1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 struct folio_batch;
42
43 extern int sysctl_page_lock_unfairness;
44
45 void mm_core_init(void);
46 void init_mm_internals(void);
47
48 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit) { }
57 #endif
58
59 extern atomic_long_t _totalram_pages;
totalram_pages(void)60 static inline unsigned long totalram_pages(void)
61 {
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63 }
64
totalram_pages_inc(void)65 static inline void totalram_pages_inc(void)
66 {
67 atomic_long_inc(&_totalram_pages);
68 }
69
totalram_pages_dec(void)70 static inline void totalram_pages_dec(void)
71 {
72 atomic_long_dec(&_totalram_pages);
73 }
74
totalram_pages_add(long count)75 static inline void totalram_pages_add(long count)
76 {
77 atomic_long_add(count, &_totalram_pages);
78 }
79
80 extern void * high_memory;
81 extern int page_cluster;
82 extern const int page_cluster_max;
83
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern int mmap_rnd_bits_max __ro_after_init;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100
101 #ifndef DIRECT_MAP_PHYSMEM_END
102 # ifdef MAX_PHYSMEM_BITS
103 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
104 # else
105 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
106 # endif
107 #endif
108
109 #include <asm/page.h>
110 #include <asm/processor.h>
111
112 #ifndef __pa_symbol
113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115
116 #ifndef page_to_virt
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119
120 #ifndef lm_alias
121 #define lm_alias(x) __va(__pa_symbol(x))
122 #endif
123
124 /*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X) (0)
133 #endif
134
135 /*
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
140 */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 96
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statements if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
147 */
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 96);
157
158 switch (sizeof(struct page)) {
159 case 96:
160 _pp[11] = 0;
161 fallthrough;
162 case 88:
163 _pp[10] = 0;
164 fallthrough;
165 case 80:
166 _pp[9] = 0;
167 fallthrough;
168 case 72:
169 _pp[8] = 0;
170 fallthrough;
171 case 64:
172 _pp[7] = 0;
173 fallthrough;
174 case 56:
175 _pp[6] = 0;
176 _pp[5] = 0;
177 _pp[4] = 0;
178 _pp[3] = 0;
179 _pp[2] = 0;
180 _pp[1] = 0;
181 _pp[0] = 0;
182 }
183 }
184 #else
185 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
186 #endif
187
188 /*
189 * Default maximum number of active map areas, this limits the number of vmas
190 * per mm struct. Users can overwrite this number by sysctl but there is a
191 * problem.
192 *
193 * When a program's coredump is generated as ELF format, a section is created
194 * per a vma. In ELF, the number of sections is represented in unsigned short.
195 * This means the number of sections should be smaller than 65535 at coredump.
196 * Because the kernel adds some informative sections to a image of program at
197 * generating coredump, we need some margin. The number of extra sections is
198 * 1-3 now and depends on arch. We use "5" as safe margin, here.
199 *
200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201 * not a hard limit any more. Although some userspace tools can be surprised by
202 * that.
203 */
204 #define MAPCOUNT_ELF_CORE_MARGIN (5)
205 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206
207 extern int sysctl_max_map_count;
208
209 extern unsigned long sysctl_user_reserve_kbytes;
210 extern unsigned long sysctl_admin_reserve_kbytes;
211
212 extern int sysctl_overcommit_memory;
213 extern int sysctl_overcommit_ratio;
214 extern unsigned long sysctl_overcommit_kbytes;
215
216 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
217 loff_t *);
218 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
219 loff_t *);
220 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
221 loff_t *);
222
223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
225 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
226 #else
227 #define nth_page(page,n) ((page) + (n))
228 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
229 #endif
230
231 /* to align the pointer to the (next) page boundary */
232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233
234 /* to align the pointer to the (prev) page boundary */
235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236
237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239
lru_to_folio(struct list_head * head)240 static inline struct folio *lru_to_folio(struct list_head *head)
241 {
242 return list_entry((head)->prev, struct folio, lru);
243 }
244
245 void setup_initial_init_mm(void *start_code, void *end_code,
246 void *end_data, void *brk);
247
248 /*
249 * Linux kernel virtual memory manager primitives.
250 * The idea being to have a "virtual" mm in the same way
251 * we have a virtual fs - giving a cleaner interface to the
252 * mm details, and allowing different kinds of memory mappings
253 * (from shared memory to executable loading to arbitrary
254 * mmap() functions).
255 */
256
257 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
258 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259 void vm_area_free(struct vm_area_struct *);
260 /* Use only if VMA has no other users */
261 void __vm_area_free(struct vm_area_struct *vma);
262
263 #ifndef CONFIG_MMU
264 extern struct rb_root nommu_region_tree;
265 extern struct rw_semaphore nommu_region_sem;
266
267 extern unsigned int kobjsize(const void *objp);
268 #endif
269
270 /*
271 * vm_flags in vm_area_struct, see mm_types.h.
272 * When changing, update also include/trace/events/mmflags.h
273 */
274 #define VM_NONE 0x00000000
275
276 #define VM_READ 0x00000001 /* currently active flags */
277 #define VM_WRITE 0x00000002
278 #define VM_EXEC 0x00000004
279 #define VM_SHARED 0x00000008
280
281 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
282 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
283 #define VM_MAYWRITE 0x00000020
284 #define VM_MAYEXEC 0x00000040
285 #define VM_MAYSHARE 0x00000080
286
287 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
288 #ifdef CONFIG_MMU
289 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
290 #else /* CONFIG_MMU */
291 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
292 #define VM_UFFD_MISSING 0
293 #endif /* CONFIG_MMU */
294 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
295 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
296
297 #define VM_LOCKED 0x00002000
298 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
299
300 /* Used by sys_madvise() */
301 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
302 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
303
304 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
305 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
306 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
307 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
308 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
309 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
310 #define VM_SYNC 0x00800000 /* Synchronous page faults */
311 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
312 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
313 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
314
315 #ifdef CONFIG_MEM_SOFT_DIRTY
316 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
317 #else
318 # define VM_SOFTDIRTY 0
319 #endif
320
321 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
322 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
323 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
324 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
325
326 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
327 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
342
343 #ifdef CONFIG_ARCH_HAS_PKEYS
344 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
345 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
346 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
347 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
348 #if CONFIG_ARCH_PKEY_BITS > 3
349 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
350 #else
351 # define VM_PKEY_BIT3 0
352 #endif
353 #if CONFIG_ARCH_PKEY_BITS > 4
354 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
355 #else
356 # define VM_PKEY_BIT4 0
357 #endif
358 #endif /* CONFIG_ARCH_HAS_PKEYS */
359
360 #ifdef CONFIG_X86_USER_SHADOW_STACK
361 /*
362 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
363 * support core mm.
364 *
365 * These VMAs will get a single end guard page. This helps userspace protect
366 * itself from attacks. A single page is enough for current shadow stack archs
367 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
368 * for more details on the guard size.
369 */
370 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
371 #endif
372
373 #if defined(CONFIG_ARM64_GCS)
374 /*
375 * arm64's Guarded Control Stack implements similar functionality and
376 * has similar constraints to shadow stacks.
377 */
378 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
379 #endif
380
381 #ifndef VM_SHADOW_STACK
382 # define VM_SHADOW_STACK VM_NONE
383 #endif
384
385 #if defined(CONFIG_X86)
386 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
387 #elif defined(CONFIG_PPC64)
388 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
389 #elif defined(CONFIG_PARISC)
390 # define VM_GROWSUP VM_ARCH_1
391 #elif defined(CONFIG_SPARC64)
392 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
393 # define VM_ARCH_CLEAR VM_SPARC_ADI
394 #elif defined(CONFIG_ARM64)
395 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
396 # define VM_ARCH_CLEAR VM_ARM64_BTI
397 #elif !defined(CONFIG_MMU)
398 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
399 #endif
400
401 #if defined(CONFIG_ARM64_MTE)
402 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
403 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
404 #else
405 # define VM_MTE VM_NONE
406 # define VM_MTE_ALLOWED VM_NONE
407 #endif
408
409 #ifndef VM_GROWSUP
410 # define VM_GROWSUP VM_NONE
411 #endif
412
413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414 # define VM_UFFD_MINOR_BIT 38
415 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417 # define VM_UFFD_MINOR VM_NONE
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
419
420 /*
421 * This flag is used to connect VFIO to arch specific KVM code. It
422 * indicates that the memory under this VMA is safe for use with any
423 * non-cachable memory type inside KVM. Some VFIO devices, on some
424 * platforms, are thought to be unsafe and can cause machine crashes
425 * if KVM does not lock down the memory type.
426 */
427 #ifdef CONFIG_64BIT
428 #define VM_ALLOW_ANY_UNCACHED_BIT 39
429 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #else
431 #define VM_ALLOW_ANY_UNCACHED VM_NONE
432 #endif
433
434 #ifdef CONFIG_64BIT
435 #define VM_DROPPABLE_BIT 40
436 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
437 #elif defined(CONFIG_PPC32)
438 #define VM_DROPPABLE VM_ARCH_1
439 #else
440 #define VM_DROPPABLE VM_NONE
441 #endif
442
443 #ifdef CONFIG_64BIT
444 /* VM is sealed, in vm_flags */
445 #define VM_SEALED _BITUL(63)
446 #endif
447
448 /* Bits set in the VMA until the stack is in its final location */
449 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
450
451 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
452
453 /* Common data flag combinations */
454 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
455 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
456 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
457 VM_MAYWRITE | VM_MAYEXEC)
458 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
459 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
460
461 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
462 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
463 #endif
464
465 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
466 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
467 #endif
468
469 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
470
471 #ifdef CONFIG_STACK_GROWSUP
472 #define VM_STACK VM_GROWSUP
473 #define VM_STACK_EARLY VM_GROWSDOWN
474 #else
475 #define VM_STACK VM_GROWSDOWN
476 #define VM_STACK_EARLY 0
477 #endif
478
479 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
480
481 /* VMA basic access permission flags */
482 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
483
484
485 /*
486 * Special vmas that are non-mergable, non-mlock()able.
487 */
488 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
489
490 /* This mask prevents VMA from being scanned with khugepaged */
491 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
492
493 /* This mask defines which mm->def_flags a process can inherit its parent */
494 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
495
496 /* This mask represents all the VMA flag bits used by mlock */
497 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
498
499 /* Arch-specific flags to clear when updating VM flags on protection change */
500 #ifndef VM_ARCH_CLEAR
501 # define VM_ARCH_CLEAR VM_NONE
502 #endif
503 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
504
505 /*
506 * mapping from the currently active vm_flags protection bits (the
507 * low four bits) to a page protection mask..
508 */
509
510 /*
511 * The default fault flags that should be used by most of the
512 * arch-specific page fault handlers.
513 */
514 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
515 FAULT_FLAG_KILLABLE | \
516 FAULT_FLAG_INTERRUPTIBLE)
517
518 /**
519 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
520 * @flags: Fault flags.
521 *
522 * This is mostly used for places where we want to try to avoid taking
523 * the mmap_lock for too long a time when waiting for another condition
524 * to change, in which case we can try to be polite to release the
525 * mmap_lock in the first round to avoid potential starvation of other
526 * processes that would also want the mmap_lock.
527 *
528 * Return: true if the page fault allows retry and this is the first
529 * attempt of the fault handling; false otherwise.
530 */
fault_flag_allow_retry_first(enum fault_flag flags)531 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
532 {
533 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
534 (!(flags & FAULT_FLAG_TRIED));
535 }
536
537 #define FAULT_FLAG_TRACE \
538 { FAULT_FLAG_WRITE, "WRITE" }, \
539 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
540 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
541 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
542 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
543 { FAULT_FLAG_TRIED, "TRIED" }, \
544 { FAULT_FLAG_USER, "USER" }, \
545 { FAULT_FLAG_REMOTE, "REMOTE" }, \
546 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
547 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
548 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
549
550 /*
551 * vm_fault is filled by the pagefault handler and passed to the vma's
552 * ->fault function. The vma's ->fault is responsible for returning a bitmask
553 * of VM_FAULT_xxx flags that give details about how the fault was handled.
554 *
555 * MM layer fills up gfp_mask for page allocations but fault handler might
556 * alter it if its implementation requires a different allocation context.
557 *
558 * pgoff should be used in favour of virtual_address, if possible.
559 */
560 struct vm_fault {
561 const struct {
562 struct vm_area_struct *vma; /* Target VMA */
563 gfp_t gfp_mask; /* gfp mask to be used for allocations */
564 pgoff_t pgoff; /* Logical page offset based on vma */
565 unsigned long address; /* Faulting virtual address - masked */
566 unsigned long real_address; /* Faulting virtual address - unmasked */
567 };
568 enum fault_flag flags; /* FAULT_FLAG_xxx flags
569 * XXX: should really be 'const' */
570 pmd_t *pmd; /* Pointer to pmd entry matching
571 * the 'address' */
572 pud_t *pud; /* Pointer to pud entry matching
573 * the 'address'
574 */
575 union {
576 pte_t orig_pte; /* Value of PTE at the time of fault */
577 pmd_t orig_pmd; /* Value of PMD at the time of fault,
578 * used by PMD fault only.
579 */
580 };
581
582 struct page *cow_page; /* Page handler may use for COW fault */
583 struct page *page; /* ->fault handlers should return a
584 * page here, unless VM_FAULT_NOPAGE
585 * is set (which is also implied by
586 * VM_FAULT_ERROR).
587 */
588 /* These three entries are valid only while holding ptl lock */
589 pte_t *pte; /* Pointer to pte entry matching
590 * the 'address'. NULL if the page
591 * table hasn't been allocated.
592 */
593 spinlock_t *ptl; /* Page table lock.
594 * Protects pte page table if 'pte'
595 * is not NULL, otherwise pmd.
596 */
597 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
598 * vm_ops->map_pages() sets up a page
599 * table from atomic context.
600 * do_fault_around() pre-allocates
601 * page table to avoid allocation from
602 * atomic context.
603 */
604 };
605
606 /*
607 * These are the virtual MM functions - opening of an area, closing and
608 * unmapping it (needed to keep files on disk up-to-date etc), pointer
609 * to the functions called when a no-page or a wp-page exception occurs.
610 */
611 struct vm_operations_struct {
612 void (*open)(struct vm_area_struct * area);
613 /**
614 * @close: Called when the VMA is being removed from the MM.
615 * Context: User context. May sleep. Caller holds mmap_lock.
616 */
617 void (*close)(struct vm_area_struct * area);
618 /* Called any time before splitting to check if it's allowed */
619 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
620 int (*mremap)(struct vm_area_struct *area);
621 /*
622 * Called by mprotect() to make driver-specific permission
623 * checks before mprotect() is finalised. The VMA must not
624 * be modified. Returns 0 if mprotect() can proceed.
625 */
626 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
627 unsigned long end, unsigned long newflags);
628 vm_fault_t (*fault)(struct vm_fault *vmf);
629 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
630 vm_fault_t (*map_pages)(struct vm_fault *vmf,
631 pgoff_t start_pgoff, pgoff_t end_pgoff);
632 unsigned long (*pagesize)(struct vm_area_struct * area);
633
634 /* notification that a previously read-only page is about to become
635 * writable, if an error is returned it will cause a SIGBUS */
636 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
637
638 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
639 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
640
641 /* called by access_process_vm when get_user_pages() fails, typically
642 * for use by special VMAs. See also generic_access_phys() for a generic
643 * implementation useful for any iomem mapping.
644 */
645 int (*access)(struct vm_area_struct *vma, unsigned long addr,
646 void *buf, int len, int write);
647
648 /* Called by the /proc/PID/maps code to ask the vma whether it
649 * has a special name. Returning non-NULL will also cause this
650 * vma to be dumped unconditionally. */
651 const char *(*name)(struct vm_area_struct *vma);
652
653 #ifdef CONFIG_NUMA
654 /*
655 * set_policy() op must add a reference to any non-NULL @new mempolicy
656 * to hold the policy upon return. Caller should pass NULL @new to
657 * remove a policy and fall back to surrounding context--i.e. do not
658 * install a MPOL_DEFAULT policy, nor the task or system default
659 * mempolicy.
660 */
661 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
662
663 /*
664 * get_policy() op must add reference [mpol_get()] to any policy at
665 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
666 * in mm/mempolicy.c will do this automatically.
667 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
668 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
669 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
670 * must return NULL--i.e., do not "fallback" to task or system default
671 * policy.
672 */
673 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
674 unsigned long addr, pgoff_t *ilx);
675 #endif
676 /*
677 * Called by vm_normal_page() for special PTEs to find the
678 * page for @addr. This is useful if the default behavior
679 * (using pte_page()) would not find the correct page.
680 */
681 struct page *(*find_special_page)(struct vm_area_struct *vma,
682 unsigned long addr);
683 };
684
685 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)686 static inline void vma_numab_state_init(struct vm_area_struct *vma)
687 {
688 vma->numab_state = NULL;
689 }
vma_numab_state_free(struct vm_area_struct * vma)690 static inline void vma_numab_state_free(struct vm_area_struct *vma)
691 {
692 kfree(vma->numab_state);
693 }
694 #else
vma_numab_state_init(struct vm_area_struct * vma)695 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)696 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
697 #endif /* CONFIG_NUMA_BALANCING */
698
699 #ifdef CONFIG_PER_VMA_LOCK
700 /*
701 * Try to read-lock a vma. The function is allowed to occasionally yield false
702 * locked result to avoid performance overhead, in which case we fall back to
703 * using mmap_lock. The function should never yield false unlocked result.
704 */
vma_start_read(struct vm_area_struct * vma)705 static inline bool vma_start_read(struct vm_area_struct *vma)
706 {
707 /*
708 * Check before locking. A race might cause false locked result.
709 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
710 * ACQUIRE semantics, because this is just a lockless check whose result
711 * we don't rely on for anything - the mm_lock_seq read against which we
712 * need ordering is below.
713 */
714 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
715 return false;
716
717 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
718 return false;
719
720 /*
721 * Overflow might produce false locked result.
722 * False unlocked result is impossible because we modify and check
723 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
724 * modification invalidates all existing locks.
725 *
726 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
727 * racing with vma_end_write_all(), we only start reading from the VMA
728 * after it has been unlocked.
729 * This pairs with RELEASE semantics in vma_end_write_all().
730 */
731 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
732 up_read(&vma->vm_lock->lock);
733 return false;
734 }
735 return true;
736 }
737
vma_end_read(struct vm_area_struct * vma)738 static inline void vma_end_read(struct vm_area_struct *vma)
739 {
740 rcu_read_lock(); /* keeps vma alive till the end of up_read */
741 up_read(&vma->vm_lock->lock);
742 rcu_read_unlock();
743 }
744
745 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,unsigned int * mm_lock_seq)746 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
747 {
748 mmap_assert_write_locked(vma->vm_mm);
749
750 /*
751 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
752 * mm->mm_lock_seq can't be concurrently modified.
753 */
754 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
755 return (vma->vm_lock_seq == *mm_lock_seq);
756 }
757
758 /*
759 * Begin writing to a VMA.
760 * Exclude concurrent readers under the per-VMA lock until the currently
761 * write-locked mmap_lock is dropped or downgraded.
762 */
vma_start_write(struct vm_area_struct * vma)763 static inline void vma_start_write(struct vm_area_struct *vma)
764 {
765 unsigned int mm_lock_seq;
766
767 if (__is_vma_write_locked(vma, &mm_lock_seq))
768 return;
769
770 down_write(&vma->vm_lock->lock);
771 /*
772 * We should use WRITE_ONCE() here because we can have concurrent reads
773 * from the early lockless pessimistic check in vma_start_read().
774 * We don't really care about the correctness of that early check, but
775 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
776 */
777 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
778 up_write(&vma->vm_lock->lock);
779 }
780
vma_assert_write_locked(struct vm_area_struct * vma)781 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
782 {
783 unsigned int mm_lock_seq;
784
785 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
786 }
787
vma_assert_locked(struct vm_area_struct * vma)788 static inline void vma_assert_locked(struct vm_area_struct *vma)
789 {
790 if (!rwsem_is_locked(&vma->vm_lock->lock))
791 vma_assert_write_locked(vma);
792 }
793
vma_mark_detached(struct vm_area_struct * vma,bool detached)794 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
795 {
796 /* When detaching vma should be write-locked */
797 if (detached)
798 vma_assert_write_locked(vma);
799 vma->detached = detached;
800 }
801
release_fault_lock(struct vm_fault * vmf)802 static inline void release_fault_lock(struct vm_fault *vmf)
803 {
804 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
805 vma_end_read(vmf->vma);
806 else
807 mmap_read_unlock(vmf->vma->vm_mm);
808 }
809
assert_fault_locked(struct vm_fault * vmf)810 static inline void assert_fault_locked(struct vm_fault *vmf)
811 {
812 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
813 vma_assert_locked(vmf->vma);
814 else
815 mmap_assert_locked(vmf->vma->vm_mm);
816 }
817
818 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
819 unsigned long address);
820
821 #else /* CONFIG_PER_VMA_LOCK */
822
vma_start_read(struct vm_area_struct * vma)823 static inline bool vma_start_read(struct vm_area_struct *vma)
824 { return false; }
vma_end_read(struct vm_area_struct * vma)825 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)826 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)827 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
828 { mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)829 static inline void vma_mark_detached(struct vm_area_struct *vma,
830 bool detached) {}
831
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)832 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
833 unsigned long address)
834 {
835 return NULL;
836 }
837
vma_assert_locked(struct vm_area_struct * vma)838 static inline void vma_assert_locked(struct vm_area_struct *vma)
839 {
840 mmap_assert_locked(vma->vm_mm);
841 }
842
release_fault_lock(struct vm_fault * vmf)843 static inline void release_fault_lock(struct vm_fault *vmf)
844 {
845 mmap_read_unlock(vmf->vma->vm_mm);
846 }
847
assert_fault_locked(struct vm_fault * vmf)848 static inline void assert_fault_locked(struct vm_fault *vmf)
849 {
850 mmap_assert_locked(vmf->vma->vm_mm);
851 }
852
853 #endif /* CONFIG_PER_VMA_LOCK */
854
855 extern const struct vm_operations_struct vma_dummy_vm_ops;
856
857 /*
858 * WARNING: vma_init does not initialize vma->vm_lock.
859 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
860 */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)861 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
862 {
863 memset(vma, 0, sizeof(*vma));
864 vma->vm_mm = mm;
865 vma->vm_ops = &vma_dummy_vm_ops;
866 INIT_LIST_HEAD(&vma->anon_vma_chain);
867 vma_mark_detached(vma, false);
868 vma_numab_state_init(vma);
869 }
870
871 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)872 static inline void vm_flags_init(struct vm_area_struct *vma,
873 vm_flags_t flags)
874 {
875 ACCESS_PRIVATE(vma, __vm_flags) = flags;
876 }
877
878 /*
879 * Use when VMA is part of the VMA tree and modifications need coordination
880 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
881 * it should be locked explicitly beforehand.
882 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)883 static inline void vm_flags_reset(struct vm_area_struct *vma,
884 vm_flags_t flags)
885 {
886 vma_assert_write_locked(vma);
887 vm_flags_init(vma, flags);
888 }
889
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)890 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
891 vm_flags_t flags)
892 {
893 vma_assert_write_locked(vma);
894 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
895 }
896
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)897 static inline void vm_flags_set(struct vm_area_struct *vma,
898 vm_flags_t flags)
899 {
900 vma_start_write(vma);
901 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
902 }
903
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)904 static inline void vm_flags_clear(struct vm_area_struct *vma,
905 vm_flags_t flags)
906 {
907 vma_start_write(vma);
908 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
909 }
910
911 /*
912 * Use only if VMA is not part of the VMA tree or has no other users and
913 * therefore needs no locking.
914 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)915 static inline void __vm_flags_mod(struct vm_area_struct *vma,
916 vm_flags_t set, vm_flags_t clear)
917 {
918 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
919 }
920
921 /*
922 * Use only when the order of set/clear operations is unimportant, otherwise
923 * use vm_flags_{set|clear} explicitly.
924 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)925 static inline void vm_flags_mod(struct vm_area_struct *vma,
926 vm_flags_t set, vm_flags_t clear)
927 {
928 vma_start_write(vma);
929 __vm_flags_mod(vma, set, clear);
930 }
931
vma_set_anonymous(struct vm_area_struct * vma)932 static inline void vma_set_anonymous(struct vm_area_struct *vma)
933 {
934 vma->vm_ops = NULL;
935 }
936
vma_is_anonymous(struct vm_area_struct * vma)937 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
938 {
939 return !vma->vm_ops;
940 }
941
942 /*
943 * Indicate if the VMA is a heap for the given task; for
944 * /proc/PID/maps that is the heap of the main task.
945 */
vma_is_initial_heap(const struct vm_area_struct * vma)946 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
947 {
948 return vma->vm_start < vma->vm_mm->brk &&
949 vma->vm_end > vma->vm_mm->start_brk;
950 }
951
952 /*
953 * Indicate if the VMA is a stack for the given task; for
954 * /proc/PID/maps that is the stack of the main task.
955 */
vma_is_initial_stack(const struct vm_area_struct * vma)956 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
957 {
958 /*
959 * We make no effort to guess what a given thread considers to be
960 * its "stack". It's not even well-defined for programs written
961 * languages like Go.
962 */
963 return vma->vm_start <= vma->vm_mm->start_stack &&
964 vma->vm_end >= vma->vm_mm->start_stack;
965 }
966
vma_is_temporary_stack(struct vm_area_struct * vma)967 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
968 {
969 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
970
971 if (!maybe_stack)
972 return false;
973
974 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
975 VM_STACK_INCOMPLETE_SETUP)
976 return true;
977
978 return false;
979 }
980
vma_is_foreign(struct vm_area_struct * vma)981 static inline bool vma_is_foreign(struct vm_area_struct *vma)
982 {
983 if (!current->mm)
984 return true;
985
986 if (current->mm != vma->vm_mm)
987 return true;
988
989 return false;
990 }
991
vma_is_accessible(struct vm_area_struct * vma)992 static inline bool vma_is_accessible(struct vm_area_struct *vma)
993 {
994 return vma->vm_flags & VM_ACCESS_FLAGS;
995 }
996
is_shared_maywrite(vm_flags_t vm_flags)997 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
998 {
999 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1000 (VM_SHARED | VM_MAYWRITE);
1001 }
1002
vma_is_shared_maywrite(struct vm_area_struct * vma)1003 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1004 {
1005 return is_shared_maywrite(vma->vm_flags);
1006 }
1007
1008 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1009 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1010 {
1011 return mas_find(&vmi->mas, max - 1);
1012 }
1013
vma_next(struct vma_iterator * vmi)1014 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1015 {
1016 /*
1017 * Uses mas_find() to get the first VMA when the iterator starts.
1018 * Calling mas_next() could skip the first entry.
1019 */
1020 return mas_find(&vmi->mas, ULONG_MAX);
1021 }
1022
1023 static inline
vma_iter_next_range(struct vma_iterator * vmi)1024 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1025 {
1026 return mas_next_range(&vmi->mas, ULONG_MAX);
1027 }
1028
1029
vma_prev(struct vma_iterator * vmi)1030 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1031 {
1032 return mas_prev(&vmi->mas, 0);
1033 }
1034
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1035 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1036 unsigned long start, unsigned long end, gfp_t gfp)
1037 {
1038 __mas_set_range(&vmi->mas, start, end - 1);
1039 mas_store_gfp(&vmi->mas, NULL, gfp);
1040 if (unlikely(mas_is_err(&vmi->mas)))
1041 return -ENOMEM;
1042
1043 return 0;
1044 }
1045
1046 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1047 static inline void vma_iter_free(struct vma_iterator *vmi)
1048 {
1049 mas_destroy(&vmi->mas);
1050 }
1051
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1052 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1053 struct vm_area_struct *vma)
1054 {
1055 vmi->mas.index = vma->vm_start;
1056 vmi->mas.last = vma->vm_end - 1;
1057 mas_store(&vmi->mas, vma);
1058 if (unlikely(mas_is_err(&vmi->mas)))
1059 return -ENOMEM;
1060
1061 return 0;
1062 }
1063
vma_iter_invalidate(struct vma_iterator * vmi)1064 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1065 {
1066 mas_pause(&vmi->mas);
1067 }
1068
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1069 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1070 {
1071 mas_set(&vmi->mas, addr);
1072 }
1073
1074 #define for_each_vma(__vmi, __vma) \
1075 while (((__vma) = vma_next(&(__vmi))) != NULL)
1076
1077 /* The MM code likes to work with exclusive end addresses */
1078 #define for_each_vma_range(__vmi, __vma, __end) \
1079 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1080
1081 #ifdef CONFIG_SHMEM
1082 /*
1083 * The vma_is_shmem is not inline because it is used only by slow
1084 * paths in userfault.
1085 */
1086 bool vma_is_shmem(struct vm_area_struct *vma);
1087 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1088 #else
vma_is_shmem(struct vm_area_struct * vma)1089 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1090 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1091 #endif
1092
1093 int vma_is_stack_for_current(struct vm_area_struct *vma);
1094
1095 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1096 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1097
1098 struct mmu_gather;
1099 struct inode;
1100
1101 /*
1102 * compound_order() can be called without holding a reference, which means
1103 * that niceties like page_folio() don't work. These callers should be
1104 * prepared to handle wild return values. For example, PG_head may be
1105 * set before the order is initialised, or this may be a tail page.
1106 * See compaction.c for some good examples.
1107 */
compound_order(struct page * page)1108 static inline unsigned int compound_order(struct page *page)
1109 {
1110 struct folio *folio = (struct folio *)page;
1111
1112 if (!test_bit(PG_head, &folio->flags))
1113 return 0;
1114 return folio->_flags_1 & 0xff;
1115 }
1116
1117 /**
1118 * folio_order - The allocation order of a folio.
1119 * @folio: The folio.
1120 *
1121 * A folio is composed of 2^order pages. See get_order() for the definition
1122 * of order.
1123 *
1124 * Return: The order of the folio.
1125 */
folio_order(const struct folio * folio)1126 static inline unsigned int folio_order(const struct folio *folio)
1127 {
1128 if (!folio_test_large(folio))
1129 return 0;
1130 return folio->_flags_1 & 0xff;
1131 }
1132
1133 #include <linux/huge_mm.h>
1134
1135 /*
1136 * Methods to modify the page usage count.
1137 *
1138 * What counts for a page usage:
1139 * - cache mapping (page->mapping)
1140 * - private data (page->private)
1141 * - page mapped in a task's page tables, each mapping
1142 * is counted separately
1143 *
1144 * Also, many kernel routines increase the page count before a critical
1145 * routine so they can be sure the page doesn't go away from under them.
1146 */
1147
1148 /*
1149 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1150 */
put_page_testzero(struct page * page)1151 static inline int put_page_testzero(struct page *page)
1152 {
1153 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1154 return page_ref_dec_and_test(page);
1155 }
1156
folio_put_testzero(struct folio * folio)1157 static inline int folio_put_testzero(struct folio *folio)
1158 {
1159 return put_page_testzero(&folio->page);
1160 }
1161
1162 /*
1163 * Try to grab a ref unless the page has a refcount of zero, return false if
1164 * that is the case.
1165 * This can be called when MMU is off so it must not access
1166 * any of the virtual mappings.
1167 */
get_page_unless_zero(struct page * page)1168 static inline bool get_page_unless_zero(struct page *page)
1169 {
1170 return page_ref_add_unless(page, 1, 0);
1171 }
1172
folio_get_nontail_page(struct page * page)1173 static inline struct folio *folio_get_nontail_page(struct page *page)
1174 {
1175 if (unlikely(!get_page_unless_zero(page)))
1176 return NULL;
1177 return (struct folio *)page;
1178 }
1179
1180 extern int page_is_ram(unsigned long pfn);
1181
1182 enum {
1183 REGION_INTERSECTS,
1184 REGION_DISJOINT,
1185 REGION_MIXED,
1186 };
1187
1188 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1189 unsigned long desc);
1190
1191 /* Support for virtually mapped pages */
1192 struct page *vmalloc_to_page(const void *addr);
1193 unsigned long vmalloc_to_pfn(const void *addr);
1194
1195 /*
1196 * Determine if an address is within the vmalloc range
1197 *
1198 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1199 * is no special casing required.
1200 */
1201 #ifdef CONFIG_MMU
1202 extern bool is_vmalloc_addr(const void *x);
1203 extern int is_vmalloc_or_module_addr(const void *x);
1204 #else
is_vmalloc_addr(const void * x)1205 static inline bool is_vmalloc_addr(const void *x)
1206 {
1207 return false;
1208 }
is_vmalloc_or_module_addr(const void * x)1209 static inline int is_vmalloc_or_module_addr(const void *x)
1210 {
1211 return 0;
1212 }
1213 #endif
1214
1215 /*
1216 * How many times the entire folio is mapped as a single unit (eg by a
1217 * PMD or PUD entry). This is probably not what you want, except for
1218 * debugging purposes or implementation of other core folio_*() primitives.
1219 */
folio_entire_mapcount(const struct folio * folio)1220 static inline int folio_entire_mapcount(const struct folio *folio)
1221 {
1222 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1223 return atomic_read(&folio->_entire_mapcount) + 1;
1224 }
1225
folio_large_mapcount(const struct folio * folio)1226 static inline int folio_large_mapcount(const struct folio *folio)
1227 {
1228 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1229 return atomic_read(&folio->_large_mapcount) + 1;
1230 }
1231
1232 /**
1233 * folio_mapcount() - Number of mappings of this folio.
1234 * @folio: The folio.
1235 *
1236 * The folio mapcount corresponds to the number of present user page table
1237 * entries that reference any part of a folio. Each such present user page
1238 * table entry must be paired with exactly on folio reference.
1239 *
1240 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1241 * exactly once.
1242 *
1243 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1244 * references the entire folio counts exactly once, even when such special
1245 * page table entries are comprised of multiple ordinary page table entries.
1246 *
1247 * Will report 0 for pages which cannot be mapped into userspace, such as
1248 * slab, page tables and similar.
1249 *
1250 * Return: The number of times this folio is mapped.
1251 */
folio_mapcount(const struct folio * folio)1252 static inline int folio_mapcount(const struct folio *folio)
1253 {
1254 int mapcount;
1255
1256 if (likely(!folio_test_large(folio))) {
1257 mapcount = atomic_read(&folio->_mapcount) + 1;
1258 if (page_mapcount_is_type(mapcount))
1259 mapcount = 0;
1260 return mapcount;
1261 }
1262 return folio_large_mapcount(folio);
1263 }
1264
1265 /**
1266 * folio_mapped - Is this folio mapped into userspace?
1267 * @folio: The folio.
1268 *
1269 * Return: True if any page in this folio is referenced by user page tables.
1270 */
folio_mapped(const struct folio * folio)1271 static inline bool folio_mapped(const struct folio *folio)
1272 {
1273 return folio_mapcount(folio) >= 1;
1274 }
1275
1276 /*
1277 * Return true if this page is mapped into pagetables.
1278 * For compound page it returns true if any sub-page of compound page is mapped,
1279 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1280 */
page_mapped(const struct page * page)1281 static inline bool page_mapped(const struct page *page)
1282 {
1283 return folio_mapped(page_folio(page));
1284 }
1285
virt_to_head_page(const void * x)1286 static inline struct page *virt_to_head_page(const void *x)
1287 {
1288 struct page *page = virt_to_page(x);
1289
1290 return compound_head(page);
1291 }
1292
virt_to_folio(const void * x)1293 static inline struct folio *virt_to_folio(const void *x)
1294 {
1295 struct page *page = virt_to_page(x);
1296
1297 return page_folio(page);
1298 }
1299
1300 void __folio_put(struct folio *folio);
1301
1302 void split_page(struct page *page, unsigned int order);
1303 void folio_copy(struct folio *dst, struct folio *src);
1304 int folio_mc_copy(struct folio *dst, struct folio *src);
1305
1306 unsigned long nr_free_buffer_pages(void);
1307
1308 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1309 static inline unsigned long page_size(struct page *page)
1310 {
1311 return PAGE_SIZE << compound_order(page);
1312 }
1313
1314 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1315 static inline unsigned int page_shift(struct page *page)
1316 {
1317 return PAGE_SHIFT + compound_order(page);
1318 }
1319
1320 /**
1321 * thp_order - Order of a transparent huge page.
1322 * @page: Head page of a transparent huge page.
1323 */
thp_order(struct page * page)1324 static inline unsigned int thp_order(struct page *page)
1325 {
1326 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 return compound_order(page);
1328 }
1329
1330 /**
1331 * thp_size - Size of a transparent huge page.
1332 * @page: Head page of a transparent huge page.
1333 *
1334 * Return: Number of bytes in this page.
1335 */
thp_size(struct page * page)1336 static inline unsigned long thp_size(struct page *page)
1337 {
1338 return PAGE_SIZE << thp_order(page);
1339 }
1340
1341 #ifdef CONFIG_MMU
1342 /*
1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1344 * servicing faults for write access. In the normal case, do always want
1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1346 * that do not have writing enabled, when used by access_process_vm.
1347 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1348 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1349 {
1350 if (likely(vma->vm_flags & VM_WRITE))
1351 pte = pte_mkwrite(pte, vma);
1352 return pte;
1353 }
1354
1355 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1356 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 struct page *page, unsigned int nr, unsigned long addr);
1358
1359 vm_fault_t finish_fault(struct vm_fault *vmf);
1360 #endif
1361
1362 /*
1363 * Multiple processes may "see" the same page. E.g. for untouched
1364 * mappings of /dev/null, all processes see the same page full of
1365 * zeroes, and text pages of executables and shared libraries have
1366 * only one copy in memory, at most, normally.
1367 *
1368 * For the non-reserved pages, page_count(page) denotes a reference count.
1369 * page_count() == 0 means the page is free. page->lru is then used for
1370 * freelist management in the buddy allocator.
1371 * page_count() > 0 means the page has been allocated.
1372 *
1373 * Pages are allocated by the slab allocator in order to provide memory
1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376 * unless a particular usage is carefully commented. (the responsibility of
1377 * freeing the kmalloc memory is the caller's, of course).
1378 *
1379 * A page may be used by anyone else who does a __get_free_page().
1380 * In this case, page_count still tracks the references, and should only
1381 * be used through the normal accessor functions. The top bits of page->flags
1382 * and page->virtual store page management information, but all other fields
1383 * are unused and could be used privately, carefully. The management of this
1384 * page is the responsibility of the one who allocated it, and those who have
1385 * subsequently been given references to it.
1386 *
1387 * The other pages (we may call them "pagecache pages") are completely
1388 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389 * The following discussion applies only to them.
1390 *
1391 * A pagecache page contains an opaque `private' member, which belongs to the
1392 * page's address_space. Usually, this is the address of a circular list of
1393 * the page's disk buffers. PG_private must be set to tell the VM to call
1394 * into the filesystem to release these pages.
1395 *
1396 * A page may belong to an inode's memory mapping. In this case, page->mapping
1397 * is the pointer to the inode, and page->index is the file offset of the page,
1398 * in units of PAGE_SIZE.
1399 *
1400 * If pagecache pages are not associated with an inode, they are said to be
1401 * anonymous pages. These may become associated with the swapcache, and in that
1402 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1403 *
1404 * In either case (swapcache or inode backed), the pagecache itself holds one
1405 * reference to the page. Setting PG_private should also increment the
1406 * refcount. The each user mapping also has a reference to the page.
1407 *
1408 * The pagecache pages are stored in a per-mapping radix tree, which is
1409 * rooted at mapping->i_pages, and indexed by offset.
1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1412 *
1413 * All pagecache pages may be subject to I/O:
1414 * - inode pages may need to be read from disk,
1415 * - inode pages which have been modified and are MAP_SHARED may need
1416 * to be written back to the inode on disk,
1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418 * modified may need to be swapped out to swap space and (later) to be read
1419 * back into memory.
1420 */
1421
1422 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1423 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1424
1425 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
put_devmap_managed_folio_refs(struct folio * folio,int refs)1426 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1427 {
1428 if (!static_branch_unlikely(&devmap_managed_key))
1429 return false;
1430 if (!folio_is_zone_device(folio))
1431 return false;
1432 return __put_devmap_managed_folio_refs(folio, refs);
1433 }
1434 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_folio_refs(struct folio * folio,int refs)1435 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1436 {
1437 return false;
1438 }
1439 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1440
1441 /* 127: arbitrary random number, small enough to assemble well */
1442 #define folio_ref_zero_or_close_to_overflow(folio) \
1443 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1444
1445 /**
1446 * folio_get - Increment the reference count on a folio.
1447 * @folio: The folio.
1448 *
1449 * Context: May be called in any context, as long as you know that
1450 * you have a refcount on the folio. If you do not already have one,
1451 * folio_try_get() may be the right interface for you to use.
1452 */
folio_get(struct folio * folio)1453 static inline void folio_get(struct folio *folio)
1454 {
1455 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1456 folio_ref_inc(folio);
1457 }
1458
get_page(struct page * page)1459 static inline void get_page(struct page *page)
1460 {
1461 folio_get(page_folio(page));
1462 }
1463
try_get_page(struct page * page)1464 static inline __must_check bool try_get_page(struct page *page)
1465 {
1466 page = compound_head(page);
1467 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1468 return false;
1469 page_ref_inc(page);
1470 return true;
1471 }
1472
1473 /**
1474 * folio_put - Decrement the reference count on a folio.
1475 * @folio: The folio.
1476 *
1477 * If the folio's reference count reaches zero, the memory will be
1478 * released back to the page allocator and may be used by another
1479 * allocation immediately. Do not access the memory or the struct folio
1480 * after calling folio_put() unless you can be sure that it wasn't the
1481 * last reference.
1482 *
1483 * Context: May be called in process or interrupt context, but not in NMI
1484 * context. May be called while holding a spinlock.
1485 */
folio_put(struct folio * folio)1486 static inline void folio_put(struct folio *folio)
1487 {
1488 if (folio_put_testzero(folio))
1489 __folio_put(folio);
1490 }
1491
1492 /**
1493 * folio_put_refs - Reduce the reference count on a folio.
1494 * @folio: The folio.
1495 * @refs: The amount to subtract from the folio's reference count.
1496 *
1497 * If the folio's reference count reaches zero, the memory will be
1498 * released back to the page allocator and may be used by another
1499 * allocation immediately. Do not access the memory or the struct folio
1500 * after calling folio_put_refs() unless you can be sure that these weren't
1501 * the last references.
1502 *
1503 * Context: May be called in process or interrupt context, but not in NMI
1504 * context. May be called while holding a spinlock.
1505 */
folio_put_refs(struct folio * folio,int refs)1506 static inline void folio_put_refs(struct folio *folio, int refs)
1507 {
1508 if (folio_ref_sub_and_test(folio, refs))
1509 __folio_put(folio);
1510 }
1511
1512 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1513
1514 /*
1515 * union release_pages_arg - an array of pages or folios
1516 *
1517 * release_pages() releases a simple array of multiple pages, and
1518 * accepts various different forms of said page array: either
1519 * a regular old boring array of pages, an array of folios, or
1520 * an array of encoded page pointers.
1521 *
1522 * The transparent union syntax for this kind of "any of these
1523 * argument types" is all kinds of ugly, so look away.
1524 */
1525 typedef union {
1526 struct page **pages;
1527 struct folio **folios;
1528 struct encoded_page **encoded_pages;
1529 } release_pages_arg __attribute__ ((__transparent_union__));
1530
1531 void release_pages(release_pages_arg, int nr);
1532
1533 /**
1534 * folios_put - Decrement the reference count on an array of folios.
1535 * @folios: The folios.
1536 *
1537 * Like folio_put(), but for a batch of folios. This is more efficient
1538 * than writing the loop yourself as it will optimise the locks which need
1539 * to be taken if the folios are freed. The folios batch is returned
1540 * empty and ready to be reused for another batch; there is no need to
1541 * reinitialise it.
1542 *
1543 * Context: May be called in process or interrupt context, but not in NMI
1544 * context. May be called while holding a spinlock.
1545 */
folios_put(struct folio_batch * folios)1546 static inline void folios_put(struct folio_batch *folios)
1547 {
1548 folios_put_refs(folios, NULL);
1549 }
1550
put_page(struct page * page)1551 static inline void put_page(struct page *page)
1552 {
1553 struct folio *folio = page_folio(page);
1554
1555 /*
1556 * For some devmap managed pages we need to catch refcount transition
1557 * from 2 to 1:
1558 */
1559 if (put_devmap_managed_folio_refs(folio, 1))
1560 return;
1561 folio_put(folio);
1562 }
1563
1564 /*
1565 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1566 * the page's refcount so that two separate items are tracked: the original page
1567 * reference count, and also a new count of how many pin_user_pages() calls were
1568 * made against the page. ("gup-pinned" is another term for the latter).
1569 *
1570 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1571 * distinct from normal pages. As such, the unpin_user_page() call (and its
1572 * variants) must be used in order to release gup-pinned pages.
1573 *
1574 * Choice of value:
1575 *
1576 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1577 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1578 * simpler, due to the fact that adding an even power of two to the page
1579 * refcount has the effect of using only the upper N bits, for the code that
1580 * counts up using the bias value. This means that the lower bits are left for
1581 * the exclusive use of the original code that increments and decrements by one
1582 * (or at least, by much smaller values than the bias value).
1583 *
1584 * Of course, once the lower bits overflow into the upper bits (and this is
1585 * OK, because subtraction recovers the original values), then visual inspection
1586 * no longer suffices to directly view the separate counts. However, for normal
1587 * applications that don't have huge page reference counts, this won't be an
1588 * issue.
1589 *
1590 * Locking: the lockless algorithm described in folio_try_get_rcu()
1591 * provides safe operation for get_user_pages(), folio_mkclean() and
1592 * other calls that race to set up page table entries.
1593 */
1594 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1595
1596 void unpin_user_page(struct page *page);
1597 void unpin_folio(struct folio *folio);
1598 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1599 bool make_dirty);
1600 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1601 bool make_dirty);
1602 void unpin_user_pages(struct page **pages, unsigned long npages);
1603 void unpin_user_folio(struct folio *folio, unsigned long npages);
1604 void unpin_folios(struct folio **folios, unsigned long nfolios);
1605
is_cow_mapping(vm_flags_t flags)1606 static inline bool is_cow_mapping(vm_flags_t flags)
1607 {
1608 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1609 }
1610
1611 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1612 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1613 {
1614 /*
1615 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1616 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1617 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1618 * underlying memory if ptrace is active, so this is only possible if
1619 * ptrace does not apply. Note that there is no mprotect() to upgrade
1620 * write permissions later.
1621 */
1622 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1623 }
1624 #endif
1625
1626 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1627 #define SECTION_IN_PAGE_FLAGS
1628 #endif
1629
1630 /*
1631 * The identification function is mainly used by the buddy allocator for
1632 * determining if two pages could be buddies. We are not really identifying
1633 * the zone since we could be using the section number id if we do not have
1634 * node id available in page flags.
1635 * We only guarantee that it will return the same value for two combinable
1636 * pages in a zone.
1637 */
page_zone_id(struct page * page)1638 static inline int page_zone_id(struct page *page)
1639 {
1640 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1641 }
1642
1643 #ifdef NODE_NOT_IN_PAGE_FLAGS
1644 int page_to_nid(const struct page *page);
1645 #else
page_to_nid(const struct page * page)1646 static inline int page_to_nid(const struct page *page)
1647 {
1648 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1649 }
1650 #endif
1651
folio_nid(const struct folio * folio)1652 static inline int folio_nid(const struct folio *folio)
1653 {
1654 return page_to_nid(&folio->page);
1655 }
1656
1657 #ifdef CONFIG_NUMA_BALANCING
1658 /* page access time bits needs to hold at least 4 seconds */
1659 #define PAGE_ACCESS_TIME_MIN_BITS 12
1660 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1661 #define PAGE_ACCESS_TIME_BUCKETS \
1662 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1663 #else
1664 #define PAGE_ACCESS_TIME_BUCKETS 0
1665 #endif
1666
1667 #define PAGE_ACCESS_TIME_MASK \
1668 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1669
cpu_pid_to_cpupid(int cpu,int pid)1670 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1671 {
1672 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1673 }
1674
cpupid_to_pid(int cpupid)1675 static inline int cpupid_to_pid(int cpupid)
1676 {
1677 return cpupid & LAST__PID_MASK;
1678 }
1679
cpupid_to_cpu(int cpupid)1680 static inline int cpupid_to_cpu(int cpupid)
1681 {
1682 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1683 }
1684
cpupid_to_nid(int cpupid)1685 static inline int cpupid_to_nid(int cpupid)
1686 {
1687 return cpu_to_node(cpupid_to_cpu(cpupid));
1688 }
1689
cpupid_pid_unset(int cpupid)1690 static inline bool cpupid_pid_unset(int cpupid)
1691 {
1692 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1693 }
1694
cpupid_cpu_unset(int cpupid)1695 static inline bool cpupid_cpu_unset(int cpupid)
1696 {
1697 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1698 }
1699
__cpupid_match_pid(pid_t task_pid,int cpupid)1700 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1701 {
1702 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1703 }
1704
1705 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1706 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1707 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1708 {
1709 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1710 }
1711
folio_last_cpupid(struct folio * folio)1712 static inline int folio_last_cpupid(struct folio *folio)
1713 {
1714 return folio->_last_cpupid;
1715 }
page_cpupid_reset_last(struct page * page)1716 static inline void page_cpupid_reset_last(struct page *page)
1717 {
1718 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1719 }
1720 #else
folio_last_cpupid(struct folio * folio)1721 static inline int folio_last_cpupid(struct folio *folio)
1722 {
1723 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1724 }
1725
1726 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1727
page_cpupid_reset_last(struct page * page)1728 static inline void page_cpupid_reset_last(struct page *page)
1729 {
1730 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1731 }
1732 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1733
folio_xchg_access_time(struct folio * folio,int time)1734 static inline int folio_xchg_access_time(struct folio *folio, int time)
1735 {
1736 int last_time;
1737
1738 last_time = folio_xchg_last_cpupid(folio,
1739 time >> PAGE_ACCESS_TIME_BUCKETS);
1740 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1741 }
1742
vma_set_access_pid_bit(struct vm_area_struct * vma)1743 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1744 {
1745 unsigned int pid_bit;
1746
1747 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1748 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1749 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1750 }
1751 }
1752
1753 bool folio_use_access_time(struct folio *folio);
1754 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1755 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1756 {
1757 return folio_nid(folio); /* XXX */
1758 }
1759
folio_xchg_access_time(struct folio * folio,int time)1760 static inline int folio_xchg_access_time(struct folio *folio, int time)
1761 {
1762 return 0;
1763 }
1764
folio_last_cpupid(struct folio * folio)1765 static inline int folio_last_cpupid(struct folio *folio)
1766 {
1767 return folio_nid(folio); /* XXX */
1768 }
1769
cpupid_to_nid(int cpupid)1770 static inline int cpupid_to_nid(int cpupid)
1771 {
1772 return -1;
1773 }
1774
cpupid_to_pid(int cpupid)1775 static inline int cpupid_to_pid(int cpupid)
1776 {
1777 return -1;
1778 }
1779
cpupid_to_cpu(int cpupid)1780 static inline int cpupid_to_cpu(int cpupid)
1781 {
1782 return -1;
1783 }
1784
cpu_pid_to_cpupid(int nid,int pid)1785 static inline int cpu_pid_to_cpupid(int nid, int pid)
1786 {
1787 return -1;
1788 }
1789
cpupid_pid_unset(int cpupid)1790 static inline bool cpupid_pid_unset(int cpupid)
1791 {
1792 return true;
1793 }
1794
page_cpupid_reset_last(struct page * page)1795 static inline void page_cpupid_reset_last(struct page *page)
1796 {
1797 }
1798
cpupid_match_pid(struct task_struct * task,int cpupid)1799 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1800 {
1801 return false;
1802 }
1803
vma_set_access_pid_bit(struct vm_area_struct * vma)1804 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1805 {
1806 }
folio_use_access_time(struct folio * folio)1807 static inline bool folio_use_access_time(struct folio *folio)
1808 {
1809 return false;
1810 }
1811 #endif /* CONFIG_NUMA_BALANCING */
1812
1813 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1814
1815 /*
1816 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1817 * setting tags for all pages to native kernel tag value 0xff, as the default
1818 * value 0x00 maps to 0xff.
1819 */
1820
page_kasan_tag(const struct page * page)1821 static inline u8 page_kasan_tag(const struct page *page)
1822 {
1823 u8 tag = KASAN_TAG_KERNEL;
1824
1825 if (kasan_enabled()) {
1826 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1827 tag ^= 0xff;
1828 }
1829
1830 return tag;
1831 }
1832
page_kasan_tag_set(struct page * page,u8 tag)1833 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1834 {
1835 unsigned long old_flags, flags;
1836
1837 if (!kasan_enabled())
1838 return;
1839
1840 tag ^= 0xff;
1841 old_flags = READ_ONCE(page->flags);
1842 do {
1843 flags = old_flags;
1844 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1845 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1846 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1847 }
1848
page_kasan_tag_reset(struct page * page)1849 static inline void page_kasan_tag_reset(struct page *page)
1850 {
1851 if (kasan_enabled())
1852 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1853 }
1854
1855 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1856
page_kasan_tag(const struct page * page)1857 static inline u8 page_kasan_tag(const struct page *page)
1858 {
1859 return 0xff;
1860 }
1861
page_kasan_tag_set(struct page * page,u8 tag)1862 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1863 static inline void page_kasan_tag_reset(struct page *page) { }
1864
1865 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1866
page_zone(const struct page * page)1867 static inline struct zone *page_zone(const struct page *page)
1868 {
1869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1870 }
1871
page_pgdat(const struct page * page)1872 static inline pg_data_t *page_pgdat(const struct page *page)
1873 {
1874 return NODE_DATA(page_to_nid(page));
1875 }
1876
folio_zone(const struct folio * folio)1877 static inline struct zone *folio_zone(const struct folio *folio)
1878 {
1879 return page_zone(&folio->page);
1880 }
1881
folio_pgdat(const struct folio * folio)1882 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1883 {
1884 return page_pgdat(&folio->page);
1885 }
1886
1887 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1888 static inline void set_page_section(struct page *page, unsigned long section)
1889 {
1890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1892 }
1893
page_to_section(const struct page * page)1894 static inline unsigned long page_to_section(const struct page *page)
1895 {
1896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1897 }
1898 #endif
1899
1900 /**
1901 * folio_pfn - Return the Page Frame Number of a folio.
1902 * @folio: The folio.
1903 *
1904 * A folio may contain multiple pages. The pages have consecutive
1905 * Page Frame Numbers.
1906 *
1907 * Return: The Page Frame Number of the first page in the folio.
1908 */
folio_pfn(const struct folio * folio)1909 static inline unsigned long folio_pfn(const struct folio *folio)
1910 {
1911 return page_to_pfn(&folio->page);
1912 }
1913
pfn_folio(unsigned long pfn)1914 static inline struct folio *pfn_folio(unsigned long pfn)
1915 {
1916 return page_folio(pfn_to_page(pfn));
1917 }
1918
1919 /**
1920 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1921 * @folio: The folio.
1922 *
1923 * This function checks if a folio has been pinned via a call to
1924 * a function in the pin_user_pages() family.
1925 *
1926 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1927 * because it means "definitely not pinned for DMA", but true means "probably
1928 * pinned for DMA, but possibly a false positive due to having at least
1929 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1930 *
1931 * False positives are OK, because: a) it's unlikely for a folio to
1932 * get that many refcounts, and b) all the callers of this routine are
1933 * expected to be able to deal gracefully with a false positive.
1934 *
1935 * For large folios, the result will be exactly correct. That's because
1936 * we have more tracking data available: the _pincount field is used
1937 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1938 *
1939 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1940 *
1941 * Return: True, if it is likely that the folio has been "dma-pinned".
1942 * False, if the folio is definitely not dma-pinned.
1943 */
folio_maybe_dma_pinned(struct folio * folio)1944 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1945 {
1946 if (folio_test_large(folio))
1947 return atomic_read(&folio->_pincount) > 0;
1948
1949 /*
1950 * folio_ref_count() is signed. If that refcount overflows, then
1951 * folio_ref_count() returns a negative value, and callers will avoid
1952 * further incrementing the refcount.
1953 *
1954 * Here, for that overflow case, use the sign bit to count a little
1955 * bit higher via unsigned math, and thus still get an accurate result.
1956 */
1957 return ((unsigned int)folio_ref_count(folio)) >=
1958 GUP_PIN_COUNTING_BIAS;
1959 }
1960
1961 /*
1962 * This should most likely only be called during fork() to see whether we
1963 * should break the cow immediately for an anon page on the src mm.
1964 *
1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1966 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1967 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1968 struct folio *folio)
1969 {
1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1971
1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1973 return false;
1974
1975 return folio_maybe_dma_pinned(folio);
1976 }
1977
1978 /**
1979 * is_zero_page - Query if a page is a zero page
1980 * @page: The page to query
1981 *
1982 * This returns true if @page is one of the permanent zero pages.
1983 */
is_zero_page(const struct page * page)1984 static inline bool is_zero_page(const struct page *page)
1985 {
1986 return is_zero_pfn(page_to_pfn(page));
1987 }
1988
1989 /**
1990 * is_zero_folio - Query if a folio is a zero page
1991 * @folio: The folio to query
1992 *
1993 * This returns true if @folio is one of the permanent zero pages.
1994 */
is_zero_folio(const struct folio * folio)1995 static inline bool is_zero_folio(const struct folio *folio)
1996 {
1997 return is_zero_page(&folio->page);
1998 }
1999
2000 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2001 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2002 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2003 {
2004 #ifdef CONFIG_CMA
2005 int mt = folio_migratetype(folio);
2006
2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2008 return false;
2009 #endif
2010 /* The zero page can be "pinned" but gets special handling. */
2011 if (is_zero_folio(folio))
2012 return true;
2013
2014 /* Coherent device memory must always allow eviction. */
2015 if (folio_is_device_coherent(folio))
2016 return false;
2017
2018 /* Otherwise, non-movable zone folios can be pinned. */
2019 return !folio_is_zone_movable(folio);
2020
2021 }
2022 #else
folio_is_longterm_pinnable(struct folio * folio)2023 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2024 {
2025 return true;
2026 }
2027 #endif
2028
set_page_zone(struct page * page,enum zone_type zone)2029 static inline void set_page_zone(struct page *page, enum zone_type zone)
2030 {
2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2033 }
2034
set_page_node(struct page * page,unsigned long node)2035 static inline void set_page_node(struct page *page, unsigned long node)
2036 {
2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2039 }
2040
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2041 static inline void set_page_links(struct page *page, enum zone_type zone,
2042 unsigned long node, unsigned long pfn)
2043 {
2044 set_page_zone(page, zone);
2045 set_page_node(page, node);
2046 #ifdef SECTION_IN_PAGE_FLAGS
2047 set_page_section(page, pfn_to_section_nr(pfn));
2048 #endif
2049 }
2050
2051 /**
2052 * folio_nr_pages - The number of pages in the folio.
2053 * @folio: The folio.
2054 *
2055 * Return: A positive power of two.
2056 */
folio_nr_pages(const struct folio * folio)2057 static inline long folio_nr_pages(const struct folio *folio)
2058 {
2059 if (!folio_test_large(folio))
2060 return 1;
2061 #ifdef CONFIG_64BIT
2062 return folio->_folio_nr_pages;
2063 #else
2064 return 1L << (folio->_flags_1 & 0xff);
2065 #endif
2066 }
2067
2068 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2069 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2070 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2071 #else
2072 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2073 #endif
2074
2075 /*
2076 * compound_nr() returns the number of pages in this potentially compound
2077 * page. compound_nr() can be called on a tail page, and is defined to
2078 * return 1 in that case.
2079 */
compound_nr(struct page * page)2080 static inline unsigned long compound_nr(struct page *page)
2081 {
2082 struct folio *folio = (struct folio *)page;
2083
2084 if (!test_bit(PG_head, &folio->flags))
2085 return 1;
2086 #ifdef CONFIG_64BIT
2087 return folio->_folio_nr_pages;
2088 #else
2089 return 1L << (folio->_flags_1 & 0xff);
2090 #endif
2091 }
2092
2093 /**
2094 * thp_nr_pages - The number of regular pages in this huge page.
2095 * @page: The head page of a huge page.
2096 */
thp_nr_pages(struct page * page)2097 static inline int thp_nr_pages(struct page *page)
2098 {
2099 return folio_nr_pages((struct folio *)page);
2100 }
2101
2102 /**
2103 * folio_next - Move to the next physical folio.
2104 * @folio: The folio we're currently operating on.
2105 *
2106 * If you have physically contiguous memory which may span more than
2107 * one folio (eg a &struct bio_vec), use this function to move from one
2108 * folio to the next. Do not use it if the memory is only virtually
2109 * contiguous as the folios are almost certainly not adjacent to each
2110 * other. This is the folio equivalent to writing ``page++``.
2111 *
2112 * Context: We assume that the folios are refcounted and/or locked at a
2113 * higher level and do not adjust the reference counts.
2114 * Return: The next struct folio.
2115 */
folio_next(struct folio * folio)2116 static inline struct folio *folio_next(struct folio *folio)
2117 {
2118 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2119 }
2120
2121 /**
2122 * folio_shift - The size of the memory described by this folio.
2123 * @folio: The folio.
2124 *
2125 * A folio represents a number of bytes which is a power-of-two in size.
2126 * This function tells you which power-of-two the folio is. See also
2127 * folio_size() and folio_order().
2128 *
2129 * Context: The caller should have a reference on the folio to prevent
2130 * it from being split. It is not necessary for the folio to be locked.
2131 * Return: The base-2 logarithm of the size of this folio.
2132 */
folio_shift(const struct folio * folio)2133 static inline unsigned int folio_shift(const struct folio *folio)
2134 {
2135 return PAGE_SHIFT + folio_order(folio);
2136 }
2137
2138 /**
2139 * folio_size - The number of bytes in a folio.
2140 * @folio: The folio.
2141 *
2142 * Context: The caller should have a reference on the folio to prevent
2143 * it from being split. It is not necessary for the folio to be locked.
2144 * Return: The number of bytes in this folio.
2145 */
folio_size(const struct folio * folio)2146 static inline size_t folio_size(const struct folio *folio)
2147 {
2148 return PAGE_SIZE << folio_order(folio);
2149 }
2150
2151 /**
2152 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2153 * tables of more than one MM
2154 * @folio: The folio.
2155 *
2156 * This function checks if the folio is currently mapped into more than one
2157 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2158 * ("mapped exclusively").
2159 *
2160 * For KSM folios, this function also returns "mapped shared" when a folio is
2161 * mapped multiple times into the same MM, because the individual page mappings
2162 * are independent.
2163 *
2164 * As precise information is not easily available for all folios, this function
2165 * estimates the number of MMs ("sharers") that are currently mapping a folio
2166 * using the number of times the first page of the folio is currently mapped
2167 * into page tables.
2168 *
2169 * For small anonymous folios and anonymous hugetlb folios, the return
2170 * value will be exactly correct: non-KSM folios can only be mapped at most once
2171 * into an MM, and they cannot be partially mapped. KSM folios are
2172 * considered shared even if mapped multiple times into the same MM.
2173 *
2174 * For other folios, the result can be fuzzy:
2175 * #. For partially-mappable large folios (THP), the return value can wrongly
2176 * indicate "mapped exclusively" (false negative) when the folio is
2177 * only partially mapped into at least one MM.
2178 * #. For pagecache folios (including hugetlb), the return value can wrongly
2179 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2180 * cover the same file range.
2181 *
2182 * Further, this function only considers current page table mappings that
2183 * are tracked using the folio mapcount(s).
2184 *
2185 * This function does not consider:
2186 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2187 * pagecache, temporary unmapping for migration).
2188 * #. If the folio is mapped differently (VM_PFNMAP).
2189 * #. If hugetlb page table sharing applies. Callers might want to check
2190 * hugetlb_pmd_shared().
2191 *
2192 * Return: Whether the folio is estimated to be mapped into more than one MM.
2193 */
folio_likely_mapped_shared(struct folio * folio)2194 static inline bool folio_likely_mapped_shared(struct folio *folio)
2195 {
2196 int mapcount = folio_mapcount(folio);
2197
2198 /* Only partially-mappable folios require more care. */
2199 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2200 return mapcount > 1;
2201
2202 /* A single mapping implies "mapped exclusively". */
2203 if (mapcount <= 1)
2204 return false;
2205
2206 /* If any page is mapped more than once we treat it "mapped shared". */
2207 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2208 return true;
2209
2210 /* Let's guess based on the first subpage. */
2211 return atomic_read(&folio->_mapcount) > 0;
2212 }
2213
2214 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2215 static inline int arch_make_folio_accessible(struct folio *folio)
2216 {
2217 return 0;
2218 }
2219 #endif
2220
2221 /*
2222 * Some inline functions in vmstat.h depend on page_zone()
2223 */
2224 #include <linux/vmstat.h>
2225
2226 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2227 #define HASHED_PAGE_VIRTUAL
2228 #endif
2229
2230 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2231 static inline void *page_address(const struct page *page)
2232 {
2233 return page->virtual;
2234 }
set_page_address(struct page * page,void * address)2235 static inline void set_page_address(struct page *page, void *address)
2236 {
2237 page->virtual = address;
2238 }
2239 #define page_address_init() do { } while(0)
2240 #endif
2241
2242 #if defined(HASHED_PAGE_VIRTUAL)
2243 void *page_address(const struct page *page);
2244 void set_page_address(struct page *page, void *virtual);
2245 void page_address_init(void);
2246 #endif
2247
lowmem_page_address(const struct page * page)2248 static __always_inline void *lowmem_page_address(const struct page *page)
2249 {
2250 return page_to_virt(page);
2251 }
2252
2253 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2254 #define page_address(page) lowmem_page_address(page)
2255 #define set_page_address(page, address) do { } while(0)
2256 #define page_address_init() do { } while(0)
2257 #endif
2258
folio_address(const struct folio * folio)2259 static inline void *folio_address(const struct folio *folio)
2260 {
2261 return page_address(&folio->page);
2262 }
2263
2264 /*
2265 * Return true only if the page has been allocated with
2266 * ALLOC_NO_WATERMARKS and the low watermark was not
2267 * met implying that the system is under some pressure.
2268 */
page_is_pfmemalloc(const struct page * page)2269 static inline bool page_is_pfmemalloc(const struct page *page)
2270 {
2271 /*
2272 * lru.next has bit 1 set if the page is allocated from the
2273 * pfmemalloc reserves. Callers may simply overwrite it if
2274 * they do not need to preserve that information.
2275 */
2276 return (uintptr_t)page->lru.next & BIT(1);
2277 }
2278
2279 /*
2280 * Return true only if the folio has been allocated with
2281 * ALLOC_NO_WATERMARKS and the low watermark was not
2282 * met implying that the system is under some pressure.
2283 */
folio_is_pfmemalloc(const struct folio * folio)2284 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2285 {
2286 /*
2287 * lru.next has bit 1 set if the page is allocated from the
2288 * pfmemalloc reserves. Callers may simply overwrite it if
2289 * they do not need to preserve that information.
2290 */
2291 return (uintptr_t)folio->lru.next & BIT(1);
2292 }
2293
2294 /*
2295 * Only to be called by the page allocator on a freshly allocated
2296 * page.
2297 */
set_page_pfmemalloc(struct page * page)2298 static inline void set_page_pfmemalloc(struct page *page)
2299 {
2300 page->lru.next = (void *)BIT(1);
2301 }
2302
clear_page_pfmemalloc(struct page * page)2303 static inline void clear_page_pfmemalloc(struct page *page)
2304 {
2305 page->lru.next = NULL;
2306 }
2307
2308 /*
2309 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2310 */
2311 extern void pagefault_out_of_memory(void);
2312
2313 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2314 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2315 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2316
2317 /*
2318 * Parameter block passed down to zap_pte_range in exceptional cases.
2319 */
2320 struct zap_details {
2321 struct folio *single_folio; /* Locked folio to be unmapped */
2322 bool even_cows; /* Zap COWed private pages too? */
2323 bool reclaim_pt; /* Need reclaim page tables? */
2324 zap_flags_t zap_flags; /* Extra flags for zapping */
2325 };
2326
2327 /*
2328 * Whether to drop the pte markers, for example, the uffd-wp information for
2329 * file-backed memory. This should only be specified when we will completely
2330 * drop the page in the mm, either by truncation or unmapping of the vma. By
2331 * default, the flag is not set.
2332 */
2333 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2334 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2335 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2336
2337 #ifdef CONFIG_SCHED_MM_CID
2338 void sched_mm_cid_before_execve(struct task_struct *t);
2339 void sched_mm_cid_after_execve(struct task_struct *t);
2340 void sched_mm_cid_fork(struct task_struct *t);
2341 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2342 static inline int task_mm_cid(struct task_struct *t)
2343 {
2344 return t->mm_cid;
2345 }
2346 #else
sched_mm_cid_before_execve(struct task_struct * t)2347 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2348 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2349 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2350 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2351 static inline int task_mm_cid(struct task_struct *t)
2352 {
2353 /*
2354 * Use the processor id as a fall-back when the mm cid feature is
2355 * disabled. This provides functional per-cpu data structure accesses
2356 * in user-space, althrough it won't provide the memory usage benefits.
2357 */
2358 return raw_smp_processor_id();
2359 }
2360 #endif
2361
2362 #ifdef CONFIG_MMU
2363 extern bool can_do_mlock(void);
2364 #else
can_do_mlock(void)2365 static inline bool can_do_mlock(void) { return false; }
2366 #endif
2367 extern int user_shm_lock(size_t, struct ucounts *);
2368 extern void user_shm_unlock(size_t, struct ucounts *);
2369
2370 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2371 pte_t pte);
2372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2373 pte_t pte);
2374 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2375 unsigned long addr, pmd_t pmd);
2376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2377 pmd_t pmd);
2378
2379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2380 unsigned long size);
2381 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2382 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2383 static inline void zap_vma_pages(struct vm_area_struct *vma)
2384 {
2385 zap_page_range_single(vma, vma->vm_start,
2386 vma->vm_end - vma->vm_start, NULL);
2387 }
2388 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2389 struct vm_area_struct *start_vma, unsigned long start,
2390 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2391
2392 struct mmu_notifier_range;
2393
2394 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2395 unsigned long end, unsigned long floor, unsigned long ceiling);
2396 int
2397 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2398 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2399 void *buf, int len, int write);
2400
2401 struct follow_pfnmap_args {
2402 /**
2403 * Inputs:
2404 * @vma: Pointer to @vm_area_struct struct
2405 * @address: the virtual address to walk
2406 */
2407 struct vm_area_struct *vma;
2408 unsigned long address;
2409 /**
2410 * Internals:
2411 *
2412 * The caller shouldn't touch any of these.
2413 */
2414 spinlock_t *lock;
2415 pte_t *ptep;
2416 /**
2417 * Outputs:
2418 *
2419 * @pfn: the PFN of the address
2420 * @pgprot: the pgprot_t of the mapping
2421 * @writable: whether the mapping is writable
2422 * @special: whether the mapping is a special mapping (real PFN maps)
2423 */
2424 unsigned long pfn;
2425 pgprot_t pgprot;
2426 bool writable;
2427 bool special;
2428 };
2429 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2430 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2431
2432 extern void truncate_pagecache(struct inode *inode, loff_t new);
2433 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2434 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2435 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2436 int generic_error_remove_folio(struct address_space *mapping,
2437 struct folio *folio);
2438
2439 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2440 unsigned long address, struct pt_regs *regs);
2441
2442 #ifdef CONFIG_MMU
2443 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2444 unsigned long address, unsigned int flags,
2445 struct pt_regs *regs);
2446 extern int fixup_user_fault(struct mm_struct *mm,
2447 unsigned long address, unsigned int fault_flags,
2448 bool *unlocked);
2449 void unmap_mapping_pages(struct address_space *mapping,
2450 pgoff_t start, pgoff_t nr, bool even_cows);
2451 void unmap_mapping_range(struct address_space *mapping,
2452 loff_t const holebegin, loff_t const holelen, int even_cows);
2453 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2454 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2455 unsigned long address, unsigned int flags,
2456 struct pt_regs *regs)
2457 {
2458 /* should never happen if there's no MMU */
2459 BUG();
2460 return VM_FAULT_SIGBUS;
2461 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2462 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2463 unsigned int fault_flags, bool *unlocked)
2464 {
2465 /* should never happen if there's no MMU */
2466 BUG();
2467 return -EFAULT;
2468 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2469 static inline void unmap_mapping_pages(struct address_space *mapping,
2470 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2471 static inline void unmap_mapping_range(struct address_space *mapping,
2472 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2473 #endif
2474
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2475 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2476 loff_t const holebegin, loff_t const holelen)
2477 {
2478 unmap_mapping_range(mapping, holebegin, holelen, 0);
2479 }
2480
2481 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2482 unsigned long addr);
2483
2484 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2485 void *buf, int len, unsigned int gup_flags);
2486 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2487 void *buf, int len, unsigned int gup_flags);
2488
2489 long get_user_pages_remote(struct mm_struct *mm,
2490 unsigned long start, unsigned long nr_pages,
2491 unsigned int gup_flags, struct page **pages,
2492 int *locked);
2493 long pin_user_pages_remote(struct mm_struct *mm,
2494 unsigned long start, unsigned long nr_pages,
2495 unsigned int gup_flags, struct page **pages,
2496 int *locked);
2497
2498 /*
2499 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2500 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2501 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2502 unsigned long addr,
2503 int gup_flags,
2504 struct vm_area_struct **vmap)
2505 {
2506 struct page *page;
2507 struct vm_area_struct *vma;
2508 int got;
2509
2510 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2511 return ERR_PTR(-EINVAL);
2512
2513 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2514
2515 if (got < 0)
2516 return ERR_PTR(got);
2517
2518 vma = vma_lookup(mm, addr);
2519 if (WARN_ON_ONCE(!vma)) {
2520 put_page(page);
2521 return ERR_PTR(-EINVAL);
2522 }
2523
2524 *vmap = vma;
2525 return page;
2526 }
2527
2528 long get_user_pages(unsigned long start, unsigned long nr_pages,
2529 unsigned int gup_flags, struct page **pages);
2530 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2531 unsigned int gup_flags, struct page **pages);
2532 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 struct page **pages, unsigned int gup_flags);
2534 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2535 struct page **pages, unsigned int gup_flags);
2536 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2537 struct folio **folios, unsigned int max_folios,
2538 pgoff_t *offset);
2539 int folio_add_pins(struct folio *folio, unsigned int pins);
2540
2541 int get_user_pages_fast(unsigned long start, int nr_pages,
2542 unsigned int gup_flags, struct page **pages);
2543 int pin_user_pages_fast(unsigned long start, int nr_pages,
2544 unsigned int gup_flags, struct page **pages);
2545 void folio_add_pin(struct folio *folio);
2546
2547 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2548 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2549 struct task_struct *task, bool bypass_rlim);
2550
2551 struct kvec;
2552 struct page *get_dump_page(unsigned long addr);
2553
2554 bool folio_mark_dirty(struct folio *folio);
2555 bool folio_mark_dirty_lock(struct folio *folio);
2556 bool set_page_dirty(struct page *page);
2557 int set_page_dirty_lock(struct page *page);
2558
2559 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2560
2561 /*
2562 * Flags used by change_protection(). For now we make it a bitmap so
2563 * that we can pass in multiple flags just like parameters. However
2564 * for now all the callers are only use one of the flags at the same
2565 * time.
2566 */
2567 /*
2568 * Whether we should manually check if we can map individual PTEs writable,
2569 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2570 * PTEs automatically in a writable mapping.
2571 */
2572 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2573 /* Whether this protection change is for NUMA hints */
2574 #define MM_CP_PROT_NUMA (1UL << 1)
2575 /* Whether this change is for write protecting */
2576 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2577 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2578 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2579 MM_CP_UFFD_WP_RESOLVE)
2580
2581 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2582 pte_t pte);
2583 extern long change_protection(struct mmu_gather *tlb,
2584 struct vm_area_struct *vma, unsigned long start,
2585 unsigned long end, unsigned long cp_flags);
2586 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2587 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2588 unsigned long start, unsigned long end, unsigned long newflags);
2589
2590 /*
2591 * doesn't attempt to fault and will return short.
2592 */
2593 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2594 unsigned int gup_flags, struct page **pages);
2595
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2596 static inline bool get_user_page_fast_only(unsigned long addr,
2597 unsigned int gup_flags, struct page **pagep)
2598 {
2599 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2600 }
2601 /*
2602 * per-process(per-mm_struct) statistics.
2603 */
get_mm_counter(struct mm_struct * mm,int member)2604 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2605 {
2606 return percpu_counter_read_positive(&mm->rss_stat[member]);
2607 }
2608
2609 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2610
add_mm_counter(struct mm_struct * mm,int member,long value)2611 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2612 {
2613 percpu_counter_add(&mm->rss_stat[member], value);
2614
2615 mm_trace_rss_stat(mm, member);
2616 }
2617
inc_mm_counter(struct mm_struct * mm,int member)2618 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2619 {
2620 percpu_counter_inc(&mm->rss_stat[member]);
2621
2622 mm_trace_rss_stat(mm, member);
2623 }
2624
dec_mm_counter(struct mm_struct * mm,int member)2625 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2626 {
2627 percpu_counter_dec(&mm->rss_stat[member]);
2628
2629 mm_trace_rss_stat(mm, member);
2630 }
2631
2632 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2633 static inline int mm_counter_file(struct folio *folio)
2634 {
2635 if (folio_test_swapbacked(folio))
2636 return MM_SHMEMPAGES;
2637 return MM_FILEPAGES;
2638 }
2639
mm_counter(struct folio * folio)2640 static inline int mm_counter(struct folio *folio)
2641 {
2642 if (folio_test_anon(folio))
2643 return MM_ANONPAGES;
2644 return mm_counter_file(folio);
2645 }
2646
get_mm_rss(struct mm_struct * mm)2647 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2648 {
2649 return get_mm_counter(mm, MM_FILEPAGES) +
2650 get_mm_counter(mm, MM_ANONPAGES) +
2651 get_mm_counter(mm, MM_SHMEMPAGES);
2652 }
2653
get_mm_hiwater_rss(struct mm_struct * mm)2654 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2655 {
2656 return max(mm->hiwater_rss, get_mm_rss(mm));
2657 }
2658
get_mm_hiwater_vm(struct mm_struct * mm)2659 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2660 {
2661 return max(mm->hiwater_vm, mm->total_vm);
2662 }
2663
update_hiwater_rss(struct mm_struct * mm)2664 static inline void update_hiwater_rss(struct mm_struct *mm)
2665 {
2666 unsigned long _rss = get_mm_rss(mm);
2667
2668 if ((mm)->hiwater_rss < _rss)
2669 (mm)->hiwater_rss = _rss;
2670 }
2671
update_hiwater_vm(struct mm_struct * mm)2672 static inline void update_hiwater_vm(struct mm_struct *mm)
2673 {
2674 if (mm->hiwater_vm < mm->total_vm)
2675 mm->hiwater_vm = mm->total_vm;
2676 }
2677
reset_mm_hiwater_rss(struct mm_struct * mm)2678 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2679 {
2680 mm->hiwater_rss = get_mm_rss(mm);
2681 }
2682
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2683 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2684 struct mm_struct *mm)
2685 {
2686 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2687
2688 if (*maxrss < hiwater_rss)
2689 *maxrss = hiwater_rss;
2690 }
2691
2692 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2693 static inline int pte_special(pte_t pte)
2694 {
2695 return 0;
2696 }
2697
pte_mkspecial(pte_t pte)2698 static inline pte_t pte_mkspecial(pte_t pte)
2699 {
2700 return pte;
2701 }
2702 #endif
2703
2704 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2705 static inline bool pmd_special(pmd_t pmd)
2706 {
2707 return false;
2708 }
2709
pmd_mkspecial(pmd_t pmd)2710 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2711 {
2712 return pmd;
2713 }
2714 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2715
2716 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2717 static inline bool pud_special(pud_t pud)
2718 {
2719 return false;
2720 }
2721
pud_mkspecial(pud_t pud)2722 static inline pud_t pud_mkspecial(pud_t pud)
2723 {
2724 return pud;
2725 }
2726 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2727
2728 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2729 static inline int pte_devmap(pte_t pte)
2730 {
2731 return 0;
2732 }
2733 #endif
2734
2735 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2737 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2738 spinlock_t **ptl)
2739 {
2740 pte_t *ptep;
2741 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2742 return ptep;
2743 }
2744
2745 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2746 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2747 unsigned long address)
2748 {
2749 return 0;
2750 }
2751 #else
2752 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2753 #endif
2754
2755 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2756 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2757 unsigned long address)
2758 {
2759 return 0;
2760 }
mm_inc_nr_puds(struct mm_struct * mm)2761 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2762 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2763
2764 #else
2765 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2766
mm_inc_nr_puds(struct mm_struct * mm)2767 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2768 {
2769 if (mm_pud_folded(mm))
2770 return;
2771 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2772 }
2773
mm_dec_nr_puds(struct mm_struct * mm)2774 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2775 {
2776 if (mm_pud_folded(mm))
2777 return;
2778 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2779 }
2780 #endif
2781
2782 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2783 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2784 unsigned long address)
2785 {
2786 return 0;
2787 }
2788
mm_inc_nr_pmds(struct mm_struct * mm)2789 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2790 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2791
2792 #else
2793 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2794
mm_inc_nr_pmds(struct mm_struct * mm)2795 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2796 {
2797 if (mm_pmd_folded(mm))
2798 return;
2799 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2800 }
2801
mm_dec_nr_pmds(struct mm_struct * mm)2802 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2803 {
2804 if (mm_pmd_folded(mm))
2805 return;
2806 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2807 }
2808 #endif
2809
2810 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2812 {
2813 atomic_long_set(&mm->pgtables_bytes, 0);
2814 }
2815
mm_pgtables_bytes(const struct mm_struct * mm)2816 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2817 {
2818 return atomic_long_read(&mm->pgtables_bytes);
2819 }
2820
mm_inc_nr_ptes(struct mm_struct * mm)2821 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2822 {
2823 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2824 }
2825
mm_dec_nr_ptes(struct mm_struct * mm)2826 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2827 {
2828 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2829 }
2830 #else
2831
mm_pgtables_bytes_init(struct mm_struct * mm)2832 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2833 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2834 {
2835 return 0;
2836 }
2837
mm_inc_nr_ptes(struct mm_struct * mm)2838 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2839 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2840 #endif
2841
2842 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2843 int __pte_alloc_kernel(pmd_t *pmd);
2844
2845 #if defined(CONFIG_MMU)
2846
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2847 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2848 unsigned long address)
2849 {
2850 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2851 NULL : p4d_offset(pgd, address);
2852 }
2853
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2854 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2855 unsigned long address)
2856 {
2857 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2858 NULL : pud_offset(p4d, address);
2859 }
2860
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2861 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2862 {
2863 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2864 NULL: pmd_offset(pud, address);
2865 }
2866 #endif /* CONFIG_MMU */
2867
virt_to_ptdesc(const void * x)2868 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2869 {
2870 return page_ptdesc(virt_to_page(x));
2871 }
2872
ptdesc_to_virt(const struct ptdesc * pt)2873 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2874 {
2875 return page_to_virt(ptdesc_page(pt));
2876 }
2877
ptdesc_address(const struct ptdesc * pt)2878 static inline void *ptdesc_address(const struct ptdesc *pt)
2879 {
2880 return folio_address(ptdesc_folio(pt));
2881 }
2882
pagetable_is_reserved(struct ptdesc * pt)2883 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2884 {
2885 return folio_test_reserved(ptdesc_folio(pt));
2886 }
2887
2888 /**
2889 * pagetable_alloc - Allocate pagetables
2890 * @gfp: GFP flags
2891 * @order: desired pagetable order
2892 *
2893 * pagetable_alloc allocates memory for page tables as well as a page table
2894 * descriptor to describe that memory.
2895 *
2896 * Return: The ptdesc describing the allocated page tables.
2897 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2898 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2899 {
2900 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2901
2902 return page_ptdesc(page);
2903 }
2904 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2905
2906 /**
2907 * pagetable_free - Free pagetables
2908 * @pt: The page table descriptor
2909 *
2910 * pagetable_free frees the memory of all page tables described by a page
2911 * table descriptor and the memory for the descriptor itself.
2912 */
pagetable_free(struct ptdesc * pt)2913 static inline void pagetable_free(struct ptdesc *pt)
2914 {
2915 struct page *page = ptdesc_page(pt);
2916
2917 __free_pages(page, compound_order(page));
2918 }
2919
2920 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2921 #if ALLOC_SPLIT_PTLOCKS
2922 void __init ptlock_cache_init(void);
2923 bool ptlock_alloc(struct ptdesc *ptdesc);
2924 void ptlock_free(struct ptdesc *ptdesc);
2925
ptlock_ptr(struct ptdesc * ptdesc)2926 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2927 {
2928 return ptdesc->ptl;
2929 }
2930 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2931 static inline void ptlock_cache_init(void)
2932 {
2933 }
2934
ptlock_alloc(struct ptdesc * ptdesc)2935 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2936 {
2937 return true;
2938 }
2939
ptlock_free(struct ptdesc * ptdesc)2940 static inline void ptlock_free(struct ptdesc *ptdesc)
2941 {
2942 }
2943
ptlock_ptr(struct ptdesc * ptdesc)2944 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2945 {
2946 return &ptdesc->ptl;
2947 }
2948 #endif /* ALLOC_SPLIT_PTLOCKS */
2949
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2950 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2951 {
2952 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2953 }
2954
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2955 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2956 {
2957 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2958 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2959 return ptlock_ptr(virt_to_ptdesc(pte));
2960 }
2961
ptlock_init(struct ptdesc * ptdesc)2962 static inline bool ptlock_init(struct ptdesc *ptdesc)
2963 {
2964 /*
2965 * prep_new_page() initialize page->private (and therefore page->ptl)
2966 * with 0. Make sure nobody took it in use in between.
2967 *
2968 * It can happen if arch try to use slab for page table allocation:
2969 * slab code uses page->slab_cache, which share storage with page->ptl.
2970 */
2971 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2972 if (!ptlock_alloc(ptdesc))
2973 return false;
2974 spin_lock_init(ptlock_ptr(ptdesc));
2975 return true;
2976 }
2977
2978 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2979 /*
2980 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2981 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2982 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2983 {
2984 return &mm->page_table_lock;
2985 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2986 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2987 {
2988 return &mm->page_table_lock;
2989 }
ptlock_cache_init(void)2990 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2991 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2992 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2993 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2994
__pagetable_ctor(struct ptdesc * ptdesc)2995 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2996 {
2997 struct folio *folio = ptdesc_folio(ptdesc);
2998
2999 __folio_set_pgtable(folio);
3000 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3001 }
3002
pagetable_dtor(struct ptdesc * ptdesc)3003 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3004 {
3005 struct folio *folio = ptdesc_folio(ptdesc);
3006
3007 ptlock_free(ptdesc);
3008 __folio_clear_pgtable(folio);
3009 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3010 }
3011
pagetable_dtor_free(struct ptdesc * ptdesc)3012 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3013 {
3014 pagetable_dtor(ptdesc);
3015 pagetable_free(ptdesc);
3016 }
3017
pagetable_pte_ctor(struct ptdesc * ptdesc)3018 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3019 {
3020 if (!ptlock_init(ptdesc))
3021 return false;
3022 __pagetable_ctor(ptdesc);
3023 return true;
3024 }
3025
3026 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3027 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3028 pmd_t *pmdvalp)
3029 {
3030 pte_t *pte;
3031
3032 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3033 return pte;
3034 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3035 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3036 {
3037 return __pte_offset_map(pmd, addr, NULL);
3038 }
3039
3040 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3041 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3042 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3043 unsigned long addr, spinlock_t **ptlp)
3044 {
3045 pte_t *pte;
3046
3047 __cond_lock(RCU, __cond_lock(*ptlp,
3048 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3049 return pte;
3050 }
3051
3052 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3053 unsigned long addr, spinlock_t **ptlp);
3054 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3055 unsigned long addr, pmd_t *pmdvalp,
3056 spinlock_t **ptlp);
3057
3058 #define pte_unmap_unlock(pte, ptl) do { \
3059 spin_unlock(ptl); \
3060 pte_unmap(pte); \
3061 } while (0)
3062
3063 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3064
3065 #define pte_alloc_map(mm, pmd, address) \
3066 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3067
3068 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3069 (pte_alloc(mm, pmd) ? \
3070 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3071
3072 #define pte_alloc_kernel(pmd, address) \
3073 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3074 NULL: pte_offset_kernel(pmd, address))
3075
3076 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3077
pmd_pgtable_page(pmd_t * pmd)3078 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3079 {
3080 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3081 return virt_to_page((void *)((unsigned long) pmd & mask));
3082 }
3083
pmd_ptdesc(pmd_t * pmd)3084 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3085 {
3086 return page_ptdesc(pmd_pgtable_page(pmd));
3087 }
3088
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3089 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3090 {
3091 return ptlock_ptr(pmd_ptdesc(pmd));
3092 }
3093
pmd_ptlock_init(struct ptdesc * ptdesc)3094 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3095 {
3096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3097 ptdesc->pmd_huge_pte = NULL;
3098 #endif
3099 return ptlock_init(ptdesc);
3100 }
3101
3102 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3103
3104 #else
3105
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3106 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3107 {
3108 return &mm->page_table_lock;
3109 }
3110
pmd_ptlock_init(struct ptdesc * ptdesc)3111 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3112
3113 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3114
3115 #endif
3116
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3117 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3118 {
3119 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3120 spin_lock(ptl);
3121 return ptl;
3122 }
3123
pagetable_pmd_ctor(struct ptdesc * ptdesc)3124 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3125 {
3126 if (!pmd_ptlock_init(ptdesc))
3127 return false;
3128 ptdesc_pmd_pts_init(ptdesc);
3129 __pagetable_ctor(ptdesc);
3130 return true;
3131 }
3132
3133 /*
3134 * No scalability reason to split PUD locks yet, but follow the same pattern
3135 * as the PMD locks to make it easier if we decide to. The VM should not be
3136 * considered ready to switch to split PUD locks yet; there may be places
3137 * which need to be converted from page_table_lock.
3138 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3139 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3140 {
3141 return &mm->page_table_lock;
3142 }
3143
pud_lock(struct mm_struct * mm,pud_t * pud)3144 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3145 {
3146 spinlock_t *ptl = pud_lockptr(mm, pud);
3147
3148 spin_lock(ptl);
3149 return ptl;
3150 }
3151
pagetable_pud_ctor(struct ptdesc * ptdesc)3152 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3153 {
3154 __pagetable_ctor(ptdesc);
3155 }
3156
pagetable_p4d_ctor(struct ptdesc * ptdesc)3157 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3158 {
3159 __pagetable_ctor(ptdesc);
3160 }
3161
pagetable_pgd_ctor(struct ptdesc * ptdesc)3162 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3163 {
3164 __pagetable_ctor(ptdesc);
3165 }
3166
3167 extern void __init pagecache_init(void);
3168 extern void free_initmem(void);
3169
3170 /*
3171 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3172 * into the buddy system. The freed pages will be poisoned with pattern
3173 * "poison" if it's within range [0, UCHAR_MAX].
3174 * Return pages freed into the buddy system.
3175 */
3176 extern unsigned long free_reserved_area(void *start, void *end,
3177 int poison, const char *s);
3178
3179 extern void adjust_managed_page_count(struct page *page, long count);
3180
3181 extern void reserve_bootmem_region(phys_addr_t start,
3182 phys_addr_t end, int nid);
3183
3184 /* Free the reserved page into the buddy system, so it gets managed. */
3185 void free_reserved_page(struct page *page);
3186 #define free_highmem_page(page) free_reserved_page(page)
3187
mark_page_reserved(struct page * page)3188 static inline void mark_page_reserved(struct page *page)
3189 {
3190 SetPageReserved(page);
3191 adjust_managed_page_count(page, -1);
3192 }
3193
free_reserved_ptdesc(struct ptdesc * pt)3194 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3195 {
3196 free_reserved_page(ptdesc_page(pt));
3197 }
3198
3199 /*
3200 * Default method to free all the __init memory into the buddy system.
3201 * The freed pages will be poisoned with pattern "poison" if it's within
3202 * range [0, UCHAR_MAX].
3203 * Return pages freed into the buddy system.
3204 */
free_initmem_default(int poison)3205 static inline unsigned long free_initmem_default(int poison)
3206 {
3207 extern char __init_begin[], __init_end[];
3208
3209 return free_reserved_area(&__init_begin, &__init_end,
3210 poison, "unused kernel image (initmem)");
3211 }
3212
get_num_physpages(void)3213 static inline unsigned long get_num_physpages(void)
3214 {
3215 int nid;
3216 unsigned long phys_pages = 0;
3217
3218 for_each_online_node(nid)
3219 phys_pages += node_present_pages(nid);
3220
3221 return phys_pages;
3222 }
3223
3224 /*
3225 * Using memblock node mappings, an architecture may initialise its
3226 * zones, allocate the backing mem_map and account for memory holes in an
3227 * architecture independent manner.
3228 *
3229 * An architecture is expected to register range of page frames backed by
3230 * physical memory with memblock_add[_node]() before calling
3231 * free_area_init() passing in the PFN each zone ends at. At a basic
3232 * usage, an architecture is expected to do something like
3233 *
3234 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3235 * max_highmem_pfn};
3236 * for_each_valid_physical_page_range()
3237 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3238 * free_area_init(max_zone_pfns);
3239 */
3240 void free_area_init(unsigned long *max_zone_pfn);
3241 unsigned long node_map_pfn_alignment(void);
3242 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3243 unsigned long end_pfn);
3244 extern void get_pfn_range_for_nid(unsigned int nid,
3245 unsigned long *start_pfn, unsigned long *end_pfn);
3246
3247 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3248 static inline int early_pfn_to_nid(unsigned long pfn)
3249 {
3250 return 0;
3251 }
3252 #else
3253 /* please see mm/page_alloc.c */
3254 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3255 #endif
3256
3257 extern void mem_init(void);
3258 extern void __init mmap_init(void);
3259
3260 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3261 static inline void show_mem(void)
3262 {
3263 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3264 }
3265 extern long si_mem_available(void);
3266 extern void si_meminfo(struct sysinfo * val);
3267 extern void si_meminfo_node(struct sysinfo *val, int nid);
3268
3269 extern __printf(3, 4)
3270 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3271
3272 extern void setup_per_cpu_pageset(void);
3273
3274 /* nommu.c */
3275 extern atomic_long_t mmap_pages_allocated;
3276 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3277
3278 /* interval_tree.c */
3279 void vma_interval_tree_insert(struct vm_area_struct *node,
3280 struct rb_root_cached *root);
3281 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3282 struct vm_area_struct *prev,
3283 struct rb_root_cached *root);
3284 void vma_interval_tree_remove(struct vm_area_struct *node,
3285 struct rb_root_cached *root);
3286 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3287 unsigned long start, unsigned long last);
3288 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3289 unsigned long start, unsigned long last);
3290
3291 #define vma_interval_tree_foreach(vma, root, start, last) \
3292 for (vma = vma_interval_tree_iter_first(root, start, last); \
3293 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3294
3295 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3296 struct rb_root_cached *root);
3297 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3298 struct rb_root_cached *root);
3299 struct anon_vma_chain *
3300 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3301 unsigned long start, unsigned long last);
3302 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3303 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3304 #ifdef CONFIG_DEBUG_VM_RB
3305 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3306 #endif
3307
3308 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3309 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3310 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3311
3312 /* mmap.c */
3313 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3314 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3315 extern void exit_mmap(struct mm_struct *);
3316 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3317 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3318 unsigned long addr, bool write);
3319
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3320 static inline int check_data_rlimit(unsigned long rlim,
3321 unsigned long new,
3322 unsigned long start,
3323 unsigned long end_data,
3324 unsigned long start_data)
3325 {
3326 if (rlim < RLIM_INFINITY) {
3327 if (((new - start) + (end_data - start_data)) > rlim)
3328 return -ENOSPC;
3329 }
3330
3331 return 0;
3332 }
3333
3334 extern int mm_take_all_locks(struct mm_struct *mm);
3335 extern void mm_drop_all_locks(struct mm_struct *mm);
3336
3337 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3338 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3339 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3340 extern struct file *get_task_exe_file(struct task_struct *task);
3341
3342 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3343 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3344
3345 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3346 const struct vm_special_mapping *sm);
3347 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3348 unsigned long addr, unsigned long len,
3349 unsigned long flags,
3350 const struct vm_special_mapping *spec);
3351
3352 unsigned long randomize_stack_top(unsigned long stack_top);
3353 unsigned long randomize_page(unsigned long start, unsigned long range);
3354
3355 unsigned long
3356 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3357 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3358
3359 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3360 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3361 unsigned long pgoff, unsigned long flags)
3362 {
3363 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3364 }
3365
3366 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3367 unsigned long len, unsigned long prot, unsigned long flags,
3368 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3369 struct list_head *uf);
3370 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3371 unsigned long start, size_t len, struct list_head *uf,
3372 bool unlock);
3373 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3374 struct mm_struct *mm, unsigned long start,
3375 unsigned long end, struct list_head *uf, bool unlock);
3376 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3377 struct list_head *uf);
3378 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3379
3380 #ifdef CONFIG_MMU
3381 extern int __mm_populate(unsigned long addr, unsigned long len,
3382 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3383 static inline void mm_populate(unsigned long addr, unsigned long len)
3384 {
3385 /* Ignore errors */
3386 (void) __mm_populate(addr, len, 1);
3387 }
3388 #else
mm_populate(unsigned long addr,unsigned long len)3389 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3390 #endif
3391
3392 /* This takes the mm semaphore itself */
3393 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3394 extern int vm_munmap(unsigned long, size_t);
3395 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3396 unsigned long, unsigned long,
3397 unsigned long, unsigned long);
3398
3399 struct vm_unmapped_area_info {
3400 #define VM_UNMAPPED_AREA_TOPDOWN 1
3401 unsigned long flags;
3402 unsigned long length;
3403 unsigned long low_limit;
3404 unsigned long high_limit;
3405 unsigned long align_mask;
3406 unsigned long align_offset;
3407 unsigned long start_gap;
3408 };
3409
3410 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3411
3412 /* truncate.c */
3413 extern void truncate_inode_pages(struct address_space *, loff_t);
3414 extern void truncate_inode_pages_range(struct address_space *,
3415 loff_t lstart, loff_t lend);
3416 extern void truncate_inode_pages_final(struct address_space *);
3417
3418 /* generic vm_area_ops exported for stackable file systems */
3419 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3420 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3421 pgoff_t start_pgoff, pgoff_t end_pgoff);
3422 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3423 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf);
3424
3425 extern unsigned long stack_guard_gap;
3426 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3427 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3428 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3429
3430 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3431 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3432 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3433 struct vm_area_struct **pprev);
3434
3435 /*
3436 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3437 * NULL if none. Assume start_addr < end_addr.
3438 */
3439 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3440 unsigned long start_addr, unsigned long end_addr);
3441
3442 /**
3443 * vma_lookup() - Find a VMA at a specific address
3444 * @mm: The process address space.
3445 * @addr: The user address.
3446 *
3447 * Return: The vm_area_struct at the given address, %NULL otherwise.
3448 */
3449 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3450 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3451 {
3452 return mtree_load(&mm->mm_mt, addr);
3453 }
3454
stack_guard_start_gap(struct vm_area_struct * vma)3455 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3456 {
3457 if (vma->vm_flags & VM_GROWSDOWN)
3458 return stack_guard_gap;
3459
3460 /* See reasoning around the VM_SHADOW_STACK definition */
3461 if (vma->vm_flags & VM_SHADOW_STACK)
3462 return PAGE_SIZE;
3463
3464 return 0;
3465 }
3466
vm_start_gap(struct vm_area_struct * vma)3467 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3468 {
3469 unsigned long gap = stack_guard_start_gap(vma);
3470 unsigned long vm_start = vma->vm_start;
3471
3472 vm_start -= gap;
3473 if (vm_start > vma->vm_start)
3474 vm_start = 0;
3475 return vm_start;
3476 }
3477
vm_end_gap(struct vm_area_struct * vma)3478 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3479 {
3480 unsigned long vm_end = vma->vm_end;
3481
3482 if (vma->vm_flags & VM_GROWSUP) {
3483 vm_end += stack_guard_gap;
3484 if (vm_end < vma->vm_end)
3485 vm_end = -PAGE_SIZE;
3486 }
3487 return vm_end;
3488 }
3489
vma_pages(struct vm_area_struct * vma)3490 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3491 {
3492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3493 }
3494
3495 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3496 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3497 unsigned long vm_start, unsigned long vm_end)
3498 {
3499 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3500
3501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3502 vma = NULL;
3503
3504 return vma;
3505 }
3506
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3507 static inline bool range_in_vma(struct vm_area_struct *vma,
3508 unsigned long start, unsigned long end)
3509 {
3510 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3511 }
3512
3513 #ifdef CONFIG_MMU
3514 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3515 void vma_set_page_prot(struct vm_area_struct *vma);
3516 #else
vm_get_page_prot(unsigned long vm_flags)3517 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3518 {
3519 return __pgprot(0);
3520 }
vma_set_page_prot(struct vm_area_struct * vma)3521 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3522 {
3523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3524 }
3525 #endif
3526
3527 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3528
3529 #ifdef CONFIG_NUMA_BALANCING
3530 unsigned long change_prot_numa(struct vm_area_struct *vma,
3531 unsigned long start, unsigned long end);
3532 #endif
3533
3534 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3535 unsigned long addr);
3536 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3537 unsigned long pfn, unsigned long size, pgprot_t);
3538 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3539 unsigned long pfn, unsigned long size, pgprot_t prot);
3540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3541 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3542 struct page **pages, unsigned long *num);
3543 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3544 unsigned long num);
3545 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3546 unsigned long num);
3547 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3548 unsigned long pfn);
3549 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3550 unsigned long pfn, pgprot_t pgprot);
3551 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3552 pfn_t pfn);
3553 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3554 unsigned long addr, pfn_t pfn);
3555 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3556
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3557 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3558 unsigned long addr, struct page *page)
3559 {
3560 int err = vm_insert_page(vma, addr, page);
3561
3562 if (err == -ENOMEM)
3563 return VM_FAULT_OOM;
3564 if (err < 0 && err != -EBUSY)
3565 return VM_FAULT_SIGBUS;
3566
3567 return VM_FAULT_NOPAGE;
3568 }
3569
3570 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3571 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3572 unsigned long addr, unsigned long pfn,
3573 unsigned long size, pgprot_t prot)
3574 {
3575 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3576 }
3577 #endif
3578
vmf_error(int err)3579 static inline vm_fault_t vmf_error(int err)
3580 {
3581 if (err == -ENOMEM)
3582 return VM_FAULT_OOM;
3583 else if (err == -EHWPOISON)
3584 return VM_FAULT_HWPOISON;
3585 return VM_FAULT_SIGBUS;
3586 }
3587
3588 /*
3589 * Convert errno to return value for ->page_mkwrite() calls.
3590 *
3591 * This should eventually be merged with vmf_error() above, but will need a
3592 * careful audit of all vmf_error() callers.
3593 */
vmf_fs_error(int err)3594 static inline vm_fault_t vmf_fs_error(int err)
3595 {
3596 if (err == 0)
3597 return VM_FAULT_LOCKED;
3598 if (err == -EFAULT || err == -EAGAIN)
3599 return VM_FAULT_NOPAGE;
3600 if (err == -ENOMEM)
3601 return VM_FAULT_OOM;
3602 /* -ENOSPC, -EDQUOT, -EIO ... */
3603 return VM_FAULT_SIGBUS;
3604 }
3605
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3606 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3607 {
3608 if (vm_fault & VM_FAULT_OOM)
3609 return -ENOMEM;
3610 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3611 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3612 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3613 return -EFAULT;
3614 return 0;
3615 }
3616
3617 /*
3618 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3619 * a (NUMA hinting) fault is required.
3620 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3621 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3622 unsigned int flags)
3623 {
3624 /*
3625 * If callers don't want to honor NUMA hinting faults, no need to
3626 * determine if we would actually have to trigger a NUMA hinting fault.
3627 */
3628 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3629 return true;
3630
3631 /*
3632 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3633 *
3634 * Requiring a fault here even for inaccessible VMAs would mean that
3635 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3636 * refuses to process NUMA hinting faults in inaccessible VMAs.
3637 */
3638 return !vma_is_accessible(vma);
3639 }
3640
3641 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3643 unsigned long size, pte_fn_t fn, void *data);
3644 extern int apply_to_existing_page_range(struct mm_struct *mm,
3645 unsigned long address, unsigned long size,
3646 pte_fn_t fn, void *data);
3647
3648 #ifdef CONFIG_PAGE_POISONING
3649 extern void __kernel_poison_pages(struct page *page, int numpages);
3650 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3651 extern bool _page_poisoning_enabled_early;
3652 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3653 static inline bool page_poisoning_enabled(void)
3654 {
3655 return _page_poisoning_enabled_early;
3656 }
3657 /*
3658 * For use in fast paths after init_mem_debugging() has run, or when a
3659 * false negative result is not harmful when called too early.
3660 */
page_poisoning_enabled_static(void)3661 static inline bool page_poisoning_enabled_static(void)
3662 {
3663 return static_branch_unlikely(&_page_poisoning_enabled);
3664 }
kernel_poison_pages(struct page * page,int numpages)3665 static inline void kernel_poison_pages(struct page *page, int numpages)
3666 {
3667 if (page_poisoning_enabled_static())
3668 __kernel_poison_pages(page, numpages);
3669 }
kernel_unpoison_pages(struct page * page,int numpages)3670 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3671 {
3672 if (page_poisoning_enabled_static())
3673 __kernel_unpoison_pages(page, numpages);
3674 }
3675 #else
page_poisoning_enabled(void)3676 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3677 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3678 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3679 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3680 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3681 #endif
3682
3683 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3684 static inline bool want_init_on_alloc(gfp_t flags)
3685 {
3686 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3687 &init_on_alloc))
3688 return true;
3689 return flags & __GFP_ZERO;
3690 }
3691
3692 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3693 static inline bool want_init_on_free(void)
3694 {
3695 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3696 &init_on_free);
3697 }
3698
3699 extern bool _debug_pagealloc_enabled_early;
3700 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3701
debug_pagealloc_enabled(void)3702 static inline bool debug_pagealloc_enabled(void)
3703 {
3704 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3705 _debug_pagealloc_enabled_early;
3706 }
3707
3708 /*
3709 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3710 * or when a false negative result is not harmful when called too early.
3711 */
debug_pagealloc_enabled_static(void)3712 static inline bool debug_pagealloc_enabled_static(void)
3713 {
3714 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3715 return false;
3716
3717 return static_branch_unlikely(&_debug_pagealloc_enabled);
3718 }
3719
3720 /*
3721 * To support DEBUG_PAGEALLOC architecture must ensure that
3722 * __kernel_map_pages() never fails
3723 */
3724 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3725 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3726 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3727 {
3728 if (debug_pagealloc_enabled_static())
3729 __kernel_map_pages(page, numpages, 1);
3730 }
3731
debug_pagealloc_unmap_pages(struct page * page,int numpages)3732 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3733 {
3734 if (debug_pagealloc_enabled_static())
3735 __kernel_map_pages(page, numpages, 0);
3736 }
3737
3738 extern unsigned int _debug_guardpage_minorder;
3739 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3740
debug_guardpage_minorder(void)3741 static inline unsigned int debug_guardpage_minorder(void)
3742 {
3743 return _debug_guardpage_minorder;
3744 }
3745
debug_guardpage_enabled(void)3746 static inline bool debug_guardpage_enabled(void)
3747 {
3748 return static_branch_unlikely(&_debug_guardpage_enabled);
3749 }
3750
page_is_guard(struct page * page)3751 static inline bool page_is_guard(struct page *page)
3752 {
3753 if (!debug_guardpage_enabled())
3754 return false;
3755
3756 return PageGuard(page);
3757 }
3758
3759 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3760 static inline bool set_page_guard(struct zone *zone, struct page *page,
3761 unsigned int order)
3762 {
3763 if (!debug_guardpage_enabled())
3764 return false;
3765 return __set_page_guard(zone, page, order);
3766 }
3767
3768 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3769 static inline void clear_page_guard(struct zone *zone, struct page *page,
3770 unsigned int order)
3771 {
3772 if (!debug_guardpage_enabled())
3773 return;
3774 __clear_page_guard(zone, page, order);
3775 }
3776
3777 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3778 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3779 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3780 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3781 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3782 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3783 static inline bool set_page_guard(struct zone *zone, struct page *page,
3784 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3785 static inline void clear_page_guard(struct zone *zone, struct page *page,
3786 unsigned int order) {}
3787 #endif /* CONFIG_DEBUG_PAGEALLOC */
3788
3789 #ifdef __HAVE_ARCH_GATE_AREA
3790 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3791 extern int in_gate_area_no_mm(unsigned long addr);
3792 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3793 #else
get_gate_vma(struct mm_struct * mm)3794 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3795 {
3796 return NULL;
3797 }
in_gate_area_no_mm(unsigned long addr)3798 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3799 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3800 {
3801 return 0;
3802 }
3803 #endif /* __HAVE_ARCH_GATE_AREA */
3804
3805 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3806
3807 #ifdef CONFIG_SYSCTL
3808 extern int sysctl_drop_caches;
3809 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3810 loff_t *);
3811 #endif
3812
3813 void drop_slab(void);
3814
3815 #ifndef CONFIG_MMU
3816 #define randomize_va_space 0
3817 #else
3818 extern int randomize_va_space;
3819 #endif
3820
3821 const char * arch_vma_name(struct vm_area_struct *vma);
3822 #ifdef CONFIG_MMU
3823 void print_vma_addr(char *prefix, unsigned long rip);
3824 #else
print_vma_addr(char * prefix,unsigned long rip)3825 static inline void print_vma_addr(char *prefix, unsigned long rip)
3826 {
3827 }
3828 #endif
3829
3830 void *sparse_buffer_alloc(unsigned long size);
3831 struct page * __populate_section_memmap(unsigned long pfn,
3832 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3833 struct dev_pagemap *pgmap);
3834 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3835 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3836 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3837 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3838 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3839 struct vmem_altmap *altmap, struct page *reuse);
3840 void *vmemmap_alloc_block(unsigned long size, int node);
3841 struct vmem_altmap;
3842 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3843 struct vmem_altmap *altmap);
3844 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3845 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3846 unsigned long addr, unsigned long next);
3847 int vmemmap_check_pmd(pmd_t *pmd, int node,
3848 unsigned long addr, unsigned long next);
3849 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3850 int node, struct vmem_altmap *altmap);
3851 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3852 int node, struct vmem_altmap *altmap);
3853 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3854 struct vmem_altmap *altmap);
3855 void vmemmap_populate_print_last(void);
3856 #ifdef CONFIG_MEMORY_HOTPLUG
3857 void vmemmap_free(unsigned long start, unsigned long end,
3858 struct vmem_altmap *altmap);
3859 #endif
3860
3861 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3862 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3863 {
3864 /* number of pfns from base where pfn_to_page() is valid */
3865 if (altmap)
3866 return altmap->reserve + altmap->free;
3867 return 0;
3868 }
3869
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3870 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3871 unsigned long nr_pfns)
3872 {
3873 altmap->alloc -= nr_pfns;
3874 }
3875 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3876 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3877 {
3878 return 0;
3879 }
3880
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3881 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3882 unsigned long nr_pfns)
3883 {
3884 }
3885 #endif
3886
3887 #define VMEMMAP_RESERVE_NR 2
3888 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3889 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3890 struct dev_pagemap *pgmap)
3891 {
3892 unsigned long nr_pages;
3893 unsigned long nr_vmemmap_pages;
3894
3895 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3896 return false;
3897
3898 nr_pages = pgmap_vmemmap_nr(pgmap);
3899 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3900 /*
3901 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3902 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3903 */
3904 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3905 }
3906 /*
3907 * If we don't have an architecture override, use the generic rule
3908 */
3909 #ifndef vmemmap_can_optimize
3910 #define vmemmap_can_optimize __vmemmap_can_optimize
3911 #endif
3912
3913 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3914 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3915 struct dev_pagemap *pgmap)
3916 {
3917 return false;
3918 }
3919 #endif
3920
3921 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3922 unsigned long nr_pages);
3923
3924 enum mf_flags {
3925 MF_COUNT_INCREASED = 1 << 0,
3926 MF_ACTION_REQUIRED = 1 << 1,
3927 MF_MUST_KILL = 1 << 2,
3928 MF_SOFT_OFFLINE = 1 << 3,
3929 MF_UNPOISON = 1 << 4,
3930 MF_SW_SIMULATED = 1 << 5,
3931 MF_NO_RETRY = 1 << 6,
3932 MF_MEM_PRE_REMOVE = 1 << 7,
3933 };
3934 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3935 unsigned long count, int mf_flags);
3936 extern int memory_failure(unsigned long pfn, int flags);
3937 extern void memory_failure_queue_kick(int cpu);
3938 extern int unpoison_memory(unsigned long pfn);
3939 extern atomic_long_t num_poisoned_pages __read_mostly;
3940 extern int soft_offline_page(unsigned long pfn, int flags);
3941 #ifdef CONFIG_MEMORY_FAILURE
3942 /*
3943 * Sysfs entries for memory failure handling statistics.
3944 */
3945 extern const struct attribute_group memory_failure_attr_group;
3946 extern void memory_failure_queue(unsigned long pfn, int flags);
3947 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3948 bool *migratable_cleared);
3949 void num_poisoned_pages_inc(unsigned long pfn);
3950 void num_poisoned_pages_sub(unsigned long pfn, long i);
3951 #else
memory_failure_queue(unsigned long pfn,int flags)3952 static inline void memory_failure_queue(unsigned long pfn, int flags)
3953 {
3954 }
3955
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3956 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3957 bool *migratable_cleared)
3958 {
3959 return 0;
3960 }
3961
num_poisoned_pages_inc(unsigned long pfn)3962 static inline void num_poisoned_pages_inc(unsigned long pfn)
3963 {
3964 }
3965
num_poisoned_pages_sub(unsigned long pfn,long i)3966 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3967 {
3968 }
3969 #endif
3970
3971 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3972 extern void memblk_nr_poison_inc(unsigned long pfn);
3973 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3974 #else
memblk_nr_poison_inc(unsigned long pfn)3975 static inline void memblk_nr_poison_inc(unsigned long pfn)
3976 {
3977 }
3978
memblk_nr_poison_sub(unsigned long pfn,long i)3979 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3980 {
3981 }
3982 #endif
3983
3984 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3985 static inline int arch_memory_failure(unsigned long pfn, int flags)
3986 {
3987 return -ENXIO;
3988 }
3989 #endif
3990
3991 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3992 static inline bool arch_is_platform_page(u64 paddr)
3993 {
3994 return false;
3995 }
3996 #endif
3997
3998 /*
3999 * Error handlers for various types of pages.
4000 */
4001 enum mf_result {
4002 MF_IGNORED, /* Error: cannot be handled */
4003 MF_FAILED, /* Error: handling failed */
4004 MF_DELAYED, /* Will be handled later */
4005 MF_RECOVERED, /* Successfully recovered */
4006 };
4007
4008 enum mf_action_page_type {
4009 MF_MSG_KERNEL,
4010 MF_MSG_KERNEL_HIGH_ORDER,
4011 MF_MSG_DIFFERENT_COMPOUND,
4012 MF_MSG_HUGE,
4013 MF_MSG_FREE_HUGE,
4014 MF_MSG_GET_HWPOISON,
4015 MF_MSG_UNMAP_FAILED,
4016 MF_MSG_DIRTY_SWAPCACHE,
4017 MF_MSG_CLEAN_SWAPCACHE,
4018 MF_MSG_DIRTY_MLOCKED_LRU,
4019 MF_MSG_CLEAN_MLOCKED_LRU,
4020 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4021 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4022 MF_MSG_DIRTY_LRU,
4023 MF_MSG_CLEAN_LRU,
4024 MF_MSG_TRUNCATED_LRU,
4025 MF_MSG_BUDDY,
4026 MF_MSG_DAX,
4027 MF_MSG_UNSPLIT_THP,
4028 MF_MSG_ALREADY_POISONED,
4029 MF_MSG_UNKNOWN,
4030 };
4031
4032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4033 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4034 int copy_user_large_folio(struct folio *dst, struct folio *src,
4035 unsigned long addr_hint,
4036 struct vm_area_struct *vma);
4037 long copy_folio_from_user(struct folio *dst_folio,
4038 const void __user *usr_src,
4039 bool allow_pagefault);
4040
4041 /**
4042 * vma_is_special_huge - Are transhuge page-table entries considered special?
4043 * @vma: Pointer to the struct vm_area_struct to consider
4044 *
4045 * Whether transhuge page-table entries are considered "special" following
4046 * the definition in vm_normal_page().
4047 *
4048 * Return: true if transhuge page-table entries should be considered special,
4049 * false otherwise.
4050 */
vma_is_special_huge(const struct vm_area_struct * vma)4051 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4052 {
4053 return vma_is_dax(vma) || (vma->vm_file &&
4054 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4055 }
4056
4057 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4058
4059 #if MAX_NUMNODES > 1
4060 void __init setup_nr_node_ids(void);
4061 #else
setup_nr_node_ids(void)4062 static inline void setup_nr_node_ids(void) {}
4063 #endif
4064
4065 extern int memcmp_pages(struct page *page1, struct page *page2);
4066
pages_identical(struct page * page1,struct page * page2)4067 static inline int pages_identical(struct page *page1, struct page *page2)
4068 {
4069 return !memcmp_pages(page1, page2);
4070 }
4071
4072 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4073 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4074 pgoff_t first_index, pgoff_t nr,
4075 pgoff_t bitmap_pgoff,
4076 unsigned long *bitmap,
4077 pgoff_t *start,
4078 pgoff_t *end);
4079
4080 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4081 pgoff_t first_index, pgoff_t nr);
4082 #endif
4083
4084 extern int sysctl_nr_trim_pages;
4085
4086 #ifdef CONFIG_ANON_VMA_NAME
4087 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4088 unsigned long len_in,
4089 struct anon_vma_name *anon_name);
4090 #else
4091 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4092 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4093 unsigned long len_in, struct anon_vma_name *anon_name) {
4094 return 0;
4095 }
4096 #endif
4097
4098 #ifdef CONFIG_UNACCEPTED_MEMORY
4099
4100 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4101 void accept_memory(phys_addr_t start, unsigned long size);
4102
4103 #else
4104
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4105 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4106 unsigned long size)
4107 {
4108 return false;
4109 }
4110
accept_memory(phys_addr_t start,unsigned long size)4111 static inline void accept_memory(phys_addr_t start, unsigned long size)
4112 {
4113 }
4114
4115 #endif
4116
pfn_is_unaccepted_memory(unsigned long pfn)4117 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4118 {
4119 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4120 }
4121
4122 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4123 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4124
4125 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4126
4127 #ifdef CONFIG_64BIT
4128 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4129 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4130 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4131 {
4132 /* noop on 32 bit */
4133 return 0;
4134 }
4135 #endif
4136
4137 /*
4138 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4139 * be zeroed or not.
4140 */
user_alloc_needs_zeroing(void)4141 static inline bool user_alloc_needs_zeroing(void)
4142 {
4143 /*
4144 * for user folios, arch with cache aliasing requires cache flush and
4145 * arc changes folio->flags to make icache coherent with dcache, so
4146 * always return false to make caller use
4147 * clear_user_page()/clear_user_highpage().
4148 */
4149 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4150 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4151 &init_on_alloc);
4152 }
4153
4154 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4155 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4156 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4157
4158 #endif /* _LINUX_MM_H */
4159