xref: /linux/drivers/edac/altera_edac.c (revision 03f76ddff5b04a808ae16c06418460151e2fdd4b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29 
30 #include "altera_edac.h"
31 #include "edac_module.h"
32 
33 #define EDAC_MOD_STR		"altera_edac"
34 #define EDAC_DEVICE		"Altera"
35 
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
39 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
40 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
41 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
42 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
43 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
45 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
46 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
47 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
48 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
49 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
53 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
54 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
55 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
56 };
57 
58 static const struct altr_sdram_prv_data a10_data = {
59 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
60 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
61 	.ecc_stat_offset    = A10_INTSTAT_OFST,
62 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
63 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
64 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
65 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
66 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
67 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
68 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
72 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
73 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
74 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
75 };
76 
77 /*********************** EDAC Memory Controller Functions ****************/
78 
79 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
80 
altr_sdram_mc_err_handler(int irq,void * dev_id)81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 	struct mem_ctl_info *mci = dev_id;
84 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 	const struct altr_sdram_prv_data *priv = drvdata->data;
86 	u32 status, err_count = 1, err_addr;
87 
88 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89 
90 	if (status & priv->ecc_stat_ue_mask) {
91 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 			    &err_addr);
93 		if (priv->ecc_uecnt_offset)
94 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 				    &err_count);
96 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 		      err_count, err_addr);
98 	}
99 	if (status & priv->ecc_stat_ce_mask) {
100 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 			    &err_addr);
102 		if (priv->ecc_cecnt_offset)
103 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
104 				    &err_count);
105 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 				     err_addr >> PAGE_SHIFT,
107 				     err_addr & ~PAGE_MASK, 0,
108 				     0, 0, -1, mci->ctl_name, "");
109 		/* Clear IRQ to resume */
110 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
111 			     priv->ecc_irq_clr_mask);
112 
113 		return IRQ_HANDLED;
114 	}
115 	return IRQ_NONE;
116 }
117 
altr_sdr_mc_err_inject_write(struct file * file,const char __user * data,size_t count,loff_t * ppos)118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 					    const char __user *data,
120 					    size_t count, loff_t *ppos)
121 {
122 	struct mem_ctl_info *mci = file->private_data;
123 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 	const struct altr_sdram_prv_data *priv = drvdata->data;
125 	u32 *ptemp;
126 	dma_addr_t dma_handle;
127 	u32 reg, read_reg;
128 
129 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 	if (!ptemp) {
131 		edac_printk(KERN_ERR, EDAC_MC,
132 			    "Inject: Buffer Allocation error\n");
133 		return -ENOMEM;
134 	}
135 
136 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137 		    &read_reg);
138 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139 
140 	/* Error are injected by writing a word while the SBE or DBE
141 	 * bit in the CTLCFG register is set. Reading the word will
142 	 * trigger the SBE or DBE error and the corresponding IRQ.
143 	 */
144 	if (count == 3) {
145 		edac_printk(KERN_ALERT, EDAC_MC,
146 			    "Inject Double bit error\n");
147 		local_irq_disable();
148 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149 			     (read_reg | priv->ue_set_mask));
150 		local_irq_enable();
151 	} else {
152 		edac_printk(KERN_ALERT, EDAC_MC,
153 			    "Inject Single bit error\n");
154 		local_irq_disable();
155 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
156 			     (read_reg | priv->ce_set_mask));
157 		local_irq_enable();
158 	}
159 
160 	ptemp[0] = 0x5A5A5A5A;
161 	ptemp[1] = 0xA5A5A5A5;
162 
163 	/* Clear the error injection bits */
164 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
165 	/* Ensure it has been written out */
166 	wmb();
167 
168 	/*
169 	 * To trigger the error, we need to read the data back
170 	 * (the data was written with errors above).
171 	 * The READ_ONCE macros and printk are used to prevent the
172 	 * the compiler optimizing these reads out.
173 	 */
174 	reg = READ_ONCE(ptemp[0]);
175 	read_reg = READ_ONCE(ptemp[1]);
176 	/* Force Read */
177 	rmb();
178 
179 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180 		    reg, read_reg);
181 
182 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183 
184 	return count;
185 }
186 
187 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188 	.open = simple_open,
189 	.write = altr_sdr_mc_err_inject_write,
190 	.llseek = generic_file_llseek,
191 };
192 
altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info * mci)193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194 {
195 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196 		return;
197 
198 	if (!mci->debugfs)
199 		return;
200 
201 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202 				 &altr_sdr_mc_debug_inject_fops);
203 }
204 
205 /* Get total memory size from Open Firmware DTB */
get_total_mem(void)206 static unsigned long get_total_mem(void)
207 {
208 	struct device_node *np = NULL;
209 	struct resource res;
210 	int ret;
211 	unsigned long total_mem = 0;
212 
213 	for_each_node_by_type(np, "memory") {
214 		ret = of_address_to_resource(np, 0, &res);
215 		if (ret)
216 			continue;
217 
218 		total_mem += resource_size(&res);
219 	}
220 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221 	return total_mem;
222 }
223 
224 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
226 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227 	{},
228 };
229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230 
a10_init(struct regmap * mc_vbase)231 static int a10_init(struct regmap *mc_vbase)
232 {
233 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235 		edac_printk(KERN_ERR, EDAC_MC,
236 			    "Error setting SB IRQ mode\n");
237 		return -ENODEV;
238 	}
239 
240 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241 		edac_printk(KERN_ERR, EDAC_MC,
242 			    "Error setting trigger count\n");
243 		return -ENODEV;
244 	}
245 
246 	return 0;
247 }
248 
a10_unmask_irq(struct platform_device * pdev,u32 mask)249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250 {
251 	void __iomem  *sm_base;
252 	int  ret = 0;
253 
254 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255 				dev_name(&pdev->dev))) {
256 		edac_printk(KERN_ERR, EDAC_MC,
257 			    "Unable to request mem region\n");
258 		return -EBUSY;
259 	}
260 
261 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262 	if (!sm_base) {
263 		edac_printk(KERN_ERR, EDAC_MC,
264 			    "Unable to ioremap device\n");
265 
266 		ret = -ENOMEM;
267 		goto release;
268 	}
269 
270 	iowrite32(mask, sm_base);
271 
272 	iounmap(sm_base);
273 
274 release:
275 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276 
277 	return ret;
278 }
279 
altr_sdram_probe(struct platform_device * pdev)280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 	struct edac_mc_layer layers[2];
283 	struct mem_ctl_info *mci;
284 	struct altr_sdram_mc_data *drvdata;
285 	const struct altr_sdram_prv_data *priv;
286 	struct regmap *mc_vbase;
287 	struct dimm_info *dimm;
288 	u32 read_reg;
289 	int irq, irq2, res = 0;
290 	unsigned long mem_size, irqflags = 0;
291 
292 	/* Grab the register range from the sdr controller in device tree */
293 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
294 						   "altr,sdr-syscon");
295 	if (IS_ERR(mc_vbase)) {
296 		edac_printk(KERN_ERR, EDAC_MC,
297 			    "regmap for altr,sdr-syscon lookup failed.\n");
298 		return -ENODEV;
299 	}
300 
301 	/* Check specific dependencies for the module */
302 	priv = device_get_match_data(&pdev->dev);
303 
304 	/* Validate the SDRAM controller has ECC enabled */
305 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
306 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
307 		edac_printk(KERN_ERR, EDAC_MC,
308 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
309 		return -ENODEV;
310 	}
311 
312 	/* Grab memory size from device tree. */
313 	mem_size = get_total_mem();
314 	if (!mem_size) {
315 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
316 		return -ENODEV;
317 	}
318 
319 	/* Ensure the SDRAM Interrupt is disabled */
320 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
321 			       priv->ecc_irq_en_mask, 0)) {
322 		edac_printk(KERN_ERR, EDAC_MC,
323 			    "Error disabling SDRAM ECC IRQ\n");
324 		return -ENODEV;
325 	}
326 
327 	/* Toggle to clear the SDRAM Error count */
328 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
329 			       priv->ecc_cnt_rst_mask,
330 			       priv->ecc_cnt_rst_mask)) {
331 		edac_printk(KERN_ERR, EDAC_MC,
332 			    "Error clearing SDRAM ECC count\n");
333 		return -ENODEV;
334 	}
335 
336 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
337 			       priv->ecc_cnt_rst_mask, 0)) {
338 		edac_printk(KERN_ERR, EDAC_MC,
339 			    "Error clearing SDRAM ECC count\n");
340 		return -ENODEV;
341 	}
342 
343 	irq = platform_get_irq(pdev, 0);
344 	if (irq < 0) {
345 		edac_printk(KERN_ERR, EDAC_MC,
346 			    "No irq %d in DT\n", irq);
347 		return irq;
348 	}
349 
350 	/* Arria10 has a 2nd IRQ */
351 	irq2 = platform_get_irq(pdev, 1);
352 
353 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
354 	layers[0].size = 1;
355 	layers[0].is_virt_csrow = true;
356 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
357 	layers[1].size = 1;
358 	layers[1].is_virt_csrow = false;
359 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
360 			    sizeof(struct altr_sdram_mc_data));
361 	if (!mci)
362 		return -ENOMEM;
363 
364 	mci->pdev = &pdev->dev;
365 	drvdata = mci->pvt_info;
366 	drvdata->mc_vbase = mc_vbase;
367 	drvdata->data = priv;
368 	platform_set_drvdata(pdev, mci);
369 
370 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
371 		edac_printk(KERN_ERR, EDAC_MC,
372 			    "Unable to get managed device resource\n");
373 		res = -ENOMEM;
374 		goto free;
375 	}
376 
377 	mci->mtype_cap = MEM_FLAG_DDR3;
378 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
379 	mci->edac_cap = EDAC_FLAG_SECDED;
380 	mci->mod_name = EDAC_MOD_STR;
381 	mci->ctl_name = dev_name(&pdev->dev);
382 	mci->scrub_mode = SCRUB_SW_SRC;
383 	mci->dev_name = dev_name(&pdev->dev);
384 
385 	dimm = *mci->dimms;
386 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
387 	dimm->grain = 8;
388 	dimm->dtype = DEV_X8;
389 	dimm->mtype = MEM_DDR3;
390 	dimm->edac_mode = EDAC_SECDED;
391 
392 	res = edac_mc_add_mc(mci);
393 	if (res < 0)
394 		goto err;
395 
396 	/* Only the Arria10 has separate IRQs */
397 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
398 		/* Arria10 specific initialization */
399 		res = a10_init(mc_vbase);
400 		if (res < 0)
401 			goto err2;
402 
403 		res = devm_request_irq(&pdev->dev, irq2,
404 				       altr_sdram_mc_err_handler,
405 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
406 		if (res < 0) {
407 			edac_mc_printk(mci, KERN_ERR,
408 				       "Unable to request irq %d\n", irq2);
409 			res = -ENODEV;
410 			goto err2;
411 		}
412 
413 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
414 		if (res < 0)
415 			goto err2;
416 
417 		irqflags = IRQF_SHARED;
418 	}
419 
420 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
421 			       irqflags, dev_name(&pdev->dev), mci);
422 	if (res < 0) {
423 		edac_mc_printk(mci, KERN_ERR,
424 			       "Unable to request irq %d\n", irq);
425 		res = -ENODEV;
426 		goto err2;
427 	}
428 
429 	/* Infrastructure ready - enable the IRQ */
430 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
431 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
432 		edac_mc_printk(mci, KERN_ERR,
433 			       "Error enabling SDRAM ECC IRQ\n");
434 		res = -ENODEV;
435 		goto err2;
436 	}
437 
438 	altr_sdr_mc_create_debugfs_nodes(mci);
439 
440 	devres_close_group(&pdev->dev, NULL);
441 
442 	return 0;
443 
444 err2:
445 	edac_mc_del_mc(&pdev->dev);
446 err:
447 	devres_release_group(&pdev->dev, NULL);
448 free:
449 	edac_mc_free(mci);
450 	edac_printk(KERN_ERR, EDAC_MC,
451 		    "EDAC Probe Failed; Error %d\n", res);
452 
453 	return res;
454 }
455 
altr_sdram_remove(struct platform_device * pdev)456 static void altr_sdram_remove(struct platform_device *pdev)
457 {
458 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
459 
460 	edac_mc_del_mc(&pdev->dev);
461 	edac_mc_free(mci);
462 	platform_set_drvdata(pdev, NULL);
463 }
464 
465 /*
466  * If you want to suspend, need to disable EDAC by removing it
467  * from the device tree or defconfig.
468  */
469 #ifdef CONFIG_PM
altr_sdram_prepare(struct device * dev)470 static int altr_sdram_prepare(struct device *dev)
471 {
472 	pr_err("Suspend not allowed when EDAC is enabled.\n");
473 
474 	return -EPERM;
475 }
476 
477 static const struct dev_pm_ops altr_sdram_pm_ops = {
478 	.prepare = altr_sdram_prepare,
479 };
480 #endif
481 
482 static struct platform_driver altr_sdram_edac_driver = {
483 	.probe = altr_sdram_probe,
484 	.remove = altr_sdram_remove,
485 	.driver = {
486 		.name = "altr_sdram_edac",
487 #ifdef CONFIG_PM
488 		.pm = &altr_sdram_pm_ops,
489 #endif
490 		.of_match_table = altr_sdram_ctrl_of_match,
491 	},
492 };
493 
494 module_platform_driver(altr_sdram_edac_driver);
495 
496 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
497 
498 /************************* EDAC Parent Probe *************************/
499 
500 static const struct of_device_id altr_edac_device_of_match[];
501 
502 static const struct of_device_id altr_edac_of_match[] = {
503 	{ .compatible = "altr,socfpga-ecc-manager" },
504 	{},
505 };
506 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
507 
altr_edac_probe(struct platform_device * pdev)508 static int altr_edac_probe(struct platform_device *pdev)
509 {
510 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
511 			     NULL, &pdev->dev);
512 	return 0;
513 }
514 
515 static struct platform_driver altr_edac_driver = {
516 	.probe =  altr_edac_probe,
517 	.driver = {
518 		.name = "socfpga_ecc_manager",
519 		.of_match_table = altr_edac_of_match,
520 	},
521 };
522 module_platform_driver(altr_edac_driver);
523 
524 /************************* EDAC Device Functions *************************/
525 
526 /*
527  * EDAC Device Functions (shared between various IPs).
528  * The discrete memories use the EDAC Device framework. The probe
529  * and error handling functions are very similar between memories
530  * so they are shared. The memory allocation and freeing for EDAC
531  * trigger testing are different for each memory.
532  */
533 
534 #ifdef CONFIG_EDAC_ALTERA_OCRAM
535 static const struct edac_device_prv_data ocramecc_data;
536 #endif
537 #ifdef CONFIG_EDAC_ALTERA_L2C
538 static const struct edac_device_prv_data l2ecc_data;
539 #endif
540 #ifdef CONFIG_EDAC_ALTERA_OCRAM
541 static const struct edac_device_prv_data a10_ocramecc_data;
542 #endif
543 #ifdef CONFIG_EDAC_ALTERA_L2C
544 static const struct edac_device_prv_data a10_l2ecc_data;
545 #endif
546 
altr_edac_device_handler(int irq,void * dev_id)547 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
548 {
549 	irqreturn_t ret_value = IRQ_NONE;
550 	struct edac_device_ctl_info *dci = dev_id;
551 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
552 	const struct edac_device_prv_data *priv = drvdata->data;
553 
554 	if (irq == drvdata->sb_irq) {
555 		if (priv->ce_clear_mask)
556 			writel(priv->ce_clear_mask, drvdata->base);
557 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
558 		ret_value = IRQ_HANDLED;
559 	} else if (irq == drvdata->db_irq) {
560 		if (priv->ue_clear_mask)
561 			writel(priv->ue_clear_mask, drvdata->base);
562 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
563 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
564 		ret_value = IRQ_HANDLED;
565 	} else {
566 		WARN_ON(1);
567 	}
568 
569 	return ret_value;
570 }
571 
572 static ssize_t __maybe_unused
altr_edac_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)573 altr_edac_device_trig(struct file *file, const char __user *user_buf,
574 		      size_t count, loff_t *ppos)
575 
576 {
577 	u32 *ptemp, i, error_mask;
578 	int result = 0;
579 	u8 trig_type;
580 	unsigned long flags;
581 	struct edac_device_ctl_info *edac_dci = file->private_data;
582 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
583 	const struct edac_device_prv_data *priv = drvdata->data;
584 	void *generic_ptr = edac_dci->dev;
585 
586 	if (!user_buf || get_user(trig_type, user_buf))
587 		return -EFAULT;
588 
589 	if (!priv->alloc_mem)
590 		return -ENOMEM;
591 
592 	/*
593 	 * Note that generic_ptr is initialized to the device * but in
594 	 * some alloc_functions, this is overridden and returns data.
595 	 */
596 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
597 	if (!ptemp) {
598 		edac_printk(KERN_ERR, EDAC_DEVICE,
599 			    "Inject: Buffer Allocation error\n");
600 		return -ENOMEM;
601 	}
602 
603 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
604 		error_mask = priv->ue_set_mask;
605 	else
606 		error_mask = priv->ce_set_mask;
607 
608 	edac_printk(KERN_ALERT, EDAC_DEVICE,
609 		    "Trigger Error Mask (0x%X)\n", error_mask);
610 
611 	local_irq_save(flags);
612 	/* write ECC corrupted data out. */
613 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
614 		/* Read data so we're in the correct state */
615 		rmb();
616 		if (READ_ONCE(ptemp[i]))
617 			result = -1;
618 		/* Toggle Error bit (it is latched), leave ECC enabled */
619 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
620 		writel(priv->ecc_enable_mask, (drvdata->base +
621 					       priv->set_err_ofst));
622 		ptemp[i] = i;
623 	}
624 	/* Ensure it has been written out */
625 	wmb();
626 	local_irq_restore(flags);
627 
628 	if (result)
629 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
630 
631 	/* Read out written data. ECC error caused here */
632 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
633 		if (READ_ONCE(ptemp[i]) != i)
634 			edac_printk(KERN_ERR, EDAC_DEVICE,
635 				    "Read doesn't match written data\n");
636 
637 	if (priv->free_mem)
638 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
639 
640 	return count;
641 }
642 
643 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
644 	.open = simple_open,
645 	.write = altr_edac_device_trig,
646 	.llseek = generic_file_llseek,
647 };
648 
649 static ssize_t __maybe_unused
650 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
651 			  size_t count, loff_t *ppos);
652 
653 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
654 	.open = simple_open,
655 	.write = altr_edac_a10_device_trig,
656 	.llseek = generic_file_llseek,
657 };
658 
659 static ssize_t __maybe_unused
660 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
661 			   size_t count, loff_t *ppos);
662 
663 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
664 	.open = simple_open,
665 	.write = altr_edac_a10_device_trig2,
666 	.llseek = generic_file_llseek,
667 };
668 
altr_create_edacdev_dbgfs(struct edac_device_ctl_info * edac_dci,const struct edac_device_prv_data * priv)669 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
670 				      const struct edac_device_prv_data *priv)
671 {
672 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
673 
674 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
675 		return;
676 
677 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
678 	if (!drvdata->debugfs_dir)
679 		return;
680 
681 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
682 				      drvdata->debugfs_dir, edac_dci,
683 				      priv->inject_fops))
684 		debugfs_remove_recursive(drvdata->debugfs_dir);
685 }
686 
687 static const struct of_device_id altr_edac_device_of_match[] = {
688 #ifdef CONFIG_EDAC_ALTERA_L2C
689 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
690 #endif
691 #ifdef CONFIG_EDAC_ALTERA_OCRAM
692 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
693 #endif
694 	{},
695 };
696 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
697 
698 /*
699  * altr_edac_device_probe()
700  *	This is a generic EDAC device driver that will support
701  *	various Altera memory devices such as the L2 cache ECC and
702  *	OCRAM ECC as well as the memories for other peripherals.
703  *	Module specific initialization is done by passing the
704  *	function index in the device tree.
705  */
altr_edac_device_probe(struct platform_device * pdev)706 static int altr_edac_device_probe(struct platform_device *pdev)
707 {
708 	struct edac_device_ctl_info *dci;
709 	struct altr_edac_device_dev *drvdata;
710 	struct resource *r;
711 	int res = 0;
712 	struct device_node *np = pdev->dev.of_node;
713 	char *ecc_name = (char *)np->name;
714 	static int dev_instance;
715 
716 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
717 		edac_printk(KERN_ERR, EDAC_DEVICE,
718 			    "Unable to open devm\n");
719 		return -ENOMEM;
720 	}
721 
722 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
723 	if (!r) {
724 		edac_printk(KERN_ERR, EDAC_DEVICE,
725 			    "Unable to get mem resource\n");
726 		res = -ENODEV;
727 		goto fail;
728 	}
729 
730 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
731 				     dev_name(&pdev->dev))) {
732 		edac_printk(KERN_ERR, EDAC_DEVICE,
733 			    "%s:Error requesting mem region\n", ecc_name);
734 		res = -EBUSY;
735 		goto fail;
736 	}
737 
738 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
739 					 1, ecc_name, 1, 0, dev_instance++);
740 
741 	if (!dci) {
742 		edac_printk(KERN_ERR, EDAC_DEVICE,
743 			    "%s: Unable to allocate EDAC device\n", ecc_name);
744 		res = -ENOMEM;
745 		goto fail;
746 	}
747 
748 	drvdata = dci->pvt_info;
749 	dci->dev = &pdev->dev;
750 	platform_set_drvdata(pdev, dci);
751 	drvdata->edac_dev_name = ecc_name;
752 
753 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
754 	if (!drvdata->base) {
755 		res = -ENOMEM;
756 		goto fail1;
757 	}
758 
759 	/* Get driver specific data for this EDAC device */
760 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
761 
762 	/* Check specific dependencies for the module */
763 	if (drvdata->data->setup) {
764 		res = drvdata->data->setup(drvdata);
765 		if (res)
766 			goto fail1;
767 	}
768 
769 	drvdata->sb_irq = platform_get_irq(pdev, 0);
770 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
771 			       altr_edac_device_handler,
772 			       0, dev_name(&pdev->dev), dci);
773 	if (res)
774 		goto fail1;
775 
776 	drvdata->db_irq = platform_get_irq(pdev, 1);
777 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
778 			       altr_edac_device_handler,
779 			       0, dev_name(&pdev->dev), dci);
780 	if (res)
781 		goto fail1;
782 
783 	dci->mod_name = "Altera ECC Manager";
784 	dci->dev_name = drvdata->edac_dev_name;
785 
786 	res = edac_device_add_device(dci);
787 	if (res)
788 		goto fail1;
789 
790 	altr_create_edacdev_dbgfs(dci, drvdata->data);
791 
792 	devres_close_group(&pdev->dev, NULL);
793 
794 	return 0;
795 
796 fail1:
797 	edac_device_free_ctl_info(dci);
798 fail:
799 	devres_release_group(&pdev->dev, NULL);
800 	edac_printk(KERN_ERR, EDAC_DEVICE,
801 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
802 
803 	return res;
804 }
805 
altr_edac_device_remove(struct platform_device * pdev)806 static void altr_edac_device_remove(struct platform_device *pdev)
807 {
808 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
809 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
810 
811 	debugfs_remove_recursive(drvdata->debugfs_dir);
812 	edac_device_del_device(&pdev->dev);
813 	edac_device_free_ctl_info(dci);
814 }
815 
816 static struct platform_driver altr_edac_device_driver = {
817 	.probe =  altr_edac_device_probe,
818 	.remove = altr_edac_device_remove,
819 	.driver = {
820 		.name = "altr_edac_device",
821 		.of_match_table = altr_edac_device_of_match,
822 	},
823 };
824 module_platform_driver(altr_edac_device_driver);
825 
826 /******************* Arria10 Device ECC Shared Functions *****************/
827 
828 /*
829  *  Test for memory's ECC dependencies upon entry because platform specific
830  *  startup should have initialized the memory and enabled the ECC.
831  *  Can't turn on ECC here because accessing un-initialized memory will
832  *  cause CE/UE errors possibly causing an ABORT.
833  */
834 static int __maybe_unused
altr_check_ecc_deps(struct altr_edac_device_dev * device)835 altr_check_ecc_deps(struct altr_edac_device_dev *device)
836 {
837 	void __iomem  *base = device->base;
838 	const struct edac_device_prv_data *prv = device->data;
839 
840 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
841 		return 0;
842 
843 	edac_printk(KERN_ERR, EDAC_DEVICE,
844 		    "%s: No ECC present or ECC disabled.\n",
845 		    device->edac_dev_name);
846 	return -ENODEV;
847 }
848 
altr_edac_a10_ecc_irq(int irq,void * dev_id)849 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
850 {
851 	struct altr_edac_device_dev *dci = dev_id;
852 	void __iomem  *base = dci->base;
853 
854 	if (irq == dci->sb_irq) {
855 		writel(ALTR_A10_ECC_SERRPENA,
856 		       base + ALTR_A10_ECC_INTSTAT_OFST);
857 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
858 
859 		return IRQ_HANDLED;
860 	} else if (irq == dci->db_irq) {
861 		writel(ALTR_A10_ECC_DERRPENA,
862 		       base + ALTR_A10_ECC_INTSTAT_OFST);
863 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
864 		if (dci->data->panic)
865 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
866 
867 		return IRQ_HANDLED;
868 	}
869 
870 	WARN_ON(1);
871 
872 	return IRQ_NONE;
873 }
874 
875 /******************* Arria10 Memory Buffer Functions *********************/
876 
a10_get_irq_mask(struct device_node * np)877 static inline int a10_get_irq_mask(struct device_node *np)
878 {
879 	int irq;
880 	const u32 *handle = of_get_property(np, "interrupts", NULL);
881 
882 	if (!handle)
883 		return -ENODEV;
884 	irq = be32_to_cpup(handle);
885 	return irq;
886 }
887 
ecc_set_bits(u32 bit_mask,void __iomem * ioaddr)888 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
889 {
890 	u32 value = readl(ioaddr);
891 
892 	value |= bit_mask;
893 	writel(value, ioaddr);
894 }
895 
ecc_clear_bits(u32 bit_mask,void __iomem * ioaddr)896 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
897 {
898 	u32 value = readl(ioaddr);
899 
900 	value &= ~bit_mask;
901 	writel(value, ioaddr);
902 }
903 
ecc_test_bits(u32 bit_mask,void __iomem * ioaddr)904 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
905 {
906 	u32 value = readl(ioaddr);
907 
908 	return (value & bit_mask) ? 1 : 0;
909 }
910 
911 /*
912  * This function uses the memory initialization block in the Arria10 ECC
913  * controller to initialize/clear the entire memory data and ECC data.
914  */
altr_init_memory_port(void __iomem * ioaddr,int port)915 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
916 {
917 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
918 	u32 init_mask, stat_mask, clear_mask;
919 	int ret = 0;
920 
921 	if (port) {
922 		init_mask = ALTR_A10_ECC_INITB;
923 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
924 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
925 	} else {
926 		init_mask = ALTR_A10_ECC_INITA;
927 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
928 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
929 	}
930 
931 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
932 	while (limit--) {
933 		if (ecc_test_bits(stat_mask,
934 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
935 			break;
936 		udelay(1);
937 	}
938 	if (limit < 0)
939 		ret = -EBUSY;
940 
941 	/* Clear any pending ECC interrupts */
942 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
943 
944 	return ret;
945 }
946 
947 static __init int __maybe_unused
altr_init_a10_ecc_block(struct device_node * np,u32 irq_mask,u32 ecc_ctrl_en_mask,bool dual_port)948 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
949 			u32 ecc_ctrl_en_mask, bool dual_port)
950 {
951 	int ret = 0;
952 	void __iomem *ecc_block_base;
953 	struct regmap *ecc_mgr_map;
954 	char *ecc_name;
955 	struct device_node *np_eccmgr;
956 
957 	ecc_name = (char *)np->name;
958 
959 	/* Get the ECC Manager - parent of the device EDACs */
960 	np_eccmgr = of_get_parent(np);
961 
962 	ecc_mgr_map =
963 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
964 						     "altr,sysmgr-syscon");
965 
966 	of_node_put(np_eccmgr);
967 	if (IS_ERR(ecc_mgr_map)) {
968 		edac_printk(KERN_ERR, EDAC_DEVICE,
969 			    "Unable to get syscon altr,sysmgr-syscon\n");
970 		return -ENODEV;
971 	}
972 
973 	/* Map the ECC Block */
974 	ecc_block_base = of_iomap(np, 0);
975 	if (!ecc_block_base) {
976 		edac_printk(KERN_ERR, EDAC_DEVICE,
977 			    "Unable to map %s ECC block\n", ecc_name);
978 		return -ENODEV;
979 	}
980 
981 	/* Disable ECC */
982 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
983 	writel(ALTR_A10_ECC_SERRINTEN,
984 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
985 	ecc_clear_bits(ecc_ctrl_en_mask,
986 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
987 	/* Ensure all writes complete */
988 	wmb();
989 	/* Use HW initialization block to initialize memory for ECC */
990 	ret = altr_init_memory_port(ecc_block_base, 0);
991 	if (ret) {
992 		edac_printk(KERN_ERR, EDAC_DEVICE,
993 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
994 		goto out;
995 	}
996 
997 	if (dual_port) {
998 		ret = altr_init_memory_port(ecc_block_base, 1);
999 		if (ret) {
1000 			edac_printk(KERN_ERR, EDAC_DEVICE,
1001 				    "ECC: cannot init %s PORTB memory\n",
1002 				    ecc_name);
1003 			goto out;
1004 		}
1005 	}
1006 
1007 	/* Enable ECC */
1008 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1009 					ALTR_A10_ECC_CTRL_OFST));
1010 	writel(ALTR_A10_ECC_SERRINTEN,
1011 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1012 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1013 	/* Ensure all writes complete */
1014 	wmb();
1015 out:
1016 	iounmap(ecc_block_base);
1017 	return ret;
1018 }
1019 
1020 static int validate_parent_available(struct device_node *np);
1021 static const struct of_device_id altr_edac_a10_device_of_match[];
altr_init_a10_ecc_device_type(char * compat)1022 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1023 {
1024 	int irq;
1025 	struct device_node *child, *np;
1026 
1027 	np = of_find_compatible_node(NULL, NULL,
1028 				     "altr,socfpga-a10-ecc-manager");
1029 	if (!np) {
1030 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1031 		return -ENODEV;
1032 	}
1033 
1034 	for_each_child_of_node(np, child) {
1035 		const struct of_device_id *pdev_id;
1036 		const struct edac_device_prv_data *prv;
1037 
1038 		if (!of_device_is_available(child))
1039 			continue;
1040 		if (!of_device_is_compatible(child, compat))
1041 			continue;
1042 
1043 		if (validate_parent_available(child))
1044 			continue;
1045 
1046 		irq = a10_get_irq_mask(child);
1047 		if (irq < 0)
1048 			continue;
1049 
1050 		/* Get matching node and check for valid result */
1051 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1052 		if (IS_ERR_OR_NULL(pdev_id))
1053 			continue;
1054 
1055 		/* Validate private data pointer before dereferencing */
1056 		prv = pdev_id->data;
1057 		if (!prv)
1058 			continue;
1059 
1060 		altr_init_a10_ecc_block(child, BIT(irq),
1061 					prv->ecc_enable_mask, 0);
1062 	}
1063 
1064 	of_node_put(np);
1065 	return 0;
1066 }
1067 
1068 /*********************** SDRAM EDAC Device Functions *********************/
1069 
1070 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1071 
1072 /*
1073  * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1074  * register if ECC is enabled. Linux checks the ECC Enable register to
1075  * determine ECC status.
1076  * Use an SMC call (which always works) to determine ECC enablement.
1077  */
altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev * device)1078 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1079 {
1080 	const struct edac_device_prv_data *prv = device->data;
1081 	unsigned long sdram_ecc_addr;
1082 	struct arm_smccc_res result;
1083 	struct device_node *np;
1084 	phys_addr_t sdram_addr;
1085 	u32 read_reg;
1086 	int ret;
1087 
1088 	np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1089 	if (!np)
1090 		goto sdram_err;
1091 
1092 	sdram_addr = of_translate_address(np, of_get_address(np, 0,
1093 							     NULL, NULL));
1094 	of_node_put(np);
1095 	sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1096 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1097 		      0, 0, 0, 0, 0, 0, &result);
1098 	read_reg = (unsigned int)result.a1;
1099 	ret = (int)result.a0;
1100 	if (!ret && (read_reg & prv->ecc_enable_mask))
1101 		return 0;
1102 
1103 sdram_err:
1104 	edac_printk(KERN_ERR, EDAC_DEVICE,
1105 		    "%s: No ECC present or ECC disabled.\n",
1106 		    device->edac_dev_name);
1107 	return -ENODEV;
1108 }
1109 
1110 static const struct edac_device_prv_data s10_sdramecc_data = {
1111 	.setup = altr_s10_sdram_check_ecc_deps,
1112 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1113 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1114 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1115 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1116 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1117 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1118 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1119 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1120 	.inject_fops = &altr_edac_a10_device_inject_fops,
1121 };
1122 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1123 
1124 /*********************** OCRAM EDAC Device Functions *********************/
1125 
1126 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1127 
ocram_alloc_mem(size_t size,void ** other)1128 static void *ocram_alloc_mem(size_t size, void **other)
1129 {
1130 	struct device_node *np;
1131 	struct gen_pool *gp;
1132 	void *sram_addr;
1133 
1134 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1135 	if (!np)
1136 		return NULL;
1137 
1138 	gp = of_gen_pool_get(np, "iram", 0);
1139 	of_node_put(np);
1140 	if (!gp)
1141 		return NULL;
1142 
1143 	sram_addr = (void *)gen_pool_alloc(gp, size);
1144 	if (!sram_addr)
1145 		return NULL;
1146 
1147 	memset(sram_addr, 0, size);
1148 	/* Ensure data is written out */
1149 	wmb();
1150 
1151 	/* Remember this handle for freeing  later */
1152 	*other = gp;
1153 
1154 	return sram_addr;
1155 }
1156 
ocram_free_mem(void * p,size_t size,void * other)1157 static void ocram_free_mem(void *p, size_t size, void *other)
1158 {
1159 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1160 }
1161 
1162 static const struct edac_device_prv_data ocramecc_data = {
1163 	.setup = altr_check_ecc_deps,
1164 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1165 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1166 	.alloc_mem = ocram_alloc_mem,
1167 	.free_mem = ocram_free_mem,
1168 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1169 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1170 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1171 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1172 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1173 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1174 	.inject_fops = &altr_edac_device_inject_fops,
1175 };
1176 
1177 static int __maybe_unused
altr_check_ocram_deps_init(struct altr_edac_device_dev * device)1178 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1179 {
1180 	void __iomem  *base = device->base;
1181 	int ret;
1182 
1183 	ret = altr_check_ecc_deps(device);
1184 	if (ret)
1185 		return ret;
1186 
1187 	/* Verify OCRAM has been initialized */
1188 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1189 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1190 		return -ENODEV;
1191 
1192 	/* Enable IRQ on Single Bit Error */
1193 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1194 	/* Ensure all writes complete */
1195 	wmb();
1196 
1197 	return 0;
1198 }
1199 
1200 static const struct edac_device_prv_data a10_ocramecc_data = {
1201 	.setup = altr_check_ocram_deps_init,
1202 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1203 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1204 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1205 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1206 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1207 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1208 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1209 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1210 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1211 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1212 	/*
1213 	 * OCRAM panic on uncorrectable error because sleep/resume
1214 	 * functions and FPGA contents are stored in OCRAM. Prefer
1215 	 * a kernel panic over executing/loading corrupted data.
1216 	 */
1217 	.panic = true,
1218 };
1219 
1220 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1221 
1222 /********************* L2 Cache EDAC Device Functions ********************/
1223 
1224 #ifdef CONFIG_EDAC_ALTERA_L2C
1225 
l2_alloc_mem(size_t size,void ** other)1226 static void *l2_alloc_mem(size_t size, void **other)
1227 {
1228 	struct device *dev = *other;
1229 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1230 
1231 	if (!ptemp)
1232 		return NULL;
1233 
1234 	/* Make sure everything is written out */
1235 	wmb();
1236 
1237 	/*
1238 	 * Clean all cache levels up to LoC (includes L2)
1239 	 * This ensures the corrupted data is written into
1240 	 * L2 cache for readback test (which causes ECC error).
1241 	 */
1242 	flush_cache_all();
1243 
1244 	return ptemp;
1245 }
1246 
l2_free_mem(void * p,size_t size,void * other)1247 static void l2_free_mem(void *p, size_t size, void *other)
1248 {
1249 	struct device *dev = other;
1250 
1251 	if (dev && p)
1252 		devm_kfree(dev, p);
1253 }
1254 
1255 /*
1256  * altr_l2_check_deps()
1257  *	Test for L2 cache ECC dependencies upon entry because
1258  *	platform specific startup should have initialized the L2
1259  *	memory and enabled the ECC.
1260  *	Bail if ECC is not enabled.
1261  *	Note that L2 Cache Enable is forced at build time.
1262  */
altr_l2_check_deps(struct altr_edac_device_dev * device)1263 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1264 {
1265 	void __iomem *base = device->base;
1266 	const struct edac_device_prv_data *prv = device->data;
1267 
1268 	if ((readl(base) & prv->ecc_enable_mask) ==
1269 	     prv->ecc_enable_mask)
1270 		return 0;
1271 
1272 	edac_printk(KERN_ERR, EDAC_DEVICE,
1273 		    "L2: No ECC present, or ECC disabled\n");
1274 	return -ENODEV;
1275 }
1276 
altr_edac_a10_l2_irq(int irq,void * dev_id)1277 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1278 {
1279 	struct altr_edac_device_dev *dci = dev_id;
1280 
1281 	if (irq == dci->sb_irq) {
1282 		regmap_write(dci->edac->ecc_mgr_map,
1283 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1284 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1285 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1286 
1287 		return IRQ_HANDLED;
1288 	} else if (irq == dci->db_irq) {
1289 		regmap_write(dci->edac->ecc_mgr_map,
1290 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1291 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1292 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1293 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1294 
1295 		return IRQ_HANDLED;
1296 	}
1297 
1298 	WARN_ON(1);
1299 
1300 	return IRQ_NONE;
1301 }
1302 
1303 static const struct edac_device_prv_data l2ecc_data = {
1304 	.setup = altr_l2_check_deps,
1305 	.ce_clear_mask = 0,
1306 	.ue_clear_mask = 0,
1307 	.alloc_mem = l2_alloc_mem,
1308 	.free_mem = l2_free_mem,
1309 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1310 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1311 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1312 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1313 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1314 	.inject_fops = &altr_edac_device_inject_fops,
1315 };
1316 
1317 static const struct edac_device_prv_data a10_l2ecc_data = {
1318 	.setup = altr_l2_check_deps,
1319 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1320 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1321 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1322 	.alloc_mem = l2_alloc_mem,
1323 	.free_mem = l2_free_mem,
1324 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1325 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1326 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1327 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1328 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1329 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1330 	.inject_fops = &altr_edac_device_inject_fops,
1331 };
1332 
1333 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1334 
1335 /********************* Ethernet Device Functions ********************/
1336 
1337 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1338 
socfpga_init_ethernet_ecc(struct altr_edac_device_dev * dev)1339 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1340 {
1341 	int ret;
1342 
1343 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1344 	if (ret)
1345 		return ret;
1346 
1347 	return altr_check_ecc_deps(dev);
1348 }
1349 
1350 static const struct edac_device_prv_data a10_enetecc_data = {
1351 	.setup = socfpga_init_ethernet_ecc,
1352 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1353 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1354 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1355 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1356 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1357 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1358 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1359 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1360 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1361 };
1362 
1363 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1364 
1365 /********************** NAND Device Functions **********************/
1366 
1367 #ifdef CONFIG_EDAC_ALTERA_NAND
1368 
socfpga_init_nand_ecc(struct altr_edac_device_dev * device)1369 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1370 {
1371 	int ret;
1372 
1373 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1374 	if (ret)
1375 		return ret;
1376 
1377 	return altr_check_ecc_deps(device);
1378 }
1379 
1380 static const struct edac_device_prv_data a10_nandecc_data = {
1381 	.setup = socfpga_init_nand_ecc,
1382 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1383 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1384 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1385 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1386 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1387 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1388 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1389 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1390 	.inject_fops = &altr_edac_a10_device_inject_fops,
1391 };
1392 
1393 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1394 
1395 /********************** DMA Device Functions **********************/
1396 
1397 #ifdef CONFIG_EDAC_ALTERA_DMA
1398 
socfpga_init_dma_ecc(struct altr_edac_device_dev * device)1399 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1400 {
1401 	int ret;
1402 
1403 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1404 	if (ret)
1405 		return ret;
1406 
1407 	return altr_check_ecc_deps(device);
1408 }
1409 
1410 static const struct edac_device_prv_data a10_dmaecc_data = {
1411 	.setup = socfpga_init_dma_ecc,
1412 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1413 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1414 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1415 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1416 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1417 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1418 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1419 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1420 	.inject_fops = &altr_edac_a10_device_inject_fops,
1421 };
1422 
1423 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1424 
1425 /********************** USB Device Functions **********************/
1426 
1427 #ifdef CONFIG_EDAC_ALTERA_USB
1428 
socfpga_init_usb_ecc(struct altr_edac_device_dev * device)1429 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1430 {
1431 	int ret;
1432 
1433 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1434 	if (ret)
1435 		return ret;
1436 
1437 	return altr_check_ecc_deps(device);
1438 }
1439 
1440 static const struct edac_device_prv_data a10_usbecc_data = {
1441 	.setup = socfpga_init_usb_ecc,
1442 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1443 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1444 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1445 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1446 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1447 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1448 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1449 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1450 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1451 };
1452 
1453 #endif	/* CONFIG_EDAC_ALTERA_USB */
1454 
1455 /********************** QSPI Device Functions **********************/
1456 
1457 #ifdef CONFIG_EDAC_ALTERA_QSPI
1458 
socfpga_init_qspi_ecc(struct altr_edac_device_dev * device)1459 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1460 {
1461 	int ret;
1462 
1463 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1464 	if (ret)
1465 		return ret;
1466 
1467 	return altr_check_ecc_deps(device);
1468 }
1469 
1470 static const struct edac_device_prv_data a10_qspiecc_data = {
1471 	.setup = socfpga_init_qspi_ecc,
1472 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1473 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1474 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1475 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1476 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1477 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1478 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1479 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1480 	.inject_fops = &altr_edac_a10_device_inject_fops,
1481 };
1482 
1483 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1484 
1485 /********************* SDMMC Device Functions **********************/
1486 
1487 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1488 
1489 static const struct edac_device_prv_data a10_sdmmceccb_data;
altr_portb_setup(struct altr_edac_device_dev * device)1490 static int altr_portb_setup(struct altr_edac_device_dev *device)
1491 {
1492 	struct edac_device_ctl_info *dci;
1493 	struct altr_edac_device_dev *altdev;
1494 	char *ecc_name = "sdmmcb-ecc";
1495 	int edac_idx, rc;
1496 	struct device_node *np;
1497 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1498 
1499 	rc = altr_check_ecc_deps(device);
1500 	if (rc)
1501 		return rc;
1502 
1503 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1504 	if (!np) {
1505 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1506 		return -ENODEV;
1507 	}
1508 
1509 	/* Create the PortB EDAC device */
1510 	edac_idx = edac_device_alloc_index();
1511 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1512 					 ecc_name, 1, 0, edac_idx);
1513 	if (!dci) {
1514 		edac_printk(KERN_ERR, EDAC_DEVICE,
1515 			    "%s: Unable to allocate PortB EDAC device\n",
1516 			    ecc_name);
1517 		return -ENOMEM;
1518 	}
1519 
1520 	/* Initialize the PortB EDAC device structure from PortA structure */
1521 	altdev = dci->pvt_info;
1522 	*altdev = *device;
1523 
1524 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1525 		return -ENOMEM;
1526 
1527 	/* Update PortB specific values */
1528 	altdev->edac_dev_name = ecc_name;
1529 	altdev->edac_idx = edac_idx;
1530 	altdev->edac_dev = dci;
1531 	altdev->data = prv;
1532 	dci->dev = &altdev->ddev;
1533 	dci->ctl_name = "Altera ECC Manager";
1534 	dci->mod_name = ecc_name;
1535 	dci->dev_name = ecc_name;
1536 
1537 	/*
1538 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1539 	 *
1540 	 * FIXME: Instead of ifdefs with different architectures the driver
1541 	 *        should properly use compatibles.
1542 	 */
1543 #ifdef CONFIG_64BIT
1544 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1545 #else
1546 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1547 #endif
1548 	if (!altdev->sb_irq) {
1549 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1550 		rc = -ENODEV;
1551 		goto err_release_group_1;
1552 	}
1553 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1554 			      prv->ecc_irq_handler,
1555 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1556 			      ecc_name, altdev);
1557 	if (rc) {
1558 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1559 		goto err_release_group_1;
1560 	}
1561 
1562 #ifdef CONFIG_64BIT
1563 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1564 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1565 	if (rc) {
1566 		edac_printk(KERN_ERR, EDAC_DEVICE,
1567 			    "Error PortB DBIRQ alloc\n");
1568 		goto err_release_group_1;
1569 	}
1570 #else
1571 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1572 	if (!altdev->db_irq) {
1573 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1574 		rc = -ENODEV;
1575 		goto err_release_group_1;
1576 	}
1577 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1578 			      prv->ecc_irq_handler,
1579 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1580 			      ecc_name, altdev);
1581 	if (rc) {
1582 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1583 		goto err_release_group_1;
1584 	}
1585 #endif
1586 
1587 	rc = edac_device_add_device(dci);
1588 	if (rc) {
1589 		edac_printk(KERN_ERR, EDAC_DEVICE,
1590 			    "edac_device_add_device portB failed\n");
1591 		rc = -ENOMEM;
1592 		goto err_release_group_1;
1593 	}
1594 	altr_create_edacdev_dbgfs(dci, prv);
1595 
1596 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1597 
1598 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1599 
1600 	return 0;
1601 
1602 err_release_group_1:
1603 	edac_device_free_ctl_info(dci);
1604 	devres_release_group(&altdev->ddev, altr_portb_setup);
1605 	edac_printk(KERN_ERR, EDAC_DEVICE,
1606 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1607 	return rc;
1608 }
1609 
socfpga_init_sdmmc_ecc(struct altr_edac_device_dev * device)1610 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1611 {
1612 	int rc = -ENODEV;
1613 	struct device_node *child;
1614 
1615 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1616 	if (!child)
1617 		return -ENODEV;
1618 
1619 	if (!of_device_is_available(child))
1620 		goto exit;
1621 
1622 	if (validate_parent_available(child))
1623 		goto exit;
1624 
1625 	/* Init portB */
1626 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1627 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1628 	if (rc)
1629 		goto exit;
1630 
1631 	/* Setup portB */
1632 	return altr_portb_setup(device);
1633 
1634 exit:
1635 	of_node_put(child);
1636 	return rc;
1637 }
1638 
altr_edac_a10_ecc_irq_portb(int irq,void * dev_id)1639 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1640 {
1641 	struct altr_edac_device_dev *ad = dev_id;
1642 	void __iomem  *base = ad->base;
1643 	const struct edac_device_prv_data *priv = ad->data;
1644 
1645 	if (irq == ad->sb_irq) {
1646 		writel(priv->ce_clear_mask,
1647 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1648 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1649 		return IRQ_HANDLED;
1650 	} else if (irq == ad->db_irq) {
1651 		writel(priv->ue_clear_mask,
1652 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1653 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1654 		return IRQ_HANDLED;
1655 	}
1656 
1657 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1658 
1659 	return IRQ_NONE;
1660 }
1661 
1662 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1663 	.setup = socfpga_init_sdmmc_ecc,
1664 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1665 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1666 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1667 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1668 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1669 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1670 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1671 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1672 	.inject_fops = &altr_edac_a10_device_inject_fops,
1673 };
1674 
1675 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1676 	.setup = socfpga_init_sdmmc_ecc,
1677 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1678 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1679 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1680 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1681 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1682 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1683 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1684 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1685 	.inject_fops = &altr_edac_a10_device_inject_fops,
1686 };
1687 
1688 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1689 
1690 /********************* Arria10 EDAC Device Functions *************************/
1691 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1692 #ifdef CONFIG_EDAC_ALTERA_L2C
1693 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1694 #endif
1695 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1696 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1697 	  .data = &a10_ocramecc_data },
1698 #endif
1699 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1700 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1701 	  .data = &a10_enetecc_data },
1702 #endif
1703 #ifdef CONFIG_EDAC_ALTERA_NAND
1704 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1705 #endif
1706 #ifdef CONFIG_EDAC_ALTERA_DMA
1707 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1708 #endif
1709 #ifdef CONFIG_EDAC_ALTERA_USB
1710 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1711 #endif
1712 #ifdef CONFIG_EDAC_ALTERA_QSPI
1713 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1714 #endif
1715 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1716 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1717 #endif
1718 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1719 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1720 #endif
1721 	{},
1722 };
1723 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1724 
1725 /*
1726  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1727  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1728  * manager manages the IRQs and the children.
1729  * Based on xgene_edac.c peripheral code.
1730  */
1731 
1732 static ssize_t __maybe_unused
altr_edac_a10_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1733 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1734 			  size_t count, loff_t *ppos)
1735 {
1736 	struct edac_device_ctl_info *edac_dci = file->private_data;
1737 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1738 	const struct edac_device_prv_data *priv = drvdata->data;
1739 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1740 	unsigned long flags;
1741 	u8 trig_type;
1742 
1743 	if (!user_buf || get_user(trig_type, user_buf))
1744 		return -EFAULT;
1745 
1746 	local_irq_save(flags);
1747 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1748 		writew(priv->ue_set_mask, set_addr);
1749 	else
1750 		writew(priv->ce_set_mask, set_addr);
1751 
1752 	/* Ensure the interrupt test bits are set */
1753 	wmb();
1754 	local_irq_restore(flags);
1755 
1756 	return count;
1757 }
1758 
1759 /*
1760  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1761  * slightly. A few Arria10 peripherals can use this injection function.
1762  * Inject the error into the memory and then readback to trigger the IRQ.
1763  */
1764 static ssize_t __maybe_unused
altr_edac_a10_device_trig2(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1765 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1766 			   size_t count, loff_t *ppos)
1767 {
1768 	struct edac_device_ctl_info *edac_dci = file->private_data;
1769 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1770 	const struct edac_device_prv_data *priv = drvdata->data;
1771 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1772 	unsigned long flags;
1773 	u8 trig_type;
1774 
1775 	if (!user_buf || get_user(trig_type, user_buf))
1776 		return -EFAULT;
1777 
1778 	local_irq_save(flags);
1779 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1780 		writew(priv->ue_set_mask, set_addr);
1781 	} else {
1782 		/* Setup read/write of 4 bytes */
1783 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1784 		/* Setup Address to 0 */
1785 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1786 		/* Setup accctrl to read & ecc & data override */
1787 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1788 		/* Kick it. */
1789 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1790 		/* Setup write for single bit change */
1791 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1792 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1793 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1794 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1795 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1796 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1797 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1798 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1799 
1800 		/* Copy Read ECC to Write ECC */
1801 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1802 		       drvdata->base + ECC_BLK_WECC0_OFST);
1803 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1804 		       drvdata->base + ECC_BLK_WECC1_OFST);
1805 		/* Setup accctrl to write & ecc override & data override */
1806 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1807 		/* Kick it. */
1808 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1809 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1810 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1811 		/* Kick it. */
1812 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1813 	}
1814 
1815 	/* Ensure the interrupt test bits are set */
1816 	wmb();
1817 	local_irq_restore(flags);
1818 
1819 	return count;
1820 }
1821 
altr_edac_a10_irq_handler(struct irq_desc * desc)1822 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1823 {
1824 	int dberr, bit, sm_offset, irq_status;
1825 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1826 	struct irq_chip *chip = irq_desc_get_chip(desc);
1827 	int irq = irq_desc_get_irq(desc);
1828 	unsigned long bits;
1829 
1830 	dberr = (irq == edac->db_irq) ? 1 : 0;
1831 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1832 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1833 
1834 	chained_irq_enter(chip, desc);
1835 
1836 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1837 
1838 	bits = irq_status;
1839 	for_each_set_bit(bit, &bits, 32)
1840 		generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1841 
1842 	chained_irq_exit(chip, desc);
1843 }
1844 
validate_parent_available(struct device_node * np)1845 static int validate_parent_available(struct device_node *np)
1846 {
1847 	struct device_node *parent;
1848 	int ret = 0;
1849 
1850 	/* SDRAM must be present for Linux (implied parent) */
1851 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1852 		return 0;
1853 
1854 	/* Ensure parent device is enabled if parent node exists */
1855 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1856 	if (parent && !of_device_is_available(parent))
1857 		ret = -ENODEV;
1858 
1859 	of_node_put(parent);
1860 	return ret;
1861 }
1862 
get_s10_sdram_edac_resource(struct device_node * np,struct resource * res)1863 static int get_s10_sdram_edac_resource(struct device_node *np,
1864 				       struct resource *res)
1865 {
1866 	struct device_node *parent;
1867 	int ret;
1868 
1869 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1870 	if (!parent)
1871 		return -ENODEV;
1872 
1873 	ret = of_address_to_resource(parent, 0, res);
1874 	of_node_put(parent);
1875 
1876 	return ret;
1877 }
1878 
altr_edac_a10_device_add(struct altr_arria10_edac * edac,struct device_node * np)1879 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1880 				    struct device_node *np)
1881 {
1882 	struct edac_device_ctl_info *dci;
1883 	struct altr_edac_device_dev *altdev;
1884 	char *ecc_name = (char *)np->name;
1885 	struct resource res;
1886 	int edac_idx;
1887 	int rc = 0;
1888 	const struct edac_device_prv_data *prv;
1889 	/* Get matching node and check for valid result */
1890 	const struct of_device_id *pdev_id =
1891 		of_match_node(altr_edac_a10_device_of_match, np);
1892 	if (IS_ERR_OR_NULL(pdev_id))
1893 		return -ENODEV;
1894 
1895 	/* Get driver specific data for this EDAC device */
1896 	prv = pdev_id->data;
1897 	if (IS_ERR_OR_NULL(prv))
1898 		return -ENODEV;
1899 
1900 	if (validate_parent_available(np))
1901 		return -ENODEV;
1902 
1903 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1904 		return -ENOMEM;
1905 
1906 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1907 		rc = get_s10_sdram_edac_resource(np, &res);
1908 	else
1909 		rc = of_address_to_resource(np, 0, &res);
1910 
1911 	if (rc < 0) {
1912 		edac_printk(KERN_ERR, EDAC_DEVICE,
1913 			    "%s: no resource address\n", ecc_name);
1914 		goto err_release_group;
1915 	}
1916 
1917 	edac_idx = edac_device_alloc_index();
1918 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1919 					 1, ecc_name, 1, 0, edac_idx);
1920 
1921 	if (!dci) {
1922 		edac_printk(KERN_ERR, EDAC_DEVICE,
1923 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1924 		rc = -ENOMEM;
1925 		goto err_release_group;
1926 	}
1927 
1928 	altdev = dci->pvt_info;
1929 	dci->dev = edac->dev;
1930 	altdev->edac_dev_name = ecc_name;
1931 	altdev->edac_idx = edac_idx;
1932 	altdev->edac = edac;
1933 	altdev->edac_dev = dci;
1934 	altdev->data = prv;
1935 	altdev->ddev = *edac->dev;
1936 	dci->dev = &altdev->ddev;
1937 	dci->ctl_name = "Altera ECC Manager";
1938 	dci->mod_name = ecc_name;
1939 	dci->dev_name = ecc_name;
1940 
1941 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1942 	if (IS_ERR(altdev->base)) {
1943 		rc = PTR_ERR(altdev->base);
1944 		goto err_release_group1;
1945 	}
1946 
1947 	/* Check specific dependencies for the module */
1948 	if (altdev->data->setup) {
1949 		rc = altdev->data->setup(altdev);
1950 		if (rc)
1951 			goto err_release_group1;
1952 	}
1953 
1954 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1955 	if (!altdev->sb_irq) {
1956 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1957 		rc = -ENODEV;
1958 		goto err_release_group1;
1959 	}
1960 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1961 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1962 			      ecc_name, altdev);
1963 	if (rc) {
1964 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1965 		goto err_release_group1;
1966 	}
1967 
1968 #ifdef CONFIG_64BIT
1969 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1970 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1971 	if (rc) {
1972 		edac_printk(KERN_ERR, EDAC_DEVICE,
1973 			    "Unable to parse DB IRQ index\n");
1974 		goto err_release_group1;
1975 	}
1976 #else
1977 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1978 	if (!altdev->db_irq) {
1979 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1980 		rc = -ENODEV;
1981 		goto err_release_group1;
1982 	}
1983 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1984 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1985 			      ecc_name, altdev);
1986 	if (rc) {
1987 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1988 		goto err_release_group1;
1989 	}
1990 #endif
1991 
1992 	rc = edac_device_add_device(dci);
1993 	if (rc) {
1994 		dev_err(edac->dev, "edac_device_add_device failed\n");
1995 		rc = -ENOMEM;
1996 		goto err_release_group1;
1997 	}
1998 
1999 	altr_create_edacdev_dbgfs(dci, prv);
2000 
2001 	list_add(&altdev->next, &edac->a10_ecc_devices);
2002 
2003 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2004 
2005 	return 0;
2006 
2007 err_release_group1:
2008 	edac_device_free_ctl_info(dci);
2009 err_release_group:
2010 	devres_release_group(edac->dev, NULL);
2011 	edac_printk(KERN_ERR, EDAC_DEVICE,
2012 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2013 
2014 	return rc;
2015 }
2016 
a10_eccmgr_irq_mask(struct irq_data * d)2017 static void a10_eccmgr_irq_mask(struct irq_data *d)
2018 {
2019 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2020 
2021 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2022 		     BIT(d->hwirq));
2023 }
2024 
a10_eccmgr_irq_unmask(struct irq_data * d)2025 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2026 {
2027 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2028 
2029 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2030 		     BIT(d->hwirq));
2031 }
2032 
a10_eccmgr_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2033 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2034 				    irq_hw_number_t hwirq)
2035 {
2036 	struct altr_arria10_edac *edac = d->host_data;
2037 
2038 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2039 	irq_set_chip_data(irq, edac);
2040 	irq_set_noprobe(irq);
2041 
2042 	return 0;
2043 }
2044 
2045 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2046 	.map = a10_eccmgr_irqdomain_map,
2047 	.xlate = irq_domain_xlate_twocell,
2048 };
2049 
2050 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2051 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2052 
2053 #ifdef CONFIG_64BIT
2054 /* panic routine issues reboot on non-zero panic_timeout */
2055 extern int panic_timeout;
2056 
2057 /*
2058  * The double bit error is handled through SError which is fatal. This is
2059  * called as a panic notifier to printout ECC error info as part of the panic.
2060  */
s10_edac_dberr_handler(struct notifier_block * this,unsigned long event,void * ptr)2061 static int s10_edac_dberr_handler(struct notifier_block *this,
2062 				  unsigned long event, void *ptr)
2063 {
2064 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2065 	int err_addr, dberror;
2066 
2067 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2068 		    &dberror);
2069 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2070 	if (dberror & S10_DBE_IRQ_MASK) {
2071 		struct list_head *position;
2072 		struct altr_edac_device_dev *ed;
2073 		struct arm_smccc_res result;
2074 
2075 		/* Find the matching DBE in the list of devices */
2076 		list_for_each(position, &edac->a10_ecc_devices) {
2077 			ed = list_entry(position, struct altr_edac_device_dev,
2078 					next);
2079 			if (!(BIT(ed->db_irq) & dberror))
2080 				continue;
2081 
2082 			writel(ALTR_A10_ECC_DERRPENA,
2083 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2084 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2085 			regmap_write(edac->ecc_mgr_map,
2086 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2087 			edac_printk(KERN_ERR, EDAC_DEVICE,
2088 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2089 				    ed->edac_dev_name, err_addr);
2090 			break;
2091 		}
2092 		/* Notify the System through SMC. Reboot delay = 1 second */
2093 		panic_timeout = 1;
2094 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2095 			      0, 0, &result);
2096 	}
2097 
2098 	return NOTIFY_DONE;
2099 }
2100 #endif
2101 
2102 /****************** Arria 10 EDAC Probe Function *********************/
altr_edac_a10_probe(struct platform_device * pdev)2103 static int altr_edac_a10_probe(struct platform_device *pdev)
2104 {
2105 	struct altr_arria10_edac *edac;
2106 	struct device_node *child;
2107 
2108 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2109 	if (!edac)
2110 		return -ENOMEM;
2111 
2112 	edac->dev = &pdev->dev;
2113 	platform_set_drvdata(pdev, edac);
2114 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2115 
2116 	edac->ecc_mgr_map =
2117 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2118 						     "altr,sysmgr-syscon");
2119 
2120 	if (IS_ERR(edac->ecc_mgr_map)) {
2121 		edac_printk(KERN_ERR, EDAC_DEVICE,
2122 			    "Unable to get syscon altr,sysmgr-syscon\n");
2123 		return PTR_ERR(edac->ecc_mgr_map);
2124 	}
2125 
2126 	/* Set irq mask for DDR SBE to avoid any pending irq before registration */
2127 	regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2128 		     (A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0));
2129 
2130 	edac->irq_chip.name = pdev->dev.of_node->name;
2131 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2132 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2133 	edac->domain = irq_domain_create_linear(dev_fwnode(&pdev->dev), 64, &a10_eccmgr_ic_ops,
2134 						edac);
2135 	if (!edac->domain) {
2136 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2137 		return -ENOMEM;
2138 	}
2139 
2140 	edac->sb_irq = platform_get_irq(pdev, 0);
2141 	if (edac->sb_irq < 0)
2142 		return edac->sb_irq;
2143 
2144 	irq_set_chained_handler_and_data(edac->sb_irq,
2145 					 altr_edac_a10_irq_handler,
2146 					 edac);
2147 
2148 #ifdef CONFIG_64BIT
2149 	{
2150 		int dberror, err_addr;
2151 
2152 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2153 		atomic_notifier_chain_register(&panic_notifier_list,
2154 					       &edac->panic_notifier);
2155 
2156 		/* Printout a message if uncorrectable error previously. */
2157 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2158 			    &dberror);
2159 		if (dberror) {
2160 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2161 				    &err_addr);
2162 			edac_printk(KERN_ERR, EDAC_DEVICE,
2163 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2164 				    dberror, err_addr);
2165 			/* Reset the sticky registers */
2166 			regmap_write(edac->ecc_mgr_map,
2167 				     S10_SYSMGR_UE_VAL_OFST, 0);
2168 			regmap_write(edac->ecc_mgr_map,
2169 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2170 		}
2171 	}
2172 #else
2173 	edac->db_irq = platform_get_irq(pdev, 1);
2174 	if (edac->db_irq < 0)
2175 		return edac->db_irq;
2176 
2177 	irq_set_chained_handler_and_data(edac->db_irq,
2178 					 altr_edac_a10_irq_handler, edac);
2179 #endif
2180 
2181 	for_each_child_of_node(pdev->dev.of_node, child) {
2182 		if (!of_device_is_available(child))
2183 			continue;
2184 
2185 		if (of_match_node(altr_edac_a10_device_of_match, child))
2186 			altr_edac_a10_device_add(edac, child);
2187 
2188 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2189 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2190 			of_platform_populate(pdev->dev.of_node,
2191 					     altr_sdram_ctrl_of_match,
2192 					     NULL, &pdev->dev);
2193 #endif
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static const struct of_device_id altr_edac_a10_of_match[] = {
2200 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2201 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2202 	{},
2203 };
2204 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2205 
2206 static struct platform_driver altr_edac_a10_driver = {
2207 	.probe =  altr_edac_a10_probe,
2208 	.driver = {
2209 		.name = "socfpga_a10_ecc_manager",
2210 		.of_match_table = altr_edac_a10_of_match,
2211 	},
2212 };
2213 module_platform_driver(altr_edac_a10_driver);
2214 
2215 MODULE_AUTHOR("Thor Thayer");
2216 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2217