xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision b1ae17cd0f0a2ffe1e9da007587c8eebb1bf8c69)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user);
42 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
43 				   struct ipmi_user *user);
44 static int ipmi_init_msghandler(void);
45 static void smi_work(struct work_struct *t);
46 static void handle_new_recv_msgs(struct ipmi_smi *intf);
47 static void need_waiter(struct ipmi_smi *intf);
48 static int handle_one_recv_msg(struct ipmi_smi *intf,
49 			       struct ipmi_smi_msg *msg);
50 static void intf_free(struct kref *ref);
51 
52 static bool initialized;
53 static bool drvregistered;
54 
55 static struct timer_list ipmi_timer;
56 
57 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
58 enum ipmi_panic_event_op {
59 	IPMI_SEND_PANIC_EVENT_NONE,
60 	IPMI_SEND_PANIC_EVENT,
61 	IPMI_SEND_PANIC_EVENT_STRING,
62 	IPMI_SEND_PANIC_EVENT_MAX
63 };
64 
65 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
66 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
67 
68 #ifdef CONFIG_IPMI_PANIC_STRING
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
70 #elif defined(CONFIG_IPMI_PANIC_EVENT)
71 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
72 #else
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
74 #endif
75 
76 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
77 
panic_op_write_handler(const char * val,const struct kernel_param * kp)78 static int panic_op_write_handler(const char *val,
79 				  const struct kernel_param *kp)
80 {
81 	char valcp[16];
82 	int e;
83 
84 	strscpy(valcp, val, sizeof(valcp));
85 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
86 	if (e < 0)
87 		return e;
88 
89 	ipmi_send_panic_event = e;
90 	return 0;
91 }
92 
panic_op_read_handler(char * buffer,const struct kernel_param * kp)93 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
94 {
95 	const char *event_str;
96 
97 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
98 		event_str = "???";
99 	else
100 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
101 
102 	return sprintf(buffer, "%s\n", event_str);
103 }
104 
105 static const struct kernel_param_ops panic_op_ops = {
106 	.set = panic_op_write_handler,
107 	.get = panic_op_read_handler
108 };
109 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
110 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
111 
112 
113 #define MAX_EVENTS_IN_QUEUE	25
114 
115 /* Remain in auto-maintenance mode for this amount of time (in ms). */
116 static unsigned long maintenance_mode_timeout_ms = 30000;
117 module_param(maintenance_mode_timeout_ms, ulong, 0644);
118 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
119 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
120 
121 /*
122  * Don't let a message sit in a queue forever, always time it with at lest
123  * the max message timer.  This is in milliseconds.
124  */
125 #define MAX_MSG_TIMEOUT		60000
126 
127 /*
128  * Timeout times below are in milliseconds, and are done off a 1
129  * second timer.  So setting the value to 1000 would mean anything
130  * between 0 and 1000ms.  So really the only reasonable minimum
131  * setting it 2000ms, which is between 1 and 2 seconds.
132  */
133 
134 /* The default timeout for message retries. */
135 static unsigned long default_retry_ms = 2000;
136 module_param(default_retry_ms, ulong, 0644);
137 MODULE_PARM_DESC(default_retry_ms,
138 		 "The time (milliseconds) between retry sends");
139 
140 /* The default timeout for maintenance mode message retries. */
141 static unsigned long default_maintenance_retry_ms = 3000;
142 module_param(default_maintenance_retry_ms, ulong, 0644);
143 MODULE_PARM_DESC(default_maintenance_retry_ms,
144 		 "The time (milliseconds) between retry sends in maintenance mode");
145 
146 /* The default maximum number of retries */
147 static unsigned int default_max_retries = 4;
148 module_param(default_max_retries, uint, 0644);
149 MODULE_PARM_DESC(default_max_retries,
150 		 "The time (milliseconds) between retry sends in maintenance mode");
151 
152 /* The default maximum number of users that may register. */
153 static unsigned int max_users = 30;
154 module_param(max_users, uint, 0644);
155 MODULE_PARM_DESC(max_users,
156 		 "The most users that may use the IPMI stack at one time.");
157 
158 /* The default maximum number of message a user may have outstanding. */
159 static unsigned int max_msgs_per_user = 100;
160 module_param(max_msgs_per_user, uint, 0644);
161 MODULE_PARM_DESC(max_msgs_per_user,
162 		 "The most message a user may have outstanding.");
163 
164 /* Call every ~1000 ms. */
165 #define IPMI_TIMEOUT_TIME	1000
166 
167 /* How many jiffies does it take to get to the timeout time. */
168 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
169 
170 /*
171  * Request events from the queue every second (this is the number of
172  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
173  * future, IPMI will add a way to know immediately if an event is in
174  * the queue and this silliness can go away.
175  */
176 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
177 
178 /* How long should we cache dynamic device IDs? */
179 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
180 
181 /*
182  * The main "user" data structure.
183  */
184 struct ipmi_user {
185 	struct list_head link;
186 
187 	struct kref refcount;
188 	refcount_t destroyed;
189 
190 	/* The upper layer that handles receive messages. */
191 	const struct ipmi_user_hndl *handler;
192 	void             *handler_data;
193 
194 	/* The interface this user is bound to. */
195 	struct ipmi_smi *intf;
196 
197 	/* Does this interface receive IPMI events? */
198 	bool gets_events;
199 
200 	atomic_t nr_msgs;
201 };
202 
203 struct cmd_rcvr {
204 	struct list_head link;
205 
206 	struct ipmi_user *user;
207 	unsigned char netfn;
208 	unsigned char cmd;
209 	unsigned int  chans;
210 
211 	/*
212 	 * This is used to form a linked lised during mass deletion.
213 	 * Since this is in an RCU list, we cannot use the link above
214 	 * or change any data until the RCU period completes.  So we
215 	 * use this next variable during mass deletion so we can have
216 	 * a list and don't have to wait and restart the search on
217 	 * every individual deletion of a command.
218 	 */
219 	struct cmd_rcvr *next;
220 };
221 
222 struct seq_table {
223 	unsigned int         inuse : 1;
224 	unsigned int         broadcast : 1;
225 
226 	unsigned long        timeout;
227 	unsigned long        orig_timeout;
228 	unsigned int         retries_left;
229 
230 	/*
231 	 * To verify on an incoming send message response that this is
232 	 * the message that the response is for, we keep a sequence id
233 	 * and increment it every time we send a message.
234 	 */
235 	long                 seqid;
236 
237 	/*
238 	 * This is held so we can properly respond to the message on a
239 	 * timeout, and it is used to hold the temporary data for
240 	 * retransmission, too.
241 	 */
242 	struct ipmi_recv_msg *recv_msg;
243 };
244 
245 /*
246  * Store the information in a msgid (long) to allow us to find a
247  * sequence table entry from the msgid.
248  */
249 #define STORE_SEQ_IN_MSGID(seq, seqid) \
250 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
251 
252 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
253 	do {								\
254 		seq = (((msgid) >> 26) & 0x3f);				\
255 		seqid = ((msgid) & 0x3ffffff);				\
256 	} while (0)
257 
258 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
259 
260 #define IPMI_MAX_CHANNELS       16
261 struct ipmi_channel {
262 	unsigned char medium;
263 	unsigned char protocol;
264 };
265 
266 struct ipmi_channel_set {
267 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
268 };
269 
270 struct ipmi_my_addrinfo {
271 	/*
272 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
273 	 * but may be changed by the user.
274 	 */
275 	unsigned char address;
276 
277 	/*
278 	 * My LUN.  This should generally stay the SMS LUN, but just in
279 	 * case...
280 	 */
281 	unsigned char lun;
282 };
283 
284 /*
285  * Note that the product id, manufacturer id, guid, and device id are
286  * immutable in this structure, so dyn_mutex is not required for
287  * accessing those.  If those change on a BMC, a new BMC is allocated.
288  */
289 struct bmc_device {
290 	struct platform_device pdev;
291 	struct list_head       intfs; /* Interfaces on this BMC. */
292 	struct ipmi_device_id  id;
293 	struct ipmi_device_id  fetch_id;
294 	int                    dyn_id_set;
295 	unsigned long          dyn_id_expiry;
296 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
297 	guid_t                 guid;
298 	guid_t                 fetch_guid;
299 	int                    dyn_guid_set;
300 	struct kref	       usecount;
301 	struct work_struct     remove_work;
302 	unsigned char	       cc; /* completion code */
303 };
304 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
305 
306 static struct workqueue_struct *bmc_remove_work_wq;
307 
308 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
309 			     struct ipmi_device_id *id,
310 			     bool *guid_set, guid_t *guid);
311 
312 /*
313  * Various statistics for IPMI, these index stats[] in the ipmi_smi
314  * structure.
315  */
316 enum ipmi_stat_indexes {
317 	/* Commands we got from the user that were invalid. */
318 	IPMI_STAT_sent_invalid_commands = 0,
319 
320 	/* Commands we sent to the MC. */
321 	IPMI_STAT_sent_local_commands,
322 
323 	/* Responses from the MC that were delivered to a user. */
324 	IPMI_STAT_handled_local_responses,
325 
326 	/* Responses from the MC that were not delivered to a user. */
327 	IPMI_STAT_unhandled_local_responses,
328 
329 	/* Commands we sent out to the IPMB bus. */
330 	IPMI_STAT_sent_ipmb_commands,
331 
332 	/* Commands sent on the IPMB that had errors on the SEND CMD */
333 	IPMI_STAT_sent_ipmb_command_errs,
334 
335 	/* Each retransmit increments this count. */
336 	IPMI_STAT_retransmitted_ipmb_commands,
337 
338 	/*
339 	 * When a message times out (runs out of retransmits) this is
340 	 * incremented.
341 	 */
342 	IPMI_STAT_timed_out_ipmb_commands,
343 
344 	/*
345 	 * This is like above, but for broadcasts.  Broadcasts are
346 	 * *not* included in the above count (they are expected to
347 	 * time out).
348 	 */
349 	IPMI_STAT_timed_out_ipmb_broadcasts,
350 
351 	/* Responses I have sent to the IPMB bus. */
352 	IPMI_STAT_sent_ipmb_responses,
353 
354 	/* The response was delivered to the user. */
355 	IPMI_STAT_handled_ipmb_responses,
356 
357 	/* The response had invalid data in it. */
358 	IPMI_STAT_invalid_ipmb_responses,
359 
360 	/* The response didn't have anyone waiting for it. */
361 	IPMI_STAT_unhandled_ipmb_responses,
362 
363 	/* Commands we sent out to the IPMB bus. */
364 	IPMI_STAT_sent_lan_commands,
365 
366 	/* Commands sent on the IPMB that had errors on the SEND CMD */
367 	IPMI_STAT_sent_lan_command_errs,
368 
369 	/* Each retransmit increments this count. */
370 	IPMI_STAT_retransmitted_lan_commands,
371 
372 	/*
373 	 * When a message times out (runs out of retransmits) this is
374 	 * incremented.
375 	 */
376 	IPMI_STAT_timed_out_lan_commands,
377 
378 	/* Responses I have sent to the IPMB bus. */
379 	IPMI_STAT_sent_lan_responses,
380 
381 	/* The response was delivered to the user. */
382 	IPMI_STAT_handled_lan_responses,
383 
384 	/* The response had invalid data in it. */
385 	IPMI_STAT_invalid_lan_responses,
386 
387 	/* The response didn't have anyone waiting for it. */
388 	IPMI_STAT_unhandled_lan_responses,
389 
390 	/* The command was delivered to the user. */
391 	IPMI_STAT_handled_commands,
392 
393 	/* The command had invalid data in it. */
394 	IPMI_STAT_invalid_commands,
395 
396 	/* The command didn't have anyone waiting for it. */
397 	IPMI_STAT_unhandled_commands,
398 
399 	/* Invalid data in an event. */
400 	IPMI_STAT_invalid_events,
401 
402 	/* Events that were received with the proper format. */
403 	IPMI_STAT_events,
404 
405 	/* Retransmissions on IPMB that failed. */
406 	IPMI_STAT_dropped_rexmit_ipmb_commands,
407 
408 	/* Retransmissions on LAN that failed. */
409 	IPMI_STAT_dropped_rexmit_lan_commands,
410 
411 	/* This *must* remain last, add new values above this. */
412 	IPMI_NUM_STATS
413 };
414 
415 
416 #define IPMI_IPMB_NUM_SEQ	64
417 struct ipmi_smi {
418 	struct module *owner;
419 
420 	/* What interface number are we? */
421 	int intf_num;
422 
423 	struct kref refcount;
424 
425 	/* Set when the interface is being unregistered. */
426 	bool in_shutdown;
427 
428 	/* Used for a list of interfaces. */
429 	struct list_head link;
430 
431 	/*
432 	 * The list of upper layers that are using me.
433 	 */
434 	struct list_head users;
435 	struct mutex users_mutex;
436 	atomic_t nr_users;
437 	struct device_attribute nr_users_devattr;
438 	struct device_attribute nr_msgs_devattr;
439 	struct device_attribute maintenance_mode_devattr;
440 
441 
442 	/* Used for wake ups at startup. */
443 	wait_queue_head_t waitq;
444 
445 	/*
446 	 * Prevents the interface from being unregistered when the
447 	 * interface is used by being looked up through the BMC
448 	 * structure.
449 	 */
450 	struct mutex bmc_reg_mutex;
451 
452 	struct bmc_device tmp_bmc;
453 	struct bmc_device *bmc;
454 	bool bmc_registered;
455 	struct list_head bmc_link;
456 	char *my_dev_name;
457 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
458 	struct work_struct bmc_reg_work;
459 
460 	const struct ipmi_smi_handlers *handlers;
461 	void                     *send_info;
462 
463 	/* Driver-model device for the system interface. */
464 	struct device          *si_dev;
465 
466 	/*
467 	 * A table of sequence numbers for this interface.  We use the
468 	 * sequence numbers for IPMB messages that go out of the
469 	 * interface to match them up with their responses.  A routine
470 	 * is called periodically to time the items in this list.
471 	 */
472 	struct mutex seq_lock;
473 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
474 	int curr_seq;
475 
476 	/*
477 	 * Messages queued for deliver to the user.
478 	 */
479 	struct mutex user_msgs_mutex;
480 	struct list_head user_msgs;
481 
482 	/*
483 	 * Messages queued for processing.  If processing fails (out
484 	 * of memory for instance), They will stay in here to be
485 	 * processed later in a periodic timer interrupt.  The
486 	 * workqueue is for handling received messages directly from
487 	 * the handler.
488 	 */
489 	spinlock_t       waiting_rcv_msgs_lock;
490 	struct list_head waiting_rcv_msgs;
491 	atomic_t	 watchdog_pretimeouts_to_deliver;
492 	struct work_struct smi_work;
493 
494 	spinlock_t             xmit_msgs_lock;
495 	struct list_head       xmit_msgs;
496 	struct ipmi_smi_msg    *curr_msg;
497 	struct list_head       hp_xmit_msgs;
498 
499 	/*
500 	 * The list of command receivers that are registered for commands
501 	 * on this interface.
502 	 */
503 	struct mutex     cmd_rcvrs_mutex;
504 	struct list_head cmd_rcvrs;
505 
506 	/*
507 	 * Events that were queues because no one was there to receive
508 	 * them.
509 	 */
510 	struct mutex     events_mutex; /* For dealing with event stuff. */
511 	struct list_head waiting_events;
512 	unsigned int     waiting_events_count; /* How many events in queue? */
513 	char             event_msg_printed;
514 
515 	/* How many users are waiting for events? */
516 	atomic_t         event_waiters;
517 	unsigned int     ticks_to_req_ev;
518 
519 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
520 
521 	/* How many users are waiting for commands? */
522 	unsigned int     command_waiters;
523 
524 	/* How many users are waiting for watchdogs? */
525 	unsigned int     watchdog_waiters;
526 
527 	/* How many users are waiting for message responses? */
528 	unsigned int     response_waiters;
529 
530 	/*
531 	 * Tells what the lower layer has last been asked to watch for,
532 	 * messages and/or watchdogs.  Protected by watch_lock.
533 	 */
534 	unsigned int     last_watch_mask;
535 
536 	/*
537 	 * The event receiver for my BMC, only really used at panic
538 	 * shutdown as a place to store this.
539 	 */
540 	unsigned char event_receiver;
541 	unsigned char event_receiver_lun;
542 	unsigned char local_sel_device;
543 	unsigned char local_event_generator;
544 
545 	/* For handling of maintenance mode. */
546 	int maintenance_mode;
547 
548 #define IPMI_MAINTENANCE_MODE_STATE_OFF		0
549 #define IPMI_MAINTENANCE_MODE_STATE_FIRMWARE	1
550 #define IPMI_MAINTENANCE_MODE_STATE_RESET	2
551 	int maintenance_mode_state;
552 	int auto_maintenance_timeout;
553 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
554 
555 	/*
556 	 * If we are doing maintenance on something on IPMB, extend
557 	 * the timeout time to avoid timeouts writing firmware and
558 	 * such.
559 	 */
560 	int ipmb_maintenance_mode_timeout;
561 
562 	/*
563 	 * A cheap hack, if this is non-null and a message to an
564 	 * interface comes in with a NULL user, call this routine with
565 	 * it.  Note that the message will still be freed by the
566 	 * caller.  This only works on the system interface.
567 	 *
568 	 * Protected by bmc_reg_mutex.
569 	 */
570 	void (*null_user_handler)(struct ipmi_smi *intf,
571 				  struct ipmi_recv_msg *msg);
572 
573 	/*
574 	 * When we are scanning the channels for an SMI, this will
575 	 * tell which channel we are scanning.
576 	 */
577 	int curr_channel;
578 
579 	/* Channel information */
580 	struct ipmi_channel_set *channel_list;
581 	unsigned int curr_working_cset; /* First index into the following. */
582 	struct ipmi_channel_set wchannels[2];
583 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
584 	bool channels_ready;
585 
586 	atomic_t stats[IPMI_NUM_STATS];
587 
588 	/*
589 	 * run_to_completion duplicate of smb_info, smi_info
590 	 * and ipmi_serial_info structures. Used to decrease numbers of
591 	 * parameters passed by "low" level IPMI code.
592 	 */
593 	int run_to_completion;
594 };
595 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
596 
597 static void __get_guid(struct ipmi_smi *intf);
598 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
599 static int __ipmi_bmc_register(struct ipmi_smi *intf,
600 			       struct ipmi_device_id *id,
601 			       bool guid_set, guid_t *guid, int intf_num);
602 static int __scan_channels(struct ipmi_smi *intf,
603 				struct ipmi_device_id *id, bool rescan);
604 
free_ipmi_user(struct kref * ref)605 static void free_ipmi_user(struct kref *ref)
606 {
607 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
608 	struct module *owner;
609 
610 	owner = user->intf->owner;
611 	kref_put(&user->intf->refcount, intf_free);
612 	module_put(owner);
613 	vfree(user);
614 }
615 
release_ipmi_user(struct ipmi_user * user)616 static void release_ipmi_user(struct ipmi_user *user)
617 {
618 	kref_put(&user->refcount, free_ipmi_user);
619 }
620 
acquire_ipmi_user(struct ipmi_user * user)621 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user)
622 {
623 	if (!kref_get_unless_zero(&user->refcount))
624 		return NULL;
625 	return user;
626 }
627 
628 /*
629  * The driver model view of the IPMI messaging driver.
630  */
631 static struct platform_driver ipmidriver = {
632 	.driver = {
633 		.name = "ipmi",
634 		.bus = &platform_bus_type
635 	}
636 };
637 /*
638  * This mutex keeps us from adding the same BMC twice.
639  */
640 static DEFINE_MUTEX(ipmidriver_mutex);
641 
642 static LIST_HEAD(ipmi_interfaces);
643 static DEFINE_MUTEX(ipmi_interfaces_mutex);
644 
645 /*
646  * List of watchers that want to know when smi's are added and deleted.
647  */
648 static LIST_HEAD(smi_watchers);
649 static DEFINE_MUTEX(smi_watchers_mutex);
650 
651 #define ipmi_inc_stat(intf, stat) \
652 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
653 #define ipmi_get_stat(intf, stat) \
654 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
655 
656 static const char * const addr_src_to_str[] = {
657 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
658 	"device-tree", "platform"
659 };
660 
ipmi_addr_src_to_str(enum ipmi_addr_src src)661 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
662 {
663 	if (src >= SI_LAST)
664 		src = 0; /* Invalid */
665 	return addr_src_to_str[src];
666 }
667 EXPORT_SYMBOL(ipmi_addr_src_to_str);
668 
is_lan_addr(struct ipmi_addr * addr)669 static int is_lan_addr(struct ipmi_addr *addr)
670 {
671 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
672 }
673 
is_ipmb_addr(struct ipmi_addr * addr)674 static int is_ipmb_addr(struct ipmi_addr *addr)
675 {
676 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
677 }
678 
is_ipmb_bcast_addr(struct ipmi_addr * addr)679 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
680 {
681 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
682 }
683 
is_ipmb_direct_addr(struct ipmi_addr * addr)684 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
685 {
686 	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
687 }
688 
free_recv_msg_list(struct list_head * q)689 static void free_recv_msg_list(struct list_head *q)
690 {
691 	struct ipmi_recv_msg *msg, *msg2;
692 
693 	list_for_each_entry_safe(msg, msg2, q, link) {
694 		list_del(&msg->link);
695 		ipmi_free_recv_msg(msg);
696 	}
697 }
698 
free_smi_msg_list(struct list_head * q)699 static void free_smi_msg_list(struct list_head *q)
700 {
701 	struct ipmi_smi_msg *msg, *msg2;
702 
703 	list_for_each_entry_safe(msg, msg2, q, link) {
704 		list_del(&msg->link);
705 		ipmi_free_smi_msg(msg);
706 	}
707 }
708 
intf_free(struct kref * ref)709 static void intf_free(struct kref *ref)
710 {
711 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
712 	int              i;
713 	struct cmd_rcvr  *rcvr, *rcvr2;
714 
715 	free_smi_msg_list(&intf->waiting_rcv_msgs);
716 	free_recv_msg_list(&intf->waiting_events);
717 
718 	/*
719 	 * Wholesale remove all the entries from the list in the
720 	 * interface.  No need for locks, this is single-threaded.
721 	 */
722 	list_for_each_entry_safe(rcvr, rcvr2, &intf->cmd_rcvrs, link)
723 		kfree(rcvr);
724 
725 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
726 		if ((intf->seq_table[i].inuse)
727 					&& (intf->seq_table[i].recv_msg))
728 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
729 	}
730 
731 	kfree(intf);
732 }
733 
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 	struct ipmi_smi *intf;
737 	unsigned int count = 0, i;
738 	int *interfaces = NULL;
739 	struct device **devices = NULL;
740 	int rv = 0;
741 
742 	/*
743 	 * Make sure the driver is actually initialized, this handles
744 	 * problems with initialization order.
745 	 */
746 	rv = ipmi_init_msghandler();
747 	if (rv)
748 		return rv;
749 
750 	mutex_lock(&smi_watchers_mutex);
751 
752 	list_add(&watcher->link, &smi_watchers);
753 
754 	/*
755 	 * Build an array of ipmi interfaces and fill it in, and
756 	 * another array of the devices.  We can't call the callback
757 	 * with ipmi_interfaces_mutex held.  smi_watchers_mutex will
758 	 * keep things in order for the user.
759 	 */
760 	mutex_lock(&ipmi_interfaces_mutex);
761 	list_for_each_entry(intf, &ipmi_interfaces, link)
762 		count++;
763 	if (count > 0) {
764 		interfaces = kmalloc_array(count, sizeof(*interfaces),
765 					   GFP_KERNEL);
766 		if (!interfaces) {
767 			rv = -ENOMEM;
768 		} else {
769 			devices = kmalloc_array(count, sizeof(*devices),
770 						GFP_KERNEL);
771 			if (!devices) {
772 				kfree(interfaces);
773 				interfaces = NULL;
774 				rv = -ENOMEM;
775 			}
776 		}
777 		count = 0;
778 	}
779 	if (interfaces) {
780 		list_for_each_entry(intf, &ipmi_interfaces, link) {
781 			int intf_num = READ_ONCE(intf->intf_num);
782 
783 			if (intf_num == -1)
784 				continue;
785 			devices[count] = intf->si_dev;
786 			interfaces[count++] = intf_num;
787 		}
788 	}
789 	mutex_unlock(&ipmi_interfaces_mutex);
790 
791 	if (interfaces) {
792 		for (i = 0; i < count; i++)
793 			watcher->new_smi(interfaces[i], devices[i]);
794 		kfree(interfaces);
795 		kfree(devices);
796 	}
797 
798 	mutex_unlock(&smi_watchers_mutex);
799 
800 	return rv;
801 }
802 EXPORT_SYMBOL(ipmi_smi_watcher_register);
803 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)804 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
805 {
806 	mutex_lock(&smi_watchers_mutex);
807 	list_del(&watcher->link);
808 	mutex_unlock(&smi_watchers_mutex);
809 	return 0;
810 }
811 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
812 
813 static void
call_smi_watchers(int i,struct device * dev)814 call_smi_watchers(int i, struct device *dev)
815 {
816 	struct ipmi_smi_watcher *w;
817 
818 	list_for_each_entry(w, &smi_watchers, link) {
819 		if (try_module_get(w->owner)) {
820 			w->new_smi(i, dev);
821 			module_put(w->owner);
822 		}
823 	}
824 }
825 
826 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)827 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
828 {
829 	if (addr1->addr_type != addr2->addr_type)
830 		return 0;
831 
832 	if (addr1->channel != addr2->channel)
833 		return 0;
834 
835 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
836 		struct ipmi_system_interface_addr *smi_addr1
837 		    = (struct ipmi_system_interface_addr *) addr1;
838 		struct ipmi_system_interface_addr *smi_addr2
839 		    = (struct ipmi_system_interface_addr *) addr2;
840 		return (smi_addr1->lun == smi_addr2->lun);
841 	}
842 
843 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
844 		struct ipmi_ipmb_addr *ipmb_addr1
845 		    = (struct ipmi_ipmb_addr *) addr1;
846 		struct ipmi_ipmb_addr *ipmb_addr2
847 		    = (struct ipmi_ipmb_addr *) addr2;
848 
849 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
850 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
851 	}
852 
853 	if (is_ipmb_direct_addr(addr1)) {
854 		struct ipmi_ipmb_direct_addr *daddr1
855 			= (struct ipmi_ipmb_direct_addr *) addr1;
856 		struct ipmi_ipmb_direct_addr *daddr2
857 			= (struct ipmi_ipmb_direct_addr *) addr2;
858 
859 		return daddr1->slave_addr == daddr2->slave_addr &&
860 			daddr1->rq_lun == daddr2->rq_lun &&
861 			daddr1->rs_lun == daddr2->rs_lun;
862 	}
863 
864 	if (is_lan_addr(addr1)) {
865 		struct ipmi_lan_addr *lan_addr1
866 			= (struct ipmi_lan_addr *) addr1;
867 		struct ipmi_lan_addr *lan_addr2
868 		    = (struct ipmi_lan_addr *) addr2;
869 
870 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
871 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
872 			&& (lan_addr1->session_handle
873 			    == lan_addr2->session_handle)
874 			&& (lan_addr1->lun == lan_addr2->lun));
875 	}
876 
877 	return 1;
878 }
879 
ipmi_validate_addr(struct ipmi_addr * addr,int len)880 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
881 {
882 	if (len < sizeof(struct ipmi_system_interface_addr))
883 		return -EINVAL;
884 
885 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
886 		if (addr->channel != IPMI_BMC_CHANNEL)
887 			return -EINVAL;
888 		return 0;
889 	}
890 
891 	if ((addr->channel == IPMI_BMC_CHANNEL)
892 	    || (addr->channel >= IPMI_MAX_CHANNELS)
893 	    || (addr->channel < 0))
894 		return -EINVAL;
895 
896 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
897 		if (len < sizeof(struct ipmi_ipmb_addr))
898 			return -EINVAL;
899 		return 0;
900 	}
901 
902 	if (is_ipmb_direct_addr(addr)) {
903 		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
904 
905 		if (addr->channel != 0)
906 			return -EINVAL;
907 		if (len < sizeof(struct ipmi_ipmb_direct_addr))
908 			return -EINVAL;
909 
910 		if (daddr->slave_addr & 0x01)
911 			return -EINVAL;
912 		if (daddr->rq_lun >= 4)
913 			return -EINVAL;
914 		if (daddr->rs_lun >= 4)
915 			return -EINVAL;
916 		return 0;
917 	}
918 
919 	if (is_lan_addr(addr)) {
920 		if (len < sizeof(struct ipmi_lan_addr))
921 			return -EINVAL;
922 		return 0;
923 	}
924 
925 	return -EINVAL;
926 }
927 EXPORT_SYMBOL(ipmi_validate_addr);
928 
ipmi_addr_length(int addr_type)929 unsigned int ipmi_addr_length(int addr_type)
930 {
931 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
932 		return sizeof(struct ipmi_system_interface_addr);
933 
934 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
935 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
936 		return sizeof(struct ipmi_ipmb_addr);
937 
938 	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
939 		return sizeof(struct ipmi_ipmb_direct_addr);
940 
941 	if (addr_type == IPMI_LAN_ADDR_TYPE)
942 		return sizeof(struct ipmi_lan_addr);
943 
944 	return 0;
945 }
946 EXPORT_SYMBOL(ipmi_addr_length);
947 
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)948 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
949 {
950 	int rv = 0;
951 
952 	if (!msg->user) {
953 		/* Special handling for NULL users. */
954 		if (intf->null_user_handler) {
955 			intf->null_user_handler(intf, msg);
956 		} else {
957 			/* No handler, so give up. */
958 			rv = -EINVAL;
959 		}
960 		ipmi_free_recv_msg(msg);
961 	} else if (oops_in_progress) {
962 		/*
963 		 * If we are running in the panic context, calling the
964 		 * receive handler doesn't much meaning and has a deadlock
965 		 * risk.  At this moment, simply skip it in that case.
966 		 */
967 		ipmi_free_recv_msg(msg);
968 	} else {
969 		/*
970 		 * Deliver it in smi_work.  The message will hold a
971 		 * refcount to the user.
972 		 */
973 		mutex_lock(&intf->user_msgs_mutex);
974 		list_add_tail(&msg->link, &intf->user_msgs);
975 		mutex_unlock(&intf->user_msgs_mutex);
976 		queue_work(system_wq, &intf->smi_work);
977 	}
978 
979 	return rv;
980 }
981 
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)982 static void deliver_local_response(struct ipmi_smi *intf,
983 				   struct ipmi_recv_msg *msg)
984 {
985 	if (deliver_response(intf, msg))
986 		ipmi_inc_stat(intf, unhandled_local_responses);
987 	else
988 		ipmi_inc_stat(intf, handled_local_responses);
989 }
990 
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)991 static void deliver_err_response(struct ipmi_smi *intf,
992 				 struct ipmi_recv_msg *msg, int err)
993 {
994 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
995 	msg->msg_data[0] = err;
996 	msg->msg.netfn |= 1; /* Convert to a response. */
997 	msg->msg.data_len = 1;
998 	msg->msg.data = msg->msg_data;
999 	deliver_local_response(intf, msg);
1000 }
1001 
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)1002 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
1003 {
1004 	unsigned long iflags;
1005 
1006 	if (!intf->handlers->set_need_watch)
1007 		return;
1008 
1009 	spin_lock_irqsave(&intf->watch_lock, iflags);
1010 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1011 		intf->response_waiters++;
1012 
1013 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1014 		intf->watchdog_waiters++;
1015 
1016 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1017 		intf->command_waiters++;
1018 
1019 	if ((intf->last_watch_mask & flags) != flags) {
1020 		intf->last_watch_mask |= flags;
1021 		intf->handlers->set_need_watch(intf->send_info,
1022 					       intf->last_watch_mask);
1023 	}
1024 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1025 }
1026 
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1027 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1028 {
1029 	unsigned long iflags;
1030 
1031 	if (!intf->handlers->set_need_watch)
1032 		return;
1033 
1034 	spin_lock_irqsave(&intf->watch_lock, iflags);
1035 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1036 		intf->response_waiters--;
1037 
1038 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1039 		intf->watchdog_waiters--;
1040 
1041 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1042 		intf->command_waiters--;
1043 
1044 	flags = 0;
1045 	if (intf->response_waiters)
1046 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1047 	if (intf->watchdog_waiters)
1048 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1049 	if (intf->command_waiters)
1050 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1051 
1052 	if (intf->last_watch_mask != flags) {
1053 		intf->last_watch_mask = flags;
1054 		intf->handlers->set_need_watch(intf->send_info,
1055 					       intf->last_watch_mask);
1056 	}
1057 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1058 }
1059 
1060 /*
1061  * Find the next sequence number not being used and add the given
1062  * message with the given timeout to the sequence table.  This must be
1063  * called with the interface's seq_lock held.
1064  */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1065 static int intf_next_seq(struct ipmi_smi      *intf,
1066 			 struct ipmi_recv_msg *recv_msg,
1067 			 unsigned long        timeout,
1068 			 int                  retries,
1069 			 int                  broadcast,
1070 			 unsigned char        *seq,
1071 			 long                 *seqid)
1072 {
1073 	int          rv = 0;
1074 	unsigned int i;
1075 
1076 	if (timeout == 0)
1077 		timeout = default_retry_ms;
1078 	if (retries < 0)
1079 		retries = default_max_retries;
1080 
1081 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1082 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1083 		if (!intf->seq_table[i].inuse)
1084 			break;
1085 	}
1086 
1087 	if (!intf->seq_table[i].inuse) {
1088 		intf->seq_table[i].recv_msg = recv_msg;
1089 
1090 		/*
1091 		 * Start with the maximum timeout, when the send response
1092 		 * comes in we will start the real timer.
1093 		 */
1094 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1095 		intf->seq_table[i].orig_timeout = timeout;
1096 		intf->seq_table[i].retries_left = retries;
1097 		intf->seq_table[i].broadcast = broadcast;
1098 		intf->seq_table[i].inuse = 1;
1099 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1100 		*seq = i;
1101 		*seqid = intf->seq_table[i].seqid;
1102 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1103 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1104 		need_waiter(intf);
1105 	} else {
1106 		rv = -EAGAIN;
1107 	}
1108 
1109 	return rv;
1110 }
1111 
1112 /*
1113  * Return the receive message for the given sequence number and
1114  * release the sequence number so it can be reused.  Some other data
1115  * is passed in to be sure the message matches up correctly (to help
1116  * guard against message coming in after their timeout and the
1117  * sequence number being reused).
1118  */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1119 static int intf_find_seq(struct ipmi_smi      *intf,
1120 			 unsigned char        seq,
1121 			 short                channel,
1122 			 unsigned char        cmd,
1123 			 unsigned char        netfn,
1124 			 struct ipmi_addr     *addr,
1125 			 struct ipmi_recv_msg **recv_msg)
1126 {
1127 	int           rv = -ENODEV;
1128 
1129 	if (seq >= IPMI_IPMB_NUM_SEQ)
1130 		return -EINVAL;
1131 
1132 	mutex_lock(&intf->seq_lock);
1133 	if (intf->seq_table[seq].inuse) {
1134 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1135 
1136 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1137 				&& (msg->msg.netfn == netfn)
1138 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1139 			*recv_msg = msg;
1140 			intf->seq_table[seq].inuse = 0;
1141 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1142 			rv = 0;
1143 		}
1144 	}
1145 	mutex_unlock(&intf->seq_lock);
1146 
1147 	return rv;
1148 }
1149 
1150 
1151 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1152 static int intf_start_seq_timer(struct ipmi_smi *intf,
1153 				long       msgid)
1154 {
1155 	int           rv = -ENODEV;
1156 	unsigned char seq;
1157 	unsigned long seqid;
1158 
1159 
1160 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1161 
1162 	mutex_lock(&intf->seq_lock);
1163 	/*
1164 	 * We do this verification because the user can be deleted
1165 	 * while a message is outstanding.
1166 	 */
1167 	if ((intf->seq_table[seq].inuse)
1168 				&& (intf->seq_table[seq].seqid == seqid)) {
1169 		struct seq_table *ent = &intf->seq_table[seq];
1170 		ent->timeout = ent->orig_timeout;
1171 		rv = 0;
1172 	}
1173 	mutex_unlock(&intf->seq_lock);
1174 
1175 	return rv;
1176 }
1177 
1178 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1179 static int intf_err_seq(struct ipmi_smi *intf,
1180 			long         msgid,
1181 			unsigned int err)
1182 {
1183 	int                  rv = -ENODEV;
1184 	unsigned char        seq;
1185 	unsigned long        seqid;
1186 	struct ipmi_recv_msg *msg = NULL;
1187 
1188 
1189 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1190 
1191 	mutex_lock(&intf->seq_lock);
1192 	/*
1193 	 * We do this verification because the user can be deleted
1194 	 * while a message is outstanding.
1195 	 */
1196 	if ((intf->seq_table[seq].inuse)
1197 				&& (intf->seq_table[seq].seqid == seqid)) {
1198 		struct seq_table *ent = &intf->seq_table[seq];
1199 
1200 		ent->inuse = 0;
1201 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1202 		msg = ent->recv_msg;
1203 		rv = 0;
1204 	}
1205 	mutex_unlock(&intf->seq_lock);
1206 
1207 	if (msg)
1208 		deliver_err_response(intf, msg, err);
1209 
1210 	return rv;
1211 }
1212 
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1213 int ipmi_create_user(unsigned int          if_num,
1214 		     const struct ipmi_user_hndl *handler,
1215 		     void                  *handler_data,
1216 		     struct ipmi_user      **user)
1217 {
1218 	struct ipmi_user *new_user = NULL;
1219 	int           rv = 0;
1220 	struct ipmi_smi *intf;
1221 
1222 	/*
1223 	 * There is no module usecount here, because it's not
1224 	 * required.  Since this can only be used by and called from
1225 	 * other modules, they will implicitly use this module, and
1226 	 * thus this can't be removed unless the other modules are
1227 	 * removed.
1228 	 */
1229 
1230 	if (handler == NULL)
1231 		return -EINVAL;
1232 
1233 	/*
1234 	 * Make sure the driver is actually initialized, this handles
1235 	 * problems with initialization order.
1236 	 */
1237 	rv = ipmi_init_msghandler();
1238 	if (rv)
1239 		return rv;
1240 
1241 	mutex_lock(&ipmi_interfaces_mutex);
1242 	list_for_each_entry(intf, &ipmi_interfaces, link) {
1243 		if (intf->intf_num == if_num)
1244 			goto found;
1245 	}
1246 	/* Not found, return an error */
1247 	rv = -EINVAL;
1248 	goto out_unlock;
1249 
1250  found:
1251 	if (intf->in_shutdown) {
1252 		rv = -ENODEV;
1253 		goto out_unlock;
1254 	}
1255 
1256 	if (atomic_add_return(1, &intf->nr_users) > max_users) {
1257 		rv = -EBUSY;
1258 		goto out_kfree;
1259 	}
1260 
1261 	new_user = vzalloc(sizeof(*new_user));
1262 	if (!new_user) {
1263 		rv = -ENOMEM;
1264 		goto out_kfree;
1265 	}
1266 
1267 	if (!try_module_get(intf->owner)) {
1268 		rv = -ENODEV;
1269 		goto out_kfree;
1270 	}
1271 
1272 	/* Note that each existing user holds a refcount to the interface. */
1273 	kref_get(&intf->refcount);
1274 
1275 	atomic_set(&new_user->nr_msgs, 0);
1276 	kref_init(&new_user->refcount);
1277 	refcount_set(&new_user->destroyed, 1);
1278 	kref_get(&new_user->refcount); /* Destroy owns a refcount. */
1279 	new_user->handler = handler;
1280 	new_user->handler_data = handler_data;
1281 	new_user->intf = intf;
1282 	new_user->gets_events = false;
1283 
1284 	mutex_lock(&intf->users_mutex);
1285 	mutex_lock(&intf->seq_lock);
1286 	list_add(&new_user->link, &intf->users);
1287 	mutex_unlock(&intf->seq_lock);
1288 	mutex_unlock(&intf->users_mutex);
1289 
1290 	if (handler->ipmi_watchdog_pretimeout)
1291 		/* User wants pretimeouts, so make sure to watch for them. */
1292 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1293 
1294 out_kfree:
1295 	if (rv) {
1296 		atomic_dec(&intf->nr_users);
1297 		vfree(new_user);
1298 	} else {
1299 		*user = new_user;
1300 	}
1301 out_unlock:
1302 	mutex_unlock(&ipmi_interfaces_mutex);
1303 	return rv;
1304 }
1305 EXPORT_SYMBOL(ipmi_create_user);
1306 
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1307 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1308 {
1309 	int rv = -EINVAL;
1310 	struct ipmi_smi *intf;
1311 
1312 	mutex_lock(&ipmi_interfaces_mutex);
1313 	list_for_each_entry(intf, &ipmi_interfaces, link) {
1314 		if (intf->intf_num == if_num) {
1315 			if (!intf->handlers->get_smi_info)
1316 				rv = -ENOTTY;
1317 			else
1318 				rv = intf->handlers->get_smi_info(intf->send_info, data);
1319 			break;
1320 		}
1321 	}
1322 	mutex_unlock(&ipmi_interfaces_mutex);
1323 
1324 	return rv;
1325 }
1326 EXPORT_SYMBOL(ipmi_get_smi_info);
1327 
1328 /* Must be called with intf->users_mutex held. */
_ipmi_destroy_user(struct ipmi_user * user)1329 static void _ipmi_destroy_user(struct ipmi_user *user)
1330 {
1331 	struct ipmi_smi  *intf = user->intf;
1332 	int              i;
1333 	struct cmd_rcvr  *rcvr;
1334 	struct cmd_rcvr  *rcvrs = NULL;
1335 	struct ipmi_recv_msg *msg, *msg2;
1336 
1337 	if (!refcount_dec_if_one(&user->destroyed))
1338 		return;
1339 
1340 	if (user->handler->shutdown)
1341 		user->handler->shutdown(user->handler_data);
1342 
1343 	if (user->handler->ipmi_watchdog_pretimeout)
1344 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1345 
1346 	if (user->gets_events)
1347 		atomic_dec(&intf->event_waiters);
1348 
1349 	/* Remove the user from the interface's list and sequence table. */
1350 	list_del(&user->link);
1351 	atomic_dec(&intf->nr_users);
1352 
1353 	mutex_lock(&intf->seq_lock);
1354 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1355 		if (intf->seq_table[i].inuse
1356 		    && (intf->seq_table[i].recv_msg->user == user)) {
1357 			intf->seq_table[i].inuse = 0;
1358 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1359 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1360 		}
1361 	}
1362 	mutex_unlock(&intf->seq_lock);
1363 
1364 	/*
1365 	 * Remove the user from the command receiver's table.  First
1366 	 * we build a list of everything (not using the standard link,
1367 	 * since other things may be using it till we do
1368 	 * synchronize_rcu()) then free everything in that list.
1369 	 */
1370 	mutex_lock(&intf->cmd_rcvrs_mutex);
1371 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1372 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1373 		if (rcvr->user == user) {
1374 			list_del_rcu(&rcvr->link);
1375 			rcvr->next = rcvrs;
1376 			rcvrs = rcvr;
1377 		}
1378 	}
1379 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1380 	while (rcvrs) {
1381 		rcvr = rcvrs;
1382 		rcvrs = rcvr->next;
1383 		kfree(rcvr);
1384 	}
1385 
1386 	mutex_lock(&intf->user_msgs_mutex);
1387 	list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
1388 		if (msg->user != user)
1389 			continue;
1390 		list_del(&msg->link);
1391 		ipmi_free_recv_msg(msg);
1392 	}
1393 	mutex_unlock(&intf->user_msgs_mutex);
1394 
1395 	release_ipmi_user(user);
1396 }
1397 
ipmi_destroy_user(struct ipmi_user * user)1398 void ipmi_destroy_user(struct ipmi_user *user)
1399 {
1400 	struct ipmi_smi *intf = user->intf;
1401 
1402 	mutex_lock(&intf->users_mutex);
1403 	_ipmi_destroy_user(user);
1404 	mutex_unlock(&intf->users_mutex);
1405 
1406 	kref_put(&user->refcount, free_ipmi_user);
1407 }
1408 EXPORT_SYMBOL(ipmi_destroy_user);
1409 
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1410 int ipmi_get_version(struct ipmi_user *user,
1411 		     unsigned char *major,
1412 		     unsigned char *minor)
1413 {
1414 	struct ipmi_device_id id;
1415 	int rv;
1416 
1417 	user = acquire_ipmi_user(user);
1418 	if (!user)
1419 		return -ENODEV;
1420 
1421 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1422 	if (!rv) {
1423 		*major = ipmi_version_major(&id);
1424 		*minor = ipmi_version_minor(&id);
1425 	}
1426 	release_ipmi_user(user);
1427 
1428 	return rv;
1429 }
1430 EXPORT_SYMBOL(ipmi_get_version);
1431 
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1432 int ipmi_set_my_address(struct ipmi_user *user,
1433 			unsigned int  channel,
1434 			unsigned char address)
1435 {
1436 	int rv = 0;
1437 
1438 	user = acquire_ipmi_user(user);
1439 	if (!user)
1440 		return -ENODEV;
1441 
1442 	if (channel >= IPMI_MAX_CHANNELS) {
1443 		rv = -EINVAL;
1444 	} else {
1445 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1446 		user->intf->addrinfo[channel].address = address;
1447 	}
1448 	release_ipmi_user(user);
1449 
1450 	return rv;
1451 }
1452 EXPORT_SYMBOL(ipmi_set_my_address);
1453 
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1454 int ipmi_get_my_address(struct ipmi_user *user,
1455 			unsigned int  channel,
1456 			unsigned char *address)
1457 {
1458 	int rv = 0;
1459 
1460 	user = acquire_ipmi_user(user);
1461 	if (!user)
1462 		return -ENODEV;
1463 
1464 	if (channel >= IPMI_MAX_CHANNELS) {
1465 		rv = -EINVAL;
1466 	} else {
1467 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1468 		*address = user->intf->addrinfo[channel].address;
1469 	}
1470 	release_ipmi_user(user);
1471 
1472 	return rv;
1473 }
1474 EXPORT_SYMBOL(ipmi_get_my_address);
1475 
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1476 int ipmi_set_my_LUN(struct ipmi_user *user,
1477 		    unsigned int  channel,
1478 		    unsigned char LUN)
1479 {
1480 	int rv = 0;
1481 
1482 	user = acquire_ipmi_user(user);
1483 	if (!user)
1484 		return -ENODEV;
1485 
1486 	if (channel >= IPMI_MAX_CHANNELS) {
1487 		rv = -EINVAL;
1488 	} else {
1489 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1490 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1491 	}
1492 	release_ipmi_user(user);
1493 
1494 	return rv;
1495 }
1496 EXPORT_SYMBOL(ipmi_set_my_LUN);
1497 
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1498 int ipmi_get_my_LUN(struct ipmi_user *user,
1499 		    unsigned int  channel,
1500 		    unsigned char *address)
1501 {
1502 	int rv = 0;
1503 
1504 	user = acquire_ipmi_user(user);
1505 	if (!user)
1506 		return -ENODEV;
1507 
1508 	if (channel >= IPMI_MAX_CHANNELS) {
1509 		rv = -EINVAL;
1510 	} else {
1511 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1512 		*address = user->intf->addrinfo[channel].lun;
1513 	}
1514 	release_ipmi_user(user);
1515 
1516 	return rv;
1517 }
1518 EXPORT_SYMBOL(ipmi_get_my_LUN);
1519 
ipmi_get_maintenance_mode(struct ipmi_user * user)1520 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1521 {
1522 	int mode;
1523 	unsigned long flags;
1524 
1525 	user = acquire_ipmi_user(user);
1526 	if (!user)
1527 		return -ENODEV;
1528 
1529 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1530 	mode = user->intf->maintenance_mode;
1531 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1532 	release_ipmi_user(user);
1533 
1534 	return mode;
1535 }
1536 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1537 
maintenance_mode_update(struct ipmi_smi * intf)1538 static void maintenance_mode_update(struct ipmi_smi *intf)
1539 {
1540 	if (intf->handlers->set_maintenance_mode)
1541 		/*
1542 		 * Lower level drivers only care about firmware mode
1543 		 * as it affects their timing.  They don't care about
1544 		 * reset, which disables all commands for a while.
1545 		 */
1546 		intf->handlers->set_maintenance_mode(
1547 			intf->send_info,
1548 			(intf->maintenance_mode_state ==
1549 			 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE));
1550 }
1551 
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1552 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1553 {
1554 	int rv = 0;
1555 	unsigned long flags;
1556 	struct ipmi_smi *intf = user->intf;
1557 
1558 	user = acquire_ipmi_user(user);
1559 	if (!user)
1560 		return -ENODEV;
1561 
1562 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1563 	if (intf->maintenance_mode != mode) {
1564 		switch (mode) {
1565 		case IPMI_MAINTENANCE_MODE_AUTO:
1566 			/* Just leave it alone. */
1567 			break;
1568 
1569 		case IPMI_MAINTENANCE_MODE_OFF:
1570 			intf->maintenance_mode_state =
1571 				IPMI_MAINTENANCE_MODE_STATE_OFF;
1572 			break;
1573 
1574 		case IPMI_MAINTENANCE_MODE_ON:
1575 			intf->maintenance_mode_state =
1576 				IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1577 			break;
1578 
1579 		default:
1580 			rv = -EINVAL;
1581 			goto out_unlock;
1582 		}
1583 		intf->maintenance_mode = mode;
1584 
1585 		maintenance_mode_update(intf);
1586 	}
1587  out_unlock:
1588 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1589 	release_ipmi_user(user);
1590 
1591 	return rv;
1592 }
1593 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1594 
ipmi_set_gets_events(struct ipmi_user * user,bool val)1595 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1596 {
1597 	struct ipmi_smi      *intf = user->intf;
1598 	struct ipmi_recv_msg *msg, *msg2;
1599 	struct list_head     msgs;
1600 
1601 	user = acquire_ipmi_user(user);
1602 	if (!user)
1603 		return -ENODEV;
1604 
1605 	INIT_LIST_HEAD(&msgs);
1606 
1607 	mutex_lock(&intf->events_mutex);
1608 	if (user->gets_events == val)
1609 		goto out;
1610 
1611 	user->gets_events = val;
1612 
1613 	if (val) {
1614 		if (atomic_inc_return(&intf->event_waiters) == 1)
1615 			need_waiter(intf);
1616 	} else {
1617 		atomic_dec(&intf->event_waiters);
1618 	}
1619 
1620 	/* Deliver any queued events. */
1621 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1622 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1623 			list_move_tail(&msg->link, &msgs);
1624 		intf->waiting_events_count = 0;
1625 		if (intf->event_msg_printed) {
1626 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1627 			intf->event_msg_printed = 0;
1628 		}
1629 
1630 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1631 			ipmi_set_recv_msg_user(msg, user);
1632 			deliver_local_response(intf, msg);
1633 		}
1634 	}
1635 
1636  out:
1637 	mutex_unlock(&intf->events_mutex);
1638 	release_ipmi_user(user);
1639 
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(ipmi_set_gets_events);
1643 
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1644 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1645 				      unsigned char netfn,
1646 				      unsigned char cmd,
1647 				      unsigned char chan)
1648 {
1649 	struct cmd_rcvr *rcvr;
1650 
1651 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1652 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1653 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1654 					&& (rcvr->chans & (1 << chan)))
1655 			return rcvr;
1656 	}
1657 	return NULL;
1658 }
1659 
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1660 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1661 				 unsigned char netfn,
1662 				 unsigned char cmd,
1663 				 unsigned int  chans)
1664 {
1665 	struct cmd_rcvr *rcvr;
1666 
1667 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1668 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1669 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1670 					&& (rcvr->chans & chans))
1671 			return 0;
1672 	}
1673 	return 1;
1674 }
1675 
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1676 int ipmi_register_for_cmd(struct ipmi_user *user,
1677 			  unsigned char netfn,
1678 			  unsigned char cmd,
1679 			  unsigned int  chans)
1680 {
1681 	struct ipmi_smi *intf = user->intf;
1682 	struct cmd_rcvr *rcvr;
1683 	int rv = 0;
1684 
1685 	user = acquire_ipmi_user(user);
1686 	if (!user)
1687 		return -ENODEV;
1688 
1689 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1690 	if (!rcvr) {
1691 		rv = -ENOMEM;
1692 		goto out_release;
1693 	}
1694 	rcvr->cmd = cmd;
1695 	rcvr->netfn = netfn;
1696 	rcvr->chans = chans;
1697 	rcvr->user = user;
1698 
1699 	mutex_lock(&intf->cmd_rcvrs_mutex);
1700 	/* Make sure the command/netfn is not already registered. */
1701 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1702 		rv = -EBUSY;
1703 		goto out_unlock;
1704 	}
1705 
1706 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1707 
1708 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1709 
1710 out_unlock:
1711 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1712 	if (rv)
1713 		kfree(rcvr);
1714 out_release:
1715 	release_ipmi_user(user);
1716 
1717 	return rv;
1718 }
1719 EXPORT_SYMBOL(ipmi_register_for_cmd);
1720 
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1721 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1722 			    unsigned char netfn,
1723 			    unsigned char cmd,
1724 			    unsigned int  chans)
1725 {
1726 	struct ipmi_smi *intf = user->intf;
1727 	struct cmd_rcvr *rcvr;
1728 	struct cmd_rcvr *rcvrs = NULL;
1729 	int i, rv = -ENOENT;
1730 
1731 	user = acquire_ipmi_user(user);
1732 	if (!user)
1733 		return -ENODEV;
1734 
1735 	mutex_lock(&intf->cmd_rcvrs_mutex);
1736 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1737 		if (((1 << i) & chans) == 0)
1738 			continue;
1739 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1740 		if (rcvr == NULL)
1741 			continue;
1742 		if (rcvr->user == user) {
1743 			rv = 0;
1744 			rcvr->chans &= ~chans;
1745 			if (rcvr->chans == 0) {
1746 				list_del_rcu(&rcvr->link);
1747 				rcvr->next = rcvrs;
1748 				rcvrs = rcvr;
1749 			}
1750 		}
1751 	}
1752 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1753 	synchronize_rcu();
1754 	release_ipmi_user(user);
1755 	while (rcvrs) {
1756 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1757 		rcvr = rcvrs;
1758 		rcvrs = rcvr->next;
1759 		kfree(rcvr);
1760 	}
1761 
1762 	return rv;
1763 }
1764 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1765 
1766 unsigned char
ipmb_checksum(unsigned char * data,int size)1767 ipmb_checksum(unsigned char *data, int size)
1768 {
1769 	unsigned char csum = 0;
1770 
1771 	for (; size > 0; size--, data++)
1772 		csum += *data;
1773 
1774 	return -csum;
1775 }
1776 EXPORT_SYMBOL(ipmb_checksum);
1777 
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1778 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1779 				   struct kernel_ipmi_msg *msg,
1780 				   struct ipmi_ipmb_addr *ipmb_addr,
1781 				   long                  msgid,
1782 				   unsigned char         ipmb_seq,
1783 				   int                   broadcast,
1784 				   unsigned char         source_address,
1785 				   unsigned char         source_lun)
1786 {
1787 	int i = broadcast;
1788 
1789 	/* Format the IPMB header data. */
1790 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1791 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1792 	smi_msg->data[2] = ipmb_addr->channel;
1793 	if (broadcast)
1794 		smi_msg->data[3] = 0;
1795 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1796 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1797 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1798 	smi_msg->data[i+6] = source_address;
1799 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1800 	smi_msg->data[i+8] = msg->cmd;
1801 
1802 	/* Now tack on the data to the message. */
1803 	if (msg->data_len > 0)
1804 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1805 	smi_msg->data_size = msg->data_len + 9;
1806 
1807 	/* Now calculate the checksum and tack it on. */
1808 	smi_msg->data[i+smi_msg->data_size]
1809 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1810 
1811 	/*
1812 	 * Add on the checksum size and the offset from the
1813 	 * broadcast.
1814 	 */
1815 	smi_msg->data_size += 1 + i;
1816 
1817 	smi_msg->msgid = msgid;
1818 }
1819 
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1820 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1821 				  struct kernel_ipmi_msg *msg,
1822 				  struct ipmi_lan_addr  *lan_addr,
1823 				  long                  msgid,
1824 				  unsigned char         ipmb_seq,
1825 				  unsigned char         source_lun)
1826 {
1827 	/* Format the IPMB header data. */
1828 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1829 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1830 	smi_msg->data[2] = lan_addr->channel;
1831 	smi_msg->data[3] = lan_addr->session_handle;
1832 	smi_msg->data[4] = lan_addr->remote_SWID;
1833 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1834 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1835 	smi_msg->data[7] = lan_addr->local_SWID;
1836 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1837 	smi_msg->data[9] = msg->cmd;
1838 
1839 	/* Now tack on the data to the message. */
1840 	if (msg->data_len > 0)
1841 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1842 	smi_msg->data_size = msg->data_len + 10;
1843 
1844 	/* Now calculate the checksum and tack it on. */
1845 	smi_msg->data[smi_msg->data_size]
1846 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1847 
1848 	/*
1849 	 * Add on the checksum size and the offset from the
1850 	 * broadcast.
1851 	 */
1852 	smi_msg->data_size += 1;
1853 
1854 	smi_msg->msgid = msgid;
1855 }
1856 
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1857 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1858 					     struct ipmi_smi_msg *smi_msg,
1859 					     int priority)
1860 {
1861 	if (intf->curr_msg) {
1862 		if (priority > 0)
1863 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1864 		else
1865 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1866 		smi_msg = NULL;
1867 	} else {
1868 		intf->curr_msg = smi_msg;
1869 	}
1870 
1871 	return smi_msg;
1872 }
1873 
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1874 static void smi_send(struct ipmi_smi *intf,
1875 		     const struct ipmi_smi_handlers *handlers,
1876 		     struct ipmi_smi_msg *smi_msg, int priority)
1877 {
1878 	int run_to_completion = READ_ONCE(intf->run_to_completion);
1879 	unsigned long flags = 0;
1880 
1881 	if (!run_to_completion)
1882 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1883 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1884 	if (!run_to_completion)
1885 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1886 
1887 	if (smi_msg)
1888 		handlers->sender(intf->send_info, smi_msg);
1889 }
1890 
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1891 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1892 {
1893 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1894 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1895 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1896 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1897 }
1898 
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1899 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1900 			      struct ipmi_addr       *addr,
1901 			      long                   msgid,
1902 			      struct kernel_ipmi_msg *msg,
1903 			      struct ipmi_smi_msg    *smi_msg,
1904 			      struct ipmi_recv_msg   *recv_msg,
1905 			      int                    retries,
1906 			      unsigned int           retry_time_ms)
1907 {
1908 	struct ipmi_system_interface_addr *smi_addr;
1909 
1910 	if (msg->netfn & 1)
1911 		/* Responses are not allowed to the SMI. */
1912 		return -EINVAL;
1913 
1914 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1915 	if (smi_addr->lun > 3) {
1916 		ipmi_inc_stat(intf, sent_invalid_commands);
1917 		return -EINVAL;
1918 	}
1919 
1920 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1921 
1922 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1923 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1924 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1925 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1926 		/*
1927 		 * We don't let the user do these, since we manage
1928 		 * the sequence numbers.
1929 		 */
1930 		ipmi_inc_stat(intf, sent_invalid_commands);
1931 		return -EINVAL;
1932 	}
1933 
1934 	if (is_maintenance_mode_cmd(msg)) {
1935 		unsigned long flags;
1936 		int newst;
1937 
1938 		if (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)
1939 			newst = IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1940 		else
1941 			newst = IPMI_MAINTENANCE_MODE_STATE_RESET;
1942 
1943 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1944 		intf->auto_maintenance_timeout = maintenance_mode_timeout_ms;
1945 		if (!intf->maintenance_mode
1946 				&& intf->maintenance_mode_state < newst) {
1947 			intf->maintenance_mode_state = newst;
1948 			maintenance_mode_update(intf);
1949 			mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
1950 		}
1951 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1952 				       flags);
1953 	}
1954 
1955 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1956 		ipmi_inc_stat(intf, sent_invalid_commands);
1957 		return -EMSGSIZE;
1958 	}
1959 
1960 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1961 	smi_msg->data[1] = msg->cmd;
1962 	smi_msg->msgid = msgid;
1963 	smi_msg->recv_msg = recv_msg;
1964 	if (msg->data_len > 0)
1965 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1966 	smi_msg->data_size = msg->data_len + 2;
1967 	ipmi_inc_stat(intf, sent_local_commands);
1968 
1969 	return 0;
1970 }
1971 
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1972 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1973 			   struct ipmi_addr       *addr,
1974 			   long                   msgid,
1975 			   struct kernel_ipmi_msg *msg,
1976 			   struct ipmi_smi_msg    *smi_msg,
1977 			   struct ipmi_recv_msg   *recv_msg,
1978 			   unsigned char          source_address,
1979 			   unsigned char          source_lun,
1980 			   int                    retries,
1981 			   unsigned int           retry_time_ms)
1982 {
1983 	struct ipmi_ipmb_addr *ipmb_addr;
1984 	unsigned char ipmb_seq;
1985 	long seqid;
1986 	int broadcast = 0;
1987 	struct ipmi_channel *chans;
1988 	int rv = 0;
1989 
1990 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1991 		ipmi_inc_stat(intf, sent_invalid_commands);
1992 		return -EINVAL;
1993 	}
1994 
1995 	chans = READ_ONCE(intf->channel_list)->c;
1996 
1997 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1998 		ipmi_inc_stat(intf, sent_invalid_commands);
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2003 		/*
2004 		 * Broadcasts add a zero at the beginning of the
2005 		 * message, but otherwise is the same as an IPMB
2006 		 * address.
2007 		 */
2008 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2009 		broadcast = 1;
2010 		retries = 0; /* Don't retry broadcasts. */
2011 	}
2012 
2013 	/*
2014 	 * 9 for the header and 1 for the checksum, plus
2015 	 * possibly one for the broadcast.
2016 	 */
2017 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2018 		ipmi_inc_stat(intf, sent_invalid_commands);
2019 		return -EMSGSIZE;
2020 	}
2021 
2022 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2023 	if (ipmb_addr->lun > 3) {
2024 		ipmi_inc_stat(intf, sent_invalid_commands);
2025 		return -EINVAL;
2026 	}
2027 
2028 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2029 
2030 	if (recv_msg->msg.netfn & 0x1) {
2031 		/*
2032 		 * It's a response, so use the user's sequence
2033 		 * from msgid.
2034 		 */
2035 		ipmi_inc_stat(intf, sent_ipmb_responses);
2036 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2037 				msgid, broadcast,
2038 				source_address, source_lun);
2039 
2040 		/*
2041 		 * Save the receive message so we can use it
2042 		 * to deliver the response.
2043 		 */
2044 		smi_msg->recv_msg = recv_msg;
2045 	} else {
2046 		mutex_lock(&intf->seq_lock);
2047 
2048 		if (is_maintenance_mode_cmd(msg))
2049 			intf->ipmb_maintenance_mode_timeout =
2050 				maintenance_mode_timeout_ms;
2051 
2052 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2053 			/* Different default in maintenance mode */
2054 			retry_time_ms = default_maintenance_retry_ms;
2055 
2056 		/*
2057 		 * Create a sequence number with a 1 second
2058 		 * timeout and 4 retries.
2059 		 */
2060 		rv = intf_next_seq(intf,
2061 				   recv_msg,
2062 				   retry_time_ms,
2063 				   retries,
2064 				   broadcast,
2065 				   &ipmb_seq,
2066 				   &seqid);
2067 		if (rv)
2068 			/*
2069 			 * We have used up all the sequence numbers,
2070 			 * probably, so abort.
2071 			 */
2072 			goto out_err;
2073 
2074 		ipmi_inc_stat(intf, sent_ipmb_commands);
2075 
2076 		/*
2077 		 * Store the sequence number in the message,
2078 		 * so that when the send message response
2079 		 * comes back we can start the timer.
2080 		 */
2081 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2082 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2083 				ipmb_seq, broadcast,
2084 				source_address, source_lun);
2085 
2086 		/*
2087 		 * Copy the message into the recv message data, so we
2088 		 * can retransmit it later if necessary.
2089 		 */
2090 		memcpy(recv_msg->msg_data, smi_msg->data,
2091 		       smi_msg->data_size);
2092 		recv_msg->msg.data = recv_msg->msg_data;
2093 		recv_msg->msg.data_len = smi_msg->data_size;
2094 
2095 		/*
2096 		 * We don't unlock until here, because we need
2097 		 * to copy the completed message into the
2098 		 * recv_msg before we release the lock.
2099 		 * Otherwise, race conditions may bite us.  I
2100 		 * know that's pretty paranoid, but I prefer
2101 		 * to be correct.
2102 		 */
2103 out_err:
2104 		mutex_unlock(&intf->seq_lock);
2105 	}
2106 
2107 	return rv;
2108 }
2109 
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2110 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2111 				  struct ipmi_addr       *addr,
2112 				  long			 msgid,
2113 				  struct kernel_ipmi_msg *msg,
2114 				  struct ipmi_smi_msg    *smi_msg,
2115 				  struct ipmi_recv_msg   *recv_msg,
2116 				  unsigned char          source_lun)
2117 {
2118 	struct ipmi_ipmb_direct_addr *daddr;
2119 	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2120 
2121 	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2122 		return -EAFNOSUPPORT;
2123 
2124 	/* Responses must have a completion code. */
2125 	if (!is_cmd && msg->data_len < 1) {
2126 		ipmi_inc_stat(intf, sent_invalid_commands);
2127 		return -EINVAL;
2128 	}
2129 
2130 	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2131 		ipmi_inc_stat(intf, sent_invalid_commands);
2132 		return -EMSGSIZE;
2133 	}
2134 
2135 	daddr = (struct ipmi_ipmb_direct_addr *) addr;
2136 	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2137 		ipmi_inc_stat(intf, sent_invalid_commands);
2138 		return -EINVAL;
2139 	}
2140 
2141 	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2142 	smi_msg->msgid = msgid;
2143 
2144 	if (is_cmd) {
2145 		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2146 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2147 	} else {
2148 		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2149 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2150 	}
2151 	smi_msg->data[1] = daddr->slave_addr;
2152 	smi_msg->data[3] = msg->cmd;
2153 
2154 	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2155 	smi_msg->data_size = msg->data_len + 4;
2156 
2157 	smi_msg->recv_msg = recv_msg;
2158 
2159 	return 0;
2160 }
2161 
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2162 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2163 			  struct ipmi_addr       *addr,
2164 			  long                   msgid,
2165 			  struct kernel_ipmi_msg *msg,
2166 			  struct ipmi_smi_msg    *smi_msg,
2167 			  struct ipmi_recv_msg   *recv_msg,
2168 			  unsigned char          source_lun,
2169 			  int                    retries,
2170 			  unsigned int           retry_time_ms)
2171 {
2172 	struct ipmi_lan_addr  *lan_addr;
2173 	unsigned char ipmb_seq;
2174 	long seqid;
2175 	struct ipmi_channel *chans;
2176 	int rv = 0;
2177 
2178 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2179 		ipmi_inc_stat(intf, sent_invalid_commands);
2180 		return -EINVAL;
2181 	}
2182 
2183 	chans = READ_ONCE(intf->channel_list)->c;
2184 
2185 	if ((chans[addr->channel].medium
2186 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2187 			&& (chans[addr->channel].medium
2188 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2189 		ipmi_inc_stat(intf, sent_invalid_commands);
2190 		return -EINVAL;
2191 	}
2192 
2193 	/* 11 for the header and 1 for the checksum. */
2194 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2195 		ipmi_inc_stat(intf, sent_invalid_commands);
2196 		return -EMSGSIZE;
2197 	}
2198 
2199 	lan_addr = (struct ipmi_lan_addr *) addr;
2200 	if (lan_addr->lun > 3) {
2201 		ipmi_inc_stat(intf, sent_invalid_commands);
2202 		return -EINVAL;
2203 	}
2204 
2205 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2206 
2207 	if (recv_msg->msg.netfn & 0x1) {
2208 		/*
2209 		 * It's a response, so use the user's sequence
2210 		 * from msgid.
2211 		 */
2212 		ipmi_inc_stat(intf, sent_lan_responses);
2213 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2214 			       msgid, source_lun);
2215 
2216 		/*
2217 		 * Save the receive message so we can use it
2218 		 * to deliver the response.
2219 		 */
2220 		smi_msg->recv_msg = recv_msg;
2221 	} else {
2222 		mutex_lock(&intf->seq_lock);
2223 
2224 		/*
2225 		 * Create a sequence number with a 1 second
2226 		 * timeout and 4 retries.
2227 		 */
2228 		rv = intf_next_seq(intf,
2229 				   recv_msg,
2230 				   retry_time_ms,
2231 				   retries,
2232 				   0,
2233 				   &ipmb_seq,
2234 				   &seqid);
2235 		if (rv)
2236 			/*
2237 			 * We have used up all the sequence numbers,
2238 			 * probably, so abort.
2239 			 */
2240 			goto out_err;
2241 
2242 		ipmi_inc_stat(intf, sent_lan_commands);
2243 
2244 		/*
2245 		 * Store the sequence number in the message,
2246 		 * so that when the send message response
2247 		 * comes back we can start the timer.
2248 		 */
2249 		format_lan_msg(smi_msg, msg, lan_addr,
2250 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2251 			       ipmb_seq, source_lun);
2252 
2253 		/*
2254 		 * Copy the message into the recv message data, so we
2255 		 * can retransmit it later if necessary.
2256 		 */
2257 		memcpy(recv_msg->msg_data, smi_msg->data,
2258 		       smi_msg->data_size);
2259 		recv_msg->msg.data = recv_msg->msg_data;
2260 		recv_msg->msg.data_len = smi_msg->data_size;
2261 
2262 		/*
2263 		 * We don't unlock until here, because we need
2264 		 * to copy the completed message into the
2265 		 * recv_msg before we release the lock.
2266 		 * Otherwise, race conditions may bite us.  I
2267 		 * know that's pretty paranoid, but I prefer
2268 		 * to be correct.
2269 		 */
2270 out_err:
2271 		mutex_unlock(&intf->seq_lock);
2272 	}
2273 
2274 	return rv;
2275 }
2276 
2277 /*
2278  * Separate from ipmi_request so that the user does not have to be
2279  * supplied in certain circumstances (mainly at panic time).  If
2280  * messages are supplied, they will be freed, even if an error
2281  * occurs.
2282  */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2283 static int i_ipmi_request(struct ipmi_user     *user,
2284 			  struct ipmi_smi      *intf,
2285 			  struct ipmi_addr     *addr,
2286 			  long                 msgid,
2287 			  struct kernel_ipmi_msg *msg,
2288 			  void                 *user_msg_data,
2289 			  void                 *supplied_smi,
2290 			  struct ipmi_recv_msg *supplied_recv,
2291 			  int                  priority,
2292 			  unsigned char        source_address,
2293 			  unsigned char        source_lun,
2294 			  int                  retries,
2295 			  unsigned int         retry_time_ms)
2296 {
2297 	struct ipmi_smi_msg *smi_msg;
2298 	struct ipmi_recv_msg *recv_msg;
2299 	int run_to_completion = READ_ONCE(intf->run_to_completion);
2300 	int rv = 0;
2301 
2302 	if (supplied_recv) {
2303 		recv_msg = supplied_recv;
2304 		recv_msg->user = user;
2305 		if (user) {
2306 			atomic_inc(&user->nr_msgs);
2307 			/* The put happens when the message is freed. */
2308 			kref_get(&user->refcount);
2309 		}
2310 	} else {
2311 		recv_msg = ipmi_alloc_recv_msg(user);
2312 		if (IS_ERR(recv_msg))
2313 			return PTR_ERR(recv_msg);
2314 	}
2315 	recv_msg->user_msg_data = user_msg_data;
2316 
2317 	if (supplied_smi)
2318 		smi_msg = supplied_smi;
2319 	else {
2320 		smi_msg = ipmi_alloc_smi_msg();
2321 		if (smi_msg == NULL) {
2322 			if (!supplied_recv)
2323 				ipmi_free_recv_msg(recv_msg);
2324 			return -ENOMEM;
2325 		}
2326 	}
2327 
2328 	if (!run_to_completion)
2329 		mutex_lock(&intf->users_mutex);
2330 	if (intf->maintenance_mode_state == IPMI_MAINTENANCE_MODE_STATE_RESET) {
2331 		/* No messages while the BMC is in reset. */
2332 		rv = -EBUSY;
2333 		goto out_err;
2334 	}
2335 	if (intf->in_shutdown) {
2336 		rv = -ENODEV;
2337 		goto out_err;
2338 	}
2339 
2340 	recv_msg->msgid = msgid;
2341 	/*
2342 	 * Store the message to send in the receive message so timeout
2343 	 * responses can get the proper response data.
2344 	 */
2345 	recv_msg->msg = *msg;
2346 
2347 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2348 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2349 					recv_msg, retries, retry_time_ms);
2350 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2351 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2352 				     source_address, source_lun,
2353 				     retries, retry_time_ms);
2354 	} else if (is_ipmb_direct_addr(addr)) {
2355 		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2356 					    recv_msg, source_lun);
2357 	} else if (is_lan_addr(addr)) {
2358 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2359 				    source_lun, retries, retry_time_ms);
2360 	} else {
2361 	    /* Unknown address type. */
2362 		ipmi_inc_stat(intf, sent_invalid_commands);
2363 		rv = -EINVAL;
2364 	}
2365 
2366 	if (rv) {
2367 out_err:
2368 		if (!supplied_smi)
2369 			ipmi_free_smi_msg(smi_msg);
2370 		if (!supplied_recv)
2371 			ipmi_free_recv_msg(recv_msg);
2372 	} else {
2373 		dev_dbg(intf->si_dev, "Send: %*ph\n",
2374 			smi_msg->data_size, smi_msg->data);
2375 
2376 		smi_send(intf, intf->handlers, smi_msg, priority);
2377 	}
2378 	if (!run_to_completion)
2379 		mutex_unlock(&intf->users_mutex);
2380 
2381 	return rv;
2382 }
2383 
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2384 static int check_addr(struct ipmi_smi  *intf,
2385 		      struct ipmi_addr *addr,
2386 		      unsigned char    *saddr,
2387 		      unsigned char    *lun)
2388 {
2389 	if (addr->channel >= IPMI_MAX_CHANNELS)
2390 		return -EINVAL;
2391 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2392 	*lun = intf->addrinfo[addr->channel].lun;
2393 	*saddr = intf->addrinfo[addr->channel].address;
2394 	return 0;
2395 }
2396 
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2397 int ipmi_request_settime(struct ipmi_user *user,
2398 			 struct ipmi_addr *addr,
2399 			 long             msgid,
2400 			 struct kernel_ipmi_msg  *msg,
2401 			 void             *user_msg_data,
2402 			 int              priority,
2403 			 int              retries,
2404 			 unsigned int     retry_time_ms)
2405 {
2406 	unsigned char saddr = 0, lun = 0;
2407 	int rv;
2408 
2409 	if (!user)
2410 		return -EINVAL;
2411 
2412 	user = acquire_ipmi_user(user);
2413 	if (!user)
2414 		return -ENODEV;
2415 
2416 	rv = check_addr(user->intf, addr, &saddr, &lun);
2417 	if (!rv)
2418 		rv = i_ipmi_request(user,
2419 				    user->intf,
2420 				    addr,
2421 				    msgid,
2422 				    msg,
2423 				    user_msg_data,
2424 				    NULL, NULL,
2425 				    priority,
2426 				    saddr,
2427 				    lun,
2428 				    retries,
2429 				    retry_time_ms);
2430 
2431 	release_ipmi_user(user);
2432 	return rv;
2433 }
2434 EXPORT_SYMBOL(ipmi_request_settime);
2435 
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2436 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2437 			     struct ipmi_addr     *addr,
2438 			     long                 msgid,
2439 			     struct kernel_ipmi_msg *msg,
2440 			     void                 *user_msg_data,
2441 			     void                 *supplied_smi,
2442 			     struct ipmi_recv_msg *supplied_recv,
2443 			     int                  priority)
2444 {
2445 	unsigned char saddr = 0, lun = 0;
2446 	int rv;
2447 
2448 	if (!user)
2449 		return -EINVAL;
2450 
2451 	user = acquire_ipmi_user(user);
2452 	if (!user)
2453 		return -ENODEV;
2454 
2455 	rv = check_addr(user->intf, addr, &saddr, &lun);
2456 	if (!rv)
2457 		rv = i_ipmi_request(user,
2458 				    user->intf,
2459 				    addr,
2460 				    msgid,
2461 				    msg,
2462 				    user_msg_data,
2463 				    supplied_smi,
2464 				    supplied_recv,
2465 				    priority,
2466 				    saddr,
2467 				    lun,
2468 				    -1, 0);
2469 
2470 	release_ipmi_user(user);
2471 	return rv;
2472 }
2473 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2474 
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2475 static void bmc_device_id_handler(struct ipmi_smi *intf,
2476 				  struct ipmi_recv_msg *msg)
2477 {
2478 	int rv;
2479 
2480 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2481 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2482 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2483 		dev_warn(intf->si_dev,
2484 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2485 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2486 		return;
2487 	}
2488 
2489 	if (msg->msg.data[0]) {
2490 		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2491 			 msg->msg.data[0]);
2492 		intf->bmc->dyn_id_set = 0;
2493 		goto out;
2494 	}
2495 
2496 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2497 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2498 	if (rv) {
2499 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2500 		/* record completion code when error */
2501 		intf->bmc->cc = msg->msg.data[0];
2502 		intf->bmc->dyn_id_set = 0;
2503 	} else {
2504 		/*
2505 		 * Make sure the id data is available before setting
2506 		 * dyn_id_set.
2507 		 */
2508 		smp_wmb();
2509 		intf->bmc->dyn_id_set = 1;
2510 	}
2511 out:
2512 	wake_up(&intf->waitq);
2513 }
2514 
2515 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2516 send_get_device_id_cmd(struct ipmi_smi *intf)
2517 {
2518 	struct ipmi_system_interface_addr si;
2519 	struct kernel_ipmi_msg msg;
2520 
2521 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2522 	si.channel = IPMI_BMC_CHANNEL;
2523 	si.lun = 0;
2524 
2525 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2526 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2527 	msg.data = NULL;
2528 	msg.data_len = 0;
2529 
2530 	return i_ipmi_request(NULL,
2531 			      intf,
2532 			      (struct ipmi_addr *) &si,
2533 			      0,
2534 			      &msg,
2535 			      intf,
2536 			      NULL,
2537 			      NULL,
2538 			      0,
2539 			      intf->addrinfo[0].address,
2540 			      intf->addrinfo[0].lun,
2541 			      -1, 0);
2542 }
2543 
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2544 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2545 {
2546 	int rv;
2547 	unsigned int retry_count = 0;
2548 
2549 	intf->null_user_handler = bmc_device_id_handler;
2550 
2551 retry:
2552 	bmc->cc = 0;
2553 	bmc->dyn_id_set = 2;
2554 
2555 	rv = send_get_device_id_cmd(intf);
2556 	if (rv)
2557 		goto out_reset_handler;
2558 
2559 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2560 
2561 	if (!bmc->dyn_id_set) {
2562 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2563 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2564 			msleep(500);
2565 			dev_warn(intf->si_dev,
2566 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2567 			    bmc->cc);
2568 			goto retry;
2569 		}
2570 
2571 		rv = -EIO; /* Something went wrong in the fetch. */
2572 	}
2573 
2574 	/* dyn_id_set makes the id data available. */
2575 	smp_rmb();
2576 
2577 out_reset_handler:
2578 	intf->null_user_handler = NULL;
2579 
2580 	return rv;
2581 }
2582 
2583 /*
2584  * Fetch the device id for the bmc/interface.  You must pass in either
2585  * bmc or intf, this code will get the other one.  If the data has
2586  * been recently fetched, this will just use the cached data.  Otherwise
2587  * it will run a new fetch.
2588  *
2589  * Except for the first time this is called (in ipmi_add_smi()),
2590  * this will always return good data;
2591  */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2592 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2593 			       struct ipmi_device_id *id,
2594 			       bool *guid_set, guid_t *guid, int intf_num)
2595 {
2596 	int rv = 0;
2597 	int prev_dyn_id_set, prev_guid_set;
2598 	bool intf_set = intf != NULL;
2599 
2600 	if (!intf) {
2601 		mutex_lock(&bmc->dyn_mutex);
2602 retry_bmc_lock:
2603 		if (list_empty(&bmc->intfs)) {
2604 			mutex_unlock(&bmc->dyn_mutex);
2605 			return -ENOENT;
2606 		}
2607 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2608 					bmc_link);
2609 		kref_get(&intf->refcount);
2610 		mutex_unlock(&bmc->dyn_mutex);
2611 		mutex_lock(&intf->bmc_reg_mutex);
2612 		mutex_lock(&bmc->dyn_mutex);
2613 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2614 					     bmc_link)) {
2615 			mutex_unlock(&intf->bmc_reg_mutex);
2616 			kref_put(&intf->refcount, intf_free);
2617 			goto retry_bmc_lock;
2618 		}
2619 	} else {
2620 		mutex_lock(&intf->bmc_reg_mutex);
2621 		bmc = intf->bmc;
2622 		mutex_lock(&bmc->dyn_mutex);
2623 		kref_get(&intf->refcount);
2624 	}
2625 
2626 	/* If we have a valid and current ID, just return that. */
2627 	if (intf->in_bmc_register ||
2628 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2629 		goto out_noprocessing;
2630 
2631 	/* Don't allow sysfs access when in maintenance mode. */
2632 	if (intf->maintenance_mode_state) {
2633 		rv = -EBUSY;
2634 		goto out_noprocessing;
2635 	}
2636 
2637 	prev_guid_set = bmc->dyn_guid_set;
2638 	__get_guid(intf);
2639 
2640 	prev_dyn_id_set = bmc->dyn_id_set;
2641 	rv = __get_device_id(intf, bmc);
2642 	if (rv)
2643 		goto out;
2644 
2645 	/*
2646 	 * The guid, device id, manufacturer id, and product id should
2647 	 * not change on a BMC.  If it does we have to do some dancing.
2648 	 */
2649 	if (!intf->bmc_registered
2650 	    || (!prev_guid_set && bmc->dyn_guid_set)
2651 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2652 	    || (prev_guid_set && bmc->dyn_guid_set
2653 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2654 	    || bmc->id.device_id != bmc->fetch_id.device_id
2655 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2656 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2657 		struct ipmi_device_id id = bmc->fetch_id;
2658 		int guid_set = bmc->dyn_guid_set;
2659 		guid_t guid;
2660 
2661 		guid = bmc->fetch_guid;
2662 		mutex_unlock(&bmc->dyn_mutex);
2663 
2664 		__ipmi_bmc_unregister(intf);
2665 		/* Fill in the temporary BMC for good measure. */
2666 		intf->bmc->id = id;
2667 		intf->bmc->dyn_guid_set = guid_set;
2668 		intf->bmc->guid = guid;
2669 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2670 			need_waiter(intf); /* Retry later on an error. */
2671 		else
2672 			__scan_channels(intf, &id, false);
2673 
2674 
2675 		if (!intf_set) {
2676 			/*
2677 			 * We weren't given the interface on the
2678 			 * command line, so restart the operation on
2679 			 * the next interface for the BMC.
2680 			 */
2681 			mutex_unlock(&intf->bmc_reg_mutex);
2682 			mutex_lock(&bmc->dyn_mutex);
2683 			goto retry_bmc_lock;
2684 		}
2685 
2686 		/* We have a new BMC, set it up. */
2687 		bmc = intf->bmc;
2688 		mutex_lock(&bmc->dyn_mutex);
2689 		goto out_noprocessing;
2690 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2691 		/* Version info changes, scan the channels again. */
2692 		__scan_channels(intf, &bmc->fetch_id, true);
2693 
2694 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2695 
2696 out:
2697 	if (rv && prev_dyn_id_set) {
2698 		rv = 0; /* Ignore failures if we have previous data. */
2699 		bmc->dyn_id_set = prev_dyn_id_set;
2700 	}
2701 	if (!rv) {
2702 		bmc->id = bmc->fetch_id;
2703 		if (bmc->dyn_guid_set)
2704 			bmc->guid = bmc->fetch_guid;
2705 		else if (prev_guid_set)
2706 			/*
2707 			 * The guid used to be valid and it failed to fetch,
2708 			 * just use the cached value.
2709 			 */
2710 			bmc->dyn_guid_set = prev_guid_set;
2711 	}
2712 out_noprocessing:
2713 	if (!rv) {
2714 		if (id)
2715 			*id = bmc->id;
2716 
2717 		if (guid_set)
2718 			*guid_set = bmc->dyn_guid_set;
2719 
2720 		if (guid && bmc->dyn_guid_set)
2721 			*guid =  bmc->guid;
2722 	}
2723 
2724 	mutex_unlock(&bmc->dyn_mutex);
2725 	mutex_unlock(&intf->bmc_reg_mutex);
2726 
2727 	kref_put(&intf->refcount, intf_free);
2728 	return rv;
2729 }
2730 
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2731 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2732 			     struct ipmi_device_id *id,
2733 			     bool *guid_set, guid_t *guid)
2734 {
2735 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2736 }
2737 
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2738 static ssize_t device_id_show(struct device *dev,
2739 			      struct device_attribute *attr,
2740 			      char *buf)
2741 {
2742 	struct bmc_device *bmc = to_bmc_device(dev);
2743 	struct ipmi_device_id id;
2744 	int rv;
2745 
2746 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2747 	if (rv)
2748 		return rv;
2749 
2750 	return sysfs_emit(buf, "%u\n", id.device_id);
2751 }
2752 static DEVICE_ATTR_RO(device_id);
2753 
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2754 static ssize_t provides_device_sdrs_show(struct device *dev,
2755 					 struct device_attribute *attr,
2756 					 char *buf)
2757 {
2758 	struct bmc_device *bmc = to_bmc_device(dev);
2759 	struct ipmi_device_id id;
2760 	int rv;
2761 
2762 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2763 	if (rv)
2764 		return rv;
2765 
2766 	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2767 }
2768 static DEVICE_ATTR_RO(provides_device_sdrs);
2769 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2770 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2771 			     char *buf)
2772 {
2773 	struct bmc_device *bmc = to_bmc_device(dev);
2774 	struct ipmi_device_id id;
2775 	int rv;
2776 
2777 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2778 	if (rv)
2779 		return rv;
2780 
2781 	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2782 }
2783 static DEVICE_ATTR_RO(revision);
2784 
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2785 static ssize_t firmware_revision_show(struct device *dev,
2786 				      struct device_attribute *attr,
2787 				      char *buf)
2788 {
2789 	struct bmc_device *bmc = to_bmc_device(dev);
2790 	struct ipmi_device_id id;
2791 	int rv;
2792 
2793 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2794 	if (rv)
2795 		return rv;
2796 
2797 	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2798 			id.firmware_revision_2);
2799 }
2800 static DEVICE_ATTR_RO(firmware_revision);
2801 
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2802 static ssize_t ipmi_version_show(struct device *dev,
2803 				 struct device_attribute *attr,
2804 				 char *buf)
2805 {
2806 	struct bmc_device *bmc = to_bmc_device(dev);
2807 	struct ipmi_device_id id;
2808 	int rv;
2809 
2810 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2811 	if (rv)
2812 		return rv;
2813 
2814 	return sysfs_emit(buf, "%u.%u\n",
2815 			ipmi_version_major(&id),
2816 			ipmi_version_minor(&id));
2817 }
2818 static DEVICE_ATTR_RO(ipmi_version);
2819 
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2820 static ssize_t add_dev_support_show(struct device *dev,
2821 				    struct device_attribute *attr,
2822 				    char *buf)
2823 {
2824 	struct bmc_device *bmc = to_bmc_device(dev);
2825 	struct ipmi_device_id id;
2826 	int rv;
2827 
2828 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2829 	if (rv)
2830 		return rv;
2831 
2832 	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2833 }
2834 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2835 		   NULL);
2836 
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2837 static ssize_t manufacturer_id_show(struct device *dev,
2838 				    struct device_attribute *attr,
2839 				    char *buf)
2840 {
2841 	struct bmc_device *bmc = to_bmc_device(dev);
2842 	struct ipmi_device_id id;
2843 	int rv;
2844 
2845 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2846 	if (rv)
2847 		return rv;
2848 
2849 	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2850 }
2851 static DEVICE_ATTR_RO(manufacturer_id);
2852 
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2853 static ssize_t product_id_show(struct device *dev,
2854 			       struct device_attribute *attr,
2855 			       char *buf)
2856 {
2857 	struct bmc_device *bmc = to_bmc_device(dev);
2858 	struct ipmi_device_id id;
2859 	int rv;
2860 
2861 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2862 	if (rv)
2863 		return rv;
2864 
2865 	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2866 }
2867 static DEVICE_ATTR_RO(product_id);
2868 
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2869 static ssize_t aux_firmware_rev_show(struct device *dev,
2870 				     struct device_attribute *attr,
2871 				     char *buf)
2872 {
2873 	struct bmc_device *bmc = to_bmc_device(dev);
2874 	struct ipmi_device_id id;
2875 	int rv;
2876 
2877 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2878 	if (rv)
2879 		return rv;
2880 
2881 	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2882 			id.aux_firmware_revision[3],
2883 			id.aux_firmware_revision[2],
2884 			id.aux_firmware_revision[1],
2885 			id.aux_firmware_revision[0]);
2886 }
2887 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2888 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2889 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2890 			 char *buf)
2891 {
2892 	struct bmc_device *bmc = to_bmc_device(dev);
2893 	bool guid_set;
2894 	guid_t guid;
2895 	int rv;
2896 
2897 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2898 	if (rv)
2899 		return rv;
2900 	if (!guid_set)
2901 		return -ENOENT;
2902 
2903 	return sysfs_emit(buf, "%pUl\n", &guid);
2904 }
2905 static DEVICE_ATTR_RO(guid);
2906 
2907 static struct attribute *bmc_dev_attrs[] = {
2908 	&dev_attr_device_id.attr,
2909 	&dev_attr_provides_device_sdrs.attr,
2910 	&dev_attr_revision.attr,
2911 	&dev_attr_firmware_revision.attr,
2912 	&dev_attr_ipmi_version.attr,
2913 	&dev_attr_additional_device_support.attr,
2914 	&dev_attr_manufacturer_id.attr,
2915 	&dev_attr_product_id.attr,
2916 	&dev_attr_aux_firmware_revision.attr,
2917 	&dev_attr_guid.attr,
2918 	NULL
2919 };
2920 
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2921 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2922 				       struct attribute *attr, int idx)
2923 {
2924 	struct device *dev = kobj_to_dev(kobj);
2925 	struct bmc_device *bmc = to_bmc_device(dev);
2926 	umode_t mode = attr->mode;
2927 	int rv;
2928 
2929 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2930 		struct ipmi_device_id id;
2931 
2932 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2933 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2934 	}
2935 	if (attr == &dev_attr_guid.attr) {
2936 		bool guid_set;
2937 
2938 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2939 		return (!rv && guid_set) ? mode : 0;
2940 	}
2941 	return mode;
2942 }
2943 
2944 static const struct attribute_group bmc_dev_attr_group = {
2945 	.attrs		= bmc_dev_attrs,
2946 	.is_visible	= bmc_dev_attr_is_visible,
2947 };
2948 
2949 static const struct attribute_group *bmc_dev_attr_groups[] = {
2950 	&bmc_dev_attr_group,
2951 	NULL
2952 };
2953 
2954 static const struct device_type bmc_device_type = {
2955 	.groups		= bmc_dev_attr_groups,
2956 };
2957 
__find_bmc_guid(struct device * dev,const void * data)2958 static int __find_bmc_guid(struct device *dev, const void *data)
2959 {
2960 	const guid_t *guid = data;
2961 	struct bmc_device *bmc;
2962 	int rv;
2963 
2964 	if (dev->type != &bmc_device_type)
2965 		return 0;
2966 
2967 	bmc = to_bmc_device(dev);
2968 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2969 	if (rv)
2970 		rv = kref_get_unless_zero(&bmc->usecount);
2971 	return rv;
2972 }
2973 
2974 /*
2975  * Returns with the bmc's usecount incremented, if it is non-NULL.
2976  */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2977 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2978 					     guid_t *guid)
2979 {
2980 	struct device *dev;
2981 	struct bmc_device *bmc = NULL;
2982 
2983 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2984 	if (dev) {
2985 		bmc = to_bmc_device(dev);
2986 		put_device(dev);
2987 	}
2988 	return bmc;
2989 }
2990 
2991 struct prod_dev_id {
2992 	unsigned int  product_id;
2993 	unsigned char device_id;
2994 };
2995 
__find_bmc_prod_dev_id(struct device * dev,const void * data)2996 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2997 {
2998 	const struct prod_dev_id *cid = data;
2999 	struct bmc_device *bmc;
3000 	int rv;
3001 
3002 	if (dev->type != &bmc_device_type)
3003 		return 0;
3004 
3005 	bmc = to_bmc_device(dev);
3006 	rv = (bmc->id.product_id == cid->product_id
3007 	      && bmc->id.device_id == cid->device_id);
3008 	if (rv)
3009 		rv = kref_get_unless_zero(&bmc->usecount);
3010 	return rv;
3011 }
3012 
3013 /*
3014  * Returns with the bmc's usecount incremented, if it is non-NULL.
3015  */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3016 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3017 	struct device_driver *drv,
3018 	unsigned int product_id, unsigned char device_id)
3019 {
3020 	struct prod_dev_id id = {
3021 		.product_id = product_id,
3022 		.device_id = device_id,
3023 	};
3024 	struct device *dev;
3025 	struct bmc_device *bmc = NULL;
3026 
3027 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3028 	if (dev) {
3029 		bmc = to_bmc_device(dev);
3030 		put_device(dev);
3031 	}
3032 	return bmc;
3033 }
3034 
3035 static DEFINE_IDA(ipmi_bmc_ida);
3036 
3037 static void
release_bmc_device(struct device * dev)3038 release_bmc_device(struct device *dev)
3039 {
3040 	kfree(to_bmc_device(dev));
3041 }
3042 
cleanup_bmc_work(struct work_struct * work)3043 static void cleanup_bmc_work(struct work_struct *work)
3044 {
3045 	struct bmc_device *bmc = container_of(work, struct bmc_device,
3046 					      remove_work);
3047 	int id = bmc->pdev.id; /* Unregister overwrites id */
3048 
3049 	platform_device_unregister(&bmc->pdev);
3050 	ida_free(&ipmi_bmc_ida, id);
3051 }
3052 
3053 static void
cleanup_bmc_device(struct kref * ref)3054 cleanup_bmc_device(struct kref *ref)
3055 {
3056 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3057 
3058 	/*
3059 	 * Remove the platform device in a work queue to avoid issues
3060 	 * with removing the device attributes while reading a device
3061 	 * attribute.
3062 	 */
3063 	queue_work(bmc_remove_work_wq, &bmc->remove_work);
3064 }
3065 
3066 /*
3067  * Must be called with intf->bmc_reg_mutex held.
3068  */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3069 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3070 {
3071 	struct bmc_device *bmc = intf->bmc;
3072 
3073 	if (!intf->bmc_registered)
3074 		return;
3075 
3076 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3077 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3078 	kfree(intf->my_dev_name);
3079 	intf->my_dev_name = NULL;
3080 
3081 	mutex_lock(&bmc->dyn_mutex);
3082 	list_del(&intf->bmc_link);
3083 	mutex_unlock(&bmc->dyn_mutex);
3084 	intf->bmc = &intf->tmp_bmc;
3085 	kref_put(&bmc->usecount, cleanup_bmc_device);
3086 	intf->bmc_registered = false;
3087 }
3088 
ipmi_bmc_unregister(struct ipmi_smi * intf)3089 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3090 {
3091 	mutex_lock(&intf->bmc_reg_mutex);
3092 	__ipmi_bmc_unregister(intf);
3093 	mutex_unlock(&intf->bmc_reg_mutex);
3094 }
3095 
3096 /*
3097  * Must be called with intf->bmc_reg_mutex held.
3098  */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3099 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3100 			       struct ipmi_device_id *id,
3101 			       bool guid_set, guid_t *guid, int intf_num)
3102 {
3103 	int               rv;
3104 	struct bmc_device *bmc;
3105 	struct bmc_device *old_bmc;
3106 
3107 	/*
3108 	 * platform_device_register() can cause bmc_reg_mutex to
3109 	 * be claimed because of the is_visible functions of
3110 	 * the attributes.  Eliminate possible recursion and
3111 	 * release the lock.
3112 	 */
3113 	intf->in_bmc_register = true;
3114 	mutex_unlock(&intf->bmc_reg_mutex);
3115 
3116 	/*
3117 	 * Try to find if there is an bmc_device struct
3118 	 * representing the interfaced BMC already
3119 	 */
3120 	mutex_lock(&ipmidriver_mutex);
3121 	if (guid_set)
3122 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3123 	else
3124 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3125 						    id->product_id,
3126 						    id->device_id);
3127 
3128 	/*
3129 	 * If there is already an bmc_device, free the new one,
3130 	 * otherwise register the new BMC device
3131 	 */
3132 	if (old_bmc) {
3133 		bmc = old_bmc;
3134 		/*
3135 		 * Note: old_bmc already has usecount incremented by
3136 		 * the BMC find functions.
3137 		 */
3138 		intf->bmc = old_bmc;
3139 		mutex_lock(&bmc->dyn_mutex);
3140 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3141 		mutex_unlock(&bmc->dyn_mutex);
3142 
3143 		dev_info(intf->si_dev,
3144 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3145 			 bmc->id.manufacturer_id,
3146 			 bmc->id.product_id,
3147 			 bmc->id.device_id);
3148 	} else {
3149 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3150 		if (!bmc) {
3151 			rv = -ENOMEM;
3152 			goto out;
3153 		}
3154 		INIT_LIST_HEAD(&bmc->intfs);
3155 		mutex_init(&bmc->dyn_mutex);
3156 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3157 
3158 		bmc->id = *id;
3159 		bmc->dyn_id_set = 1;
3160 		bmc->dyn_guid_set = guid_set;
3161 		bmc->guid = *guid;
3162 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3163 
3164 		bmc->pdev.name = "ipmi_bmc";
3165 
3166 		rv = ida_alloc(&ipmi_bmc_ida, GFP_KERNEL);
3167 		if (rv < 0) {
3168 			kfree(bmc);
3169 			goto out;
3170 		}
3171 
3172 		bmc->pdev.dev.driver = &ipmidriver.driver;
3173 		bmc->pdev.id = rv;
3174 		bmc->pdev.dev.release = release_bmc_device;
3175 		bmc->pdev.dev.type = &bmc_device_type;
3176 		kref_init(&bmc->usecount);
3177 
3178 		intf->bmc = bmc;
3179 		mutex_lock(&bmc->dyn_mutex);
3180 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3181 		mutex_unlock(&bmc->dyn_mutex);
3182 
3183 		rv = platform_device_register(&bmc->pdev);
3184 		if (rv) {
3185 			dev_err(intf->si_dev,
3186 				"Unable to register bmc device: %d\n",
3187 				rv);
3188 			goto out_list_del;
3189 		}
3190 
3191 		dev_info(intf->si_dev,
3192 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3193 			 bmc->id.manufacturer_id,
3194 			 bmc->id.product_id,
3195 			 bmc->id.device_id);
3196 	}
3197 
3198 	/*
3199 	 * create symlink from system interface device to bmc device
3200 	 * and back.
3201 	 */
3202 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3203 	if (rv) {
3204 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3205 		goto out_put_bmc;
3206 	}
3207 
3208 	if (intf_num == -1)
3209 		intf_num = intf->intf_num;
3210 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3211 	if (!intf->my_dev_name) {
3212 		rv = -ENOMEM;
3213 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3214 			rv);
3215 		goto out_unlink1;
3216 	}
3217 
3218 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3219 			       intf->my_dev_name);
3220 	if (rv) {
3221 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3222 			rv);
3223 		goto out_free_my_dev_name;
3224 	}
3225 
3226 	intf->bmc_registered = true;
3227 
3228 out:
3229 	mutex_unlock(&ipmidriver_mutex);
3230 	mutex_lock(&intf->bmc_reg_mutex);
3231 	intf->in_bmc_register = false;
3232 	return rv;
3233 
3234 
3235 out_free_my_dev_name:
3236 	kfree(intf->my_dev_name);
3237 	intf->my_dev_name = NULL;
3238 
3239 out_unlink1:
3240 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3241 
3242 out_put_bmc:
3243 	mutex_lock(&bmc->dyn_mutex);
3244 	list_del(&intf->bmc_link);
3245 	mutex_unlock(&bmc->dyn_mutex);
3246 	intf->bmc = &intf->tmp_bmc;
3247 	kref_put(&bmc->usecount, cleanup_bmc_device);
3248 	goto out;
3249 
3250 out_list_del:
3251 	mutex_lock(&bmc->dyn_mutex);
3252 	list_del(&intf->bmc_link);
3253 	mutex_unlock(&bmc->dyn_mutex);
3254 	intf->bmc = &intf->tmp_bmc;
3255 	put_device(&bmc->pdev.dev);
3256 	goto out;
3257 }
3258 
3259 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3260 send_guid_cmd(struct ipmi_smi *intf, int chan)
3261 {
3262 	struct kernel_ipmi_msg            msg;
3263 	struct ipmi_system_interface_addr si;
3264 
3265 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3266 	si.channel = IPMI_BMC_CHANNEL;
3267 	si.lun = 0;
3268 
3269 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3270 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3271 	msg.data = NULL;
3272 	msg.data_len = 0;
3273 	return i_ipmi_request(NULL,
3274 			      intf,
3275 			      (struct ipmi_addr *) &si,
3276 			      0,
3277 			      &msg,
3278 			      intf,
3279 			      NULL,
3280 			      NULL,
3281 			      0,
3282 			      intf->addrinfo[0].address,
3283 			      intf->addrinfo[0].lun,
3284 			      -1, 0);
3285 }
3286 
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3287 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3288 {
3289 	struct bmc_device *bmc = intf->bmc;
3290 
3291 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3292 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3293 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3294 		/* Not for me */
3295 		return;
3296 
3297 	if (msg->msg.data[0] != 0) {
3298 		/* Error from getting the GUID, the BMC doesn't have one. */
3299 		bmc->dyn_guid_set = 0;
3300 		goto out;
3301 	}
3302 
3303 	if (msg->msg.data_len < UUID_SIZE + 1) {
3304 		bmc->dyn_guid_set = 0;
3305 		dev_warn(intf->si_dev,
3306 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3307 			 msg->msg.data_len, UUID_SIZE + 1);
3308 		goto out;
3309 	}
3310 
3311 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3312 	/*
3313 	 * Make sure the guid data is available before setting
3314 	 * dyn_guid_set.
3315 	 */
3316 	smp_wmb();
3317 	bmc->dyn_guid_set = 1;
3318  out:
3319 	wake_up(&intf->waitq);
3320 }
3321 
__get_guid(struct ipmi_smi * intf)3322 static void __get_guid(struct ipmi_smi *intf)
3323 {
3324 	int rv;
3325 	struct bmc_device *bmc = intf->bmc;
3326 
3327 	bmc->dyn_guid_set = 2;
3328 	intf->null_user_handler = guid_handler;
3329 	rv = send_guid_cmd(intf, 0);
3330 	if (rv)
3331 		/* Send failed, no GUID available. */
3332 		bmc->dyn_guid_set = 0;
3333 	else
3334 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3335 
3336 	/* dyn_guid_set makes the guid data available. */
3337 	smp_rmb();
3338 
3339 	intf->null_user_handler = NULL;
3340 }
3341 
3342 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3343 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3344 {
3345 	struct kernel_ipmi_msg            msg;
3346 	unsigned char                     data[1];
3347 	struct ipmi_system_interface_addr si;
3348 
3349 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3350 	si.channel = IPMI_BMC_CHANNEL;
3351 	si.lun = 0;
3352 
3353 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3354 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3355 	msg.data = data;
3356 	msg.data_len = 1;
3357 	data[0] = chan;
3358 	return i_ipmi_request(NULL,
3359 			      intf,
3360 			      (struct ipmi_addr *) &si,
3361 			      0,
3362 			      &msg,
3363 			      intf,
3364 			      NULL,
3365 			      NULL,
3366 			      0,
3367 			      intf->addrinfo[0].address,
3368 			      intf->addrinfo[0].lun,
3369 			      -1, 0);
3370 }
3371 
3372 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3373 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3374 {
3375 	int rv = 0;
3376 	int ch;
3377 	unsigned int set = intf->curr_working_cset;
3378 	struct ipmi_channel *chans;
3379 
3380 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3381 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3382 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3383 		/* It's the one we want */
3384 		if (msg->msg.data[0] != 0) {
3385 			/* Got an error from the channel, just go on. */
3386 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3387 				/*
3388 				 * If the MC does not support this
3389 				 * command, that is legal.  We just
3390 				 * assume it has one IPMB at channel
3391 				 * zero.
3392 				 */
3393 				intf->wchannels[set].c[0].medium
3394 					= IPMI_CHANNEL_MEDIUM_IPMB;
3395 				intf->wchannels[set].c[0].protocol
3396 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3397 
3398 				intf->channel_list = intf->wchannels + set;
3399 				intf->channels_ready = true;
3400 				wake_up(&intf->waitq);
3401 				goto out;
3402 			}
3403 			goto next_channel;
3404 		}
3405 		if (msg->msg.data_len < 4) {
3406 			/* Message not big enough, just go on. */
3407 			goto next_channel;
3408 		}
3409 		ch = intf->curr_channel;
3410 		chans = intf->wchannels[set].c;
3411 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3412 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3413 
3414  next_channel:
3415 		intf->curr_channel++;
3416 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3417 			intf->channel_list = intf->wchannels + set;
3418 			intf->channels_ready = true;
3419 			wake_up(&intf->waitq);
3420 		} else {
3421 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3422 		}
3423 
3424 		if (rv) {
3425 			/* Got an error somehow, just give up. */
3426 			dev_warn(intf->si_dev,
3427 				 "Error sending channel information for channel %d: %d\n",
3428 				 intf->curr_channel, rv);
3429 
3430 			intf->channel_list = intf->wchannels + set;
3431 			intf->channels_ready = true;
3432 			wake_up(&intf->waitq);
3433 		}
3434 	}
3435  out:
3436 	return;
3437 }
3438 
3439 /*
3440  * Must be holding intf->bmc_reg_mutex to call this.
3441  */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id,bool rescan)3442 static int __scan_channels(struct ipmi_smi *intf,
3443 				struct ipmi_device_id *id,
3444 				bool rescan)
3445 {
3446 	int rv;
3447 
3448 	if (rescan) {
3449 		/* Clear channels_ready to force channels rescan. */
3450 		intf->channels_ready = false;
3451 	}
3452 
3453 	/* Skip channel scan if channels are already marked ready */
3454 	if (intf->channels_ready)
3455 		return 0;
3456 
3457 	if (ipmi_version_major(id) > 1
3458 			|| (ipmi_version_major(id) == 1
3459 			    && ipmi_version_minor(id) >= 5)) {
3460 		unsigned int set;
3461 
3462 		/*
3463 		 * Start scanning the channels to see what is
3464 		 * available.
3465 		 */
3466 		set = !intf->curr_working_cset;
3467 		intf->curr_working_cset = set;
3468 		memset(&intf->wchannels[set], 0,
3469 		       sizeof(struct ipmi_channel_set));
3470 
3471 		intf->null_user_handler = channel_handler;
3472 		intf->curr_channel = 0;
3473 		rv = send_channel_info_cmd(intf, 0);
3474 		if (rv) {
3475 			dev_warn(intf->si_dev,
3476 				 "Error sending channel information for channel 0, %d\n",
3477 				 rv);
3478 			intf->null_user_handler = NULL;
3479 			return -EIO;
3480 		}
3481 
3482 		/* Wait for the channel info to be read. */
3483 		wait_event(intf->waitq, intf->channels_ready);
3484 		intf->null_user_handler = NULL;
3485 	} else {
3486 		unsigned int set = intf->curr_working_cset;
3487 
3488 		/* Assume a single IPMB channel at zero. */
3489 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3490 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3491 		intf->channel_list = intf->wchannels + set;
3492 		intf->channels_ready = true;
3493 	}
3494 
3495 	return 0;
3496 }
3497 
ipmi_poll(struct ipmi_smi * intf)3498 static void ipmi_poll(struct ipmi_smi *intf)
3499 {
3500 	if (intf->handlers->poll)
3501 		intf->handlers->poll(intf->send_info);
3502 	/* In case something came in */
3503 	handle_new_recv_msgs(intf);
3504 }
3505 
ipmi_poll_interface(struct ipmi_user * user)3506 void ipmi_poll_interface(struct ipmi_user *user)
3507 {
3508 	ipmi_poll(user->intf);
3509 }
3510 EXPORT_SYMBOL(ipmi_poll_interface);
3511 
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3512 static ssize_t nr_users_show(struct device *dev,
3513 			     struct device_attribute *attr,
3514 			     char *buf)
3515 {
3516 	struct ipmi_smi *intf = container_of(attr,
3517 			 struct ipmi_smi, nr_users_devattr);
3518 
3519 	return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3520 }
3521 static DEVICE_ATTR_RO(nr_users);
3522 
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3523 static ssize_t nr_msgs_show(struct device *dev,
3524 			    struct device_attribute *attr,
3525 			    char *buf)
3526 {
3527 	struct ipmi_smi *intf = container_of(attr,
3528 					     struct ipmi_smi, nr_msgs_devattr);
3529 	struct ipmi_user *user;
3530 	unsigned int count = 0;
3531 
3532 	mutex_lock(&intf->users_mutex);
3533 	list_for_each_entry(user, &intf->users, link)
3534 		count += atomic_read(&user->nr_msgs);
3535 	mutex_unlock(&intf->users_mutex);
3536 
3537 	return sysfs_emit(buf, "%u\n", count);
3538 }
3539 static DEVICE_ATTR_RO(nr_msgs);
3540 
maintenance_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3541 static ssize_t maintenance_mode_show(struct device *dev,
3542 				     struct device_attribute *attr,
3543 				     char *buf)
3544 {
3545 	struct ipmi_smi *intf = container_of(attr,
3546 					     struct ipmi_smi,
3547 					     maintenance_mode_devattr);
3548 
3549 	return sysfs_emit(buf, "%u %d\n", intf->maintenance_mode_state,
3550 			  intf->auto_maintenance_timeout);
3551 }
3552 static DEVICE_ATTR_RO(maintenance_mode);
3553 
redo_bmc_reg(struct work_struct * work)3554 static void redo_bmc_reg(struct work_struct *work)
3555 {
3556 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3557 					     bmc_reg_work);
3558 
3559 	if (!intf->in_shutdown)
3560 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3561 
3562 	kref_put(&intf->refcount, intf_free);
3563 }
3564 
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3565 int ipmi_add_smi(struct module         *owner,
3566 		 const struct ipmi_smi_handlers *handlers,
3567 		 void		       *send_info,
3568 		 struct device         *si_dev,
3569 		 unsigned char         slave_addr)
3570 {
3571 	int              i, j;
3572 	int              rv;
3573 	struct ipmi_smi *intf, *tintf;
3574 	struct list_head *link;
3575 	struct ipmi_device_id id;
3576 
3577 	/*
3578 	 * Make sure the driver is actually initialized, this handles
3579 	 * problems with initialization order.
3580 	 */
3581 	rv = ipmi_init_msghandler();
3582 	if (rv)
3583 		return rv;
3584 
3585 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3586 	if (!intf)
3587 		return -ENOMEM;
3588 
3589 	intf->owner = owner;
3590 	intf->bmc = &intf->tmp_bmc;
3591 	INIT_LIST_HEAD(&intf->bmc->intfs);
3592 	mutex_init(&intf->bmc->dyn_mutex);
3593 	INIT_LIST_HEAD(&intf->bmc_link);
3594 	mutex_init(&intf->bmc_reg_mutex);
3595 	intf->intf_num = -1; /* Mark it invalid for now. */
3596 	kref_init(&intf->refcount);
3597 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3598 	intf->si_dev = si_dev;
3599 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3600 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3601 		intf->addrinfo[j].lun = 2;
3602 	}
3603 	if (slave_addr != 0)
3604 		intf->addrinfo[0].address = slave_addr;
3605 	INIT_LIST_HEAD(&intf->user_msgs);
3606 	mutex_init(&intf->user_msgs_mutex);
3607 	INIT_LIST_HEAD(&intf->users);
3608 	mutex_init(&intf->users_mutex);
3609 	atomic_set(&intf->nr_users, 0);
3610 	intf->handlers = handlers;
3611 	intf->send_info = send_info;
3612 	mutex_init(&intf->seq_lock);
3613 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3614 		intf->seq_table[j].inuse = 0;
3615 		intf->seq_table[j].seqid = 0;
3616 	}
3617 	intf->curr_seq = 0;
3618 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3619 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3620 	INIT_WORK(&intf->smi_work, smi_work);
3621 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3622 	spin_lock_init(&intf->xmit_msgs_lock);
3623 	INIT_LIST_HEAD(&intf->xmit_msgs);
3624 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3625 	mutex_init(&intf->events_mutex);
3626 	spin_lock_init(&intf->watch_lock);
3627 	atomic_set(&intf->event_waiters, 0);
3628 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3629 	INIT_LIST_HEAD(&intf->waiting_events);
3630 	intf->waiting_events_count = 0;
3631 	mutex_init(&intf->cmd_rcvrs_mutex);
3632 	spin_lock_init(&intf->maintenance_mode_lock);
3633 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3634 	init_waitqueue_head(&intf->waitq);
3635 	for (i = 0; i < IPMI_NUM_STATS; i++)
3636 		atomic_set(&intf->stats[i], 0);
3637 
3638 	/*
3639 	 * Grab the watchers mutex so we can deliver the new interface
3640 	 * without races.
3641 	 */
3642 	mutex_lock(&smi_watchers_mutex);
3643 	mutex_lock(&ipmi_interfaces_mutex);
3644 	/* Look for a hole in the numbers. */
3645 	i = 0;
3646 	link = &ipmi_interfaces;
3647 	list_for_each_entry(tintf, &ipmi_interfaces, link) {
3648 		if (tintf->intf_num != i) {
3649 			link = &tintf->link;
3650 			break;
3651 		}
3652 		i++;
3653 	}
3654 	/* Add the new interface in numeric order. */
3655 	if (i == 0)
3656 		list_add(&intf->link, &ipmi_interfaces);
3657 	else
3658 		list_add_tail(&intf->link, link);
3659 
3660 	rv = handlers->start_processing(send_info, intf);
3661 	if (rv)
3662 		goto out_err;
3663 
3664 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3665 	if (rv) {
3666 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3667 		goto out_err_started;
3668 	}
3669 
3670 	mutex_lock(&intf->bmc_reg_mutex);
3671 	rv = __scan_channels(intf, &id, false);
3672 	mutex_unlock(&intf->bmc_reg_mutex);
3673 	if (rv)
3674 		goto out_err_bmc_reg;
3675 
3676 	intf->nr_users_devattr = dev_attr_nr_users;
3677 	sysfs_attr_init(&intf->nr_users_devattr.attr);
3678 	rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3679 	if (rv)
3680 		goto out_err_bmc_reg;
3681 
3682 	intf->nr_msgs_devattr = dev_attr_nr_msgs;
3683 	sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3684 	rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3685 	if (rv) {
3686 		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3687 		goto out_err_bmc_reg;
3688 	}
3689 
3690 	intf->maintenance_mode_devattr = dev_attr_maintenance_mode;
3691 	sysfs_attr_init(&intf->maintenance_mode_devattr.attr);
3692 	rv = device_create_file(intf->si_dev, &intf->maintenance_mode_devattr);
3693 	if (rv) {
3694 		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3695 		goto out_err_bmc_reg;
3696 	}
3697 
3698 	intf->intf_num = i;
3699 	mutex_unlock(&ipmi_interfaces_mutex);
3700 
3701 	/* After this point the interface is legal to use. */
3702 	call_smi_watchers(i, intf->si_dev);
3703 
3704 	mutex_unlock(&smi_watchers_mutex);
3705 
3706 	return 0;
3707 
3708  out_err_bmc_reg:
3709 	ipmi_bmc_unregister(intf);
3710  out_err_started:
3711 	if (intf->handlers->shutdown)
3712 		intf->handlers->shutdown(intf->send_info);
3713  out_err:
3714 	list_del(&intf->link);
3715 	mutex_unlock(&ipmi_interfaces_mutex);
3716 	mutex_unlock(&smi_watchers_mutex);
3717 	kref_put(&intf->refcount, intf_free);
3718 
3719 	return rv;
3720 }
3721 EXPORT_SYMBOL(ipmi_add_smi);
3722 
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3723 static void deliver_smi_err_response(struct ipmi_smi *intf,
3724 				     struct ipmi_smi_msg *msg,
3725 				     unsigned char err)
3726 {
3727 	int rv;
3728 	msg->rsp[0] = msg->data[0] | 4;
3729 	msg->rsp[1] = msg->data[1];
3730 	msg->rsp[2] = err;
3731 	msg->rsp_size = 3;
3732 
3733 	/* This will never requeue, but it may ask us to free the message. */
3734 	rv = handle_one_recv_msg(intf, msg);
3735 	if (rv == 0)
3736 		ipmi_free_smi_msg(msg);
3737 }
3738 
cleanup_smi_msgs(struct ipmi_smi * intf)3739 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3740 {
3741 	int              i;
3742 	struct seq_table *ent;
3743 	struct ipmi_smi_msg *msg;
3744 	struct list_head *entry;
3745 	struct list_head tmplist;
3746 
3747 	/* Clear out our transmit queues and hold the messages. */
3748 	INIT_LIST_HEAD(&tmplist);
3749 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3750 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3751 
3752 	/* Current message first, to preserve order */
3753 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3754 		/* Wait for the message to clear out. */
3755 		schedule_timeout(1);
3756 	}
3757 
3758 	/* No need for locks, the interface is down. */
3759 
3760 	/*
3761 	 * Return errors for all pending messages in queue and in the
3762 	 * tables waiting for remote responses.
3763 	 */
3764 	while (!list_empty(&tmplist)) {
3765 		entry = tmplist.next;
3766 		list_del(entry);
3767 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3768 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3769 	}
3770 
3771 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3772 		ent = &intf->seq_table[i];
3773 		if (!ent->inuse)
3774 			continue;
3775 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3776 	}
3777 }
3778 
ipmi_unregister_smi(struct ipmi_smi * intf)3779 void ipmi_unregister_smi(struct ipmi_smi *intf)
3780 {
3781 	struct ipmi_smi_watcher *w;
3782 	int intf_num;
3783 
3784 	if (!intf)
3785 		return;
3786 
3787 	intf_num = intf->intf_num;
3788 	mutex_lock(&ipmi_interfaces_mutex);
3789 	cancel_work_sync(&intf->smi_work);
3790 	/* smi_work() can no longer be in progress after this. */
3791 
3792 	intf->intf_num = -1;
3793 	intf->in_shutdown = true;
3794 	list_del(&intf->link);
3795 	mutex_unlock(&ipmi_interfaces_mutex);
3796 
3797 	/*
3798 	 * At this point no users can be added to the interface and no
3799 	 * new messages can be sent.
3800 	 */
3801 
3802 	if (intf->handlers->shutdown)
3803 		intf->handlers->shutdown(intf->send_info);
3804 
3805 	device_remove_file(intf->si_dev, &intf->maintenance_mode_devattr);
3806 	device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3807 	device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3808 
3809 	/*
3810 	 * Call all the watcher interfaces to tell them that
3811 	 * an interface is going away.
3812 	 */
3813 	mutex_lock(&smi_watchers_mutex);
3814 	list_for_each_entry(w, &smi_watchers, link)
3815 		w->smi_gone(intf_num);
3816 	mutex_unlock(&smi_watchers_mutex);
3817 
3818 	mutex_lock(&intf->users_mutex);
3819 	while (!list_empty(&intf->users)) {
3820 		struct ipmi_user *user = list_first_entry(&intf->users,
3821 						    struct ipmi_user, link);
3822 
3823 		_ipmi_destroy_user(user);
3824 	}
3825 	mutex_unlock(&intf->users_mutex);
3826 
3827 	cleanup_smi_msgs(intf);
3828 
3829 	ipmi_bmc_unregister(intf);
3830 
3831 	kref_put(&intf->refcount, intf_free);
3832 }
3833 EXPORT_SYMBOL(ipmi_unregister_smi);
3834 
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3835 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3836 				   struct ipmi_smi_msg *msg)
3837 {
3838 	struct ipmi_ipmb_addr ipmb_addr;
3839 	struct ipmi_recv_msg  *recv_msg;
3840 
3841 	/*
3842 	 * This is 11, not 10, because the response must contain a
3843 	 * completion code.
3844 	 */
3845 	if (msg->rsp_size < 11) {
3846 		/* Message not big enough, just ignore it. */
3847 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3848 		return 0;
3849 	}
3850 
3851 	if (msg->rsp[2] != 0) {
3852 		/* An error getting the response, just ignore it. */
3853 		return 0;
3854 	}
3855 
3856 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3857 	ipmb_addr.slave_addr = msg->rsp[6];
3858 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3859 	ipmb_addr.lun = msg->rsp[7] & 3;
3860 
3861 	/*
3862 	 * It's a response from a remote entity.  Look up the sequence
3863 	 * number and handle the response.
3864 	 */
3865 	if (intf_find_seq(intf,
3866 			  msg->rsp[7] >> 2,
3867 			  msg->rsp[3] & 0x0f,
3868 			  msg->rsp[8],
3869 			  (msg->rsp[4] >> 2) & (~1),
3870 			  (struct ipmi_addr *) &ipmb_addr,
3871 			  &recv_msg)) {
3872 		/*
3873 		 * We were unable to find the sequence number,
3874 		 * so just nuke the message.
3875 		 */
3876 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3877 		return 0;
3878 	}
3879 
3880 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3881 	/*
3882 	 * The other fields matched, so no need to set them, except
3883 	 * for netfn, which needs to be the response that was
3884 	 * returned, not the request value.
3885 	 */
3886 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3887 	recv_msg->msg.data = recv_msg->msg_data;
3888 	recv_msg->msg.data_len = msg->rsp_size - 10;
3889 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3890 	if (deliver_response(intf, recv_msg))
3891 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3892 	else
3893 		ipmi_inc_stat(intf, handled_ipmb_responses);
3894 
3895 	return 0;
3896 }
3897 
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3898 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3899 				   struct ipmi_smi_msg *msg)
3900 {
3901 	struct cmd_rcvr          *rcvr;
3902 	int                      rv = 0;
3903 	unsigned char            netfn;
3904 	unsigned char            cmd;
3905 	unsigned char            chan;
3906 	struct ipmi_user         *user = NULL;
3907 	struct ipmi_ipmb_addr    *ipmb_addr;
3908 	struct ipmi_recv_msg     *recv_msg = NULL;
3909 
3910 	if (msg->rsp_size < 10) {
3911 		/* Message not big enough, just ignore it. */
3912 		ipmi_inc_stat(intf, invalid_commands);
3913 		return 0;
3914 	}
3915 
3916 	if (msg->rsp[2] != 0) {
3917 		/* An error getting the response, just ignore it. */
3918 		return 0;
3919 	}
3920 
3921 	netfn = msg->rsp[4] >> 2;
3922 	cmd = msg->rsp[8];
3923 	chan = msg->rsp[3] & 0xf;
3924 
3925 	rcu_read_lock();
3926 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3927 	if (rcvr) {
3928 		user = rcvr->user;
3929 		recv_msg = ipmi_alloc_recv_msg(user);
3930 	}
3931 	rcu_read_unlock();
3932 
3933 	if (user == NULL) {
3934 		/* We didn't find a user, deliver an error response. */
3935 		ipmi_inc_stat(intf, unhandled_commands);
3936 
3937 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3938 		msg->data[1] = IPMI_SEND_MSG_CMD;
3939 		msg->data[2] = msg->rsp[3];
3940 		msg->data[3] = msg->rsp[6];
3941 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3942 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3943 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3944 		/* rqseq/lun */
3945 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3946 		msg->data[8] = msg->rsp[8]; /* cmd */
3947 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3948 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3949 		msg->data_size = 11;
3950 
3951 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3952 			msg->data_size, msg->data);
3953 
3954 		smi_send(intf, intf->handlers, msg, 0);
3955 		/*
3956 		 * We used the message, so return the value that
3957 		 * causes it to not be freed or queued.
3958 		 */
3959 		rv = -1;
3960 	} else if (!IS_ERR(recv_msg)) {
3961 		/* Extract the source address from the data. */
3962 		ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3963 		ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3964 		ipmb_addr->slave_addr = msg->rsp[6];
3965 		ipmb_addr->lun = msg->rsp[7] & 3;
3966 		ipmb_addr->channel = msg->rsp[3] & 0xf;
3967 
3968 		/*
3969 		 * Extract the rest of the message information
3970 		 * from the IPMB header.
3971 		 */
3972 		recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3973 		recv_msg->msgid = msg->rsp[7] >> 2;
3974 		recv_msg->msg.netfn = msg->rsp[4] >> 2;
3975 		recv_msg->msg.cmd = msg->rsp[8];
3976 		recv_msg->msg.data = recv_msg->msg_data;
3977 
3978 		/*
3979 		 * We chop off 10, not 9 bytes because the checksum
3980 		 * at the end also needs to be removed.
3981 		 */
3982 		recv_msg->msg.data_len = msg->rsp_size - 10;
3983 		memcpy(recv_msg->msg_data, &msg->rsp[9],
3984 		       msg->rsp_size - 10);
3985 		if (deliver_response(intf, recv_msg))
3986 			ipmi_inc_stat(intf, unhandled_commands);
3987 		else
3988 			ipmi_inc_stat(intf, handled_commands);
3989 	} else {
3990 		/*
3991 		 * We couldn't allocate memory for the message, so
3992 		 * requeue it for handling later.
3993 		 */
3994 		rv = 1;
3995 	}
3996 
3997 	return rv;
3998 }
3999 
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4000 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
4001 				      struct ipmi_smi_msg *msg)
4002 {
4003 	struct cmd_rcvr          *rcvr;
4004 	int                      rv = 0;
4005 	struct ipmi_user         *user = NULL;
4006 	struct ipmi_ipmb_direct_addr *daddr;
4007 	struct ipmi_recv_msg     *recv_msg = NULL;
4008 	unsigned char netfn = msg->rsp[0] >> 2;
4009 	unsigned char cmd = msg->rsp[3];
4010 
4011 	rcu_read_lock();
4012 	/* We always use channel 0 for direct messages. */
4013 	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4014 	if (rcvr) {
4015 		user = rcvr->user;
4016 		recv_msg = ipmi_alloc_recv_msg(user);
4017 	}
4018 	rcu_read_unlock();
4019 
4020 	if (user == NULL) {
4021 		/* We didn't find a user, deliver an error response. */
4022 		ipmi_inc_stat(intf, unhandled_commands);
4023 
4024 		msg->data[0] = (netfn + 1) << 2;
4025 		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4026 		msg->data[1] = msg->rsp[1]; /* Addr */
4027 		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4028 		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4029 		msg->data[3] = cmd;
4030 		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4031 		msg->data_size = 5;
4032 
4033 		smi_send(intf, intf->handlers, msg, 0);
4034 		/*
4035 		 * We used the message, so return the value that
4036 		 * causes it to not be freed or queued.
4037 		 */
4038 		rv = -1;
4039 	} else if (!IS_ERR(recv_msg)) {
4040 		/* Extract the source address from the data. */
4041 		daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4042 		daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4043 		daddr->channel = 0;
4044 		daddr->slave_addr = msg->rsp[1];
4045 		daddr->rs_lun = msg->rsp[0] & 3;
4046 		daddr->rq_lun = msg->rsp[2] & 3;
4047 
4048 		/*
4049 		 * Extract the rest of the message information
4050 		 * from the IPMB header.
4051 		 */
4052 		recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4053 		recv_msg->msgid = (msg->rsp[2] >> 2);
4054 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
4055 		recv_msg->msg.cmd = msg->rsp[3];
4056 		recv_msg->msg.data = recv_msg->msg_data;
4057 
4058 		recv_msg->msg.data_len = msg->rsp_size - 4;
4059 		memcpy(recv_msg->msg_data, msg->rsp + 4,
4060 		       msg->rsp_size - 4);
4061 		if (deliver_response(intf, recv_msg))
4062 			ipmi_inc_stat(intf, unhandled_commands);
4063 		else
4064 			ipmi_inc_stat(intf, handled_commands);
4065 	} else {
4066 		/*
4067 		 * We couldn't allocate memory for the message, so
4068 		 * requeue it for handling later.
4069 		 */
4070 		rv = 1;
4071 	}
4072 
4073 	return rv;
4074 }
4075 
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4076 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4077 				      struct ipmi_smi_msg *msg)
4078 {
4079 	struct ipmi_recv_msg *recv_msg;
4080 	struct ipmi_ipmb_direct_addr *daddr;
4081 
4082 	recv_msg = msg->recv_msg;
4083 	if (recv_msg == NULL) {
4084 		dev_warn(intf->si_dev,
4085 			 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4086 		return 0;
4087 	}
4088 
4089 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4090 	recv_msg->msgid = msg->msgid;
4091 	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4092 	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4093 	daddr->channel = 0;
4094 	daddr->slave_addr = msg->rsp[1];
4095 	daddr->rq_lun = msg->rsp[0] & 3;
4096 	daddr->rs_lun = msg->rsp[2] & 3;
4097 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4098 	recv_msg->msg.cmd = msg->rsp[3];
4099 	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4100 	recv_msg->msg.data = recv_msg->msg_data;
4101 	recv_msg->msg.data_len = msg->rsp_size - 4;
4102 	deliver_local_response(intf, recv_msg);
4103 
4104 	return 0;
4105 }
4106 
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4107 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4108 				  struct ipmi_smi_msg *msg)
4109 {
4110 	struct ipmi_lan_addr  lan_addr;
4111 	struct ipmi_recv_msg  *recv_msg;
4112 
4113 
4114 	/*
4115 	 * This is 13, not 12, because the response must contain a
4116 	 * completion code.
4117 	 */
4118 	if (msg->rsp_size < 13) {
4119 		/* Message not big enough, just ignore it. */
4120 		ipmi_inc_stat(intf, invalid_lan_responses);
4121 		return 0;
4122 	}
4123 
4124 	if (msg->rsp[2] != 0) {
4125 		/* An error getting the response, just ignore it. */
4126 		return 0;
4127 	}
4128 
4129 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4130 	lan_addr.session_handle = msg->rsp[4];
4131 	lan_addr.remote_SWID = msg->rsp[8];
4132 	lan_addr.local_SWID = msg->rsp[5];
4133 	lan_addr.channel = msg->rsp[3] & 0x0f;
4134 	lan_addr.privilege = msg->rsp[3] >> 4;
4135 	lan_addr.lun = msg->rsp[9] & 3;
4136 
4137 	/*
4138 	 * It's a response from a remote entity.  Look up the sequence
4139 	 * number and handle the response.
4140 	 */
4141 	if (intf_find_seq(intf,
4142 			  msg->rsp[9] >> 2,
4143 			  msg->rsp[3] & 0x0f,
4144 			  msg->rsp[10],
4145 			  (msg->rsp[6] >> 2) & (~1),
4146 			  (struct ipmi_addr *) &lan_addr,
4147 			  &recv_msg)) {
4148 		/*
4149 		 * We were unable to find the sequence number,
4150 		 * so just nuke the message.
4151 		 */
4152 		ipmi_inc_stat(intf, unhandled_lan_responses);
4153 		return 0;
4154 	}
4155 
4156 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4157 	/*
4158 	 * The other fields matched, so no need to set them, except
4159 	 * for netfn, which needs to be the response that was
4160 	 * returned, not the request value.
4161 	 */
4162 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
4163 	recv_msg->msg.data = recv_msg->msg_data;
4164 	recv_msg->msg.data_len = msg->rsp_size - 12;
4165 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4166 	if (deliver_response(intf, recv_msg))
4167 		ipmi_inc_stat(intf, unhandled_lan_responses);
4168 	else
4169 		ipmi_inc_stat(intf, handled_lan_responses);
4170 
4171 	return 0;
4172 }
4173 
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4174 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4175 				  struct ipmi_smi_msg *msg)
4176 {
4177 	struct cmd_rcvr          *rcvr;
4178 	int                      rv = 0;
4179 	unsigned char            netfn;
4180 	unsigned char            cmd;
4181 	unsigned char            chan;
4182 	struct ipmi_user         *user = NULL;
4183 	struct ipmi_lan_addr     *lan_addr;
4184 	struct ipmi_recv_msg     *recv_msg = NULL;
4185 
4186 	if (msg->rsp_size < 12) {
4187 		/* Message not big enough, just ignore it. */
4188 		ipmi_inc_stat(intf, invalid_commands);
4189 		return 0;
4190 	}
4191 
4192 	if (msg->rsp[2] != 0) {
4193 		/* An error getting the response, just ignore it. */
4194 		return 0;
4195 	}
4196 
4197 	netfn = msg->rsp[6] >> 2;
4198 	cmd = msg->rsp[10];
4199 	chan = msg->rsp[3] & 0xf;
4200 
4201 	rcu_read_lock();
4202 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4203 	if (rcvr) {
4204 		user = rcvr->user;
4205 		recv_msg = ipmi_alloc_recv_msg(user);
4206 	}
4207 	rcu_read_unlock();
4208 
4209 	if (user == NULL) {
4210 		/* We didn't find a user, just give up and return an error. */
4211 		ipmi_inc_stat(intf, unhandled_commands);
4212 
4213 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
4214 		msg->data[1] = IPMI_SEND_MSG_CMD;
4215 		msg->data[2] = chan;
4216 		msg->data[3] = msg->rsp[4]; /* handle */
4217 		msg->data[4] = msg->rsp[8]; /* rsSWID */
4218 		msg->data[5] = ((netfn + 1) << 2) | (msg->rsp[9] & 0x3);
4219 		msg->data[6] = ipmb_checksum(&msg->data[3], 3);
4220 		msg->data[7] = msg->rsp[5]; /* rqSWID */
4221 		/* rqseq/lun */
4222 		msg->data[8] = (msg->rsp[9] & 0xfc) | (msg->rsp[6] & 0x3);
4223 		msg->data[9] = cmd;
4224 		msg->data[10] = IPMI_INVALID_CMD_COMPLETION_CODE;
4225 		msg->data[11] = ipmb_checksum(&msg->data[7], 4);
4226 		msg->data_size = 12;
4227 
4228 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
4229 			msg->data_size, msg->data);
4230 
4231 		smi_send(intf, intf->handlers, msg, 0);
4232 		/*
4233 		 * We used the message, so return the value that
4234 		 * causes it to not be freed or queued.
4235 		 */
4236 		rv = -1;
4237 	} else if (!IS_ERR(recv_msg)) {
4238 		/* Extract the source address from the data. */
4239 		lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4240 		lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4241 		lan_addr->session_handle = msg->rsp[4];
4242 		lan_addr->remote_SWID = msg->rsp[8];
4243 		lan_addr->local_SWID = msg->rsp[5];
4244 		lan_addr->lun = msg->rsp[9] & 3;
4245 		lan_addr->channel = msg->rsp[3] & 0xf;
4246 		lan_addr->privilege = msg->rsp[3] >> 4;
4247 
4248 		/*
4249 		 * Extract the rest of the message information
4250 		 * from the IPMB header.
4251 		 */
4252 		recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4253 		recv_msg->msgid = msg->rsp[9] >> 2;
4254 		recv_msg->msg.netfn = msg->rsp[6] >> 2;
4255 		recv_msg->msg.cmd = msg->rsp[10];
4256 		recv_msg->msg.data = recv_msg->msg_data;
4257 
4258 		/*
4259 		 * We chop off 12, not 11 bytes because the checksum
4260 		 * at the end also needs to be removed.
4261 		 */
4262 		recv_msg->msg.data_len = msg->rsp_size - 12;
4263 		memcpy(recv_msg->msg_data, &msg->rsp[11],
4264 		       msg->rsp_size - 12);
4265 		if (deliver_response(intf, recv_msg))
4266 			ipmi_inc_stat(intf, unhandled_commands);
4267 		else
4268 			ipmi_inc_stat(intf, handled_commands);
4269 	} else {
4270 		/*
4271 		 * We couldn't allocate memory for the message, so
4272 		 * requeue it for handling later.
4273 		 */
4274 		rv = 1;
4275 	}
4276 
4277 	return rv;
4278 }
4279 
4280 /*
4281  * This routine will handle "Get Message" command responses with
4282  * channels that use an OEM Medium. The message format belongs to
4283  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4284  * Chapter 22, sections 22.6 and 22.24 for more details.
4285  */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4286 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4287 				  struct ipmi_smi_msg *msg)
4288 {
4289 	struct cmd_rcvr       *rcvr;
4290 	int                   rv = 0;
4291 	unsigned char         netfn;
4292 	unsigned char         cmd;
4293 	unsigned char         chan;
4294 	struct ipmi_user *user = NULL;
4295 	struct ipmi_system_interface_addr *smi_addr;
4296 	struct ipmi_recv_msg  *recv_msg = NULL;
4297 
4298 	/*
4299 	 * We expect the OEM SW to perform error checking
4300 	 * so we just do some basic sanity checks
4301 	 */
4302 	if (msg->rsp_size < 4) {
4303 		/* Message not big enough, just ignore it. */
4304 		ipmi_inc_stat(intf, invalid_commands);
4305 		return 0;
4306 	}
4307 
4308 	if (msg->rsp[2] != 0) {
4309 		/* An error getting the response, just ignore it. */
4310 		return 0;
4311 	}
4312 
4313 	/*
4314 	 * This is an OEM Message so the OEM needs to know how
4315 	 * handle the message. We do no interpretation.
4316 	 */
4317 	netfn = msg->rsp[0] >> 2;
4318 	cmd = msg->rsp[1];
4319 	chan = msg->rsp[3] & 0xf;
4320 
4321 	rcu_read_lock();
4322 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4323 	if (rcvr) {
4324 		user = rcvr->user;
4325 		recv_msg = ipmi_alloc_recv_msg(user);
4326 	}
4327 	rcu_read_unlock();
4328 
4329 	if (user == NULL) {
4330 		/* We didn't find a user, just give up. */
4331 		ipmi_inc_stat(intf, unhandled_commands);
4332 
4333 		/*
4334 		 * Don't do anything with these messages, just allow
4335 		 * them to be freed.
4336 		 */
4337 
4338 		rv = 0;
4339 	} else if (!IS_ERR(recv_msg)) {
4340 		/*
4341 		 * OEM Messages are expected to be delivered via
4342 		 * the system interface to SMS software.  We might
4343 		 * need to visit this again depending on OEM
4344 		 * requirements
4345 		 */
4346 		smi_addr = ((struct ipmi_system_interface_addr *)
4347 			    &recv_msg->addr);
4348 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4349 		smi_addr->channel = IPMI_BMC_CHANNEL;
4350 		smi_addr->lun = msg->rsp[0] & 3;
4351 
4352 		recv_msg->user_msg_data = NULL;
4353 		recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4354 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
4355 		recv_msg->msg.cmd = msg->rsp[1];
4356 		recv_msg->msg.data = recv_msg->msg_data;
4357 
4358 		/*
4359 		 * The message starts at byte 4 which follows the
4360 		 * Channel Byte in the "GET MESSAGE" command
4361 		 */
4362 		recv_msg->msg.data_len = msg->rsp_size - 4;
4363 		memcpy(recv_msg->msg_data, &msg->rsp[4],
4364 		       msg->rsp_size - 4);
4365 		if (deliver_response(intf, recv_msg))
4366 			ipmi_inc_stat(intf, unhandled_commands);
4367 		else
4368 			ipmi_inc_stat(intf, handled_commands);
4369 	} else {
4370 		/*
4371 		 * We couldn't allocate memory for the message, so
4372 		 * requeue it for handling later.
4373 		 */
4374 		rv = 1;
4375 	}
4376 
4377 	return rv;
4378 }
4379 
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4380 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4381 				     struct ipmi_smi_msg  *msg)
4382 {
4383 	struct ipmi_system_interface_addr *smi_addr;
4384 
4385 	recv_msg->msgid = 0;
4386 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4387 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4388 	smi_addr->channel = IPMI_BMC_CHANNEL;
4389 	smi_addr->lun = msg->rsp[0] & 3;
4390 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4391 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4392 	recv_msg->msg.cmd = msg->rsp[1];
4393 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4394 	recv_msg->msg.data = recv_msg->msg_data;
4395 	recv_msg->msg.data_len = msg->rsp_size - 3;
4396 }
4397 
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4398 static int handle_read_event_rsp(struct ipmi_smi *intf,
4399 				 struct ipmi_smi_msg *msg)
4400 {
4401 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4402 	struct list_head     msgs;
4403 	struct ipmi_user     *user;
4404 	int rv = 0, deliver_count = 0;
4405 
4406 	if (msg->rsp_size < 19) {
4407 		/* Message is too small to be an IPMB event. */
4408 		ipmi_inc_stat(intf, invalid_events);
4409 		return 0;
4410 	}
4411 
4412 	if (msg->rsp[2] != 0) {
4413 		/* An error getting the event, just ignore it. */
4414 		return 0;
4415 	}
4416 
4417 	INIT_LIST_HEAD(&msgs);
4418 
4419 	mutex_lock(&intf->events_mutex);
4420 
4421 	ipmi_inc_stat(intf, events);
4422 
4423 	/*
4424 	 * Allocate and fill in one message for every user that is
4425 	 * getting events.
4426 	 */
4427 	mutex_lock(&intf->users_mutex);
4428 	list_for_each_entry(user, &intf->users, link) {
4429 		if (!user->gets_events)
4430 			continue;
4431 
4432 		recv_msg = ipmi_alloc_recv_msg(user);
4433 		if (IS_ERR(recv_msg)) {
4434 			mutex_unlock(&intf->users_mutex);
4435 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4436 						 link) {
4437 				user = recv_msg->user;
4438 				list_del(&recv_msg->link);
4439 				ipmi_free_recv_msg(recv_msg);
4440 				kref_put(&user->refcount, free_ipmi_user);
4441 			}
4442 			/*
4443 			 * We couldn't allocate memory for the
4444 			 * message, so requeue it for handling
4445 			 * later.
4446 			 */
4447 			rv = 1;
4448 			goto out;
4449 		}
4450 
4451 		deliver_count++;
4452 
4453 		copy_event_into_recv_msg(recv_msg, msg);
4454 		list_add_tail(&recv_msg->link, &msgs);
4455 	}
4456 	mutex_unlock(&intf->users_mutex);
4457 
4458 	if (deliver_count) {
4459 		/* Now deliver all the messages. */
4460 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4461 			list_del(&recv_msg->link);
4462 			deliver_local_response(intf, recv_msg);
4463 		}
4464 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4465 		/*
4466 		 * No one to receive the message, put it in queue if there's
4467 		 * not already too many things in the queue.
4468 		 */
4469 		recv_msg = ipmi_alloc_recv_msg(NULL);
4470 		if (IS_ERR(recv_msg)) {
4471 			/*
4472 			 * We couldn't allocate memory for the
4473 			 * message, so requeue it for handling
4474 			 * later.
4475 			 */
4476 			rv = 1;
4477 			goto out;
4478 		}
4479 
4480 		copy_event_into_recv_msg(recv_msg, msg);
4481 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4482 		intf->waiting_events_count++;
4483 	} else if (!intf->event_msg_printed) {
4484 		/*
4485 		 * There's too many things in the queue, discard this
4486 		 * message.
4487 		 */
4488 		dev_warn(intf->si_dev,
4489 			 "Event queue full, discarding incoming events\n");
4490 		intf->event_msg_printed = 1;
4491 	}
4492 
4493  out:
4494 	mutex_unlock(&intf->events_mutex);
4495 
4496 	return rv;
4497 }
4498 
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4499 static int handle_bmc_rsp(struct ipmi_smi *intf,
4500 			  struct ipmi_smi_msg *msg)
4501 {
4502 	struct ipmi_recv_msg *recv_msg;
4503 	struct ipmi_system_interface_addr *smi_addr;
4504 
4505 	recv_msg = msg->recv_msg;
4506 	if (recv_msg == NULL) {
4507 		dev_warn(intf->si_dev,
4508 			 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4509 		return 0;
4510 	}
4511 
4512 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4513 	recv_msg->msgid = msg->msgid;
4514 	smi_addr = ((struct ipmi_system_interface_addr *)
4515 		    &recv_msg->addr);
4516 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4517 	smi_addr->channel = IPMI_BMC_CHANNEL;
4518 	smi_addr->lun = msg->rsp[0] & 3;
4519 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4520 	recv_msg->msg.cmd = msg->rsp[1];
4521 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4522 	recv_msg->msg.data = recv_msg->msg_data;
4523 	recv_msg->msg.data_len = msg->rsp_size - 2;
4524 	deliver_local_response(intf, recv_msg);
4525 
4526 	return 0;
4527 }
4528 
4529 /*
4530  * Handle a received message.  Return 1 if the message should be requeued,
4531  * 0 if the message should be freed, or -1 if the message should not
4532  * be freed or requeued.
4533  */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4534 static int handle_one_recv_msg(struct ipmi_smi *intf,
4535 			       struct ipmi_smi_msg *msg)
4536 {
4537 	int requeue = 0;
4538 	int chan;
4539 	unsigned char cc;
4540 	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4541 
4542 	dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4543 
4544 	if (msg->rsp_size < 2) {
4545 		/* Message is too small to be correct. */
4546 		dev_warn_ratelimited(intf->si_dev,
4547 				     "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4548 				     (msg->data[0] >> 2) | 1,
4549 				     msg->data[1], msg->rsp_size);
4550 
4551 return_unspecified:
4552 		/* Generate an error response for the message. */
4553 		msg->rsp[0] = msg->data[0] | (1 << 2);
4554 		msg->rsp[1] = msg->data[1];
4555 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4556 		msg->rsp_size = 3;
4557 	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4558 		/* commands must have at least 4 bytes, responses 5. */
4559 		if (is_cmd && (msg->rsp_size < 4)) {
4560 			ipmi_inc_stat(intf, invalid_commands);
4561 			goto out;
4562 		}
4563 		if (!is_cmd && (msg->rsp_size < 5)) {
4564 			ipmi_inc_stat(intf, invalid_ipmb_responses);
4565 			/* Construct a valid error response. */
4566 			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4567 			msg->rsp[0] |= (1 << 2); /* Make it a response */
4568 			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4569 			msg->rsp[1] = msg->data[1]; /* Addr */
4570 			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4571 			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4572 			msg->rsp[3] = msg->data[3]; /* Cmd */
4573 			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4574 			msg->rsp_size = 5;
4575 		}
4576 	} else if ((msg->data_size >= 2)
4577 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4578 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4579 	    && (msg->recv_msg == NULL)) {
4580 
4581 		if (intf->in_shutdown || intf->run_to_completion)
4582 			goto out;
4583 
4584 		/*
4585 		 * This is the local response to a command send, start
4586 		 * the timer for these.  The recv_msg will not be
4587 		 * NULL if this is a response send, and we will let
4588 		 * response sends just go through.
4589 		 */
4590 
4591 		/*
4592 		 * Check for errors, if we get certain errors (ones
4593 		 * that mean basically we can try again later), we
4594 		 * ignore them and start the timer.  Otherwise we
4595 		 * report the error immediately.
4596 		 */
4597 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4598 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4599 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4600 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4601 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4602 			int ch = msg->rsp[3] & 0xf;
4603 			struct ipmi_channel *chans;
4604 
4605 			/* Got an error sending the message, handle it. */
4606 
4607 			chans = READ_ONCE(intf->channel_list)->c;
4608 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4609 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4610 				ipmi_inc_stat(intf, sent_lan_command_errs);
4611 			else
4612 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4613 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4614 		} else
4615 			/* The message was sent, start the timer. */
4616 			intf_start_seq_timer(intf, msg->msgid);
4617 		requeue = 0;
4618 		goto out;
4619 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4620 		   || (msg->rsp[1] != msg->data[1])) {
4621 		/*
4622 		 * The NetFN and Command in the response is not even
4623 		 * marginally correct.
4624 		 */
4625 		dev_warn_ratelimited(intf->si_dev,
4626 				     "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4627 				     (msg->data[0] >> 2) | 1, msg->data[1],
4628 				     msg->rsp[0] >> 2, msg->rsp[1]);
4629 
4630 		goto return_unspecified;
4631 	}
4632 
4633 	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4634 		if ((msg->data[0] >> 2) & 1) {
4635 			/* It's a response to a sent response. */
4636 			chan = 0;
4637 			cc = msg->rsp[4];
4638 			goto process_response_response;
4639 		}
4640 		if (is_cmd)
4641 			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4642 		else
4643 			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4644 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4645 		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4646 		   && (msg->recv_msg != NULL)) {
4647 		/*
4648 		 * It's a response to a response we sent.  For this we
4649 		 * deliver a send message response to the user.
4650 		 */
4651 		struct ipmi_recv_msg *recv_msg;
4652 
4653 		if (intf->run_to_completion)
4654 			goto out;
4655 
4656 		chan = msg->data[2] & 0x0f;
4657 		if (chan >= IPMI_MAX_CHANNELS)
4658 			/* Invalid channel number */
4659 			goto out;
4660 		cc = msg->rsp[2];
4661 
4662 process_response_response:
4663 		recv_msg = msg->recv_msg;
4664 
4665 		requeue = 0;
4666 		if (!recv_msg)
4667 			goto out;
4668 
4669 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4670 		recv_msg->msg.data = recv_msg->msg_data;
4671 		recv_msg->msg_data[0] = cc;
4672 		recv_msg->msg.data_len = 1;
4673 		deliver_local_response(intf, recv_msg);
4674 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4675 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4676 		struct ipmi_channel   *chans;
4677 
4678 		if (intf->run_to_completion)
4679 			goto out;
4680 
4681 		/* It's from the receive queue. */
4682 		chan = msg->rsp[3] & 0xf;
4683 		if (chan >= IPMI_MAX_CHANNELS) {
4684 			/* Invalid channel number */
4685 			requeue = 0;
4686 			goto out;
4687 		}
4688 
4689 		/*
4690 		 * We need to make sure the channels have been initialized.
4691 		 * The channel_handler routine will set the "curr_channel"
4692 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4693 		 * channels for this interface have been initialized.
4694 		 */
4695 		if (!intf->channels_ready) {
4696 			requeue = 0; /* Throw the message away */
4697 			goto out;
4698 		}
4699 
4700 		chans = READ_ONCE(intf->channel_list)->c;
4701 
4702 		switch (chans[chan].medium) {
4703 		case IPMI_CHANNEL_MEDIUM_IPMB:
4704 			if (msg->rsp[4] & 0x04) {
4705 				/*
4706 				 * It's a response, so find the
4707 				 * requesting message and send it up.
4708 				 */
4709 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4710 			} else {
4711 				/*
4712 				 * It's a command to the SMS from some other
4713 				 * entity.  Handle that.
4714 				 */
4715 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4716 			}
4717 			break;
4718 
4719 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4720 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4721 			if (msg->rsp[6] & 0x04) {
4722 				/*
4723 				 * It's a response, so find the
4724 				 * requesting message and send it up.
4725 				 */
4726 				requeue = handle_lan_get_msg_rsp(intf, msg);
4727 			} else {
4728 				/*
4729 				 * It's a command to the SMS from some other
4730 				 * entity.  Handle that.
4731 				 */
4732 				requeue = handle_lan_get_msg_cmd(intf, msg);
4733 			}
4734 			break;
4735 
4736 		default:
4737 			/* Check for OEM Channels.  Clients had better
4738 			   register for these commands. */
4739 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4740 			    && (chans[chan].medium
4741 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4742 				requeue = handle_oem_get_msg_cmd(intf, msg);
4743 			} else {
4744 				/*
4745 				 * We don't handle the channel type, so just
4746 				 * free the message.
4747 				 */
4748 				requeue = 0;
4749 			}
4750 		}
4751 
4752 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4753 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4754 		/* It's an asynchronous event. */
4755 		if (intf->run_to_completion)
4756 			goto out;
4757 
4758 		requeue = handle_read_event_rsp(intf, msg);
4759 	} else {
4760 		/* It's a response from the local BMC. */
4761 		requeue = handle_bmc_rsp(intf, msg);
4762 	}
4763 
4764  out:
4765 	return requeue;
4766 }
4767 
4768 /*
4769  * If there are messages in the queue or pretimeouts, handle them.
4770  */
handle_new_recv_msgs(struct ipmi_smi * intf)4771 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4772 {
4773 	struct ipmi_smi_msg *smi_msg;
4774 	unsigned long flags = 0;
4775 	int rv;
4776 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4777 
4778 	/* See if any waiting messages need to be processed. */
4779 	if (!run_to_completion)
4780 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4781 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4782 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4783 				     struct ipmi_smi_msg, link);
4784 		list_del(&smi_msg->link);
4785 		if (!run_to_completion)
4786 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4787 					       flags);
4788 		rv = handle_one_recv_msg(intf, smi_msg);
4789 		if (!run_to_completion)
4790 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4791 		if (rv > 0) {
4792 			/*
4793 			 * To preserve message order, quit if we
4794 			 * can't handle a message.  Add the message
4795 			 * back at the head, this is safe because this
4796 			 * workqueue is the only thing that pulls the
4797 			 * messages.
4798 			 */
4799 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4800 			break;
4801 		} else {
4802 			if (rv == 0)
4803 				/* Message handled */
4804 				ipmi_free_smi_msg(smi_msg);
4805 			/* If rv < 0, fatal error, del but don't free. */
4806 		}
4807 	}
4808 	if (!run_to_completion)
4809 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4810 }
4811 
smi_work(struct work_struct * t)4812 static void smi_work(struct work_struct *t)
4813 {
4814 	unsigned long flags = 0; /* keep us warning-free. */
4815 	struct ipmi_smi *intf = from_work(intf, t, smi_work);
4816 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4817 	struct ipmi_smi_msg *newmsg = NULL;
4818 	struct ipmi_recv_msg *msg, *msg2;
4819 	int cc;
4820 
4821 	/*
4822 	 * Start the next message if available.
4823 	 *
4824 	 * Do this here, not in the actual receiver, because we may deadlock
4825 	 * because the lower layer is allowed to hold locks while calling
4826 	 * message delivery.
4827 	 */
4828 restart:
4829 	if (!run_to_completion)
4830 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4831 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4832 		struct list_head *entry = NULL;
4833 
4834 		/* Pick the high priority queue first. */
4835 		if (!list_empty(&intf->hp_xmit_msgs))
4836 			entry = intf->hp_xmit_msgs.next;
4837 		else if (!list_empty(&intf->xmit_msgs))
4838 			entry = intf->xmit_msgs.next;
4839 
4840 		if (entry) {
4841 			list_del(entry);
4842 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4843 			intf->curr_msg = newmsg;
4844 		}
4845 	}
4846 	if (!run_to_completion)
4847 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4848 
4849 	if (newmsg) {
4850 		cc = intf->handlers->sender(intf->send_info, newmsg);
4851 		if (cc) {
4852 			if (newmsg->recv_msg)
4853 				deliver_err_response(intf,
4854 						     newmsg->recv_msg, cc);
4855 			else
4856 				ipmi_free_smi_msg(newmsg);
4857 			goto restart;
4858 		}
4859 	}
4860 
4861 	handle_new_recv_msgs(intf);
4862 
4863 	/* Nothing below applies during panic time. */
4864 	if (run_to_completion)
4865 		return;
4866 
4867 	/*
4868 	 * If the pretimout count is non-zero, decrement one from it and
4869 	 * deliver pretimeouts to all the users.
4870 	 */
4871 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4872 		struct ipmi_user *user;
4873 
4874 		mutex_lock(&intf->users_mutex);
4875 		list_for_each_entry(user, &intf->users, link) {
4876 			if (user->handler->ipmi_watchdog_pretimeout)
4877 				user->handler->ipmi_watchdog_pretimeout(
4878 					user->handler_data);
4879 		}
4880 		mutex_unlock(&intf->users_mutex);
4881 	}
4882 
4883 	/*
4884 	 * Freeing the message can cause a user to be released, which
4885 	 * can then cause the interface to be freed.  Make sure that
4886 	 * doesn't happen until we are ready.
4887 	 */
4888 	kref_get(&intf->refcount);
4889 
4890 	mutex_lock(&intf->user_msgs_mutex);
4891 	list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
4892 		struct ipmi_user *user = msg->user;
4893 
4894 		list_del(&msg->link);
4895 
4896 		if (refcount_read(&user->destroyed) == 0)
4897 			ipmi_free_recv_msg(msg);
4898 		else
4899 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
4900 	}
4901 	mutex_unlock(&intf->user_msgs_mutex);
4902 
4903 	kref_put(&intf->refcount, intf_free);
4904 }
4905 
4906 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4907 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4908 			   struct ipmi_smi_msg *msg)
4909 {
4910 	unsigned long flags = 0; /* keep us warning-free. */
4911 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4912 
4913 	/*
4914 	 * To preserve message order, we keep a queue and deliver from
4915 	 * a workqueue.
4916 	 */
4917 	if (!run_to_completion)
4918 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4919 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4920 	if (!run_to_completion)
4921 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4922 				       flags);
4923 
4924 	if (!run_to_completion)
4925 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4926 	/*
4927 	 * We can get an asynchronous event or receive message in addition
4928 	 * to commands we send.
4929 	 */
4930 	if (msg == intf->curr_msg)
4931 		intf->curr_msg = NULL;
4932 	if (!run_to_completion)
4933 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4934 
4935 	if (run_to_completion)
4936 		smi_work(&intf->smi_work);
4937 	else
4938 		queue_work(system_wq, &intf->smi_work);
4939 }
4940 EXPORT_SYMBOL(ipmi_smi_msg_received);
4941 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4942 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4943 {
4944 	if (intf->in_shutdown)
4945 		return;
4946 
4947 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4948 	queue_work(system_wq, &intf->smi_work);
4949 }
4950 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4951 
4952 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4953 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4954 		  unsigned char seq, long seqid)
4955 {
4956 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4957 	if (!smi_msg)
4958 		/*
4959 		 * If we can't allocate the message, then just return, we
4960 		 * get 4 retries, so this should be ok.
4961 		 */
4962 		return NULL;
4963 
4964 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4965 	smi_msg->data_size = recv_msg->msg.data_len;
4966 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4967 
4968 	dev_dbg(intf->si_dev, "Resend: %*ph\n",
4969 		smi_msg->data_size, smi_msg->data);
4970 
4971 	return smi_msg;
4972 }
4973 
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,bool * need_timer)4974 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4975 			      struct list_head *timeouts,
4976 			      unsigned long timeout_period,
4977 			      int slot, bool *need_timer)
4978 {
4979 	struct ipmi_recv_msg *msg;
4980 
4981 	if (intf->in_shutdown)
4982 		return;
4983 
4984 	if (!ent->inuse)
4985 		return;
4986 
4987 	if (timeout_period < ent->timeout) {
4988 		ent->timeout -= timeout_period;
4989 		*need_timer = true;
4990 		return;
4991 	}
4992 
4993 	if (ent->retries_left == 0) {
4994 		/* The message has used all its retries. */
4995 		ent->inuse = 0;
4996 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4997 		msg = ent->recv_msg;
4998 		list_add_tail(&msg->link, timeouts);
4999 		if (ent->broadcast)
5000 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
5001 		else if (is_lan_addr(&ent->recv_msg->addr))
5002 			ipmi_inc_stat(intf, timed_out_lan_commands);
5003 		else
5004 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
5005 	} else {
5006 		struct ipmi_smi_msg *smi_msg;
5007 		/* More retries, send again. */
5008 
5009 		*need_timer = true;
5010 
5011 		/*
5012 		 * Start with the max timer, set to normal timer after
5013 		 * the message is sent.
5014 		 */
5015 		ent->timeout = MAX_MSG_TIMEOUT;
5016 		ent->retries_left--;
5017 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
5018 					    ent->seqid);
5019 		if (!smi_msg) {
5020 			if (is_lan_addr(&ent->recv_msg->addr))
5021 				ipmi_inc_stat(intf,
5022 					      dropped_rexmit_lan_commands);
5023 			else
5024 				ipmi_inc_stat(intf,
5025 					      dropped_rexmit_ipmb_commands);
5026 			return;
5027 		}
5028 
5029 		mutex_unlock(&intf->seq_lock);
5030 
5031 		/*
5032 		 * Send the new message.  We send with a zero
5033 		 * priority.  It timed out, I doubt time is that
5034 		 * critical now, and high priority messages are really
5035 		 * only for messages to the local MC, which don't get
5036 		 * resent.
5037 		 */
5038 		if (intf->handlers) {
5039 			if (is_lan_addr(&ent->recv_msg->addr))
5040 				ipmi_inc_stat(intf,
5041 					      retransmitted_lan_commands);
5042 			else
5043 				ipmi_inc_stat(intf,
5044 					      retransmitted_ipmb_commands);
5045 
5046 			smi_send(intf, intf->handlers, smi_msg, 0);
5047 		} else
5048 			ipmi_free_smi_msg(smi_msg);
5049 
5050 		mutex_lock(&intf->seq_lock);
5051 	}
5052 }
5053 
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5054 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5055 				 unsigned long timeout_period)
5056 {
5057 	struct list_head     timeouts;
5058 	struct ipmi_recv_msg *msg, *msg2;
5059 	unsigned long        flags;
5060 	int                  i;
5061 	bool                 need_timer = false;
5062 
5063 	if (!intf->bmc_registered) {
5064 		kref_get(&intf->refcount);
5065 		if (!schedule_work(&intf->bmc_reg_work)) {
5066 			kref_put(&intf->refcount, intf_free);
5067 			need_timer = true;
5068 		}
5069 	}
5070 
5071 	/*
5072 	 * Go through the seq table and find any messages that
5073 	 * have timed out, putting them in the timeouts
5074 	 * list.
5075 	 */
5076 	INIT_LIST_HEAD(&timeouts);
5077 	mutex_lock(&intf->seq_lock);
5078 	if (intf->ipmb_maintenance_mode_timeout) {
5079 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5080 			intf->ipmb_maintenance_mode_timeout = 0;
5081 		else
5082 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
5083 	}
5084 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5085 		check_msg_timeout(intf, &intf->seq_table[i],
5086 				  &timeouts, timeout_period, i,
5087 				  &need_timer);
5088 	mutex_unlock(&intf->seq_lock);
5089 
5090 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
5091 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5092 
5093 	/*
5094 	 * Maintenance mode handling.  Check the timeout
5095 	 * optimistically before we claim the lock.  It may
5096 	 * mean a timeout gets missed occasionally, but that
5097 	 * only means the timeout gets extended by one period
5098 	 * in that case.  No big deal, and it avoids the lock
5099 	 * most of the time.
5100 	 */
5101 	if (intf->auto_maintenance_timeout > 0) {
5102 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5103 		if (intf->auto_maintenance_timeout > 0) {
5104 			intf->auto_maintenance_timeout
5105 				-= timeout_period;
5106 			if (!intf->maintenance_mode
5107 			    && (intf->auto_maintenance_timeout <= 0)) {
5108 				intf->maintenance_mode_state =
5109 					IPMI_MAINTENANCE_MODE_STATE_OFF;
5110 				intf->auto_maintenance_timeout = 0;
5111 				maintenance_mode_update(intf);
5112 			}
5113 		}
5114 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5115 				       flags);
5116 	}
5117 
5118 	queue_work(system_wq, &intf->smi_work);
5119 
5120 	return need_timer;
5121 }
5122 
ipmi_request_event(struct ipmi_smi * intf)5123 static void ipmi_request_event(struct ipmi_smi *intf)
5124 {
5125 	/* No event requests when in maintenance mode. */
5126 	if (intf->maintenance_mode_state)
5127 		return;
5128 
5129 	if (!intf->in_shutdown)
5130 		intf->handlers->request_events(intf->send_info);
5131 }
5132 
5133 static atomic_t stop_operation;
5134 
ipmi_timeout_work(struct work_struct * work)5135 static void ipmi_timeout_work(struct work_struct *work)
5136 {
5137 	if (atomic_read(&stop_operation))
5138 		return;
5139 
5140 	struct ipmi_smi *intf;
5141 	bool need_timer = false;
5142 
5143 	if (atomic_read(&stop_operation))
5144 		return;
5145 
5146 	mutex_lock(&ipmi_interfaces_mutex);
5147 	list_for_each_entry(intf, &ipmi_interfaces, link) {
5148 		if (atomic_read(&intf->event_waiters)) {
5149 			intf->ticks_to_req_ev--;
5150 			if (intf->ticks_to_req_ev == 0) {
5151 				ipmi_request_event(intf);
5152 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5153 			}
5154 			need_timer = true;
5155 		}
5156 		if (intf->maintenance_mode_state)
5157 			need_timer = true;
5158 
5159 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5160 	}
5161 	mutex_unlock(&ipmi_interfaces_mutex);
5162 
5163 	if (need_timer)
5164 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5165 }
5166 
5167 static DECLARE_WORK(ipmi_timer_work, ipmi_timeout_work);
5168 
ipmi_timeout(struct timer_list * unused)5169 static void ipmi_timeout(struct timer_list *unused)
5170 {
5171 	if (atomic_read(&stop_operation))
5172 		return;
5173 
5174 	queue_work(system_wq, &ipmi_timer_work);
5175 }
5176 
need_waiter(struct ipmi_smi * intf)5177 static void need_waiter(struct ipmi_smi *intf)
5178 {
5179 	/* Racy, but worst case we start the timer twice. */
5180 	if (!timer_pending(&ipmi_timer))
5181 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5182 }
5183 
5184 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5185 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5186 
free_smi_msg(struct ipmi_smi_msg * msg)5187 static void free_smi_msg(struct ipmi_smi_msg *msg)
5188 {
5189 	atomic_dec(&smi_msg_inuse_count);
5190 	/* Try to keep as much stuff out of the panic path as possible. */
5191 	if (!oops_in_progress)
5192 		kfree(msg);
5193 }
5194 
ipmi_alloc_smi_msg(void)5195 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5196 {
5197 	struct ipmi_smi_msg *rv;
5198 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5199 	if (rv) {
5200 		rv->done = free_smi_msg;
5201 		rv->recv_msg = NULL;
5202 		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5203 		atomic_inc(&smi_msg_inuse_count);
5204 	}
5205 	return rv;
5206 }
5207 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5208 
free_recv_msg(struct ipmi_recv_msg * msg)5209 static void free_recv_msg(struct ipmi_recv_msg *msg)
5210 {
5211 	atomic_dec(&recv_msg_inuse_count);
5212 	/* Try to keep as much stuff out of the panic path as possible. */
5213 	if (!oops_in_progress)
5214 		kfree(msg);
5215 }
5216 
ipmi_alloc_recv_msg(struct ipmi_user * user)5217 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user)
5218 {
5219 	struct ipmi_recv_msg *rv;
5220 
5221 	if (user) {
5222 		if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
5223 			atomic_dec(&user->nr_msgs);
5224 			return ERR_PTR(-EBUSY);
5225 		}
5226 	}
5227 
5228 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5229 	if (!rv) {
5230 		if (user)
5231 			atomic_dec(&user->nr_msgs);
5232 		return ERR_PTR(-ENOMEM);
5233 	}
5234 
5235 	rv->user = user;
5236 	rv->done = free_recv_msg;
5237 	if (user)
5238 		kref_get(&user->refcount);
5239 	atomic_inc(&recv_msg_inuse_count);
5240 	return rv;
5241 }
5242 
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5243 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5244 {
5245 	if (msg->user && !oops_in_progress) {
5246 		atomic_dec(&msg->user->nr_msgs);
5247 		kref_put(&msg->user->refcount, free_ipmi_user);
5248 	}
5249 	msg->done(msg);
5250 }
5251 EXPORT_SYMBOL(ipmi_free_recv_msg);
5252 
ipmi_set_recv_msg_user(struct ipmi_recv_msg * msg,struct ipmi_user * user)5253 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
5254 				   struct ipmi_user *user)
5255 {
5256 	WARN_ON_ONCE(msg->user); /* User should not be set. */
5257 	msg->user = user;
5258 	atomic_inc(&user->nr_msgs);
5259 	kref_get(&user->refcount);
5260 }
5261 
5262 static atomic_t panic_done_count = ATOMIC_INIT(0);
5263 
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5264 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5265 {
5266 	atomic_dec(&panic_done_count);
5267 }
5268 
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5269 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5270 {
5271 	atomic_dec(&panic_done_count);
5272 }
5273 
5274 /*
5275  * Inside a panic, send a message and wait for a response.
5276  */
_ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5277 static void _ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5278 					 struct ipmi_addr *addr,
5279 					 struct kernel_ipmi_msg *msg)
5280 {
5281 	struct ipmi_smi_msg  smi_msg;
5282 	struct ipmi_recv_msg recv_msg;
5283 	int rv;
5284 
5285 	smi_msg.done = dummy_smi_done_handler;
5286 	recv_msg.done = dummy_recv_done_handler;
5287 	atomic_add(2, &panic_done_count);
5288 	rv = i_ipmi_request(NULL,
5289 			    intf,
5290 			    addr,
5291 			    0,
5292 			    msg,
5293 			    intf,
5294 			    &smi_msg,
5295 			    &recv_msg,
5296 			    0,
5297 			    intf->addrinfo[0].address,
5298 			    intf->addrinfo[0].lun,
5299 			    0, 1); /* Don't retry, and don't wait. */
5300 	if (rv)
5301 		atomic_sub(2, &panic_done_count);
5302 	else if (intf->handlers->flush_messages)
5303 		intf->handlers->flush_messages(intf->send_info);
5304 
5305 	while (atomic_read(&panic_done_count) != 0)
5306 		ipmi_poll(intf);
5307 }
5308 
ipmi_panic_request_and_wait(struct ipmi_user * user,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5309 void ipmi_panic_request_and_wait(struct ipmi_user *user,
5310 				 struct ipmi_addr *addr,
5311 				 struct kernel_ipmi_msg *msg)
5312 {
5313 	user->intf->run_to_completion = 1;
5314 	_ipmi_panic_request_and_wait(user->intf, addr, msg);
5315 }
5316 EXPORT_SYMBOL(ipmi_panic_request_and_wait);
5317 
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5318 static void event_receiver_fetcher(struct ipmi_smi *intf,
5319 				   struct ipmi_recv_msg *msg)
5320 {
5321 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5322 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5323 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5324 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5325 		/* A get event receiver command, save it. */
5326 		intf->event_receiver = msg->msg.data[1];
5327 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5328 	}
5329 }
5330 
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5331 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5332 {
5333 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5334 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5335 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5336 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5337 		/*
5338 		 * A get device id command, save if we are an event
5339 		 * receiver or generator.
5340 		 */
5341 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5342 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5343 	}
5344 }
5345 
send_panic_events(struct ipmi_smi * intf,char * str)5346 static void send_panic_events(struct ipmi_smi *intf, char *str)
5347 {
5348 	struct kernel_ipmi_msg msg;
5349 	unsigned char data[16];
5350 	struct ipmi_system_interface_addr *si;
5351 	struct ipmi_addr addr;
5352 	char *p = str;
5353 	struct ipmi_ipmb_addr *ipmb;
5354 	int j;
5355 
5356 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5357 		return;
5358 
5359 	si = (struct ipmi_system_interface_addr *) &addr;
5360 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5361 	si->channel = IPMI_BMC_CHANNEL;
5362 	si->lun = 0;
5363 
5364 	/* Fill in an event telling that we have failed. */
5365 	msg.netfn = 0x04; /* Sensor or Event. */
5366 	msg.cmd = 2; /* Platform event command. */
5367 	msg.data = data;
5368 	msg.data_len = 8;
5369 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5370 	data[1] = 0x03; /* This is for IPMI 1.0. */
5371 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5372 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5373 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5374 
5375 	/*
5376 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
5377 	 * to make the panic events more useful.
5378 	 */
5379 	if (str) {
5380 		data[3] = str[0];
5381 		data[6] = str[1];
5382 		data[7] = str[2];
5383 	}
5384 
5385 	/* Send the event announcing the panic. */
5386 	_ipmi_panic_request_and_wait(intf, &addr, &msg);
5387 
5388 	/*
5389 	 * On every interface, dump a bunch of OEM event holding the
5390 	 * string.
5391 	 */
5392 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5393 		return;
5394 
5395 	/*
5396 	 * intf_num is used as an marker to tell if the
5397 	 * interface is valid.  Thus we need a read barrier to
5398 	 * make sure data fetched before checking intf_num
5399 	 * won't be used.
5400 	 */
5401 	smp_rmb();
5402 
5403 	/*
5404 	 * First job here is to figure out where to send the
5405 	 * OEM events.  There's no way in IPMI to send OEM
5406 	 * events using an event send command, so we have to
5407 	 * find the SEL to put them in and stick them in
5408 	 * there.
5409 	 */
5410 
5411 	/* Get capabilities from the get device id. */
5412 	intf->local_sel_device = 0;
5413 	intf->local_event_generator = 0;
5414 	intf->event_receiver = 0;
5415 
5416 	/* Request the device info from the local MC. */
5417 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5418 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5419 	msg.data = NULL;
5420 	msg.data_len = 0;
5421 	intf->null_user_handler = device_id_fetcher;
5422 	_ipmi_panic_request_and_wait(intf, &addr, &msg);
5423 
5424 	if (intf->local_event_generator) {
5425 		/* Request the event receiver from the local MC. */
5426 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5427 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5428 		msg.data = NULL;
5429 		msg.data_len = 0;
5430 		intf->null_user_handler = event_receiver_fetcher;
5431 		_ipmi_panic_request_and_wait(intf, &addr, &msg);
5432 	}
5433 	intf->null_user_handler = NULL;
5434 
5435 	/*
5436 	 * Validate the event receiver.  The low bit must not
5437 	 * be 1 (it must be a valid IPMB address), it cannot
5438 	 * be zero, and it must not be my address.
5439 	 */
5440 	if (((intf->event_receiver & 1) == 0)
5441 	    && (intf->event_receiver != 0)
5442 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5443 		/*
5444 		 * The event receiver is valid, send an IPMB
5445 		 * message.
5446 		 */
5447 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5448 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5449 		ipmb->channel = 0; /* FIXME - is this right? */
5450 		ipmb->lun = intf->event_receiver_lun;
5451 		ipmb->slave_addr = intf->event_receiver;
5452 	} else if (intf->local_sel_device) {
5453 		/*
5454 		 * The event receiver was not valid (or was
5455 		 * me), but I am an SEL device, just dump it
5456 		 * in my SEL.
5457 		 */
5458 		si = (struct ipmi_system_interface_addr *) &addr;
5459 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5460 		si->channel = IPMI_BMC_CHANNEL;
5461 		si->lun = 0;
5462 	} else
5463 		return; /* No where to send the event. */
5464 
5465 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5466 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5467 	msg.data = data;
5468 	msg.data_len = 16;
5469 
5470 	j = 0;
5471 	while (*p) {
5472 		int size = strnlen(p, 11);
5473 
5474 		data[0] = 0;
5475 		data[1] = 0;
5476 		data[2] = 0xf0; /* OEM event without timestamp. */
5477 		data[3] = intf->addrinfo[0].address;
5478 		data[4] = j++; /* sequence # */
5479 
5480 		memcpy_and_pad(data+5, 11, p, size, '\0');
5481 		p += size;
5482 
5483 		_ipmi_panic_request_and_wait(intf, &addr, &msg);
5484 	}
5485 }
5486 
5487 static int has_panicked;
5488 
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5489 static int panic_event(struct notifier_block *this,
5490 		       unsigned long         event,
5491 		       void                  *ptr)
5492 {
5493 	struct ipmi_smi *intf;
5494 	struct ipmi_user *user;
5495 
5496 	if (has_panicked)
5497 		return NOTIFY_DONE;
5498 	has_panicked = 1;
5499 
5500 	/* For every registered interface, set it to run to completion. */
5501 	list_for_each_entry(intf, &ipmi_interfaces, link) {
5502 		if (!intf->handlers || intf->intf_num == -1)
5503 			/* Interface is not ready. */
5504 			continue;
5505 
5506 		if (!intf->handlers->poll)
5507 			continue;
5508 
5509 		/*
5510 		 * If we were interrupted while locking xmit_msgs_lock or
5511 		 * waiting_rcv_msgs_lock, the corresponding list may be
5512 		 * corrupted.  In this case, drop items on the list for
5513 		 * the safety.
5514 		 */
5515 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5516 			INIT_LIST_HEAD(&intf->xmit_msgs);
5517 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5518 		} else
5519 			spin_unlock(&intf->xmit_msgs_lock);
5520 
5521 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5522 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5523 		else
5524 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5525 
5526 		intf->run_to_completion = 1;
5527 		if (intf->handlers->set_run_to_completion)
5528 			intf->handlers->set_run_to_completion(intf->send_info,
5529 							      1);
5530 
5531 		list_for_each_entry(user, &intf->users, link) {
5532 			if (user->handler->ipmi_panic_handler)
5533 				user->handler->ipmi_panic_handler(
5534 					user->handler_data);
5535 		}
5536 
5537 		send_panic_events(intf, ptr);
5538 	}
5539 
5540 	return NOTIFY_DONE;
5541 }
5542 
5543 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5544 static int ipmi_register_driver(void)
5545 {
5546 	int rv;
5547 
5548 	if (drvregistered)
5549 		return 0;
5550 
5551 	rv = driver_register(&ipmidriver.driver);
5552 	if (rv)
5553 		pr_err("Could not register IPMI driver\n");
5554 	else
5555 		drvregistered = true;
5556 	return rv;
5557 }
5558 
5559 static struct notifier_block panic_block = {
5560 	.notifier_call	= panic_event,
5561 	.next		= NULL,
5562 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5563 };
5564 
ipmi_init_msghandler(void)5565 static int ipmi_init_msghandler(void)
5566 {
5567 	int rv;
5568 
5569 	mutex_lock(&ipmi_interfaces_mutex);
5570 	rv = ipmi_register_driver();
5571 	if (rv)
5572 		goto out;
5573 	if (initialized)
5574 		goto out;
5575 
5576 	bmc_remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5577 	if (!bmc_remove_work_wq) {
5578 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5579 		rv = -ENOMEM;
5580 		goto out;
5581 	}
5582 
5583 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5584 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5585 
5586 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5587 
5588 	initialized = true;
5589 
5590 out:
5591 	mutex_unlock(&ipmi_interfaces_mutex);
5592 	return rv;
5593 }
5594 
ipmi_init_msghandler_mod(void)5595 static int __init ipmi_init_msghandler_mod(void)
5596 {
5597 	int rv;
5598 
5599 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5600 
5601 	mutex_lock(&ipmi_interfaces_mutex);
5602 	rv = ipmi_register_driver();
5603 	mutex_unlock(&ipmi_interfaces_mutex);
5604 
5605 	return rv;
5606 }
5607 
cleanup_ipmi(void)5608 static void __exit cleanup_ipmi(void)
5609 {
5610 	int count;
5611 
5612 	if (initialized) {
5613 		destroy_workqueue(bmc_remove_work_wq);
5614 
5615 		atomic_notifier_chain_unregister(&panic_notifier_list,
5616 						 &panic_block);
5617 
5618 		/*
5619 		 * This can't be called if any interfaces exist, so no worry
5620 		 * about shutting down the interfaces.
5621 		 */
5622 
5623 		/*
5624 		 * Tell the timer to stop, then wait for it to stop.  This
5625 		 * avoids problems with race conditions removing the timer
5626 		 * here.
5627 		 */
5628 		atomic_set(&stop_operation, 1);
5629 		timer_delete_sync(&ipmi_timer);
5630 		cancel_work_sync(&ipmi_timer_work);
5631 
5632 		initialized = false;
5633 
5634 		/* Check for buffer leaks. */
5635 		count = atomic_read(&smi_msg_inuse_count);
5636 		if (count != 0)
5637 			pr_warn("SMI message count %d at exit\n", count);
5638 		count = atomic_read(&recv_msg_inuse_count);
5639 		if (count != 0)
5640 			pr_warn("recv message count %d at exit\n", count);
5641 	}
5642 	if (drvregistered)
5643 		driver_unregister(&ipmidriver.driver);
5644 }
5645 module_exit(cleanup_ipmi);
5646 
5647 module_init(ipmi_init_msghandler_mod);
5648 MODULE_LICENSE("GPL");
5649 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5650 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5651 MODULE_VERSION(IPMI_DRIVER_VERSION);
5652 MODULE_SOFTDEP("post: ipmi_devintf");
5653