_data[5][0] = 0x60000b29;
699 	msg->ddr_cmds_data[5][1] = 0x60000ea6;
700 	msg->ddr_cmds_data[5][2] = 0x60000008;
701 	msg->ddr_cmds_data[6][0] = 0x60001698;
702 	msg->ddr_cmds_data[6][1] = 0x60001da8;
703 	msg->ddr_cmds_data[6][2] = 0x60000008;
704 	msg->ddr_cmds_data[7][0] = 0x600018d2;
705 	msg->ddr_cmds_data[7][1] = 0x60002093;
706 	msg->ddr_cmds_data[7][2] = 0x60000008;
707 	msg->ddr_cmds_data[8][0] = 0x60001e66;
708 	msg->ddr_cmds_data[8][1] = 0x600027e6;
709 	msg->ddr_cmds_data[8][2] = 0x60000008;
710 	msg->ddr_cmds_data[9][0] = 0x600027c2;
711 	msg->ddr_cmds_data[9][1] = 0x6000342f;
712 	msg->ddr_cmds_data[9][2] = 0x60000008;
713 	msg->ddr_cmds_data[10][0] = 0x60002e71;
714 	msg->ddr_cmds_data[10][1] = 0x60003cf5;
715 	msg->ddr_cmds_data[10][2] = 0x60000008;
716 	msg->ddr_cmds_data[11][0] = 0x600030ae;
717 	msg->ddr_cmds_data[11][1] = 0x60003fe5;
718 	msg->ddr_cmds_data[11][2] = 0x60000008;
719 
720 	msg->cnoc_cmds_num = 1;
721 	msg->cnoc_wait_bitmask = 0x1;
722 
723 	msg->cnoc_cmds_addrs[0] = cmd_db_read_addr("CN0");
724 	msg->cnoc_cmds_data[0][0] = 0x40000000;
725 	msg->cnoc_cmds_data[1][0] = 0x60000001;
726 }
727 
a740_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)728 static void a740_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
729 {
730 	msg->bw_level_num = 1;
731 
732 	msg->ddr_cmds_num = 3;
733 	msg->ddr_wait_bitmask = 0x7;
734 
735 	msg->ddr_cmds_addrs[0] = cmd_db_read_addr("SH0");
736 	msg->ddr_cmds_addrs[1] = cmd_db_read_addr("MC0");
737 	msg->ddr_cmds_addrs[2] = cmd_db_read_addr("ACV");
738 
739 	msg->ddr_cmds_data[0][0] = 0x40000000;
740 	msg->ddr_cmds_data[0][1] = 0x40000000;
741 	msg->ddr_cmds_data[0][2] = 0x40000000;
742 
743 	/* TODO: add a proper dvfs table */
744 
745 	msg->cnoc_cmds_num = 1;
746 	msg->cnoc_wait_bitmask = 0x1;
747 
748 	msg->cnoc_cmds_addrs[0] = cmd_db_read_addr("CN0");
749 	msg->cnoc_cmds_data[0][0] = 0x40000000;
750 	msg->cnoc_cmds_data[1][0] = 0x60000001;
751 }
752 
a6xx_build_bw_table(struct a6xx_hfi_msg_bw_table * msg)753 static void a6xx_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
754 {
755 	/* Send a single "off" entry since the 630 GMU doesn't do bus scaling */
756 	msg->bw_level_num = 1;
757 
758 	msg->ddr_cmds_num = 3;
759 	msg->ddr_wait_bitmask = 0x07;
760 
761 	msg->ddr_cmds_addrs[0] = 0x50000;
762 	msg->ddr_cmds_addrs[1] = 0x5005c;
763 	msg->ddr_cmds_addrs[2] = 0x5000c;
764 
765 	msg->ddr_cmds_data[0][0] =  0x40000000;
766 	msg->ddr_cmds_data[0][1] =  0x40000000;
767 	msg->ddr_cmds_data[0][2] =  0x40000000;
768 
769 	/*
770 	 * These are the CX (CNOC) votes.  This is used but the values for the
771 	 * sdm845 GMU are known and fixed so we can hard code them.
772 	 */
773 
774 	msg->cnoc_cmds_num = 3;
775 	msg->cnoc_wait_bitmask = 0x05;
776 
777 	msg->cnoc_cmds_addrs[0] = 0x50034;
778 	msg->cnoc_cmds_addrs[1] = 0x5007c;
779 	msg->cnoc_cmds_addrs[2] = 0x5004c;
780 
781 	msg->cnoc_cmds_data[0][0] =  0x40000000;
782 	msg->cnoc_cmds_data[0][1] =  0x00000000;
783 	msg->cnoc_cmds_data[0][2] =  0x40000000;
784 
785 	msg->cnoc_cmds_data[1][0] =  0x60000001;
786 	msg->cnoc_cmds_data[1][1] =  0x20000001;
787 	msg->cnoc_cmds_data[1][2] =  0x60000001;
788 }
789 
790 
a6xx_hfi_send_bw_table(struct a6xx_gmu * gmu)791 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
792 {
793 	struct a6xx_hfi_msg_bw_table *msg;
794 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
795 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
796 	const struct a6xx_info *info = adreno_gpu->info->a6xx;
797 
798 	if (gmu->bw_table)
799 		goto send;
800 
801 	msg = devm_kzalloc(gmu->dev, sizeof(*msg), GFP_KERNEL);
802 	if (!msg)
803 		return -ENOMEM;
804 
805 	if (info->bcms && gmu->nr_gpu_bws > 1)
806 		a6xx_generate_bw_table(info, gmu, msg);
807 	else if (adreno_is_a618(adreno_gpu))
808 		a618_build_bw_table(msg);
809 	else if (adreno_is_a619(adreno_gpu))
810 		a619_build_bw_table(msg);
811 	else if (adreno_is_a640_family(adreno_gpu))
812 		a640_build_bw_table(msg);
813 	else if (adreno_is_a650(adreno_gpu))
814 		a650_build_bw_table(msg);
815 	else if (adreno_is_7c3(adreno_gpu))
816 		adreno_7c3_build_bw_table(msg);
817 	else if (adreno_is_a660(adreno_gpu))
818 		a660_build_bw_table(msg);
819 	else if (adreno_is_a663(adreno_gpu))
820 		a663_build_bw_table(msg);
821 	else if (adreno_is_a690(adreno_gpu))
822 		a690_build_bw_table(msg);
823 	else if (adreno_is_a730(adreno_gpu))
824 		a730_build_bw_table(msg);
825 	else if (adreno_is_a740_family(adreno_gpu))
826 		a740_build_bw_table(msg);
827 	else
828 		a6xx_build_bw_table(msg);
829 
830 	gmu->bw_table = msg;
831 
832 send:
833 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, gmu->bw_table, sizeof(*(gmu->bw_table)),
834 		NULL, 0);
835 }
836 
a6xx_hfi_feature_ctrl_msg(struct a6xx_gmu * gmu,u32 feature,u32 enable,u32 data)837 static int a6xx_hfi_feature_ctrl_msg(struct a6xx_gmu *gmu, u32 feature, u32 enable, u32 data)
838 {
839 	struct a6xx_hfi_msg_feature_ctrl msg = {
840 		.feature = feature,
841 		.enable = enable,
842 		.data = data,
843 	};
844 
845 	return a6xx_hfi_send_msg(gmu, HFI_H2F_FEATURE_CTRL, &msg, sizeof(msg), NULL, 0);
846 }
847 
848 #define HFI_FEATURE_IFPC 9
849 #define IFPC_LONG_HYST 0x1680
850 
a6xx_hfi_enable_ifpc(struct a6xx_gmu * gmu)851 static int a6xx_hfi_enable_ifpc(struct a6xx_gmu *gmu)
852 {
853 	if (gmu->idle_level != GMU_IDLE_STATE_IFPC)
854 		return 0;
855 
856 	return a6xx_hfi_feature_ctrl_msg(gmu, HFI_FEATURE_IFPC, 1, IFPC_LONG_HYST);
857 }
858 
859 #define HFI_FEATURE_ACD 12
860 
a6xx_hfi_enable_acd(struct a6xx_gmu * gmu)861 static int a6xx_hfi_enable_acd(struct a6xx_gmu *gmu)
862 {
863 	struct a6xx_hfi_acd_table *acd_table = &gmu->acd_table;
864 	int ret;
865 
866 	if (!acd_table->enable_by_level)
867 		return 0;
868 
869 	/* Enable ACD feature at GMU */
870 	ret = a6xx_hfi_feature_ctrl_msg(gmu, HFI_FEATURE_ACD, 1, 0);
871 	if (ret) {
872 		DRM_DEV_ERROR(gmu->dev, "Unable to enable ACD (%d)\n", ret);
873 		return ret;
874 	}
875 
876 	/* Send ACD table to GMU */
877 	ret = a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_ACD, acd_table, sizeof(*acd_table), NULL, 0);
878 	if (ret) {
879 		DRM_DEV_ERROR(gmu->dev, "Unable to ACD table (%d)\n", ret);
880 		return ret;
881 	}
882 
883 	return 0;
884 }
885 
a6xx_hfi_send_test(struct a6xx_gmu * gmu)886 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
887 {
888 	struct a6xx_hfi_msg_test msg = { 0 };
889 
890 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
891 		NULL, 0);
892 }
893 
a6xx_hfi_send_start(struct a6xx_gmu * gmu)894 static int a6xx_hfi_send_start(struct a6xx_gmu *gmu)
895 {
896 	struct a6xx_hfi_msg_start msg = { 0 };
897 
898 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_START, &msg, sizeof(msg),
899 		NULL, 0);
900 }
901 
a6xx_hfi_send_core_fw_start(struct a6xx_gmu * gmu)902 static int a6xx_hfi_send_core_fw_start(struct a6xx_gmu *gmu)
903 {
904 	struct a6xx_hfi_msg_core_fw_start msg = { 0 };
905 
906 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_CORE_FW_START, &msg,
907 		sizeof(msg), NULL, 0);
908 }
909 
a6xx_hfi_set_freq(struct a6xx_gmu * gmu,u32 freq_index,u32 bw_index)910 int a6xx_hfi_set_freq(struct a6xx_gmu *gmu, u32 freq_index, u32 bw_index)
911 {
912 	struct a6xx_hfi_gx_bw_perf_vote_cmd msg = { 0 };
913 
914 	msg.ack_type = 1; /* blocking */
915 	msg.freq = freq_index;
916 	msg.bw = bw_index;
917 
918 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_GX_BW_PERF_VOTE, &msg,
919 		sizeof(msg), NULL, 0);
920 }
921 
a6xx_hfi_send_prep_slumber(struct a6xx_gmu * gmu)922 int a6xx_hfi_send_prep_slumber(struct a6xx_gmu *gmu)
923 {
924 	struct a6xx_hfi_prep_slumber_cmd msg = { 0 };
925 
926 	/* TODO: should freq and bw fields be non-zero ? */
927 
928 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PREPARE_SLUMBER, &msg,
929 		sizeof(msg), NULL, 0);
930 }
931 
a6xx_hfi_start_v1(struct a6xx_gmu * gmu,int boot_state)932 static int a6xx_hfi_start_v1(struct a6xx_gmu *gmu, int boot_state)
933 {
934 	int ret;
935 
936 	ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
937 	if (ret)
938 		return ret;
939 
940 	ret = a6xx_hfi_get_fw_version(gmu, NULL);
941 	if (ret)
942 		return ret;
943 
944 	/*
945 	 * We have to get exchange version numbers per the sequence but at this
946 	 * point th kernel driver doesn't need to know the exact version of
947 	 * the GMU firmware
948 	 */
949 
950 	ret = a6xx_hfi_send_perf_table_v1(gmu);
951 	if (ret)
952 		return ret;
953 
954 	ret = a6xx_hfi_send_bw_table(gmu);
955 	if (ret)
956 		return ret;
957 
958 	/*
959 	 * Let the GMU know that there won't be any more HFI messages until next
960 	 * boot
961 	 */
962 	a6xx_hfi_send_test(gmu);
963 
964 	return 0;
965 }
966 
a6xx_hfi_start(struct a6xx_gmu * gmu,int boot_state)967 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
968 {
969 	int ret;
970 
971 	if (gmu->legacy)
972 		return a6xx_hfi_start_v1(gmu, boot_state);
973 
974 
975 	ret = a6xx_hfi_send_perf_table(gmu);
976 	if (ret)
977 		return ret;
978 
979 	ret = a6xx_hfi_send_bw_table(gmu);
980 	if (ret)
981 		return ret;
982 
983 	ret = a6xx_hfi_enable_acd(gmu);
984 	if (ret)
985 		return ret;
986 
987 	ret = a6xx_hfi_enable_ifpc(gmu);
988 	if (ret)
989 		return ret;
990 
991 	ret = a6xx_hfi_send_core_fw_start(gmu);
992 	if (ret)
993 		return ret;
994 
995 	/*
996 	 * Downstream driver sends this in its "a6xx_hw_init" equivalent,
997 	 * but seems to be no harm in sending it here
998 	 */
999 	ret = a6xx_hfi_send_start(gmu);
1000 	if (ret)
1001 		return ret;
1002 
1003 	return 0;
1004 }
1005 
a6xx_hfi_stop(struct a6xx_gmu * gmu)1006 void a6xx_hfi_stop(struct a6xx_gmu *gmu)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
1011 		struct a6xx_hfi_queue *queue = &gmu->queues[i];
1012 
1013 		if (!queue->header)
1014 			continue;
1015 
1016 		if (queue->header->read_index != queue->header->write_index)
1017 			DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i);
1018 
1019 		queue->header->read_index = 0;
1020 		queue->header->write_index = 0;
1021 
1022 		memset(&queue->history, 0xff, sizeof(queue->history));
1023 		queue->history_idx = 0;
1024 	}
1025 }
1026 
a6xx_hfi_queue_init(struct a6xx_hfi_queue * queue,struct a6xx_hfi_queue_header * header,void * virt,u64 iova,u32 id)1027 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
1028 		struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
1029 		u32 id)
1030 {
1031 	spin_lock_init(&queue->lock);
1032 	queue->header = header;
1033 	queue->data = virt;
1034 	atomic_set(&queue->seqnum, 0);
1035 
1036 	memset(&queue->history, 0xff, sizeof(queue->history));
1037 	queue->history_idx = 0;
1038 
1039 	/* Set up the shared memory header */
1040 	header->iova = iova;
1041 	header->type =  10 << 8 | id;
1042 	header->status = 1;
1043 	header->size = SZ_4K >> 2;
1044 	header->msg_size = 0;
1045 	header->dropped = 0;
1046 	header->rx_watermark = 1;
1047 	header->tx_watermark = 1;
1048 	header->rx_request = 1;
1049 	header->tx_request = 0;
1050 	header->read_index = 0;
1051 	header->write_index = 0;
1052 }
1053 
a6xx_hfi_init(struct a6xx_gmu * gmu)1054 void a6xx_hfi_init(struct a6xx_gmu *gmu)
1055 {
1056 	struct a6xx_gmu_bo *hfi = &gmu->hfi;
1057 	struct a6xx_hfi_queue_table_header *table = hfi->virt;
1058 	struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
1059 	u64 offset;
1060 	int table_size;
1061 
1062 	/*
1063 	 * The table size is the size of the table header plus all of the queue
1064 	 * headers
1065 	 */
1066 	table_size = sizeof(*table);
1067 	table_size += (ARRAY_SIZE(gmu->queues) *
1068 		sizeof(struct a6xx_hfi_queue_header));
1069 
1070 	table->version = 0;
1071 	table->size = table_size;
1072 	/* First queue header is located immediately after the table header */
1073 	table->qhdr0_offset = sizeof(*table) >> 2;
1074 	table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
1075 	table->num_queues = ARRAY_SIZE(gmu->queues);
1076 	table->active_queues = ARRAY_SIZE(gmu->queues);
1077 
1078 	/* Command queue */
1079 	offset = SZ_4K;
1080 	a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
1081 		hfi->iova + offset, 0);
1082 
1083 	/* GMU response queue */
1084 	offset += SZ_4K;
1085 	a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
1086 		hfi->iova + offset, gmu->legacy ? 4 : 1);
1087 }
1088