1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5 #ifndef __LINUX_BIO_H 6 #define __LINUX_BIO_H 7 8 #include <linux/mempool.h> 9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10 #include <linux/blk_types.h> 11 #include <linux/uio.h> 12 13 #define BIO_MAX_VECS 256U 14 #define BIO_MAX_INLINE_VECS UIO_MAXIOV 15 16 struct queue_limits; 17 18 static inline unsigned int bio_max_segs(unsigned int nr_segs) 19 { 20 return min(nr_segs, BIO_MAX_VECS); 21 } 22 23 #define bio_iter_iovec(bio, iter) \ 24 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 25 26 #define bio_iter_page(bio, iter) \ 27 bvec_iter_page((bio)->bi_io_vec, (iter)) 28 #define bio_iter_len(bio, iter) \ 29 bvec_iter_len((bio)->bi_io_vec, (iter)) 30 #define bio_iter_offset(bio, iter) \ 31 bvec_iter_offset((bio)->bi_io_vec, (iter)) 32 33 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 34 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 35 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 36 37 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 39 40 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 41 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 42 43 /* 44 * Return the data direction, READ or WRITE. 45 */ 46 #define bio_data_dir(bio) \ 47 (op_is_write(bio_op(bio)) ? WRITE : READ) 48 49 /* 50 * Check whether this bio carries any data or not. A NULL bio is allowed. 51 */ 52 static inline bool bio_has_data(struct bio *bio) 53 { 54 if (bio && 55 bio->bi_iter.bi_size && 56 bio_op(bio) != REQ_OP_DISCARD && 57 bio_op(bio) != REQ_OP_SECURE_ERASE && 58 bio_op(bio) != REQ_OP_WRITE_ZEROES) 59 return true; 60 61 return false; 62 } 63 64 static inline bool bio_no_advance_iter(const struct bio *bio) 65 { 66 return bio_op(bio) == REQ_OP_DISCARD || 67 bio_op(bio) == REQ_OP_SECURE_ERASE || 68 bio_op(bio) == REQ_OP_WRITE_ZEROES; 69 } 70 71 static inline void *bio_data(struct bio *bio) 72 { 73 if (bio_has_data(bio)) 74 return page_address(bio_page(bio)) + bio_offset(bio); 75 76 return NULL; 77 } 78 79 static inline bool bio_next_segment(const struct bio *bio, 80 struct bvec_iter_all *iter) 81 { 82 if (iter->idx >= bio->bi_vcnt) 83 return false; 84 85 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 86 return true; 87 } 88 89 /* 90 * drivers should _never_ use the all version - the bio may have been split 91 * before it got to the driver and the driver won't own all of it 92 */ 93 #define bio_for_each_segment_all(bvl, bio, iter) \ 94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 95 96 static inline void bio_advance_iter(const struct bio *bio, 97 struct bvec_iter *iter, unsigned int bytes) 98 { 99 iter->bi_sector += bytes >> 9; 100 101 if (bio_no_advance_iter(bio)) 102 iter->bi_size -= bytes; 103 else 104 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 105 /* TODO: It is reasonable to complete bio with error here. */ 106 } 107 108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 109 static inline void bio_advance_iter_single(const struct bio *bio, 110 struct bvec_iter *iter, 111 unsigned int bytes) 112 { 113 iter->bi_sector += bytes >> 9; 114 115 if (bio_no_advance_iter(bio)) 116 iter->bi_size -= bytes; 117 else 118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 119 } 120 121 void __bio_advance(struct bio *, unsigned bytes); 122 123 /** 124 * bio_advance - increment/complete a bio by some number of bytes 125 * @bio: bio to advance 126 * @nbytes: number of bytes to complete 127 * 128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 130 * be updated on the last bvec as well. 131 * 132 * @bio will then represent the remaining, uncompleted portion of the io. 133 */ 134 static inline void bio_advance(struct bio *bio, unsigned int nbytes) 135 { 136 if (nbytes == bio->bi_iter.bi_size) { 137 bio->bi_iter.bi_size = 0; 138 return; 139 } 140 __bio_advance(bio, nbytes); 141 } 142 143 #define __bio_for_each_segment(bvl, bio, iter, start) \ 144 for (iter = (start); \ 145 (iter).bi_size && \ 146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 148 149 #define bio_for_each_segment(bvl, bio, iter) \ 150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 151 152 #define __bio_for_each_bvec(bvl, bio, iter, start) \ 153 for (iter = (start); \ 154 (iter).bi_size && \ 155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 157 158 /* iterate over multi-page bvec */ 159 #define bio_for_each_bvec(bvl, bio, iter) \ 160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 161 162 /* 163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 164 * same reasons as bio_for_each_segment_all(). 165 */ 166 #define bio_for_each_bvec_all(bvl, bio, i) \ 167 for (i = 0, bvl = bio_first_bvec_all(bio); \ 168 i < (bio)->bi_vcnt; i++, bvl++) 169 170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 171 172 static inline unsigned bio_segments(struct bio *bio) 173 { 174 unsigned segs = 0; 175 struct bio_vec bv; 176 struct bvec_iter iter; 177 178 /* 179 * We special case discard/write same/write zeroes, because they 180 * interpret bi_size differently: 181 */ 182 183 switch (bio_op(bio)) { 184 case REQ_OP_DISCARD: 185 case REQ_OP_SECURE_ERASE: 186 case REQ_OP_WRITE_ZEROES: 187 return 0; 188 default: 189 break; 190 } 191 192 bio_for_each_segment(bv, bio, iter) 193 segs++; 194 195 return segs; 196 } 197 198 /* 199 * get a reference to a bio, so it won't disappear. the intended use is 200 * something like: 201 * 202 * bio_get(bio); 203 * submit_bio(rw, bio); 204 * if (bio->bi_flags ...) 205 * do_something 206 * bio_put(bio); 207 * 208 * without the bio_get(), it could potentially complete I/O before submit_bio 209 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 210 * runs 211 */ 212 static inline void bio_get(struct bio *bio) 213 { 214 bio->bi_flags |= (1 << BIO_REFFED); 215 smp_mb__before_atomic(); 216 atomic_inc(&bio->__bi_cnt); 217 } 218 219 static inline void bio_cnt_set(struct bio *bio, unsigned int count) 220 { 221 if (count != 1) { 222 bio->bi_flags |= (1 << BIO_REFFED); 223 smp_mb(); 224 } 225 atomic_set(&bio->__bi_cnt, count); 226 } 227 228 static inline bool bio_flagged(struct bio *bio, unsigned int bit) 229 { 230 return bio->bi_flags & (1U << bit); 231 } 232 233 static inline void bio_set_flag(struct bio *bio, unsigned int bit) 234 { 235 bio->bi_flags |= (1U << bit); 236 } 237 238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 239 { 240 bio->bi_flags &= ~(1U << bit); 241 } 242 243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 244 { 245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 246 return bio->bi_io_vec; 247 } 248 249 static inline struct page *bio_first_page_all(struct bio *bio) 250 { 251 return bio_first_bvec_all(bio)->bv_page; 252 } 253 254 static inline struct folio *bio_first_folio_all(struct bio *bio) 255 { 256 return page_folio(bio_first_page_all(bio)); 257 } 258 259 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 260 { 261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 262 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 263 } 264 265 /** 266 * struct folio_iter - State for iterating all folios in a bio. 267 * @folio: The current folio we're iterating. NULL after the last folio. 268 * @offset: The byte offset within the current folio. 269 * @length: The number of bytes in this iteration (will not cross folio 270 * boundary). 271 */ 272 struct folio_iter { 273 struct folio *folio; 274 size_t offset; 275 size_t length; 276 /* private: for use by the iterator */ 277 struct folio *_next; 278 size_t _seg_count; 279 int _i; 280 }; 281 282 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 283 int i) 284 { 285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 286 287 if (unlikely(i >= bio->bi_vcnt)) { 288 fi->folio = NULL; 289 return; 290 } 291 292 fi->folio = page_folio(bvec->bv_page); 293 fi->offset = bvec->bv_offset + 294 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page); 295 fi->_seg_count = bvec->bv_len; 296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 297 fi->_next = folio_next(fi->folio); 298 fi->_i = i; 299 } 300 301 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 302 { 303 fi->_seg_count -= fi->length; 304 if (fi->_seg_count) { 305 fi->folio = fi->_next; 306 fi->offset = 0; 307 fi->length = min(folio_size(fi->folio), fi->_seg_count); 308 fi->_next = folio_next(fi->folio); 309 } else { 310 bio_first_folio(fi, bio, fi->_i + 1); 311 } 312 } 313 314 /** 315 * bio_for_each_folio_all - Iterate over each folio in a bio. 316 * @fi: struct folio_iter which is updated for each folio. 317 * @bio: struct bio to iterate over. 318 */ 319 #define bio_for_each_folio_all(fi, bio) \ 320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 321 322 void bio_trim(struct bio *bio, sector_t offset, sector_t size); 323 extern struct bio *bio_split(struct bio *bio, int sectors, 324 gfp_t gfp, struct bio_set *bs); 325 int bio_split_io_at(struct bio *bio, const struct queue_limits *lim, 326 unsigned *segs, unsigned max_bytes, unsigned len_align); 327 u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next, 328 u8 gaps_bit); 329 330 /** 331 * bio_next_split - get next @sectors from a bio, splitting if necessary 332 * @bio: bio to split 333 * @sectors: number of sectors to split from the front of @bio 334 * @gfp: gfp mask 335 * @bs: bio set to allocate from 336 * 337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 338 * than @sectors, returns the original bio unchanged. 339 */ 340 static inline struct bio *bio_next_split(struct bio *bio, int sectors, 341 gfp_t gfp, struct bio_set *bs) 342 { 343 if (sectors >= bio_sectors(bio)) 344 return bio; 345 346 return bio_split(bio, sectors, gfp, bs); 347 } 348 349 enum { 350 BIOSET_NEED_BVECS = BIT(0), 351 BIOSET_NEED_RESCUER = BIT(1), 352 BIOSET_PERCPU_CACHE = BIT(2), 353 }; 354 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 355 extern void bioset_exit(struct bio_set *); 356 extern int biovec_init_pool(mempool_t *pool, int pool_entries); 357 358 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 359 blk_opf_t opf, gfp_t gfp_mask, 360 struct bio_set *bs); 361 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 362 extern void bio_put(struct bio *); 363 364 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 365 gfp_t gfp, struct bio_set *bs); 366 int bio_init_clone(struct block_device *bdev, struct bio *bio, 367 struct bio *bio_src, gfp_t gfp); 368 369 extern struct bio_set fs_bio_set; 370 371 static inline struct bio *bio_alloc(struct block_device *bdev, 372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 373 { 374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 375 } 376 377 void submit_bio(struct bio *bio); 378 379 extern void bio_endio(struct bio *); 380 381 static inline void bio_io_error(struct bio *bio) 382 { 383 bio->bi_status = BLK_STS_IOERR; 384 bio_endio(bio); 385 } 386 387 static inline void bio_wouldblock_error(struct bio *bio) 388 { 389 bio_set_flag(bio, BIO_QUIET); 390 bio->bi_status = BLK_STS_AGAIN; 391 bio_endio(bio); 392 } 393 394 /* 395 * Calculate number of bvec segments that should be allocated to fit data 396 * pointed by @iter. If @iter is backed by bvec it's going to be reused 397 * instead of allocating a new one. 398 */ 399 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 400 { 401 if (iov_iter_is_bvec(iter)) 402 return 0; 403 return iov_iter_npages(iter, max_segs); 404 } 405 406 struct request_queue; 407 408 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 409 unsigned short max_vecs, blk_opf_t opf); 410 static inline void bio_init_inline(struct bio *bio, struct block_device *bdev, 411 unsigned short max_vecs, blk_opf_t opf) 412 { 413 bio_init(bio, bdev, bio_inline_vecs(bio), max_vecs, opf); 414 } 415 extern void bio_uninit(struct bio *); 416 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 417 void bio_chain(struct bio *, struct bio *); 418 419 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 420 unsigned off); 421 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 422 size_t len, size_t off); 423 void __bio_add_page(struct bio *bio, struct page *page, 424 unsigned int len, unsigned int off); 425 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 426 size_t off); 427 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len); 428 429 /** 430 * bio_add_max_vecs - number of bio_vecs needed to add data to a bio 431 * @kaddr: kernel virtual address to add 432 * @len: length in bytes to add 433 * 434 * Calculate how many bio_vecs need to be allocated to add the kernel virtual 435 * address range in [@kaddr:@len] in the worse case. 436 */ 437 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len) 438 { 439 if (is_vmalloc_addr(kaddr)) 440 return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE); 441 return 1; 442 } 443 444 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len); 445 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len); 446 447 int submit_bio_wait(struct bio *bio); 448 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data, 449 size_t len, enum req_op op); 450 451 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter, 452 unsigned len_align_mask); 453 454 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter); 455 void __bio_release_pages(struct bio *bio, bool mark_dirty); 456 extern void bio_set_pages_dirty(struct bio *bio); 457 extern void bio_check_pages_dirty(struct bio *bio); 458 459 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 460 struct bio *src, struct bvec_iter *src_iter); 461 extern void bio_copy_data(struct bio *dst, struct bio *src); 462 extern void bio_free_pages(struct bio *bio); 463 void guard_bio_eod(struct bio *bio); 464 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 465 466 static inline void zero_fill_bio(struct bio *bio) 467 { 468 zero_fill_bio_iter(bio, bio->bi_iter); 469 } 470 471 static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 472 { 473 if (bio_flagged(bio, BIO_PAGE_PINNED)) 474 __bio_release_pages(bio, mark_dirty); 475 } 476 477 #define bio_dev(bio) \ 478 disk_devt((bio)->bi_bdev->bd_disk) 479 480 #ifdef CONFIG_BLK_CGROUP 481 void bio_associate_blkg(struct bio *bio); 482 void bio_associate_blkg_from_css(struct bio *bio, 483 struct cgroup_subsys_state *css); 484 void bio_clone_blkg_association(struct bio *dst, struct bio *src); 485 void blkcg_punt_bio_submit(struct bio *bio); 486 #else /* CONFIG_BLK_CGROUP */ 487 static inline void bio_associate_blkg(struct bio *bio) { } 488 static inline void bio_associate_blkg_from_css(struct bio *bio, 489 struct cgroup_subsys_state *css) 490 { } 491 static inline void bio_clone_blkg_association(struct bio *dst, 492 struct bio *src) { } 493 static inline void blkcg_punt_bio_submit(struct bio *bio) 494 { 495 submit_bio(bio); 496 } 497 #endif /* CONFIG_BLK_CGROUP */ 498 499 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 500 { 501 bio_clear_flag(bio, BIO_REMAPPED); 502 if (bio->bi_bdev != bdev) 503 bio_clear_flag(bio, BIO_BPS_THROTTLED); 504 bio->bi_bdev = bdev; 505 bio_associate_blkg(bio); 506 } 507 508 /* 509 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 510 * 511 * A bio_list anchors a singly-linked list of bios chained through the bi_next 512 * member of the bio. The bio_list also caches the last list member to allow 513 * fast access to the tail. 514 */ 515 struct bio_list { 516 struct bio *head; 517 struct bio *tail; 518 }; 519 520 static inline int bio_list_empty(const struct bio_list *bl) 521 { 522 return bl->head == NULL; 523 } 524 525 static inline void bio_list_init(struct bio_list *bl) 526 { 527 bl->head = bl->tail = NULL; 528 } 529 530 #define BIO_EMPTY_LIST { NULL, NULL } 531 532 #define bio_list_for_each(bio, bl) \ 533 for (bio = (bl)->head; bio; bio = bio->bi_next) 534 535 static inline unsigned bio_list_size(const struct bio_list *bl) 536 { 537 unsigned sz = 0; 538 struct bio *bio; 539 540 bio_list_for_each(bio, bl) 541 sz++; 542 543 return sz; 544 } 545 546 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 547 { 548 bio->bi_next = NULL; 549 550 if (bl->tail) 551 bl->tail->bi_next = bio; 552 else 553 bl->head = bio; 554 555 bl->tail = bio; 556 } 557 558 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 559 { 560 bio->bi_next = bl->head; 561 562 bl->head = bio; 563 564 if (!bl->tail) 565 bl->tail = bio; 566 } 567 568 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 569 { 570 if (!bl2->head) 571 return; 572 573 if (bl->tail) 574 bl->tail->bi_next = bl2->head; 575 else 576 bl->head = bl2->head; 577 578 bl->tail = bl2->tail; 579 } 580 581 static inline void bio_list_merge_init(struct bio_list *bl, 582 struct bio_list *bl2) 583 { 584 bio_list_merge(bl, bl2); 585 bio_list_init(bl2); 586 } 587 588 static inline void bio_list_merge_head(struct bio_list *bl, 589 struct bio_list *bl2) 590 { 591 if (!bl2->head) 592 return; 593 594 if (bl->head) 595 bl2->tail->bi_next = bl->head; 596 else 597 bl->tail = bl2->tail; 598 599 bl->head = bl2->head; 600 } 601 602 static inline struct bio *bio_list_peek(struct bio_list *bl) 603 { 604 return bl->head; 605 } 606 607 static inline struct bio *bio_list_pop(struct bio_list *bl) 608 { 609 struct bio *bio = bl->head; 610 611 if (bio) { 612 bl->head = bl->head->bi_next; 613 if (!bl->head) 614 bl->tail = NULL; 615 616 bio->bi_next = NULL; 617 } 618 619 return bio; 620 } 621 622 static inline struct bio *bio_list_get(struct bio_list *bl) 623 { 624 struct bio *bio = bl->head; 625 626 bl->head = bl->tail = NULL; 627 628 return bio; 629 } 630 631 /* 632 * Increment chain count for the bio. Make sure the CHAIN flag update 633 * is visible before the raised count. 634 */ 635 static inline void bio_inc_remaining(struct bio *bio) 636 { 637 bio_set_flag(bio, BIO_CHAIN); 638 smp_mb__before_atomic(); 639 atomic_inc(&bio->__bi_remaining); 640 } 641 642 /* 643 * bio_set is used to allow other portions of the IO system to 644 * allocate their own private memory pools for bio and iovec structures. 645 * These memory pools in turn all allocate from the bio_slab 646 * and the bvec_slabs[]. 647 */ 648 #define BIO_POOL_SIZE 2 649 650 struct bio_set { 651 struct kmem_cache *bio_slab; 652 unsigned int front_pad; 653 654 /* 655 * per-cpu bio alloc cache 656 */ 657 struct bio_alloc_cache __percpu *cache; 658 659 mempool_t bio_pool; 660 mempool_t bvec_pool; 661 662 unsigned int back_pad; 663 /* 664 * Deadlock avoidance for stacking block drivers: see comments in 665 * bio_alloc_bioset() for details 666 */ 667 spinlock_t rescue_lock; 668 struct bio_list rescue_list; 669 struct work_struct rescue_work; 670 struct workqueue_struct *rescue_workqueue; 671 672 /* 673 * Hot un-plug notifier for the per-cpu cache, if used 674 */ 675 struct hlist_node cpuhp_dead; 676 }; 677 678 static inline bool bioset_initialized(struct bio_set *bs) 679 { 680 return bs->bio_slab != NULL; 681 } 682 683 /* 684 * Mark a bio as polled. Note that for async polled IO, the caller must 685 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 686 * We cannot block waiting for requests on polled IO, as those completions 687 * must be found by the caller. This is different than IRQ driven IO, where 688 * it's safe to wait for IO to complete. 689 */ 690 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 691 { 692 bio->bi_opf |= REQ_POLLED; 693 if (kiocb->ki_flags & IOCB_NOWAIT) 694 bio->bi_opf |= REQ_NOWAIT; 695 } 696 697 static inline void bio_clear_polled(struct bio *bio) 698 { 699 bio->bi_opf &= ~REQ_POLLED; 700 } 701 702 /** 703 * bio_is_zone_append - is this a zone append bio? 704 * @bio: bio to check 705 * 706 * Check if @bio is a zone append operation. Core block layer code and end_io 707 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check 708 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if 709 * it is not natively supported. 710 */ 711 static inline bool bio_is_zone_append(struct bio *bio) 712 { 713 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 714 return false; 715 return bio_op(bio) == REQ_OP_ZONE_APPEND || 716 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 717 } 718 719 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 720 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 721 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 722 723 struct bio *blk_alloc_discard_bio(struct block_device *bdev, 724 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 725 726 #endif /* __LINUX_BIO_H */ 727