1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5 * Copyright 2011-2012 Calxeda, Inc.
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29
30 #include "altera_edac.h"
31 #include "edac_module.h"
32
33 #define EDAC_MOD_STR "altera_edac"
34 #define EDAC_DEVICE "Altera"
35
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 .ecc_ctrl_offset = CV_CTLCFG_OFST,
39 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
40 .ecc_stat_offset = CV_DRAMSTS_OFST,
41 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
42 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
43 .ecc_saddr_offset = CV_ERRADDR_OFST,
44 .ecc_daddr_offset = CV_ERRADDR_OFST,
45 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
46 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
47 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
48 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
49 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
53 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
54 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
55 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
56 };
57
58 static const struct altr_sdram_prv_data a10_data = {
59 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
60 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
61 .ecc_stat_offset = A10_INTSTAT_OFST,
62 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
63 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
64 .ecc_saddr_offset = A10_SERRADDR_OFST,
65 .ecc_daddr_offset = A10_DERRADDR_OFST,
66 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
67 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
68 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
72 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
73 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
74 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
75 };
76
77 /*********************** EDAC Memory Controller Functions ****************/
78
79 /* The SDRAM controller uses the EDAC Memory Controller framework. */
80
altr_sdram_mc_err_handler(int irq,void * dev_id)81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 struct mem_ctl_info *mci = dev_id;
84 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 const struct altr_sdram_prv_data *priv = drvdata->data;
86 u32 status, err_count = 1, err_addr;
87
88 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89
90 if (status & priv->ecc_stat_ue_mask) {
91 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 &err_addr);
93 if (priv->ecc_uecnt_offset)
94 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 &err_count);
96 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 err_count, err_addr);
98 }
99 if (status & priv->ecc_stat_ce_mask) {
100 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 &err_addr);
102 if (priv->ecc_uecnt_offset)
103 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
104 &err_count);
105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 err_addr >> PAGE_SHIFT,
107 err_addr & ~PAGE_MASK, 0,
108 0, 0, -1, mci->ctl_name, "");
109 /* Clear IRQ to resume */
110 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
111 priv->ecc_irq_clr_mask);
112
113 return IRQ_HANDLED;
114 }
115 return IRQ_NONE;
116 }
117
altr_sdr_mc_err_inject_write(struct file * file,const char __user * data,size_t count,loff_t * ppos)118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 const char __user *data,
120 size_t count, loff_t *ppos)
121 {
122 struct mem_ctl_info *mci = file->private_data;
123 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 const struct altr_sdram_prv_data *priv = drvdata->data;
125 u32 *ptemp;
126 dma_addr_t dma_handle;
127 u32 reg, read_reg;
128
129 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 if (!ptemp) {
131 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
132 edac_printk(KERN_ERR, EDAC_MC,
133 "Inject: Buffer Allocation error\n");
134 return -ENOMEM;
135 }
136
137 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
138 &read_reg);
139 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
140
141 /* Error are injected by writing a word while the SBE or DBE
142 * bit in the CTLCFG register is set. Reading the word will
143 * trigger the SBE or DBE error and the corresponding IRQ.
144 */
145 if (count == 3) {
146 edac_printk(KERN_ALERT, EDAC_MC,
147 "Inject Double bit error\n");
148 local_irq_disable();
149 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
150 (read_reg | priv->ue_set_mask));
151 local_irq_enable();
152 } else {
153 edac_printk(KERN_ALERT, EDAC_MC,
154 "Inject Single bit error\n");
155 local_irq_disable();
156 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
157 (read_reg | priv->ce_set_mask));
158 local_irq_enable();
159 }
160
161 ptemp[0] = 0x5A5A5A5A;
162 ptemp[1] = 0xA5A5A5A5;
163
164 /* Clear the error injection bits */
165 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
166 /* Ensure it has been written out */
167 wmb();
168
169 /*
170 * To trigger the error, we need to read the data back
171 * (the data was written with errors above).
172 * The READ_ONCE macros and printk are used to prevent the
173 * the compiler optimizing these reads out.
174 */
175 reg = READ_ONCE(ptemp[0]);
176 read_reg = READ_ONCE(ptemp[1]);
177 /* Force Read */
178 rmb();
179
180 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
181 reg, read_reg);
182
183 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
184
185 return count;
186 }
187
188 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
189 .open = simple_open,
190 .write = altr_sdr_mc_err_inject_write,
191 .llseek = generic_file_llseek,
192 };
193
altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info * mci)194 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
195 {
196 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
197 return;
198
199 if (!mci->debugfs)
200 return;
201
202 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
203 &altr_sdr_mc_debug_inject_fops);
204 }
205
206 /* Get total memory size from Open Firmware DTB */
get_total_mem(void)207 static unsigned long get_total_mem(void)
208 {
209 struct device_node *np = NULL;
210 struct resource res;
211 int ret;
212 unsigned long total_mem = 0;
213
214 for_each_node_by_type(np, "memory") {
215 ret = of_address_to_resource(np, 0, &res);
216 if (ret)
217 continue;
218
219 total_mem += resource_size(&res);
220 }
221 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
222 return total_mem;
223 }
224
225 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
226 { .compatible = "altr,sdram-edac", .data = &c5_data},
227 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
228 {},
229 };
230 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
231
a10_init(struct regmap * mc_vbase)232 static int a10_init(struct regmap *mc_vbase)
233 {
234 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
235 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
236 edac_printk(KERN_ERR, EDAC_MC,
237 "Error setting SB IRQ mode\n");
238 return -ENODEV;
239 }
240
241 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
242 edac_printk(KERN_ERR, EDAC_MC,
243 "Error setting trigger count\n");
244 return -ENODEV;
245 }
246
247 return 0;
248 }
249
a10_unmask_irq(struct platform_device * pdev,u32 mask)250 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
251 {
252 void __iomem *sm_base;
253 int ret = 0;
254
255 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
256 dev_name(&pdev->dev))) {
257 edac_printk(KERN_ERR, EDAC_MC,
258 "Unable to request mem region\n");
259 return -EBUSY;
260 }
261
262 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
263 if (!sm_base) {
264 edac_printk(KERN_ERR, EDAC_MC,
265 "Unable to ioremap device\n");
266
267 ret = -ENOMEM;
268 goto release;
269 }
270
271 iowrite32(mask, sm_base);
272
273 iounmap(sm_base);
274
275 release:
276 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
277
278 return ret;
279 }
280
altr_sdram_probe(struct platform_device * pdev)281 static int altr_sdram_probe(struct platform_device *pdev)
282 {
283 struct edac_mc_layer layers[2];
284 struct mem_ctl_info *mci;
285 struct altr_sdram_mc_data *drvdata;
286 const struct altr_sdram_prv_data *priv;
287 struct regmap *mc_vbase;
288 struct dimm_info *dimm;
289 u32 read_reg;
290 int irq, irq2, res = 0;
291 unsigned long mem_size, irqflags = 0;
292
293 /* Grab the register range from the sdr controller in device tree */
294 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
295 "altr,sdr-syscon");
296 if (IS_ERR(mc_vbase)) {
297 edac_printk(KERN_ERR, EDAC_MC,
298 "regmap for altr,sdr-syscon lookup failed.\n");
299 return -ENODEV;
300 }
301
302 /* Check specific dependencies for the module */
303 priv = device_get_match_data(&pdev->dev);
304
305 /* Validate the SDRAM controller has ECC enabled */
306 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
307 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
308 edac_printk(KERN_ERR, EDAC_MC,
309 "No ECC/ECC disabled [0x%08X]\n", read_reg);
310 return -ENODEV;
311 }
312
313 /* Grab memory size from device tree. */
314 mem_size = get_total_mem();
315 if (!mem_size) {
316 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
317 return -ENODEV;
318 }
319
320 /* Ensure the SDRAM Interrupt is disabled */
321 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
322 priv->ecc_irq_en_mask, 0)) {
323 edac_printk(KERN_ERR, EDAC_MC,
324 "Error disabling SDRAM ECC IRQ\n");
325 return -ENODEV;
326 }
327
328 /* Toggle to clear the SDRAM Error count */
329 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
330 priv->ecc_cnt_rst_mask,
331 priv->ecc_cnt_rst_mask)) {
332 edac_printk(KERN_ERR, EDAC_MC,
333 "Error clearing SDRAM ECC count\n");
334 return -ENODEV;
335 }
336
337 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
338 priv->ecc_cnt_rst_mask, 0)) {
339 edac_printk(KERN_ERR, EDAC_MC,
340 "Error clearing SDRAM ECC count\n");
341 return -ENODEV;
342 }
343
344 irq = platform_get_irq(pdev, 0);
345 if (irq < 0) {
346 edac_printk(KERN_ERR, EDAC_MC,
347 "No irq %d in DT\n", irq);
348 return irq;
349 }
350
351 /* Arria10 has a 2nd IRQ */
352 irq2 = platform_get_irq(pdev, 1);
353
354 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
355 layers[0].size = 1;
356 layers[0].is_virt_csrow = true;
357 layers[1].type = EDAC_MC_LAYER_CHANNEL;
358 layers[1].size = 1;
359 layers[1].is_virt_csrow = false;
360 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
361 sizeof(struct altr_sdram_mc_data));
362 if (!mci)
363 return -ENOMEM;
364
365 mci->pdev = &pdev->dev;
366 drvdata = mci->pvt_info;
367 drvdata->mc_vbase = mc_vbase;
368 drvdata->data = priv;
369 platform_set_drvdata(pdev, mci);
370
371 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
372 edac_printk(KERN_ERR, EDAC_MC,
373 "Unable to get managed device resource\n");
374 res = -ENOMEM;
375 goto free;
376 }
377
378 mci->mtype_cap = MEM_FLAG_DDR3;
379 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
380 mci->edac_cap = EDAC_FLAG_SECDED;
381 mci->mod_name = EDAC_MOD_STR;
382 mci->ctl_name = dev_name(&pdev->dev);
383 mci->scrub_mode = SCRUB_SW_SRC;
384 mci->dev_name = dev_name(&pdev->dev);
385
386 dimm = *mci->dimms;
387 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
388 dimm->grain = 8;
389 dimm->dtype = DEV_X8;
390 dimm->mtype = MEM_DDR3;
391 dimm->edac_mode = EDAC_SECDED;
392
393 res = edac_mc_add_mc(mci);
394 if (res < 0)
395 goto err;
396
397 /* Only the Arria10 has separate IRQs */
398 if (of_machine_is_compatible("altr,socfpga-arria10")) {
399 /* Arria10 specific initialization */
400 res = a10_init(mc_vbase);
401 if (res < 0)
402 goto err2;
403
404 res = devm_request_irq(&pdev->dev, irq2,
405 altr_sdram_mc_err_handler,
406 IRQF_SHARED, dev_name(&pdev->dev), mci);
407 if (res < 0) {
408 edac_mc_printk(mci, KERN_ERR,
409 "Unable to request irq %d\n", irq2);
410 res = -ENODEV;
411 goto err2;
412 }
413
414 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
415 if (res < 0)
416 goto err2;
417
418 irqflags = IRQF_SHARED;
419 }
420
421 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
422 irqflags, dev_name(&pdev->dev), mci);
423 if (res < 0) {
424 edac_mc_printk(mci, KERN_ERR,
425 "Unable to request irq %d\n", irq);
426 res = -ENODEV;
427 goto err2;
428 }
429
430 /* Infrastructure ready - enable the IRQ */
431 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
432 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
433 edac_mc_printk(mci, KERN_ERR,
434 "Error enabling SDRAM ECC IRQ\n");
435 res = -ENODEV;
436 goto err2;
437 }
438
439 altr_sdr_mc_create_debugfs_nodes(mci);
440
441 devres_close_group(&pdev->dev, NULL);
442
443 return 0;
444
445 err2:
446 edac_mc_del_mc(&pdev->dev);
447 err:
448 devres_release_group(&pdev->dev, NULL);
449 free:
450 edac_mc_free(mci);
451 edac_printk(KERN_ERR, EDAC_MC,
452 "EDAC Probe Failed; Error %d\n", res);
453
454 return res;
455 }
456
altr_sdram_remove(struct platform_device * pdev)457 static void altr_sdram_remove(struct platform_device *pdev)
458 {
459 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
460
461 edac_mc_del_mc(&pdev->dev);
462 edac_mc_free(mci);
463 platform_set_drvdata(pdev, NULL);
464 }
465
466 /*
467 * If you want to suspend, need to disable EDAC by removing it
468 * from the device tree or defconfig.
469 */
470 #ifdef CONFIG_PM
altr_sdram_prepare(struct device * dev)471 static int altr_sdram_prepare(struct device *dev)
472 {
473 pr_err("Suspend not allowed when EDAC is enabled.\n");
474
475 return -EPERM;
476 }
477
478 static const struct dev_pm_ops altr_sdram_pm_ops = {
479 .prepare = altr_sdram_prepare,
480 };
481 #endif
482
483 static struct platform_driver altr_sdram_edac_driver = {
484 .probe = altr_sdram_probe,
485 .remove = altr_sdram_remove,
486 .driver = {
487 .name = "altr_sdram_edac",
488 #ifdef CONFIG_PM
489 .pm = &altr_sdram_pm_ops,
490 #endif
491 .of_match_table = altr_sdram_ctrl_of_match,
492 },
493 };
494
495 module_platform_driver(altr_sdram_edac_driver);
496
497 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
498
499 /************************* EDAC Parent Probe *************************/
500
501 static const struct of_device_id altr_edac_device_of_match[];
502
503 static const struct of_device_id altr_edac_of_match[] = {
504 { .compatible = "altr,socfpga-ecc-manager" },
505 {},
506 };
507 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
508
altr_edac_probe(struct platform_device * pdev)509 static int altr_edac_probe(struct platform_device *pdev)
510 {
511 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
512 NULL, &pdev->dev);
513 return 0;
514 }
515
516 static struct platform_driver altr_edac_driver = {
517 .probe = altr_edac_probe,
518 .driver = {
519 .name = "socfpga_ecc_manager",
520 .of_match_table = altr_edac_of_match,
521 },
522 };
523 module_platform_driver(altr_edac_driver);
524
525 /************************* EDAC Device Functions *************************/
526
527 /*
528 * EDAC Device Functions (shared between various IPs).
529 * The discrete memories use the EDAC Device framework. The probe
530 * and error handling functions are very similar between memories
531 * so they are shared. The memory allocation and freeing for EDAC
532 * trigger testing are different for each memory.
533 */
534
535 #ifdef CONFIG_EDAC_ALTERA_OCRAM
536 static const struct edac_device_prv_data ocramecc_data;
537 #endif
538 #ifdef CONFIG_EDAC_ALTERA_L2C
539 static const struct edac_device_prv_data l2ecc_data;
540 #endif
541 #ifdef CONFIG_EDAC_ALTERA_OCRAM
542 static const struct edac_device_prv_data a10_ocramecc_data;
543 #endif
544 #ifdef CONFIG_EDAC_ALTERA_L2C
545 static const struct edac_device_prv_data a10_l2ecc_data;
546 #endif
547
altr_edac_device_handler(int irq,void * dev_id)548 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
549 {
550 irqreturn_t ret_value = IRQ_NONE;
551 struct edac_device_ctl_info *dci = dev_id;
552 struct altr_edac_device_dev *drvdata = dci->pvt_info;
553 const struct edac_device_prv_data *priv = drvdata->data;
554
555 if (irq == drvdata->sb_irq) {
556 if (priv->ce_clear_mask)
557 writel(priv->ce_clear_mask, drvdata->base);
558 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
559 ret_value = IRQ_HANDLED;
560 } else if (irq == drvdata->db_irq) {
561 if (priv->ue_clear_mask)
562 writel(priv->ue_clear_mask, drvdata->base);
563 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
564 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
565 ret_value = IRQ_HANDLED;
566 } else {
567 WARN_ON(1);
568 }
569
570 return ret_value;
571 }
572
573 static ssize_t __maybe_unused
altr_edac_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)574 altr_edac_device_trig(struct file *file, const char __user *user_buf,
575 size_t count, loff_t *ppos)
576
577 {
578 u32 *ptemp, i, error_mask;
579 int result = 0;
580 u8 trig_type;
581 unsigned long flags;
582 struct edac_device_ctl_info *edac_dci = file->private_data;
583 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
584 const struct edac_device_prv_data *priv = drvdata->data;
585 void *generic_ptr = edac_dci->dev;
586
587 if (!user_buf || get_user(trig_type, user_buf))
588 return -EFAULT;
589
590 if (!priv->alloc_mem)
591 return -ENOMEM;
592
593 /*
594 * Note that generic_ptr is initialized to the device * but in
595 * some alloc_functions, this is overridden and returns data.
596 */
597 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
598 if (!ptemp) {
599 edac_printk(KERN_ERR, EDAC_DEVICE,
600 "Inject: Buffer Allocation error\n");
601 return -ENOMEM;
602 }
603
604 if (trig_type == ALTR_UE_TRIGGER_CHAR)
605 error_mask = priv->ue_set_mask;
606 else
607 error_mask = priv->ce_set_mask;
608
609 edac_printk(KERN_ALERT, EDAC_DEVICE,
610 "Trigger Error Mask (0x%X)\n", error_mask);
611
612 local_irq_save(flags);
613 /* write ECC corrupted data out. */
614 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
615 /* Read data so we're in the correct state */
616 rmb();
617 if (READ_ONCE(ptemp[i]))
618 result = -1;
619 /* Toggle Error bit (it is latched), leave ECC enabled */
620 writel(error_mask, (drvdata->base + priv->set_err_ofst));
621 writel(priv->ecc_enable_mask, (drvdata->base +
622 priv->set_err_ofst));
623 ptemp[i] = i;
624 }
625 /* Ensure it has been written out */
626 wmb();
627 local_irq_restore(flags);
628
629 if (result)
630 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
631
632 /* Read out written data. ECC error caused here */
633 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
634 if (READ_ONCE(ptemp[i]) != i)
635 edac_printk(KERN_ERR, EDAC_DEVICE,
636 "Read doesn't match written data\n");
637
638 if (priv->free_mem)
639 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
640
641 return count;
642 }
643
644 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
645 .open = simple_open,
646 .write = altr_edac_device_trig,
647 .llseek = generic_file_llseek,
648 };
649
650 static ssize_t __maybe_unused
651 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
652 size_t count, loff_t *ppos);
653
654 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
655 .open = simple_open,
656 .write = altr_edac_a10_device_trig,
657 .llseek = generic_file_llseek,
658 };
659
660 static ssize_t __maybe_unused
661 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
662 size_t count, loff_t *ppos);
663
664 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
665 .open = simple_open,
666 .write = altr_edac_a10_device_trig2,
667 .llseek = generic_file_llseek,
668 };
669
altr_create_edacdev_dbgfs(struct edac_device_ctl_info * edac_dci,const struct edac_device_prv_data * priv)670 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
671 const struct edac_device_prv_data *priv)
672 {
673 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
674
675 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
676 return;
677
678 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
679 if (!drvdata->debugfs_dir)
680 return;
681
682 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
683 drvdata->debugfs_dir, edac_dci,
684 priv->inject_fops))
685 debugfs_remove_recursive(drvdata->debugfs_dir);
686 }
687
688 static const struct of_device_id altr_edac_device_of_match[] = {
689 #ifdef CONFIG_EDAC_ALTERA_L2C
690 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
691 #endif
692 #ifdef CONFIG_EDAC_ALTERA_OCRAM
693 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
694 #endif
695 {},
696 };
697 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
698
699 /*
700 * altr_edac_device_probe()
701 * This is a generic EDAC device driver that will support
702 * various Altera memory devices such as the L2 cache ECC and
703 * OCRAM ECC as well as the memories for other peripherals.
704 * Module specific initialization is done by passing the
705 * function index in the device tree.
706 */
altr_edac_device_probe(struct platform_device * pdev)707 static int altr_edac_device_probe(struct platform_device *pdev)
708 {
709 struct edac_device_ctl_info *dci;
710 struct altr_edac_device_dev *drvdata;
711 struct resource *r;
712 int res = 0;
713 struct device_node *np = pdev->dev.of_node;
714 char *ecc_name = (char *)np->name;
715 static int dev_instance;
716
717 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
718 edac_printk(KERN_ERR, EDAC_DEVICE,
719 "Unable to open devm\n");
720 return -ENOMEM;
721 }
722
723 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
724 if (!r) {
725 edac_printk(KERN_ERR, EDAC_DEVICE,
726 "Unable to get mem resource\n");
727 res = -ENODEV;
728 goto fail;
729 }
730
731 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
732 dev_name(&pdev->dev))) {
733 edac_printk(KERN_ERR, EDAC_DEVICE,
734 "%s:Error requesting mem region\n", ecc_name);
735 res = -EBUSY;
736 goto fail;
737 }
738
739 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
740 1, ecc_name, 1, 0, dev_instance++);
741
742 if (!dci) {
743 edac_printk(KERN_ERR, EDAC_DEVICE,
744 "%s: Unable to allocate EDAC device\n", ecc_name);
745 res = -ENOMEM;
746 goto fail;
747 }
748
749 drvdata = dci->pvt_info;
750 dci->dev = &pdev->dev;
751 platform_set_drvdata(pdev, dci);
752 drvdata->edac_dev_name = ecc_name;
753
754 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
755 if (!drvdata->base) {
756 res = -ENOMEM;
757 goto fail1;
758 }
759
760 /* Get driver specific data for this EDAC device */
761 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
762
763 /* Check specific dependencies for the module */
764 if (drvdata->data->setup) {
765 res = drvdata->data->setup(drvdata);
766 if (res)
767 goto fail1;
768 }
769
770 drvdata->sb_irq = platform_get_irq(pdev, 0);
771 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
772 altr_edac_device_handler,
773 0, dev_name(&pdev->dev), dci);
774 if (res)
775 goto fail1;
776
777 drvdata->db_irq = platform_get_irq(pdev, 1);
778 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
779 altr_edac_device_handler,
780 0, dev_name(&pdev->dev), dci);
781 if (res)
782 goto fail1;
783
784 dci->mod_name = "Altera ECC Manager";
785 dci->dev_name = drvdata->edac_dev_name;
786
787 res = edac_device_add_device(dci);
788 if (res)
789 goto fail1;
790
791 altr_create_edacdev_dbgfs(dci, drvdata->data);
792
793 devres_close_group(&pdev->dev, NULL);
794
795 return 0;
796
797 fail1:
798 edac_device_free_ctl_info(dci);
799 fail:
800 devres_release_group(&pdev->dev, NULL);
801 edac_printk(KERN_ERR, EDAC_DEVICE,
802 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
803
804 return res;
805 }
806
altr_edac_device_remove(struct platform_device * pdev)807 static void altr_edac_device_remove(struct platform_device *pdev)
808 {
809 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
810 struct altr_edac_device_dev *drvdata = dci->pvt_info;
811
812 debugfs_remove_recursive(drvdata->debugfs_dir);
813 edac_device_del_device(&pdev->dev);
814 edac_device_free_ctl_info(dci);
815 }
816
817 static struct platform_driver altr_edac_device_driver = {
818 .probe = altr_edac_device_probe,
819 .remove = altr_edac_device_remove,
820 .driver = {
821 .name = "altr_edac_device",
822 .of_match_table = altr_edac_device_of_match,
823 },
824 };
825 module_platform_driver(altr_edac_device_driver);
826
827 /******************* Arria10 Device ECC Shared Functions *****************/
828
829 /*
830 * Test for memory's ECC dependencies upon entry because platform specific
831 * startup should have initialized the memory and enabled the ECC.
832 * Can't turn on ECC here because accessing un-initialized memory will
833 * cause CE/UE errors possibly causing an ABORT.
834 */
835 static int __maybe_unused
altr_check_ecc_deps(struct altr_edac_device_dev * device)836 altr_check_ecc_deps(struct altr_edac_device_dev *device)
837 {
838 void __iomem *base = device->base;
839 const struct edac_device_prv_data *prv = device->data;
840
841 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
842 return 0;
843
844 edac_printk(KERN_ERR, EDAC_DEVICE,
845 "%s: No ECC present or ECC disabled.\n",
846 device->edac_dev_name);
847 return -ENODEV;
848 }
849
altr_edac_a10_ecc_irq(int irq,void * dev_id)850 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
851 {
852 struct altr_edac_device_dev *dci = dev_id;
853 void __iomem *base = dci->base;
854
855 if (irq == dci->sb_irq) {
856 writel(ALTR_A10_ECC_SERRPENA,
857 base + ALTR_A10_ECC_INTSTAT_OFST);
858 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
859
860 return IRQ_HANDLED;
861 } else if (irq == dci->db_irq) {
862 writel(ALTR_A10_ECC_DERRPENA,
863 base + ALTR_A10_ECC_INTSTAT_OFST);
864 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
865 if (dci->data->panic)
866 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
867
868 return IRQ_HANDLED;
869 }
870
871 WARN_ON(1);
872
873 return IRQ_NONE;
874 }
875
876 /******************* Arria10 Memory Buffer Functions *********************/
877
a10_get_irq_mask(struct device_node * np)878 static inline int a10_get_irq_mask(struct device_node *np)
879 {
880 int irq;
881 const u32 *handle = of_get_property(np, "interrupts", NULL);
882
883 if (!handle)
884 return -ENODEV;
885 irq = be32_to_cpup(handle);
886 return irq;
887 }
888
ecc_set_bits(u32 bit_mask,void __iomem * ioaddr)889 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
890 {
891 u32 value = readl(ioaddr);
892
893 value |= bit_mask;
894 writel(value, ioaddr);
895 }
896
ecc_clear_bits(u32 bit_mask,void __iomem * ioaddr)897 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
898 {
899 u32 value = readl(ioaddr);
900
901 value &= ~bit_mask;
902 writel(value, ioaddr);
903 }
904
ecc_test_bits(u32 bit_mask,void __iomem * ioaddr)905 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
906 {
907 u32 value = readl(ioaddr);
908
909 return (value & bit_mask) ? 1 : 0;
910 }
911
912 /*
913 * This function uses the memory initialization block in the Arria10 ECC
914 * controller to initialize/clear the entire memory data and ECC data.
915 */
altr_init_memory_port(void __iomem * ioaddr,int port)916 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
917 {
918 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
919 u32 init_mask, stat_mask, clear_mask;
920 int ret = 0;
921
922 if (port) {
923 init_mask = ALTR_A10_ECC_INITB;
924 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
925 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
926 } else {
927 init_mask = ALTR_A10_ECC_INITA;
928 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
929 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
930 }
931
932 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
933 while (limit--) {
934 if (ecc_test_bits(stat_mask,
935 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
936 break;
937 udelay(1);
938 }
939 if (limit < 0)
940 ret = -EBUSY;
941
942 /* Clear any pending ECC interrupts */
943 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
944
945 return ret;
946 }
947
948 static __init int __maybe_unused
altr_init_a10_ecc_block(struct device_node * np,u32 irq_mask,u32 ecc_ctrl_en_mask,bool dual_port)949 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
950 u32 ecc_ctrl_en_mask, bool dual_port)
951 {
952 int ret = 0;
953 void __iomem *ecc_block_base;
954 struct regmap *ecc_mgr_map;
955 char *ecc_name;
956 struct device_node *np_eccmgr;
957
958 ecc_name = (char *)np->name;
959
960 /* Get the ECC Manager - parent of the device EDACs */
961 np_eccmgr = of_get_parent(np);
962
963 ecc_mgr_map =
964 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
965 "altr,sysmgr-syscon");
966
967 of_node_put(np_eccmgr);
968 if (IS_ERR(ecc_mgr_map)) {
969 edac_printk(KERN_ERR, EDAC_DEVICE,
970 "Unable to get syscon altr,sysmgr-syscon\n");
971 return -ENODEV;
972 }
973
974 /* Map the ECC Block */
975 ecc_block_base = of_iomap(np, 0);
976 if (!ecc_block_base) {
977 edac_printk(KERN_ERR, EDAC_DEVICE,
978 "Unable to map %s ECC block\n", ecc_name);
979 return -ENODEV;
980 }
981
982 /* Disable ECC */
983 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
984 writel(ALTR_A10_ECC_SERRINTEN,
985 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
986 ecc_clear_bits(ecc_ctrl_en_mask,
987 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
988 /* Ensure all writes complete */
989 wmb();
990 /* Use HW initialization block to initialize memory for ECC */
991 ret = altr_init_memory_port(ecc_block_base, 0);
992 if (ret) {
993 edac_printk(KERN_ERR, EDAC_DEVICE,
994 "ECC: cannot init %s PORTA memory\n", ecc_name);
995 goto out;
996 }
997
998 if (dual_port) {
999 ret = altr_init_memory_port(ecc_block_base, 1);
1000 if (ret) {
1001 edac_printk(KERN_ERR, EDAC_DEVICE,
1002 "ECC: cannot init %s PORTB memory\n",
1003 ecc_name);
1004 goto out;
1005 }
1006 }
1007
1008 /* Interrupt mode set to every SBERR */
1009 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1010 ALTR_A10_ECC_INTMODE);
1011 /* Enable ECC */
1012 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1013 ALTR_A10_ECC_CTRL_OFST));
1014 writel(ALTR_A10_ECC_SERRINTEN,
1015 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1016 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1017 /* Ensure all writes complete */
1018 wmb();
1019 out:
1020 iounmap(ecc_block_base);
1021 return ret;
1022 }
1023
1024 static int validate_parent_available(struct device_node *np);
1025 static const struct of_device_id altr_edac_a10_device_of_match[];
altr_init_a10_ecc_device_type(char * compat)1026 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1027 {
1028 int irq;
1029 struct device_node *child, *np;
1030
1031 np = of_find_compatible_node(NULL, NULL,
1032 "altr,socfpga-a10-ecc-manager");
1033 if (!np) {
1034 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1035 return -ENODEV;
1036 }
1037
1038 for_each_child_of_node(np, child) {
1039 const struct of_device_id *pdev_id;
1040 const struct edac_device_prv_data *prv;
1041
1042 if (!of_device_is_available(child))
1043 continue;
1044 if (!of_device_is_compatible(child, compat))
1045 continue;
1046
1047 if (validate_parent_available(child))
1048 continue;
1049
1050 irq = a10_get_irq_mask(child);
1051 if (irq < 0)
1052 continue;
1053
1054 /* Get matching node and check for valid result */
1055 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1056 if (IS_ERR_OR_NULL(pdev_id))
1057 continue;
1058
1059 /* Validate private data pointer before dereferencing */
1060 prv = pdev_id->data;
1061 if (!prv)
1062 continue;
1063
1064 altr_init_a10_ecc_block(child, BIT(irq),
1065 prv->ecc_enable_mask, 0);
1066 }
1067
1068 of_node_put(np);
1069 return 0;
1070 }
1071
1072 /*********************** SDRAM EDAC Device Functions *********************/
1073
1074 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1075
1076 /*
1077 * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1078 * register if ECC is enabled. Linux checks the ECC Enable register to
1079 * determine ECC status.
1080 * Use an SMC call (which always works) to determine ECC enablement.
1081 */
altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev * device)1082 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1083 {
1084 const struct edac_device_prv_data *prv = device->data;
1085 unsigned long sdram_ecc_addr;
1086 struct arm_smccc_res result;
1087 struct device_node *np;
1088 phys_addr_t sdram_addr;
1089 u32 read_reg;
1090 int ret;
1091
1092 np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1093 if (!np)
1094 goto sdram_err;
1095
1096 sdram_addr = of_translate_address(np, of_get_address(np, 0,
1097 NULL, NULL));
1098 of_node_put(np);
1099 sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1100 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1101 0, 0, 0, 0, 0, 0, &result);
1102 read_reg = (unsigned int)result.a1;
1103 ret = (int)result.a0;
1104 if (!ret && (read_reg & prv->ecc_enable_mask))
1105 return 0;
1106
1107 sdram_err:
1108 edac_printk(KERN_ERR, EDAC_DEVICE,
1109 "%s: No ECC present or ECC disabled.\n",
1110 device->edac_dev_name);
1111 return -ENODEV;
1112 }
1113
1114 static const struct edac_device_prv_data s10_sdramecc_data = {
1115 .setup = altr_s10_sdram_check_ecc_deps,
1116 .ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1117 .ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1118 .ecc_enable_mask = ALTR_S10_ECC_EN,
1119 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1120 .ce_set_mask = ALTR_S10_ECC_TSERRA,
1121 .ue_set_mask = ALTR_S10_ECC_TDERRA,
1122 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1123 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1124 .inject_fops = &altr_edac_a10_device_inject_fops,
1125 };
1126 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1127
1128 /*********************** OCRAM EDAC Device Functions *********************/
1129
1130 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1131
ocram_alloc_mem(size_t size,void ** other)1132 static void *ocram_alloc_mem(size_t size, void **other)
1133 {
1134 struct device_node *np;
1135 struct gen_pool *gp;
1136 void *sram_addr;
1137
1138 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1139 if (!np)
1140 return NULL;
1141
1142 gp = of_gen_pool_get(np, "iram", 0);
1143 of_node_put(np);
1144 if (!gp)
1145 return NULL;
1146
1147 sram_addr = (void *)gen_pool_alloc(gp, size);
1148 if (!sram_addr)
1149 return NULL;
1150
1151 memset(sram_addr, 0, size);
1152 /* Ensure data is written out */
1153 wmb();
1154
1155 /* Remember this handle for freeing later */
1156 *other = gp;
1157
1158 return sram_addr;
1159 }
1160
ocram_free_mem(void * p,size_t size,void * other)1161 static void ocram_free_mem(void *p, size_t size, void *other)
1162 {
1163 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1164 }
1165
1166 static const struct edac_device_prv_data ocramecc_data = {
1167 .setup = altr_check_ecc_deps,
1168 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1169 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1170 .alloc_mem = ocram_alloc_mem,
1171 .free_mem = ocram_free_mem,
1172 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1173 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1174 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1175 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1176 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1177 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1178 .inject_fops = &altr_edac_device_inject_fops,
1179 };
1180
1181 static int __maybe_unused
altr_check_ocram_deps_init(struct altr_edac_device_dev * device)1182 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1183 {
1184 void __iomem *base = device->base;
1185 int ret;
1186
1187 ret = altr_check_ecc_deps(device);
1188 if (ret)
1189 return ret;
1190
1191 /* Verify OCRAM has been initialized */
1192 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1193 (base + ALTR_A10_ECC_INITSTAT_OFST)))
1194 return -ENODEV;
1195
1196 /* Enable IRQ on Single Bit Error */
1197 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1198 /* Ensure all writes complete */
1199 wmb();
1200
1201 return 0;
1202 }
1203
1204 static const struct edac_device_prv_data a10_ocramecc_data = {
1205 .setup = altr_check_ocram_deps_init,
1206 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1207 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1208 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1209 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1210 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1211 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1212 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1213 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1214 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1215 .inject_fops = &altr_edac_a10_device_inject2_fops,
1216 /*
1217 * OCRAM panic on uncorrectable error because sleep/resume
1218 * functions and FPGA contents are stored in OCRAM. Prefer
1219 * a kernel panic over executing/loading corrupted data.
1220 */
1221 .panic = true,
1222 };
1223
1224 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1225
1226 /********************* L2 Cache EDAC Device Functions ********************/
1227
1228 #ifdef CONFIG_EDAC_ALTERA_L2C
1229
l2_alloc_mem(size_t size,void ** other)1230 static void *l2_alloc_mem(size_t size, void **other)
1231 {
1232 struct device *dev = *other;
1233 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1234
1235 if (!ptemp)
1236 return NULL;
1237
1238 /* Make sure everything is written out */
1239 wmb();
1240
1241 /*
1242 * Clean all cache levels up to LoC (includes L2)
1243 * This ensures the corrupted data is written into
1244 * L2 cache for readback test (which causes ECC error).
1245 */
1246 flush_cache_all();
1247
1248 return ptemp;
1249 }
1250
l2_free_mem(void * p,size_t size,void * other)1251 static void l2_free_mem(void *p, size_t size, void *other)
1252 {
1253 struct device *dev = other;
1254
1255 if (dev && p)
1256 devm_kfree(dev, p);
1257 }
1258
1259 /*
1260 * altr_l2_check_deps()
1261 * Test for L2 cache ECC dependencies upon entry because
1262 * platform specific startup should have initialized the L2
1263 * memory and enabled the ECC.
1264 * Bail if ECC is not enabled.
1265 * Note that L2 Cache Enable is forced at build time.
1266 */
altr_l2_check_deps(struct altr_edac_device_dev * device)1267 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1268 {
1269 void __iomem *base = device->base;
1270 const struct edac_device_prv_data *prv = device->data;
1271
1272 if ((readl(base) & prv->ecc_enable_mask) ==
1273 prv->ecc_enable_mask)
1274 return 0;
1275
1276 edac_printk(KERN_ERR, EDAC_DEVICE,
1277 "L2: No ECC present, or ECC disabled\n");
1278 return -ENODEV;
1279 }
1280
altr_edac_a10_l2_irq(int irq,void * dev_id)1281 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1282 {
1283 struct altr_edac_device_dev *dci = dev_id;
1284
1285 if (irq == dci->sb_irq) {
1286 regmap_write(dci->edac->ecc_mgr_map,
1287 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1288 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1289 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1290
1291 return IRQ_HANDLED;
1292 } else if (irq == dci->db_irq) {
1293 regmap_write(dci->edac->ecc_mgr_map,
1294 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1295 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1296 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1297 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1298
1299 return IRQ_HANDLED;
1300 }
1301
1302 WARN_ON(1);
1303
1304 return IRQ_NONE;
1305 }
1306
1307 static const struct edac_device_prv_data l2ecc_data = {
1308 .setup = altr_l2_check_deps,
1309 .ce_clear_mask = 0,
1310 .ue_clear_mask = 0,
1311 .alloc_mem = l2_alloc_mem,
1312 .free_mem = l2_free_mem,
1313 .ecc_enable_mask = ALTR_L2_ECC_EN,
1314 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1315 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1316 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1317 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1318 .inject_fops = &altr_edac_device_inject_fops,
1319 };
1320
1321 static const struct edac_device_prv_data a10_l2ecc_data = {
1322 .setup = altr_l2_check_deps,
1323 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1324 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1325 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1326 .alloc_mem = l2_alloc_mem,
1327 .free_mem = l2_free_mem,
1328 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1329 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1330 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1331 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1332 .ecc_irq_handler = altr_edac_a10_l2_irq,
1333 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1334 .inject_fops = &altr_edac_device_inject_fops,
1335 };
1336
1337 #endif /* CONFIG_EDAC_ALTERA_L2C */
1338
1339 /********************* Ethernet Device Functions ********************/
1340
1341 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1342
socfpga_init_ethernet_ecc(struct altr_edac_device_dev * dev)1343 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1344 {
1345 int ret;
1346
1347 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1348 if (ret)
1349 return ret;
1350
1351 return altr_check_ecc_deps(dev);
1352 }
1353
1354 static const struct edac_device_prv_data a10_enetecc_data = {
1355 .setup = socfpga_init_ethernet_ecc,
1356 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1357 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1358 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1359 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1360 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1361 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1362 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1363 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1364 .inject_fops = &altr_edac_a10_device_inject2_fops,
1365 };
1366
1367 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1368
1369 /********************** NAND Device Functions **********************/
1370
1371 #ifdef CONFIG_EDAC_ALTERA_NAND
1372
socfpga_init_nand_ecc(struct altr_edac_device_dev * device)1373 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1374 {
1375 int ret;
1376
1377 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1378 if (ret)
1379 return ret;
1380
1381 return altr_check_ecc_deps(device);
1382 }
1383
1384 static const struct edac_device_prv_data a10_nandecc_data = {
1385 .setup = socfpga_init_nand_ecc,
1386 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1387 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1388 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1389 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1390 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1391 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1392 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1393 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1394 .inject_fops = &altr_edac_a10_device_inject_fops,
1395 };
1396
1397 #endif /* CONFIG_EDAC_ALTERA_NAND */
1398
1399 /********************** DMA Device Functions **********************/
1400
1401 #ifdef CONFIG_EDAC_ALTERA_DMA
1402
socfpga_init_dma_ecc(struct altr_edac_device_dev * device)1403 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1404 {
1405 int ret;
1406
1407 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1408 if (ret)
1409 return ret;
1410
1411 return altr_check_ecc_deps(device);
1412 }
1413
1414 static const struct edac_device_prv_data a10_dmaecc_data = {
1415 .setup = socfpga_init_dma_ecc,
1416 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1417 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1418 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1419 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1420 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1421 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1422 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1423 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1424 .inject_fops = &altr_edac_a10_device_inject_fops,
1425 };
1426
1427 #endif /* CONFIG_EDAC_ALTERA_DMA */
1428
1429 /********************** USB Device Functions **********************/
1430
1431 #ifdef CONFIG_EDAC_ALTERA_USB
1432
socfpga_init_usb_ecc(struct altr_edac_device_dev * device)1433 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1434 {
1435 int ret;
1436
1437 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1438 if (ret)
1439 return ret;
1440
1441 return altr_check_ecc_deps(device);
1442 }
1443
1444 static const struct edac_device_prv_data a10_usbecc_data = {
1445 .setup = socfpga_init_usb_ecc,
1446 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1447 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1448 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1449 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1450 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1451 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1452 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1453 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1454 .inject_fops = &altr_edac_a10_device_inject2_fops,
1455 };
1456
1457 #endif /* CONFIG_EDAC_ALTERA_USB */
1458
1459 /********************** QSPI Device Functions **********************/
1460
1461 #ifdef CONFIG_EDAC_ALTERA_QSPI
1462
socfpga_init_qspi_ecc(struct altr_edac_device_dev * device)1463 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1464 {
1465 int ret;
1466
1467 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1468 if (ret)
1469 return ret;
1470
1471 return altr_check_ecc_deps(device);
1472 }
1473
1474 static const struct edac_device_prv_data a10_qspiecc_data = {
1475 .setup = socfpga_init_qspi_ecc,
1476 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1477 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1478 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1479 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1480 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1481 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1482 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1483 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1484 .inject_fops = &altr_edac_a10_device_inject_fops,
1485 };
1486
1487 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1488
1489 /********************* SDMMC Device Functions **********************/
1490
1491 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1492
1493 static const struct edac_device_prv_data a10_sdmmceccb_data;
altr_portb_setup(struct altr_edac_device_dev * device)1494 static int altr_portb_setup(struct altr_edac_device_dev *device)
1495 {
1496 struct edac_device_ctl_info *dci;
1497 struct altr_edac_device_dev *altdev;
1498 char *ecc_name = "sdmmcb-ecc";
1499 int edac_idx, rc;
1500 struct device_node *np;
1501 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1502
1503 rc = altr_check_ecc_deps(device);
1504 if (rc)
1505 return rc;
1506
1507 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1508 if (!np) {
1509 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1510 return -ENODEV;
1511 }
1512
1513 /* Create the PortB EDAC device */
1514 edac_idx = edac_device_alloc_index();
1515 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1516 ecc_name, 1, 0, edac_idx);
1517 if (!dci) {
1518 edac_printk(KERN_ERR, EDAC_DEVICE,
1519 "%s: Unable to allocate PortB EDAC device\n",
1520 ecc_name);
1521 return -ENOMEM;
1522 }
1523
1524 /* Initialize the PortB EDAC device structure from PortA structure */
1525 altdev = dci->pvt_info;
1526 *altdev = *device;
1527
1528 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1529 return -ENOMEM;
1530
1531 /* Update PortB specific values */
1532 altdev->edac_dev_name = ecc_name;
1533 altdev->edac_idx = edac_idx;
1534 altdev->edac_dev = dci;
1535 altdev->data = prv;
1536 dci->dev = &altdev->ddev;
1537 dci->ctl_name = "Altera ECC Manager";
1538 dci->mod_name = ecc_name;
1539 dci->dev_name = ecc_name;
1540
1541 /*
1542 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1543 *
1544 * FIXME: Instead of ifdefs with different architectures the driver
1545 * should properly use compatibles.
1546 */
1547 #ifdef CONFIG_64BIT
1548 altdev->sb_irq = irq_of_parse_and_map(np, 1);
1549 #else
1550 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1551 #endif
1552 if (!altdev->sb_irq) {
1553 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1554 rc = -ENODEV;
1555 goto err_release_group_1;
1556 }
1557 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1558 prv->ecc_irq_handler,
1559 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1560 ecc_name, altdev);
1561 if (rc) {
1562 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1563 goto err_release_group_1;
1564 }
1565
1566 #ifdef CONFIG_64BIT
1567 /* Use IRQ to determine SError origin instead of assigning IRQ */
1568 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1569 if (rc) {
1570 edac_printk(KERN_ERR, EDAC_DEVICE,
1571 "Error PortB DBIRQ alloc\n");
1572 goto err_release_group_1;
1573 }
1574 #else
1575 altdev->db_irq = irq_of_parse_and_map(np, 3);
1576 if (!altdev->db_irq) {
1577 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1578 rc = -ENODEV;
1579 goto err_release_group_1;
1580 }
1581 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1582 prv->ecc_irq_handler,
1583 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1584 ecc_name, altdev);
1585 if (rc) {
1586 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1587 goto err_release_group_1;
1588 }
1589 #endif
1590
1591 rc = edac_device_add_device(dci);
1592 if (rc) {
1593 edac_printk(KERN_ERR, EDAC_DEVICE,
1594 "edac_device_add_device portB failed\n");
1595 rc = -ENOMEM;
1596 goto err_release_group_1;
1597 }
1598 altr_create_edacdev_dbgfs(dci, prv);
1599
1600 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1601
1602 devres_remove_group(&altdev->ddev, altr_portb_setup);
1603
1604 return 0;
1605
1606 err_release_group_1:
1607 edac_device_free_ctl_info(dci);
1608 devres_release_group(&altdev->ddev, altr_portb_setup);
1609 edac_printk(KERN_ERR, EDAC_DEVICE,
1610 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1611 return rc;
1612 }
1613
socfpga_init_sdmmc_ecc(struct altr_edac_device_dev * device)1614 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1615 {
1616 int rc = -ENODEV;
1617 struct device_node *child;
1618
1619 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1620 if (!child)
1621 return -ENODEV;
1622
1623 if (!of_device_is_available(child))
1624 goto exit;
1625
1626 if (validate_parent_available(child))
1627 goto exit;
1628
1629 /* Init portB */
1630 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1631 a10_sdmmceccb_data.ecc_enable_mask, 1);
1632 if (rc)
1633 goto exit;
1634
1635 /* Setup portB */
1636 return altr_portb_setup(device);
1637
1638 exit:
1639 of_node_put(child);
1640 return rc;
1641 }
1642
altr_edac_a10_ecc_irq_portb(int irq,void * dev_id)1643 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1644 {
1645 struct altr_edac_device_dev *ad = dev_id;
1646 void __iomem *base = ad->base;
1647 const struct edac_device_prv_data *priv = ad->data;
1648
1649 if (irq == ad->sb_irq) {
1650 writel(priv->ce_clear_mask,
1651 base + ALTR_A10_ECC_INTSTAT_OFST);
1652 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1653 return IRQ_HANDLED;
1654 } else if (irq == ad->db_irq) {
1655 writel(priv->ue_clear_mask,
1656 base + ALTR_A10_ECC_INTSTAT_OFST);
1657 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1658 return IRQ_HANDLED;
1659 }
1660
1661 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1662
1663 return IRQ_NONE;
1664 }
1665
1666 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1667 .setup = socfpga_init_sdmmc_ecc,
1668 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1669 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1670 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1671 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1672 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1673 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1674 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1675 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1676 .inject_fops = &altr_edac_a10_device_inject_fops,
1677 };
1678
1679 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1680 .setup = socfpga_init_sdmmc_ecc,
1681 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1682 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1683 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1684 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1685 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1686 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1687 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1688 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1689 .inject_fops = &altr_edac_a10_device_inject_fops,
1690 };
1691
1692 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1693
1694 /********************* Arria10 EDAC Device Functions *************************/
1695 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1696 #ifdef CONFIG_EDAC_ALTERA_L2C
1697 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1698 #endif
1699 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1700 { .compatible = "altr,socfpga-a10-ocram-ecc",
1701 .data = &a10_ocramecc_data },
1702 #endif
1703 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1704 { .compatible = "altr,socfpga-eth-mac-ecc",
1705 .data = &a10_enetecc_data },
1706 #endif
1707 #ifdef CONFIG_EDAC_ALTERA_NAND
1708 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1709 #endif
1710 #ifdef CONFIG_EDAC_ALTERA_DMA
1711 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1712 #endif
1713 #ifdef CONFIG_EDAC_ALTERA_USB
1714 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1715 #endif
1716 #ifdef CONFIG_EDAC_ALTERA_QSPI
1717 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1718 #endif
1719 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1720 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1721 #endif
1722 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1723 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1724 #endif
1725 {},
1726 };
1727 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1728
1729 /*
1730 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1731 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1732 * manager manages the IRQs and the children.
1733 * Based on xgene_edac.c peripheral code.
1734 */
1735
1736 static ssize_t __maybe_unused
altr_edac_a10_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1737 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1738 size_t count, loff_t *ppos)
1739 {
1740 struct edac_device_ctl_info *edac_dci = file->private_data;
1741 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1742 const struct edac_device_prv_data *priv = drvdata->data;
1743 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1744 unsigned long flags;
1745 u8 trig_type;
1746
1747 if (!user_buf || get_user(trig_type, user_buf))
1748 return -EFAULT;
1749
1750 local_irq_save(flags);
1751 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1752 writel(priv->ue_set_mask, set_addr);
1753 else
1754 writel(priv->ce_set_mask, set_addr);
1755
1756 /* Ensure the interrupt test bits are set */
1757 wmb();
1758 local_irq_restore(flags);
1759
1760 return count;
1761 }
1762
1763 /*
1764 * The Stratix10 EDAC Error Injection Functions differ from Arria10
1765 * slightly. A few Arria10 peripherals can use this injection function.
1766 * Inject the error into the memory and then readback to trigger the IRQ.
1767 */
1768 static ssize_t __maybe_unused
altr_edac_a10_device_trig2(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1769 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1770 size_t count, loff_t *ppos)
1771 {
1772 struct edac_device_ctl_info *edac_dci = file->private_data;
1773 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1774 const struct edac_device_prv_data *priv = drvdata->data;
1775 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1776 unsigned long flags;
1777 u8 trig_type;
1778
1779 if (!user_buf || get_user(trig_type, user_buf))
1780 return -EFAULT;
1781
1782 local_irq_save(flags);
1783 if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1784 writel(priv->ue_set_mask, set_addr);
1785 } else {
1786 /* Setup read/write of 4 bytes */
1787 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1788 /* Setup Address to 0 */
1789 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1790 /* Setup accctrl to read & ecc & data override */
1791 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1792 /* Kick it. */
1793 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1794 /* Setup write for single bit change */
1795 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1796 drvdata->base + ECC_BLK_WDATA0_OFST);
1797 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1798 drvdata->base + ECC_BLK_WDATA1_OFST);
1799 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1800 drvdata->base + ECC_BLK_WDATA2_OFST);
1801 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1802 drvdata->base + ECC_BLK_WDATA3_OFST);
1803
1804 /* Copy Read ECC to Write ECC */
1805 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1806 drvdata->base + ECC_BLK_WECC0_OFST);
1807 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1808 drvdata->base + ECC_BLK_WECC1_OFST);
1809 /* Setup accctrl to write & ecc override & data override */
1810 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1811 /* Kick it. */
1812 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1813 /* Setup accctrl to read & ecc overwrite & data overwrite */
1814 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1815 /* Kick it. */
1816 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1817 }
1818
1819 /* Ensure the interrupt test bits are set */
1820 wmb();
1821 local_irq_restore(flags);
1822
1823 return count;
1824 }
1825
altr_edac_a10_irq_handler(struct irq_desc * desc)1826 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1827 {
1828 int dberr, bit, sm_offset, irq_status;
1829 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1830 struct irq_chip *chip = irq_desc_get_chip(desc);
1831 int irq = irq_desc_get_irq(desc);
1832 unsigned long bits;
1833
1834 dberr = (irq == edac->db_irq) ? 1 : 0;
1835 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1836 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1837
1838 chained_irq_enter(chip, desc);
1839
1840 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1841
1842 bits = irq_status;
1843 for_each_set_bit(bit, &bits, 32)
1844 generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1845
1846 chained_irq_exit(chip, desc);
1847 }
1848
validate_parent_available(struct device_node * np)1849 static int validate_parent_available(struct device_node *np)
1850 {
1851 struct device_node *parent;
1852 int ret = 0;
1853
1854 /* SDRAM must be present for Linux (implied parent) */
1855 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1856 return 0;
1857
1858 /* Ensure parent device is enabled if parent node exists */
1859 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1860 if (parent && !of_device_is_available(parent))
1861 ret = -ENODEV;
1862
1863 of_node_put(parent);
1864 return ret;
1865 }
1866
get_s10_sdram_edac_resource(struct device_node * np,struct resource * res)1867 static int get_s10_sdram_edac_resource(struct device_node *np,
1868 struct resource *res)
1869 {
1870 struct device_node *parent;
1871 int ret;
1872
1873 parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1874 if (!parent)
1875 return -ENODEV;
1876
1877 ret = of_address_to_resource(parent, 0, res);
1878 of_node_put(parent);
1879
1880 return ret;
1881 }
1882
altr_edac_a10_device_add(struct altr_arria10_edac * edac,struct device_node * np)1883 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1884 struct device_node *np)
1885 {
1886 struct edac_device_ctl_info *dci;
1887 struct altr_edac_device_dev *altdev;
1888 char *ecc_name = (char *)np->name;
1889 struct resource res;
1890 int edac_idx;
1891 int rc = 0;
1892 const struct edac_device_prv_data *prv;
1893 /* Get matching node and check for valid result */
1894 const struct of_device_id *pdev_id =
1895 of_match_node(altr_edac_a10_device_of_match, np);
1896 if (IS_ERR_OR_NULL(pdev_id))
1897 return -ENODEV;
1898
1899 /* Get driver specific data for this EDAC device */
1900 prv = pdev_id->data;
1901 if (IS_ERR_OR_NULL(prv))
1902 return -ENODEV;
1903
1904 if (validate_parent_available(np))
1905 return -ENODEV;
1906
1907 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1908 return -ENOMEM;
1909
1910 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1911 rc = get_s10_sdram_edac_resource(np, &res);
1912 else
1913 rc = of_address_to_resource(np, 0, &res);
1914
1915 if (rc < 0) {
1916 edac_printk(KERN_ERR, EDAC_DEVICE,
1917 "%s: no resource address\n", ecc_name);
1918 goto err_release_group;
1919 }
1920
1921 edac_idx = edac_device_alloc_index();
1922 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1923 1, ecc_name, 1, 0, edac_idx);
1924
1925 if (!dci) {
1926 edac_printk(KERN_ERR, EDAC_DEVICE,
1927 "%s: Unable to allocate EDAC device\n", ecc_name);
1928 rc = -ENOMEM;
1929 goto err_release_group;
1930 }
1931
1932 altdev = dci->pvt_info;
1933 dci->dev = edac->dev;
1934 altdev->edac_dev_name = ecc_name;
1935 altdev->edac_idx = edac_idx;
1936 altdev->edac = edac;
1937 altdev->edac_dev = dci;
1938 altdev->data = prv;
1939 altdev->ddev = *edac->dev;
1940 dci->dev = &altdev->ddev;
1941 dci->ctl_name = "Altera ECC Manager";
1942 dci->mod_name = ecc_name;
1943 dci->dev_name = ecc_name;
1944
1945 altdev->base = devm_ioremap_resource(edac->dev, &res);
1946 if (IS_ERR(altdev->base)) {
1947 rc = PTR_ERR(altdev->base);
1948 goto err_release_group1;
1949 }
1950
1951 /* Check specific dependencies for the module */
1952 if (altdev->data->setup) {
1953 rc = altdev->data->setup(altdev);
1954 if (rc)
1955 goto err_release_group1;
1956 }
1957
1958 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1959 if (!altdev->sb_irq) {
1960 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1961 rc = -ENODEV;
1962 goto err_release_group1;
1963 }
1964 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1965 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1966 ecc_name, altdev);
1967 if (rc) {
1968 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1969 goto err_release_group1;
1970 }
1971
1972 #ifdef CONFIG_64BIT
1973 /* Use IRQ to determine SError origin instead of assigning IRQ */
1974 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1975 if (rc) {
1976 edac_printk(KERN_ERR, EDAC_DEVICE,
1977 "Unable to parse DB IRQ index\n");
1978 goto err_release_group1;
1979 }
1980 #else
1981 altdev->db_irq = irq_of_parse_and_map(np, 1);
1982 if (!altdev->db_irq) {
1983 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1984 rc = -ENODEV;
1985 goto err_release_group1;
1986 }
1987 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1988 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1989 ecc_name, altdev);
1990 if (rc) {
1991 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1992 goto err_release_group1;
1993 }
1994 #endif
1995
1996 rc = edac_device_add_device(dci);
1997 if (rc) {
1998 dev_err(edac->dev, "edac_device_add_device failed\n");
1999 rc = -ENOMEM;
2000 goto err_release_group1;
2001 }
2002
2003 altr_create_edacdev_dbgfs(dci, prv);
2004
2005 list_add(&altdev->next, &edac->a10_ecc_devices);
2006
2007 devres_remove_group(edac->dev, altr_edac_a10_device_add);
2008
2009 return 0;
2010
2011 err_release_group1:
2012 edac_device_free_ctl_info(dci);
2013 err_release_group:
2014 devres_release_group(edac->dev, NULL);
2015 edac_printk(KERN_ERR, EDAC_DEVICE,
2016 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2017
2018 return rc;
2019 }
2020
a10_eccmgr_irq_mask(struct irq_data * d)2021 static void a10_eccmgr_irq_mask(struct irq_data *d)
2022 {
2023 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2024
2025 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2026 BIT(d->hwirq));
2027 }
2028
a10_eccmgr_irq_unmask(struct irq_data * d)2029 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2030 {
2031 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2032
2033 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2034 BIT(d->hwirq));
2035 }
2036
a10_eccmgr_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2037 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2038 irq_hw_number_t hwirq)
2039 {
2040 struct altr_arria10_edac *edac = d->host_data;
2041
2042 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2043 irq_set_chip_data(irq, edac);
2044 irq_set_noprobe(irq);
2045
2046 return 0;
2047 }
2048
2049 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2050 .map = a10_eccmgr_irqdomain_map,
2051 .xlate = irq_domain_xlate_twocell,
2052 };
2053
2054 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2055 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2056
2057 #ifdef CONFIG_64BIT
2058 /* panic routine issues reboot on non-zero panic_timeout */
2059 extern int panic_timeout;
2060
2061 /*
2062 * The double bit error is handled through SError which is fatal. This is
2063 * called as a panic notifier to printout ECC error info as part of the panic.
2064 */
s10_edac_dberr_handler(struct notifier_block * this,unsigned long event,void * ptr)2065 static int s10_edac_dberr_handler(struct notifier_block *this,
2066 unsigned long event, void *ptr)
2067 {
2068 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2069 int err_addr, dberror;
2070
2071 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2072 &dberror);
2073 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2074 if (dberror & S10_DBE_IRQ_MASK) {
2075 struct list_head *position;
2076 struct altr_edac_device_dev *ed;
2077 struct arm_smccc_res result;
2078
2079 /* Find the matching DBE in the list of devices */
2080 list_for_each(position, &edac->a10_ecc_devices) {
2081 ed = list_entry(position, struct altr_edac_device_dev,
2082 next);
2083 if (!(BIT(ed->db_irq) & dberror))
2084 continue;
2085
2086 writel(ALTR_A10_ECC_DERRPENA,
2087 ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2088 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2089 regmap_write(edac->ecc_mgr_map,
2090 S10_SYSMGR_UE_ADDR_OFST, err_addr);
2091 edac_printk(KERN_ERR, EDAC_DEVICE,
2092 "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2093 ed->edac_dev_name, err_addr);
2094 break;
2095 }
2096 /* Notify the System through SMC. Reboot delay = 1 second */
2097 panic_timeout = 1;
2098 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2099 0, 0, &result);
2100 }
2101
2102 return NOTIFY_DONE;
2103 }
2104 #endif
2105
2106 /****************** Arria 10 EDAC Probe Function *********************/
altr_edac_a10_probe(struct platform_device * pdev)2107 static int altr_edac_a10_probe(struct platform_device *pdev)
2108 {
2109 struct altr_arria10_edac *edac;
2110 struct device_node *child;
2111
2112 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2113 if (!edac)
2114 return -ENOMEM;
2115
2116 edac->dev = &pdev->dev;
2117 platform_set_drvdata(pdev, edac);
2118 INIT_LIST_HEAD(&edac->a10_ecc_devices);
2119
2120 edac->ecc_mgr_map =
2121 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2122 "altr,sysmgr-syscon");
2123
2124 if (IS_ERR(edac->ecc_mgr_map)) {
2125 edac_printk(KERN_ERR, EDAC_DEVICE,
2126 "Unable to get syscon altr,sysmgr-syscon\n");
2127 return PTR_ERR(edac->ecc_mgr_map);
2128 }
2129
2130 edac->irq_chip.name = pdev->dev.of_node->name;
2131 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2132 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2133 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2134 &a10_eccmgr_ic_ops, edac);
2135 if (!edac->domain) {
2136 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2137 return -ENOMEM;
2138 }
2139
2140 edac->sb_irq = platform_get_irq(pdev, 0);
2141 if (edac->sb_irq < 0)
2142 return edac->sb_irq;
2143
2144 irq_set_chained_handler_and_data(edac->sb_irq,
2145 altr_edac_a10_irq_handler,
2146 edac);
2147
2148 #ifdef CONFIG_64BIT
2149 {
2150 int dberror, err_addr;
2151
2152 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2153 atomic_notifier_chain_register(&panic_notifier_list,
2154 &edac->panic_notifier);
2155
2156 /* Printout a message if uncorrectable error previously. */
2157 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2158 &dberror);
2159 if (dberror) {
2160 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2161 &err_addr);
2162 edac_printk(KERN_ERR, EDAC_DEVICE,
2163 "Previous Boot UE detected[0x%X] @ 0x%X\n",
2164 dberror, err_addr);
2165 /* Reset the sticky registers */
2166 regmap_write(edac->ecc_mgr_map,
2167 S10_SYSMGR_UE_VAL_OFST, 0);
2168 regmap_write(edac->ecc_mgr_map,
2169 S10_SYSMGR_UE_ADDR_OFST, 0);
2170 }
2171 }
2172 #else
2173 edac->db_irq = platform_get_irq(pdev, 1);
2174 if (edac->db_irq < 0)
2175 return edac->db_irq;
2176
2177 irq_set_chained_handler_and_data(edac->db_irq,
2178 altr_edac_a10_irq_handler, edac);
2179 #endif
2180
2181 for_each_child_of_node(pdev->dev.of_node, child) {
2182 if (!of_device_is_available(child))
2183 continue;
2184
2185 if (of_match_node(altr_edac_a10_device_of_match, child))
2186 altr_edac_a10_device_add(edac, child);
2187
2188 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2189 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2190 of_platform_populate(pdev->dev.of_node,
2191 altr_sdram_ctrl_of_match,
2192 NULL, &pdev->dev);
2193 #endif
2194 }
2195
2196 return 0;
2197 }
2198
2199 static const struct of_device_id altr_edac_a10_of_match[] = {
2200 { .compatible = "altr,socfpga-a10-ecc-manager" },
2201 { .compatible = "altr,socfpga-s10-ecc-manager" },
2202 {},
2203 };
2204 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2205
2206 static struct platform_driver altr_edac_a10_driver = {
2207 .probe = altr_edac_a10_probe,
2208 .driver = {
2209 .name = "socfpga_a10_ecc_manager",
2210 .of_match_table = altr_edac_a10_of_match,
2211 },
2212 };
2213 module_platform_driver(altr_edac_a10_driver);
2214
2215 MODULE_AUTHOR("Thor Thayer");
2216 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2217