1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs_platform.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_refcount_item.h" 18 #include "xfs_log.h" 19 #include "xfs_refcount.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 #include "xfs_ag.h" 24 #include "xfs_btree.h" 25 #include "xfs_trace.h" 26 #include "xfs_rtgroup.h" 27 28 struct kmem_cache *xfs_cui_cache; 29 struct kmem_cache *xfs_cud_cache; 30 31 static const struct xfs_item_ops xfs_cui_item_ops; 32 33 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 34 { 35 return container_of(lip, struct xfs_cui_log_item, cui_item); 36 } 37 38 STATIC void 39 xfs_cui_item_free( 40 struct xfs_cui_log_item *cuip) 41 { 42 kvfree(cuip->cui_item.li_lv_shadow); 43 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 44 kfree(cuip); 45 else 46 kmem_cache_free(xfs_cui_cache, cuip); 47 } 48 49 /* 50 * Freeing the CUI requires that we remove it from the AIL if it has already 51 * been placed there. However, the CUI may not yet have been placed in the AIL 52 * when called by xfs_cui_release() from CUD processing due to the ordering of 53 * committed vs unpin operations in bulk insert operations. Hence the reference 54 * count to ensure only the last caller frees the CUI. 55 */ 56 STATIC void 57 xfs_cui_release( 58 struct xfs_cui_log_item *cuip) 59 { 60 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 61 if (!atomic_dec_and_test(&cuip->cui_refcount)) 62 return; 63 64 xfs_trans_ail_delete(&cuip->cui_item, 0); 65 xfs_cui_item_free(cuip); 66 } 67 68 69 STATIC void 70 xfs_cui_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 79 } 80 81 unsigned int xfs_cui_log_space(unsigned int nr) 82 { 83 return xlog_item_space(1, xfs_cui_log_format_sizeof(nr)); 84 } 85 86 /* 87 * This is called to fill in the vector of log iovecs for the 88 * given cui log item. We use only 1 iovec, and we point that 89 * at the cui_log_format structure embedded in the cui item. 90 * It is at this point that we assert that all of the extent 91 * slots in the cui item have been filled. 92 */ 93 STATIC void 94 xfs_cui_item_format( 95 struct xfs_log_item *lip, 96 struct xlog_format_buf *lfb) 97 { 98 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 99 100 ASSERT(atomic_read(&cuip->cui_next_extent) == 101 cuip->cui_format.cui_nextents); 102 ASSERT(lip->li_type == XFS_LI_CUI || lip->li_type == XFS_LI_CUI_RT); 103 104 cuip->cui_format.cui_type = lip->li_type; 105 cuip->cui_format.cui_size = 1; 106 107 xlog_format_copy(lfb, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 108 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 109 } 110 111 /* 112 * The unpin operation is the last place an CUI is manipulated in the log. It is 113 * either inserted in the AIL or aborted in the event of a log I/O error. In 114 * either case, the CUI transaction has been successfully committed to make it 115 * this far. Therefore, we expect whoever committed the CUI to either construct 116 * and commit the CUD or drop the CUD's reference in the event of error. Simply 117 * drop the log's CUI reference now that the log is done with it. 118 */ 119 STATIC void 120 xfs_cui_item_unpin( 121 struct xfs_log_item *lip, 122 int remove) 123 { 124 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 125 126 xfs_cui_release(cuip); 127 } 128 129 /* 130 * The CUI has been either committed or aborted if the transaction has been 131 * cancelled. If the transaction was cancelled, an CUD isn't going to be 132 * constructed and thus we free the CUI here directly. 133 */ 134 STATIC void 135 xfs_cui_item_release( 136 struct xfs_log_item *lip) 137 { 138 xfs_cui_release(CUI_ITEM(lip)); 139 } 140 141 /* 142 * Allocate and initialize an cui item with the given number of extents. 143 */ 144 STATIC struct xfs_cui_log_item * 145 xfs_cui_init( 146 struct xfs_mount *mp, 147 unsigned short item_type, 148 uint nextents) 149 { 150 struct xfs_cui_log_item *cuip; 151 152 ASSERT(nextents > 0); 153 ASSERT(item_type == XFS_LI_CUI || item_type == XFS_LI_CUI_RT); 154 155 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 156 cuip = kzalloc(xfs_cui_log_item_sizeof(nextents), 157 GFP_KERNEL | __GFP_NOFAIL); 158 else 159 cuip = kmem_cache_zalloc(xfs_cui_cache, 160 GFP_KERNEL | __GFP_NOFAIL); 161 162 xfs_log_item_init(mp, &cuip->cui_item, item_type, &xfs_cui_item_ops); 163 cuip->cui_format.cui_nextents = nextents; 164 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 165 atomic_set(&cuip->cui_next_extent, 0); 166 atomic_set(&cuip->cui_refcount, 2); 167 168 return cuip; 169 } 170 171 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 172 { 173 return container_of(lip, struct xfs_cud_log_item, cud_item); 174 } 175 176 STATIC void 177 xfs_cud_item_size( 178 struct xfs_log_item *lip, 179 int *nvecs, 180 int *nbytes) 181 { 182 *nvecs += 1; 183 *nbytes += sizeof(struct xfs_cud_log_format); 184 } 185 186 unsigned int xfs_cud_log_space(void) 187 { 188 return xlog_item_space(1, sizeof(struct xfs_cud_log_format)); 189 } 190 191 /* 192 * This is called to fill in the vector of log iovecs for the 193 * given cud log item. We use only 1 iovec, and we point that 194 * at the cud_log_format structure embedded in the cud item. 195 * It is at this point that we assert that all of the extent 196 * slots in the cud item have been filled. 197 */ 198 STATIC void 199 xfs_cud_item_format( 200 struct xfs_log_item *lip, 201 struct xlog_format_buf *lfb) 202 { 203 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 204 205 ASSERT(lip->li_type == XFS_LI_CUD || lip->li_type == XFS_LI_CUD_RT); 206 207 cudp->cud_format.cud_type = lip->li_type; 208 cudp->cud_format.cud_size = 1; 209 210 xlog_format_copy(lfb, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 211 sizeof(struct xfs_cud_log_format)); 212 } 213 214 /* 215 * The CUD is either committed or aborted if the transaction is cancelled. If 216 * the transaction is cancelled, drop our reference to the CUI and free the 217 * CUD. 218 */ 219 STATIC void 220 xfs_cud_item_release( 221 struct xfs_log_item *lip) 222 { 223 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 224 225 xfs_cui_release(cudp->cud_cuip); 226 kvfree(cudp->cud_item.li_lv_shadow); 227 kmem_cache_free(xfs_cud_cache, cudp); 228 } 229 230 static struct xfs_log_item * 231 xfs_cud_item_intent( 232 struct xfs_log_item *lip) 233 { 234 return &CUD_ITEM(lip)->cud_cuip->cui_item; 235 } 236 237 static const struct xfs_item_ops xfs_cud_item_ops = { 238 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 239 XFS_ITEM_INTENT_DONE, 240 .iop_size = xfs_cud_item_size, 241 .iop_format = xfs_cud_item_format, 242 .iop_release = xfs_cud_item_release, 243 .iop_intent = xfs_cud_item_intent, 244 }; 245 246 static inline struct xfs_refcount_intent *ci_entry(const struct list_head *e) 247 { 248 return list_entry(e, struct xfs_refcount_intent, ri_list); 249 } 250 251 static inline bool 252 xfs_cui_item_isrt(const struct xfs_log_item *lip) 253 { 254 ASSERT(lip->li_type == XFS_LI_CUI || lip->li_type == XFS_LI_CUI_RT); 255 256 return lip->li_type == XFS_LI_CUI_RT; 257 } 258 259 /* Sort refcount intents by AG. */ 260 static int 261 xfs_refcount_update_diff_items( 262 void *priv, 263 const struct list_head *a, 264 const struct list_head *b) 265 { 266 struct xfs_refcount_intent *ra = ci_entry(a); 267 struct xfs_refcount_intent *rb = ci_entry(b); 268 269 return ra->ri_group->xg_gno - rb->ri_group->xg_gno; 270 } 271 272 /* Log refcount updates in the intent item. */ 273 STATIC void 274 xfs_refcount_update_log_item( 275 struct xfs_trans *tp, 276 struct xfs_cui_log_item *cuip, 277 struct xfs_refcount_intent *ri) 278 { 279 uint next_extent; 280 struct xfs_phys_extent *pmap; 281 282 /* 283 * atomic_inc_return gives us the value after the increment; 284 * we want to use it as an array index so we need to subtract 1 from 285 * it. 286 */ 287 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; 288 ASSERT(next_extent < cuip->cui_format.cui_nextents); 289 pmap = &cuip->cui_format.cui_extents[next_extent]; 290 pmap->pe_startblock = ri->ri_startblock; 291 pmap->pe_len = ri->ri_blockcount; 292 293 pmap->pe_flags = 0; 294 switch (ri->ri_type) { 295 case XFS_REFCOUNT_INCREASE: 296 case XFS_REFCOUNT_DECREASE: 297 case XFS_REFCOUNT_ALLOC_COW: 298 case XFS_REFCOUNT_FREE_COW: 299 pmap->pe_flags |= ri->ri_type; 300 break; 301 default: 302 ASSERT(0); 303 } 304 } 305 306 static struct xfs_log_item * 307 __xfs_refcount_update_create_intent( 308 struct xfs_trans *tp, 309 struct list_head *items, 310 unsigned int count, 311 bool sort, 312 unsigned short item_type) 313 { 314 struct xfs_mount *mp = tp->t_mountp; 315 struct xfs_cui_log_item *cuip; 316 struct xfs_refcount_intent *ri; 317 318 ASSERT(count > 0); 319 320 cuip = xfs_cui_init(mp, item_type, count); 321 if (sort) 322 list_sort(mp, items, xfs_refcount_update_diff_items); 323 list_for_each_entry(ri, items, ri_list) 324 xfs_refcount_update_log_item(tp, cuip, ri); 325 return &cuip->cui_item; 326 } 327 328 static struct xfs_log_item * 329 xfs_refcount_update_create_intent( 330 struct xfs_trans *tp, 331 struct list_head *items, 332 unsigned int count, 333 bool sort) 334 { 335 return __xfs_refcount_update_create_intent(tp, items, count, sort, 336 XFS_LI_CUI); 337 } 338 339 static inline unsigned short 340 xfs_cud_type_from_cui(const struct xfs_cui_log_item *cuip) 341 { 342 return xfs_cui_item_isrt(&cuip->cui_item) ? XFS_LI_CUD_RT : XFS_LI_CUD; 343 } 344 345 /* Get an CUD so we can process all the deferred refcount updates. */ 346 static struct xfs_log_item * 347 xfs_refcount_update_create_done( 348 struct xfs_trans *tp, 349 struct xfs_log_item *intent, 350 unsigned int count) 351 { 352 struct xfs_cui_log_item *cuip = CUI_ITEM(intent); 353 struct xfs_cud_log_item *cudp; 354 355 cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL); 356 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, 357 xfs_cud_type_from_cui(cuip), &xfs_cud_item_ops); 358 cudp->cud_cuip = cuip; 359 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 360 361 return &cudp->cud_item; 362 } 363 364 /* Add this deferred CUI to the transaction. */ 365 void 366 xfs_refcount_defer_add( 367 struct xfs_trans *tp, 368 struct xfs_refcount_intent *ri) 369 { 370 struct xfs_mount *mp = tp->t_mountp; 371 372 /* 373 * Deferred refcount updates for the realtime and data sections must 374 * use separate transactions to finish deferred work because updates to 375 * realtime metadata files can lock AGFs to allocate btree blocks and 376 * we don't want that mixing with the AGF locks taken to finish data 377 * section updates. 378 */ 379 ri->ri_group = xfs_group_intent_get(mp, ri->ri_startblock, 380 ri->ri_realtime ? XG_TYPE_RTG : XG_TYPE_AG); 381 382 trace_xfs_refcount_defer(mp, ri); 383 xfs_defer_add(tp, &ri->ri_list, ri->ri_realtime ? 384 &xfs_rtrefcount_update_defer_type : 385 &xfs_refcount_update_defer_type); 386 } 387 388 /* Cancel a deferred refcount update. */ 389 STATIC void 390 xfs_refcount_update_cancel_item( 391 struct list_head *item) 392 { 393 struct xfs_refcount_intent *ri = ci_entry(item); 394 395 xfs_group_intent_put(ri->ri_group); 396 kmem_cache_free(xfs_refcount_intent_cache, ri); 397 } 398 399 /* Process a deferred refcount update. */ 400 STATIC int 401 xfs_refcount_update_finish_item( 402 struct xfs_trans *tp, 403 struct xfs_log_item *done, 404 struct list_head *item, 405 struct xfs_btree_cur **state) 406 { 407 struct xfs_refcount_intent *ri = ci_entry(item); 408 int error; 409 410 /* Did we run out of reservation? Requeue what we didn't finish. */ 411 error = xfs_refcount_finish_one(tp, ri, state); 412 if (!error && ri->ri_blockcount > 0) { 413 ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE || 414 ri->ri_type == XFS_REFCOUNT_DECREASE); 415 return -EAGAIN; 416 } 417 418 xfs_refcount_update_cancel_item(item); 419 return error; 420 } 421 422 /* Clean up after calling xfs_refcount_finish_one. */ 423 STATIC void 424 xfs_refcount_finish_one_cleanup( 425 struct xfs_trans *tp, 426 struct xfs_btree_cur *rcur, 427 int error) 428 { 429 struct xfs_buf *agbp; 430 431 if (rcur == NULL) 432 return; 433 agbp = rcur->bc_ag.agbp; 434 xfs_btree_del_cursor(rcur, error); 435 if (error && agbp) 436 xfs_trans_brelse(tp, agbp); 437 } 438 439 /* Abort all pending CUIs. */ 440 STATIC void 441 xfs_refcount_update_abort_intent( 442 struct xfs_log_item *intent) 443 { 444 xfs_cui_release(CUI_ITEM(intent)); 445 } 446 447 /* Is this recovered CUI ok? */ 448 static inline bool 449 xfs_cui_validate_phys( 450 struct xfs_mount *mp, 451 bool isrt, 452 struct xfs_phys_extent *pmap) 453 { 454 if (!xfs_has_reflink(mp)) 455 return false; 456 457 if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) 458 return false; 459 460 switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 461 case XFS_REFCOUNT_INCREASE: 462 case XFS_REFCOUNT_DECREASE: 463 case XFS_REFCOUNT_ALLOC_COW: 464 case XFS_REFCOUNT_FREE_COW: 465 break; 466 default: 467 return false; 468 } 469 470 if (isrt) 471 return xfs_verify_rtbext(mp, pmap->pe_startblock, pmap->pe_len); 472 473 return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len); 474 } 475 476 static inline void 477 xfs_cui_recover_work( 478 struct xfs_mount *mp, 479 struct xfs_defer_pending *dfp, 480 bool isrt, 481 struct xfs_phys_extent *pmap) 482 { 483 struct xfs_refcount_intent *ri; 484 485 ri = kmem_cache_alloc(xfs_refcount_intent_cache, 486 GFP_KERNEL | __GFP_NOFAIL); 487 ri->ri_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 488 ri->ri_startblock = pmap->pe_startblock; 489 ri->ri_blockcount = pmap->pe_len; 490 ri->ri_group = xfs_group_intent_get(mp, pmap->pe_startblock, 491 isrt ? XG_TYPE_RTG : XG_TYPE_AG); 492 ri->ri_realtime = isrt; 493 494 xfs_defer_add_item(dfp, &ri->ri_list); 495 } 496 497 /* 498 * Process a refcount update intent item that was recovered from the log. 499 * We need to update the refcountbt. 500 */ 501 STATIC int 502 xfs_refcount_recover_work( 503 struct xfs_defer_pending *dfp, 504 struct list_head *capture_list) 505 { 506 struct xfs_trans_res resv; 507 struct xfs_log_item *lip = dfp->dfp_intent; 508 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 509 struct xfs_trans *tp; 510 struct xfs_mount *mp = lip->li_log->l_mp; 511 bool isrt = xfs_cui_item_isrt(lip); 512 int i; 513 int error = 0; 514 515 /* 516 * First check the validity of the extents described by the 517 * CUI. If any are bad, then assume that all are bad and 518 * just toss the CUI. 519 */ 520 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 521 if (!xfs_cui_validate_phys(mp, isrt, 522 &cuip->cui_format.cui_extents[i])) { 523 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 524 &cuip->cui_format, 525 sizeof(cuip->cui_format)); 526 return -EFSCORRUPTED; 527 } 528 529 xfs_cui_recover_work(mp, dfp, isrt, 530 &cuip->cui_format.cui_extents[i]); 531 } 532 533 /* 534 * Under normal operation, refcount updates are deferred, so we 535 * wouldn't be adding them directly to a transaction. All 536 * refcount updates manage reservation usage internally and 537 * dynamically by deferring work that won't fit in the 538 * transaction. Normally, any work that needs to be deferred 539 * gets attached to the same defer_ops that scheduled the 540 * refcount update. However, we're in log recovery here, so we 541 * use the passed in defer_ops and to finish up any work that 542 * doesn't fit. We need to reserve enough blocks to handle a 543 * full btree split on either end of the refcount range. 544 */ 545 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 546 error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0, 547 XFS_TRANS_RESERVE, &tp); 548 if (error) 549 return error; 550 551 error = xlog_recover_finish_intent(tp, dfp); 552 if (error == -EFSCORRUPTED) 553 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 554 &cuip->cui_format, 555 sizeof(cuip->cui_format)); 556 if (error) 557 goto abort_error; 558 559 return xfs_defer_ops_capture_and_commit(tp, capture_list); 560 561 abort_error: 562 xfs_trans_cancel(tp); 563 return error; 564 } 565 566 /* Relog an intent item to push the log tail forward. */ 567 static struct xfs_log_item * 568 xfs_refcount_relog_intent( 569 struct xfs_trans *tp, 570 struct xfs_log_item *intent, 571 struct xfs_log_item *done_item) 572 { 573 struct xfs_cui_log_item *cuip; 574 struct xfs_phys_extent *pmap; 575 unsigned int count; 576 577 ASSERT(intent->li_type == XFS_LI_CUI || 578 intent->li_type == XFS_LI_CUI_RT); 579 580 count = CUI_ITEM(intent)->cui_format.cui_nextents; 581 pmap = CUI_ITEM(intent)->cui_format.cui_extents; 582 583 cuip = xfs_cui_init(tp->t_mountp, intent->li_type, count); 584 memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap)); 585 atomic_set(&cuip->cui_next_extent, count); 586 587 return &cuip->cui_item; 588 } 589 590 const struct xfs_defer_op_type xfs_refcount_update_defer_type = { 591 .name = "refcount", 592 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 593 .create_intent = xfs_refcount_update_create_intent, 594 .abort_intent = xfs_refcount_update_abort_intent, 595 .create_done = xfs_refcount_update_create_done, 596 .finish_item = xfs_refcount_update_finish_item, 597 .finish_cleanup = xfs_refcount_finish_one_cleanup, 598 .cancel_item = xfs_refcount_update_cancel_item, 599 .recover_work = xfs_refcount_recover_work, 600 .relog_intent = xfs_refcount_relog_intent, 601 }; 602 603 #ifdef CONFIG_XFS_RT 604 static struct xfs_log_item * 605 xfs_rtrefcount_update_create_intent( 606 struct xfs_trans *tp, 607 struct list_head *items, 608 unsigned int count, 609 bool sort) 610 { 611 return __xfs_refcount_update_create_intent(tp, items, count, sort, 612 XFS_LI_CUI_RT); 613 } 614 615 /* Process a deferred realtime refcount update. */ 616 STATIC int 617 xfs_rtrefcount_update_finish_item( 618 struct xfs_trans *tp, 619 struct xfs_log_item *done, 620 struct list_head *item, 621 struct xfs_btree_cur **state) 622 { 623 struct xfs_refcount_intent *ri = ci_entry(item); 624 int error; 625 626 error = xfs_rtrefcount_finish_one(tp, ri, state); 627 628 /* Did we run out of reservation? Requeue what we didn't finish. */ 629 if (!error && ri->ri_blockcount > 0) { 630 ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE || 631 ri->ri_type == XFS_REFCOUNT_DECREASE); 632 return -EAGAIN; 633 } 634 635 xfs_refcount_update_cancel_item(item); 636 return error; 637 } 638 639 /* Clean up after calling xfs_rtrefcount_finish_one. */ 640 STATIC void 641 xfs_rtrefcount_finish_one_cleanup( 642 struct xfs_trans *tp, 643 struct xfs_btree_cur *rcur, 644 int error) 645 { 646 if (rcur) 647 xfs_btree_del_cursor(rcur, error); 648 } 649 650 const struct xfs_defer_op_type xfs_rtrefcount_update_defer_type = { 651 .name = "rtrefcount", 652 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 653 .create_intent = xfs_rtrefcount_update_create_intent, 654 .abort_intent = xfs_refcount_update_abort_intent, 655 .create_done = xfs_refcount_update_create_done, 656 .finish_item = xfs_rtrefcount_update_finish_item, 657 .finish_cleanup = xfs_rtrefcount_finish_one_cleanup, 658 .cancel_item = xfs_refcount_update_cancel_item, 659 .recover_work = xfs_refcount_recover_work, 660 .relog_intent = xfs_refcount_relog_intent, 661 }; 662 #else 663 const struct xfs_defer_op_type xfs_rtrefcount_update_defer_type = { 664 .name = "rtrefcount", 665 }; 666 #endif /* CONFIG_XFS_RT */ 667 668 STATIC bool 669 xfs_cui_item_match( 670 struct xfs_log_item *lip, 671 uint64_t intent_id) 672 { 673 return CUI_ITEM(lip)->cui_format.cui_id == intent_id; 674 } 675 676 static const struct xfs_item_ops xfs_cui_item_ops = { 677 .flags = XFS_ITEM_INTENT, 678 .iop_size = xfs_cui_item_size, 679 .iop_format = xfs_cui_item_format, 680 .iop_unpin = xfs_cui_item_unpin, 681 .iop_release = xfs_cui_item_release, 682 .iop_match = xfs_cui_item_match, 683 }; 684 685 static inline void 686 xfs_cui_copy_format( 687 struct xfs_cui_log_format *dst, 688 const struct xfs_cui_log_format *src) 689 { 690 unsigned int i; 691 692 memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents)); 693 694 for (i = 0; i < src->cui_nextents; i++) 695 memcpy(&dst->cui_extents[i], &src->cui_extents[i], 696 sizeof(struct xfs_phys_extent)); 697 } 698 699 /* 700 * This routine is called to create an in-core extent refcount update 701 * item from the cui format structure which was logged on disk. 702 * It allocates an in-core cui, copies the extents from the format 703 * structure into it, and adds the cui to the AIL with the given 704 * LSN. 705 */ 706 STATIC int 707 xlog_recover_cui_commit_pass2( 708 struct xlog *log, 709 struct list_head *buffer_list, 710 struct xlog_recover_item *item, 711 xfs_lsn_t lsn) 712 { 713 struct xfs_mount *mp = log->l_mp; 714 struct xfs_cui_log_item *cuip; 715 struct xfs_cui_log_format *cui_formatp; 716 size_t len; 717 718 cui_formatp = item->ri_buf[0].iov_base; 719 720 if (item->ri_buf[0].iov_len < xfs_cui_log_format_sizeof(0)) { 721 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 722 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 723 return -EFSCORRUPTED; 724 } 725 726 len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents); 727 if (item->ri_buf[0].iov_len != len) { 728 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 729 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 730 return -EFSCORRUPTED; 731 } 732 733 cuip = xfs_cui_init(mp, ITEM_TYPE(item), cui_formatp->cui_nextents); 734 xfs_cui_copy_format(&cuip->cui_format, cui_formatp); 735 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 736 737 xlog_recover_intent_item(log, &cuip->cui_item, lsn, 738 &xfs_refcount_update_defer_type); 739 return 0; 740 } 741 742 const struct xlog_recover_item_ops xlog_cui_item_ops = { 743 .item_type = XFS_LI_CUI, 744 .commit_pass2 = xlog_recover_cui_commit_pass2, 745 }; 746 747 #ifdef CONFIG_XFS_RT 748 STATIC int 749 xlog_recover_rtcui_commit_pass2( 750 struct xlog *log, 751 struct list_head *buffer_list, 752 struct xlog_recover_item *item, 753 xfs_lsn_t lsn) 754 { 755 struct xfs_mount *mp = log->l_mp; 756 struct xfs_cui_log_item *cuip; 757 struct xfs_cui_log_format *cui_formatp; 758 size_t len; 759 760 cui_formatp = item->ri_buf[0].iov_base; 761 762 if (item->ri_buf[0].iov_len < xfs_cui_log_format_sizeof(0)) { 763 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 764 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 765 return -EFSCORRUPTED; 766 } 767 768 len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents); 769 if (item->ri_buf[0].iov_len != len) { 770 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 771 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 772 return -EFSCORRUPTED; 773 } 774 775 cuip = xfs_cui_init(mp, ITEM_TYPE(item), cui_formatp->cui_nextents); 776 xfs_cui_copy_format(&cuip->cui_format, cui_formatp); 777 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 778 779 xlog_recover_intent_item(log, &cuip->cui_item, lsn, 780 &xfs_rtrefcount_update_defer_type); 781 return 0; 782 } 783 #else 784 STATIC int 785 xlog_recover_rtcui_commit_pass2( 786 struct xlog *log, 787 struct list_head *buffer_list, 788 struct xlog_recover_item *item, 789 xfs_lsn_t lsn) 790 { 791 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 792 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 793 return -EFSCORRUPTED; 794 } 795 #endif 796 797 const struct xlog_recover_item_ops xlog_rtcui_item_ops = { 798 .item_type = XFS_LI_CUI_RT, 799 .commit_pass2 = xlog_recover_rtcui_commit_pass2, 800 }; 801 802 /* 803 * This routine is called when an CUD format structure is found in a committed 804 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 805 * was still in the log. To do this it searches the AIL for the CUI with an id 806 * equal to that in the CUD format structure. If we find it we drop the CUD 807 * reference, which removes the CUI from the AIL and frees it. 808 */ 809 STATIC int 810 xlog_recover_cud_commit_pass2( 811 struct xlog *log, 812 struct list_head *buffer_list, 813 struct xlog_recover_item *item, 814 xfs_lsn_t lsn) 815 { 816 struct xfs_cud_log_format *cud_formatp; 817 818 cud_formatp = item->ri_buf[0].iov_base; 819 if (item->ri_buf[0].iov_len != sizeof(struct xfs_cud_log_format)) { 820 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 821 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 822 return -EFSCORRUPTED; 823 } 824 825 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); 826 return 0; 827 } 828 829 const struct xlog_recover_item_ops xlog_cud_item_ops = { 830 .item_type = XFS_LI_CUD, 831 .commit_pass2 = xlog_recover_cud_commit_pass2, 832 }; 833 834 #ifdef CONFIG_XFS_RT 835 STATIC int 836 xlog_recover_rtcud_commit_pass2( 837 struct xlog *log, 838 struct list_head *buffer_list, 839 struct xlog_recover_item *item, 840 xfs_lsn_t lsn) 841 { 842 struct xfs_cud_log_format *cud_formatp; 843 844 cud_formatp = item->ri_buf[0].iov_base; 845 if (item->ri_buf[0].iov_len != sizeof(struct xfs_cud_log_format)) { 846 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 847 item->ri_buf[0].iov_base, item->ri_buf[0].iov_len); 848 return -EFSCORRUPTED; 849 } 850 851 xlog_recover_release_intent(log, XFS_LI_CUI_RT, 852 cud_formatp->cud_cui_id); 853 return 0; 854 } 855 #else 856 # define xlog_recover_rtcud_commit_pass2 xlog_recover_rtcui_commit_pass2 857 #endif 858 859 const struct xlog_recover_item_ops xlog_rtcud_item_ops = { 860 .item_type = XFS_LI_CUD_RT, 861 .commit_pass2 = xlog_recover_rtcud_commit_pass2, 862 }; 863