1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2022 Schneider-Electric
4 *
5 * Clément Léger <clement.leger@bootlin.com>
6 */
7
8 #include <linux/clk.h>
9 #include <linux/etherdevice.h>
10 #include <linux/if_bridge.h>
11 #include <linux/if_ether.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_mdio.h>
16 #include <net/dsa.h>
17
18 #include "rzn1_a5psw.h"
19
20 struct a5psw_stats {
21 u16 offset;
22 const char name[ETH_GSTRING_LEN];
23 };
24
25 #define STAT_DESC(_offset) { \
26 .offset = A5PSW_##_offset, \
27 .name = __stringify(_offset), \
28 }
29
30 static const struct a5psw_stats a5psw_stats[] = {
31 STAT_DESC(aFramesTransmittedOK),
32 STAT_DESC(aFramesReceivedOK),
33 STAT_DESC(aFrameCheckSequenceErrors),
34 STAT_DESC(aAlignmentErrors),
35 STAT_DESC(aOctetsTransmittedOK),
36 STAT_DESC(aOctetsReceivedOK),
37 STAT_DESC(aTxPAUSEMACCtrlFrames),
38 STAT_DESC(aRxPAUSEMACCtrlFrames),
39 STAT_DESC(ifInErrors),
40 STAT_DESC(ifOutErrors),
41 STAT_DESC(ifInUcastPkts),
42 STAT_DESC(ifInMulticastPkts),
43 STAT_DESC(ifInBroadcastPkts),
44 STAT_DESC(ifOutDiscards),
45 STAT_DESC(ifOutUcastPkts),
46 STAT_DESC(ifOutMulticastPkts),
47 STAT_DESC(ifOutBroadcastPkts),
48 STAT_DESC(etherStatsDropEvents),
49 STAT_DESC(etherStatsOctets),
50 STAT_DESC(etherStatsPkts),
51 STAT_DESC(etherStatsUndersizePkts),
52 STAT_DESC(etherStatsOversizePkts),
53 STAT_DESC(etherStatsPkts64Octets),
54 STAT_DESC(etherStatsPkts65to127Octets),
55 STAT_DESC(etherStatsPkts128to255Octets),
56 STAT_DESC(etherStatsPkts256to511Octets),
57 STAT_DESC(etherStatsPkts1024to1518Octets),
58 STAT_DESC(etherStatsPkts1519toXOctets),
59 STAT_DESC(etherStatsJabbers),
60 STAT_DESC(etherStatsFragments),
61 STAT_DESC(VLANReceived),
62 STAT_DESC(VLANTransmitted),
63 STAT_DESC(aDeferred),
64 STAT_DESC(aMultipleCollisions),
65 STAT_DESC(aSingleCollisions),
66 STAT_DESC(aLateCollisions),
67 STAT_DESC(aExcessiveCollisions),
68 STAT_DESC(aCarrierSenseErrors),
69 };
70
a5psw_reg_writel(struct a5psw * a5psw,int offset,u32 value)71 static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
72 {
73 writel(value, a5psw->base + offset);
74 }
75
a5psw_reg_readl(struct a5psw * a5psw,int offset)76 static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
77 {
78 return readl(a5psw->base + offset);
79 }
80
a5psw_reg_rmw(struct a5psw * a5psw,int offset,u32 mask,u32 val)81 static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
82 {
83 u32 reg;
84
85 spin_lock(&a5psw->reg_lock);
86
87 reg = a5psw_reg_readl(a5psw, offset);
88 reg &= ~mask;
89 reg |= val;
90 a5psw_reg_writel(a5psw, offset, reg);
91
92 spin_unlock(&a5psw->reg_lock);
93 }
94
a5psw_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)95 static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
96 int port,
97 enum dsa_tag_protocol mp)
98 {
99 return DSA_TAG_PROTO_RZN1_A5PSW;
100 }
101
a5psw_port_pattern_set(struct a5psw * a5psw,int port,int pattern,bool enable)102 static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
103 bool enable)
104 {
105 u32 rx_match = 0;
106
107 if (enable)
108 rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
109
110 a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
111 A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
112 }
113
a5psw_port_mgmtfwd_set(struct a5psw * a5psw,int port,bool enable)114 static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
115 {
116 /* Enable "management forward" pattern matching, this will forward
117 * packets from this port only towards the management port and thus
118 * isolate the port.
119 */
120 a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
121 }
122
a5psw_port_tx_enable(struct a5psw * a5psw,int port,bool enable)123 static void a5psw_port_tx_enable(struct a5psw *a5psw, int port, bool enable)
124 {
125 u32 mask = A5PSW_PORT_ENA_TX(port);
126 u32 reg = enable ? mask : 0;
127
128 /* Even though the port TX is disabled through TXENA bit in the
129 * PORT_ENA register, it can still send BPDUs. This depends on the tag
130 * configuration added when sending packets from the CPU port to the
131 * switch port. Indeed, when using forced forwarding without filtering,
132 * even disabled ports will be able to send packets that are tagged.
133 * This allows to implement STP support when ports are in a state where
134 * forwarding traffic should be stopped but BPDUs should still be sent.
135 */
136 a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, mask, reg);
137 }
138
a5psw_port_enable_set(struct a5psw * a5psw,int port,bool enable)139 static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
140 {
141 u32 port_ena = 0;
142
143 if (enable)
144 port_ena |= A5PSW_PORT_ENA_TX_RX(port);
145
146 a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
147 port_ena);
148 }
149
a5psw_lk_execute_ctrl(struct a5psw * a5psw,u32 * ctrl)150 static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
151 {
152 int ret;
153
154 a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
155
156 ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
157 !(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
158 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
159 if (ret)
160 dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
161
162 return ret;
163 }
164
a5psw_port_fdb_flush(struct a5psw * a5psw,int port)165 static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
166 {
167 u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
168
169 mutex_lock(&a5psw->lk_lock);
170 a5psw_lk_execute_ctrl(a5psw, &ctrl);
171 mutex_unlock(&a5psw->lk_lock);
172 }
173
a5psw_port_authorize_set(struct a5psw * a5psw,int port,bool authorize)174 static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
175 bool authorize)
176 {
177 u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
178
179 if (authorize)
180 reg |= A5PSW_AUTH_PORT_AUTHORIZED;
181 else
182 reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
183
184 a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
185 }
186
a5psw_port_disable(struct dsa_switch * ds,int port)187 static void a5psw_port_disable(struct dsa_switch *ds, int port)
188 {
189 struct a5psw *a5psw = ds->priv;
190
191 a5psw_port_authorize_set(a5psw, port, false);
192 a5psw_port_enable_set(a5psw, port, false);
193 }
194
a5psw_port_enable(struct dsa_switch * ds,int port,struct phy_device * phy)195 static int a5psw_port_enable(struct dsa_switch *ds, int port,
196 struct phy_device *phy)
197 {
198 struct a5psw *a5psw = ds->priv;
199
200 a5psw_port_authorize_set(a5psw, port, true);
201 a5psw_port_enable_set(a5psw, port, true);
202
203 return 0;
204 }
205
a5psw_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)206 static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
207 {
208 struct a5psw *a5psw = ds->priv;
209
210 new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
211 a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
212
213 return 0;
214 }
215
a5psw_port_max_mtu(struct dsa_switch * ds,int port)216 static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
217 {
218 return A5PSW_MAX_MTU;
219 }
220
a5psw_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)221 static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
222 struct phylink_config *config)
223 {
224 unsigned long *intf = config->supported_interfaces;
225
226 config->mac_capabilities = MAC_1000FD;
227
228 if (dsa_is_cpu_port(ds, port)) {
229 /* GMII is used internally and GMAC2 is connected to the switch
230 * using 1000Mbps Full-Duplex mode only (cf ethernet manual)
231 */
232 __set_bit(PHY_INTERFACE_MODE_GMII, intf);
233 } else {
234 config->mac_capabilities |= MAC_100 | MAC_10;
235 phy_interface_set_rgmii(intf);
236 __set_bit(PHY_INTERFACE_MODE_RMII, intf);
237 __set_bit(PHY_INTERFACE_MODE_MII, intf);
238 }
239 }
240
241 static struct phylink_pcs *
a5psw_phylink_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)242 a5psw_phylink_mac_select_pcs(struct phylink_config *config,
243 phy_interface_t interface)
244 {
245 struct dsa_port *dp = dsa_phylink_to_port(config);
246 struct a5psw *a5psw = dp->ds->priv;
247
248 if (dsa_port_is_cpu(dp))
249 return NULL;
250
251 return a5psw->pcs[dp->index];
252 }
253
a5psw_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)254 static void a5psw_phylink_mac_config(struct phylink_config *config,
255 unsigned int mode,
256 const struct phylink_link_state *state)
257 {
258 }
259
a5psw_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)260 static void a5psw_phylink_mac_link_down(struct phylink_config *config,
261 unsigned int mode,
262 phy_interface_t interface)
263 {
264 struct dsa_port *dp = dsa_phylink_to_port(config);
265 struct a5psw *a5psw = dp->ds->priv;
266 int port = dp->index;
267 u32 cmd_cfg;
268
269 cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
270 cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
271 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
272 }
273
a5psw_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)274 static void a5psw_phylink_mac_link_up(struct phylink_config *config,
275 struct phy_device *phydev,
276 unsigned int mode,
277 phy_interface_t interface,
278 int speed, int duplex, bool tx_pause,
279 bool rx_pause)
280 {
281 u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
282 A5PSW_CMD_CFG_TX_CRC_APPEND;
283 struct dsa_port *dp = dsa_phylink_to_port(config);
284 struct a5psw *a5psw = dp->ds->priv;
285
286 if (speed == SPEED_1000)
287 cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
288
289 if (duplex == DUPLEX_HALF)
290 cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
291
292 cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
293
294 if (!rx_pause)
295 cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
296
297 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(dp->index), cmd_cfg);
298 }
299
a5psw_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)300 static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
301 {
302 struct a5psw *a5psw = ds->priv;
303 unsigned long rate;
304 u64 max, tmp;
305 u32 agetime;
306
307 rate = clk_get_rate(a5psw->clk);
308 max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
309 rate) * 1000;
310 if (msecs > max)
311 return -EINVAL;
312
313 tmp = div_u64(rate, MSEC_PER_SEC);
314 agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
315
316 a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
317
318 return 0;
319 }
320
a5psw_port_learning_set(struct a5psw * a5psw,int port,bool learn)321 static void a5psw_port_learning_set(struct a5psw *a5psw, int port, bool learn)
322 {
323 u32 mask = A5PSW_INPUT_LEARN_DIS(port);
324 u32 reg = !learn ? mask : 0;
325
326 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
327 }
328
a5psw_port_rx_block_set(struct a5psw * a5psw,int port,bool block)329 static void a5psw_port_rx_block_set(struct a5psw *a5psw, int port, bool block)
330 {
331 u32 mask = A5PSW_INPUT_LEARN_BLOCK(port);
332 u32 reg = block ? mask : 0;
333
334 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
335 }
336
a5psw_flooding_set_resolution(struct a5psw * a5psw,int port,bool set)337 static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
338 bool set)
339 {
340 u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
341 A5PSW_MCAST_DEF_MASK};
342 int i;
343
344 for (i = 0; i < ARRAY_SIZE(offsets); i++)
345 a5psw_reg_rmw(a5psw, offsets[i], BIT(port),
346 set ? BIT(port) : 0);
347 }
348
a5psw_port_set_standalone(struct a5psw * a5psw,int port,bool standalone)349 static void a5psw_port_set_standalone(struct a5psw *a5psw, int port,
350 bool standalone)
351 {
352 a5psw_port_learning_set(a5psw, port, !standalone);
353 a5psw_flooding_set_resolution(a5psw, port, !standalone);
354 a5psw_port_mgmtfwd_set(a5psw, port, standalone);
355 }
356
a5psw_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)357 static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
358 struct dsa_bridge bridge,
359 bool *tx_fwd_offload,
360 struct netlink_ext_ack *extack)
361 {
362 struct a5psw *a5psw = ds->priv;
363
364 /* We only support 1 bridge device */
365 if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
366 NL_SET_ERR_MSG_MOD(extack,
367 "Forwarding offload supported for a single bridge");
368 return -EOPNOTSUPP;
369 }
370
371 a5psw->br_dev = bridge.dev;
372 a5psw_port_set_standalone(a5psw, port, false);
373
374 a5psw->bridged_ports |= BIT(port);
375
376 return 0;
377 }
378
a5psw_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)379 static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
380 struct dsa_bridge bridge)
381 {
382 struct a5psw *a5psw = ds->priv;
383
384 a5psw->bridged_ports &= ~BIT(port);
385
386 a5psw_port_set_standalone(a5psw, port, true);
387
388 /* No more ports bridged */
389 if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
390 a5psw->br_dev = NULL;
391 }
392
a5psw_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)393 static int a5psw_port_pre_bridge_flags(struct dsa_switch *ds, int port,
394 struct switchdev_brport_flags flags,
395 struct netlink_ext_ack *extack)
396 {
397 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
398 BR_BCAST_FLOOD))
399 return -EINVAL;
400
401 return 0;
402 }
403
404 static int
a5psw_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)405 a5psw_port_bridge_flags(struct dsa_switch *ds, int port,
406 struct switchdev_brport_flags flags,
407 struct netlink_ext_ack *extack)
408 {
409 struct a5psw *a5psw = ds->priv;
410 u32 val;
411
412 /* If a port is set as standalone, we do not want to be able to
413 * configure flooding nor learning which would result in joining the
414 * unique bridge. This can happen when a port leaves the bridge, in
415 * which case the DSA core will try to "clear" all flags for the
416 * standalone port (ie enable flooding, disable learning). In that case
417 * do not fail but do not apply the flags.
418 */
419 if (!(a5psw->bridged_ports & BIT(port)))
420 return 0;
421
422 if (flags.mask & BR_LEARNING) {
423 val = flags.val & BR_LEARNING ? 0 : A5PSW_INPUT_LEARN_DIS(port);
424 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN,
425 A5PSW_INPUT_LEARN_DIS(port), val);
426 }
427
428 if (flags.mask & BR_FLOOD) {
429 val = flags.val & BR_FLOOD ? BIT(port) : 0;
430 a5psw_reg_rmw(a5psw, A5PSW_UCAST_DEF_MASK, BIT(port), val);
431 }
432
433 if (flags.mask & BR_MCAST_FLOOD) {
434 val = flags.val & BR_MCAST_FLOOD ? BIT(port) : 0;
435 a5psw_reg_rmw(a5psw, A5PSW_MCAST_DEF_MASK, BIT(port), val);
436 }
437
438 if (flags.mask & BR_BCAST_FLOOD) {
439 val = flags.val & BR_BCAST_FLOOD ? BIT(port) : 0;
440 a5psw_reg_rmw(a5psw, A5PSW_BCAST_DEF_MASK, BIT(port), val);
441 }
442
443 return 0;
444 }
445
a5psw_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)446 static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
447 {
448 bool learning_enabled, rx_enabled, tx_enabled;
449 struct dsa_port *dp = dsa_to_port(ds, port);
450 struct a5psw *a5psw = ds->priv;
451
452 switch (state) {
453 case BR_STATE_DISABLED:
454 case BR_STATE_BLOCKING:
455 case BR_STATE_LISTENING:
456 rx_enabled = false;
457 tx_enabled = false;
458 learning_enabled = false;
459 break;
460 case BR_STATE_LEARNING:
461 rx_enabled = false;
462 tx_enabled = false;
463 learning_enabled = dp->learning;
464 break;
465 case BR_STATE_FORWARDING:
466 rx_enabled = true;
467 tx_enabled = true;
468 learning_enabled = dp->learning;
469 break;
470 default:
471 dev_err(ds->dev, "invalid STP state: %d\n", state);
472 return;
473 }
474
475 a5psw_port_learning_set(a5psw, port, learning_enabled);
476 a5psw_port_rx_block_set(a5psw, port, !rx_enabled);
477 a5psw_port_tx_enable(a5psw, port, tx_enabled);
478 }
479
a5psw_port_fast_age(struct dsa_switch * ds,int port)480 static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
481 {
482 struct a5psw *a5psw = ds->priv;
483
484 a5psw_port_fdb_flush(a5psw, port);
485 }
486
a5psw_lk_execute_lookup(struct a5psw * a5psw,union lk_data * lk_data,u16 * entry)487 static int a5psw_lk_execute_lookup(struct a5psw *a5psw, union lk_data *lk_data,
488 u16 *entry)
489 {
490 u32 ctrl;
491 int ret;
492
493 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_LO, lk_data->lo);
494 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data->hi);
495
496 ctrl = A5PSW_LK_ADDR_CTRL_LOOKUP;
497 ret = a5psw_lk_execute_ctrl(a5psw, &ctrl);
498 if (ret)
499 return ret;
500
501 *entry = ctrl & A5PSW_LK_ADDR_CTRL_ADDRESS;
502
503 return 0;
504 }
505
a5psw_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)506 static int a5psw_port_fdb_add(struct dsa_switch *ds, int port,
507 const unsigned char *addr, u16 vid,
508 struct dsa_db db)
509 {
510 struct a5psw *a5psw = ds->priv;
511 union lk_data lk_data = {0};
512 bool inc_learncount = false;
513 int ret = 0;
514 u16 entry;
515 u32 reg;
516
517 ether_addr_copy(lk_data.entry.mac, addr);
518 lk_data.entry.port_mask = BIT(port);
519
520 mutex_lock(&a5psw->lk_lock);
521
522 /* Set the value to be written in the lookup table */
523 ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
524 if (ret)
525 goto lk_unlock;
526
527 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
528 if (!lk_data.entry.valid) {
529 inc_learncount = true;
530 /* port_mask set to 0x1f when entry is not valid, clear it */
531 lk_data.entry.port_mask = 0;
532 lk_data.entry.prio = 0;
533 }
534
535 lk_data.entry.port_mask |= BIT(port);
536 lk_data.entry.is_static = 1;
537 lk_data.entry.valid = 1;
538
539 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
540
541 reg = A5PSW_LK_ADDR_CTRL_WRITE | entry;
542 ret = a5psw_lk_execute_ctrl(a5psw, ®);
543 if (ret)
544 goto lk_unlock;
545
546 if (inc_learncount) {
547 reg = A5PSW_LK_LEARNCOUNT_MODE_INC;
548 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
549 }
550
551 lk_unlock:
552 mutex_unlock(&a5psw->lk_lock);
553
554 return ret;
555 }
556
a5psw_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)557 static int a5psw_port_fdb_del(struct dsa_switch *ds, int port,
558 const unsigned char *addr, u16 vid,
559 struct dsa_db db)
560 {
561 struct a5psw *a5psw = ds->priv;
562 union lk_data lk_data = {0};
563 bool clear = false;
564 u16 entry;
565 u32 reg;
566 int ret;
567
568 ether_addr_copy(lk_data.entry.mac, addr);
569
570 mutex_lock(&a5psw->lk_lock);
571
572 ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
573 if (ret)
574 goto lk_unlock;
575
576 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
577
578 /* Our hardware does not associate any VID to the FDB entries so this
579 * means that if two entries were added for the same mac but for
580 * different VID, then, on the deletion of the first one, we would also
581 * delete the second one. Since there is unfortunately nothing we can do
582 * about that, do not return an error...
583 */
584 if (!lk_data.entry.valid)
585 goto lk_unlock;
586
587 lk_data.entry.port_mask &= ~BIT(port);
588 /* If there is no more port in the mask, clear the entry */
589 if (lk_data.entry.port_mask == 0)
590 clear = true;
591
592 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
593
594 reg = entry;
595 if (clear)
596 reg |= A5PSW_LK_ADDR_CTRL_CLEAR;
597 else
598 reg |= A5PSW_LK_ADDR_CTRL_WRITE;
599
600 ret = a5psw_lk_execute_ctrl(a5psw, ®);
601 if (ret)
602 goto lk_unlock;
603
604 /* Decrement LEARNCOUNT */
605 if (clear) {
606 reg = A5PSW_LK_LEARNCOUNT_MODE_DEC;
607 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
608 }
609
610 lk_unlock:
611 mutex_unlock(&a5psw->lk_lock);
612
613 return ret;
614 }
615
a5psw_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)616 static int a5psw_port_fdb_dump(struct dsa_switch *ds, int port,
617 dsa_fdb_dump_cb_t *cb, void *data)
618 {
619 struct a5psw *a5psw = ds->priv;
620 union lk_data lk_data;
621 int i = 0, ret = 0;
622 u32 reg;
623
624 mutex_lock(&a5psw->lk_lock);
625
626 for (i = 0; i < A5PSW_TABLE_ENTRIES; i++) {
627 reg = A5PSW_LK_ADDR_CTRL_READ | A5PSW_LK_ADDR_CTRL_WAIT | i;
628
629 ret = a5psw_lk_execute_ctrl(a5psw, ®);
630 if (ret)
631 goto out_unlock;
632
633 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
634 /* If entry is not valid or does not contain the port, skip */
635 if (!lk_data.entry.valid ||
636 !(lk_data.entry.port_mask & BIT(port)))
637 continue;
638
639 lk_data.lo = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_LO);
640
641 ret = cb(lk_data.entry.mac, 0, lk_data.entry.is_static, data);
642 if (ret)
643 goto out_unlock;
644 }
645
646 out_unlock:
647 mutex_unlock(&a5psw->lk_lock);
648
649 return ret;
650 }
651
a5psw_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)652 static int a5psw_port_vlan_filtering(struct dsa_switch *ds, int port,
653 bool vlan_filtering,
654 struct netlink_ext_ack *extack)
655 {
656 u32 mask = BIT(port + A5PSW_VLAN_VERI_SHIFT) |
657 BIT(port + A5PSW_VLAN_DISC_SHIFT);
658 u32 val = vlan_filtering ? mask : 0;
659 struct a5psw *a5psw = ds->priv;
660
661 /* Disable/enable vlan tagging */
662 a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE_ENA, BIT(port),
663 vlan_filtering ? BIT(port) : 0);
664
665 /* Disable/enable vlan input filtering */
666 a5psw_reg_rmw(a5psw, A5PSW_VLAN_VERIFY, mask, val);
667
668 return 0;
669 }
670
a5psw_find_vlan_entry(struct a5psw * a5psw,u16 vid)671 static int a5psw_find_vlan_entry(struct a5psw *a5psw, u16 vid)
672 {
673 u32 vlan_res;
674 int i;
675
676 /* Find vlan for this port */
677 for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
678 vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
679 if (FIELD_GET(A5PSW_VLAN_RES_VLANID, vlan_res) == vid)
680 return i;
681 }
682
683 return -1;
684 }
685
a5psw_new_vlan_res_entry(struct a5psw * a5psw,u16 newvid)686 static int a5psw_new_vlan_res_entry(struct a5psw *a5psw, u16 newvid)
687 {
688 u32 vlan_res;
689 int i;
690
691 /* Find a free VLAN entry */
692 for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
693 vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
694 if (!(FIELD_GET(A5PSW_VLAN_RES_PORTMASK, vlan_res))) {
695 vlan_res = FIELD_PREP(A5PSW_VLAN_RES_VLANID, newvid);
696 a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(i), vlan_res);
697 return i;
698 }
699 }
700
701 return -1;
702 }
703
a5psw_port_vlan_tagged_cfg(struct a5psw * a5psw,unsigned int vlan_res_id,int port,bool set)704 static void a5psw_port_vlan_tagged_cfg(struct a5psw *a5psw,
705 unsigned int vlan_res_id, int port,
706 bool set)
707 {
708 u32 mask = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_RD_TAGMASK |
709 BIT(port);
710 u32 vlan_res_off = A5PSW_VLAN_RES(vlan_res_id);
711 u32 val = A5PSW_VLAN_RES_WR_TAGMASK, reg;
712
713 if (set)
714 val |= BIT(port);
715
716 /* Toggle tag mask read */
717 a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
718 reg = a5psw_reg_readl(a5psw, vlan_res_off);
719 a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
720
721 reg &= ~mask;
722 reg |= val;
723 a5psw_reg_writel(a5psw, vlan_res_off, reg);
724 }
725
a5psw_port_vlan_cfg(struct a5psw * a5psw,unsigned int vlan_res_id,int port,bool set)726 static void a5psw_port_vlan_cfg(struct a5psw *a5psw, unsigned int vlan_res_id,
727 int port, bool set)
728 {
729 u32 mask = A5PSW_VLAN_RES_WR_TAGMASK | BIT(port);
730 u32 reg = A5PSW_VLAN_RES_WR_PORTMASK;
731
732 if (set)
733 reg |= BIT(port);
734
735 a5psw_reg_rmw(a5psw, A5PSW_VLAN_RES(vlan_res_id), mask, reg);
736 }
737
a5psw_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)738 static int a5psw_port_vlan_add(struct dsa_switch *ds, int port,
739 const struct switchdev_obj_port_vlan *vlan,
740 struct netlink_ext_ack *extack)
741 {
742 bool tagged = !(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED);
743 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
744 struct a5psw *a5psw = ds->priv;
745 u16 vid = vlan->vid;
746 int vlan_res_id;
747
748 vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
749 if (vlan_res_id < 0) {
750 vlan_res_id = a5psw_new_vlan_res_entry(a5psw, vid);
751 if (vlan_res_id < 0)
752 return -ENOSPC;
753 }
754
755 a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, true);
756 if (tagged)
757 a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, true);
758
759 /* Configure port to tag with corresponding VID, but do not enable it
760 * yet: wait for vlan filtering to be enabled to enable vlan port
761 * tagging
762 */
763 if (pvid)
764 a5psw_reg_writel(a5psw, A5PSW_SYSTEM_TAGINFO(port), vid);
765
766 return 0;
767 }
768
a5psw_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)769 static int a5psw_port_vlan_del(struct dsa_switch *ds, int port,
770 const struct switchdev_obj_port_vlan *vlan)
771 {
772 struct a5psw *a5psw = ds->priv;
773 u16 vid = vlan->vid;
774 int vlan_res_id;
775
776 vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
777 if (vlan_res_id < 0)
778 return -EINVAL;
779
780 a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, false);
781 a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, false);
782
783 return 0;
784 }
785
a5psw_read_stat(struct a5psw * a5psw,u32 offset,int port)786 static u64 a5psw_read_stat(struct a5psw *a5psw, u32 offset, int port)
787 {
788 u32 reg_lo, reg_hi;
789
790 reg_lo = a5psw_reg_readl(a5psw, offset + A5PSW_PORT_OFFSET(port));
791 /* A5PSW_STATS_HIWORD is latched on stat read */
792 reg_hi = a5psw_reg_readl(a5psw, A5PSW_STATS_HIWORD);
793
794 return ((u64)reg_hi << 32) | reg_lo;
795 }
796
a5psw_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)797 static void a5psw_get_strings(struct dsa_switch *ds, int port, u32 stringset,
798 uint8_t *data)
799 {
800 unsigned int u;
801
802 if (stringset != ETH_SS_STATS)
803 return;
804
805 for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++) {
806 memcpy(data + u * ETH_GSTRING_LEN, a5psw_stats[u].name,
807 ETH_GSTRING_LEN);
808 }
809 }
810
a5psw_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)811 static void a5psw_get_ethtool_stats(struct dsa_switch *ds, int port,
812 uint64_t *data)
813 {
814 struct a5psw *a5psw = ds->priv;
815 unsigned int u;
816
817 for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++)
818 data[u] = a5psw_read_stat(a5psw, a5psw_stats[u].offset, port);
819 }
820
a5psw_get_sset_count(struct dsa_switch * ds,int port,int sset)821 static int a5psw_get_sset_count(struct dsa_switch *ds, int port, int sset)
822 {
823 if (sset != ETH_SS_STATS)
824 return 0;
825
826 return ARRAY_SIZE(a5psw_stats);
827 }
828
a5psw_get_eth_mac_stats(struct dsa_switch * ds,int port,struct ethtool_eth_mac_stats * mac_stats)829 static void a5psw_get_eth_mac_stats(struct dsa_switch *ds, int port,
830 struct ethtool_eth_mac_stats *mac_stats)
831 {
832 struct a5psw *a5psw = ds->priv;
833
834 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
835 mac_stats->FramesTransmittedOK = RD(aFramesTransmittedOK);
836 mac_stats->SingleCollisionFrames = RD(aSingleCollisions);
837 mac_stats->MultipleCollisionFrames = RD(aMultipleCollisions);
838 mac_stats->FramesReceivedOK = RD(aFramesReceivedOK);
839 mac_stats->FrameCheckSequenceErrors = RD(aFrameCheckSequenceErrors);
840 mac_stats->AlignmentErrors = RD(aAlignmentErrors);
841 mac_stats->OctetsTransmittedOK = RD(aOctetsTransmittedOK);
842 mac_stats->FramesWithDeferredXmissions = RD(aDeferred);
843 mac_stats->LateCollisions = RD(aLateCollisions);
844 mac_stats->FramesAbortedDueToXSColls = RD(aExcessiveCollisions);
845 mac_stats->FramesLostDueToIntMACXmitError = RD(ifOutErrors);
846 mac_stats->CarrierSenseErrors = RD(aCarrierSenseErrors);
847 mac_stats->OctetsReceivedOK = RD(aOctetsReceivedOK);
848 mac_stats->FramesLostDueToIntMACRcvError = RD(ifInErrors);
849 mac_stats->MulticastFramesXmittedOK = RD(ifOutMulticastPkts);
850 mac_stats->BroadcastFramesXmittedOK = RD(ifOutBroadcastPkts);
851 mac_stats->FramesWithExcessiveDeferral = RD(aDeferred);
852 mac_stats->MulticastFramesReceivedOK = RD(ifInMulticastPkts);
853 mac_stats->BroadcastFramesReceivedOK = RD(ifInBroadcastPkts);
854 #undef RD
855 }
856
857 static const struct ethtool_rmon_hist_range a5psw_rmon_ranges[] = {
858 { 0, 64 },
859 { 65, 127 },
860 { 128, 255 },
861 { 256, 511 },
862 { 512, 1023 },
863 { 1024, 1518 },
864 { 1519, A5PSW_MAX_MTU },
865 {}
866 };
867
a5psw_get_rmon_stats(struct dsa_switch * ds,int port,struct ethtool_rmon_stats * rmon_stats,const struct ethtool_rmon_hist_range ** ranges)868 static void a5psw_get_rmon_stats(struct dsa_switch *ds, int port,
869 struct ethtool_rmon_stats *rmon_stats,
870 const struct ethtool_rmon_hist_range **ranges)
871 {
872 struct a5psw *a5psw = ds->priv;
873
874 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
875 rmon_stats->undersize_pkts = RD(etherStatsUndersizePkts);
876 rmon_stats->oversize_pkts = RD(etherStatsOversizePkts);
877 rmon_stats->fragments = RD(etherStatsFragments);
878 rmon_stats->jabbers = RD(etherStatsJabbers);
879 rmon_stats->hist[0] = RD(etherStatsPkts64Octets);
880 rmon_stats->hist[1] = RD(etherStatsPkts65to127Octets);
881 rmon_stats->hist[2] = RD(etherStatsPkts128to255Octets);
882 rmon_stats->hist[3] = RD(etherStatsPkts256to511Octets);
883 rmon_stats->hist[4] = RD(etherStatsPkts512to1023Octets);
884 rmon_stats->hist[5] = RD(etherStatsPkts1024to1518Octets);
885 rmon_stats->hist[6] = RD(etherStatsPkts1519toXOctets);
886 #undef RD
887
888 *ranges = a5psw_rmon_ranges;
889 }
890
a5psw_get_eth_ctrl_stats(struct dsa_switch * ds,int port,struct ethtool_eth_ctrl_stats * ctrl_stats)891 static void a5psw_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
892 struct ethtool_eth_ctrl_stats *ctrl_stats)
893 {
894 struct a5psw *a5psw = ds->priv;
895 u64 stat;
896
897 stat = a5psw_read_stat(a5psw, A5PSW_aTxPAUSEMACCtrlFrames, port);
898 ctrl_stats->MACControlFramesTransmitted = stat;
899 stat = a5psw_read_stat(a5psw, A5PSW_aRxPAUSEMACCtrlFrames, port);
900 ctrl_stats->MACControlFramesReceived = stat;
901 }
902
a5psw_vlan_setup(struct a5psw * a5psw,int port)903 static void a5psw_vlan_setup(struct a5psw *a5psw, int port)
904 {
905 u32 reg;
906
907 /* Enable TAG always mode for the port, this is actually controlled
908 * by VLAN_IN_MODE_ENA field which will be used for PVID insertion
909 */
910 reg = A5PSW_VLAN_IN_MODE_TAG_ALWAYS;
911 reg <<= A5PSW_VLAN_IN_MODE_PORT_SHIFT(port);
912 a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE, A5PSW_VLAN_IN_MODE_PORT(port),
913 reg);
914
915 /* Set transparent mode for output frame manipulation, this will depend
916 * on the VLAN_RES configuration mode
917 */
918 reg = A5PSW_VLAN_OUT_MODE_TRANSPARENT;
919 reg <<= A5PSW_VLAN_OUT_MODE_PORT_SHIFT(port);
920 a5psw_reg_rmw(a5psw, A5PSW_VLAN_OUT_MODE,
921 A5PSW_VLAN_OUT_MODE_PORT(port), reg);
922 }
923
a5psw_setup(struct dsa_switch * ds)924 static int a5psw_setup(struct dsa_switch *ds)
925 {
926 struct a5psw *a5psw = ds->priv;
927 int port, vlan, ret;
928 struct dsa_port *dp;
929 u32 reg;
930
931 /* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
932 dsa_switch_for_each_cpu_port(dp, ds) {
933 if (dp->index != A5PSW_CPU_PORT) {
934 dev_err(a5psw->dev, "Invalid CPU port\n");
935 return -EINVAL;
936 }
937 }
938
939 /* Configure management port */
940 reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_ENABLE;
941 a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
942
943 /* Set pattern 0 to forward all frame to mgmt port */
944 a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
945 A5PSW_PATTERN_CTRL_MGMTFWD);
946
947 /* Enable port tagging */
948 reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
949 reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
950 a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
951
952 /* Enable normal switch operation */
953 reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
954 A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
955 A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
956 a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
957
958 ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
959 !(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
960 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
961 if (ret) {
962 dev_err(a5psw->dev, "Failed to clear lookup table\n");
963 return ret;
964 }
965
966 /* Reset learn count to 0 */
967 reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
968 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
969
970 /* Clear VLAN resource table */
971 reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
972 for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
973 a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
974
975 /* Reset all ports */
976 dsa_switch_for_each_port(dp, ds) {
977 port = dp->index;
978
979 /* Reset the port */
980 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
981 A5PSW_CMD_CFG_SW_RESET);
982
983 /* Enable only CPU port */
984 a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
985
986 if (dsa_port_is_unused(dp))
987 continue;
988
989 /* Enable egress flooding and learning for CPU port */
990 if (dsa_port_is_cpu(dp)) {
991 a5psw_flooding_set_resolution(a5psw, port, true);
992 a5psw_port_learning_set(a5psw, port, true);
993 }
994
995 /* Enable standalone mode for user ports */
996 if (dsa_port_is_user(dp))
997 a5psw_port_set_standalone(a5psw, port, true);
998
999 a5psw_vlan_setup(a5psw, port);
1000 }
1001
1002 return 0;
1003 }
1004
1005 static const struct phylink_mac_ops a5psw_phylink_mac_ops = {
1006 .mac_select_pcs = a5psw_phylink_mac_select_pcs,
1007 .mac_config = a5psw_phylink_mac_config,
1008 .mac_link_down = a5psw_phylink_mac_link_down,
1009 .mac_link_up = a5psw_phylink_mac_link_up,
1010 };
1011
1012 static const struct dsa_switch_ops a5psw_switch_ops = {
1013 .get_tag_protocol = a5psw_get_tag_protocol,
1014 .setup = a5psw_setup,
1015 .port_disable = a5psw_port_disable,
1016 .port_enable = a5psw_port_enable,
1017 .phylink_get_caps = a5psw_phylink_get_caps,
1018 .port_change_mtu = a5psw_port_change_mtu,
1019 .port_max_mtu = a5psw_port_max_mtu,
1020 .get_sset_count = a5psw_get_sset_count,
1021 .get_strings = a5psw_get_strings,
1022 .get_ethtool_stats = a5psw_get_ethtool_stats,
1023 .get_eth_mac_stats = a5psw_get_eth_mac_stats,
1024 .get_eth_ctrl_stats = a5psw_get_eth_ctrl_stats,
1025 .get_rmon_stats = a5psw_get_rmon_stats,
1026 .set_ageing_time = a5psw_set_ageing_time,
1027 .port_bridge_join = a5psw_port_bridge_join,
1028 .port_bridge_leave = a5psw_port_bridge_leave,
1029 .port_pre_bridge_flags = a5psw_port_pre_bridge_flags,
1030 .port_bridge_flags = a5psw_port_bridge_flags,
1031 .port_stp_state_set = a5psw_port_stp_state_set,
1032 .port_fast_age = a5psw_port_fast_age,
1033 .port_vlan_filtering = a5psw_port_vlan_filtering,
1034 .port_vlan_add = a5psw_port_vlan_add,
1035 .port_vlan_del = a5psw_port_vlan_del,
1036 .port_fdb_add = a5psw_port_fdb_add,
1037 .port_fdb_del = a5psw_port_fdb_del,
1038 .port_fdb_dump = a5psw_port_fdb_dump,
1039 };
1040
a5psw_mdio_wait_busy(struct a5psw * a5psw)1041 static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
1042 {
1043 u32 status;
1044 int err;
1045
1046 err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
1047 !(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
1048 1000 * USEC_PER_MSEC);
1049 if (err)
1050 dev_err(a5psw->dev, "MDIO command timeout\n");
1051
1052 return err;
1053 }
1054
a5psw_mdio_read(struct mii_bus * bus,int phy_id,int phy_reg)1055 static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
1056 {
1057 struct a5psw *a5psw = bus->priv;
1058 u32 cmd, status;
1059 int ret;
1060
1061 cmd = A5PSW_MDIO_COMMAND_READ;
1062 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1063 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1064
1065 a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1066
1067 ret = a5psw_mdio_wait_busy(a5psw);
1068 if (ret)
1069 return ret;
1070
1071 ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
1072
1073 status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
1074 if (status & A5PSW_MDIO_CFG_STATUS_READERR)
1075 return -EIO;
1076
1077 return ret;
1078 }
1079
a5psw_mdio_write(struct mii_bus * bus,int phy_id,int phy_reg,u16 phy_data)1080 static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
1081 u16 phy_data)
1082 {
1083 struct a5psw *a5psw = bus->priv;
1084 u32 cmd;
1085
1086 cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1087 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1088
1089 a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1090 a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
1091
1092 return a5psw_mdio_wait_busy(a5psw);
1093 }
1094
a5psw_mdio_config(struct a5psw * a5psw,u32 mdio_freq)1095 static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
1096 {
1097 unsigned long rate;
1098 unsigned long div;
1099 u32 cfgstatus;
1100
1101 rate = clk_get_rate(a5psw->hclk);
1102 div = ((rate / mdio_freq) / 2);
1103 if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
1104 div < A5PSW_MDIO_CLK_DIV_MIN) {
1105 dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
1106 return -ERANGE;
1107 }
1108
1109 cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
1110
1111 a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
1112
1113 return 0;
1114 }
1115
a5psw_probe_mdio(struct a5psw * a5psw,struct device_node * node)1116 static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
1117 {
1118 struct device *dev = a5psw->dev;
1119 struct mii_bus *bus;
1120 u32 mdio_freq;
1121 int ret;
1122
1123 if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
1124 mdio_freq = A5PSW_MDIO_DEF_FREQ;
1125
1126 ret = a5psw_mdio_config(a5psw, mdio_freq);
1127 if (ret)
1128 return ret;
1129
1130 bus = devm_mdiobus_alloc(dev);
1131 if (!bus)
1132 return -ENOMEM;
1133
1134 bus->name = "a5psw_mdio";
1135 bus->read = a5psw_mdio_read;
1136 bus->write = a5psw_mdio_write;
1137 bus->priv = a5psw;
1138 bus->parent = dev;
1139 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1140
1141 a5psw->mii_bus = bus;
1142
1143 return devm_of_mdiobus_register(dev, bus, node);
1144 }
1145
a5psw_pcs_free(struct a5psw * a5psw)1146 static void a5psw_pcs_free(struct a5psw *a5psw)
1147 {
1148 int i;
1149
1150 for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
1151 if (a5psw->pcs[i])
1152 miic_destroy(a5psw->pcs[i]);
1153 }
1154 }
1155
a5psw_pcs_get(struct a5psw * a5psw)1156 static int a5psw_pcs_get(struct a5psw *a5psw)
1157 {
1158 struct device_node *ports, *port, *pcs_node;
1159 struct phylink_pcs *pcs;
1160 int ret;
1161 u32 reg;
1162
1163 ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
1164 if (!ports)
1165 return -EINVAL;
1166
1167 for_each_available_child_of_node(ports, port) {
1168 pcs_node = of_parse_phandle(port, "pcs-handle", 0);
1169 if (!pcs_node)
1170 continue;
1171
1172 if (of_property_read_u32(port, "reg", ®)) {
1173 ret = -EINVAL;
1174 goto free_pcs;
1175 }
1176
1177 if (reg >= ARRAY_SIZE(a5psw->pcs)) {
1178 ret = -ENODEV;
1179 goto free_pcs;
1180 }
1181
1182 pcs = miic_create(a5psw->dev, pcs_node);
1183 if (IS_ERR(pcs)) {
1184 dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
1185 reg);
1186 ret = PTR_ERR(pcs);
1187 goto free_pcs;
1188 }
1189
1190 a5psw->pcs[reg] = pcs;
1191 of_node_put(pcs_node);
1192 }
1193 of_node_put(ports);
1194
1195 return 0;
1196
1197 free_pcs:
1198 of_node_put(pcs_node);
1199 of_node_put(port);
1200 of_node_put(ports);
1201 a5psw_pcs_free(a5psw);
1202
1203 return ret;
1204 }
1205
a5psw_probe(struct platform_device * pdev)1206 static int a5psw_probe(struct platform_device *pdev)
1207 {
1208 struct device *dev = &pdev->dev;
1209 struct device_node *mdio;
1210 struct dsa_switch *ds;
1211 struct a5psw *a5psw;
1212 int ret;
1213
1214 a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
1215 if (!a5psw)
1216 return -ENOMEM;
1217
1218 a5psw->dev = dev;
1219 mutex_init(&a5psw->lk_lock);
1220 spin_lock_init(&a5psw->reg_lock);
1221 a5psw->base = devm_platform_ioremap_resource(pdev, 0);
1222 if (IS_ERR(a5psw->base))
1223 return PTR_ERR(a5psw->base);
1224
1225 a5psw->bridged_ports = BIT(A5PSW_CPU_PORT);
1226
1227 ret = a5psw_pcs_get(a5psw);
1228 if (ret)
1229 return ret;
1230
1231 a5psw->hclk = devm_clk_get(dev, "hclk");
1232 if (IS_ERR(a5psw->hclk)) {
1233 dev_err(dev, "failed get hclk clock\n");
1234 ret = PTR_ERR(a5psw->hclk);
1235 goto free_pcs;
1236 }
1237
1238 a5psw->clk = devm_clk_get(dev, "clk");
1239 if (IS_ERR(a5psw->clk)) {
1240 dev_err(dev, "failed get clk_switch clock\n");
1241 ret = PTR_ERR(a5psw->clk);
1242 goto free_pcs;
1243 }
1244
1245 ret = clk_prepare_enable(a5psw->clk);
1246 if (ret)
1247 goto free_pcs;
1248
1249 ret = clk_prepare_enable(a5psw->hclk);
1250 if (ret)
1251 goto clk_disable;
1252
1253 mdio = of_get_child_by_name(dev->of_node, "mdio");
1254 if (of_device_is_available(mdio)) {
1255 ret = a5psw_probe_mdio(a5psw, mdio);
1256 if (ret) {
1257 of_node_put(mdio);
1258 dev_err(dev, "Failed to register MDIO: %d\n", ret);
1259 goto hclk_disable;
1260 }
1261 }
1262
1263 of_node_put(mdio);
1264
1265 ds = &a5psw->ds;
1266 ds->dev = dev;
1267 ds->num_ports = A5PSW_PORTS_NUM;
1268 ds->ops = &a5psw_switch_ops;
1269 ds->phylink_mac_ops = &a5psw_phylink_mac_ops;
1270 ds->priv = a5psw;
1271
1272 ret = dsa_register_switch(ds);
1273 if (ret) {
1274 dev_err(dev, "Failed to register DSA switch: %d\n", ret);
1275 goto hclk_disable;
1276 }
1277
1278 return 0;
1279
1280 hclk_disable:
1281 clk_disable_unprepare(a5psw->hclk);
1282 clk_disable:
1283 clk_disable_unprepare(a5psw->clk);
1284 free_pcs:
1285 a5psw_pcs_free(a5psw);
1286
1287 return ret;
1288 }
1289
a5psw_remove(struct platform_device * pdev)1290 static void a5psw_remove(struct platform_device *pdev)
1291 {
1292 struct a5psw *a5psw = platform_get_drvdata(pdev);
1293
1294 if (!a5psw)
1295 return;
1296
1297 dsa_unregister_switch(&a5psw->ds);
1298 a5psw_pcs_free(a5psw);
1299 clk_disable_unprepare(a5psw->hclk);
1300 clk_disable_unprepare(a5psw->clk);
1301 }
1302
a5psw_shutdown(struct platform_device * pdev)1303 static void a5psw_shutdown(struct platform_device *pdev)
1304 {
1305 struct a5psw *a5psw = platform_get_drvdata(pdev);
1306
1307 if (!a5psw)
1308 return;
1309
1310 dsa_switch_shutdown(&a5psw->ds);
1311
1312 platform_set_drvdata(pdev, NULL);
1313 }
1314
1315 static const struct of_device_id a5psw_of_mtable[] = {
1316 { .compatible = "renesas,rzn1-a5psw", },
1317 { /* sentinel */ },
1318 };
1319 MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
1320
1321 static struct platform_driver a5psw_driver = {
1322 .driver = {
1323 .name = "rzn1_a5psw",
1324 .of_match_table = a5psw_of_mtable,
1325 },
1326 .probe = a5psw_probe,
1327 .remove_new = a5psw_remove,
1328 .shutdown = a5psw_shutdown,
1329 };
1330 module_platform_driver(a5psw_driver);
1331
1332 MODULE_LICENSE("GPL");
1333 MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");
1334 MODULE_AUTHOR("Clément Léger <clement.leger@bootlin.com>");
1335