1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46
47 static struct dentry *debugfs_root;
48
49 /*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59 };
60
61 /*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71 };
72
73 /*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84 };
85
86 /*
87 * Work item used to forward regulator events.
88 *
89 * @work: workqueue entry
90 * @rdev: regulator device to notify (consumer receiving the forwarded event)
91 * @event: event code to be forwarded
92 */
93 struct regulator_event_work {
94 struct work_struct work;
95 struct regulator_dev *rdev;
96 unsigned long event;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109 suspend_state_t state);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void destroy_regulator(struct regulator *regulator);
114 static void _regulator_put(struct regulator *regulator);
115
rdev_get_name(struct regulator_dev * rdev)116 const char *rdev_get_name(struct regulator_dev *rdev)
117 {
118 if (rdev->constraints && rdev->constraints->name)
119 return rdev->constraints->name;
120 else if (rdev->desc->name)
121 return rdev->desc->name;
122 else
123 return "";
124 }
125 EXPORT_SYMBOL_GPL(rdev_get_name);
126
have_full_constraints(void)127 static bool have_full_constraints(void)
128 {
129 return has_full_constraints || of_have_populated_dt();
130 }
131
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)132 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
133 {
134 if (!rdev->constraints) {
135 rdev_err(rdev, "no constraints\n");
136 return false;
137 }
138
139 if (rdev->constraints->valid_ops_mask & ops)
140 return true;
141
142 return false;
143 }
144
145 /**
146 * regulator_lock_nested - lock a single regulator
147 * @rdev: regulator source
148 * @ww_ctx: w/w mutex acquire context
149 *
150 * This function can be called many times by one task on
151 * a single regulator and its mutex will be locked only
152 * once. If a task, which is calling this function is other
153 * than the one, which initially locked the mutex, it will
154 * wait on mutex.
155 *
156 * Return: 0 on success or a negative error number on failure.
157 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)158 static inline int regulator_lock_nested(struct regulator_dev *rdev,
159 struct ww_acquire_ctx *ww_ctx)
160 {
161 bool lock = false;
162 int ret = 0;
163
164 mutex_lock(®ulator_nesting_mutex);
165
166 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
167 if (rdev->mutex_owner == current)
168 rdev->ref_cnt++;
169 else
170 lock = true;
171
172 if (lock) {
173 mutex_unlock(®ulator_nesting_mutex);
174 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
175 mutex_lock(®ulator_nesting_mutex);
176 }
177 } else {
178 lock = true;
179 }
180
181 if (lock && ret != -EDEADLK) {
182 rdev->ref_cnt++;
183 rdev->mutex_owner = current;
184 }
185
186 mutex_unlock(®ulator_nesting_mutex);
187
188 return ret;
189 }
190
191 /**
192 * regulator_lock - lock a single regulator
193 * @rdev: regulator source
194 *
195 * This function can be called many times by one task on
196 * a single regulator and its mutex will be locked only
197 * once. If a task, which is calling this function is other
198 * than the one, which initially locked the mutex, it will
199 * wait on mutex.
200 */
regulator_lock(struct regulator_dev * rdev)201 static void regulator_lock(struct regulator_dev *rdev)
202 {
203 regulator_lock_nested(rdev, NULL);
204 }
205
206 /**
207 * regulator_unlock - unlock a single regulator
208 * @rdev: regulator_source
209 *
210 * This function unlocks the mutex when the
211 * reference counter reaches 0.
212 */
regulator_unlock(struct regulator_dev * rdev)213 static void regulator_unlock(struct regulator_dev *rdev)
214 {
215 mutex_lock(®ulator_nesting_mutex);
216
217 if (--rdev->ref_cnt == 0) {
218 rdev->mutex_owner = NULL;
219 ww_mutex_unlock(&rdev->mutex);
220 }
221
222 WARN_ON_ONCE(rdev->ref_cnt < 0);
223
224 mutex_unlock(®ulator_nesting_mutex);
225 }
226
227 /**
228 * regulator_lock_two - lock two regulators
229 * @rdev1: first regulator
230 * @rdev2: second regulator
231 * @ww_ctx: w/w mutex acquire context
232 *
233 * Locks both rdevs using the regulator_ww_class.
234 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)235 static void regulator_lock_two(struct regulator_dev *rdev1,
236 struct regulator_dev *rdev2,
237 struct ww_acquire_ctx *ww_ctx)
238 {
239 struct regulator_dev *held, *contended;
240 int ret;
241
242 ww_acquire_init(ww_ctx, ®ulator_ww_class);
243
244 /* Try to just grab both of them */
245 ret = regulator_lock_nested(rdev1, ww_ctx);
246 WARN_ON(ret);
247 ret = regulator_lock_nested(rdev2, ww_ctx);
248 if (ret != -EDEADLOCK) {
249 WARN_ON(ret);
250 goto exit;
251 }
252
253 held = rdev1;
254 contended = rdev2;
255 while (true) {
256 regulator_unlock(held);
257
258 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
259 contended->ref_cnt++;
260 contended->mutex_owner = current;
261 swap(held, contended);
262 ret = regulator_lock_nested(contended, ww_ctx);
263
264 if (ret != -EDEADLOCK) {
265 WARN_ON(ret);
266 break;
267 }
268 }
269
270 exit:
271 ww_acquire_done(ww_ctx);
272 }
273
274 /**
275 * regulator_unlock_two - unlock two regulators
276 * @rdev1: first regulator
277 * @rdev2: second regulator
278 * @ww_ctx: w/w mutex acquire context
279 *
280 * The inverse of regulator_lock_two().
281 */
282
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)283 static void regulator_unlock_two(struct regulator_dev *rdev1,
284 struct regulator_dev *rdev2,
285 struct ww_acquire_ctx *ww_ctx)
286 {
287 regulator_unlock(rdev2);
288 regulator_unlock(rdev1);
289 ww_acquire_fini(ww_ctx);
290 }
291
regulator_supply_is_couple(struct regulator_dev * rdev)292 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
293 {
294 struct regulator_dev *c_rdev;
295 int i;
296
297 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
298 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
299
300 if (rdev->supply->rdev == c_rdev)
301 return true;
302 }
303
304 return false;
305 }
306
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)307 static void regulator_unlock_recursive(struct regulator_dev *rdev,
308 unsigned int n_coupled)
309 {
310 struct regulator_dev *c_rdev, *supply_rdev;
311 int i, supply_n_coupled;
312
313 for (i = n_coupled; i > 0; i--) {
314 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
315
316 if (!c_rdev)
317 continue;
318
319 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
320 supply_rdev = c_rdev->supply->rdev;
321 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
322
323 regulator_unlock_recursive(supply_rdev,
324 supply_n_coupled);
325 }
326
327 regulator_unlock(c_rdev);
328 }
329 }
330
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)331 static int regulator_lock_recursive(struct regulator_dev *rdev,
332 struct regulator_dev **new_contended_rdev,
333 struct regulator_dev **old_contended_rdev,
334 struct ww_acquire_ctx *ww_ctx)
335 {
336 struct regulator_dev *c_rdev;
337 int i, err;
338
339 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
340 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
341
342 if (!c_rdev)
343 continue;
344
345 if (c_rdev != *old_contended_rdev) {
346 err = regulator_lock_nested(c_rdev, ww_ctx);
347 if (err) {
348 if (err == -EDEADLK) {
349 *new_contended_rdev = c_rdev;
350 goto err_unlock;
351 }
352
353 /* shouldn't happen */
354 WARN_ON_ONCE(err != -EALREADY);
355 }
356 } else {
357 *old_contended_rdev = NULL;
358 }
359
360 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
361 err = regulator_lock_recursive(c_rdev->supply->rdev,
362 new_contended_rdev,
363 old_contended_rdev,
364 ww_ctx);
365 if (err) {
366 regulator_unlock(c_rdev);
367 goto err_unlock;
368 }
369 }
370 }
371
372 return 0;
373
374 err_unlock:
375 regulator_unlock_recursive(rdev, i);
376
377 return err;
378 }
379
380 /**
381 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
382 * regulators
383 * @rdev: regulator source
384 * @ww_ctx: w/w mutex acquire context
385 *
386 * Unlock all regulators related with rdev by coupling or supplying.
387 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)388 static void regulator_unlock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390 {
391 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
392 ww_acquire_fini(ww_ctx);
393 }
394
395 /**
396 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
397 * @rdev: regulator source
398 * @ww_ctx: w/w mutex acquire context
399 *
400 * This function as a wrapper on regulator_lock_recursive(), which locks
401 * all regulators related with rdev by coupling or supplying.
402 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)403 static void regulator_lock_dependent(struct regulator_dev *rdev,
404 struct ww_acquire_ctx *ww_ctx)
405 {
406 struct regulator_dev *new_contended_rdev = NULL;
407 struct regulator_dev *old_contended_rdev = NULL;
408 int err;
409
410 mutex_lock(®ulator_list_mutex);
411
412 ww_acquire_init(ww_ctx, ®ulator_ww_class);
413
414 do {
415 if (new_contended_rdev) {
416 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
417 old_contended_rdev = new_contended_rdev;
418 old_contended_rdev->ref_cnt++;
419 old_contended_rdev->mutex_owner = current;
420 }
421
422 err = regulator_lock_recursive(rdev,
423 &new_contended_rdev,
424 &old_contended_rdev,
425 ww_ctx);
426
427 if (old_contended_rdev)
428 regulator_unlock(old_contended_rdev);
429
430 } while (err == -EDEADLK);
431
432 ww_acquire_done(ww_ctx);
433
434 mutex_unlock(®ulator_list_mutex);
435 }
436
437 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)438 int regulator_check_voltage(struct regulator_dev *rdev,
439 int *min_uV, int *max_uV)
440 {
441 BUG_ON(*min_uV > *max_uV);
442
443 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
444 rdev_err(rdev, "voltage operation not allowed\n");
445 return -EPERM;
446 }
447
448 if (*max_uV > rdev->constraints->max_uV)
449 *max_uV = rdev->constraints->max_uV;
450 if (*min_uV < rdev->constraints->min_uV)
451 *min_uV = rdev->constraints->min_uV;
452
453 if (*min_uV > *max_uV) {
454 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
455 *min_uV, *max_uV);
456 return -EINVAL;
457 }
458
459 return 0;
460 }
461
462 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)463 static int regulator_check_states(suspend_state_t state)
464 {
465 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
466 }
467
468 /* Make sure we select a voltage that suits the needs of all
469 * regulator consumers
470 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)471 int regulator_check_consumers(struct regulator_dev *rdev,
472 int *min_uV, int *max_uV,
473 suspend_state_t state)
474 {
475 struct regulator *regulator;
476 struct regulator_voltage *voltage;
477
478 list_for_each_entry(regulator, &rdev->consumer_list, list) {
479 voltage = ®ulator->voltage[state];
480 /*
481 * Assume consumers that didn't say anything are OK
482 * with anything in the constraint range.
483 */
484 if (!voltage->min_uV && !voltage->max_uV)
485 continue;
486
487 if (*max_uV > voltage->max_uV)
488 *max_uV = voltage->max_uV;
489 if (*min_uV < voltage->min_uV)
490 *min_uV = voltage->min_uV;
491 }
492
493 if (*min_uV > *max_uV) {
494 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
495 *min_uV, *max_uV);
496 return -EINVAL;
497 }
498
499 return 0;
500 }
501
502 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)503 static int regulator_check_current_limit(struct regulator_dev *rdev,
504 int *min_uA, int *max_uA)
505 {
506 BUG_ON(*min_uA > *max_uA);
507
508 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
509 rdev_err(rdev, "current operation not allowed\n");
510 return -EPERM;
511 }
512
513 if (*max_uA > rdev->constraints->max_uA &&
514 rdev->constraints->max_uA)
515 *max_uA = rdev->constraints->max_uA;
516 if (*min_uA < rdev->constraints->min_uA)
517 *min_uA = rdev->constraints->min_uA;
518
519 if (*min_uA > *max_uA) {
520 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
521 *min_uA, *max_uA);
522 return -EINVAL;
523 }
524
525 return 0;
526 }
527
528 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)529 static int regulator_mode_constrain(struct regulator_dev *rdev,
530 unsigned int *mode)
531 {
532 switch (*mode) {
533 case REGULATOR_MODE_FAST:
534 case REGULATOR_MODE_NORMAL:
535 case REGULATOR_MODE_IDLE:
536 case REGULATOR_MODE_STANDBY:
537 break;
538 default:
539 rdev_err(rdev, "invalid mode %x specified\n", *mode);
540 return -EINVAL;
541 }
542
543 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
544 rdev_err(rdev, "mode operation not allowed\n");
545 return -EPERM;
546 }
547
548 /* The modes are bitmasks, the most power hungry modes having
549 * the lowest values. If the requested mode isn't supported
550 * try higher modes.
551 */
552 while (*mode) {
553 if (rdev->constraints->valid_modes_mask & *mode)
554 return 0;
555 *mode /= 2;
556 }
557
558 return -EINVAL;
559 }
560
561 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)562 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
563 {
564 if (rdev->constraints == NULL)
565 return NULL;
566
567 switch (state) {
568 case PM_SUSPEND_STANDBY:
569 return &rdev->constraints->state_standby;
570 case PM_SUSPEND_MEM:
571 return &rdev->constraints->state_mem;
572 case PM_SUSPEND_MAX:
573 return &rdev->constraints->state_disk;
574 default:
575 return NULL;
576 }
577 }
578
579 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)580 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
581 {
582 const struct regulator_state *rstate;
583
584 rstate = regulator_get_suspend_state(rdev, state);
585 if (rstate == NULL)
586 return NULL;
587
588 /* If we have no suspend mode configuration don't set anything;
589 * only warn if the driver implements set_suspend_voltage or
590 * set_suspend_mode callback.
591 */
592 if (rstate->enabled != ENABLE_IN_SUSPEND &&
593 rstate->enabled != DISABLE_IN_SUSPEND) {
594 if (rdev->desc->ops->set_suspend_voltage ||
595 rdev->desc->ops->set_suspend_mode)
596 rdev_warn(rdev, "No configuration\n");
597 return NULL;
598 }
599
600 return rstate;
601 }
602
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)603 static ssize_t microvolts_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
605 {
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
607 int uV;
608
609 regulator_lock(rdev);
610 uV = regulator_get_voltage_rdev(rdev);
611 regulator_unlock(rdev);
612
613 if (uV < 0)
614 return uV;
615 return sprintf(buf, "%d\n", uV);
616 }
617 static DEVICE_ATTR_RO(microvolts);
618
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)619 static ssize_t microamps_show(struct device *dev,
620 struct device_attribute *attr, char *buf)
621 {
622 struct regulator_dev *rdev = dev_get_drvdata(dev);
623
624 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
625 }
626 static DEVICE_ATTR_RO(microamps);
627
name_show(struct device * dev,struct device_attribute * attr,char * buf)628 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
629 char *buf)
630 {
631 struct regulator_dev *rdev = dev_get_drvdata(dev);
632
633 return sprintf(buf, "%s\n", rdev_get_name(rdev));
634 }
635 static DEVICE_ATTR_RO(name);
636
regulator_opmode_to_str(int mode)637 static const char *regulator_opmode_to_str(int mode)
638 {
639 switch (mode) {
640 case REGULATOR_MODE_FAST:
641 return "fast";
642 case REGULATOR_MODE_NORMAL:
643 return "normal";
644 case REGULATOR_MODE_IDLE:
645 return "idle";
646 case REGULATOR_MODE_STANDBY:
647 return "standby";
648 }
649 return "unknown";
650 }
651
regulator_print_opmode(char * buf,int mode)652 static ssize_t regulator_print_opmode(char *buf, int mode)
653 {
654 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
655 }
656
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)657 static ssize_t opmode_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659 {
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
661
662 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
663 }
664 static DEVICE_ATTR_RO(opmode);
665
regulator_print_state(char * buf,int state)666 static ssize_t regulator_print_state(char *buf, int state)
667 {
668 if (state > 0)
669 return sprintf(buf, "enabled\n");
670 else if (state == 0)
671 return sprintf(buf, "disabled\n");
672 else
673 return sprintf(buf, "unknown\n");
674 }
675
state_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t state_show(struct device *dev,
677 struct device_attribute *attr, char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680 ssize_t ret;
681
682 regulator_lock(rdev);
683 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
684 regulator_unlock(rdev);
685
686 return ret;
687 }
688 static DEVICE_ATTR_RO(state);
689
status_show(struct device * dev,struct device_attribute * attr,char * buf)690 static ssize_t status_show(struct device *dev,
691 struct device_attribute *attr, char *buf)
692 {
693 struct regulator_dev *rdev = dev_get_drvdata(dev);
694 int status;
695 char *label;
696
697 status = rdev->desc->ops->get_status(rdev);
698 if (status < 0)
699 return status;
700
701 switch (status) {
702 case REGULATOR_STATUS_OFF:
703 label = "off";
704 break;
705 case REGULATOR_STATUS_ON:
706 label = "on";
707 break;
708 case REGULATOR_STATUS_ERROR:
709 label = "error";
710 break;
711 case REGULATOR_STATUS_FAST:
712 label = "fast";
713 break;
714 case REGULATOR_STATUS_NORMAL:
715 label = "normal";
716 break;
717 case REGULATOR_STATUS_IDLE:
718 label = "idle";
719 break;
720 case REGULATOR_STATUS_STANDBY:
721 label = "standby";
722 break;
723 case REGULATOR_STATUS_BYPASS:
724 label = "bypass";
725 break;
726 case REGULATOR_STATUS_UNDEFINED:
727 label = "undefined";
728 break;
729 default:
730 return -ERANGE;
731 }
732
733 return sprintf(buf, "%s\n", label);
734 }
735 static DEVICE_ATTR_RO(status);
736
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)737 static ssize_t min_microamps_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739 {
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
744
745 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
746 }
747 static DEVICE_ATTR_RO(min_microamps);
748
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)749 static ssize_t max_microamps_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
751 {
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753
754 if (!rdev->constraints)
755 return sprintf(buf, "constraint not defined\n");
756
757 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
758 }
759 static DEVICE_ATTR_RO(max_microamps);
760
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)761 static ssize_t min_microvolts_show(struct device *dev,
762 struct device_attribute *attr, char *buf)
763 {
764 struct regulator_dev *rdev = dev_get_drvdata(dev);
765
766 if (!rdev->constraints)
767 return sprintf(buf, "constraint not defined\n");
768
769 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
770 }
771 static DEVICE_ATTR_RO(min_microvolts);
772
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)773 static ssize_t max_microvolts_show(struct device *dev,
774 struct device_attribute *attr, char *buf)
775 {
776 struct regulator_dev *rdev = dev_get_drvdata(dev);
777
778 if (!rdev->constraints)
779 return sprintf(buf, "constraint not defined\n");
780
781 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
782 }
783 static DEVICE_ATTR_RO(max_microvolts);
784
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t requested_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787 {
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789 struct regulator *regulator;
790 int uA = 0;
791
792 regulator_lock(rdev);
793 list_for_each_entry(regulator, &rdev->consumer_list, list) {
794 if (regulator->enable_count)
795 uA += regulator->uA_load;
796 }
797 regulator_unlock(rdev);
798 return sprintf(buf, "%d\n", uA);
799 }
800 static DEVICE_ATTR_RO(requested_microamps);
801
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)802 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
803 char *buf)
804 {
805 struct regulator_dev *rdev = dev_get_drvdata(dev);
806 return sprintf(buf, "%d\n", rdev->use_count);
807 }
808 static DEVICE_ATTR_RO(num_users);
809
type_show(struct device * dev,struct device_attribute * attr,char * buf)810 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
811 char *buf)
812 {
813 struct regulator_dev *rdev = dev_get_drvdata(dev);
814
815 switch (rdev->desc->type) {
816 case REGULATOR_VOLTAGE:
817 return sprintf(buf, "voltage\n");
818 case REGULATOR_CURRENT:
819 return sprintf(buf, "current\n");
820 }
821 return sprintf(buf, "unknown\n");
822 }
823 static DEVICE_ATTR_RO(type);
824
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t suspend_mem_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_mem_microvolts);
833
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)834 static ssize_t suspend_disk_microvolts_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836 {
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
840 }
841 static DEVICE_ATTR_RO(suspend_disk_microvolts);
842
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)843 static ssize_t suspend_standby_microvolts_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845 {
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
849 }
850 static DEVICE_ATTR_RO(suspend_standby_microvolts);
851
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)852 static ssize_t suspend_mem_mode_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854 {
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857 return regulator_print_opmode(buf,
858 rdev->constraints->state_mem.mode);
859 }
860 static DEVICE_ATTR_RO(suspend_mem_mode);
861
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)862 static ssize_t suspend_disk_mode_show(struct device *dev,
863 struct device_attribute *attr, char *buf)
864 {
865 struct regulator_dev *rdev = dev_get_drvdata(dev);
866
867 return regulator_print_opmode(buf,
868 rdev->constraints->state_disk.mode);
869 }
870 static DEVICE_ATTR_RO(suspend_disk_mode);
871
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)872 static ssize_t suspend_standby_mode_show(struct device *dev,
873 struct device_attribute *attr, char *buf)
874 {
875 struct regulator_dev *rdev = dev_get_drvdata(dev);
876
877 return regulator_print_opmode(buf,
878 rdev->constraints->state_standby.mode);
879 }
880 static DEVICE_ATTR_RO(suspend_standby_mode);
881
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)882 static ssize_t suspend_mem_state_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884 {
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return regulator_print_state(buf,
888 rdev->constraints->state_mem.enabled);
889 }
890 static DEVICE_ATTR_RO(suspend_mem_state);
891
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)892 static ssize_t suspend_disk_state_show(struct device *dev,
893 struct device_attribute *attr, char *buf)
894 {
895 struct regulator_dev *rdev = dev_get_drvdata(dev);
896
897 return regulator_print_state(buf,
898 rdev->constraints->state_disk.enabled);
899 }
900 static DEVICE_ATTR_RO(suspend_disk_state);
901
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)902 static ssize_t suspend_standby_state_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904 {
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_state(buf,
908 rdev->constraints->state_standby.enabled);
909 }
910 static DEVICE_ATTR_RO(suspend_standby_state);
911
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)912 static ssize_t bypass_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914 {
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916 const char *report;
917 bool bypass;
918 int ret;
919
920 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
921
922 if (ret != 0)
923 report = "unknown";
924 else if (bypass)
925 report = "enabled";
926 else
927 report = "disabled";
928
929 return sprintf(buf, "%s\n", report);
930 }
931 static DEVICE_ATTR_RO(bypass);
932
power_budget_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)933 static ssize_t power_budget_milliwatt_show(struct device *dev,
934 struct device_attribute *attr,
935 char *buf)
936 {
937 struct regulator_dev *rdev = dev_get_drvdata(dev);
938
939 return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW);
940 }
941 static DEVICE_ATTR_RO(power_budget_milliwatt);
942
power_requested_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)943 static ssize_t power_requested_milliwatt_show(struct device *dev,
944 struct device_attribute *attr,
945 char *buf)
946 {
947 struct regulator_dev *rdev = dev_get_drvdata(dev);
948
949 return sprintf(buf, "%d\n", rdev->pw_requested_mW);
950 }
951 static DEVICE_ATTR_RO(power_requested_milliwatt);
952
953 #define REGULATOR_ERROR_ATTR(name, bit) \
954 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
955 char *buf) \
956 { \
957 int ret; \
958 unsigned int flags; \
959 struct regulator_dev *rdev = dev_get_drvdata(dev); \
960 ret = _regulator_get_error_flags(rdev, &flags); \
961 if (ret) \
962 return ret; \
963 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
964 } \
965 static DEVICE_ATTR_RO(name)
966
967 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
968 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
969 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
970 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
971 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
972 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
973 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
974 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
975 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
976
977 /* Calculate the new optimum regulator operating mode based on the new total
978 * consumer load. All locks held by caller
979 */
drms_uA_update(struct regulator_dev * rdev)980 static int drms_uA_update(struct regulator_dev *rdev)
981 {
982 struct regulator *sibling;
983 int current_uA = 0, output_uV, input_uV, err;
984 unsigned int mode;
985
986 /*
987 * first check to see if we can set modes at all, otherwise just
988 * tell the consumer everything is OK.
989 */
990 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
991 rdev_dbg(rdev, "DRMS operation not allowed\n");
992 return 0;
993 }
994
995 if (!rdev->desc->ops->get_optimum_mode &&
996 !rdev->desc->ops->set_load)
997 return 0;
998
999 if (!rdev->desc->ops->set_mode &&
1000 !rdev->desc->ops->set_load)
1001 return -EINVAL;
1002
1003 /* calc total requested load */
1004 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1005 if (sibling->enable_count)
1006 current_uA += sibling->uA_load;
1007 }
1008
1009 current_uA += rdev->constraints->system_load;
1010
1011 if (rdev->desc->ops->set_load) {
1012 /* set the optimum mode for our new total regulator load */
1013 err = rdev->desc->ops->set_load(rdev, current_uA);
1014 if (err < 0)
1015 rdev_err(rdev, "failed to set load %d: %pe\n",
1016 current_uA, ERR_PTR(err));
1017 } else {
1018 /*
1019 * Unfortunately in some cases the constraints->valid_ops has
1020 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1021 * That's not really legit but we won't consider it a fatal
1022 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1023 * wasn't set.
1024 */
1025 if (!rdev->constraints->valid_modes_mask) {
1026 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1027 return 0;
1028 }
1029
1030 /* get output voltage */
1031 output_uV = regulator_get_voltage_rdev(rdev);
1032
1033 /*
1034 * Don't return an error; if regulator driver cares about
1035 * output_uV then it's up to the driver to validate.
1036 */
1037 if (output_uV <= 0)
1038 rdev_dbg(rdev, "invalid output voltage found\n");
1039
1040 /* get input voltage */
1041 input_uV = 0;
1042 if (rdev->supply)
1043 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1044 if (input_uV <= 0)
1045 input_uV = rdev->constraints->input_uV;
1046
1047 /*
1048 * Don't return an error; if regulator driver cares about
1049 * input_uV then it's up to the driver to validate.
1050 */
1051 if (input_uV <= 0)
1052 rdev_dbg(rdev, "invalid input voltage found\n");
1053
1054 /* now get the optimum mode for our new total regulator load */
1055 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1056 output_uV, current_uA);
1057
1058 /* check the new mode is allowed */
1059 err = regulator_mode_constrain(rdev, &mode);
1060 if (err < 0) {
1061 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1062 current_uA, input_uV, output_uV, ERR_PTR(err));
1063 return err;
1064 }
1065
1066 err = rdev->desc->ops->set_mode(rdev, mode);
1067 if (err < 0)
1068 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1069 mode, ERR_PTR(err));
1070 }
1071
1072 return err;
1073 }
1074
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1075 static int __suspend_set_state(struct regulator_dev *rdev,
1076 const struct regulator_state *rstate)
1077 {
1078 int ret = 0;
1079
1080 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1081 rdev->desc->ops->set_suspend_enable)
1082 ret = rdev->desc->ops->set_suspend_enable(rdev);
1083 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1084 rdev->desc->ops->set_suspend_disable)
1085 ret = rdev->desc->ops->set_suspend_disable(rdev);
1086 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1087 ret = 0;
1088
1089 if (ret < 0) {
1090 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1091 return ret;
1092 }
1093
1094 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1095 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1096 if (ret < 0) {
1097 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1098 return ret;
1099 }
1100 }
1101
1102 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1103 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1104 if (ret < 0) {
1105 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1106 return ret;
1107 }
1108 }
1109
1110 return ret;
1111 }
1112
suspend_set_initial_state(struct regulator_dev * rdev)1113 static int suspend_set_initial_state(struct regulator_dev *rdev)
1114 {
1115 const struct regulator_state *rstate;
1116
1117 rstate = regulator_get_suspend_state_check(rdev,
1118 rdev->constraints->initial_state);
1119 if (!rstate)
1120 return 0;
1121
1122 return __suspend_set_state(rdev, rstate);
1123 }
1124
1125 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1126 static void print_constraints_debug(struct regulator_dev *rdev)
1127 {
1128 struct regulation_constraints *constraints = rdev->constraints;
1129 char buf[160] = "";
1130 size_t len = sizeof(buf) - 1;
1131 int count = 0;
1132 int ret;
1133
1134 if (constraints->min_uV && constraints->max_uV) {
1135 if (constraints->min_uV == constraints->max_uV)
1136 count += scnprintf(buf + count, len - count, "%d mV ",
1137 constraints->min_uV / 1000);
1138 else
1139 count += scnprintf(buf + count, len - count,
1140 "%d <--> %d mV ",
1141 constraints->min_uV / 1000,
1142 constraints->max_uV / 1000);
1143 }
1144
1145 if (!constraints->min_uV ||
1146 constraints->min_uV != constraints->max_uV) {
1147 ret = regulator_get_voltage_rdev(rdev);
1148 if (ret > 0)
1149 count += scnprintf(buf + count, len - count,
1150 "at %d mV ", ret / 1000);
1151 }
1152
1153 if (constraints->uV_offset)
1154 count += scnprintf(buf + count, len - count, "%dmV offset ",
1155 constraints->uV_offset / 1000);
1156
1157 if (constraints->min_uA && constraints->max_uA) {
1158 if (constraints->min_uA == constraints->max_uA)
1159 count += scnprintf(buf + count, len - count, "%d mA ",
1160 constraints->min_uA / 1000);
1161 else
1162 count += scnprintf(buf + count, len - count,
1163 "%d <--> %d mA ",
1164 constraints->min_uA / 1000,
1165 constraints->max_uA / 1000);
1166 }
1167
1168 if (!constraints->min_uA ||
1169 constraints->min_uA != constraints->max_uA) {
1170 ret = _regulator_get_current_limit(rdev);
1171 if (ret > 0)
1172 count += scnprintf(buf + count, len - count,
1173 "at %d mA ", ret / 1000);
1174 }
1175
1176 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1177 count += scnprintf(buf + count, len - count, "fast ");
1178 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1179 count += scnprintf(buf + count, len - count, "normal ");
1180 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1181 count += scnprintf(buf + count, len - count, "idle ");
1182 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1183 count += scnprintf(buf + count, len - count, "standby ");
1184
1185 if (constraints->pw_budget_mW)
1186 count += scnprintf(buf + count, len - count, "%d mW budget",
1187 constraints->pw_budget_mW);
1188
1189 if (!count)
1190 count = scnprintf(buf, len, "no parameters");
1191 else
1192 --count;
1193
1194 count += scnprintf(buf + count, len - count, ", %s",
1195 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1196
1197 rdev_dbg(rdev, "%s\n", buf);
1198 }
1199 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1200 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1201 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1202
print_constraints(struct regulator_dev * rdev)1203 static void print_constraints(struct regulator_dev *rdev)
1204 {
1205 struct regulation_constraints *constraints = rdev->constraints;
1206
1207 print_constraints_debug(rdev);
1208
1209 if ((constraints->min_uV != constraints->max_uV) &&
1210 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1211 rdev_warn(rdev,
1212 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1213 }
1214
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1215 static int machine_constraints_voltage(struct regulator_dev *rdev,
1216 struct regulation_constraints *constraints)
1217 {
1218 const struct regulator_ops *ops = rdev->desc->ops;
1219 int ret;
1220
1221 /* do we need to apply the constraint voltage */
1222 if (rdev->constraints->apply_uV &&
1223 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1224 int target_min, target_max;
1225 int current_uV = regulator_get_voltage_rdev(rdev);
1226
1227 if (current_uV == -ENOTRECOVERABLE) {
1228 /* This regulator can't be read and must be initialized */
1229 rdev_info(rdev, "Setting %d-%duV\n",
1230 rdev->constraints->min_uV,
1231 rdev->constraints->max_uV);
1232 _regulator_do_set_voltage(rdev,
1233 rdev->constraints->min_uV,
1234 rdev->constraints->max_uV);
1235 current_uV = regulator_get_voltage_rdev(rdev);
1236 }
1237
1238 if (current_uV < 0) {
1239 if (current_uV != -EPROBE_DEFER)
1240 rdev_err(rdev,
1241 "failed to get the current voltage: %pe\n",
1242 ERR_PTR(current_uV));
1243 return current_uV;
1244 }
1245
1246 /*
1247 * If we're below the minimum voltage move up to the
1248 * minimum voltage, if we're above the maximum voltage
1249 * then move down to the maximum.
1250 */
1251 target_min = current_uV;
1252 target_max = current_uV;
1253
1254 if (current_uV < rdev->constraints->min_uV) {
1255 target_min = rdev->constraints->min_uV;
1256 target_max = rdev->constraints->min_uV;
1257 }
1258
1259 if (current_uV > rdev->constraints->max_uV) {
1260 target_min = rdev->constraints->max_uV;
1261 target_max = rdev->constraints->max_uV;
1262 }
1263
1264 if (target_min != current_uV || target_max != current_uV) {
1265 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1266 current_uV, target_min, target_max);
1267 ret = _regulator_do_set_voltage(
1268 rdev, target_min, target_max);
1269 if (ret < 0) {
1270 rdev_err(rdev,
1271 "failed to apply %d-%duV constraint: %pe\n",
1272 target_min, target_max, ERR_PTR(ret));
1273 return ret;
1274 }
1275 }
1276 }
1277
1278 /* constrain machine-level voltage specs to fit
1279 * the actual range supported by this regulator.
1280 */
1281 if (ops->list_voltage && rdev->desc->n_voltages) {
1282 int count = rdev->desc->n_voltages;
1283 int i;
1284 int min_uV = INT_MAX;
1285 int max_uV = INT_MIN;
1286 int cmin = constraints->min_uV;
1287 int cmax = constraints->max_uV;
1288
1289 /* it's safe to autoconfigure fixed-voltage supplies
1290 * and the constraints are used by list_voltage.
1291 */
1292 if (count == 1 && !cmin) {
1293 cmin = 1;
1294 cmax = INT_MAX;
1295 constraints->min_uV = cmin;
1296 constraints->max_uV = cmax;
1297 }
1298
1299 /* voltage constraints are optional */
1300 if ((cmin == 0) && (cmax == 0))
1301 return 0;
1302
1303 /* else require explicit machine-level constraints */
1304 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1305 rdev_err(rdev, "invalid voltage constraints\n");
1306 return -EINVAL;
1307 }
1308
1309 /* no need to loop voltages if range is continuous */
1310 if (rdev->desc->continuous_voltage_range)
1311 return 0;
1312
1313 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1314 for (i = 0; i < count; i++) {
1315 int value;
1316
1317 value = ops->list_voltage(rdev, i);
1318 if (value <= 0)
1319 continue;
1320
1321 /* maybe adjust [min_uV..max_uV] */
1322 if (value >= cmin && value < min_uV)
1323 min_uV = value;
1324 if (value <= cmax && value > max_uV)
1325 max_uV = value;
1326 }
1327
1328 /* final: [min_uV..max_uV] valid iff constraints valid */
1329 if (max_uV < min_uV) {
1330 rdev_err(rdev,
1331 "unsupportable voltage constraints %u-%uuV\n",
1332 min_uV, max_uV);
1333 return -EINVAL;
1334 }
1335
1336 /* use regulator's subset of machine constraints */
1337 if (constraints->min_uV < min_uV) {
1338 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1339 constraints->min_uV, min_uV);
1340 constraints->min_uV = min_uV;
1341 }
1342 if (constraints->max_uV > max_uV) {
1343 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1344 constraints->max_uV, max_uV);
1345 constraints->max_uV = max_uV;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1352 static int machine_constraints_current(struct regulator_dev *rdev,
1353 struct regulation_constraints *constraints)
1354 {
1355 const struct regulator_ops *ops = rdev->desc->ops;
1356 int ret;
1357
1358 if (!constraints->min_uA && !constraints->max_uA)
1359 return 0;
1360
1361 if (constraints->min_uA > constraints->max_uA) {
1362 rdev_err(rdev, "Invalid current constraints\n");
1363 return -EINVAL;
1364 }
1365
1366 if (!ops->set_current_limit || !ops->get_current_limit) {
1367 rdev_warn(rdev, "Operation of current configuration missing\n");
1368 return 0;
1369 }
1370
1371 /* Set regulator current in constraints range */
1372 ret = ops->set_current_limit(rdev, constraints->min_uA,
1373 constraints->max_uA);
1374 if (ret < 0) {
1375 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1376 return ret;
1377 }
1378
1379 return 0;
1380 }
1381
1382 static int _regulator_do_enable(struct regulator_dev *rdev);
1383
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1384 static int notif_set_limit(struct regulator_dev *rdev,
1385 int (*set)(struct regulator_dev *, int, int, bool),
1386 int limit, int severity)
1387 {
1388 bool enable;
1389
1390 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1391 enable = false;
1392 limit = 0;
1393 } else {
1394 enable = true;
1395 }
1396
1397 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1398 limit = 0;
1399
1400 return set(rdev, limit, severity, enable);
1401 }
1402
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1403 static int handle_notify_limits(struct regulator_dev *rdev,
1404 int (*set)(struct regulator_dev *, int, int, bool),
1405 struct notification_limit *limits)
1406 {
1407 int ret = 0;
1408
1409 if (!set)
1410 return -EOPNOTSUPP;
1411
1412 if (limits->prot)
1413 ret = notif_set_limit(rdev, set, limits->prot,
1414 REGULATOR_SEVERITY_PROT);
1415 if (ret)
1416 return ret;
1417
1418 if (limits->err)
1419 ret = notif_set_limit(rdev, set, limits->err,
1420 REGULATOR_SEVERITY_ERR);
1421 if (ret)
1422 return ret;
1423
1424 if (limits->warn)
1425 ret = notif_set_limit(rdev, set, limits->warn,
1426 REGULATOR_SEVERITY_WARN);
1427
1428 return ret;
1429 }
1430 /**
1431 * set_machine_constraints - sets regulator constraints
1432 * @rdev: regulator source
1433 *
1434 * Allows platform initialisation code to define and constrain
1435 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1436 * Constraints *must* be set by platform code in order for some
1437 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1438 * set_mode.
1439 *
1440 * Return: 0 on success or a negative error number on failure.
1441 */
set_machine_constraints(struct regulator_dev * rdev)1442 static int set_machine_constraints(struct regulator_dev *rdev)
1443 {
1444 int ret = 0;
1445 const struct regulator_ops *ops = rdev->desc->ops;
1446
1447 ret = machine_constraints_voltage(rdev, rdev->constraints);
1448 if (ret != 0)
1449 return ret;
1450
1451 ret = machine_constraints_current(rdev, rdev->constraints);
1452 if (ret != 0)
1453 return ret;
1454
1455 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1456 ret = ops->set_input_current_limit(rdev,
1457 rdev->constraints->ilim_uA);
1458 if (ret < 0) {
1459 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1460 return ret;
1461 }
1462 }
1463
1464 /* do we need to setup our suspend state */
1465 if (rdev->constraints->initial_state) {
1466 ret = suspend_set_initial_state(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 if (rdev->constraints->initial_mode) {
1474 if (!ops->set_mode) {
1475 rdev_err(rdev, "no set_mode operation\n");
1476 return -EINVAL;
1477 }
1478
1479 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 } else if (rdev->constraints->system_load) {
1485 /*
1486 * We'll only apply the initial system load if an
1487 * initial mode wasn't specified.
1488 */
1489 drms_uA_update(rdev);
1490 }
1491
1492 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1493 && ops->set_ramp_delay) {
1494 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1495 if (ret < 0) {
1496 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1497 return ret;
1498 }
1499 }
1500
1501 if (rdev->constraints->pull_down && ops->set_pull_down) {
1502 ret = ops->set_pull_down(rdev);
1503 if (ret < 0) {
1504 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1505 return ret;
1506 }
1507 }
1508
1509 if (rdev->constraints->soft_start && ops->set_soft_start) {
1510 ret = ops->set_soft_start(rdev);
1511 if (ret < 0) {
1512 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1513 return ret;
1514 }
1515 }
1516
1517 /*
1518 * Existing logic does not warn if over_current_protection is given as
1519 * a constraint but driver does not support that. I think we should
1520 * warn about this type of issues as it is possible someone changes
1521 * PMIC on board to another type - and the another PMIC's driver does
1522 * not support setting protection. Board composer may happily believe
1523 * the DT limits are respected - especially if the new PMIC HW also
1524 * supports protection but the driver does not. I won't change the logic
1525 * without hearing more experienced opinion on this though.
1526 *
1527 * If warning is seen as a good idea then we can merge handling the
1528 * over-curret protection and detection and get rid of this special
1529 * handling.
1530 */
1531 if (rdev->constraints->over_current_protection
1532 && ops->set_over_current_protection) {
1533 int lim = rdev->constraints->over_curr_limits.prot;
1534
1535 ret = ops->set_over_current_protection(rdev, lim,
1536 REGULATOR_SEVERITY_PROT,
1537 true);
1538 if (ret < 0) {
1539 rdev_err(rdev, "failed to set over current protection: %pe\n",
1540 ERR_PTR(ret));
1541 return ret;
1542 }
1543 }
1544
1545 if (rdev->constraints->over_current_detection)
1546 ret = handle_notify_limits(rdev,
1547 ops->set_over_current_protection,
1548 &rdev->constraints->over_curr_limits);
1549 if (ret) {
1550 if (ret != -EOPNOTSUPP) {
1551 rdev_err(rdev, "failed to set over current limits: %pe\n",
1552 ERR_PTR(ret));
1553 return ret;
1554 }
1555 rdev_warn(rdev,
1556 "IC does not support requested over-current limits\n");
1557 }
1558
1559 if (rdev->constraints->over_voltage_detection)
1560 ret = handle_notify_limits(rdev,
1561 ops->set_over_voltage_protection,
1562 &rdev->constraints->over_voltage_limits);
1563 if (ret) {
1564 if (ret != -EOPNOTSUPP) {
1565 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1566 ERR_PTR(ret));
1567 return ret;
1568 }
1569 rdev_warn(rdev,
1570 "IC does not support requested over voltage limits\n");
1571 }
1572
1573 if (rdev->constraints->under_voltage_detection)
1574 ret = handle_notify_limits(rdev,
1575 ops->set_under_voltage_protection,
1576 &rdev->constraints->under_voltage_limits);
1577 if (ret) {
1578 if (ret != -EOPNOTSUPP) {
1579 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1580 ERR_PTR(ret));
1581 return ret;
1582 }
1583 rdev_warn(rdev,
1584 "IC does not support requested under voltage limits\n");
1585 }
1586
1587 if (rdev->constraints->over_temp_detection)
1588 ret = handle_notify_limits(rdev,
1589 ops->set_thermal_protection,
1590 &rdev->constraints->temp_limits);
1591 if (ret) {
1592 if (ret != -EOPNOTSUPP) {
1593 rdev_err(rdev, "failed to set temperature limits %pe\n",
1594 ERR_PTR(ret));
1595 return ret;
1596 }
1597 rdev_warn(rdev,
1598 "IC does not support requested temperature limits\n");
1599 }
1600
1601 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1602 bool ad_state = rdev->constraints->active_discharge ==
1603 REGULATOR_ACTIVE_DISCHARGE_ENABLE;
1604
1605 ret = ops->set_active_discharge(rdev, ad_state);
1606 if (ret < 0) {
1607 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1608 return ret;
1609 }
1610 }
1611
1612 /*
1613 * If there is no mechanism for controlling the regulator then
1614 * flag it as always_on so we don't end up duplicating checks
1615 * for this so much. Note that we could control the state of
1616 * a supply to control the output on a regulator that has no
1617 * direct control.
1618 */
1619 if (!rdev->ena_pin && !ops->enable) {
1620 if (rdev->supply_name && !rdev->supply)
1621 return -EPROBE_DEFER;
1622
1623 if (rdev->supply)
1624 rdev->constraints->always_on =
1625 rdev->supply->rdev->constraints->always_on;
1626 else
1627 rdev->constraints->always_on = true;
1628 }
1629
1630 /* If the constraints say the regulator should be on at this point
1631 * and we have control then make sure it is enabled.
1632 */
1633 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1634 bool supply_enabled = false;
1635
1636 /* If we want to enable this regulator, make sure that we know
1637 * the supplying regulator.
1638 */
1639 if (rdev->supply_name && !rdev->supply)
1640 return -EPROBE_DEFER;
1641
1642 /* If supplying regulator has already been enabled,
1643 * it's not intended to have use_count increment
1644 * when rdev is only boot-on.
1645 */
1646 if (rdev->supply &&
1647 (rdev->constraints->always_on ||
1648 !regulator_is_enabled(rdev->supply))) {
1649 ret = regulator_enable(rdev->supply);
1650 if (ret < 0) {
1651 _regulator_put(rdev->supply);
1652 rdev->supply = NULL;
1653 return ret;
1654 }
1655 supply_enabled = true;
1656 }
1657
1658 ret = _regulator_do_enable(rdev);
1659 if (ret < 0 && ret != -EINVAL) {
1660 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1661 if (supply_enabled)
1662 regulator_disable(rdev->supply);
1663 return ret;
1664 }
1665
1666 if (rdev->constraints->always_on)
1667 rdev->use_count++;
1668 } else if (rdev->desc->off_on_delay) {
1669 rdev->last_off = ktime_get();
1670 }
1671
1672 if (!rdev->constraints->pw_budget_mW)
1673 rdev->constraints->pw_budget_mW = INT_MAX;
1674
1675 print_constraints(rdev);
1676 return 0;
1677 }
1678
1679 /**
1680 * regulator_event_work_fn - process a deferred regulator event
1681 * @work: work_struct queued by the notifier
1682 *
1683 * Calls the regulator's notifier chain in process context while holding
1684 * the rdev lock, then releases the device reference.
1685 */
regulator_event_work_fn(struct work_struct * work)1686 static void regulator_event_work_fn(struct work_struct *work)
1687 {
1688 struct regulator_event_work *rew =
1689 container_of(work, struct regulator_event_work, work);
1690 struct regulator_dev *rdev = rew->rdev;
1691 int ret;
1692
1693 regulator_lock(rdev);
1694 ret = regulator_notifier_call_chain(rdev, rew->event, NULL);
1695 regulator_unlock(rdev);
1696 if (ret == NOTIFY_BAD)
1697 dev_err(rdev_get_dev(rdev), "failed to forward regulator event\n");
1698
1699 put_device(rdev_get_dev(rdev));
1700 kfree(rew);
1701 }
1702
1703 /**
1704 * regulator_event_forward_notifier - notifier callback for supply events
1705 * @nb: notifier block embedded in the regulator
1706 * @event: regulator event code
1707 * @data: unused
1708 *
1709 * Packages the event into a work item and schedules it in process context.
1710 * Takes a reference on @rdev->dev to pin the regulator until the work
1711 * completes (see put_device() in the worker).
1712 *
1713 * Return: NOTIFY_OK on success, NOTIFY_DONE for events that are not forwarded.
1714 */
regulator_event_forward_notifier(struct notifier_block * nb,unsigned long event,void __always_unused * data)1715 static int regulator_event_forward_notifier(struct notifier_block *nb,
1716 unsigned long event,
1717 void __always_unused *data)
1718 {
1719 struct regulator_dev *rdev = container_of(nb, struct regulator_dev,
1720 supply_fwd_nb);
1721 struct regulator_event_work *rew;
1722
1723 switch (event) {
1724 case REGULATOR_EVENT_UNDER_VOLTAGE:
1725 break;
1726 default:
1727 /* Only forward allowed events downstream. */
1728 return NOTIFY_DONE;
1729 }
1730
1731 rew = kmalloc(sizeof(*rew), GFP_ATOMIC);
1732 if (!rew)
1733 return NOTIFY_DONE;
1734
1735 get_device(rdev_get_dev(rdev));
1736 rew->rdev = rdev;
1737 rew->event = event;
1738 INIT_WORK(&rew->work, regulator_event_work_fn);
1739
1740 queue_work(system_highpri_wq, &rew->work);
1741
1742 return NOTIFY_OK;
1743 }
1744
1745 /**
1746 * register_regulator_event_forwarding - enable supply event forwarding
1747 * @rdev: regulator device
1748 *
1749 * Registers a notifier on the regulator's supply so that supply events
1750 * are forwarded to the consumer regulator via the deferred work handler.
1751 *
1752 * Return: 0 on success, -EALREADY if already enabled, or a negative error code.
1753 */
register_regulator_event_forwarding(struct regulator_dev * rdev)1754 static int register_regulator_event_forwarding(struct regulator_dev *rdev)
1755 {
1756 int ret;
1757
1758 if (!rdev->supply)
1759 return 0; /* top-level regulator: nothing to forward */
1760
1761 if (rdev->supply_fwd_nb.notifier_call)
1762 return -EALREADY;
1763
1764 rdev->supply_fwd_nb.notifier_call = regulator_event_forward_notifier;
1765
1766 ret = regulator_register_notifier(rdev->supply, &rdev->supply_fwd_nb);
1767 if (ret) {
1768 dev_err(&rdev->dev, "failed to register supply notifier: %pe\n",
1769 ERR_PTR(ret));
1770 rdev->supply_fwd_nb.notifier_call = NULL;
1771 return ret;
1772 }
1773
1774 return 0;
1775 }
1776
1777 /**
1778 * set_supply - set regulator supply regulator
1779 * @rdev: regulator (locked)
1780 * @supply_rdev: supply regulator (locked))
1781 *
1782 * Called by platform initialisation code to set the supply regulator for this
1783 * regulator. This ensures that a regulators supply will also be enabled by the
1784 * core if it's child is enabled.
1785 *
1786 * Return: 0 on success or a negative error number on failure.
1787 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1788 static int set_supply(struct regulator_dev *rdev,
1789 struct regulator_dev *supply_rdev)
1790 {
1791 int err;
1792
1793 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1794
1795 if (!try_module_get(supply_rdev->owner))
1796 return -ENODEV;
1797
1798 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1799 if (rdev->supply == NULL) {
1800 module_put(supply_rdev->owner);
1801 err = -ENOMEM;
1802 return err;
1803 }
1804 supply_rdev->open_count++;
1805
1806 return 0;
1807 }
1808
1809 /**
1810 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1811 * @rdev: regulator source
1812 * @consumer_dev_name: dev_name() string for device supply applies to
1813 * @supply: symbolic name for supply
1814 *
1815 * Allows platform initialisation code to map physical regulator
1816 * sources to symbolic names for supplies for use by devices. Devices
1817 * should use these symbolic names to request regulators, avoiding the
1818 * need to provide board-specific regulator names as platform data.
1819 *
1820 * Return: 0 on success or a negative error number on failure.
1821 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1822 static int set_consumer_device_supply(struct regulator_dev *rdev,
1823 const char *consumer_dev_name,
1824 const char *supply)
1825 {
1826 struct regulator_map *node, *new_node;
1827 int has_dev;
1828
1829 if (supply == NULL)
1830 return -EINVAL;
1831
1832 if (consumer_dev_name != NULL)
1833 has_dev = 1;
1834 else
1835 has_dev = 0;
1836
1837 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1838 if (new_node == NULL)
1839 return -ENOMEM;
1840
1841 new_node->regulator = rdev;
1842 new_node->supply = supply;
1843
1844 if (has_dev) {
1845 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1846 if (new_node->dev_name == NULL) {
1847 kfree(new_node);
1848 return -ENOMEM;
1849 }
1850 }
1851
1852 mutex_lock(®ulator_list_mutex);
1853 list_for_each_entry(node, ®ulator_map_list, list) {
1854 if (node->dev_name && consumer_dev_name) {
1855 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1856 continue;
1857 } else if (node->dev_name || consumer_dev_name) {
1858 continue;
1859 }
1860
1861 if (strcmp(node->supply, supply) != 0)
1862 continue;
1863
1864 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1865 consumer_dev_name,
1866 dev_name(&node->regulator->dev),
1867 node->regulator->desc->name,
1868 supply,
1869 dev_name(&rdev->dev), rdev_get_name(rdev));
1870 goto fail;
1871 }
1872
1873 list_add(&new_node->list, ®ulator_map_list);
1874 mutex_unlock(®ulator_list_mutex);
1875
1876 return 0;
1877
1878 fail:
1879 mutex_unlock(®ulator_list_mutex);
1880 kfree(new_node->dev_name);
1881 kfree(new_node);
1882 return -EBUSY;
1883 }
1884
unset_regulator_supplies(struct regulator_dev * rdev)1885 static void unset_regulator_supplies(struct regulator_dev *rdev)
1886 {
1887 struct regulator_map *node, *n;
1888
1889 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1890 if (rdev == node->regulator) {
1891 list_del(&node->list);
1892 kfree(node->dev_name);
1893 kfree(node);
1894 }
1895 }
1896 }
1897
1898 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1899 static ssize_t constraint_flags_read_file(struct file *file,
1900 char __user *user_buf,
1901 size_t count, loff_t *ppos)
1902 {
1903 const struct regulator *regulator = file->private_data;
1904 const struct regulation_constraints *c = regulator->rdev->constraints;
1905 char *buf;
1906 ssize_t ret;
1907
1908 if (!c)
1909 return 0;
1910
1911 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1912 if (!buf)
1913 return -ENOMEM;
1914
1915 ret = snprintf(buf, PAGE_SIZE,
1916 "always_on: %u\n"
1917 "boot_on: %u\n"
1918 "apply_uV: %u\n"
1919 "ramp_disable: %u\n"
1920 "soft_start: %u\n"
1921 "pull_down: %u\n"
1922 "over_current_protection: %u\n",
1923 c->always_on,
1924 c->boot_on,
1925 c->apply_uV,
1926 c->ramp_disable,
1927 c->soft_start,
1928 c->pull_down,
1929 c->over_current_protection);
1930
1931 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1932 kfree(buf);
1933
1934 return ret;
1935 }
1936
1937 #endif
1938
1939 static const struct file_operations constraint_flags_fops = {
1940 #ifdef CONFIG_DEBUG_FS
1941 .open = simple_open,
1942 .read = constraint_flags_read_file,
1943 .llseek = default_llseek,
1944 #endif
1945 };
1946
1947 #define REG_STR_SIZE 64
1948
link_and_create_debugfs(struct regulator * regulator,struct regulator_dev * rdev,struct device * dev)1949 static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev,
1950 struct device *dev)
1951 {
1952 int err = 0;
1953
1954 if (dev) {
1955 regulator->dev = dev;
1956
1957 /* Add a link to the device sysfs entry */
1958 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1959 regulator->supply_name);
1960 if (err) {
1961 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1962 dev->kobj.name, ERR_PTR(err));
1963 /* non-fatal */
1964 }
1965 }
1966
1967 if (err != -EEXIST) {
1968 regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs);
1969 if (IS_ERR(regulator->debugfs)) {
1970 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1971 regulator->debugfs = NULL;
1972 }
1973 }
1974
1975 if (regulator->debugfs) {
1976 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1977 ®ulator->uA_load);
1978 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1979 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1980 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1981 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1982 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1983 regulator, &constraint_flags_fops);
1984 }
1985 }
1986
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1987 static struct regulator *create_regulator(struct regulator_dev *rdev,
1988 struct device *dev,
1989 const char *supply_name)
1990 {
1991 struct regulator *regulator;
1992
1993 lockdep_assert_held_once(&rdev->mutex.base);
1994
1995 if (dev) {
1996 char buf[REG_STR_SIZE];
1997 int size;
1998
1999 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
2000 dev->kobj.name, supply_name);
2001 if (size >= REG_STR_SIZE)
2002 return NULL;
2003
2004 supply_name = kstrdup(buf, GFP_KERNEL);
2005 if (supply_name == NULL)
2006 return NULL;
2007 } else {
2008 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
2009 if (supply_name == NULL)
2010 return NULL;
2011 }
2012
2013 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
2014 if (regulator == NULL) {
2015 kfree_const(supply_name);
2016 return NULL;
2017 }
2018
2019 regulator->rdev = rdev;
2020 regulator->supply_name = supply_name;
2021
2022 list_add(®ulator->list, &rdev->consumer_list);
2023
2024 /*
2025 * Check now if the regulator is an always on regulator - if
2026 * it is then we don't need to do nearly so much work for
2027 * enable/disable calls.
2028 */
2029 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
2030 _regulator_is_enabled(rdev))
2031 regulator->always_on = true;
2032
2033 return regulator;
2034 }
2035
_regulator_get_enable_time(struct regulator_dev * rdev)2036 static int _regulator_get_enable_time(struct regulator_dev *rdev)
2037 {
2038 if (rdev->constraints && rdev->constraints->enable_time)
2039 return rdev->constraints->enable_time;
2040 if (rdev->desc->ops->enable_time)
2041 return rdev->desc->ops->enable_time(rdev);
2042 return rdev->desc->enable_time;
2043 }
2044
regulator_find_supply_alias(struct device * dev,const char * supply)2045 static struct regulator_supply_alias *regulator_find_supply_alias(
2046 struct device *dev, const char *supply)
2047 {
2048 struct regulator_supply_alias *map;
2049
2050 list_for_each_entry(map, ®ulator_supply_alias_list, list)
2051 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
2052 return map;
2053
2054 return NULL;
2055 }
2056
regulator_supply_alias(struct device ** dev,const char ** supply)2057 static void regulator_supply_alias(struct device **dev, const char **supply)
2058 {
2059 struct regulator_supply_alias *map;
2060
2061 mutex_lock(®ulator_list_mutex);
2062 map = regulator_find_supply_alias(*dev, *supply);
2063 if (map) {
2064 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
2065 *supply, map->alias_supply,
2066 dev_name(map->alias_dev));
2067 *dev = map->alias_dev;
2068 *supply = map->alias_supply;
2069 }
2070 mutex_unlock(®ulator_list_mutex);
2071 }
2072
regulator_match(struct device * dev,const void * data)2073 static int regulator_match(struct device *dev, const void *data)
2074 {
2075 struct regulator_dev *r = dev_to_rdev(dev);
2076
2077 return strcmp(rdev_get_name(r), data) == 0;
2078 }
2079
regulator_lookup_by_name(const char * name)2080 static struct regulator_dev *regulator_lookup_by_name(const char *name)
2081 {
2082 struct device *dev;
2083
2084 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
2085
2086 return dev ? dev_to_rdev(dev) : NULL;
2087 }
2088
regulator_dt_lookup(struct device * dev,const char * supply)2089 static struct regulator_dev *regulator_dt_lookup(struct device *dev,
2090 const char *supply)
2091 {
2092 struct regulator_dev *r = NULL;
2093
2094 if (dev_of_node(dev)) {
2095 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
2096 if (PTR_ERR(r) == -ENODEV)
2097 r = NULL;
2098 }
2099
2100 return r;
2101 }
2102
2103 /**
2104 * regulator_dev_lookup - lookup a regulator device.
2105 * @dev: device for regulator "consumer".
2106 * @supply: Supply name or regulator ID.
2107 *
2108 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
2109 *
2110 * If successful, returns a struct regulator_dev that corresponds to the name
2111 * @supply and with the embedded struct device refcount incremented by one.
2112 * The refcount must be dropped by calling put_device().
2113 * On failure one of the following ERR_PTR() encoded values is returned:
2114 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
2115 * in the future.
2116 */
regulator_dev_lookup(struct device * dev,const char * supply)2117 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2118 const char *supply)
2119 {
2120 struct regulator_dev *r = NULL;
2121 struct regulator_map *map;
2122 const char *devname = NULL;
2123
2124 regulator_supply_alias(&dev, &supply);
2125
2126 /* first do a dt based lookup */
2127 r = regulator_dt_lookup(dev, supply);
2128 if (r)
2129 return r;
2130
2131 /* if not found, try doing it non-dt way */
2132 if (dev)
2133 devname = dev_name(dev);
2134
2135 mutex_lock(®ulator_list_mutex);
2136 list_for_each_entry(map, ®ulator_map_list, list) {
2137 /* If the mapping has a device set up it must match */
2138 if (map->dev_name &&
2139 (!devname || strcmp(map->dev_name, devname)))
2140 continue;
2141
2142 if (strcmp(map->supply, supply) == 0 &&
2143 get_device(&map->regulator->dev)) {
2144 r = map->regulator;
2145 break;
2146 }
2147 }
2148 mutex_unlock(®ulator_list_mutex);
2149
2150 if (r)
2151 return r;
2152
2153 r = regulator_lookup_by_name(supply);
2154 if (r)
2155 return r;
2156
2157 return ERR_PTR(-ENODEV);
2158 }
2159
regulator_resolve_supply(struct regulator_dev * rdev)2160 static int regulator_resolve_supply(struct regulator_dev *rdev)
2161 {
2162 struct regulator_dev *r;
2163 struct device *dev = rdev->dev.parent;
2164 struct ww_acquire_ctx ww_ctx;
2165 int ret = 0;
2166
2167 /* No supply to resolve? */
2168 if (!rdev->supply_name)
2169 return 0;
2170
2171 /* Supply already resolved? (fast-path without locking contention) */
2172 if (rdev->supply)
2173 return 0;
2174
2175 /* first do a dt based lookup on the node described in the virtual
2176 * device.
2177 */
2178 r = regulator_dt_lookup(&rdev->dev, rdev->supply_name);
2179
2180 /* If regulator not found use usual search path in the parent
2181 * device.
2182 */
2183 if (!r)
2184 r = regulator_dev_lookup(dev, rdev->supply_name);
2185
2186 if (IS_ERR(r)) {
2187 ret = PTR_ERR(r);
2188
2189 /* Did the lookup explicitly defer for us? */
2190 if (ret == -EPROBE_DEFER)
2191 goto out;
2192
2193 if (have_full_constraints()) {
2194 r = dummy_regulator_rdev;
2195 if (!r) {
2196 ret = -EPROBE_DEFER;
2197 goto out;
2198 }
2199 get_device(&r->dev);
2200 } else {
2201 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2202 rdev->supply_name, rdev->desc->name);
2203 ret = -EPROBE_DEFER;
2204 goto out;
2205 }
2206 }
2207
2208 if (r == rdev) {
2209 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2210 rdev->desc->name, rdev->supply_name);
2211 if (!have_full_constraints()) {
2212 ret = -EINVAL;
2213 goto out;
2214 }
2215 r = dummy_regulator_rdev;
2216 if (!r) {
2217 ret = -EPROBE_DEFER;
2218 goto out;
2219 }
2220 get_device(&r->dev);
2221 }
2222
2223 /*
2224 * If the supply's parent device is not the same as the
2225 * regulator's parent device, then ensure the parent device
2226 * is bound before we resolve the supply, in case the parent
2227 * device get probe deferred and unregisters the supply.
2228 */
2229 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2230 if (!device_is_bound(r->dev.parent)) {
2231 put_device(&r->dev);
2232 ret = -EPROBE_DEFER;
2233 goto out;
2234 }
2235 }
2236
2237 /* Recursively resolve the supply of the supply */
2238 ret = regulator_resolve_supply(r);
2239 if (ret < 0) {
2240 put_device(&r->dev);
2241 goto out;
2242 }
2243
2244 /*
2245 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2246 * between rdev->supply null check and setting rdev->supply in
2247 * set_supply() from concurrent tasks.
2248 */
2249 regulator_lock_two(rdev, r, &ww_ctx);
2250
2251 /* Supply just resolved by a concurrent task? */
2252 if (rdev->supply) {
2253 regulator_unlock_two(rdev, r, &ww_ctx);
2254 put_device(&r->dev);
2255 goto out;
2256 }
2257
2258 ret = set_supply(rdev, r);
2259 if (ret < 0) {
2260 regulator_unlock_two(rdev, r, &ww_ctx);
2261 put_device(&r->dev);
2262 goto out;
2263 }
2264
2265 /*
2266 * Automatically register for event forwarding from the new supply.
2267 * This creates the downstream propagation link for events like
2268 * under-voltage.
2269 */
2270 ret = register_regulator_event_forwarding(rdev);
2271 if (ret < 0)
2272 rdev_warn(rdev, "Failed to register event forwarding: %pe\n",
2273 ERR_PTR(ret));
2274
2275 regulator_unlock_two(rdev, r, &ww_ctx);
2276
2277 /* rdev->supply was created in set_supply() */
2278 link_and_create_debugfs(rdev->supply, r, &rdev->dev);
2279
2280 /*
2281 * In set_machine_constraints() we may have turned this regulator on
2282 * but we couldn't propagate to the supply if it hadn't been resolved
2283 * yet. Do it now.
2284 */
2285 if (rdev->use_count) {
2286 ret = regulator_enable(rdev->supply);
2287 if (ret < 0) {
2288 _regulator_put(rdev->supply);
2289 rdev->supply = NULL;
2290 goto out;
2291 }
2292 }
2293
2294 out:
2295 return ret;
2296 }
2297
2298 /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2299 int _regulator_get_common_check(struct device *dev, const char *id,
2300 enum regulator_get_type get_type)
2301 {
2302 if (get_type >= MAX_GET_TYPE) {
2303 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2304 return -EINVAL;
2305 }
2306
2307 if (id == NULL) {
2308 dev_err(dev, "regulator request with no identifier\n");
2309 return -EINVAL;
2310 }
2311
2312 return 0;
2313 }
2314
2315 /**
2316 * _regulator_get_common - Common code for regulator requests
2317 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2318 * Its reference count is expected to have been incremented.
2319 * @dev: device used for dev_printk messages
2320 * @id: Supply name or regulator ID
2321 * @get_type: enum regulator_get_type value corresponding to type of request
2322 *
2323 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2324 * encoded error.
2325 *
2326 * This function should be chained with *regulator_dev_lookup() functions.
2327 */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2328 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2329 const char *id, enum regulator_get_type get_type)
2330 {
2331 struct regulator *regulator;
2332 struct device_link *link;
2333 int ret;
2334
2335 if (IS_ERR(rdev)) {
2336 ret = PTR_ERR(rdev);
2337
2338 /*
2339 * If regulator_dev_lookup() fails with error other
2340 * than -ENODEV our job here is done, we simply return it.
2341 */
2342 if (ret != -ENODEV)
2343 return ERR_PTR(ret);
2344
2345 if (!have_full_constraints()) {
2346 dev_warn(dev,
2347 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2348 return ERR_PTR(-ENODEV);
2349 }
2350
2351 switch (get_type) {
2352 case NORMAL_GET:
2353 /*
2354 * Assume that a regulator is physically present and
2355 * enabled, even if it isn't hooked up, and just
2356 * provide a dummy.
2357 */
2358 rdev = dummy_regulator_rdev;
2359 if (!rdev)
2360 return ERR_PTR(-EPROBE_DEFER);
2361 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2362 get_device(&rdev->dev);
2363 break;
2364
2365 case EXCLUSIVE_GET:
2366 dev_warn(dev,
2367 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2368 fallthrough;
2369
2370 default:
2371 return ERR_PTR(-ENODEV);
2372 }
2373 }
2374
2375 if (rdev->exclusive) {
2376 regulator = ERR_PTR(-EPERM);
2377 put_device(&rdev->dev);
2378 return regulator;
2379 }
2380
2381 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2382 regulator = ERR_PTR(-EBUSY);
2383 put_device(&rdev->dev);
2384 return regulator;
2385 }
2386
2387 mutex_lock(®ulator_list_mutex);
2388 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2389 mutex_unlock(®ulator_list_mutex);
2390
2391 if (ret != 0) {
2392 regulator = ERR_PTR(-EPROBE_DEFER);
2393 put_device(&rdev->dev);
2394 return regulator;
2395 }
2396
2397 ret = regulator_resolve_supply(rdev);
2398 if (ret < 0) {
2399 regulator = ERR_PTR(ret);
2400 put_device(&rdev->dev);
2401 return regulator;
2402 }
2403
2404 if (!try_module_get(rdev->owner)) {
2405 regulator = ERR_PTR(-EPROBE_DEFER);
2406 put_device(&rdev->dev);
2407 return regulator;
2408 }
2409
2410 regulator_lock(rdev);
2411 regulator = create_regulator(rdev, dev, id);
2412 regulator_unlock(rdev);
2413 if (regulator == NULL) {
2414 regulator = ERR_PTR(-ENOMEM);
2415 module_put(rdev->owner);
2416 put_device(&rdev->dev);
2417 return regulator;
2418 }
2419
2420 link_and_create_debugfs(regulator, rdev, dev);
2421
2422 rdev->open_count++;
2423 if (get_type == EXCLUSIVE_GET) {
2424 rdev->exclusive = 1;
2425
2426 ret = _regulator_is_enabled(rdev);
2427 if (ret > 0) {
2428 rdev->use_count = 1;
2429 regulator->enable_count = 1;
2430
2431 /* Propagate the regulator state to its supply */
2432 if (rdev->supply) {
2433 ret = regulator_enable(rdev->supply);
2434 if (ret < 0) {
2435 destroy_regulator(regulator);
2436 module_put(rdev->owner);
2437 put_device(&rdev->dev);
2438 return ERR_PTR(ret);
2439 }
2440 }
2441 } else {
2442 rdev->use_count = 0;
2443 regulator->enable_count = 0;
2444 }
2445 }
2446
2447 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2448 if (!IS_ERR_OR_NULL(link))
2449 regulator->device_link = true;
2450
2451 return regulator;
2452 }
2453
2454 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2455 struct regulator *_regulator_get(struct device *dev, const char *id,
2456 enum regulator_get_type get_type)
2457 {
2458 struct regulator_dev *rdev;
2459 int ret;
2460
2461 ret = _regulator_get_common_check(dev, id, get_type);
2462 if (ret)
2463 return ERR_PTR(ret);
2464
2465 rdev = regulator_dev_lookup(dev, id);
2466 return _regulator_get_common(rdev, dev, id, get_type);
2467 }
2468
2469 /**
2470 * regulator_get - lookup and obtain a reference to a regulator.
2471 * @dev: device for regulator "consumer"
2472 * @id: Supply name or regulator ID.
2473 *
2474 * Use of supply names configured via set_consumer_device_supply() is
2475 * strongly encouraged. It is recommended that the supply name used
2476 * should match the name used for the supply and/or the relevant
2477 * device pins in the datasheet.
2478 *
2479 * Return: Pointer to a &struct regulator corresponding to the regulator
2480 * producer, or an ERR_PTR() encoded negative error number.
2481 */
regulator_get(struct device * dev,const char * id)2482 struct regulator *regulator_get(struct device *dev, const char *id)
2483 {
2484 return _regulator_get(dev, id, NORMAL_GET);
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_get);
2487
2488 /**
2489 * regulator_get_exclusive - obtain exclusive access to a regulator.
2490 * @dev: device for regulator "consumer"
2491 * @id: Supply name or regulator ID.
2492 *
2493 * Other consumers will be unable to obtain this regulator while this
2494 * reference is held and the use count for the regulator will be
2495 * initialised to reflect the current state of the regulator.
2496 *
2497 * This is intended for use by consumers which cannot tolerate shared
2498 * use of the regulator such as those which need to force the
2499 * regulator off for correct operation of the hardware they are
2500 * controlling.
2501 *
2502 * Use of supply names configured via set_consumer_device_supply() is
2503 * strongly encouraged. It is recommended that the supply name used
2504 * should match the name used for the supply and/or the relevant
2505 * device pins in the datasheet.
2506 *
2507 * Return: Pointer to a &struct regulator corresponding to the regulator
2508 * producer, or an ERR_PTR() encoded negative error number.
2509 */
regulator_get_exclusive(struct device * dev,const char * id)2510 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2511 {
2512 return _regulator_get(dev, id, EXCLUSIVE_GET);
2513 }
2514 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2515
2516 /**
2517 * regulator_get_optional - obtain optional access to a regulator.
2518 * @dev: device for regulator "consumer"
2519 * @id: Supply name or regulator ID.
2520 *
2521 * This is intended for use by consumers for devices which can have
2522 * some supplies unconnected in normal use, such as some MMC devices.
2523 * It can allow the regulator core to provide stub supplies for other
2524 * supplies requested using normal regulator_get() calls without
2525 * disrupting the operation of drivers that can handle absent
2526 * supplies.
2527 *
2528 * Use of supply names configured via set_consumer_device_supply() is
2529 * strongly encouraged. It is recommended that the supply name used
2530 * should match the name used for the supply and/or the relevant
2531 * device pins in the datasheet.
2532 *
2533 * Return: Pointer to a &struct regulator corresponding to the regulator
2534 * producer, or an ERR_PTR() encoded negative error number.
2535 */
regulator_get_optional(struct device * dev,const char * id)2536 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2537 {
2538 return _regulator_get(dev, id, OPTIONAL_GET);
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_get_optional);
2541
destroy_regulator(struct regulator * regulator)2542 static void destroy_regulator(struct regulator *regulator)
2543 {
2544 struct regulator_dev *rdev = regulator->rdev;
2545
2546 debugfs_remove_recursive(regulator->debugfs);
2547
2548 if (regulator->dev) {
2549 if (regulator->device_link)
2550 device_link_remove(regulator->dev, &rdev->dev);
2551
2552 /* remove any sysfs entries */
2553 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2554 }
2555
2556 regulator_lock(rdev);
2557 list_del(®ulator->list);
2558
2559 rdev->open_count--;
2560 rdev->exclusive = 0;
2561 regulator_unlock(rdev);
2562
2563 kfree_const(regulator->supply_name);
2564 kfree(regulator);
2565 }
2566
2567 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2568 static void _regulator_put(struct regulator *regulator)
2569 {
2570 struct regulator_dev *rdev;
2571
2572 if (IS_ERR_OR_NULL(regulator))
2573 return;
2574
2575 lockdep_assert_held_once(®ulator_list_mutex);
2576
2577 /* Docs say you must disable before calling regulator_put() */
2578 WARN_ON(regulator->enable_count);
2579
2580 rdev = regulator->rdev;
2581
2582 destroy_regulator(regulator);
2583
2584 module_put(rdev->owner);
2585 put_device(&rdev->dev);
2586 }
2587
2588 /**
2589 * regulator_put - "free" the regulator source
2590 * @regulator: regulator source
2591 *
2592 * Note: drivers must ensure that all regulator_enable calls made on this
2593 * regulator source are balanced by regulator_disable calls prior to calling
2594 * this function.
2595 */
regulator_put(struct regulator * regulator)2596 void regulator_put(struct regulator *regulator)
2597 {
2598 mutex_lock(®ulator_list_mutex);
2599 _regulator_put(regulator);
2600 mutex_unlock(®ulator_list_mutex);
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_put);
2603
2604 /**
2605 * regulator_register_supply_alias - Provide device alias for supply lookup
2606 *
2607 * @dev: device that will be given as the regulator "consumer"
2608 * @id: Supply name or regulator ID
2609 * @alias_dev: device that should be used to lookup the supply
2610 * @alias_id: Supply name or regulator ID that should be used to lookup the
2611 * supply
2612 *
2613 * All lookups for id on dev will instead be conducted for alias_id on
2614 * alias_dev.
2615 *
2616 * Return: 0 on success or a negative error number on failure.
2617 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2618 int regulator_register_supply_alias(struct device *dev, const char *id,
2619 struct device *alias_dev,
2620 const char *alias_id)
2621 {
2622 struct regulator_supply_alias *map;
2623 struct regulator_supply_alias *new_map;
2624
2625 new_map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2626 if (!new_map)
2627 return -ENOMEM;
2628
2629 mutex_lock(®ulator_list_mutex);
2630 map = regulator_find_supply_alias(dev, id);
2631 if (map) {
2632 mutex_unlock(®ulator_list_mutex);
2633 kfree(new_map);
2634 return -EEXIST;
2635 }
2636
2637 new_map->src_dev = dev;
2638 new_map->src_supply = id;
2639 new_map->alias_dev = alias_dev;
2640 new_map->alias_supply = alias_id;
2641 list_add(&new_map->list, ®ulator_supply_alias_list);
2642 mutex_unlock(®ulator_list_mutex);
2643 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2644 id, dev_name(dev), alias_id, dev_name(alias_dev));
2645
2646 return 0;
2647 }
2648 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2649
2650 /**
2651 * regulator_unregister_supply_alias - Remove device alias
2652 *
2653 * @dev: device that will be given as the regulator "consumer"
2654 * @id: Supply name or regulator ID
2655 *
2656 * Remove a lookup alias if one exists for id on dev.
2657 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2658 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2659 {
2660 struct regulator_supply_alias *map;
2661
2662 mutex_lock(®ulator_list_mutex);
2663 map = regulator_find_supply_alias(dev, id);
2664 if (map) {
2665 list_del(&map->list);
2666 kfree(map);
2667 }
2668 mutex_unlock(®ulator_list_mutex);
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2671
2672 /**
2673 * regulator_bulk_register_supply_alias - register multiple aliases
2674 *
2675 * @dev: device that will be given as the regulator "consumer"
2676 * @id: List of supply names or regulator IDs
2677 * @alias_dev: device that should be used to lookup the supply
2678 * @alias_id: List of supply names or regulator IDs that should be used to
2679 * lookup the supply
2680 * @num_id: Number of aliases to register
2681 *
2682 * This helper function allows drivers to register several supply
2683 * aliases in one operation. If any of the aliases cannot be
2684 * registered any aliases that were registered will be removed
2685 * before returning to the caller.
2686 *
2687 * Return: 0 on success or a negative error number on failure.
2688 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2689 int regulator_bulk_register_supply_alias(struct device *dev,
2690 const char *const *id,
2691 struct device *alias_dev,
2692 const char *const *alias_id,
2693 int num_id)
2694 {
2695 int i;
2696 int ret;
2697
2698 for (i = 0; i < num_id; ++i) {
2699 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2700 alias_id[i]);
2701 if (ret < 0)
2702 goto err;
2703 }
2704
2705 return 0;
2706
2707 err:
2708 dev_err(dev,
2709 "Failed to create supply alias %s,%s -> %s,%s\n",
2710 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2711
2712 while (--i >= 0)
2713 regulator_unregister_supply_alias(dev, id[i]);
2714
2715 return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2718
2719 /**
2720 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2721 *
2722 * @dev: device that will be given as the regulator "consumer"
2723 * @id: List of supply names or regulator IDs
2724 * @num_id: Number of aliases to unregister
2725 *
2726 * This helper function allows drivers to unregister several supply
2727 * aliases in one operation.
2728 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2729 void regulator_bulk_unregister_supply_alias(struct device *dev,
2730 const char *const *id,
2731 int num_id)
2732 {
2733 int i;
2734
2735 for (i = 0; i < num_id; ++i)
2736 regulator_unregister_supply_alias(dev, id[i]);
2737 }
2738 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2739
2740
2741 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2742 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2743 const struct regulator_config *config)
2744 {
2745 struct regulator_enable_gpio *pin, *new_pin;
2746 struct gpio_desc *gpiod;
2747
2748 gpiod = config->ena_gpiod;
2749 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2750
2751 mutex_lock(®ulator_list_mutex);
2752
2753 if (gpiod_is_shared(gpiod))
2754 /*
2755 * The sharing of this GPIO pin is managed internally by
2756 * GPIOLIB. We don't need to keep track of its enable count.
2757 */
2758 goto skip_compare;
2759
2760 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2761 if (gpiod_is_equal(pin->gpiod, gpiod)) {
2762 rdev_dbg(rdev, "GPIO is already used\n");
2763 goto update_ena_gpio_to_rdev;
2764 }
2765 }
2766
2767 if (new_pin == NULL) {
2768 mutex_unlock(®ulator_list_mutex);
2769 return -ENOMEM;
2770 }
2771
2772 skip_compare:
2773 pin = new_pin;
2774 new_pin = NULL;
2775
2776 pin->gpiod = gpiod;
2777 list_add(&pin->list, ®ulator_ena_gpio_list);
2778
2779 update_ena_gpio_to_rdev:
2780 pin->request_count++;
2781 rdev->ena_pin = pin;
2782
2783 mutex_unlock(®ulator_list_mutex);
2784 kfree(new_pin);
2785
2786 return 0;
2787 }
2788
regulator_ena_gpio_free(struct regulator_dev * rdev)2789 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2790 {
2791 struct regulator_enable_gpio *pin, *n;
2792
2793 if (!rdev->ena_pin)
2794 return;
2795
2796 /* Free the GPIO only in case of no use */
2797 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2798 if (pin != rdev->ena_pin)
2799 continue;
2800
2801 if (--pin->request_count)
2802 break;
2803
2804 gpiod_put(pin->gpiod);
2805 list_del(&pin->list);
2806 kfree(pin);
2807 break;
2808 }
2809
2810 rdev->ena_pin = NULL;
2811 }
2812
2813 /**
2814 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2815 * @rdev: regulator_dev structure
2816 * @enable: enable GPIO at initial use?
2817 *
2818 * GPIO is enabled in case of initial use. (enable_count is 0)
2819 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2820 *
2821 * Return: 0 on success or a negative error number on failure.
2822 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2823 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2824 {
2825 struct regulator_enable_gpio *pin = rdev->ena_pin;
2826 int ret;
2827
2828 if (!pin)
2829 return -EINVAL;
2830
2831 if (enable) {
2832 /* Enable GPIO at initial use */
2833 if (pin->enable_count == 0) {
2834 ret = gpiod_set_value_cansleep(pin->gpiod, 1);
2835 if (ret)
2836 return ret;
2837 }
2838
2839 pin->enable_count++;
2840 } else {
2841 if (pin->enable_count > 1) {
2842 pin->enable_count--;
2843 return 0;
2844 }
2845
2846 /* Disable GPIO if not used */
2847 if (pin->enable_count <= 1) {
2848 ret = gpiod_set_value_cansleep(pin->gpiod, 0);
2849 if (ret)
2850 return ret;
2851
2852 pin->enable_count = 0;
2853 }
2854 }
2855
2856 return 0;
2857 }
2858
2859 /**
2860 * _regulator_check_status_enabled - check if regulator status can be
2861 * interpreted as "regulator is enabled"
2862 * @rdev: the regulator device to check
2863 *
2864 * Return:
2865 * * 1 - if status shows regulator is in enabled state
2866 * * 0 - if not enabled state
2867 * * Error Value - as received from ops->get_status()
2868 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2869 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2870 {
2871 int ret = rdev->desc->ops->get_status(rdev);
2872
2873 if (ret < 0) {
2874 rdev_info(rdev, "get_status returned error: %d\n", ret);
2875 return ret;
2876 }
2877
2878 switch (ret) {
2879 case REGULATOR_STATUS_OFF:
2880 case REGULATOR_STATUS_ERROR:
2881 case REGULATOR_STATUS_UNDEFINED:
2882 return 0;
2883 default:
2884 return 1;
2885 }
2886 }
2887
_regulator_do_enable(struct regulator_dev * rdev)2888 static int _regulator_do_enable(struct regulator_dev *rdev)
2889 {
2890 int ret, delay;
2891
2892 /* Query before enabling in case configuration dependent. */
2893 ret = _regulator_get_enable_time(rdev);
2894 if (ret >= 0) {
2895 delay = ret;
2896 } else {
2897 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2898 delay = 0;
2899 }
2900
2901 trace_regulator_enable(rdev_get_name(rdev));
2902
2903 if (rdev->desc->off_on_delay) {
2904 /* if needed, keep a distance of off_on_delay from last time
2905 * this regulator was disabled.
2906 */
2907 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2908 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2909
2910 if (remaining > 0)
2911 fsleep(remaining);
2912 }
2913
2914 if (rdev->ena_pin) {
2915 if (!rdev->ena_gpio_state) {
2916 ret = regulator_ena_gpio_ctrl(rdev, true);
2917 if (ret < 0)
2918 return ret;
2919 rdev->ena_gpio_state = 1;
2920 }
2921 } else if (rdev->desc->ops->enable) {
2922 ret = rdev->desc->ops->enable(rdev);
2923 if (ret < 0)
2924 return ret;
2925 } else {
2926 return -EINVAL;
2927 }
2928
2929 /* Allow the regulator to ramp; it would be useful to extend
2930 * this for bulk operations so that the regulators can ramp
2931 * together.
2932 */
2933 trace_regulator_enable_delay(rdev_get_name(rdev));
2934
2935 /* If poll_enabled_time is set, poll upto the delay calculated
2936 * above, delaying poll_enabled_time uS to check if the regulator
2937 * actually got enabled.
2938 * If the regulator isn't enabled after our delay helper has expired,
2939 * return -ETIMEDOUT.
2940 */
2941 if (rdev->desc->poll_enabled_time) {
2942 int time_remaining = delay;
2943
2944 while (time_remaining > 0) {
2945 fsleep(rdev->desc->poll_enabled_time);
2946
2947 if (rdev->desc->ops->get_status) {
2948 ret = _regulator_check_status_enabled(rdev);
2949 if (ret < 0)
2950 return ret;
2951 else if (ret)
2952 break;
2953 } else if (rdev->desc->ops->is_enabled(rdev))
2954 break;
2955
2956 time_remaining -= rdev->desc->poll_enabled_time;
2957 }
2958
2959 if (time_remaining <= 0) {
2960 rdev_err(rdev, "Enabled check timed out\n");
2961 return -ETIMEDOUT;
2962 }
2963 } else {
2964 fsleep(delay);
2965 }
2966
2967 trace_regulator_enable_complete(rdev_get_name(rdev));
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * _regulator_handle_consumer_enable - handle that a consumer enabled
2974 * @regulator: regulator source
2975 *
2976 * Some things on a regulator consumer (like the contribution towards total
2977 * load on the regulator) only have an effect when the consumer wants the
2978 * regulator enabled. Explained in example with two consumers of the same
2979 * regulator:
2980 * consumer A: set_load(100); => total load = 0
2981 * consumer A: regulator_enable(); => total load = 100
2982 * consumer B: set_load(1000); => total load = 100
2983 * consumer B: regulator_enable(); => total load = 1100
2984 * consumer A: regulator_disable(); => total_load = 1000
2985 *
2986 * This function (together with _regulator_handle_consumer_disable) is
2987 * responsible for keeping track of the refcount for a given regulator consumer
2988 * and applying / unapplying these things.
2989 *
2990 * Return: 0 on success or negative error number on failure.
2991 */
_regulator_handle_consumer_enable(struct regulator * regulator)2992 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2993 {
2994 int ret;
2995 struct regulator_dev *rdev = regulator->rdev;
2996
2997 lockdep_assert_held_once(&rdev->mutex.base);
2998
2999 regulator->enable_count++;
3000 if (regulator->uA_load && regulator->enable_count == 1) {
3001 ret = drms_uA_update(rdev);
3002 if (ret)
3003 regulator->enable_count--;
3004 return ret;
3005 }
3006
3007 return 0;
3008 }
3009
3010 /**
3011 * _regulator_handle_consumer_disable - handle that a consumer disabled
3012 * @regulator: regulator source
3013 *
3014 * The opposite of _regulator_handle_consumer_enable().
3015 *
3016 * Return: 0 on success or a negative error number on failure.
3017 */
_regulator_handle_consumer_disable(struct regulator * regulator)3018 static int _regulator_handle_consumer_disable(struct regulator *regulator)
3019 {
3020 struct regulator_dev *rdev = regulator->rdev;
3021
3022 lockdep_assert_held_once(&rdev->mutex.base);
3023
3024 if (!regulator->enable_count) {
3025 rdev_err(rdev, "Underflow of regulator enable count\n");
3026 return -EINVAL;
3027 }
3028
3029 regulator->enable_count--;
3030 if (regulator->uA_load && regulator->enable_count == 0)
3031 return drms_uA_update(rdev);
3032
3033 return 0;
3034 }
3035
3036 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)3037 static int _regulator_enable(struct regulator *regulator)
3038 {
3039 struct regulator_dev *rdev = regulator->rdev;
3040 int ret;
3041
3042 lockdep_assert_held_once(&rdev->mutex.base);
3043
3044 if (rdev->use_count == 0 && rdev->supply) {
3045 ret = _regulator_enable(rdev->supply);
3046 if (ret < 0)
3047 return ret;
3048 }
3049
3050 /* balance only if there are regulators coupled */
3051 if (rdev->coupling_desc.n_coupled > 1) {
3052 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3053 if (ret < 0)
3054 goto err_disable_supply;
3055 }
3056
3057 ret = _regulator_handle_consumer_enable(regulator);
3058 if (ret < 0)
3059 goto err_disable_supply;
3060
3061 if (rdev->use_count == 0) {
3062 /*
3063 * The regulator may already be enabled if it's not switchable
3064 * or was left on
3065 */
3066 ret = _regulator_is_enabled(rdev);
3067 if (ret == -EINVAL || ret == 0) {
3068 if (!regulator_ops_is_valid(rdev,
3069 REGULATOR_CHANGE_STATUS)) {
3070 ret = -EPERM;
3071 goto err_consumer_disable;
3072 }
3073
3074 ret = _regulator_do_enable(rdev);
3075 if (ret < 0)
3076 goto err_consumer_disable;
3077
3078 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
3079 NULL);
3080 } else if (ret < 0) {
3081 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
3082 goto err_consumer_disable;
3083 }
3084 /* Fallthrough on positive return values - already enabled */
3085 }
3086
3087 if (regulator->enable_count == 1)
3088 rdev->use_count++;
3089
3090 return 0;
3091
3092 err_consumer_disable:
3093 _regulator_handle_consumer_disable(regulator);
3094
3095 err_disable_supply:
3096 if (rdev->use_count == 0 && rdev->supply)
3097 _regulator_disable(rdev->supply);
3098
3099 return ret;
3100 }
3101
3102 /**
3103 * regulator_enable - enable regulator output
3104 * @regulator: regulator source
3105 *
3106 * Request that the regulator be enabled with the regulator output at
3107 * the predefined voltage or current value. Calls to regulator_enable()
3108 * must be balanced with calls to regulator_disable().
3109 *
3110 * NOTE: the output value can be set by other drivers, boot loader or may be
3111 * hardwired in the regulator.
3112 *
3113 * Return: 0 on success or a negative error number on failure.
3114 */
regulator_enable(struct regulator * regulator)3115 int regulator_enable(struct regulator *regulator)
3116 {
3117 struct regulator_dev *rdev = regulator->rdev;
3118 struct ww_acquire_ctx ww_ctx;
3119 int ret;
3120
3121 regulator_lock_dependent(rdev, &ww_ctx);
3122 ret = _regulator_enable(regulator);
3123 regulator_unlock_dependent(rdev, &ww_ctx);
3124
3125 return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(regulator_enable);
3128
_regulator_do_disable(struct regulator_dev * rdev)3129 static int _regulator_do_disable(struct regulator_dev *rdev)
3130 {
3131 int ret;
3132
3133 trace_regulator_disable(rdev_get_name(rdev));
3134
3135 if (rdev->ena_pin) {
3136 if (rdev->ena_gpio_state) {
3137 ret = regulator_ena_gpio_ctrl(rdev, false);
3138 if (ret < 0)
3139 return ret;
3140 rdev->ena_gpio_state = 0;
3141 }
3142
3143 } else if (rdev->desc->ops->disable) {
3144 ret = rdev->desc->ops->disable(rdev);
3145 if (ret != 0)
3146 return ret;
3147 }
3148
3149 if (rdev->desc->off_on_delay)
3150 rdev->last_off = ktime_get_boottime();
3151
3152 trace_regulator_disable_complete(rdev_get_name(rdev));
3153
3154 return 0;
3155 }
3156
3157 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)3158 static int _regulator_disable(struct regulator *regulator)
3159 {
3160 struct regulator_dev *rdev = regulator->rdev;
3161 int ret = 0;
3162
3163 lockdep_assert_held_once(&rdev->mutex.base);
3164
3165 if (WARN(regulator->enable_count == 0,
3166 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3167 return -EIO;
3168
3169 if (regulator->enable_count == 1) {
3170 /* disabling last enable_count from this regulator */
3171 /* are we the last user and permitted to disable ? */
3172 if (rdev->use_count == 1 &&
3173 (rdev->constraints && !rdev->constraints->always_on)) {
3174
3175 /* we are last user */
3176 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3177 ret = _notifier_call_chain(rdev,
3178 REGULATOR_EVENT_PRE_DISABLE,
3179 NULL);
3180 if (ret & NOTIFY_STOP_MASK)
3181 return -EINVAL;
3182
3183 ret = _regulator_do_disable(rdev);
3184 if (ret < 0) {
3185 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3186 _notifier_call_chain(rdev,
3187 REGULATOR_EVENT_ABORT_DISABLE,
3188 NULL);
3189 return ret;
3190 }
3191 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3192 NULL);
3193 }
3194
3195 rdev->use_count = 0;
3196 } else if (rdev->use_count > 1) {
3197 rdev->use_count--;
3198 }
3199 }
3200
3201 if (ret == 0)
3202 ret = _regulator_handle_consumer_disable(regulator);
3203
3204 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3205 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3206
3207 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3208 ret = _regulator_disable(rdev->supply);
3209
3210 return ret;
3211 }
3212
3213 /**
3214 * regulator_disable - disable regulator output
3215 * @regulator: regulator source
3216 *
3217 * Disable the regulator output voltage or current. Calls to
3218 * regulator_enable() must be balanced with calls to
3219 * regulator_disable().
3220 *
3221 * NOTE: this will only disable the regulator output if no other consumer
3222 * devices have it enabled, the regulator device supports disabling and
3223 * machine constraints permit this operation.
3224 *
3225 * Return: 0 on success or a negative error number on failure.
3226 */
regulator_disable(struct regulator * regulator)3227 int regulator_disable(struct regulator *regulator)
3228 {
3229 struct regulator_dev *rdev = regulator->rdev;
3230 struct ww_acquire_ctx ww_ctx;
3231 int ret;
3232
3233 regulator_lock_dependent(rdev, &ww_ctx);
3234 ret = _regulator_disable(regulator);
3235 regulator_unlock_dependent(rdev, &ww_ctx);
3236
3237 return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_disable);
3240
3241 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3242 static int _regulator_force_disable(struct regulator_dev *rdev)
3243 {
3244 int ret = 0;
3245
3246 lockdep_assert_held_once(&rdev->mutex.base);
3247
3248 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3249 REGULATOR_EVENT_PRE_DISABLE, NULL);
3250 if (ret & NOTIFY_STOP_MASK)
3251 return -EINVAL;
3252
3253 ret = _regulator_do_disable(rdev);
3254 if (ret < 0) {
3255 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3256 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3257 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3258 return ret;
3259 }
3260
3261 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3262 REGULATOR_EVENT_DISABLE, NULL);
3263
3264 return 0;
3265 }
3266
3267 /**
3268 * regulator_force_disable - force disable regulator output
3269 * @regulator: regulator source
3270 *
3271 * Forcibly disable the regulator output voltage or current.
3272 * NOTE: this *will* disable the regulator output even if other consumer
3273 * devices have it enabled. This should be used for situations when device
3274 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3275 *
3276 * Return: 0 on success or a negative error number on failure.
3277 */
regulator_force_disable(struct regulator * regulator)3278 int regulator_force_disable(struct regulator *regulator)
3279 {
3280 struct regulator_dev *rdev = regulator->rdev;
3281 struct ww_acquire_ctx ww_ctx;
3282 int ret;
3283
3284 regulator_lock_dependent(rdev, &ww_ctx);
3285
3286 ret = _regulator_force_disable(regulator->rdev);
3287
3288 if (rdev->coupling_desc.n_coupled > 1)
3289 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3290
3291 if (regulator->uA_load) {
3292 regulator->uA_load = 0;
3293 ret = drms_uA_update(rdev);
3294 }
3295
3296 if (rdev->use_count != 0 && rdev->supply)
3297 _regulator_disable(rdev->supply);
3298
3299 regulator_unlock_dependent(rdev, &ww_ctx);
3300
3301 return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_force_disable);
3304
regulator_disable_work(struct work_struct * work)3305 static void regulator_disable_work(struct work_struct *work)
3306 {
3307 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3308 disable_work.work);
3309 struct ww_acquire_ctx ww_ctx;
3310 int count, i, ret;
3311 struct regulator *regulator;
3312 int total_count = 0;
3313
3314 regulator_lock_dependent(rdev, &ww_ctx);
3315
3316 /*
3317 * Workqueue functions queue the new work instance while the previous
3318 * work instance is being processed. Cancel the queued work instance
3319 * as the work instance under processing does the job of the queued
3320 * work instance.
3321 */
3322 cancel_delayed_work(&rdev->disable_work);
3323
3324 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3325 count = regulator->deferred_disables;
3326
3327 if (!count)
3328 continue;
3329
3330 total_count += count;
3331 regulator->deferred_disables = 0;
3332
3333 for (i = 0; i < count; i++) {
3334 ret = _regulator_disable(regulator);
3335 if (ret != 0)
3336 rdev_err(rdev, "Deferred disable failed: %pe\n",
3337 ERR_PTR(ret));
3338 }
3339 }
3340 WARN_ON(!total_count);
3341
3342 if (rdev->coupling_desc.n_coupled > 1)
3343 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3344
3345 regulator_unlock_dependent(rdev, &ww_ctx);
3346 }
3347
3348 /**
3349 * regulator_disable_deferred - disable regulator output with delay
3350 * @regulator: regulator source
3351 * @ms: milliseconds until the regulator is disabled
3352 *
3353 * Execute regulator_disable() on the regulator after a delay. This
3354 * is intended for use with devices that require some time to quiesce.
3355 *
3356 * NOTE: this will only disable the regulator output if no other consumer
3357 * devices have it enabled, the regulator device supports disabling and
3358 * machine constraints permit this operation.
3359 *
3360 * Return: 0 on success or a negative error number on failure.
3361 */
regulator_disable_deferred(struct regulator * regulator,int ms)3362 int regulator_disable_deferred(struct regulator *regulator, int ms)
3363 {
3364 struct regulator_dev *rdev = regulator->rdev;
3365
3366 if (!ms)
3367 return regulator_disable(regulator);
3368
3369 regulator_lock(rdev);
3370 regulator->deferred_disables++;
3371 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3372 msecs_to_jiffies(ms));
3373 regulator_unlock(rdev);
3374
3375 return 0;
3376 }
3377 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3378
_regulator_is_enabled(struct regulator_dev * rdev)3379 static int _regulator_is_enabled(struct regulator_dev *rdev)
3380 {
3381 /* A GPIO control always takes precedence */
3382 if (rdev->ena_pin)
3383 return rdev->ena_gpio_state;
3384
3385 /* If we don't know then assume that the regulator is always on */
3386 if (!rdev->desc->ops->is_enabled)
3387 return 1;
3388
3389 return rdev->desc->ops->is_enabled(rdev);
3390 }
3391
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3392 static int _regulator_list_voltage(struct regulator_dev *rdev,
3393 unsigned selector, int lock)
3394 {
3395 const struct regulator_ops *ops = rdev->desc->ops;
3396 int ret;
3397
3398 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3399 return rdev->desc->fixed_uV;
3400
3401 if (ops->list_voltage) {
3402 if (selector >= rdev->desc->n_voltages)
3403 return -EINVAL;
3404 if (selector < rdev->desc->linear_min_sel)
3405 return 0;
3406 if (lock)
3407 regulator_lock(rdev);
3408 ret = ops->list_voltage(rdev, selector);
3409 if (lock)
3410 regulator_unlock(rdev);
3411 } else if (rdev->is_switch && rdev->supply) {
3412 ret = _regulator_list_voltage(rdev->supply->rdev,
3413 selector, lock);
3414 } else {
3415 return -EINVAL;
3416 }
3417
3418 if (ret > 0) {
3419 if (ret < rdev->constraints->min_uV)
3420 ret = 0;
3421 else if (ret > rdev->constraints->max_uV)
3422 ret = 0;
3423 }
3424
3425 return ret;
3426 }
3427
3428 /**
3429 * regulator_is_enabled - is the regulator output enabled
3430 * @regulator: regulator source
3431 *
3432 * Note that the device backing this regulator handle can have multiple
3433 * users, so it might be enabled even if regulator_enable() was never
3434 * called for this particular source.
3435 *
3436 * Return: Positive if the regulator driver backing the source/client
3437 * has requested that the device be enabled, zero if it hasn't,
3438 * else a negative error number.
3439 */
regulator_is_enabled(struct regulator * regulator)3440 int regulator_is_enabled(struct regulator *regulator)
3441 {
3442 int ret;
3443
3444 if (regulator->always_on)
3445 return 1;
3446
3447 regulator_lock(regulator->rdev);
3448 ret = _regulator_is_enabled(regulator->rdev);
3449 regulator_unlock(regulator->rdev);
3450
3451 return ret;
3452 }
3453 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3454
3455 /**
3456 * regulator_count_voltages - count regulator_list_voltage() selectors
3457 * @regulator: regulator source
3458 *
3459 * Return: Number of selectors for @regulator, or negative error number.
3460 *
3461 * Selectors are numbered starting at zero, and typically correspond to
3462 * bitfields in hardware registers.
3463 */
regulator_count_voltages(struct regulator * regulator)3464 int regulator_count_voltages(struct regulator *regulator)
3465 {
3466 struct regulator_dev *rdev = regulator->rdev;
3467
3468 if (rdev->desc->n_voltages)
3469 return rdev->desc->n_voltages;
3470
3471 if (!rdev->is_switch || !rdev->supply)
3472 return -EINVAL;
3473
3474 return regulator_count_voltages(rdev->supply);
3475 }
3476 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3477
3478 /**
3479 * regulator_list_voltage - enumerate supported voltages
3480 * @regulator: regulator source
3481 * @selector: identify voltage to list
3482 * Context: can sleep
3483 *
3484 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3485 * 0 if @selector can't be used on this system, or a negative error
3486 * number on failure.
3487 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3488 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3489 {
3490 return _regulator_list_voltage(regulator->rdev, selector, 1);
3491 }
3492 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3493
3494 /**
3495 * regulator_get_regmap - get the regulator's register map
3496 * @regulator: regulator source
3497 *
3498 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3499 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3500 */
regulator_get_regmap(struct regulator * regulator)3501 struct regmap *regulator_get_regmap(struct regulator *regulator)
3502 {
3503 struct regmap *map = regulator->rdev->regmap;
3504
3505 return map ? map : ERR_PTR(-EOPNOTSUPP);
3506 }
3507 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3508
3509 /**
3510 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3511 * @regulator: regulator source
3512 * @vsel_reg: voltage selector register, output parameter
3513 * @vsel_mask: mask for voltage selector bitfield, output parameter
3514 *
3515 * Returns the hardware register offset and bitmask used for setting the
3516 * regulator voltage. This might be useful when configuring voltage-scaling
3517 * hardware or firmware that can make I2C requests behind the kernel's back,
3518 * for example.
3519 *
3520 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3521 * voltage selectors.
3522 *
3523 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3524 * and 0 is returned, otherwise a negative error number is returned.
3525 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3526 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3527 unsigned *vsel_reg,
3528 unsigned *vsel_mask)
3529 {
3530 struct regulator_dev *rdev = regulator->rdev;
3531 const struct regulator_ops *ops = rdev->desc->ops;
3532
3533 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3534 return -EOPNOTSUPP;
3535
3536 *vsel_reg = rdev->desc->vsel_reg;
3537 *vsel_mask = rdev->desc->vsel_mask;
3538
3539 return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3542
3543 /**
3544 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3545 * @regulator: regulator source
3546 * @selector: identify voltage to list
3547 *
3548 * Converts the selector to a hardware-specific voltage selector that can be
3549 * directly written to the regulator registers. The address of the voltage
3550 * register can be determined by calling @regulator_get_hardware_vsel_register.
3551 *
3552 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3553 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3554 * selectors.
3555 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3556 int regulator_list_hardware_vsel(struct regulator *regulator,
3557 unsigned selector)
3558 {
3559 struct regulator_dev *rdev = regulator->rdev;
3560 const struct regulator_ops *ops = rdev->desc->ops;
3561
3562 if (selector >= rdev->desc->n_voltages)
3563 return -EINVAL;
3564 if (selector < rdev->desc->linear_min_sel)
3565 return 0;
3566 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3567 return -EOPNOTSUPP;
3568
3569 return selector;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3572
3573 /**
3574 * regulator_hardware_enable - access the HW for enable/disable regulator
3575 * @regulator: regulator source
3576 * @enable: true for enable, false for disable
3577 *
3578 * Request that the regulator be enabled/disabled with the regulator output at
3579 * the predefined voltage or current value.
3580 *
3581 * Return: 0 on success or a negative error number on failure.
3582 */
regulator_hardware_enable(struct regulator * regulator,bool enable)3583 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3584 {
3585 struct regulator_dev *rdev = regulator->rdev;
3586 const struct regulator_ops *ops = rdev->desc->ops;
3587 int ret = -EOPNOTSUPP;
3588
3589 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3590 return ret;
3591
3592 if (enable)
3593 ret = ops->enable(rdev);
3594 else
3595 ret = ops->disable(rdev);
3596
3597 return ret;
3598 }
3599 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3600
3601 /**
3602 * regulator_get_linear_step - return the voltage step size between VSEL values
3603 * @regulator: regulator source
3604 *
3605 * Return: The voltage step size between VSEL values for linear regulators,
3606 * or 0 if the regulator isn't a linear regulator.
3607 */
regulator_get_linear_step(struct regulator * regulator)3608 unsigned int regulator_get_linear_step(struct regulator *regulator)
3609 {
3610 struct regulator_dev *rdev = regulator->rdev;
3611
3612 return rdev->desc->uV_step;
3613 }
3614 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3615
3616 /**
3617 * regulator_is_supported_voltage - check if a voltage range can be supported
3618 *
3619 * @regulator: Regulator to check.
3620 * @min_uV: Minimum required voltage in uV.
3621 * @max_uV: Maximum required voltage in uV.
3622 *
3623 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3624 * number if @regulator's voltage can't be changed and voltage readback
3625 * failed.
3626 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3627 int regulator_is_supported_voltage(struct regulator *regulator,
3628 int min_uV, int max_uV)
3629 {
3630 struct regulator_dev *rdev = regulator->rdev;
3631 int i, voltages, ret;
3632
3633 /* If we can't change voltage check the current voltage */
3634 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3635 ret = regulator_get_voltage(regulator);
3636 if (ret >= 0)
3637 return min_uV <= ret && ret <= max_uV;
3638 else
3639 return ret;
3640 }
3641
3642 /* Any voltage within constrains range is fine? */
3643 if (rdev->desc->continuous_voltage_range)
3644 return min_uV >= rdev->constraints->min_uV &&
3645 max_uV <= rdev->constraints->max_uV;
3646
3647 ret = regulator_count_voltages(regulator);
3648 if (ret < 0)
3649 return 0;
3650 voltages = ret;
3651
3652 for (i = 0; i < voltages; i++) {
3653 ret = regulator_list_voltage(regulator, i);
3654
3655 if (ret >= min_uV && ret <= max_uV)
3656 return 1;
3657 }
3658
3659 return 0;
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3662
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3663 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3664 int max_uV)
3665 {
3666 const struct regulator_desc *desc = rdev->desc;
3667
3668 if (desc->ops->map_voltage)
3669 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3670
3671 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3672 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3673
3674 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3675 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3676
3677 if (desc->ops->list_voltage ==
3678 regulator_list_voltage_pickable_linear_range)
3679 return regulator_map_voltage_pickable_linear_range(rdev,
3680 min_uV, max_uV);
3681
3682 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3683 }
3684
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3685 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3686 int min_uV, int max_uV,
3687 unsigned *selector)
3688 {
3689 struct pre_voltage_change_data data;
3690 int ret;
3691
3692 data.old_uV = regulator_get_voltage_rdev(rdev);
3693 data.min_uV = min_uV;
3694 data.max_uV = max_uV;
3695 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3696 &data);
3697 if (ret & NOTIFY_STOP_MASK)
3698 return -EINVAL;
3699
3700 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3701 if (ret >= 0)
3702 return ret;
3703
3704 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3705 (void *)data.old_uV);
3706
3707 return ret;
3708 }
3709
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3710 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3711 int uV, unsigned selector)
3712 {
3713 struct pre_voltage_change_data data;
3714 int ret;
3715
3716 data.old_uV = regulator_get_voltage_rdev(rdev);
3717 data.min_uV = uV;
3718 data.max_uV = uV;
3719 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3720 &data);
3721 if (ret & NOTIFY_STOP_MASK)
3722 return -EINVAL;
3723
3724 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3725 if (ret >= 0)
3726 return ret;
3727
3728 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3729 (void *)data.old_uV);
3730
3731 return ret;
3732 }
3733
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3734 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3735 int uV, int new_selector)
3736 {
3737 const struct regulator_ops *ops = rdev->desc->ops;
3738 int diff, old_sel, curr_sel, ret;
3739
3740 /* Stepping is only needed if the regulator is enabled. */
3741 if (!_regulator_is_enabled(rdev))
3742 goto final_set;
3743
3744 if (!ops->get_voltage_sel)
3745 return -EINVAL;
3746
3747 old_sel = ops->get_voltage_sel(rdev);
3748 if (old_sel < 0)
3749 return old_sel;
3750
3751 diff = new_selector - old_sel;
3752 if (diff == 0)
3753 return 0; /* No change needed. */
3754
3755 if (diff > 0) {
3756 /* Stepping up. */
3757 for (curr_sel = old_sel + rdev->desc->vsel_step;
3758 curr_sel < new_selector;
3759 curr_sel += rdev->desc->vsel_step) {
3760 /*
3761 * Call the callback directly instead of using
3762 * _regulator_call_set_voltage_sel() as we don't
3763 * want to notify anyone yet. Same in the branch
3764 * below.
3765 */
3766 ret = ops->set_voltage_sel(rdev, curr_sel);
3767 if (ret)
3768 goto try_revert;
3769 }
3770 } else {
3771 /* Stepping down. */
3772 for (curr_sel = old_sel - rdev->desc->vsel_step;
3773 curr_sel > new_selector;
3774 curr_sel -= rdev->desc->vsel_step) {
3775 ret = ops->set_voltage_sel(rdev, curr_sel);
3776 if (ret)
3777 goto try_revert;
3778 }
3779 }
3780
3781 final_set:
3782 /* The final selector will trigger the notifiers. */
3783 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3784
3785 try_revert:
3786 /*
3787 * At least try to return to the previous voltage if setting a new
3788 * one failed.
3789 */
3790 (void)ops->set_voltage_sel(rdev, old_sel);
3791 return ret;
3792 }
3793
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3794 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3795 int old_uV, int new_uV)
3796 {
3797 unsigned int ramp_delay = 0;
3798
3799 if (rdev->constraints->ramp_delay)
3800 ramp_delay = rdev->constraints->ramp_delay;
3801 else if (rdev->desc->ramp_delay)
3802 ramp_delay = rdev->desc->ramp_delay;
3803 else if (rdev->constraints->settling_time)
3804 return rdev->constraints->settling_time;
3805 else if (rdev->constraints->settling_time_up &&
3806 (new_uV > old_uV))
3807 return rdev->constraints->settling_time_up;
3808 else if (rdev->constraints->settling_time_down &&
3809 (new_uV < old_uV))
3810 return rdev->constraints->settling_time_down;
3811
3812 if (ramp_delay == 0)
3813 return 0;
3814
3815 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3816 }
3817
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3818 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3819 int min_uV, int max_uV)
3820 {
3821 int ret;
3822 int delay = 0;
3823 int best_val = 0;
3824 unsigned int selector;
3825 int old_selector = -1;
3826 const struct regulator_ops *ops = rdev->desc->ops;
3827 int old_uV = regulator_get_voltage_rdev(rdev);
3828
3829 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3830
3831 min_uV += rdev->constraints->uV_offset;
3832 max_uV += rdev->constraints->uV_offset;
3833
3834 /*
3835 * If we can't obtain the old selector there is not enough
3836 * info to call set_voltage_time_sel().
3837 */
3838 if (_regulator_is_enabled(rdev) &&
3839 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3840 old_selector = ops->get_voltage_sel(rdev);
3841 if (old_selector < 0)
3842 return old_selector;
3843 }
3844
3845 if (ops->set_voltage) {
3846 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3847 &selector);
3848
3849 if (ret >= 0) {
3850 if (ops->list_voltage)
3851 best_val = ops->list_voltage(rdev,
3852 selector);
3853 else
3854 best_val = regulator_get_voltage_rdev(rdev);
3855 }
3856
3857 } else if (ops->set_voltage_sel) {
3858 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3859 if (ret >= 0) {
3860 best_val = ops->list_voltage(rdev, ret);
3861 if (min_uV <= best_val && max_uV >= best_val) {
3862 selector = ret;
3863 if (old_selector == selector)
3864 ret = 0;
3865 else if (rdev->desc->vsel_step)
3866 ret = _regulator_set_voltage_sel_step(
3867 rdev, best_val, selector);
3868 else
3869 ret = _regulator_call_set_voltage_sel(
3870 rdev, best_val, selector);
3871 } else {
3872 ret = -EINVAL;
3873 }
3874 }
3875 } else {
3876 ret = -EINVAL;
3877 }
3878
3879 if (ret)
3880 goto out;
3881
3882 if (ops->set_voltage_time_sel) {
3883 /*
3884 * Call set_voltage_time_sel if successfully obtained
3885 * old_selector
3886 */
3887 if (old_selector >= 0 && old_selector != selector)
3888 delay = ops->set_voltage_time_sel(rdev, old_selector,
3889 selector);
3890 } else {
3891 if (old_uV != best_val) {
3892 if (ops->set_voltage_time)
3893 delay = ops->set_voltage_time(rdev, old_uV,
3894 best_val);
3895 else
3896 delay = _regulator_set_voltage_time(rdev,
3897 old_uV,
3898 best_val);
3899 }
3900 }
3901
3902 if (delay < 0) {
3903 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3904 delay = 0;
3905 }
3906
3907 /* Insert any necessary delays */
3908 fsleep(delay);
3909
3910 if (best_val >= 0) {
3911 unsigned long data = best_val;
3912
3913 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3914 (void *)data);
3915 }
3916
3917 out:
3918 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3919
3920 return ret;
3921 }
3922
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3923 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3924 int min_uV, int max_uV, suspend_state_t state)
3925 {
3926 struct regulator_state *rstate;
3927 int uV, sel;
3928
3929 rstate = regulator_get_suspend_state(rdev, state);
3930 if (rstate == NULL)
3931 return -EINVAL;
3932
3933 if (min_uV < rstate->min_uV)
3934 min_uV = rstate->min_uV;
3935 if (max_uV > rstate->max_uV)
3936 max_uV = rstate->max_uV;
3937
3938 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3939 if (sel < 0)
3940 return sel;
3941
3942 uV = rdev->desc->ops->list_voltage(rdev, sel);
3943 if (uV >= min_uV && uV <= max_uV)
3944 rstate->uV = uV;
3945
3946 return 0;
3947 }
3948
regulator_get_voltage_delta(struct regulator_dev * rdev,int uV)3949 static int regulator_get_voltage_delta(struct regulator_dev *rdev, int uV)
3950 {
3951 int current_uV = regulator_get_voltage_rdev(rdev);
3952
3953 if (current_uV < 0)
3954 return current_uV;
3955
3956 return abs(current_uV - uV);
3957 }
3958
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3959 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3960 int min_uV, int max_uV,
3961 suspend_state_t state)
3962 {
3963 struct regulator_dev *rdev = regulator->rdev;
3964 struct regulator_voltage *voltage = ®ulator->voltage[state];
3965 int ret = 0;
3966 int current_uV, delta, new_delta;
3967 int old_min_uV, old_max_uV;
3968
3969 /* If we're setting the same range as last time the change
3970 * should be a noop (some cpufreq implementations use the same
3971 * voltage for multiple frequencies, for example).
3972 */
3973 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3974 goto out;
3975
3976 /* If we're trying to set a range that overlaps the current voltage,
3977 * return successfully even though the regulator does not support
3978 * changing the voltage.
3979 */
3980 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3981 current_uV = regulator_get_voltage_rdev(rdev);
3982 if (min_uV <= current_uV && current_uV <= max_uV) {
3983 voltage->min_uV = min_uV;
3984 voltage->max_uV = max_uV;
3985 goto out;
3986 }
3987 }
3988
3989 /* sanity check */
3990 if (!rdev->desc->ops->set_voltage &&
3991 !rdev->desc->ops->set_voltage_sel) {
3992 ret = -EINVAL;
3993 goto out;
3994 }
3995
3996 /* constraints check */
3997 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3998 if (ret < 0)
3999 goto out;
4000
4001 /* restore original values in case of error */
4002 old_min_uV = voltage->min_uV;
4003 old_max_uV = voltage->max_uV;
4004 voltage->min_uV = min_uV;
4005 voltage->max_uV = max_uV;
4006
4007 /* for not coupled regulators this will just set the voltage */
4008 ret = regulator_balance_voltage(rdev, state);
4009 if (ret < 0) {
4010 voltage->min_uV = old_min_uV;
4011 voltage->max_uV = old_max_uV;
4012 }
4013
4014 if (rdev->constraints->max_uV_step > 0) {
4015 /* For regulators with a maximum voltage step, reaching the desired
4016 * voltage might take a few retries.
4017 */
4018 ret = regulator_get_voltage_delta(rdev, min_uV);
4019 if (ret < 0)
4020 goto out;
4021
4022 delta = ret;
4023
4024 while (delta > 0) {
4025 ret = regulator_balance_voltage(rdev, state);
4026 if (ret < 0)
4027 goto out;
4028
4029 ret = regulator_get_voltage_delta(rdev, min_uV);
4030 if (ret < 0)
4031 goto out;
4032
4033 new_delta = ret;
4034
4035 /* check that voltage is converging quickly enough */
4036 if (delta - new_delta < rdev->constraints->max_uV_step) {
4037 ret = -EWOULDBLOCK;
4038 goto out;
4039 }
4040
4041 delta = new_delta;
4042 }
4043 }
4044
4045 out:
4046 return ret;
4047 }
4048
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)4049 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
4050 int max_uV, suspend_state_t state)
4051 {
4052 int best_supply_uV = 0;
4053 int supply_change_uV = 0;
4054 int ret;
4055
4056 if (rdev->supply &&
4057 regulator_ops_is_valid(rdev->supply->rdev,
4058 REGULATOR_CHANGE_VOLTAGE) &&
4059 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
4060 rdev->desc->ops->get_voltage_sel))) {
4061 int current_supply_uV;
4062 int selector;
4063
4064 selector = regulator_map_voltage(rdev, min_uV, max_uV);
4065 if (selector < 0) {
4066 ret = selector;
4067 goto out;
4068 }
4069
4070 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
4071 if (best_supply_uV < 0) {
4072 ret = best_supply_uV;
4073 goto out;
4074 }
4075
4076 best_supply_uV += rdev->desc->min_dropout_uV;
4077
4078 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
4079 if (current_supply_uV < 0) {
4080 ret = current_supply_uV;
4081 goto out;
4082 }
4083
4084 supply_change_uV = best_supply_uV - current_supply_uV;
4085 }
4086
4087 if (supply_change_uV > 0) {
4088 ret = regulator_set_voltage_unlocked(rdev->supply,
4089 best_supply_uV, INT_MAX, state);
4090 if (ret) {
4091 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
4092 ERR_PTR(ret));
4093 goto out;
4094 }
4095 }
4096
4097 if (state == PM_SUSPEND_ON)
4098 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4099 else
4100 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
4101 max_uV, state);
4102 if (ret < 0)
4103 goto out;
4104
4105 if (supply_change_uV < 0) {
4106 ret = regulator_set_voltage_unlocked(rdev->supply,
4107 best_supply_uV, INT_MAX, state);
4108 if (ret)
4109 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
4110 ERR_PTR(ret));
4111 /* No need to fail here */
4112 ret = 0;
4113 }
4114
4115 out:
4116 return ret;
4117 }
4118 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
4119
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)4120 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
4121 int *current_uV, int *min_uV)
4122 {
4123 struct regulation_constraints *constraints = rdev->constraints;
4124
4125 /* Limit voltage change only if necessary */
4126 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
4127 return 1;
4128
4129 if (*current_uV < 0) {
4130 *current_uV = regulator_get_voltage_rdev(rdev);
4131
4132 if (*current_uV < 0)
4133 return *current_uV;
4134 }
4135
4136 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
4137 return 1;
4138
4139 /* Clamp target voltage within the given step */
4140 if (*current_uV < *min_uV)
4141 *min_uV = min(*current_uV + constraints->max_uV_step,
4142 *min_uV);
4143 else
4144 *min_uV = max(*current_uV - constraints->max_uV_step,
4145 *min_uV);
4146
4147 return 0;
4148 }
4149
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)4150 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
4151 int *current_uV,
4152 int *min_uV, int *max_uV,
4153 suspend_state_t state,
4154 int n_coupled)
4155 {
4156 struct coupling_desc *c_desc = &rdev->coupling_desc;
4157 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
4158 struct regulation_constraints *constraints = rdev->constraints;
4159 int desired_min_uV = 0, desired_max_uV = INT_MAX;
4160 int max_current_uV = 0, min_current_uV = INT_MAX;
4161 int highest_min_uV = 0, target_uV, possible_uV;
4162 int i, ret, max_spread;
4163 bool done;
4164
4165 *current_uV = -1;
4166
4167 /*
4168 * If there are no coupled regulators, simply set the voltage
4169 * demanded by consumers.
4170 */
4171 if (n_coupled == 1) {
4172 /*
4173 * If consumers don't provide any demands, set voltage
4174 * to min_uV
4175 */
4176 desired_min_uV = constraints->min_uV;
4177 desired_max_uV = constraints->max_uV;
4178
4179 ret = regulator_check_consumers(rdev,
4180 &desired_min_uV,
4181 &desired_max_uV, state);
4182 if (ret < 0)
4183 return ret;
4184
4185 done = true;
4186
4187 goto finish;
4188 }
4189
4190 /* Find highest min desired voltage */
4191 for (i = 0; i < n_coupled; i++) {
4192 int tmp_min = 0;
4193 int tmp_max = INT_MAX;
4194
4195 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
4196
4197 ret = regulator_check_consumers(c_rdevs[i],
4198 &tmp_min,
4199 &tmp_max, state);
4200 if (ret < 0)
4201 return ret;
4202
4203 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
4204 if (ret < 0)
4205 return ret;
4206
4207 highest_min_uV = max(highest_min_uV, tmp_min);
4208
4209 if (i == 0) {
4210 desired_min_uV = tmp_min;
4211 desired_max_uV = tmp_max;
4212 }
4213 }
4214
4215 max_spread = constraints->max_spread[0];
4216
4217 /*
4218 * Let target_uV be equal to the desired one if possible.
4219 * If not, set it to minimum voltage, allowed by other coupled
4220 * regulators.
4221 */
4222 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4223
4224 /*
4225 * Find min and max voltages, which currently aren't violating
4226 * max_spread.
4227 */
4228 for (i = 1; i < n_coupled; i++) {
4229 int tmp_act;
4230
4231 if (!_regulator_is_enabled(c_rdevs[i]))
4232 continue;
4233
4234 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4235 if (tmp_act < 0)
4236 return tmp_act;
4237
4238 min_current_uV = min(tmp_act, min_current_uV);
4239 max_current_uV = max(tmp_act, max_current_uV);
4240 }
4241
4242 /* There aren't any other regulators enabled */
4243 if (max_current_uV == 0) {
4244 possible_uV = target_uV;
4245 } else {
4246 /*
4247 * Correct target voltage, so as it currently isn't
4248 * violating max_spread
4249 */
4250 possible_uV = max(target_uV, max_current_uV - max_spread);
4251 possible_uV = min(possible_uV, min_current_uV + max_spread);
4252 }
4253
4254 if (possible_uV > desired_max_uV)
4255 return -EINVAL;
4256
4257 done = (possible_uV == target_uV);
4258 desired_min_uV = possible_uV;
4259
4260 finish:
4261 /* Apply max_uV_step constraint if necessary */
4262 if (state == PM_SUSPEND_ON) {
4263 ret = regulator_limit_voltage_step(rdev, current_uV,
4264 &desired_min_uV);
4265 if (ret < 0)
4266 return ret;
4267
4268 if (ret == 0)
4269 done = false;
4270 }
4271
4272 /* Set current_uV if wasn't done earlier in the code and if necessary */
4273 if (n_coupled > 1 && *current_uV == -1) {
4274
4275 if (_regulator_is_enabled(rdev)) {
4276 ret = regulator_get_voltage_rdev(rdev);
4277 if (ret < 0)
4278 return ret;
4279
4280 *current_uV = ret;
4281 } else {
4282 *current_uV = desired_min_uV;
4283 }
4284 }
4285
4286 *min_uV = desired_min_uV;
4287 *max_uV = desired_max_uV;
4288
4289 return done;
4290 }
4291
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4292 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4293 suspend_state_t state, bool skip_coupled)
4294 {
4295 struct regulator_dev **c_rdevs;
4296 struct regulator_dev *best_rdev;
4297 struct coupling_desc *c_desc = &rdev->coupling_desc;
4298 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4299 unsigned int delta, best_delta;
4300 unsigned long c_rdev_done = 0;
4301 bool best_c_rdev_done;
4302
4303 c_rdevs = c_desc->coupled_rdevs;
4304 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4305
4306 /*
4307 * Find the best possible voltage change on each loop. Leave the loop
4308 * if there isn't any possible change.
4309 */
4310 do {
4311 best_c_rdev_done = false;
4312 best_delta = 0;
4313 best_min_uV = 0;
4314 best_max_uV = 0;
4315 best_c_rdev = 0;
4316 best_rdev = NULL;
4317
4318 /*
4319 * Find highest difference between optimal voltage
4320 * and current voltage.
4321 */
4322 for (i = 0; i < n_coupled; i++) {
4323 /*
4324 * optimal_uV is the best voltage that can be set for
4325 * i-th regulator at the moment without violating
4326 * max_spread constraint in order to balance
4327 * the coupled voltages.
4328 */
4329 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4330
4331 if (test_bit(i, &c_rdev_done))
4332 continue;
4333
4334 ret = regulator_get_optimal_voltage(c_rdevs[i],
4335 ¤t_uV,
4336 &optimal_uV,
4337 &optimal_max_uV,
4338 state, n_coupled);
4339 if (ret < 0)
4340 goto out;
4341
4342 delta = abs(optimal_uV - current_uV);
4343
4344 if (delta && best_delta <= delta) {
4345 best_c_rdev_done = ret;
4346 best_delta = delta;
4347 best_rdev = c_rdevs[i];
4348 best_min_uV = optimal_uV;
4349 best_max_uV = optimal_max_uV;
4350 best_c_rdev = i;
4351 }
4352 }
4353
4354 /* Nothing to change, return successfully */
4355 if (!best_rdev) {
4356 ret = 0;
4357 goto out;
4358 }
4359
4360 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4361 best_max_uV, state);
4362
4363 if (ret < 0)
4364 goto out;
4365
4366 if (best_c_rdev_done)
4367 set_bit(best_c_rdev, &c_rdev_done);
4368
4369 } while (n_coupled > 1);
4370
4371 out:
4372 return ret;
4373 }
4374
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4375 static int regulator_balance_voltage(struct regulator_dev *rdev,
4376 suspend_state_t state)
4377 {
4378 struct coupling_desc *c_desc = &rdev->coupling_desc;
4379 struct regulator_coupler *coupler = c_desc->coupler;
4380 bool skip_coupled = false;
4381
4382 /*
4383 * If system is in a state other than PM_SUSPEND_ON, don't check
4384 * other coupled regulators.
4385 */
4386 if (state != PM_SUSPEND_ON)
4387 skip_coupled = true;
4388
4389 if (c_desc->n_resolved < c_desc->n_coupled) {
4390 rdev_err(rdev, "Not all coupled regulators registered\n");
4391 return -EPERM;
4392 }
4393
4394 /* Invoke custom balancer for customized couplers */
4395 if (coupler && coupler->balance_voltage)
4396 return coupler->balance_voltage(coupler, rdev, state);
4397
4398 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4399 }
4400
4401 /**
4402 * regulator_set_voltage - set regulator output voltage
4403 * @regulator: regulator source
4404 * @min_uV: Minimum required voltage in uV
4405 * @max_uV: Maximum acceptable voltage in uV
4406 *
4407 * Sets a voltage regulator to the desired output voltage. This can be set
4408 * during any regulator state. IOW, regulator can be disabled or enabled.
4409 *
4410 * If the regulator is enabled then the voltage will change to the new value
4411 * immediately otherwise if the regulator is disabled the regulator will
4412 * output at the new voltage when enabled.
4413 *
4414 * NOTE: If the regulator is shared between several devices then the lowest
4415 * request voltage that meets the system constraints will be used.
4416 * Regulator system constraints must be set for this regulator before
4417 * calling this function otherwise this call will fail.
4418 *
4419 * Return: 0 on success or a negative error number on failure.
4420 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4421 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4422 {
4423 struct ww_acquire_ctx ww_ctx;
4424 int ret;
4425
4426 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4427
4428 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4429 PM_SUSPEND_ON);
4430
4431 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4432
4433 return ret;
4434 }
4435 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4436
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4437 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4438 suspend_state_t state, bool en)
4439 {
4440 struct regulator_state *rstate;
4441
4442 rstate = regulator_get_suspend_state(rdev, state);
4443 if (rstate == NULL)
4444 return -EINVAL;
4445
4446 if (!rstate->changeable)
4447 return -EPERM;
4448
4449 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4450
4451 return 0;
4452 }
4453
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4454 int regulator_suspend_enable(struct regulator_dev *rdev,
4455 suspend_state_t state)
4456 {
4457 return regulator_suspend_toggle(rdev, state, true);
4458 }
4459 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4460
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4461 int regulator_suspend_disable(struct regulator_dev *rdev,
4462 suspend_state_t state)
4463 {
4464 struct regulator *regulator;
4465 struct regulator_voltage *voltage;
4466
4467 /*
4468 * if any consumer wants this regulator device keeping on in
4469 * suspend states, don't set it as disabled.
4470 */
4471 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4472 voltage = ®ulator->voltage[state];
4473 if (voltage->min_uV || voltage->max_uV)
4474 return 0;
4475 }
4476
4477 return regulator_suspend_toggle(rdev, state, false);
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4480
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4481 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4482 int min_uV, int max_uV,
4483 suspend_state_t state)
4484 {
4485 struct regulator_dev *rdev = regulator->rdev;
4486 struct regulator_state *rstate;
4487
4488 rstate = regulator_get_suspend_state(rdev, state);
4489 if (rstate == NULL)
4490 return -EINVAL;
4491
4492 if (rstate->min_uV == rstate->max_uV) {
4493 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4494 return -EPERM;
4495 }
4496
4497 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4498 }
4499
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4500 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4501 int max_uV, suspend_state_t state)
4502 {
4503 struct ww_acquire_ctx ww_ctx;
4504 int ret;
4505
4506 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4507 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4508 return -EINVAL;
4509
4510 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4511
4512 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4513 max_uV, state);
4514
4515 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4516
4517 return ret;
4518 }
4519 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4520
4521 /**
4522 * regulator_set_voltage_time - get raise/fall time
4523 * @regulator: regulator source
4524 * @old_uV: starting voltage in microvolts
4525 * @new_uV: target voltage in microvolts
4526 *
4527 * Provided with the starting and ending voltage, this function attempts to
4528 * calculate the time in microseconds required to rise or fall to this new
4529 * voltage.
4530 *
4531 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4532 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4533 int regulator_set_voltage_time(struct regulator *regulator,
4534 int old_uV, int new_uV)
4535 {
4536 struct regulator_dev *rdev = regulator->rdev;
4537 const struct regulator_ops *ops = rdev->desc->ops;
4538 int old_sel = -1;
4539 int new_sel = -1;
4540 int voltage;
4541 int i;
4542
4543 if (ops->set_voltage_time)
4544 return ops->set_voltage_time(rdev, old_uV, new_uV);
4545 else if (!ops->set_voltage_time_sel)
4546 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4547
4548 /* Currently requires operations to do this */
4549 if (!ops->list_voltage || !rdev->desc->n_voltages)
4550 return -EINVAL;
4551
4552 for (i = 0; i < rdev->desc->n_voltages; i++) {
4553 /* We only look for exact voltage matches here */
4554 if (i < rdev->desc->linear_min_sel)
4555 continue;
4556
4557 if (old_sel >= 0 && new_sel >= 0)
4558 break;
4559
4560 voltage = regulator_list_voltage(regulator, i);
4561 if (voltage < 0)
4562 return -EINVAL;
4563 if (voltage == 0)
4564 continue;
4565 if (voltage == old_uV)
4566 old_sel = i;
4567 if (voltage == new_uV)
4568 new_sel = i;
4569 }
4570
4571 if (old_sel < 0 || new_sel < 0)
4572 return -EINVAL;
4573
4574 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4575 }
4576 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4577
4578 /**
4579 * regulator_set_voltage_time_sel - get raise/fall time
4580 * @rdev: regulator source device
4581 * @old_selector: selector for starting voltage
4582 * @new_selector: selector for target voltage
4583 *
4584 * Provided with the starting and target voltage selectors, this function
4585 * returns time in microseconds required to rise or fall to this new voltage
4586 *
4587 * Drivers providing ramp_delay in regulation_constraints can use this as their
4588 * set_voltage_time_sel() operation.
4589 *
4590 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4591 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4592 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4593 unsigned int old_selector,
4594 unsigned int new_selector)
4595 {
4596 int old_volt, new_volt;
4597
4598 /* sanity check */
4599 if (!rdev->desc->ops->list_voltage)
4600 return -EINVAL;
4601
4602 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4603 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4604
4605 if (rdev->desc->ops->set_voltage_time)
4606 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4607 new_volt);
4608 else
4609 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4612
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4613 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4614 {
4615 int ret;
4616
4617 regulator_lock(rdev);
4618
4619 if (!rdev->desc->ops->set_voltage &&
4620 !rdev->desc->ops->set_voltage_sel) {
4621 ret = -EINVAL;
4622 goto out;
4623 }
4624
4625 /* balance only, if regulator is coupled */
4626 if (rdev->coupling_desc.n_coupled > 1)
4627 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4628 else
4629 ret = -EOPNOTSUPP;
4630
4631 out:
4632 regulator_unlock(rdev);
4633 return ret;
4634 }
4635
4636 /**
4637 * regulator_sync_voltage - re-apply last regulator output voltage
4638 * @regulator: regulator source
4639 *
4640 * Re-apply the last configured voltage. This is intended to be used
4641 * where some external control source the consumer is cooperating with
4642 * has caused the configured voltage to change.
4643 *
4644 * Return: 0 on success or a negative error number on failure.
4645 */
regulator_sync_voltage(struct regulator * regulator)4646 int regulator_sync_voltage(struct regulator *regulator)
4647 {
4648 struct regulator_dev *rdev = regulator->rdev;
4649 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4650 int ret, min_uV, max_uV;
4651
4652 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4653 return 0;
4654
4655 regulator_lock(rdev);
4656
4657 if (!rdev->desc->ops->set_voltage &&
4658 !rdev->desc->ops->set_voltage_sel) {
4659 ret = -EINVAL;
4660 goto out;
4661 }
4662
4663 /* This is only going to work if we've had a voltage configured. */
4664 if (!voltage->min_uV && !voltage->max_uV) {
4665 ret = -EINVAL;
4666 goto out;
4667 }
4668
4669 min_uV = voltage->min_uV;
4670 max_uV = voltage->max_uV;
4671
4672 /* This should be a paranoia check... */
4673 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4674 if (ret < 0)
4675 goto out;
4676
4677 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4678 if (ret < 0)
4679 goto out;
4680
4681 /* balance only, if regulator is coupled */
4682 if (rdev->coupling_desc.n_coupled > 1)
4683 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4684 else
4685 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4686
4687 out:
4688 regulator_unlock(rdev);
4689 return ret;
4690 }
4691 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4692
regulator_get_voltage_rdev(struct regulator_dev * rdev)4693 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4694 {
4695 int sel, ret;
4696 bool bypassed;
4697
4698 if (rdev->desc->ops->get_bypass) {
4699 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4700 if (ret < 0)
4701 return ret;
4702 if (bypassed) {
4703 /* if bypassed the regulator must have a supply */
4704 if (!rdev->supply) {
4705 rdev_err(rdev,
4706 "bypassed regulator has no supply!\n");
4707 return -EPROBE_DEFER;
4708 }
4709
4710 return regulator_get_voltage_rdev(rdev->supply->rdev);
4711 }
4712 }
4713
4714 if (rdev->desc->ops->get_voltage_sel) {
4715 sel = rdev->desc->ops->get_voltage_sel(rdev);
4716 if (sel < 0)
4717 return sel;
4718 ret = rdev->desc->ops->list_voltage(rdev, sel);
4719 } else if (rdev->desc->ops->get_voltage) {
4720 ret = rdev->desc->ops->get_voltage(rdev);
4721 } else if (rdev->desc->ops->list_voltage) {
4722 ret = rdev->desc->ops->list_voltage(rdev, 0);
4723 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4724 ret = rdev->desc->fixed_uV;
4725 } else if (rdev->supply) {
4726 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4727 } else if (rdev->supply_name) {
4728 return -EPROBE_DEFER;
4729 } else {
4730 return -EINVAL;
4731 }
4732
4733 if (ret < 0)
4734 return ret;
4735 return ret - rdev->constraints->uV_offset;
4736 }
4737 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4738
4739 /**
4740 * regulator_get_voltage - get regulator output voltage
4741 * @regulator: regulator source
4742 *
4743 * Return: Current regulator voltage in uV, or a negative error number on failure.
4744 *
4745 * NOTE: If the regulator is disabled it will return the voltage value. This
4746 * function should not be used to determine regulator state.
4747 */
regulator_get_voltage(struct regulator * regulator)4748 int regulator_get_voltage(struct regulator *regulator)
4749 {
4750 struct ww_acquire_ctx ww_ctx;
4751 int ret;
4752
4753 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4754 ret = regulator_get_voltage_rdev(regulator->rdev);
4755 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4756
4757 return ret;
4758 }
4759 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4760
4761 /**
4762 * regulator_set_current_limit - set regulator output current limit
4763 * @regulator: regulator source
4764 * @min_uA: Minimum supported current in uA
4765 * @max_uA: Maximum supported current in uA
4766 *
4767 * Sets current sink to the desired output current. This can be set during
4768 * any regulator state. IOW, regulator can be disabled or enabled.
4769 *
4770 * If the regulator is enabled then the current will change to the new value
4771 * immediately otherwise if the regulator is disabled the regulator will
4772 * output at the new current when enabled.
4773 *
4774 * NOTE: Regulator system constraints must be set for this regulator before
4775 * calling this function otherwise this call will fail.
4776 *
4777 * Return: 0 on success or a negative error number on failure.
4778 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4779 int regulator_set_current_limit(struct regulator *regulator,
4780 int min_uA, int max_uA)
4781 {
4782 struct regulator_dev *rdev = regulator->rdev;
4783 int ret;
4784
4785 regulator_lock(rdev);
4786
4787 /* sanity check */
4788 if (!rdev->desc->ops->set_current_limit) {
4789 ret = -EINVAL;
4790 goto out;
4791 }
4792
4793 /* constraints check */
4794 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4795 if (ret < 0)
4796 goto out;
4797
4798 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4799 out:
4800 regulator_unlock(rdev);
4801 return ret;
4802 }
4803 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4804
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4805 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4806 {
4807 /* sanity check */
4808 if (!rdev->desc->ops->get_current_limit)
4809 return -EINVAL;
4810
4811 return rdev->desc->ops->get_current_limit(rdev);
4812 }
4813
_regulator_get_current_limit(struct regulator_dev * rdev)4814 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4815 {
4816 int ret;
4817
4818 regulator_lock(rdev);
4819 ret = _regulator_get_current_limit_unlocked(rdev);
4820 regulator_unlock(rdev);
4821
4822 return ret;
4823 }
4824
4825 /**
4826 * regulator_get_current_limit - get regulator output current
4827 * @regulator: regulator source
4828 *
4829 * Return: Current supplied by the specified current sink in uA,
4830 * or a negative error number on failure.
4831 *
4832 * NOTE: If the regulator is disabled it will return the current value. This
4833 * function should not be used to determine regulator state.
4834 */
regulator_get_current_limit(struct regulator * regulator)4835 int regulator_get_current_limit(struct regulator *regulator)
4836 {
4837 return _regulator_get_current_limit(regulator->rdev);
4838 }
4839 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4840
4841 /**
4842 * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget
4843 * @regulator: regulator source
4844 *
4845 * Return: Unclaimed power budget of the regulator in mW.
4846 */
regulator_get_unclaimed_power_budget(struct regulator * regulator)4847 int regulator_get_unclaimed_power_budget(struct regulator *regulator)
4848 {
4849 return regulator->rdev->constraints->pw_budget_mW -
4850 regulator->rdev->pw_requested_mW;
4851 }
4852 EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget);
4853
4854 /**
4855 * regulator_request_power_budget - request power budget on a regulator
4856 * @regulator: regulator source
4857 * @pw_req: Power requested
4858 *
4859 * Return: 0 on success or a negative error number on failure.
4860 */
regulator_request_power_budget(struct regulator * regulator,unsigned int pw_req)4861 int regulator_request_power_budget(struct regulator *regulator,
4862 unsigned int pw_req)
4863 {
4864 struct regulator_dev *rdev = regulator->rdev;
4865 int ret = 0, pw_tot_req;
4866
4867 regulator_lock(rdev);
4868 if (rdev->supply) {
4869 ret = regulator_request_power_budget(rdev->supply, pw_req);
4870 if (ret < 0)
4871 goto out;
4872 }
4873
4874 pw_tot_req = rdev->pw_requested_mW + pw_req;
4875 if (pw_tot_req > rdev->constraints->pw_budget_mW) {
4876 rdev_warn(rdev, "power requested %d mW out of budget %d mW",
4877 pw_req,
4878 rdev->constraints->pw_budget_mW - rdev->pw_requested_mW);
4879 regulator_notifier_call_chain(rdev,
4880 REGULATOR_EVENT_OVER_CURRENT_WARN,
4881 NULL);
4882 ret = -ERANGE;
4883 goto out;
4884 }
4885
4886 rdev->pw_requested_mW = pw_tot_req;
4887 out:
4888 regulator_unlock(rdev);
4889 return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(regulator_request_power_budget);
4892
4893 /**
4894 * regulator_free_power_budget - free power budget on a regulator
4895 * @regulator: regulator source
4896 * @pw: Power to be released.
4897 *
4898 * Return: Power budget of the regulator in mW.
4899 */
regulator_free_power_budget(struct regulator * regulator,unsigned int pw)4900 void regulator_free_power_budget(struct regulator *regulator,
4901 unsigned int pw)
4902 {
4903 struct regulator_dev *rdev = regulator->rdev;
4904 int pw_tot_req;
4905
4906 regulator_lock(rdev);
4907 if (rdev->supply)
4908 regulator_free_power_budget(rdev->supply, pw);
4909
4910 pw_tot_req = rdev->pw_requested_mW - pw;
4911 if (pw_tot_req >= 0)
4912 rdev->pw_requested_mW = pw_tot_req;
4913 else
4914 rdev_warn(rdev,
4915 "too much power freed %d mW (already requested %d mW)",
4916 pw, rdev->pw_requested_mW);
4917
4918 regulator_unlock(rdev);
4919 }
4920 EXPORT_SYMBOL_GPL(regulator_free_power_budget);
4921
4922 /**
4923 * regulator_set_mode - set regulator operating mode
4924 * @regulator: regulator source
4925 * @mode: operating mode - one of the REGULATOR_MODE constants
4926 *
4927 * Set regulator operating mode to increase regulator efficiency or improve
4928 * regulation performance.
4929 *
4930 * NOTE: Regulator system constraints must be set for this regulator before
4931 * calling this function otherwise this call will fail.
4932 *
4933 * Return: 0 on success or a negative error number on failure.
4934 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4935 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4936 {
4937 struct regulator_dev *rdev = regulator->rdev;
4938 int ret;
4939 int regulator_curr_mode;
4940
4941 regulator_lock(rdev);
4942
4943 /* sanity check */
4944 if (!rdev->desc->ops->set_mode) {
4945 ret = -EINVAL;
4946 goto out;
4947 }
4948
4949 /* return if the same mode is requested */
4950 if (rdev->desc->ops->get_mode) {
4951 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4952 if (regulator_curr_mode == mode) {
4953 ret = 0;
4954 goto out;
4955 }
4956 }
4957
4958 /* constraints check */
4959 ret = regulator_mode_constrain(rdev, &mode);
4960 if (ret < 0)
4961 goto out;
4962
4963 ret = rdev->desc->ops->set_mode(rdev, mode);
4964 out:
4965 regulator_unlock(rdev);
4966 return ret;
4967 }
4968 EXPORT_SYMBOL_GPL(regulator_set_mode);
4969
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4970 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4971 {
4972 /* sanity check */
4973 if (!rdev->desc->ops->get_mode)
4974 return -EINVAL;
4975
4976 return rdev->desc->ops->get_mode(rdev);
4977 }
4978
_regulator_get_mode(struct regulator_dev * rdev)4979 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4980 {
4981 int ret;
4982
4983 regulator_lock(rdev);
4984 ret = _regulator_get_mode_unlocked(rdev);
4985 regulator_unlock(rdev);
4986
4987 return ret;
4988 }
4989
4990 /**
4991 * regulator_get_mode - get regulator operating mode
4992 * @regulator: regulator source
4993 *
4994 * Get the current regulator operating mode.
4995 *
4996 * Return: Current operating mode as %REGULATOR_MODE_* values,
4997 * or a negative error number on failure.
4998 */
regulator_get_mode(struct regulator * regulator)4999 unsigned int regulator_get_mode(struct regulator *regulator)
5000 {
5001 return _regulator_get_mode(regulator->rdev);
5002 }
5003 EXPORT_SYMBOL_GPL(regulator_get_mode);
5004
rdev_get_cached_err_flags(struct regulator_dev * rdev)5005 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
5006 {
5007 int ret = 0;
5008
5009 if (rdev->use_cached_err) {
5010 spin_lock(&rdev->err_lock);
5011 ret = rdev->cached_err;
5012 spin_unlock(&rdev->err_lock);
5013 }
5014 return ret;
5015 }
5016
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)5017 static int _regulator_get_error_flags(struct regulator_dev *rdev,
5018 unsigned int *flags)
5019 {
5020 int cached_flags, ret = 0;
5021
5022 regulator_lock(rdev);
5023
5024 cached_flags = rdev_get_cached_err_flags(rdev);
5025
5026 if (rdev->desc->ops->get_error_flags)
5027 ret = rdev->desc->ops->get_error_flags(rdev, flags);
5028 else if (!rdev->use_cached_err)
5029 ret = -EINVAL;
5030
5031 *flags |= cached_flags;
5032
5033 regulator_unlock(rdev);
5034
5035 return ret;
5036 }
5037
5038 /**
5039 * regulator_get_error_flags - get regulator error information
5040 * @regulator: regulator source
5041 * @flags: pointer to store error flags
5042 *
5043 * Get the current regulator error information.
5044 *
5045 * Return: 0 on success or a negative error number on failure.
5046 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)5047 int regulator_get_error_flags(struct regulator *regulator,
5048 unsigned int *flags)
5049 {
5050 return _regulator_get_error_flags(regulator->rdev, flags);
5051 }
5052 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
5053
5054 /**
5055 * regulator_set_load - set regulator load
5056 * @regulator: regulator source
5057 * @uA_load: load current
5058 *
5059 * Notifies the regulator core of a new device load. This is then used by
5060 * DRMS (if enabled by constraints) to set the most efficient regulator
5061 * operating mode for the new regulator loading.
5062 *
5063 * Consumer devices notify their supply regulator of the maximum power
5064 * they will require (can be taken from device datasheet in the power
5065 * consumption tables) when they change operational status and hence power
5066 * state. Examples of operational state changes that can affect power
5067 * consumption are :-
5068 *
5069 * o Device is opened / closed.
5070 * o Device I/O is about to begin or has just finished.
5071 * o Device is idling in between work.
5072 *
5073 * This information is also exported via sysfs to userspace.
5074 *
5075 * DRMS will sum the total requested load on the regulator and change
5076 * to the most efficient operating mode if platform constraints allow.
5077 *
5078 * NOTE: when a regulator consumer requests to have a regulator
5079 * disabled then any load that consumer requested no longer counts
5080 * toward the total requested load. If the regulator is re-enabled
5081 * then the previously requested load will start counting again.
5082 *
5083 * If a regulator is an always-on regulator then an individual consumer's
5084 * load will still be removed if that consumer is fully disabled.
5085 *
5086 * Return: 0 on success or a negative error number on failure.
5087 */
regulator_set_load(struct regulator * regulator,int uA_load)5088 int regulator_set_load(struct regulator *regulator, int uA_load)
5089 {
5090 struct regulator_dev *rdev = regulator->rdev;
5091 int old_uA_load;
5092 int ret = 0;
5093
5094 regulator_lock(rdev);
5095 old_uA_load = regulator->uA_load;
5096 regulator->uA_load = uA_load;
5097 if (regulator->enable_count && old_uA_load != uA_load) {
5098 ret = drms_uA_update(rdev);
5099 if (ret < 0)
5100 regulator->uA_load = old_uA_load;
5101 }
5102 regulator_unlock(rdev);
5103
5104 return ret;
5105 }
5106 EXPORT_SYMBOL_GPL(regulator_set_load);
5107
5108 /**
5109 * regulator_allow_bypass - allow the regulator to go into bypass mode
5110 *
5111 * @regulator: Regulator to configure
5112 * @enable: enable or disable bypass mode
5113 *
5114 * Allow the regulator to go into bypass mode if all other consumers
5115 * for the regulator also enable bypass mode and the machine
5116 * constraints allow this. Bypass mode means that the regulator is
5117 * simply passing the input directly to the output with no regulation.
5118 *
5119 * Return: 0 on success or if changing bypass is not possible, or
5120 * a negative error number on failure.
5121 */
regulator_allow_bypass(struct regulator * regulator,bool enable)5122 int regulator_allow_bypass(struct regulator *regulator, bool enable)
5123 {
5124 struct regulator_dev *rdev = regulator->rdev;
5125 const char *name = rdev_get_name(rdev);
5126 int ret = 0;
5127
5128 if (!rdev->desc->ops->set_bypass)
5129 return 0;
5130
5131 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
5132 return 0;
5133
5134 regulator_lock(rdev);
5135
5136 if (enable && !regulator->bypass) {
5137 rdev->bypass_count++;
5138
5139 if (rdev->bypass_count == rdev->open_count) {
5140 trace_regulator_bypass_enable(name);
5141
5142 ret = rdev->desc->ops->set_bypass(rdev, enable);
5143 if (ret != 0)
5144 rdev->bypass_count--;
5145 else
5146 trace_regulator_bypass_enable_complete(name);
5147 }
5148
5149 } else if (!enable && regulator->bypass) {
5150 rdev->bypass_count--;
5151
5152 if (rdev->bypass_count != rdev->open_count) {
5153 trace_regulator_bypass_disable(name);
5154
5155 ret = rdev->desc->ops->set_bypass(rdev, enable);
5156 if (ret != 0)
5157 rdev->bypass_count++;
5158 else
5159 trace_regulator_bypass_disable_complete(name);
5160 }
5161 }
5162
5163 if (ret == 0)
5164 regulator->bypass = enable;
5165
5166 regulator_unlock(rdev);
5167
5168 return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
5171
5172 /**
5173 * regulator_register_notifier - register regulator event notifier
5174 * @regulator: regulator source
5175 * @nb: notifier block
5176 *
5177 * Register notifier block to receive regulator events.
5178 *
5179 * Return: 0 on success or a negative error number on failure.
5180 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)5181 int regulator_register_notifier(struct regulator *regulator,
5182 struct notifier_block *nb)
5183 {
5184 return blocking_notifier_chain_register(®ulator->rdev->notifier,
5185 nb);
5186 }
5187 EXPORT_SYMBOL_GPL(regulator_register_notifier);
5188
5189 /**
5190 * regulator_unregister_notifier - unregister regulator event notifier
5191 * @regulator: regulator source
5192 * @nb: notifier block
5193 *
5194 * Unregister regulator event notifier block.
5195 *
5196 * Return: 0 on success or a negative error number on failure.
5197 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)5198 int regulator_unregister_notifier(struct regulator *regulator,
5199 struct notifier_block *nb)
5200 {
5201 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
5202 nb);
5203 }
5204 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
5205
5206 /* notify regulator consumers and downstream regulator consumers.
5207 * Note mutex must be held by caller.
5208 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5209 static int _notifier_call_chain(struct regulator_dev *rdev,
5210 unsigned long event, void *data)
5211 {
5212 /* call rdev chain first */
5213 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
5214
5215 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
5216 struct device *parent = rdev->dev.parent;
5217 const char *rname = rdev_get_name(rdev);
5218 char name[32];
5219
5220 /* Avoid duplicate debugfs directory names */
5221 if (parent && rname == rdev->desc->name) {
5222 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5223 rname);
5224 rname = name;
5225 }
5226 reg_generate_netlink_event(rname, event);
5227 }
5228
5229 return ret;
5230 }
5231
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)5232 int _regulator_bulk_get(struct device *dev, int num_consumers,
5233 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
5234 {
5235 int i;
5236 int ret;
5237
5238 for (i = 0; i < num_consumers; i++)
5239 consumers[i].consumer = NULL;
5240
5241 for (i = 0; i < num_consumers; i++) {
5242 consumers[i].consumer = _regulator_get(dev,
5243 consumers[i].supply, get_type);
5244 if (IS_ERR(consumers[i].consumer)) {
5245 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
5246 "Failed to get supply '%s'\n",
5247 consumers[i].supply);
5248 consumers[i].consumer = NULL;
5249 goto err;
5250 }
5251
5252 if (consumers[i].init_load_uA > 0) {
5253 ret = regulator_set_load(consumers[i].consumer,
5254 consumers[i].init_load_uA);
5255 if (ret) {
5256 i++;
5257 goto err;
5258 }
5259 }
5260 }
5261
5262 return 0;
5263
5264 err:
5265 while (--i >= 0)
5266 regulator_put(consumers[i].consumer);
5267
5268 return ret;
5269 }
5270
5271 /**
5272 * regulator_bulk_get - get multiple regulator consumers
5273 *
5274 * @dev: Device to supply
5275 * @num_consumers: Number of consumers to register
5276 * @consumers: Configuration of consumers; clients are stored here.
5277 *
5278 * This helper function allows drivers to get several regulator
5279 * consumers in one operation. If any of the regulators cannot be
5280 * acquired then any regulators that were allocated will be freed
5281 * before returning to the caller.
5282 *
5283 * Return: 0 on success or a negative error number on failure.
5284 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)5285 int regulator_bulk_get(struct device *dev, int num_consumers,
5286 struct regulator_bulk_data *consumers)
5287 {
5288 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
5289 }
5290 EXPORT_SYMBOL_GPL(regulator_bulk_get);
5291
regulator_bulk_enable_async(void * data,async_cookie_t cookie)5292 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
5293 {
5294 struct regulator_bulk_data *bulk = data;
5295
5296 bulk->ret = regulator_enable(bulk->consumer);
5297 }
5298
5299 /**
5300 * regulator_bulk_enable - enable multiple regulator consumers
5301 *
5302 * @num_consumers: Number of consumers
5303 * @consumers: Consumer data; clients are stored here.
5304 *
5305 * This convenience API allows consumers to enable multiple regulator
5306 * clients in a single API call. If any consumers cannot be enabled
5307 * then any others that were enabled will be disabled again prior to
5308 * return.
5309 *
5310 * Return: 0 on success or a negative error number on failure.
5311 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5312 int regulator_bulk_enable(int num_consumers,
5313 struct regulator_bulk_data *consumers)
5314 {
5315 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5316 int i;
5317 int ret = 0;
5318
5319 for (i = 0; i < num_consumers; i++) {
5320 async_schedule_domain(regulator_bulk_enable_async,
5321 &consumers[i], &async_domain);
5322 }
5323
5324 async_synchronize_full_domain(&async_domain);
5325
5326 /* If any consumer failed we need to unwind any that succeeded */
5327 for (i = 0; i < num_consumers; i++) {
5328 if (consumers[i].ret != 0) {
5329 ret = consumers[i].ret;
5330 goto err;
5331 }
5332 }
5333
5334 return 0;
5335
5336 err:
5337 for (i = 0; i < num_consumers; i++) {
5338 if (consumers[i].ret < 0)
5339 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5340 ERR_PTR(consumers[i].ret));
5341 else
5342 regulator_disable(consumers[i].consumer);
5343 }
5344
5345 return ret;
5346 }
5347 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5348
5349 /**
5350 * regulator_bulk_disable - disable multiple regulator consumers
5351 *
5352 * @num_consumers: Number of consumers
5353 * @consumers: Consumer data; clients are stored here.
5354 *
5355 * This convenience API allows consumers to disable multiple regulator
5356 * clients in a single API call. If any consumers cannot be disabled
5357 * then any others that were disabled will be enabled again prior to
5358 * return.
5359 *
5360 * Return: 0 on success or a negative error number on failure.
5361 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5362 int regulator_bulk_disable(int num_consumers,
5363 struct regulator_bulk_data *consumers)
5364 {
5365 int i;
5366 int ret, r;
5367
5368 for (i = num_consumers - 1; i >= 0; --i) {
5369 ret = regulator_disable(consumers[i].consumer);
5370 if (ret != 0)
5371 goto err;
5372 }
5373
5374 return 0;
5375
5376 err:
5377 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5378 for (++i; i < num_consumers; ++i) {
5379 r = regulator_enable(consumers[i].consumer);
5380 if (r != 0)
5381 pr_err("Failed to re-enable %s: %pe\n",
5382 consumers[i].supply, ERR_PTR(r));
5383 }
5384
5385 return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5388
5389 /**
5390 * regulator_bulk_force_disable - force disable multiple regulator consumers
5391 *
5392 * @num_consumers: Number of consumers
5393 * @consumers: Consumer data; clients are stored here.
5394 *
5395 * This convenience API allows consumers to forcibly disable multiple regulator
5396 * clients in a single API call.
5397 * NOTE: This should be used for situations when device damage will
5398 * likely occur if the regulators are not disabled (e.g. over temp).
5399 * Although regulator_force_disable function call for some consumers can
5400 * return error numbers, the function is called for all consumers.
5401 *
5402 * Return: 0 on success or a negative error number on failure.
5403 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5404 int regulator_bulk_force_disable(int num_consumers,
5405 struct regulator_bulk_data *consumers)
5406 {
5407 int i;
5408 int ret = 0;
5409
5410 for (i = 0; i < num_consumers; i++) {
5411 consumers[i].ret =
5412 regulator_force_disable(consumers[i].consumer);
5413
5414 /* Store first error for reporting */
5415 if (consumers[i].ret && !ret)
5416 ret = consumers[i].ret;
5417 }
5418
5419 return ret;
5420 }
5421 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5422
5423 /**
5424 * regulator_bulk_free - free multiple regulator consumers
5425 *
5426 * @num_consumers: Number of consumers
5427 * @consumers: Consumer data; clients are stored here.
5428 *
5429 * This convenience API allows consumers to free multiple regulator
5430 * clients in a single API call.
5431 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5432 void regulator_bulk_free(int num_consumers,
5433 struct regulator_bulk_data *consumers)
5434 {
5435 int i;
5436
5437 for (i = 0; i < num_consumers; i++) {
5438 regulator_put(consumers[i].consumer);
5439 consumers[i].consumer = NULL;
5440 }
5441 }
5442 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5443
5444 /**
5445 * regulator_handle_critical - Handle events for system-critical regulators.
5446 * @rdev: The regulator device.
5447 * @event: The event being handled.
5448 *
5449 * This function handles critical events such as under-voltage, over-current,
5450 * and unknown errors for regulators deemed system-critical. On detecting such
5451 * events, it triggers a hardware protection shutdown with a defined timeout.
5452 */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5453 static void regulator_handle_critical(struct regulator_dev *rdev,
5454 unsigned long event)
5455 {
5456 const char *reason = NULL;
5457
5458 if (!rdev->constraints->system_critical)
5459 return;
5460
5461 switch (event) {
5462 case REGULATOR_EVENT_UNDER_VOLTAGE:
5463 reason = "System critical regulator: voltage drop detected";
5464 break;
5465 case REGULATOR_EVENT_OVER_CURRENT:
5466 reason = "System critical regulator: over-current detected";
5467 break;
5468 case REGULATOR_EVENT_FAIL:
5469 reason = "System critical regulator: unknown error";
5470 }
5471
5472 if (!reason)
5473 return;
5474
5475 hw_protection_trigger(reason,
5476 rdev->constraints->uv_less_critical_window_ms);
5477 }
5478
5479 /**
5480 * regulator_notifier_call_chain - call regulator event notifier
5481 * @rdev: regulator source
5482 * @event: notifier block
5483 * @data: callback-specific data.
5484 *
5485 * Called by regulator drivers to notify clients a regulator event has
5486 * occurred.
5487 *
5488 * Return: %NOTIFY_DONE.
5489 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5490 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5491 unsigned long event, void *data)
5492 {
5493 regulator_handle_critical(rdev, event);
5494
5495 _notifier_call_chain(rdev, event, data);
5496 return NOTIFY_DONE;
5497
5498 }
5499 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5500
5501 /**
5502 * regulator_mode_to_status - convert a regulator mode into a status
5503 *
5504 * @mode: Mode to convert
5505 *
5506 * Convert a regulator mode into a status.
5507 *
5508 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5509 */
regulator_mode_to_status(unsigned int mode)5510 int regulator_mode_to_status(unsigned int mode)
5511 {
5512 switch (mode) {
5513 case REGULATOR_MODE_FAST:
5514 return REGULATOR_STATUS_FAST;
5515 case REGULATOR_MODE_NORMAL:
5516 return REGULATOR_STATUS_NORMAL;
5517 case REGULATOR_MODE_IDLE:
5518 return REGULATOR_STATUS_IDLE;
5519 case REGULATOR_MODE_STANDBY:
5520 return REGULATOR_STATUS_STANDBY;
5521 default:
5522 return REGULATOR_STATUS_UNDEFINED;
5523 }
5524 }
5525 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5526
5527 static struct attribute *regulator_dev_attrs[] = {
5528 &dev_attr_name.attr,
5529 &dev_attr_num_users.attr,
5530 &dev_attr_type.attr,
5531 &dev_attr_microvolts.attr,
5532 &dev_attr_microamps.attr,
5533 &dev_attr_opmode.attr,
5534 &dev_attr_state.attr,
5535 &dev_attr_status.attr,
5536 &dev_attr_bypass.attr,
5537 &dev_attr_requested_microamps.attr,
5538 &dev_attr_min_microvolts.attr,
5539 &dev_attr_max_microvolts.attr,
5540 &dev_attr_min_microamps.attr,
5541 &dev_attr_max_microamps.attr,
5542 &dev_attr_under_voltage.attr,
5543 &dev_attr_over_current.attr,
5544 &dev_attr_regulation_out.attr,
5545 &dev_attr_fail.attr,
5546 &dev_attr_over_temp.attr,
5547 &dev_attr_under_voltage_warn.attr,
5548 &dev_attr_over_current_warn.attr,
5549 &dev_attr_over_voltage_warn.attr,
5550 &dev_attr_over_temp_warn.attr,
5551 &dev_attr_suspend_standby_state.attr,
5552 &dev_attr_suspend_mem_state.attr,
5553 &dev_attr_suspend_disk_state.attr,
5554 &dev_attr_suspend_standby_microvolts.attr,
5555 &dev_attr_suspend_mem_microvolts.attr,
5556 &dev_attr_suspend_disk_microvolts.attr,
5557 &dev_attr_suspend_standby_mode.attr,
5558 &dev_attr_suspend_mem_mode.attr,
5559 &dev_attr_suspend_disk_mode.attr,
5560 &dev_attr_power_budget_milliwatt.attr,
5561 &dev_attr_power_requested_milliwatt.attr,
5562 NULL
5563 };
5564
5565 /*
5566 * To avoid cluttering sysfs (and memory) with useless state, only
5567 * create attributes that can be meaningfully displayed.
5568 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5569 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5570 struct attribute *attr, int idx)
5571 {
5572 struct device *dev = kobj_to_dev(kobj);
5573 struct regulator_dev *rdev = dev_to_rdev(dev);
5574 const struct regulator_ops *ops = rdev->desc->ops;
5575 umode_t mode = attr->mode;
5576
5577 /* these three are always present */
5578 if (attr == &dev_attr_name.attr ||
5579 attr == &dev_attr_num_users.attr ||
5580 attr == &dev_attr_type.attr)
5581 return mode;
5582
5583 /* some attributes need specific methods to be displayed */
5584 if (attr == &dev_attr_microvolts.attr) {
5585 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5586 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5587 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5588 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5589 return mode;
5590 return 0;
5591 }
5592
5593 if (attr == &dev_attr_microamps.attr)
5594 return ops->get_current_limit ? mode : 0;
5595
5596 if (attr == &dev_attr_opmode.attr)
5597 return ops->get_mode ? mode : 0;
5598
5599 if (attr == &dev_attr_state.attr)
5600 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5601
5602 if (attr == &dev_attr_status.attr)
5603 return ops->get_status ? mode : 0;
5604
5605 if (attr == &dev_attr_bypass.attr)
5606 return ops->get_bypass ? mode : 0;
5607
5608 if (attr == &dev_attr_under_voltage.attr ||
5609 attr == &dev_attr_over_current.attr ||
5610 attr == &dev_attr_regulation_out.attr ||
5611 attr == &dev_attr_fail.attr ||
5612 attr == &dev_attr_over_temp.attr ||
5613 attr == &dev_attr_under_voltage_warn.attr ||
5614 attr == &dev_attr_over_current_warn.attr ||
5615 attr == &dev_attr_over_voltage_warn.attr ||
5616 attr == &dev_attr_over_temp_warn.attr)
5617 return ops->get_error_flags ? mode : 0;
5618
5619 /* constraints need specific supporting methods */
5620 if (attr == &dev_attr_min_microvolts.attr ||
5621 attr == &dev_attr_max_microvolts.attr)
5622 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5623
5624 if (attr == &dev_attr_min_microamps.attr ||
5625 attr == &dev_attr_max_microamps.attr)
5626 return ops->set_current_limit ? mode : 0;
5627
5628 if (attr == &dev_attr_suspend_standby_state.attr ||
5629 attr == &dev_attr_suspend_mem_state.attr ||
5630 attr == &dev_attr_suspend_disk_state.attr)
5631 return mode;
5632
5633 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5634 attr == &dev_attr_suspend_mem_microvolts.attr ||
5635 attr == &dev_attr_suspend_disk_microvolts.attr)
5636 return ops->set_suspend_voltage ? mode : 0;
5637
5638 if (attr == &dev_attr_suspend_standby_mode.attr ||
5639 attr == &dev_attr_suspend_mem_mode.attr ||
5640 attr == &dev_attr_suspend_disk_mode.attr)
5641 return ops->set_suspend_mode ? mode : 0;
5642
5643 if (attr == &dev_attr_power_budget_milliwatt.attr ||
5644 attr == &dev_attr_power_requested_milliwatt.attr)
5645 return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0;
5646
5647 return mode;
5648 }
5649
5650 static const struct attribute_group regulator_dev_group = {
5651 .attrs = regulator_dev_attrs,
5652 .is_visible = regulator_attr_is_visible,
5653 };
5654
5655 static const struct attribute_group *regulator_dev_groups[] = {
5656 ®ulator_dev_group,
5657 NULL
5658 };
5659
regulator_dev_release(struct device * dev)5660 static void regulator_dev_release(struct device *dev)
5661 {
5662 struct regulator_dev *rdev = dev_get_drvdata(dev);
5663
5664 debugfs_remove_recursive(rdev->debugfs);
5665 kfree(rdev->constraints);
5666 of_node_put(rdev->dev.of_node);
5667 kfree(rdev);
5668 }
5669
rdev_init_debugfs(struct regulator_dev * rdev)5670 static void rdev_init_debugfs(struct regulator_dev *rdev)
5671 {
5672 struct device *parent = rdev->dev.parent;
5673 const char *rname = rdev_get_name(rdev);
5674 char name[NAME_MAX];
5675
5676 /* Avoid duplicate debugfs directory names */
5677 if (parent && rname == rdev->desc->name) {
5678 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5679 rname);
5680 rname = name;
5681 }
5682
5683 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5684 if (IS_ERR(rdev->debugfs))
5685 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5686
5687 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5688 &rdev->use_count);
5689 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5690 &rdev->open_count);
5691 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5692 &rdev->bypass_count);
5693 }
5694
regulator_register_resolve_supply(struct device * dev,void * data)5695 static int regulator_register_resolve_supply(struct device *dev, void *data)
5696 {
5697 struct regulator_dev *rdev = dev_to_rdev(dev);
5698
5699 if (regulator_resolve_supply(rdev))
5700 rdev_dbg(rdev, "unable to resolve supply\n");
5701
5702 return 0;
5703 }
5704
regulator_coupler_register(struct regulator_coupler * coupler)5705 int regulator_coupler_register(struct regulator_coupler *coupler)
5706 {
5707 mutex_lock(®ulator_list_mutex);
5708 list_add_tail(&coupler->list, ®ulator_coupler_list);
5709 mutex_unlock(®ulator_list_mutex);
5710
5711 return 0;
5712 }
5713
5714 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5715 regulator_find_coupler(struct regulator_dev *rdev)
5716 {
5717 struct regulator_coupler *coupler;
5718 int err;
5719
5720 /*
5721 * Note that regulators are appended to the list and the generic
5722 * coupler is registered first, hence it will be attached at last
5723 * if nobody cared.
5724 */
5725 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5726 err = coupler->attach_regulator(coupler, rdev);
5727 if (!err) {
5728 if (!coupler->balance_voltage &&
5729 rdev->coupling_desc.n_coupled > 2)
5730 goto err_unsupported;
5731
5732 return coupler;
5733 }
5734
5735 if (err < 0)
5736 return ERR_PTR(err);
5737
5738 if (err == 1)
5739 continue;
5740
5741 break;
5742 }
5743
5744 return ERR_PTR(-EINVAL);
5745
5746 err_unsupported:
5747 if (coupler->detach_regulator)
5748 coupler->detach_regulator(coupler, rdev);
5749
5750 rdev_err(rdev,
5751 "Voltage balancing for multiple regulator couples is unimplemented\n");
5752
5753 return ERR_PTR(-EPERM);
5754 }
5755
regulator_resolve_coupling(struct regulator_dev * rdev)5756 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5757 {
5758 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5759 struct coupling_desc *c_desc = &rdev->coupling_desc;
5760 int n_coupled = c_desc->n_coupled;
5761 struct regulator_dev *c_rdev;
5762 int i;
5763
5764 for (i = 1; i < n_coupled; i++) {
5765 /* already resolved */
5766 if (c_desc->coupled_rdevs[i])
5767 continue;
5768
5769 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5770
5771 if (!c_rdev)
5772 continue;
5773
5774 if (c_rdev->coupling_desc.coupler != coupler) {
5775 rdev_err(rdev, "coupler mismatch with %s\n",
5776 rdev_get_name(c_rdev));
5777 return;
5778 }
5779
5780 c_desc->coupled_rdevs[i] = c_rdev;
5781 c_desc->n_resolved++;
5782
5783 regulator_resolve_coupling(c_rdev);
5784 }
5785 }
5786
regulator_remove_coupling(struct regulator_dev * rdev)5787 static void regulator_remove_coupling(struct regulator_dev *rdev)
5788 {
5789 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5790 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5791 struct regulator_dev *__c_rdev, *c_rdev;
5792 unsigned int __n_coupled, n_coupled;
5793 int i, k;
5794 int err;
5795
5796 n_coupled = c_desc->n_coupled;
5797
5798 for (i = 1; i < n_coupled; i++) {
5799 c_rdev = c_desc->coupled_rdevs[i];
5800
5801 if (!c_rdev)
5802 continue;
5803
5804 regulator_lock(c_rdev);
5805
5806 __c_desc = &c_rdev->coupling_desc;
5807 __n_coupled = __c_desc->n_coupled;
5808
5809 for (k = 1; k < __n_coupled; k++) {
5810 __c_rdev = __c_desc->coupled_rdevs[k];
5811
5812 if (__c_rdev == rdev) {
5813 __c_desc->coupled_rdevs[k] = NULL;
5814 __c_desc->n_resolved--;
5815 break;
5816 }
5817 }
5818
5819 regulator_unlock(c_rdev);
5820
5821 c_desc->coupled_rdevs[i] = NULL;
5822 c_desc->n_resolved--;
5823 }
5824
5825 if (coupler && coupler->detach_regulator) {
5826 err = coupler->detach_regulator(coupler, rdev);
5827 if (err)
5828 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5829 ERR_PTR(err));
5830 }
5831
5832 rdev->coupling_desc.n_coupled = 0;
5833 kfree(rdev->coupling_desc.coupled_rdevs);
5834 rdev->coupling_desc.coupled_rdevs = NULL;
5835 }
5836
regulator_init_coupling(struct regulator_dev * rdev)5837 static int regulator_init_coupling(struct regulator_dev *rdev)
5838 {
5839 struct regulator_dev **coupled;
5840 int err, n_phandles;
5841
5842 if (!IS_ENABLED(CONFIG_OF))
5843 n_phandles = 0;
5844 else
5845 n_phandles = of_get_n_coupled(rdev);
5846
5847 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5848 if (!coupled)
5849 return -ENOMEM;
5850
5851 rdev->coupling_desc.coupled_rdevs = coupled;
5852
5853 /*
5854 * Every regulator should always have coupling descriptor filled with
5855 * at least pointer to itself.
5856 */
5857 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5858 rdev->coupling_desc.n_coupled = n_phandles + 1;
5859 rdev->coupling_desc.n_resolved++;
5860
5861 /* regulator isn't coupled */
5862 if (n_phandles == 0)
5863 return 0;
5864
5865 if (!of_check_coupling_data(rdev))
5866 return -EPERM;
5867
5868 mutex_lock(®ulator_list_mutex);
5869 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5870 mutex_unlock(®ulator_list_mutex);
5871
5872 if (IS_ERR(rdev->coupling_desc.coupler)) {
5873 err = PTR_ERR(rdev->coupling_desc.coupler);
5874 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5875 return err;
5876 }
5877
5878 return 0;
5879 }
5880
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5881 static int generic_coupler_attach(struct regulator_coupler *coupler,
5882 struct regulator_dev *rdev)
5883 {
5884 if (rdev->coupling_desc.n_coupled > 2) {
5885 rdev_err(rdev,
5886 "Voltage balancing for multiple regulator couples is unimplemented\n");
5887 return -EPERM;
5888 }
5889
5890 if (!rdev->constraints->always_on) {
5891 rdev_err(rdev,
5892 "Coupling of a non always-on regulator is unimplemented\n");
5893 return -ENOTSUPP;
5894 }
5895
5896 return 0;
5897 }
5898
5899 static struct regulator_coupler generic_regulator_coupler = {
5900 .attach_regulator = generic_coupler_attach,
5901 };
5902
5903 /**
5904 * regulator_register - register regulator
5905 * @dev: the device that drive the regulator
5906 * @regulator_desc: regulator to register
5907 * @cfg: runtime configuration for regulator
5908 *
5909 * Called by regulator drivers to register a regulator.
5910 *
5911 * Return: Pointer to a valid &struct regulator_dev on success or
5912 * an ERR_PTR() encoded negative error number on failure.
5913 */
5914 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5915 regulator_register(struct device *dev,
5916 const struct regulator_desc *regulator_desc,
5917 const struct regulator_config *cfg)
5918 {
5919 const struct regulator_init_data *init_data;
5920 struct regulator_config *config = NULL;
5921 static atomic_t regulator_no = ATOMIC_INIT(-1);
5922 struct regulator_dev *rdev;
5923 bool dangling_cfg_gpiod = false;
5924 bool dangling_of_gpiod = false;
5925 int ret, i;
5926 bool resolved_early = false;
5927
5928 if (cfg == NULL)
5929 return ERR_PTR(-EINVAL);
5930 if (cfg->ena_gpiod)
5931 dangling_cfg_gpiod = true;
5932 if (regulator_desc == NULL) {
5933 ret = -EINVAL;
5934 goto rinse;
5935 }
5936
5937 WARN_ON(!dev || !cfg->dev);
5938
5939 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5940 ret = -EINVAL;
5941 goto rinse;
5942 }
5943
5944 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5945 regulator_desc->type != REGULATOR_CURRENT) {
5946 ret = -EINVAL;
5947 goto rinse;
5948 }
5949
5950 /* Only one of each should be implemented */
5951 WARN_ON(regulator_desc->ops->get_voltage &&
5952 regulator_desc->ops->get_voltage_sel);
5953 WARN_ON(regulator_desc->ops->set_voltage &&
5954 regulator_desc->ops->set_voltage_sel);
5955
5956 /* If we're using selectors we must implement list_voltage. */
5957 if (regulator_desc->ops->get_voltage_sel &&
5958 !regulator_desc->ops->list_voltage) {
5959 ret = -EINVAL;
5960 goto rinse;
5961 }
5962 if (regulator_desc->ops->set_voltage_sel &&
5963 !regulator_desc->ops->list_voltage) {
5964 ret = -EINVAL;
5965 goto rinse;
5966 }
5967
5968 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5969 if (rdev == NULL) {
5970 ret = -ENOMEM;
5971 goto rinse;
5972 }
5973 device_initialize(&rdev->dev);
5974 dev_set_drvdata(&rdev->dev, rdev);
5975 rdev->dev.class = ®ulator_class;
5976 spin_lock_init(&rdev->err_lock);
5977
5978 /*
5979 * Duplicate the config so the driver could override it after
5980 * parsing init data.
5981 */
5982 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5983 if (config == NULL) {
5984 ret = -ENOMEM;
5985 goto clean;
5986 }
5987
5988 /*
5989 * DT may override the config->init_data provided if the platform
5990 * needs to do so. If so, config->init_data is completely ignored.
5991 */
5992 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5993 &rdev->dev.of_node);
5994
5995 /*
5996 * Sometimes not all resources are probed already so we need to take
5997 * that into account. This happens most the time if the ena_gpiod comes
5998 * from a gpio extender or something else.
5999 */
6000 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
6001 ret = -EPROBE_DEFER;
6002 goto clean;
6003 }
6004
6005 /*
6006 * We need to keep track of any GPIO descriptor coming from the
6007 * device tree until we have handled it over to the core. If the
6008 * config that was passed in to this function DOES NOT contain
6009 * a descriptor, and the config after this call DOES contain
6010 * a descriptor, we definitely got one from parsing the device
6011 * tree.
6012 */
6013 if (!cfg->ena_gpiod && config->ena_gpiod)
6014 dangling_of_gpiod = true;
6015 if (!init_data) {
6016 init_data = config->init_data;
6017 rdev->dev.of_node = of_node_get(config->of_node);
6018 }
6019
6020 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
6021 rdev->reg_data = config->driver_data;
6022 rdev->owner = regulator_desc->owner;
6023 rdev->desc = regulator_desc;
6024 if (config->regmap)
6025 rdev->regmap = config->regmap;
6026 else if (dev_get_regmap(dev, NULL))
6027 rdev->regmap = dev_get_regmap(dev, NULL);
6028 else if (dev->parent)
6029 rdev->regmap = dev_get_regmap(dev->parent, NULL);
6030 INIT_LIST_HEAD(&rdev->consumer_list);
6031 INIT_LIST_HEAD(&rdev->list);
6032 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
6033 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
6034
6035 if (init_data && init_data->supply_regulator)
6036 rdev->supply_name = init_data->supply_regulator;
6037 else if (regulator_desc->supply_name)
6038 rdev->supply_name = regulator_desc->supply_name;
6039
6040 /* register with sysfs */
6041 rdev->dev.parent = config->dev;
6042 dev_set_name(&rdev->dev, "regulator.%lu",
6043 (unsigned long) atomic_inc_return(®ulator_no));
6044
6045 /* set regulator constraints */
6046 if (init_data)
6047 rdev->constraints = kmemdup(&init_data->constraints,
6048 sizeof(*rdev->constraints),
6049 GFP_KERNEL);
6050 else
6051 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
6052 GFP_KERNEL);
6053 if (!rdev->constraints) {
6054 ret = -ENOMEM;
6055 goto wash;
6056 }
6057
6058 if (regulator_desc->init_cb) {
6059 ret = regulator_desc->init_cb(rdev, config);
6060 if (ret < 0)
6061 goto wash;
6062 }
6063
6064 if ((rdev->supply_name && !rdev->supply) &&
6065 (rdev->constraints->always_on ||
6066 rdev->constraints->boot_on)) {
6067 ret = regulator_resolve_supply(rdev);
6068 if (ret)
6069 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
6070 ERR_PTR(ret));
6071
6072 resolved_early = true;
6073 }
6074
6075 if (config->ena_gpiod) {
6076 ret = regulator_ena_gpio_request(rdev, config);
6077 if (ret != 0) {
6078 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
6079 ERR_PTR(ret));
6080 goto wash;
6081 }
6082 /* The regulator core took over the GPIO descriptor */
6083 dangling_cfg_gpiod = false;
6084 dangling_of_gpiod = false;
6085 }
6086
6087 ret = set_machine_constraints(rdev);
6088 if (ret == -EPROBE_DEFER && !resolved_early) {
6089 /* Regulator might be in bypass mode and so needs its supply
6090 * to set the constraints
6091 */
6092 /* FIXME: this currently triggers a chicken-and-egg problem
6093 * when creating -SUPPLY symlink in sysfs to a regulator
6094 * that is just being created
6095 */
6096 rdev_dbg(rdev, "will resolve supply early: %s\n",
6097 rdev->supply_name);
6098 ret = regulator_resolve_supply(rdev);
6099 if (!ret)
6100 ret = set_machine_constraints(rdev);
6101 else
6102 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
6103 ERR_PTR(ret));
6104 }
6105 if (ret < 0)
6106 goto wash;
6107
6108 ret = regulator_init_coupling(rdev);
6109 if (ret < 0)
6110 goto wash;
6111
6112 /* add consumers devices */
6113 if (init_data) {
6114 for (i = 0; i < init_data->num_consumer_supplies; i++) {
6115 ret = set_consumer_device_supply(rdev,
6116 init_data->consumer_supplies[i].dev_name,
6117 init_data->consumer_supplies[i].supply);
6118 if (ret < 0) {
6119 dev_err(dev, "Failed to set supply %s\n",
6120 init_data->consumer_supplies[i].supply);
6121 goto unset_supplies;
6122 }
6123 }
6124 }
6125
6126 if (!rdev->desc->ops->get_voltage &&
6127 !rdev->desc->ops->list_voltage &&
6128 !rdev->desc->fixed_uV)
6129 rdev->is_switch = true;
6130
6131 ret = device_add(&rdev->dev);
6132 if (ret != 0)
6133 goto unset_supplies;
6134
6135 rdev_init_debugfs(rdev);
6136
6137 /* try to resolve regulators coupling since a new one was registered */
6138 mutex_lock(®ulator_list_mutex);
6139 regulator_resolve_coupling(rdev);
6140 mutex_unlock(®ulator_list_mutex);
6141
6142 /* try to resolve regulators supply since a new one was registered */
6143 class_for_each_device(®ulator_class, NULL, NULL,
6144 regulator_register_resolve_supply);
6145 kfree(config);
6146 return rdev;
6147
6148 unset_supplies:
6149 mutex_lock(®ulator_list_mutex);
6150 unset_regulator_supplies(rdev);
6151 regulator_remove_coupling(rdev);
6152 mutex_unlock(®ulator_list_mutex);
6153 wash:
6154 regulator_put(rdev->supply);
6155 kfree(rdev->coupling_desc.coupled_rdevs);
6156 mutex_lock(®ulator_list_mutex);
6157 regulator_ena_gpio_free(rdev);
6158 mutex_unlock(®ulator_list_mutex);
6159 clean:
6160 if (dangling_of_gpiod)
6161 gpiod_put(config->ena_gpiod);
6162 kfree(config);
6163 put_device(&rdev->dev);
6164 rinse:
6165 if (dangling_cfg_gpiod)
6166 gpiod_put(cfg->ena_gpiod);
6167 return ERR_PTR(ret);
6168 }
6169 EXPORT_SYMBOL_GPL(regulator_register);
6170
6171 /**
6172 * regulator_unregister - unregister regulator
6173 * @rdev: regulator to unregister
6174 *
6175 * Called by regulator drivers to unregister a regulator.
6176 */
regulator_unregister(struct regulator_dev * rdev)6177 void regulator_unregister(struct regulator_dev *rdev)
6178 {
6179 if (rdev == NULL)
6180 return;
6181
6182 if (rdev->supply) {
6183 regulator_unregister_notifier(rdev->supply,
6184 &rdev->supply_fwd_nb);
6185
6186 while (rdev->use_count--)
6187 regulator_disable(rdev->supply);
6188 regulator_put(rdev->supply);
6189 }
6190
6191 flush_work(&rdev->disable_work.work);
6192
6193 mutex_lock(®ulator_list_mutex);
6194
6195 WARN_ON(rdev->open_count);
6196 regulator_remove_coupling(rdev);
6197 unset_regulator_supplies(rdev);
6198 list_del(&rdev->list);
6199 regulator_ena_gpio_free(rdev);
6200 device_unregister(&rdev->dev);
6201
6202 mutex_unlock(®ulator_list_mutex);
6203 }
6204 EXPORT_SYMBOL_GPL(regulator_unregister);
6205
6206 #ifdef CONFIG_SUSPEND
6207 /**
6208 * regulator_suspend - prepare regulators for system wide suspend
6209 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
6210 *
6211 * Configure each regulator with it's suspend operating parameters for state.
6212 *
6213 * Return: 0 on success or a negative error number on failure.
6214 */
regulator_suspend(struct device * dev)6215 static int regulator_suspend(struct device *dev)
6216 {
6217 struct regulator_dev *rdev = dev_to_rdev(dev);
6218 suspend_state_t state = pm_suspend_target_state;
6219 int ret;
6220 const struct regulator_state *rstate;
6221
6222 rstate = regulator_get_suspend_state_check(rdev, state);
6223 if (!rstate)
6224 return 0;
6225
6226 regulator_lock(rdev);
6227 ret = __suspend_set_state(rdev, rstate);
6228 regulator_unlock(rdev);
6229
6230 return ret;
6231 }
6232
regulator_resume(struct device * dev)6233 static int regulator_resume(struct device *dev)
6234 {
6235 suspend_state_t state = pm_suspend_target_state;
6236 struct regulator_dev *rdev = dev_to_rdev(dev);
6237 struct regulator_state *rstate;
6238 int ret = 0;
6239
6240 rstate = regulator_get_suspend_state(rdev, state);
6241 if (rstate == NULL)
6242 return 0;
6243
6244 /* Avoid grabbing the lock if we don't need to */
6245 if (!rdev->desc->ops->resume)
6246 return 0;
6247
6248 regulator_lock(rdev);
6249
6250 if (rstate->enabled == ENABLE_IN_SUSPEND ||
6251 rstate->enabled == DISABLE_IN_SUSPEND)
6252 ret = rdev->desc->ops->resume(rdev);
6253
6254 regulator_unlock(rdev);
6255
6256 return ret;
6257 }
6258 #else /* !CONFIG_SUSPEND */
6259
6260 #define regulator_suspend NULL
6261 #define regulator_resume NULL
6262
6263 #endif /* !CONFIG_SUSPEND */
6264
6265 #ifdef CONFIG_PM
6266 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
6267 .suspend = regulator_suspend,
6268 .resume = regulator_resume,
6269 };
6270 #endif
6271
6272 const struct class regulator_class = {
6273 .name = "regulator",
6274 .dev_release = regulator_dev_release,
6275 .dev_groups = regulator_dev_groups,
6276 #ifdef CONFIG_PM
6277 .pm = ®ulator_pm_ops,
6278 #endif
6279 };
6280 /**
6281 * regulator_has_full_constraints - the system has fully specified constraints
6282 *
6283 * Calling this function will cause the regulator API to disable all
6284 * regulators which have a zero use count and don't have an always_on
6285 * constraint in a late_initcall.
6286 *
6287 * The intention is that this will become the default behaviour in a
6288 * future kernel release so users are encouraged to use this facility
6289 * now.
6290 */
regulator_has_full_constraints(void)6291 void regulator_has_full_constraints(void)
6292 {
6293 has_full_constraints = 1;
6294 }
6295 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
6296
6297 /**
6298 * rdev_get_drvdata - get rdev regulator driver data
6299 * @rdev: regulator
6300 *
6301 * Get rdev regulator driver private data. This call can be used in the
6302 * regulator driver context.
6303 *
6304 * Return: Pointer to regulator driver private data.
6305 */
rdev_get_drvdata(struct regulator_dev * rdev)6306 void *rdev_get_drvdata(struct regulator_dev *rdev)
6307 {
6308 return rdev->reg_data;
6309 }
6310 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6311
6312 /**
6313 * regulator_get_drvdata - get regulator driver data
6314 * @regulator: regulator
6315 *
6316 * Get regulator driver private data. This call can be used in the consumer
6317 * driver context when non API regulator specific functions need to be called.
6318 *
6319 * Return: Pointer to regulator driver private data.
6320 */
regulator_get_drvdata(struct regulator * regulator)6321 void *regulator_get_drvdata(struct regulator *regulator)
6322 {
6323 return regulator->rdev->reg_data;
6324 }
6325 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6326
6327 /**
6328 * regulator_set_drvdata - set regulator driver data
6329 * @regulator: regulator
6330 * @data: data
6331 */
regulator_set_drvdata(struct regulator * regulator,void * data)6332 void regulator_set_drvdata(struct regulator *regulator, void *data)
6333 {
6334 regulator->rdev->reg_data = data;
6335 }
6336 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6337
6338 /**
6339 * rdev_get_id - get regulator ID
6340 * @rdev: regulator
6341 *
6342 * Return: Regulator ID for @rdev.
6343 */
rdev_get_id(struct regulator_dev * rdev)6344 int rdev_get_id(struct regulator_dev *rdev)
6345 {
6346 return rdev->desc->id;
6347 }
6348 EXPORT_SYMBOL_GPL(rdev_get_id);
6349
rdev_get_dev(struct regulator_dev * rdev)6350 struct device *rdev_get_dev(struct regulator_dev *rdev)
6351 {
6352 return &rdev->dev;
6353 }
6354 EXPORT_SYMBOL_GPL(rdev_get_dev);
6355
rdev_get_regmap(struct regulator_dev * rdev)6356 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6357 {
6358 return rdev->regmap;
6359 }
6360 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6361
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6362 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6363 {
6364 return reg_init_data->driver_data;
6365 }
6366 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6367
6368 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6369 static int supply_map_show(struct seq_file *sf, void *data)
6370 {
6371 struct regulator_map *map;
6372
6373 list_for_each_entry(map, ®ulator_map_list, list) {
6374 seq_printf(sf, "%s -> %s.%s\n",
6375 rdev_get_name(map->regulator), map->dev_name,
6376 map->supply);
6377 }
6378
6379 return 0;
6380 }
6381 DEFINE_SHOW_ATTRIBUTE(supply_map);
6382
6383 struct summary_data {
6384 struct seq_file *s;
6385 struct regulator_dev *parent;
6386 int level;
6387 };
6388
6389 static void regulator_summary_show_subtree(struct seq_file *s,
6390 struct regulator_dev *rdev,
6391 int level);
6392
regulator_summary_show_children(struct device * dev,void * data)6393 static int regulator_summary_show_children(struct device *dev, void *data)
6394 {
6395 struct regulator_dev *rdev = dev_to_rdev(dev);
6396 struct summary_data *summary_data = data;
6397
6398 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6399 regulator_summary_show_subtree(summary_data->s, rdev,
6400 summary_data->level + 1);
6401
6402 return 0;
6403 }
6404
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6405 static void regulator_summary_show_subtree(struct seq_file *s,
6406 struct regulator_dev *rdev,
6407 int level)
6408 {
6409 struct regulation_constraints *c;
6410 struct regulator *consumer;
6411 struct summary_data summary_data;
6412 unsigned int opmode;
6413
6414 if (!rdev)
6415 return;
6416
6417 opmode = _regulator_get_mode_unlocked(rdev);
6418 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6419 level * 3 + 1, "",
6420 30 - level * 3, rdev_get_name(rdev),
6421 rdev->use_count, rdev->open_count, rdev->bypass_count,
6422 regulator_opmode_to_str(opmode));
6423
6424 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6425 seq_printf(s, "%5dmA ",
6426 _regulator_get_current_limit_unlocked(rdev) / 1000);
6427
6428 c = rdev->constraints;
6429 if (c) {
6430 switch (rdev->desc->type) {
6431 case REGULATOR_VOLTAGE:
6432 seq_printf(s, "%5dmV %5dmV ",
6433 c->min_uV / 1000, c->max_uV / 1000);
6434 break;
6435 case REGULATOR_CURRENT:
6436 seq_printf(s, "%5dmA %5dmA ",
6437 c->min_uA / 1000, c->max_uA / 1000);
6438 break;
6439 }
6440 }
6441
6442 seq_puts(s, "\n");
6443
6444 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6445 if (consumer->dev && consumer->dev->class == ®ulator_class)
6446 continue;
6447
6448 seq_printf(s, "%*s%-*s ",
6449 (level + 1) * 3 + 1, "",
6450 30 - (level + 1) * 3,
6451 consumer->supply_name ? consumer->supply_name :
6452 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6453
6454 switch (rdev->desc->type) {
6455 case REGULATOR_VOLTAGE:
6456 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6457 consumer->enable_count,
6458 consumer->uA_load / 1000,
6459 consumer->uA_load && !consumer->enable_count ?
6460 '*' : ' ',
6461 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6462 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6463 break;
6464 case REGULATOR_CURRENT:
6465 break;
6466 }
6467
6468 seq_puts(s, "\n");
6469 }
6470
6471 summary_data.s = s;
6472 summary_data.level = level;
6473 summary_data.parent = rdev;
6474
6475 class_for_each_device(®ulator_class, NULL, &summary_data,
6476 regulator_summary_show_children);
6477 }
6478
6479 struct summary_lock_data {
6480 struct ww_acquire_ctx *ww_ctx;
6481 struct regulator_dev **new_contended_rdev;
6482 struct regulator_dev **old_contended_rdev;
6483 };
6484
regulator_summary_lock_one(struct device * dev,void * data)6485 static int regulator_summary_lock_one(struct device *dev, void *data)
6486 {
6487 struct regulator_dev *rdev = dev_to_rdev(dev);
6488 struct summary_lock_data *lock_data = data;
6489 int ret = 0;
6490
6491 if (rdev != *lock_data->old_contended_rdev) {
6492 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6493
6494 if (ret == -EDEADLK)
6495 *lock_data->new_contended_rdev = rdev;
6496 else
6497 WARN_ON_ONCE(ret);
6498 } else {
6499 *lock_data->old_contended_rdev = NULL;
6500 }
6501
6502 return ret;
6503 }
6504
regulator_summary_unlock_one(struct device * dev,void * data)6505 static int regulator_summary_unlock_one(struct device *dev, void *data)
6506 {
6507 struct regulator_dev *rdev = dev_to_rdev(dev);
6508 struct summary_lock_data *lock_data = data;
6509
6510 if (lock_data) {
6511 if (rdev == *lock_data->new_contended_rdev)
6512 return -EDEADLK;
6513 }
6514
6515 regulator_unlock(rdev);
6516
6517 return 0;
6518 }
6519
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6520 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6521 struct regulator_dev **new_contended_rdev,
6522 struct regulator_dev **old_contended_rdev)
6523 {
6524 struct summary_lock_data lock_data;
6525 int ret;
6526
6527 lock_data.ww_ctx = ww_ctx;
6528 lock_data.new_contended_rdev = new_contended_rdev;
6529 lock_data.old_contended_rdev = old_contended_rdev;
6530
6531 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6532 regulator_summary_lock_one);
6533 if (ret)
6534 class_for_each_device(®ulator_class, NULL, &lock_data,
6535 regulator_summary_unlock_one);
6536
6537 return ret;
6538 }
6539
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6540 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6541 {
6542 struct regulator_dev *new_contended_rdev = NULL;
6543 struct regulator_dev *old_contended_rdev = NULL;
6544 int err;
6545
6546 mutex_lock(®ulator_list_mutex);
6547
6548 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6549
6550 do {
6551 if (new_contended_rdev) {
6552 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6553 old_contended_rdev = new_contended_rdev;
6554 old_contended_rdev->ref_cnt++;
6555 old_contended_rdev->mutex_owner = current;
6556 }
6557
6558 err = regulator_summary_lock_all(ww_ctx,
6559 &new_contended_rdev,
6560 &old_contended_rdev);
6561
6562 if (old_contended_rdev)
6563 regulator_unlock(old_contended_rdev);
6564
6565 } while (err == -EDEADLK);
6566
6567 ww_acquire_done(ww_ctx);
6568 }
6569
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6570 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6571 {
6572 class_for_each_device(®ulator_class, NULL, NULL,
6573 regulator_summary_unlock_one);
6574 ww_acquire_fini(ww_ctx);
6575
6576 mutex_unlock(®ulator_list_mutex);
6577 }
6578
regulator_summary_show_roots(struct device * dev,void * data)6579 static int regulator_summary_show_roots(struct device *dev, void *data)
6580 {
6581 struct regulator_dev *rdev = dev_to_rdev(dev);
6582 struct seq_file *s = data;
6583
6584 if (!rdev->supply)
6585 regulator_summary_show_subtree(s, rdev, 0);
6586
6587 return 0;
6588 }
6589
regulator_summary_show(struct seq_file * s,void * data)6590 static int regulator_summary_show(struct seq_file *s, void *data)
6591 {
6592 struct ww_acquire_ctx ww_ctx;
6593
6594 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6595 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6596
6597 regulator_summary_lock(&ww_ctx);
6598
6599 class_for_each_device(®ulator_class, NULL, s,
6600 regulator_summary_show_roots);
6601
6602 regulator_summary_unlock(&ww_ctx);
6603
6604 return 0;
6605 }
6606 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6607 #endif /* CONFIG_DEBUG_FS */
6608
regulator_init(void)6609 static int __init regulator_init(void)
6610 {
6611 int ret;
6612
6613 ret = class_register(®ulator_class);
6614
6615 debugfs_root = debugfs_create_dir("regulator", NULL);
6616 if (IS_ERR(debugfs_root))
6617 pr_debug("regulator: Failed to create debugfs directory\n");
6618
6619 #ifdef CONFIG_DEBUG_FS
6620 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6621 &supply_map_fops);
6622
6623 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6624 NULL, ®ulator_summary_fops);
6625 #endif
6626 regulator_dummy_init();
6627
6628 regulator_coupler_register(&generic_regulator_coupler);
6629
6630 return ret;
6631 }
6632
6633 /* init early to allow our consumers to complete system booting */
6634 core_initcall(regulator_init);
6635
regulator_late_cleanup(struct device * dev,void * data)6636 static int regulator_late_cleanup(struct device *dev, void *data)
6637 {
6638 struct regulator_dev *rdev = dev_to_rdev(dev);
6639 struct regulation_constraints *c = rdev->constraints;
6640 int ret;
6641
6642 if (c && c->always_on)
6643 return 0;
6644
6645 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6646 return 0;
6647
6648 regulator_lock(rdev);
6649
6650 if (rdev->use_count)
6651 goto unlock;
6652
6653 /* If reading the status failed, assume that it's off. */
6654 if (_regulator_is_enabled(rdev) <= 0)
6655 goto unlock;
6656
6657 if (have_full_constraints()) {
6658 /* We log since this may kill the system if it goes
6659 * wrong.
6660 */
6661 rdev_info(rdev, "disabling\n");
6662 ret = _regulator_do_disable(rdev);
6663 if (ret != 0)
6664 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6665 } else {
6666 /* The intention is that in future we will
6667 * assume that full constraints are provided
6668 * so warn even if we aren't going to do
6669 * anything here.
6670 */
6671 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6672 }
6673
6674 unlock:
6675 regulator_unlock(rdev);
6676
6677 return 0;
6678 }
6679
6680 static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6681 static int __init regulator_ignore_unused_setup(char *__unused)
6682 {
6683 regulator_ignore_unused = true;
6684 return 1;
6685 }
6686 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6687
regulator_init_complete_work_function(struct work_struct * work)6688 static void regulator_init_complete_work_function(struct work_struct *work)
6689 {
6690 /*
6691 * Regulators may had failed to resolve their input supplies
6692 * when were registered, either because the input supply was
6693 * not registered yet or because its parent device was not
6694 * bound yet. So attempt to resolve the input supplies for
6695 * pending regulators before trying to disable unused ones.
6696 */
6697 class_for_each_device(®ulator_class, NULL, NULL,
6698 regulator_register_resolve_supply);
6699
6700 /*
6701 * For debugging purposes, it may be useful to prevent unused
6702 * regulators from being disabled.
6703 */
6704 if (regulator_ignore_unused) {
6705 pr_warn("regulator: Not disabling unused regulators\n");
6706 return;
6707 }
6708
6709 /* If we have a full configuration then disable any regulators
6710 * we have permission to change the status for and which are
6711 * not in use or always_on. This is effectively the default
6712 * for DT and ACPI as they have full constraints.
6713 */
6714 class_for_each_device(®ulator_class, NULL, NULL,
6715 regulator_late_cleanup);
6716 }
6717
6718 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6719 regulator_init_complete_work_function);
6720
regulator_init_complete(void)6721 static int __init regulator_init_complete(void)
6722 {
6723 /*
6724 * Since DT doesn't provide an idiomatic mechanism for
6725 * enabling full constraints and since it's much more natural
6726 * with DT to provide them just assume that a DT enabled
6727 * system has full constraints.
6728 */
6729 if (of_have_populated_dt())
6730 has_full_constraints = true;
6731
6732 /*
6733 * We punt completion for an arbitrary amount of time since
6734 * systems like distros will load many drivers from userspace
6735 * so consumers might not always be ready yet, this is
6736 * particularly an issue with laptops where this might bounce
6737 * the display off then on. Ideally we'd get a notification
6738 * from userspace when this happens but we don't so just wait
6739 * a bit and hope we waited long enough. It'd be better if
6740 * we'd only do this on systems that need it, and a kernel
6741 * command line option might be useful.
6742 */
6743 schedule_delayed_work(®ulator_init_complete_work,
6744 msecs_to_jiffies(30000));
6745
6746 return 0;
6747 }
6748 late_initcall_sync(regulator_init_complete);
6749