xref: /linux/lib/iov_iter.c (revision e1b1d03ceec343362524318c076b110066ffe305)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.nofault = false,
170 		.data_source = direction,
171 		.__iov = iov,
172 		.nr_segs = nr_segs,
173 		.iov_offset = 0,
174 		.count = count
175 	};
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181 	if (WARN_ON_ONCE(i->data_source))
182 		return 0;
183 	if (user_backed_iter(i))
184 		might_fault();
185 	return iterate_and_advance(i, bytes, (void *)addr,
186 				   copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 			    size_t len, void *from, void *priv2)
194 {
195 	if (access_ok(iter_to, len)) {
196 		from += progress;
197 		instrument_copy_to_user(iter_to, from, len);
198 		len = copy_mc_to_user(iter_to, from, len);
199 	}
200 	return len;
201 }
202 
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 			 size_t len, void *from, void *priv2)
206 {
207 	return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236 	if (WARN_ON_ONCE(i->data_source))
237 		return 0;
238 	if (user_backed_iter(i))
239 		might_fault();
240 	return iterate_and_advance(i, bytes, (void *)addr,
241 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249 	return iterate_and_advance(i, bytes, addr,
250 				   copy_from_user_iter, memcpy_from_iter);
251 }
252 
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255 	if (WARN_ON_ONCE(!i->data_source))
256 		return 0;
257 
258 	if (user_backed_iter(i))
259 		might_fault();
260 	return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 				   size_t len, void *to, void *priv2)
267 {
268 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273 	if (WARN_ON_ONCE(!i->data_source))
274 		return 0;
275 
276 	return iterate_and_advance(i, bytes, addr,
277 				   copy_from_user_iter_nocache,
278 				   memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 				      size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 				   size_t len, void *to, void *priv2)
293 {
294 	memcpy_flushcache(to + progress, iter_from, len);
295 	return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316 	if (WARN_ON_ONCE(!i->data_source))
317 		return 0;
318 
319 	return iterate_and_advance(i, bytes, addr,
320 				   copy_from_user_iter_flushcache,
321 				   memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328 	struct page *head;
329 	size_t v = n + offset;
330 
331 	/*
332 	 * The general case needs to access the page order in order
333 	 * to compute the page size.
334 	 * However, we mostly deal with order-0 pages and thus can
335 	 * avoid a possible cache line miss for requests that fit all
336 	 * page orders.
337 	 */
338 	if (n <= v && v <= PAGE_SIZE)
339 		return true;
340 
341 	head = compound_head(page);
342 	v += (page - head) << PAGE_SHIFT;
343 
344 	if (WARN_ON(n > v || v > page_size(head)))
345 		return false;
346 	return true;
347 }
348 
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 			 struct iov_iter *i)
351 {
352 	size_t res = 0;
353 	if (!page_copy_sane(page, offset, bytes))
354 		return 0;
355 	if (WARN_ON_ONCE(i->data_source))
356 		return 0;
357 	page += offset / PAGE_SIZE; // first subpage
358 	offset %= PAGE_SIZE;
359 	while (1) {
360 		void *kaddr = kmap_local_page(page);
361 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 		n = _copy_to_iter(kaddr + offset, n, i);
363 		kunmap_local(kaddr);
364 		res += n;
365 		bytes -= n;
366 		if (!bytes || !n)
367 			break;
368 		offset += n;
369 		if (offset == PAGE_SIZE) {
370 			page++;
371 			offset = 0;
372 		}
373 	}
374 	return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 				 struct iov_iter *i)
380 {
381 	size_t res = 0;
382 
383 	if (!page_copy_sane(page, offset, bytes))
384 		return 0;
385 	if (WARN_ON_ONCE(i->data_source))
386 		return 0;
387 	page += offset / PAGE_SIZE; // first subpage
388 	offset %= PAGE_SIZE;
389 	while (1) {
390 		void *kaddr = kmap_local_page(page);
391 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393 		n = iterate_and_advance(i, n, kaddr + offset,
394 					copy_to_user_iter_nofault,
395 					memcpy_to_iter);
396 		kunmap_local(kaddr);
397 		res += n;
398 		bytes -= n;
399 		if (!bytes || !n)
400 			break;
401 		offset += n;
402 		if (offset == PAGE_SIZE) {
403 			page++;
404 			offset = 0;
405 		}
406 	}
407 	return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 			 struct iov_iter *i)
413 {
414 	size_t res = 0;
415 	if (!page_copy_sane(page, offset, bytes))
416 		return 0;
417 	page += offset / PAGE_SIZE; // first subpage
418 	offset %= PAGE_SIZE;
419 	while (1) {
420 		void *kaddr = kmap_local_page(page);
421 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 		n = _copy_from_iter(kaddr + offset, n, i);
423 		kunmap_local(kaddr);
424 		res += n;
425 		bytes -= n;
426 		if (!bytes || !n)
427 			break;
428 		offset += n;
429 		if (offset == PAGE_SIZE) {
430 			page++;
431 			offset = 0;
432 		}
433 	}
434 	return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 			 size_t len, void *priv, void *priv2)
441 {
442 	return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447 		    size_t len, void *priv, void *priv2)
448 {
449 	memset(iter_to, 0, len);
450 	return 0;
451 }
452 
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455 	return iterate_and_advance(i, bytes, NULL,
456 				   zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
460 size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset,
461 		size_t bytes, struct iov_iter *i)
462 {
463 	size_t n, copied = 0;
464 
465 	if (!page_copy_sane(&folio->page, offset, bytes))
466 		return 0;
467 	if (WARN_ON_ONCE(!i->data_source))
468 		return 0;
469 
470 	do {
471 		char *to = kmap_local_folio(folio, offset);
472 
473 		n = bytes - copied;
474 		if (folio_test_partial_kmap(folio) &&
475 		    n > PAGE_SIZE - offset_in_page(offset))
476 			n = PAGE_SIZE - offset_in_page(offset);
477 
478 		pagefault_disable();
479 		n = __copy_from_iter(to, n, i);
480 		pagefault_enable();
481 		kunmap_local(to);
482 		copied += n;
483 		offset += n;
484 	} while (copied != bytes && n > 0);
485 
486 	return copied;
487 }
488 EXPORT_SYMBOL(copy_folio_from_iter_atomic);
489 
490 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
491 {
492 	const struct bio_vec *bvec, *end;
493 
494 	if (!i->count)
495 		return;
496 	i->count -= size;
497 
498 	size += i->iov_offset;
499 
500 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
501 		if (likely(size < bvec->bv_len))
502 			break;
503 		size -= bvec->bv_len;
504 	}
505 	i->iov_offset = size;
506 	i->nr_segs -= bvec - i->bvec;
507 	i->bvec = bvec;
508 }
509 
510 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
511 {
512 	const struct iovec *iov, *end;
513 
514 	if (!i->count)
515 		return;
516 	i->count -= size;
517 
518 	size += i->iov_offset; // from beginning of current segment
519 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
520 		if (likely(size < iov->iov_len))
521 			break;
522 		size -= iov->iov_len;
523 	}
524 	i->iov_offset = size;
525 	i->nr_segs -= iov - iter_iov(i);
526 	i->__iov = iov;
527 }
528 
529 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
530 {
531 	const struct folio_queue *folioq = i->folioq;
532 	unsigned int slot = i->folioq_slot;
533 
534 	if (!i->count)
535 		return;
536 	i->count -= size;
537 
538 	if (slot >= folioq_nr_slots(folioq)) {
539 		folioq = folioq->next;
540 		slot = 0;
541 	}
542 
543 	size += i->iov_offset; /* From beginning of current segment. */
544 	do {
545 		size_t fsize = folioq_folio_size(folioq, slot);
546 
547 		if (likely(size < fsize))
548 			break;
549 		size -= fsize;
550 		slot++;
551 		if (slot >= folioq_nr_slots(folioq) && folioq->next) {
552 			folioq = folioq->next;
553 			slot = 0;
554 		}
555 	} while (size);
556 
557 	i->iov_offset = size;
558 	i->folioq_slot = slot;
559 	i->folioq = folioq;
560 }
561 
562 void iov_iter_advance(struct iov_iter *i, size_t size)
563 {
564 	if (unlikely(i->count < size))
565 		size = i->count;
566 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
567 		i->iov_offset += size;
568 		i->count -= size;
569 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
570 		/* iovec and kvec have identical layouts */
571 		iov_iter_iovec_advance(i, size);
572 	} else if (iov_iter_is_bvec(i)) {
573 		iov_iter_bvec_advance(i, size);
574 	} else if (iov_iter_is_folioq(i)) {
575 		iov_iter_folioq_advance(i, size);
576 	} else if (iov_iter_is_discard(i)) {
577 		i->count -= size;
578 	}
579 }
580 EXPORT_SYMBOL(iov_iter_advance);
581 
582 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
583 {
584 	const struct folio_queue *folioq = i->folioq;
585 	unsigned int slot = i->folioq_slot;
586 
587 	for (;;) {
588 		size_t fsize;
589 
590 		if (slot == 0) {
591 			folioq = folioq->prev;
592 			slot = folioq_nr_slots(folioq);
593 		}
594 		slot--;
595 
596 		fsize = folioq_folio_size(folioq, slot);
597 		if (unroll <= fsize) {
598 			i->iov_offset = fsize - unroll;
599 			break;
600 		}
601 		unroll -= fsize;
602 	}
603 
604 	i->folioq_slot = slot;
605 	i->folioq = folioq;
606 }
607 
608 void iov_iter_revert(struct iov_iter *i, size_t unroll)
609 {
610 	if (!unroll)
611 		return;
612 	if (WARN_ON(unroll > MAX_RW_COUNT))
613 		return;
614 	i->count += unroll;
615 	if (unlikely(iov_iter_is_discard(i)))
616 		return;
617 	if (unroll <= i->iov_offset) {
618 		i->iov_offset -= unroll;
619 		return;
620 	}
621 	unroll -= i->iov_offset;
622 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
623 		BUG(); /* We should never go beyond the start of the specified
624 			* range since we might then be straying into pages that
625 			* aren't pinned.
626 			*/
627 	} else if (iov_iter_is_bvec(i)) {
628 		const struct bio_vec *bvec = i->bvec;
629 		while (1) {
630 			size_t n = (--bvec)->bv_len;
631 			i->nr_segs++;
632 			if (unroll <= n) {
633 				i->bvec = bvec;
634 				i->iov_offset = n - unroll;
635 				return;
636 			}
637 			unroll -= n;
638 		}
639 	} else if (iov_iter_is_folioq(i)) {
640 		i->iov_offset = 0;
641 		iov_iter_folioq_revert(i, unroll);
642 	} else { /* same logics for iovec and kvec */
643 		const struct iovec *iov = iter_iov(i);
644 		while (1) {
645 			size_t n = (--iov)->iov_len;
646 			i->nr_segs++;
647 			if (unroll <= n) {
648 				i->__iov = iov;
649 				i->iov_offset = n - unroll;
650 				return;
651 			}
652 			unroll -= n;
653 		}
654 	}
655 }
656 EXPORT_SYMBOL(iov_iter_revert);
657 
658 /*
659  * Return the count of just the current iov_iter segment.
660  */
661 size_t iov_iter_single_seg_count(const struct iov_iter *i)
662 {
663 	if (i->nr_segs > 1) {
664 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
665 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
666 		if (iov_iter_is_bvec(i))
667 			return min(i->count, i->bvec->bv_len - i->iov_offset);
668 	}
669 	if (unlikely(iov_iter_is_folioq(i)))
670 		return !i->count ? 0 :
671 			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
672 	return i->count;
673 }
674 EXPORT_SYMBOL(iov_iter_single_seg_count);
675 
676 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
677 			const struct kvec *kvec, unsigned long nr_segs,
678 			size_t count)
679 {
680 	WARN_ON(direction & ~(READ | WRITE));
681 	*i = (struct iov_iter){
682 		.iter_type = ITER_KVEC,
683 		.data_source = direction,
684 		.kvec = kvec,
685 		.nr_segs = nr_segs,
686 		.iov_offset = 0,
687 		.count = count
688 	};
689 }
690 EXPORT_SYMBOL(iov_iter_kvec);
691 
692 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
693 			const struct bio_vec *bvec, unsigned long nr_segs,
694 			size_t count)
695 {
696 	WARN_ON(direction & ~(READ | WRITE));
697 	*i = (struct iov_iter){
698 		.iter_type = ITER_BVEC,
699 		.data_source = direction,
700 		.bvec = bvec,
701 		.nr_segs = nr_segs,
702 		.iov_offset = 0,
703 		.count = count
704 	};
705 }
706 EXPORT_SYMBOL(iov_iter_bvec);
707 
708 /**
709  * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
710  * @i: The iterator to initialise.
711  * @direction: The direction of the transfer.
712  * @folioq: The starting point in the folio queue.
713  * @first_slot: The first slot in the folio queue to use
714  * @offset: The offset into the folio in the first slot to start at
715  * @count: The size of the I/O buffer in bytes.
716  *
717  * Set up an I/O iterator to either draw data out of the pages attached to an
718  * inode or to inject data into those pages.  The pages *must* be prevented
719  * from evaporation, either by taking a ref on them or locking them by the
720  * caller.
721  */
722 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
723 			  const struct folio_queue *folioq, unsigned int first_slot,
724 			  unsigned int offset, size_t count)
725 {
726 	BUG_ON(direction & ~1);
727 	*i = (struct iov_iter) {
728 		.iter_type = ITER_FOLIOQ,
729 		.data_source = direction,
730 		.folioq = folioq,
731 		.folioq_slot = first_slot,
732 		.count = count,
733 		.iov_offset = offset,
734 	};
735 }
736 EXPORT_SYMBOL(iov_iter_folio_queue);
737 
738 /**
739  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
740  * @i: The iterator to initialise.
741  * @direction: The direction of the transfer.
742  * @xarray: The xarray to access.
743  * @start: The start file position.
744  * @count: The size of the I/O buffer in bytes.
745  *
746  * Set up an I/O iterator to either draw data out of the pages attached to an
747  * inode or to inject data into those pages.  The pages *must* be prevented
748  * from evaporation, either by taking a ref on them or locking them by the
749  * caller.
750  */
751 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
752 		     struct xarray *xarray, loff_t start, size_t count)
753 {
754 	BUG_ON(direction & ~1);
755 	*i = (struct iov_iter) {
756 		.iter_type = ITER_XARRAY,
757 		.data_source = direction,
758 		.xarray = xarray,
759 		.xarray_start = start,
760 		.count = count,
761 		.iov_offset = 0
762 	};
763 }
764 EXPORT_SYMBOL(iov_iter_xarray);
765 
766 /**
767  * iov_iter_discard - Initialise an I/O iterator that discards data
768  * @i: The iterator to initialise.
769  * @direction: The direction of the transfer.
770  * @count: The size of the I/O buffer in bytes.
771  *
772  * Set up an I/O iterator that just discards everything that's written to it.
773  * It's only available as a READ iterator.
774  */
775 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
776 {
777 	BUG_ON(direction != READ);
778 	*i = (struct iov_iter){
779 		.iter_type = ITER_DISCARD,
780 		.data_source = false,
781 		.count = count,
782 		.iov_offset = 0
783 	};
784 }
785 EXPORT_SYMBOL(iov_iter_discard);
786 
787 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
788 {
789 	const struct iovec *iov = iter_iov(i);
790 	unsigned long res = 0;
791 	size_t size = i->count;
792 	size_t skip = i->iov_offset;
793 
794 	do {
795 		size_t len = iov->iov_len - skip;
796 		if (len) {
797 			res |= (unsigned long)iov->iov_base + skip;
798 			if (len > size)
799 				len = size;
800 			res |= len;
801 			size -= len;
802 		}
803 		iov++;
804 		skip = 0;
805 	} while (size);
806 	return res;
807 }
808 
809 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
810 {
811 	const struct bio_vec *bvec = i->bvec;
812 	unsigned res = 0;
813 	size_t size = i->count;
814 	unsigned skip = i->iov_offset;
815 
816 	do {
817 		size_t len = bvec->bv_len - skip;
818 		res |= (unsigned long)bvec->bv_offset + skip;
819 		if (len > size)
820 			len = size;
821 		res |= len;
822 		bvec++;
823 		size -= len;
824 		skip = 0;
825 	} while (size);
826 
827 	return res;
828 }
829 
830 unsigned long iov_iter_alignment(const struct iov_iter *i)
831 {
832 	if (likely(iter_is_ubuf(i))) {
833 		size_t size = i->count;
834 		if (size)
835 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
836 		return 0;
837 	}
838 
839 	/* iovec and kvec have identical layouts */
840 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
841 		return iov_iter_alignment_iovec(i);
842 
843 	if (iov_iter_is_bvec(i))
844 		return iov_iter_alignment_bvec(i);
845 
846 	/* With both xarray and folioq types, we're dealing with whole folios. */
847 	if (iov_iter_is_folioq(i))
848 		return i->iov_offset | i->count;
849 	if (iov_iter_is_xarray(i))
850 		return (i->xarray_start + i->iov_offset) | i->count;
851 
852 	return 0;
853 }
854 EXPORT_SYMBOL(iov_iter_alignment);
855 
856 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
857 {
858 	unsigned long res = 0;
859 	unsigned long v = 0;
860 	size_t size = i->count;
861 	unsigned k;
862 
863 	if (iter_is_ubuf(i))
864 		return 0;
865 
866 	if (WARN_ON(!iter_is_iovec(i)))
867 		return ~0U;
868 
869 	for (k = 0; k < i->nr_segs; k++) {
870 		const struct iovec *iov = iter_iov(i) + k;
871 		if (iov->iov_len) {
872 			unsigned long base = (unsigned long)iov->iov_base;
873 			if (v) // if not the first one
874 				res |= base | v; // this start | previous end
875 			v = base + iov->iov_len;
876 			if (size <= iov->iov_len)
877 				break;
878 			size -= iov->iov_len;
879 		}
880 	}
881 	return res;
882 }
883 EXPORT_SYMBOL(iov_iter_gap_alignment);
884 
885 static int want_pages_array(struct page ***res, size_t size,
886 			    size_t start, unsigned int maxpages)
887 {
888 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
889 
890 	if (count > maxpages)
891 		count = maxpages;
892 	WARN_ON(!count);	// caller should've prevented that
893 	if (!*res) {
894 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
895 		if (!*res)
896 			return 0;
897 	}
898 	return count;
899 }
900 
901 static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
902 				     struct page ***ppages, size_t maxsize,
903 				     unsigned maxpages, size_t *_start_offset)
904 {
905 	const struct folio_queue *folioq = iter->folioq;
906 	struct page **pages;
907 	unsigned int slot = iter->folioq_slot;
908 	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
909 
910 	if (slot >= folioq_nr_slots(folioq)) {
911 		folioq = folioq->next;
912 		slot = 0;
913 		if (WARN_ON(iov_offset != 0))
914 			return -EIO;
915 	}
916 
917 	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
918 	if (!maxpages)
919 		return -ENOMEM;
920 	*_start_offset = iov_offset & ~PAGE_MASK;
921 	pages = *ppages;
922 
923 	for (;;) {
924 		struct folio *folio = folioq_folio(folioq, slot);
925 		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
926 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
927 
928 		if (offset < fsize) {
929 			part = umin(part, umin(maxsize - extracted, fsize - offset));
930 			count -= part;
931 			iov_offset += part;
932 			extracted += part;
933 
934 			*pages = folio_page(folio, offset / PAGE_SIZE);
935 			get_page(*pages);
936 			pages++;
937 			maxpages--;
938 		}
939 
940 		if (maxpages == 0 || extracted >= maxsize)
941 			break;
942 
943 		if (iov_offset >= fsize) {
944 			iov_offset = 0;
945 			slot++;
946 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
947 				folioq = folioq->next;
948 				slot = 0;
949 			}
950 		}
951 	}
952 
953 	iter->count = count;
954 	iter->iov_offset = iov_offset;
955 	iter->folioq = folioq;
956 	iter->folioq_slot = slot;
957 	return extracted;
958 }
959 
960 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
961 					  pgoff_t index, unsigned int nr_pages)
962 {
963 	XA_STATE(xas, xa, index);
964 	struct folio *folio;
965 	unsigned int ret = 0;
966 
967 	rcu_read_lock();
968 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
969 		if (xas_retry(&xas, folio))
970 			continue;
971 
972 		/* Has the folio moved or been split? */
973 		if (unlikely(folio != xas_reload(&xas))) {
974 			xas_reset(&xas);
975 			continue;
976 		}
977 
978 		pages[ret] = folio_file_page(folio, xas.xa_index);
979 		folio_get(folio);
980 		if (++ret == nr_pages)
981 			break;
982 	}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 
987 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
988 				     struct page ***pages, size_t maxsize,
989 				     unsigned maxpages, size_t *_start_offset)
990 {
991 	unsigned nr, offset, count;
992 	pgoff_t index;
993 	loff_t pos;
994 
995 	pos = i->xarray_start + i->iov_offset;
996 	index = pos >> PAGE_SHIFT;
997 	offset = pos & ~PAGE_MASK;
998 	*_start_offset = offset;
999 
1000 	count = want_pages_array(pages, maxsize, offset, maxpages);
1001 	if (!count)
1002 		return -ENOMEM;
1003 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1004 	if (nr == 0)
1005 		return 0;
1006 
1007 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1008 	i->iov_offset += maxsize;
1009 	i->count -= maxsize;
1010 	return maxsize;
1011 }
1012 
1013 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1014 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1015 {
1016 	size_t skip;
1017 	long k;
1018 
1019 	if (iter_is_ubuf(i))
1020 		return (unsigned long)i->ubuf + i->iov_offset;
1021 
1022 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1023 		const struct iovec *iov = iter_iov(i) + k;
1024 		size_t len = iov->iov_len - skip;
1025 
1026 		if (unlikely(!len))
1027 			continue;
1028 		if (*size > len)
1029 			*size = len;
1030 		return (unsigned long)iov->iov_base + skip;
1031 	}
1032 	BUG(); // if it had been empty, we wouldn't get called
1033 }
1034 
1035 /* must be done on non-empty ITER_BVEC one */
1036 static struct page *first_bvec_segment(const struct iov_iter *i,
1037 				       size_t *size, size_t *start)
1038 {
1039 	struct page *page;
1040 	size_t skip = i->iov_offset, len;
1041 
1042 	len = i->bvec->bv_len - skip;
1043 	if (*size > len)
1044 		*size = len;
1045 	skip += i->bvec->bv_offset;
1046 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1047 	*start = skip % PAGE_SIZE;
1048 	return page;
1049 }
1050 
1051 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1052 		   struct page ***pages, size_t maxsize,
1053 		   unsigned int maxpages, size_t *start)
1054 {
1055 	unsigned int n, gup_flags = 0;
1056 
1057 	if (maxsize > i->count)
1058 		maxsize = i->count;
1059 	if (!maxsize)
1060 		return 0;
1061 	if (maxsize > MAX_RW_COUNT)
1062 		maxsize = MAX_RW_COUNT;
1063 
1064 	if (likely(user_backed_iter(i))) {
1065 		unsigned long addr;
1066 		int res;
1067 
1068 		if (iov_iter_rw(i) != WRITE)
1069 			gup_flags |= FOLL_WRITE;
1070 		if (i->nofault)
1071 			gup_flags |= FOLL_NOFAULT;
1072 
1073 		addr = first_iovec_segment(i, &maxsize);
1074 		*start = addr % PAGE_SIZE;
1075 		addr &= PAGE_MASK;
1076 		n = want_pages_array(pages, maxsize, *start, maxpages);
1077 		if (!n)
1078 			return -ENOMEM;
1079 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1080 		if (unlikely(res <= 0))
1081 			return res;
1082 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1083 		iov_iter_advance(i, maxsize);
1084 		return maxsize;
1085 	}
1086 	if (iov_iter_is_bvec(i)) {
1087 		struct page **p;
1088 		struct page *page;
1089 
1090 		page = first_bvec_segment(i, &maxsize, start);
1091 		n = want_pages_array(pages, maxsize, *start, maxpages);
1092 		if (!n)
1093 			return -ENOMEM;
1094 		p = *pages;
1095 		for (int k = 0; k < n; k++) {
1096 			struct folio *folio = page_folio(page + k);
1097 			p[k] = page + k;
1098 			if (!folio_test_slab(folio))
1099 				folio_get(folio);
1100 		}
1101 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1102 		i->count -= maxsize;
1103 		i->iov_offset += maxsize;
1104 		if (i->iov_offset == i->bvec->bv_len) {
1105 			i->iov_offset = 0;
1106 			i->bvec++;
1107 			i->nr_segs--;
1108 		}
1109 		return maxsize;
1110 	}
1111 	if (iov_iter_is_folioq(i))
1112 		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
1113 	if (iov_iter_is_xarray(i))
1114 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1115 	return -EFAULT;
1116 }
1117 
1118 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1119 		size_t maxsize, unsigned maxpages, size_t *start)
1120 {
1121 	if (!maxpages)
1122 		return 0;
1123 	BUG_ON(!pages);
1124 
1125 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1126 }
1127 EXPORT_SYMBOL(iov_iter_get_pages2);
1128 
1129 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1130 		struct page ***pages, size_t maxsize, size_t *start)
1131 {
1132 	ssize_t len;
1133 
1134 	*pages = NULL;
1135 
1136 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1137 	if (len <= 0) {
1138 		kvfree(*pages);
1139 		*pages = NULL;
1140 	}
1141 	return len;
1142 }
1143 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1144 
1145 static int iov_npages(const struct iov_iter *i, int maxpages)
1146 {
1147 	size_t skip = i->iov_offset, size = i->count;
1148 	const struct iovec *p;
1149 	int npages = 0;
1150 
1151 	for (p = iter_iov(i); size; skip = 0, p++) {
1152 		unsigned offs = offset_in_page(p->iov_base + skip);
1153 		size_t len = min(p->iov_len - skip, size);
1154 
1155 		if (len) {
1156 			size -= len;
1157 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1158 			if (unlikely(npages > maxpages))
1159 				return maxpages;
1160 		}
1161 	}
1162 	return npages;
1163 }
1164 
1165 static int bvec_npages(const struct iov_iter *i, int maxpages)
1166 {
1167 	size_t skip = i->iov_offset, size = i->count;
1168 	const struct bio_vec *p;
1169 	int npages = 0;
1170 
1171 	for (p = i->bvec; size; skip = 0, p++) {
1172 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1173 		size_t len = min(p->bv_len - skip, size);
1174 
1175 		size -= len;
1176 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1177 		if (unlikely(npages > maxpages))
1178 			return maxpages;
1179 	}
1180 	return npages;
1181 }
1182 
1183 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1184 {
1185 	if (unlikely(!i->count))
1186 		return 0;
1187 	if (likely(iter_is_ubuf(i))) {
1188 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1189 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1190 		return min(npages, maxpages);
1191 	}
1192 	/* iovec and kvec have identical layouts */
1193 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1194 		return iov_npages(i, maxpages);
1195 	if (iov_iter_is_bvec(i))
1196 		return bvec_npages(i, maxpages);
1197 	if (iov_iter_is_folioq(i)) {
1198 		unsigned offset = i->iov_offset % PAGE_SIZE;
1199 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1200 		return min(npages, maxpages);
1201 	}
1202 	if (iov_iter_is_xarray(i)) {
1203 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1204 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1205 		return min(npages, maxpages);
1206 	}
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL(iov_iter_npages);
1210 
1211 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1212 {
1213 	*new = *old;
1214 	if (iov_iter_is_bvec(new))
1215 		return new->bvec = kmemdup(new->bvec,
1216 				    new->nr_segs * sizeof(struct bio_vec),
1217 				    flags);
1218 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1219 		/* iovec and kvec have identical layout */
1220 		return new->__iov = kmemdup(new->__iov,
1221 				   new->nr_segs * sizeof(struct iovec),
1222 				   flags);
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dup_iter);
1226 
1227 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1228 		const struct iovec __user *uvec, u32 nr_segs)
1229 {
1230 	const struct compat_iovec __user *uiov =
1231 		(const struct compat_iovec __user *)uvec;
1232 	int ret = -EFAULT;
1233 	u32 i;
1234 
1235 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1236 		return -EFAULT;
1237 
1238 	for (i = 0; i < nr_segs; i++) {
1239 		compat_uptr_t buf;
1240 		compat_ssize_t len;
1241 
1242 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1243 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1244 
1245 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1246 		if (len < 0) {
1247 			ret = -EINVAL;
1248 			goto uaccess_end;
1249 		}
1250 		iov[i].iov_base = compat_ptr(buf);
1251 		iov[i].iov_len = len;
1252 	}
1253 
1254 	ret = 0;
1255 uaccess_end:
1256 	user_access_end();
1257 	return ret;
1258 }
1259 
1260 static __noclone int copy_iovec_from_user(struct iovec *iov,
1261 		const struct iovec __user *uiov, unsigned long nr_segs)
1262 {
1263 	int ret = -EFAULT;
1264 
1265 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1266 		return -EFAULT;
1267 
1268 	do {
1269 		void __user *buf;
1270 		ssize_t len;
1271 
1272 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1273 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1274 
1275 		/* check for size_t not fitting in ssize_t .. */
1276 		if (unlikely(len < 0)) {
1277 			ret = -EINVAL;
1278 			goto uaccess_end;
1279 		}
1280 		iov->iov_base = buf;
1281 		iov->iov_len = len;
1282 
1283 		uiov++; iov++;
1284 	} while (--nr_segs);
1285 
1286 	ret = 0;
1287 uaccess_end:
1288 	user_access_end();
1289 	return ret;
1290 }
1291 
1292 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1293 		unsigned long nr_segs, unsigned long fast_segs,
1294 		struct iovec *fast_iov, bool compat)
1295 {
1296 	struct iovec *iov = fast_iov;
1297 	int ret;
1298 
1299 	/*
1300 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1301 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1302 	 * traditionally returned zero for zero segments, so...
1303 	 */
1304 	if (nr_segs == 0)
1305 		return iov;
1306 	if (nr_segs > UIO_MAXIOV)
1307 		return ERR_PTR(-EINVAL);
1308 	if (nr_segs > fast_segs) {
1309 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1310 		if (!iov)
1311 			return ERR_PTR(-ENOMEM);
1312 	}
1313 
1314 	if (unlikely(compat))
1315 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1316 	else
1317 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1318 	if (ret) {
1319 		if (iov != fast_iov)
1320 			kfree(iov);
1321 		return ERR_PTR(ret);
1322 	}
1323 
1324 	return iov;
1325 }
1326 
1327 /*
1328  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1329  */
1330 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1331 				   struct iovec **iovp, struct iov_iter *i,
1332 				   bool compat)
1333 {
1334 	struct iovec *iov = *iovp;
1335 	ssize_t ret;
1336 
1337 	*iovp = NULL;
1338 
1339 	if (compat)
1340 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1341 	else
1342 		ret = copy_iovec_from_user(iov, uvec, 1);
1343 	if (unlikely(ret))
1344 		return ret;
1345 
1346 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1347 	if (unlikely(ret))
1348 		return ret;
1349 	return i->count;
1350 }
1351 
1352 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1353 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1354 		 struct iov_iter *i, bool compat)
1355 {
1356 	ssize_t total_len = 0;
1357 	unsigned long seg;
1358 	struct iovec *iov;
1359 
1360 	if (nr_segs == 1)
1361 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1362 
1363 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1364 	if (IS_ERR(iov)) {
1365 		*iovp = NULL;
1366 		return PTR_ERR(iov);
1367 	}
1368 
1369 	/*
1370 	 * According to the Single Unix Specification we should return EINVAL if
1371 	 * an element length is < 0 when cast to ssize_t or if the total length
1372 	 * would overflow the ssize_t return value of the system call.
1373 	 *
1374 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1375 	 * overflow case.
1376 	 */
1377 	for (seg = 0; seg < nr_segs; seg++) {
1378 		ssize_t len = (ssize_t)iov[seg].iov_len;
1379 
1380 		if (!access_ok(iov[seg].iov_base, len)) {
1381 			if (iov != *iovp)
1382 				kfree(iov);
1383 			*iovp = NULL;
1384 			return -EFAULT;
1385 		}
1386 
1387 		if (len > MAX_RW_COUNT - total_len) {
1388 			len = MAX_RW_COUNT - total_len;
1389 			iov[seg].iov_len = len;
1390 		}
1391 		total_len += len;
1392 	}
1393 
1394 	iov_iter_init(i, type, iov, nr_segs, total_len);
1395 	if (iov == *iovp)
1396 		*iovp = NULL;
1397 	else
1398 		*iovp = iov;
1399 	return total_len;
1400 }
1401 
1402 /**
1403  * import_iovec() - Copy an array of &struct iovec from userspace
1404  *     into the kernel, check that it is valid, and initialize a new
1405  *     &struct iov_iter iterator to access it.
1406  *
1407  * @type: One of %READ or %WRITE.
1408  * @uvec: Pointer to the userspace array.
1409  * @nr_segs: Number of elements in userspace array.
1410  * @fast_segs: Number of elements in @iov.
1411  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1412  *     on-stack) kernel array.
1413  * @i: Pointer to iterator that will be initialized on success.
1414  *
1415  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1416  * then this function places %NULL in *@iov on return. Otherwise, a new
1417  * array will be allocated and the result placed in *@iov. This means that
1418  * the caller may call kfree() on *@iov regardless of whether the small
1419  * on-stack array was used or not (and regardless of whether this function
1420  * returns an error or not).
1421  *
1422  * Return: Negative error code on error, bytes imported on success
1423  */
1424 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1425 		 unsigned nr_segs, unsigned fast_segs,
1426 		 struct iovec **iovp, struct iov_iter *i)
1427 {
1428 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1429 			      in_compat_syscall());
1430 }
1431 EXPORT_SYMBOL(import_iovec);
1432 
1433 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1434 {
1435 	if (len > MAX_RW_COUNT)
1436 		len = MAX_RW_COUNT;
1437 	if (unlikely(!access_ok(buf, len)))
1438 		return -EFAULT;
1439 
1440 	iov_iter_ubuf(i, rw, buf, len);
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(import_ubuf);
1444 
1445 /**
1446  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1447  *     iov_iter_save_state() was called.
1448  *
1449  * @i: &struct iov_iter to restore
1450  * @state: state to restore from
1451  *
1452  * Used after iov_iter_save_state() to bring restore @i, if operations may
1453  * have advanced it.
1454  *
1455  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1456  */
1457 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1458 {
1459 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1460 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1461 		return;
1462 	i->iov_offset = state->iov_offset;
1463 	i->count = state->count;
1464 	if (iter_is_ubuf(i))
1465 		return;
1466 	/*
1467 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1468 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1469 	 * need to track both of these, just one is enough and we can deduct
1470 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1471 	 * size, so we can just increment the iov pointer as they are unionzed.
1472 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1473 	 * not. Be safe and handle it separately.
1474 	 */
1475 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1476 	if (iov_iter_is_bvec(i))
1477 		i->bvec -= state->nr_segs - i->nr_segs;
1478 	else
1479 		i->__iov -= state->nr_segs - i->nr_segs;
1480 	i->nr_segs = state->nr_segs;
1481 }
1482 
1483 /*
1484  * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does
1485  * not get references on the pages, nor does it get a pin on them.
1486  */
1487 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
1488 					     struct page ***pages, size_t maxsize,
1489 					     unsigned int maxpages,
1490 					     iov_iter_extraction_t extraction_flags,
1491 					     size_t *offset0)
1492 {
1493 	const struct folio_queue *folioq = i->folioq;
1494 	struct page **p;
1495 	unsigned int nr = 0;
1496 	size_t extracted = 0, offset, slot = i->folioq_slot;
1497 
1498 	if (slot >= folioq_nr_slots(folioq)) {
1499 		folioq = folioq->next;
1500 		slot = 0;
1501 		if (WARN_ON(i->iov_offset != 0))
1502 			return -EIO;
1503 	}
1504 
1505 	offset = i->iov_offset & ~PAGE_MASK;
1506 	*offset0 = offset;
1507 
1508 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1509 	if (!maxpages)
1510 		return -ENOMEM;
1511 	p = *pages;
1512 
1513 	for (;;) {
1514 		struct folio *folio = folioq_folio(folioq, slot);
1515 		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
1516 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1517 
1518 		if (offset < fsize) {
1519 			part = umin(part, umin(maxsize - extracted, fsize - offset));
1520 			i->count -= part;
1521 			i->iov_offset += part;
1522 			extracted += part;
1523 
1524 			p[nr++] = folio_page(folio, offset / PAGE_SIZE);
1525 		}
1526 
1527 		if (nr >= maxpages || extracted >= maxsize)
1528 			break;
1529 
1530 		if (i->iov_offset >= fsize) {
1531 			i->iov_offset = 0;
1532 			slot++;
1533 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1534 				folioq = folioq->next;
1535 				slot = 0;
1536 			}
1537 		}
1538 	}
1539 
1540 	i->folioq = folioq;
1541 	i->folioq_slot = slot;
1542 	return extracted;
1543 }
1544 
1545 /*
1546  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1547  * get references on the pages, nor does it get a pin on them.
1548  */
1549 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1550 					     struct page ***pages, size_t maxsize,
1551 					     unsigned int maxpages,
1552 					     iov_iter_extraction_t extraction_flags,
1553 					     size_t *offset0)
1554 {
1555 	struct page **p;
1556 	struct folio *folio;
1557 	unsigned int nr = 0, offset;
1558 	loff_t pos = i->xarray_start + i->iov_offset;
1559 	XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT);
1560 
1561 	offset = pos & ~PAGE_MASK;
1562 	*offset0 = offset;
1563 
1564 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1565 	if (!maxpages)
1566 		return -ENOMEM;
1567 	p = *pages;
1568 
1569 	rcu_read_lock();
1570 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
1571 		if (xas_retry(&xas, folio))
1572 			continue;
1573 
1574 		/* Has the folio moved or been split? */
1575 		if (unlikely(folio != xas_reload(&xas))) {
1576 			xas_reset(&xas);
1577 			continue;
1578 		}
1579 
1580 		p[nr++] = folio_file_page(folio, xas.xa_index);
1581 		if (nr == maxpages)
1582 			break;
1583 	}
1584 	rcu_read_unlock();
1585 
1586 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1587 	iov_iter_advance(i, maxsize);
1588 	return maxsize;
1589 }
1590 
1591 /*
1592  * Extract a list of virtually contiguous pages from an ITER_BVEC iterator.
1593  * This does not get references on the pages, nor does it get a pin on them.
1594  */
1595 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1596 					   struct page ***pages, size_t maxsize,
1597 					   unsigned int maxpages,
1598 					   iov_iter_extraction_t extraction_flags,
1599 					   size_t *offset0)
1600 {
1601 	size_t skip = i->iov_offset, size = 0;
1602 	struct bvec_iter bi;
1603 	int k = 0;
1604 
1605 	if (i->nr_segs == 0)
1606 		return 0;
1607 
1608 	if (i->iov_offset == i->bvec->bv_len) {
1609 		i->iov_offset = 0;
1610 		i->nr_segs--;
1611 		i->bvec++;
1612 		skip = 0;
1613 	}
1614 	bi.bi_idx = 0;
1615 	bi.bi_size = maxsize;
1616 	bi.bi_bvec_done = skip;
1617 
1618 	maxpages = want_pages_array(pages, maxsize, skip, maxpages);
1619 
1620 	while (bi.bi_size && bi.bi_idx < i->nr_segs) {
1621 		struct bio_vec bv = bvec_iter_bvec(i->bvec, bi);
1622 
1623 		/*
1624 		 * The iov_iter_extract_pages interface only allows an offset
1625 		 * into the first page.  Break out of the loop if we see an
1626 		 * offset into subsequent pages, the caller will have to call
1627 		 * iov_iter_extract_pages again for the reminder.
1628 		 */
1629 		if (k) {
1630 			if (bv.bv_offset)
1631 				break;
1632 		} else {
1633 			*offset0 = bv.bv_offset;
1634 		}
1635 
1636 		(*pages)[k++] = bv.bv_page;
1637 		size += bv.bv_len;
1638 
1639 		if (k >= maxpages)
1640 			break;
1641 
1642 		/*
1643 		 * We are done when the end of the bvec doesn't align to a page
1644 		 * boundary as that would create a hole in the returned space.
1645 		 * The caller will handle this with another call to
1646 		 * iov_iter_extract_pages.
1647 		 */
1648 		if (bv.bv_offset + bv.bv_len != PAGE_SIZE)
1649 			break;
1650 
1651 		bvec_iter_advance_single(i->bvec, &bi, bv.bv_len);
1652 	}
1653 
1654 	iov_iter_advance(i, size);
1655 	return size;
1656 }
1657 
1658 /*
1659  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1660  * This does not get references on the pages, nor does it get a pin on them.
1661  */
1662 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1663 					   struct page ***pages, size_t maxsize,
1664 					   unsigned int maxpages,
1665 					   iov_iter_extraction_t extraction_flags,
1666 					   size_t *offset0)
1667 {
1668 	struct page **p, *page;
1669 	const void *kaddr;
1670 	size_t skip = i->iov_offset, offset, len, size;
1671 	int k;
1672 
1673 	for (;;) {
1674 		if (i->nr_segs == 0)
1675 			return 0;
1676 		size = min(maxsize, i->kvec->iov_len - skip);
1677 		if (size)
1678 			break;
1679 		i->iov_offset = 0;
1680 		i->nr_segs--;
1681 		i->kvec++;
1682 		skip = 0;
1683 	}
1684 
1685 	kaddr = i->kvec->iov_base + skip;
1686 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1687 	*offset0 = offset;
1688 
1689 	maxpages = want_pages_array(pages, size, offset, maxpages);
1690 	if (!maxpages)
1691 		return -ENOMEM;
1692 	p = *pages;
1693 
1694 	kaddr -= offset;
1695 	len = offset + size;
1696 	for (k = 0; k < maxpages; k++) {
1697 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1698 
1699 		if (is_vmalloc_or_module_addr(kaddr))
1700 			page = vmalloc_to_page(kaddr);
1701 		else
1702 			page = virt_to_page(kaddr);
1703 
1704 		p[k] = page;
1705 		len -= seg;
1706 		kaddr += PAGE_SIZE;
1707 	}
1708 
1709 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1710 	iov_iter_advance(i, size);
1711 	return size;
1712 }
1713 
1714 /*
1715  * Extract a list of contiguous pages from a user iterator and get a pin on
1716  * each of them.  This should only be used if the iterator is user-backed
1717  * (IOBUF/UBUF).
1718  *
1719  * It does not get refs on the pages, but the pages must be unpinned by the
1720  * caller once the transfer is complete.
1721  *
1722  * This is safe to be used where background IO/DMA *is* going to be modifying
1723  * the buffer; using a pin rather than a ref makes forces fork() to give the
1724  * child a copy of the page.
1725  */
1726 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1727 					   struct page ***pages,
1728 					   size_t maxsize,
1729 					   unsigned int maxpages,
1730 					   iov_iter_extraction_t extraction_flags,
1731 					   size_t *offset0)
1732 {
1733 	unsigned long addr;
1734 	unsigned int gup_flags = 0;
1735 	size_t offset;
1736 	int res;
1737 
1738 	if (i->data_source == ITER_DEST)
1739 		gup_flags |= FOLL_WRITE;
1740 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1741 		gup_flags |= FOLL_PCI_P2PDMA;
1742 	if (i->nofault)
1743 		gup_flags |= FOLL_NOFAULT;
1744 
1745 	addr = first_iovec_segment(i, &maxsize);
1746 	*offset0 = offset = addr % PAGE_SIZE;
1747 	addr &= PAGE_MASK;
1748 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1749 	if (!maxpages)
1750 		return -ENOMEM;
1751 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1752 	if (unlikely(res <= 0))
1753 		return res;
1754 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1755 	iov_iter_advance(i, maxsize);
1756 	return maxsize;
1757 }
1758 
1759 /**
1760  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1761  * @i: The iterator to extract from
1762  * @pages: Where to return the list of pages
1763  * @maxsize: The maximum amount of iterator to extract
1764  * @maxpages: The maximum size of the list of pages
1765  * @extraction_flags: Flags to qualify request
1766  * @offset0: Where to return the starting offset into (*@pages)[0]
1767  *
1768  * Extract a list of contiguous pages from the current point of the iterator,
1769  * advancing the iterator.  The maximum number of pages and the maximum amount
1770  * of page contents can be set.
1771  *
1772  * If *@pages is NULL, a page list will be allocated to the required size and
1773  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1774  * that the caller allocated a page list at least @maxpages in size and this
1775  * will be filled in.
1776  *
1777  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1778  * be allowed on the pages extracted.
1779  *
1780  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1781  * should be performed.
1782  *
1783  * Extra refs or pins on the pages may be obtained as follows:
1784  *
1785  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1786  *      added to the pages, but refs will not be taken.
1787  *      iov_iter_extract_will_pin() will return true.
1788  *
1789  *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1790  *      pages are merely listed; no extra refs or pins are obtained.
1791  *      iov_iter_extract_will_pin() will return 0.
1792  *
1793  * Note also:
1794  *
1795  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1796  *
1797  * On success, the function sets *@pages to the new pagelist, if allocated, and
1798  * sets *offset0 to the offset into the first page.
1799  *
1800  * It may also return -ENOMEM and -EFAULT.
1801  */
1802 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1803 			       struct page ***pages,
1804 			       size_t maxsize,
1805 			       unsigned int maxpages,
1806 			       iov_iter_extraction_t extraction_flags,
1807 			       size_t *offset0)
1808 {
1809 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1810 	if (!maxsize)
1811 		return 0;
1812 
1813 	if (likely(user_backed_iter(i)))
1814 		return iov_iter_extract_user_pages(i, pages, maxsize,
1815 						   maxpages, extraction_flags,
1816 						   offset0);
1817 	if (iov_iter_is_kvec(i))
1818 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1819 						   maxpages, extraction_flags,
1820 						   offset0);
1821 	if (iov_iter_is_bvec(i))
1822 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1823 						   maxpages, extraction_flags,
1824 						   offset0);
1825 	if (iov_iter_is_folioq(i))
1826 		return iov_iter_extract_folioq_pages(i, pages, maxsize,
1827 						     maxpages, extraction_flags,
1828 						     offset0);
1829 	if (iov_iter_is_xarray(i))
1830 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1831 						     maxpages, extraction_flags,
1832 						     offset0);
1833 	return -EFAULT;
1834 }
1835 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1836