xref: /linux/drivers/iio/adc/ad7944.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD7944/85/86 PulSAR ADC family driver.
4  *
5  * Copyright 2024 Analog Devices, Inc.
6  * Copyright 2024 BayLibre, SAS
7  */
8 
9 #include <linux/align.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/spi/spi.h>
20 #include <linux/string_helpers.h>
21 
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 #define AD7944_INTERNAL_REF_MV		4096
28 
29 struct ad7944_timing_spec {
30 	/* Normal mode max conversion time (t_{CONV}). */
31 	unsigned int conv_ns;
32 	/* TURBO mode max conversion time (t_{CONV}). */
33 	unsigned int turbo_conv_ns;
34 };
35 
36 enum ad7944_spi_mode {
37 	/* datasheet calls this "4-wire mode" */
38 	AD7944_SPI_MODE_DEFAULT,
39 	/* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */
40 	AD7944_SPI_MODE_SINGLE,
41 	/* datasheet calls this "chain mode" */
42 	AD7944_SPI_MODE_CHAIN,
43 };
44 
45 /* maps adi,spi-mode property value to enum */
46 static const char * const ad7944_spi_modes[] = {
47 	[AD7944_SPI_MODE_DEFAULT] = "",
48 	[AD7944_SPI_MODE_SINGLE] = "single",
49 	[AD7944_SPI_MODE_CHAIN] = "chain",
50 };
51 
52 struct ad7944_adc {
53 	struct spi_device *spi;
54 	enum ad7944_spi_mode spi_mode;
55 	struct spi_transfer xfers[3];
56 	struct spi_message msg;
57 	void *chain_mode_buf;
58 	/* Chip-specific timing specifications. */
59 	const struct ad7944_timing_spec *timing_spec;
60 	/* GPIO connected to CNV pin. */
61 	struct gpio_desc *cnv;
62 	/* Optional GPIO to enable turbo mode. */
63 	struct gpio_desc *turbo;
64 	/* Indicates TURBO is hard-wired to be always enabled. */
65 	bool always_turbo;
66 	/* Reference voltage (millivolts). */
67 	unsigned int ref_mv;
68 
69 	/*
70 	 * DMA (thus cache coherency maintenance) requires the
71 	 * transfer buffers to live in their own cache lines.
72 	 */
73 	struct {
74 		union {
75 			u16 u16;
76 			u32 u32;
77 		} raw;
78 		u64 timestamp __aligned(8);
79 	 } sample __aligned(IIO_DMA_MINALIGN);
80 };
81 
82 /* quite time before CNV rising edge */
83 #define T_QUIET_NS	20
84 
85 static const struct ad7944_timing_spec ad7944_timing_spec = {
86 	.conv_ns = 420,
87 	.turbo_conv_ns = 320,
88 };
89 
90 static const struct ad7944_timing_spec ad7986_timing_spec = {
91 	.conv_ns = 500,
92 	.turbo_conv_ns = 400,
93 };
94 
95 struct ad7944_chip_info {
96 	const char *name;
97 	const struct ad7944_timing_spec *timing_spec;
98 	const struct iio_chan_spec channels[2];
99 };
100 
101 /*
102  * AD7944_DEFINE_CHIP_INFO - Define a chip info structure for a specific chip
103  * @_name: The name of the chip
104  * @_ts: The timing specification for the chip
105  * @_bits: The number of bits in the conversion result
106  * @_diff: Whether the chip is true differential or not
107  */
108 #define AD7944_DEFINE_CHIP_INFO(_name, _ts, _bits, _diff)		\
109 static const struct ad7944_chip_info _name##_chip_info = {		\
110 	.name = #_name,							\
111 	.timing_spec = &_ts##_timing_spec,				\
112 	.channels = {							\
113 		{							\
114 			.type = IIO_VOLTAGE,				\
115 			.indexed = 1,					\
116 			.differential = _diff,				\
117 			.channel = 0,					\
118 			.channel2 = _diff ? 1 : 0,			\
119 			.scan_index = 0,				\
120 			.scan_type.sign = _diff ? 's' : 'u',		\
121 			.scan_type.realbits = _bits,			\
122 			.scan_type.storagebits = _bits > 16 ? 32 : 16,	\
123 			.scan_type.endianness = IIO_CPU,		\
124 			.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
125 					| BIT(IIO_CHAN_INFO_SCALE),	\
126 		},							\
127 		IIO_CHAN_SOFT_TIMESTAMP(1),				\
128 	},								\
129 }
130 
131 /* pseudo-differential with ground sense */
132 AD7944_DEFINE_CHIP_INFO(ad7944, ad7944, 14, 0);
133 AD7944_DEFINE_CHIP_INFO(ad7985, ad7944, 16, 0);
134 /* fully differential */
135 AD7944_DEFINE_CHIP_INFO(ad7986, ad7986, 18, 1);
136 
ad7944_3wire_cs_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)137 static int ad7944_3wire_cs_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
138 					 const struct iio_chan_spec *chan)
139 {
140 	unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
141 						   : adc->timing_spec->conv_ns;
142 	struct spi_transfer *xfers = adc->xfers;
143 
144 	/*
145 	 * NB: can get better performance from some SPI controllers if we use
146 	 * the same bits_per_word in every transfer.
147 	 */
148 	xfers[0].bits_per_word = chan->scan_type.realbits;
149 	/*
150 	 * CS is tied to CNV and we need a low to high transition to start the
151 	 * conversion, so place CNV low for t_QUIET to prepare for this.
152 	 */
153 	xfers[0].delay.value = T_QUIET_NS;
154 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
155 
156 	/*
157 	 * CS has to be high for full conversion time to avoid triggering the
158 	 * busy indication.
159 	 */
160 	xfers[1].cs_off = 1;
161 	xfers[1].delay.value = t_conv_ns;
162 	xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
163 	xfers[1].bits_per_word = chan->scan_type.realbits;
164 
165 	/* Then we can read the data during the acquisition phase */
166 	xfers[2].rx_buf = &adc->sample.raw;
167 	xfers[2].len = BITS_TO_BYTES(chan->scan_type.storagebits);
168 	xfers[2].bits_per_word = chan->scan_type.realbits;
169 
170 	spi_message_init_with_transfers(&adc->msg, xfers, 3);
171 
172 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
173 }
174 
ad7944_4wire_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)175 static int ad7944_4wire_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
176 				      const struct iio_chan_spec *chan)
177 {
178 	unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
179 						   : adc->timing_spec->conv_ns;
180 	struct spi_transfer *xfers = adc->xfers;
181 
182 	/*
183 	 * NB: can get better performance from some SPI controllers if we use
184 	 * the same bits_per_word in every transfer.
185 	 */
186 	xfers[0].bits_per_word = chan->scan_type.realbits;
187 	/*
188 	 * CS has to be high for full conversion time to avoid triggering the
189 	 * busy indication.
190 	 */
191 	xfers[0].cs_off = 1;
192 	xfers[0].delay.value = t_conv_ns;
193 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
194 
195 	xfers[1].rx_buf = &adc->sample.raw;
196 	xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
197 	xfers[1].bits_per_word = chan->scan_type.realbits;
198 
199 	spi_message_init_with_transfers(&adc->msg, xfers, 2);
200 
201 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
202 }
203 
ad7944_chain_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan,u32 n_chain_dev)204 static int ad7944_chain_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
205 				      const struct iio_chan_spec *chan,
206 				      u32 n_chain_dev)
207 {
208 	struct spi_transfer *xfers = adc->xfers;
209 
210 	/*
211 	 * NB: SCLK has to be low before we toggle CS to avoid triggering the
212 	 * busy indication.
213 	 */
214 	if (adc->spi->mode & SPI_CPOL)
215 		return dev_err_probe(dev, -EINVAL,
216 				     "chain mode requires ~SPI_CPOL\n");
217 
218 	/*
219 	 * We only support CNV connected to CS in chain mode and we need CNV
220 	 * to be high during the transfer to trigger the conversion.
221 	 */
222 	if (!(adc->spi->mode & SPI_CS_HIGH))
223 		return dev_err_probe(dev, -EINVAL,
224 				     "chain mode requires SPI_CS_HIGH\n");
225 
226 	/* CNV has to be high for full conversion time before reading data. */
227 	xfers[0].delay.value = adc->timing_spec->conv_ns;
228 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
229 
230 	xfers[1].rx_buf = adc->chain_mode_buf;
231 	xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits) * n_chain_dev;
232 	xfers[1].bits_per_word = chan->scan_type.realbits;
233 
234 	spi_message_init_with_transfers(&adc->msg, xfers, 2);
235 
236 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
237 }
238 
239 /**
240  * ad7944_convert_and_acquire - Perform a single conversion and acquisition
241  * @adc: The ADC device structure
242  * Return: 0 on success, a negative error code on failure
243  *
244  * Perform a conversion and acquisition of a single sample using the
245  * pre-optimized adc->msg.
246  *
247  * Upon successful return adc->sample.raw will contain the conversion result
248  * (or adc->chain_mode_buf if the device is using chain mode).
249  */
ad7944_convert_and_acquire(struct ad7944_adc * adc)250 static int ad7944_convert_and_acquire(struct ad7944_adc *adc)
251 {
252 	int ret;
253 
254 	/*
255 	 * In 4-wire mode, the CNV line is held high for the entire conversion
256 	 * and acquisition process. In other modes adc->cnv is NULL and is
257 	 * ignored (CS is wired to CNV in those cases).
258 	 */
259 	gpiod_set_value_cansleep(adc->cnv, 1);
260 	ret = spi_sync(adc->spi, &adc->msg);
261 	gpiod_set_value_cansleep(adc->cnv, 0);
262 
263 	return ret;
264 }
265 
ad7944_single_conversion(struct ad7944_adc * adc,const struct iio_chan_spec * chan,int * val)266 static int ad7944_single_conversion(struct ad7944_adc *adc,
267 				    const struct iio_chan_spec *chan,
268 				    int *val)
269 {
270 	int ret;
271 
272 	ret = ad7944_convert_and_acquire(adc);
273 	if (ret)
274 		return ret;
275 
276 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
277 		if (chan->scan_type.storagebits > 16)
278 			*val = ((u32 *)adc->chain_mode_buf)[chan->scan_index];
279 		else
280 			*val = ((u16 *)adc->chain_mode_buf)[chan->scan_index];
281 	} else {
282 		if (chan->scan_type.storagebits > 16)
283 			*val = adc->sample.raw.u32;
284 		else
285 			*val = adc->sample.raw.u16;
286 	}
287 
288 	if (chan->scan_type.sign == 's')
289 		*val = sign_extend32(*val, chan->scan_type.realbits - 1);
290 
291 	return IIO_VAL_INT;
292 }
293 
ad7944_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long info)294 static int ad7944_read_raw(struct iio_dev *indio_dev,
295 			   const struct iio_chan_spec *chan,
296 			   int *val, int *val2, long info)
297 {
298 	struct ad7944_adc *adc = iio_priv(indio_dev);
299 	int ret;
300 
301 	switch (info) {
302 	case IIO_CHAN_INFO_RAW:
303 		ret = iio_device_claim_direct_mode(indio_dev);
304 		if (ret)
305 			return ret;
306 
307 		ret = ad7944_single_conversion(adc, chan, val);
308 		iio_device_release_direct_mode(indio_dev);
309 		return ret;
310 
311 	case IIO_CHAN_INFO_SCALE:
312 		switch (chan->type) {
313 		case IIO_VOLTAGE:
314 			*val = adc->ref_mv;
315 
316 			if (chan->scan_type.sign == 's')
317 				*val2 = chan->scan_type.realbits - 1;
318 			else
319 				*val2 = chan->scan_type.realbits;
320 
321 			return IIO_VAL_FRACTIONAL_LOG2;
322 		default:
323 			return -EINVAL;
324 		}
325 
326 	default:
327 		return -EINVAL;
328 	}
329 }
330 
331 static const struct iio_info ad7944_iio_info = {
332 	.read_raw = &ad7944_read_raw,
333 };
334 
ad7944_trigger_handler(int irq,void * p)335 static irqreturn_t ad7944_trigger_handler(int irq, void *p)
336 {
337 	struct iio_poll_func *pf = p;
338 	struct iio_dev *indio_dev = pf->indio_dev;
339 	struct ad7944_adc *adc = iio_priv(indio_dev);
340 	int ret;
341 
342 	ret = ad7944_convert_and_acquire(adc);
343 	if (ret)
344 		goto out;
345 
346 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN)
347 		iio_push_to_buffers_with_timestamp(indio_dev, adc->chain_mode_buf,
348 						   pf->timestamp);
349 	else
350 		iio_push_to_buffers_with_timestamp(indio_dev, &adc->sample.raw,
351 						   pf->timestamp);
352 
353 out:
354 	iio_trigger_notify_done(indio_dev->trig);
355 
356 	return IRQ_HANDLED;
357 }
358 
359 /**
360  * ad7944_chain_mode_alloc - allocate and initialize channel specs and buffers
361  *                           for daisy-chained devices
362  * @dev: The device for devm_ functions
363  * @chan_template: The channel template for the devices (array of 2 channels
364  *                 voltage and timestamp)
365  * @n_chain_dev: The number of devices in the chain
366  * @chain_chan: Pointer to receive the allocated channel specs
367  * @chain_mode_buf: Pointer to receive the allocated rx buffer
368  * @chain_scan_masks: Pointer to receive the allocated scan masks
369  * Return: 0 on success, a negative error code on failure
370  */
ad7944_chain_mode_alloc(struct device * dev,const struct iio_chan_spec * chan_template,u32 n_chain_dev,struct iio_chan_spec ** chain_chan,void ** chain_mode_buf,unsigned long ** chain_scan_masks)371 static int ad7944_chain_mode_alloc(struct device *dev,
372 				   const struct iio_chan_spec *chan_template,
373 				   u32 n_chain_dev,
374 				   struct iio_chan_spec **chain_chan,
375 				   void **chain_mode_buf,
376 				   unsigned long **chain_scan_masks)
377 {
378 	struct iio_chan_spec *chan;
379 	size_t chain_mode_buf_size;
380 	unsigned long *scan_masks;
381 	void *buf;
382 	int i;
383 
384 	/* 1 channel for each device in chain plus 1 for soft timestamp */
385 
386 	chan = devm_kcalloc(dev, n_chain_dev + 1, sizeof(*chan), GFP_KERNEL);
387 	if (!chan)
388 		return -ENOMEM;
389 
390 	for (i = 0; i < n_chain_dev; i++) {
391 		chan[i] = chan_template[0];
392 
393 		if (chan_template[0].differential) {
394 			chan[i].channel = 2 * i;
395 			chan[i].channel2 = 2 * i + 1;
396 		} else {
397 			chan[i].channel = i;
398 		}
399 
400 		chan[i].scan_index = i;
401 	}
402 
403 	/* soft timestamp */
404 	chan[i] = chan_template[1];
405 	chan[i].scan_index = i;
406 
407 	*chain_chan = chan;
408 
409 	/* 1 word for each voltage channel + aligned u64 for timestamp */
410 
411 	chain_mode_buf_size = ALIGN(n_chain_dev *
412 		BITS_TO_BYTES(chan[0].scan_type.storagebits), sizeof(u64))
413 		+ sizeof(u64);
414 	buf = devm_kzalloc(dev, chain_mode_buf_size, GFP_KERNEL);
415 	if (!buf)
416 		return -ENOMEM;
417 
418 	*chain_mode_buf = buf;
419 
420 	/*
421 	 * Have to limit n_chain_dev due to current implementation of
422 	 * available_scan_masks.
423 	 */
424 	if (n_chain_dev > BITS_PER_LONG)
425 		return dev_err_probe(dev, -EINVAL,
426 				     "chain is limited to 32 devices\n");
427 
428 	scan_masks = devm_kcalloc(dev, 2, sizeof(*scan_masks), GFP_KERNEL);
429 	if (!scan_masks)
430 		return -ENOMEM;
431 
432 	/*
433 	 * Scan mask is needed since we always have to read all devices in the
434 	 * chain in one SPI transfer.
435 	 */
436 	scan_masks[0] = GENMASK(n_chain_dev - 1, 0);
437 
438 	*chain_scan_masks = scan_masks;
439 
440 	return 0;
441 }
442 
443 static const char * const ad7944_power_supplies[] = {
444 	"avdd",	"dvdd",	"bvdd", "vio"
445 };
446 
ad7944_probe(struct spi_device * spi)447 static int ad7944_probe(struct spi_device *spi)
448 {
449 	const struct ad7944_chip_info *chip_info;
450 	struct device *dev = &spi->dev;
451 	struct iio_dev *indio_dev;
452 	struct ad7944_adc *adc;
453 	bool have_refin;
454 	struct iio_chan_spec *chain_chan;
455 	unsigned long *chain_scan_masks;
456 	u32 n_chain_dev;
457 	int ret, ref_mv;
458 
459 	indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
460 	if (!indio_dev)
461 		return -ENOMEM;
462 
463 	adc = iio_priv(indio_dev);
464 	adc->spi = spi;
465 
466 	chip_info = spi_get_device_match_data(spi);
467 	if (!chip_info)
468 		return dev_err_probe(dev, -EINVAL, "no chip info\n");
469 
470 	adc->timing_spec = chip_info->timing_spec;
471 
472 	ret = device_property_match_property_string(dev, "adi,spi-mode",
473 						    ad7944_spi_modes,
474 						    ARRAY_SIZE(ad7944_spi_modes));
475 	/* absence of adi,spi-mode property means default mode */
476 	if (ret == -EINVAL)
477 		adc->spi_mode = AD7944_SPI_MODE_DEFAULT;
478 	else if (ret < 0)
479 		return dev_err_probe(dev, ret,
480 				     "getting adi,spi-mode property failed\n");
481 	else
482 		adc->spi_mode = ret;
483 
484 	/*
485 	 * Some chips use unusual word sizes, so check now instead of waiting
486 	 * for the first xfer.
487 	 */
488 	if (!spi_is_bpw_supported(spi, chip_info->channels[0].scan_type.realbits))
489 		return dev_err_probe(dev, -EINVAL,
490 				"SPI host does not support %d bits per word\n",
491 				chip_info->channels[0].scan_type.realbits);
492 
493 	ret = devm_regulator_bulk_get_enable(dev,
494 					     ARRAY_SIZE(ad7944_power_supplies),
495 					     ad7944_power_supplies);
496 	if (ret)
497 		return dev_err_probe(dev, ret,
498 				     "failed to get and enable supplies\n");
499 
500 	/*
501 	 * Sort out what is being used for the reference voltage. Options are:
502 	 * - internal reference: neither REF or REFIN is connected
503 	 * - internal reference with external buffer: REF not connected, REFIN
504 	 *   is connected
505 	 * - external reference: REF is connected, REFIN is not connected
506 	 */
507 
508 	ret = devm_regulator_get_enable_read_voltage(dev, "ref");
509 	if (ret < 0 && ret != -ENODEV)
510 		return dev_err_probe(dev, ret, "failed to get REF voltage\n");
511 
512 	ref_mv = ret == -ENODEV ? 0 : ret / 1000;
513 
514 	ret = devm_regulator_get_enable_optional(dev, "refin");
515 	if (ret < 0 && ret != -ENODEV)
516 		return dev_err_probe(dev, ret, "failed to get REFIN voltage\n");
517 
518 	have_refin = ret != -ENODEV;
519 
520 	if (have_refin && ref_mv)
521 		return dev_err_probe(dev, -EINVAL,
522 				     "cannot have both refin and ref supplies\n");
523 
524 	adc->ref_mv = ref_mv ?: AD7944_INTERNAL_REF_MV;
525 
526 	adc->cnv = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_LOW);
527 	if (IS_ERR(adc->cnv))
528 		return dev_err_probe(dev, PTR_ERR(adc->cnv),
529 				     "failed to get CNV GPIO\n");
530 
531 	if (!adc->cnv && adc->spi_mode == AD7944_SPI_MODE_DEFAULT)
532 		return dev_err_probe(&spi->dev, -EINVAL, "CNV GPIO is required\n");
533 	if (adc->cnv && adc->spi_mode != AD7944_SPI_MODE_DEFAULT)
534 		return dev_err_probe(&spi->dev, -EINVAL,
535 				     "CNV GPIO in single and chain mode is not currently supported\n");
536 
537 	adc->turbo = devm_gpiod_get_optional(dev, "turbo", GPIOD_OUT_LOW);
538 	if (IS_ERR(adc->turbo))
539 		return dev_err_probe(dev, PTR_ERR(adc->turbo),
540 				     "failed to get TURBO GPIO\n");
541 
542 	adc->always_turbo = device_property_present(dev, "adi,always-turbo");
543 
544 	if (adc->turbo && adc->always_turbo)
545 		return dev_err_probe(dev, -EINVAL,
546 			"cannot have both turbo-gpios and adi,always-turbo\n");
547 
548 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN && adc->always_turbo)
549 		return dev_err_probe(dev, -EINVAL,
550 			"cannot have both chain mode and always turbo\n");
551 
552 	switch (adc->spi_mode) {
553 	case AD7944_SPI_MODE_DEFAULT:
554 		ret = ad7944_4wire_mode_init_msg(dev, adc, &chip_info->channels[0]);
555 		if (ret)
556 			return ret;
557 
558 		break;
559 	case AD7944_SPI_MODE_SINGLE:
560 		ret = ad7944_3wire_cs_mode_init_msg(dev, adc, &chip_info->channels[0]);
561 		if (ret)
562 			return ret;
563 
564 		break;
565 	case AD7944_SPI_MODE_CHAIN:
566 		ret = device_property_read_u32(dev, "#daisy-chained-devices",
567 					       &n_chain_dev);
568 		if (ret)
569 			return dev_err_probe(dev, ret,
570 					"failed to get #daisy-chained-devices\n");
571 
572 		ret = ad7944_chain_mode_alloc(dev, chip_info->channels,
573 					      n_chain_dev, &chain_chan,
574 					      &adc->chain_mode_buf,
575 					      &chain_scan_masks);
576 		if (ret)
577 			return ret;
578 
579 		ret = ad7944_chain_mode_init_msg(dev, adc, &chain_chan[0],
580 						 n_chain_dev);
581 		if (ret)
582 			return ret;
583 
584 		break;
585 	}
586 
587 	indio_dev->name = chip_info->name;
588 	indio_dev->modes = INDIO_DIRECT_MODE;
589 	indio_dev->info = &ad7944_iio_info;
590 
591 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
592 		indio_dev->available_scan_masks = chain_scan_masks;
593 		indio_dev->channels = chain_chan;
594 		indio_dev->num_channels = n_chain_dev + 1;
595 	} else {
596 		indio_dev->channels = chip_info->channels;
597 		indio_dev->num_channels = ARRAY_SIZE(chip_info->channels);
598 	}
599 
600 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
601 					      iio_pollfunc_store_time,
602 					      ad7944_trigger_handler, NULL);
603 	if (ret)
604 		return ret;
605 
606 	return devm_iio_device_register(dev, indio_dev);
607 }
608 
609 static const struct of_device_id ad7944_of_match[] = {
610 	{ .compatible = "adi,ad7944", .data = &ad7944_chip_info },
611 	{ .compatible = "adi,ad7985", .data = &ad7985_chip_info },
612 	{ .compatible = "adi,ad7986", .data = &ad7986_chip_info },
613 	{ }
614 };
615 MODULE_DEVICE_TABLE(of, ad7944_of_match);
616 
617 static const struct spi_device_id ad7944_spi_id[] = {
618 	{ "ad7944", (kernel_ulong_t)&ad7944_chip_info },
619 	{ "ad7985", (kernel_ulong_t)&ad7985_chip_info },
620 	{ "ad7986", (kernel_ulong_t)&ad7986_chip_info },
621 	{ }
622 
623 };
624 MODULE_DEVICE_TABLE(spi, ad7944_spi_id);
625 
626 static struct spi_driver ad7944_driver = {
627 	.driver = {
628 		.name = "ad7944",
629 		.of_match_table = ad7944_of_match,
630 	},
631 	.probe = ad7944_probe,
632 	.id_table = ad7944_spi_id,
633 };
634 module_spi_driver(ad7944_driver);
635 
636 MODULE_AUTHOR("David Lechner <dlechner@baylibre.com>");
637 MODULE_DESCRIPTION("Analog Devices AD7944 PulSAR ADC family driver");
638 MODULE_LICENSE("GPL");
639