xref: /linux/arch/x86/kernel/cpu/bugs.c (revision d7ec0cf1cd79a74399b53453f9c48acbca7d6fce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 /*
38  * Speculation Vulnerability Handling
39  *
40  * Each vulnerability is handled with the following functions:
41  *   <vuln>_select_mitigation() -- Selects a mitigation to use.  This should
42  *				   take into account all relevant command line
43  *				   options.
44  *   <vuln>_update_mitigation() -- This is called after all vulnerabilities have
45  *				   selected a mitigation, in case the selection
46  *				   may want to change based on other choices
47  *				   made.  This function is optional.
48  *   <vuln>_apply_mitigation() -- Enable the selected mitigation.
49  *
50  * The compile-time mitigation in all cases should be AUTO.  An explicit
51  * command-line option can override AUTO.  If no such option is
52  * provided, <vuln>_select_mitigation() will override AUTO to the best
53  * mitigation option.
54  */
55 
56 static void __init spectre_v1_select_mitigation(void);
57 static void __init spectre_v1_apply_mitigation(void);
58 static void __init spectre_v2_select_mitigation(void);
59 static void __init spectre_v2_update_mitigation(void);
60 static void __init spectre_v2_apply_mitigation(void);
61 static void __init retbleed_select_mitigation(void);
62 static void __init retbleed_update_mitigation(void);
63 static void __init retbleed_apply_mitigation(void);
64 static void __init spectre_v2_user_select_mitigation(void);
65 static void __init spectre_v2_user_update_mitigation(void);
66 static void __init spectre_v2_user_apply_mitigation(void);
67 static void __init ssb_select_mitigation(void);
68 static void __init ssb_apply_mitigation(void);
69 static void __init l1tf_select_mitigation(void);
70 static void __init l1tf_apply_mitigation(void);
71 static void __init mds_select_mitigation(void);
72 static void __init mds_update_mitigation(void);
73 static void __init mds_apply_mitigation(void);
74 static void __init taa_select_mitigation(void);
75 static void __init taa_update_mitigation(void);
76 static void __init taa_apply_mitigation(void);
77 static void __init mmio_select_mitigation(void);
78 static void __init mmio_update_mitigation(void);
79 static void __init mmio_apply_mitigation(void);
80 static void __init rfds_select_mitigation(void);
81 static void __init rfds_update_mitigation(void);
82 static void __init rfds_apply_mitigation(void);
83 static void __init srbds_select_mitigation(void);
84 static void __init srbds_apply_mitigation(void);
85 static void __init l1d_flush_select_mitigation(void);
86 static void __init srso_select_mitigation(void);
87 static void __init srso_update_mitigation(void);
88 static void __init srso_apply_mitigation(void);
89 static void __init gds_select_mitigation(void);
90 static void __init gds_apply_mitigation(void);
91 static void __init bhi_select_mitigation(void);
92 static void __init bhi_update_mitigation(void);
93 static void __init bhi_apply_mitigation(void);
94 static void __init its_select_mitigation(void);
95 static void __init its_update_mitigation(void);
96 static void __init its_apply_mitigation(void);
97 static void __init tsa_select_mitigation(void);
98 static void __init tsa_apply_mitigation(void);
99 static void __init vmscape_select_mitigation(void);
100 static void __init vmscape_update_mitigation(void);
101 static void __init vmscape_apply_mitigation(void);
102 
103 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
104 u64 x86_spec_ctrl_base;
105 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
106 
107 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
108 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
109 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
110 
111 /*
112  * Set when the CPU has run a potentially malicious guest. An IBPB will
113  * be needed to before running userspace. That IBPB will flush the branch
114  * predictor content.
115  */
116 DEFINE_PER_CPU(bool, x86_ibpb_exit_to_user);
117 EXPORT_PER_CPU_SYMBOL_GPL(x86_ibpb_exit_to_user);
118 
119 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
120 
121 static u64 __ro_after_init x86_arch_cap_msr;
122 
123 static DEFINE_MUTEX(spec_ctrl_mutex);
124 
125 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
126 
set_return_thunk(void * thunk)127 static void __init set_return_thunk(void *thunk)
128 {
129 	x86_return_thunk = thunk;
130 
131 	pr_info("active return thunk: %ps\n", thunk);
132 }
133 
134 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)135 static void update_spec_ctrl(u64 val)
136 {
137 	this_cpu_write(x86_spec_ctrl_current, val);
138 	wrmsrq(MSR_IA32_SPEC_CTRL, val);
139 }
140 
141 /*
142  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
143  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
144  */
update_spec_ctrl_cond(u64 val)145 void update_spec_ctrl_cond(u64 val)
146 {
147 	if (this_cpu_read(x86_spec_ctrl_current) == val)
148 		return;
149 
150 	this_cpu_write(x86_spec_ctrl_current, val);
151 
152 	/*
153 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
154 	 * forced the update can be delayed until that time.
155 	 */
156 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
157 		wrmsrq(MSR_IA32_SPEC_CTRL, val);
158 }
159 
spec_ctrl_current(void)160 noinstr u64 spec_ctrl_current(void)
161 {
162 	return this_cpu_read(x86_spec_ctrl_current);
163 }
164 EXPORT_SYMBOL_GPL(spec_ctrl_current);
165 
166 /*
167  * AMD specific MSR info for Speculative Store Bypass control.
168  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
169  */
170 u64 __ro_after_init x86_amd_ls_cfg_base;
171 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
172 
173 /* Control conditional STIBP in switch_to() */
174 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
175 /* Control conditional IBPB in switch_mm() */
176 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
177 /* Control unconditional IBPB in switch_mm() */
178 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
179 
180 /* Control IBPB on vCPU load */
181 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
182 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
183 
184 /* Control CPU buffer clear before idling (halt, mwait) */
185 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
186 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
187 
188 /*
189  * Controls whether l1d flush based mitigations are enabled,
190  * based on hw features and admin setting via boot parameter
191  * defaults to false
192  */
193 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
194 
195 /*
196  * Controls CPU Fill buffer clear before VMenter. This is a subset of
197  * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
198  * mitigation is required.
199  */
200 DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
201 EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
202 
203 #undef pr_fmt
204 #define pr_fmt(fmt)	"mitigations: " fmt
205 
cpu_print_attack_vectors(void)206 static void __init cpu_print_attack_vectors(void)
207 {
208 	pr_info("Enabled attack vectors: ");
209 
210 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
211 		pr_cont("user_kernel, ");
212 
213 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER))
214 		pr_cont("user_user, ");
215 
216 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST))
217 		pr_cont("guest_host, ");
218 
219 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST))
220 		pr_cont("guest_guest, ");
221 
222 	pr_cont("SMT mitigations: ");
223 
224 	switch (smt_mitigations) {
225 	case SMT_MITIGATIONS_OFF:
226 		pr_cont("off\n");
227 		break;
228 	case SMT_MITIGATIONS_AUTO:
229 		pr_cont("auto\n");
230 		break;
231 	case SMT_MITIGATIONS_ON:
232 		pr_cont("on\n");
233 	}
234 }
235 
cpu_select_mitigations(void)236 void __init cpu_select_mitigations(void)
237 {
238 	/*
239 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
240 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
241 	 * init code as it is not enumerated and depends on the family.
242 	 */
243 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
244 		rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
245 
246 		/*
247 		 * Previously running kernel (kexec), may have some controls
248 		 * turned ON. Clear them and let the mitigations setup below
249 		 * rediscover them based on configuration.
250 		 */
251 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
252 	}
253 
254 	x86_arch_cap_msr = x86_read_arch_cap_msr();
255 
256 	cpu_print_attack_vectors();
257 
258 	/* Select the proper CPU mitigations before patching alternatives: */
259 	spectre_v1_select_mitigation();
260 	spectre_v2_select_mitigation();
261 	retbleed_select_mitigation();
262 	spectre_v2_user_select_mitigation();
263 	ssb_select_mitigation();
264 	l1tf_select_mitigation();
265 	mds_select_mitigation();
266 	taa_select_mitigation();
267 	mmio_select_mitigation();
268 	rfds_select_mitigation();
269 	srbds_select_mitigation();
270 	l1d_flush_select_mitigation();
271 	srso_select_mitigation();
272 	gds_select_mitigation();
273 	its_select_mitigation();
274 	bhi_select_mitigation();
275 	tsa_select_mitigation();
276 	vmscape_select_mitigation();
277 
278 	/*
279 	 * After mitigations are selected, some may need to update their
280 	 * choices.
281 	 */
282 	spectre_v2_update_mitigation();
283 	/*
284 	 * retbleed_update_mitigation() relies on the state set by
285 	 * spectre_v2_update_mitigation(); specifically it wants to know about
286 	 * spectre_v2=ibrs.
287 	 */
288 	retbleed_update_mitigation();
289 	/*
290 	 * its_update_mitigation() depends on spectre_v2_update_mitigation()
291 	 * and retbleed_update_mitigation().
292 	 */
293 	its_update_mitigation();
294 
295 	/*
296 	 * spectre_v2_user_update_mitigation() depends on
297 	 * retbleed_update_mitigation(), specifically the STIBP
298 	 * selection is forced for UNRET or IBPB.
299 	 */
300 	spectre_v2_user_update_mitigation();
301 	mds_update_mitigation();
302 	taa_update_mitigation();
303 	mmio_update_mitigation();
304 	rfds_update_mitigation();
305 	bhi_update_mitigation();
306 	/* srso_update_mitigation() depends on retbleed_update_mitigation(). */
307 	srso_update_mitigation();
308 	vmscape_update_mitigation();
309 
310 	spectre_v1_apply_mitigation();
311 	spectre_v2_apply_mitigation();
312 	retbleed_apply_mitigation();
313 	spectre_v2_user_apply_mitigation();
314 	ssb_apply_mitigation();
315 	l1tf_apply_mitigation();
316 	mds_apply_mitigation();
317 	taa_apply_mitigation();
318 	mmio_apply_mitigation();
319 	rfds_apply_mitigation();
320 	srbds_apply_mitigation();
321 	srso_apply_mitigation();
322 	gds_apply_mitigation();
323 	its_apply_mitigation();
324 	bhi_apply_mitigation();
325 	tsa_apply_mitigation();
326 	vmscape_apply_mitigation();
327 }
328 
329 /*
330  * NOTE: This function is *only* called for SVM, since Intel uses
331  * MSR_IA32_SPEC_CTRL for SSBD.
332  */
333 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)334 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
335 {
336 	u64 guestval, hostval;
337 	struct thread_info *ti = current_thread_info();
338 
339 	/*
340 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
341 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
342 	 */
343 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
344 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
345 		return;
346 
347 	/*
348 	 * If the host has SSBD mitigation enabled, force it in the host's
349 	 * virtual MSR value. If its not permanently enabled, evaluate
350 	 * current's TIF_SSBD thread flag.
351 	 */
352 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
353 		hostval = SPEC_CTRL_SSBD;
354 	else
355 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
356 
357 	/* Sanitize the guest value */
358 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
359 
360 	if (hostval != guestval) {
361 		unsigned long tif;
362 
363 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
364 				 ssbd_spec_ctrl_to_tif(hostval);
365 
366 		speculation_ctrl_update(tif);
367 	}
368 }
369 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
370 
x86_amd_ssb_disable(void)371 static void x86_amd_ssb_disable(void)
372 {
373 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
374 
375 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
376 		wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
377 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
378 		wrmsrq(MSR_AMD64_LS_CFG, msrval);
379 }
380 
381 #undef pr_fmt
382 #define pr_fmt(fmt)	"MDS: " fmt
383 
384 /*
385  * Returns true if vulnerability should be mitigated based on the
386  * selected attack vector controls.
387  *
388  * See Documentation/admin-guide/hw-vuln/attack_vector_controls.rst
389  */
should_mitigate_vuln(unsigned int bug)390 static bool __init should_mitigate_vuln(unsigned int bug)
391 {
392 	switch (bug) {
393 	/*
394 	 * The only runtime-selected spectre_v1 mitigations in the kernel are
395 	 * related to SWAPGS protection on kernel entry.  Therefore, protection
396 	 * is only required for the user->kernel attack vector.
397 	 */
398 	case X86_BUG_SPECTRE_V1:
399 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL);
400 
401 	case X86_BUG_SPECTRE_V2:
402 	case X86_BUG_RETBLEED:
403 	case X86_BUG_L1TF:
404 	case X86_BUG_ITS:
405 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
406 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
407 
408 	case X86_BUG_SPECTRE_V2_USER:
409 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
410 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
411 
412 	/*
413 	 * All the vulnerabilities below allow potentially leaking data
414 	 * across address spaces.  Therefore, mitigation is required for
415 	 * any of these 4 attack vectors.
416 	 */
417 	case X86_BUG_MDS:
418 	case X86_BUG_TAA:
419 	case X86_BUG_MMIO_STALE_DATA:
420 	case X86_BUG_RFDS:
421 	case X86_BUG_SRBDS:
422 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
423 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
424 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
425 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
426 
427 	case X86_BUG_GDS:
428 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
429 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
430 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
431 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST) ||
432 		       (smt_mitigations != SMT_MITIGATIONS_OFF);
433 
434 	case X86_BUG_SPEC_STORE_BYPASS:
435 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER);
436 
437 	case X86_BUG_VMSCAPE:
438 		return cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
439 
440 	default:
441 		WARN(1, "Unknown bug %x\n", bug);
442 		return false;
443 	}
444 }
445 
446 /* Default mitigation for MDS-affected CPUs */
447 static enum mds_mitigations mds_mitigation __ro_after_init =
448 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
449 static bool mds_nosmt __ro_after_init = false;
450 
451 static const char * const mds_strings[] = {
452 	[MDS_MITIGATION_OFF]	= "Vulnerable",
453 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
454 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
455 };
456 
457 enum taa_mitigations {
458 	TAA_MITIGATION_OFF,
459 	TAA_MITIGATION_AUTO,
460 	TAA_MITIGATION_UCODE_NEEDED,
461 	TAA_MITIGATION_VERW,
462 	TAA_MITIGATION_TSX_DISABLED,
463 };
464 
465 /* Default mitigation for TAA-affected CPUs */
466 static enum taa_mitigations taa_mitigation __ro_after_init =
467 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
468 
469 enum mmio_mitigations {
470 	MMIO_MITIGATION_OFF,
471 	MMIO_MITIGATION_AUTO,
472 	MMIO_MITIGATION_UCODE_NEEDED,
473 	MMIO_MITIGATION_VERW,
474 };
475 
476 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
477 static enum mmio_mitigations mmio_mitigation __ro_after_init =
478 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
479 
480 enum rfds_mitigations {
481 	RFDS_MITIGATION_OFF,
482 	RFDS_MITIGATION_AUTO,
483 	RFDS_MITIGATION_VERW,
484 	RFDS_MITIGATION_UCODE_NEEDED,
485 };
486 
487 /* Default mitigation for Register File Data Sampling */
488 static enum rfds_mitigations rfds_mitigation __ro_after_init =
489 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
490 
491 /*
492  * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
493  * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
494  */
495 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
496 
mds_select_mitigation(void)497 static void __init mds_select_mitigation(void)
498 {
499 	if (!boot_cpu_has_bug(X86_BUG_MDS)) {
500 		mds_mitigation = MDS_MITIGATION_OFF;
501 		return;
502 	}
503 
504 	if (mds_mitigation == MDS_MITIGATION_AUTO) {
505 		if (should_mitigate_vuln(X86_BUG_MDS))
506 			mds_mitigation = MDS_MITIGATION_FULL;
507 		else
508 			mds_mitigation = MDS_MITIGATION_OFF;
509 	}
510 
511 	if (mds_mitigation == MDS_MITIGATION_OFF)
512 		return;
513 
514 	verw_clear_cpu_buf_mitigation_selected = true;
515 }
516 
mds_update_mitigation(void)517 static void __init mds_update_mitigation(void)
518 {
519 	if (!boot_cpu_has_bug(X86_BUG_MDS))
520 		return;
521 
522 	/* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */
523 	if (verw_clear_cpu_buf_mitigation_selected)
524 		mds_mitigation = MDS_MITIGATION_FULL;
525 
526 	if (mds_mitigation == MDS_MITIGATION_FULL) {
527 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
528 			mds_mitigation = MDS_MITIGATION_VMWERV;
529 	}
530 
531 	pr_info("%s\n", mds_strings[mds_mitigation]);
532 }
533 
mds_apply_mitigation(void)534 static void __init mds_apply_mitigation(void)
535 {
536 	if (mds_mitigation == MDS_MITIGATION_FULL ||
537 	    mds_mitigation == MDS_MITIGATION_VMWERV) {
538 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
539 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
540 		    (mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
541 			cpu_smt_disable(false);
542 	}
543 }
544 
mds_cmdline(char * str)545 static int __init mds_cmdline(char *str)
546 {
547 	if (!boot_cpu_has_bug(X86_BUG_MDS))
548 		return 0;
549 
550 	if (!str)
551 		return -EINVAL;
552 
553 	if (!strcmp(str, "off"))
554 		mds_mitigation = MDS_MITIGATION_OFF;
555 	else if (!strcmp(str, "full"))
556 		mds_mitigation = MDS_MITIGATION_FULL;
557 	else if (!strcmp(str, "full,nosmt")) {
558 		mds_mitigation = MDS_MITIGATION_FULL;
559 		mds_nosmt = true;
560 	}
561 
562 	return 0;
563 }
564 early_param("mds", mds_cmdline);
565 
566 #undef pr_fmt
567 #define pr_fmt(fmt)	"TAA: " fmt
568 
569 static bool taa_nosmt __ro_after_init;
570 
571 static const char * const taa_strings[] = {
572 	[TAA_MITIGATION_OFF]		= "Vulnerable",
573 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
574 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
575 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
576 };
577 
taa_vulnerable(void)578 static bool __init taa_vulnerable(void)
579 {
580 	return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM);
581 }
582 
taa_select_mitigation(void)583 static void __init taa_select_mitigation(void)
584 {
585 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
586 		taa_mitigation = TAA_MITIGATION_OFF;
587 		return;
588 	}
589 
590 	/* TSX previously disabled by tsx=off */
591 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
592 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
593 		return;
594 	}
595 
596 	/* Microcode will be checked in taa_update_mitigation(). */
597 	if (taa_mitigation == TAA_MITIGATION_AUTO) {
598 		if (should_mitigate_vuln(X86_BUG_TAA))
599 			taa_mitigation = TAA_MITIGATION_VERW;
600 		else
601 			taa_mitigation = TAA_MITIGATION_OFF;
602 	}
603 
604 	if (taa_mitigation != TAA_MITIGATION_OFF)
605 		verw_clear_cpu_buf_mitigation_selected = true;
606 }
607 
taa_update_mitigation(void)608 static void __init taa_update_mitigation(void)
609 {
610 	if (!taa_vulnerable())
611 		return;
612 
613 	if (verw_clear_cpu_buf_mitigation_selected)
614 		taa_mitigation = TAA_MITIGATION_VERW;
615 
616 	if (taa_mitigation == TAA_MITIGATION_VERW) {
617 		/* Check if the requisite ucode is available. */
618 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
619 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
620 
621 		/*
622 		 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
623 		 * A microcode update fixes this behavior to clear CPU buffers. It also
624 		 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
625 		 * ARCH_CAP_TSX_CTRL_MSR bit.
626 		 *
627 		 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
628 		 * update is required.
629 		 */
630 		if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
631 		   !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
632 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
633 	}
634 
635 	pr_info("%s\n", taa_strings[taa_mitigation]);
636 }
637 
taa_apply_mitigation(void)638 static void __init taa_apply_mitigation(void)
639 {
640 	if (taa_mitigation == TAA_MITIGATION_VERW ||
641 	    taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) {
642 		/*
643 		 * TSX is enabled, select alternate mitigation for TAA which is
644 		 * the same as MDS. Enable MDS static branch to clear CPU buffers.
645 		 *
646 		 * For guests that can't determine whether the correct microcode is
647 		 * present on host, enable the mitigation for UCODE_NEEDED as well.
648 		 */
649 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
650 
651 		if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
652 			cpu_smt_disable(false);
653 	}
654 }
655 
tsx_async_abort_parse_cmdline(char * str)656 static int __init tsx_async_abort_parse_cmdline(char *str)
657 {
658 	if (!boot_cpu_has_bug(X86_BUG_TAA))
659 		return 0;
660 
661 	if (!str)
662 		return -EINVAL;
663 
664 	if (!strcmp(str, "off")) {
665 		taa_mitigation = TAA_MITIGATION_OFF;
666 	} else if (!strcmp(str, "full")) {
667 		taa_mitigation = TAA_MITIGATION_VERW;
668 	} else if (!strcmp(str, "full,nosmt")) {
669 		taa_mitigation = TAA_MITIGATION_VERW;
670 		taa_nosmt = true;
671 	}
672 
673 	return 0;
674 }
675 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
676 
677 #undef pr_fmt
678 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
679 
680 static bool mmio_nosmt __ro_after_init = false;
681 
682 static const char * const mmio_strings[] = {
683 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
684 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
685 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
686 };
687 
mmio_select_mitigation(void)688 static void __init mmio_select_mitigation(void)
689 {
690 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
691 		mmio_mitigation = MMIO_MITIGATION_OFF;
692 		return;
693 	}
694 
695 	/* Microcode will be checked in mmio_update_mitigation(). */
696 	if (mmio_mitigation == MMIO_MITIGATION_AUTO) {
697 		if (should_mitigate_vuln(X86_BUG_MMIO_STALE_DATA))
698 			mmio_mitigation = MMIO_MITIGATION_VERW;
699 		else
700 			mmio_mitigation = MMIO_MITIGATION_OFF;
701 	}
702 
703 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
704 		return;
705 
706 	/*
707 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
708 	 * by MDS or TAA.
709 	 */
710 	if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable())
711 		verw_clear_cpu_buf_mitigation_selected = true;
712 }
713 
mmio_update_mitigation(void)714 static void __init mmio_update_mitigation(void)
715 {
716 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
717 		return;
718 
719 	if (verw_clear_cpu_buf_mitigation_selected)
720 		mmio_mitigation = MMIO_MITIGATION_VERW;
721 
722 	if (mmio_mitigation == MMIO_MITIGATION_VERW) {
723 		/*
724 		 * Check if the system has the right microcode.
725 		 *
726 		 * CPU Fill buffer clear mitigation is enumerated by either an explicit
727 		 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
728 		 * affected systems.
729 		 */
730 		if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
731 		      (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
732 		       boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
733 		     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))))
734 			mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
735 	}
736 
737 	pr_info("%s\n", mmio_strings[mmio_mitigation]);
738 }
739 
mmio_apply_mitigation(void)740 static void __init mmio_apply_mitigation(void)
741 {
742 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
743 		return;
744 
745 	/*
746 	 * Only enable the VMM mitigation if the CPU buffer clear mitigation is
747 	 * not being used.
748 	 */
749 	if (verw_clear_cpu_buf_mitigation_selected) {
750 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
751 		static_branch_disable(&cpu_buf_vm_clear);
752 	} else {
753 		static_branch_enable(&cpu_buf_vm_clear);
754 	}
755 
756 	/*
757 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
758 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
759 	 * is required irrespective of SMT state.
760 	 */
761 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
762 		static_branch_enable(&cpu_buf_idle_clear);
763 
764 	if (mmio_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
765 		cpu_smt_disable(false);
766 }
767 
mmio_stale_data_parse_cmdline(char * str)768 static int __init mmio_stale_data_parse_cmdline(char *str)
769 {
770 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
771 		return 0;
772 
773 	if (!str)
774 		return -EINVAL;
775 
776 	if (!strcmp(str, "off")) {
777 		mmio_mitigation = MMIO_MITIGATION_OFF;
778 	} else if (!strcmp(str, "full")) {
779 		mmio_mitigation = MMIO_MITIGATION_VERW;
780 	} else if (!strcmp(str, "full,nosmt")) {
781 		mmio_mitigation = MMIO_MITIGATION_VERW;
782 		mmio_nosmt = true;
783 	}
784 
785 	return 0;
786 }
787 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
788 
789 #undef pr_fmt
790 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
791 
792 static const char * const rfds_strings[] = {
793 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
794 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
795 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
796 };
797 
verw_clears_cpu_reg_file(void)798 static inline bool __init verw_clears_cpu_reg_file(void)
799 {
800 	return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR);
801 }
802 
rfds_select_mitigation(void)803 static void __init rfds_select_mitigation(void)
804 {
805 	if (!boot_cpu_has_bug(X86_BUG_RFDS)) {
806 		rfds_mitigation = RFDS_MITIGATION_OFF;
807 		return;
808 	}
809 
810 	if (rfds_mitigation == RFDS_MITIGATION_AUTO) {
811 		if (should_mitigate_vuln(X86_BUG_RFDS))
812 			rfds_mitigation = RFDS_MITIGATION_VERW;
813 		else
814 			rfds_mitigation = RFDS_MITIGATION_OFF;
815 	}
816 
817 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
818 		return;
819 
820 	if (verw_clears_cpu_reg_file())
821 		verw_clear_cpu_buf_mitigation_selected = true;
822 }
823 
rfds_update_mitigation(void)824 static void __init rfds_update_mitigation(void)
825 {
826 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
827 		return;
828 
829 	if (verw_clear_cpu_buf_mitigation_selected)
830 		rfds_mitigation = RFDS_MITIGATION_VERW;
831 
832 	if (rfds_mitigation == RFDS_MITIGATION_VERW) {
833 		if (!verw_clears_cpu_reg_file())
834 			rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
835 	}
836 
837 	pr_info("%s\n", rfds_strings[rfds_mitigation]);
838 }
839 
rfds_apply_mitigation(void)840 static void __init rfds_apply_mitigation(void)
841 {
842 	if (rfds_mitigation == RFDS_MITIGATION_VERW)
843 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
844 }
845 
rfds_parse_cmdline(char * str)846 static __init int rfds_parse_cmdline(char *str)
847 {
848 	if (!str)
849 		return -EINVAL;
850 
851 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
852 		return 0;
853 
854 	if (!strcmp(str, "off"))
855 		rfds_mitigation = RFDS_MITIGATION_OFF;
856 	else if (!strcmp(str, "on"))
857 		rfds_mitigation = RFDS_MITIGATION_VERW;
858 
859 	return 0;
860 }
861 early_param("reg_file_data_sampling", rfds_parse_cmdline);
862 
863 #undef pr_fmt
864 #define pr_fmt(fmt)	"SRBDS: " fmt
865 
866 enum srbds_mitigations {
867 	SRBDS_MITIGATION_OFF,
868 	SRBDS_MITIGATION_AUTO,
869 	SRBDS_MITIGATION_UCODE_NEEDED,
870 	SRBDS_MITIGATION_FULL,
871 	SRBDS_MITIGATION_TSX_OFF,
872 	SRBDS_MITIGATION_HYPERVISOR,
873 };
874 
875 static enum srbds_mitigations srbds_mitigation __ro_after_init =
876 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF;
877 
878 static const char * const srbds_strings[] = {
879 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
880 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
881 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
882 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
883 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
884 };
885 
886 static bool srbds_off;
887 
update_srbds_msr(void)888 void update_srbds_msr(void)
889 {
890 	u64 mcu_ctrl;
891 
892 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
893 		return;
894 
895 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
896 		return;
897 
898 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
899 		return;
900 
901 	/*
902 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
903 	 * being disabled and it hasn't received the SRBDS MSR microcode.
904 	 */
905 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
906 		return;
907 
908 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
909 
910 	switch (srbds_mitigation) {
911 	case SRBDS_MITIGATION_OFF:
912 	case SRBDS_MITIGATION_TSX_OFF:
913 		mcu_ctrl |= RNGDS_MITG_DIS;
914 		break;
915 	case SRBDS_MITIGATION_FULL:
916 		mcu_ctrl &= ~RNGDS_MITG_DIS;
917 		break;
918 	default:
919 		break;
920 	}
921 
922 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
923 }
924 
srbds_select_mitigation(void)925 static void __init srbds_select_mitigation(void)
926 {
927 	if (!boot_cpu_has_bug(X86_BUG_SRBDS)) {
928 		srbds_mitigation = SRBDS_MITIGATION_OFF;
929 		return;
930 	}
931 
932 	if (srbds_mitigation == SRBDS_MITIGATION_AUTO) {
933 		if (should_mitigate_vuln(X86_BUG_SRBDS))
934 			srbds_mitigation = SRBDS_MITIGATION_FULL;
935 		else {
936 			srbds_mitigation = SRBDS_MITIGATION_OFF;
937 			return;
938 		}
939 	}
940 
941 	/*
942 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
943 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
944 	 * by Processor MMIO Stale Data vulnerability.
945 	 */
946 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
947 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
948 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
949 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
950 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
951 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
952 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
953 	else if (srbds_off)
954 		srbds_mitigation = SRBDS_MITIGATION_OFF;
955 
956 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
957 }
958 
srbds_apply_mitigation(void)959 static void __init srbds_apply_mitigation(void)
960 {
961 	update_srbds_msr();
962 }
963 
srbds_parse_cmdline(char * str)964 static int __init srbds_parse_cmdline(char *str)
965 {
966 	if (!str)
967 		return -EINVAL;
968 
969 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
970 		return 0;
971 
972 	srbds_off = !strcmp(str, "off");
973 	return 0;
974 }
975 early_param("srbds", srbds_parse_cmdline);
976 
977 #undef pr_fmt
978 #define pr_fmt(fmt)     "L1D Flush : " fmt
979 
980 enum l1d_flush_mitigations {
981 	L1D_FLUSH_OFF = 0,
982 	L1D_FLUSH_ON,
983 };
984 
985 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
986 
l1d_flush_select_mitigation(void)987 static void __init l1d_flush_select_mitigation(void)
988 {
989 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
990 		return;
991 
992 	static_branch_enable(&switch_mm_cond_l1d_flush);
993 	pr_info("Conditional flush on switch_mm() enabled\n");
994 }
995 
l1d_flush_parse_cmdline(char * str)996 static int __init l1d_flush_parse_cmdline(char *str)
997 {
998 	if (!strcmp(str, "on"))
999 		l1d_flush_mitigation = L1D_FLUSH_ON;
1000 
1001 	return 0;
1002 }
1003 early_param("l1d_flush", l1d_flush_parse_cmdline);
1004 
1005 #undef pr_fmt
1006 #define pr_fmt(fmt)	"GDS: " fmt
1007 
1008 enum gds_mitigations {
1009 	GDS_MITIGATION_OFF,
1010 	GDS_MITIGATION_AUTO,
1011 	GDS_MITIGATION_UCODE_NEEDED,
1012 	GDS_MITIGATION_FORCE,
1013 	GDS_MITIGATION_FULL,
1014 	GDS_MITIGATION_FULL_LOCKED,
1015 	GDS_MITIGATION_HYPERVISOR,
1016 };
1017 
1018 static enum gds_mitigations gds_mitigation __ro_after_init =
1019 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF;
1020 
1021 static const char * const gds_strings[] = {
1022 	[GDS_MITIGATION_OFF]		= "Vulnerable",
1023 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1024 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
1025 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
1026 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
1027 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
1028 };
1029 
gds_ucode_mitigated(void)1030 bool gds_ucode_mitigated(void)
1031 {
1032 	return (gds_mitigation == GDS_MITIGATION_FULL ||
1033 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
1034 }
1035 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
1036 
update_gds_msr(void)1037 void update_gds_msr(void)
1038 {
1039 	u64 mcu_ctrl_after;
1040 	u64 mcu_ctrl;
1041 
1042 	switch (gds_mitigation) {
1043 	case GDS_MITIGATION_OFF:
1044 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1045 		mcu_ctrl |= GDS_MITG_DIS;
1046 		break;
1047 	case GDS_MITIGATION_FULL_LOCKED:
1048 		/*
1049 		 * The LOCKED state comes from the boot CPU. APs might not have
1050 		 * the same state. Make sure the mitigation is enabled on all
1051 		 * CPUs.
1052 		 */
1053 	case GDS_MITIGATION_FULL:
1054 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1055 		mcu_ctrl &= ~GDS_MITG_DIS;
1056 		break;
1057 	case GDS_MITIGATION_FORCE:
1058 	case GDS_MITIGATION_UCODE_NEEDED:
1059 	case GDS_MITIGATION_HYPERVISOR:
1060 	case GDS_MITIGATION_AUTO:
1061 		return;
1062 	}
1063 
1064 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1065 
1066 	/*
1067 	 * Check to make sure that the WRMSR value was not ignored. Writes to
1068 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
1069 	 * processor was not.
1070 	 */
1071 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
1072 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
1073 }
1074 
gds_select_mitigation(void)1075 static void __init gds_select_mitigation(void)
1076 {
1077 	u64 mcu_ctrl;
1078 
1079 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1080 		return;
1081 
1082 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1083 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
1084 		return;
1085 	}
1086 
1087 	/* Will verify below that mitigation _can_ be disabled */
1088 	if (gds_mitigation == GDS_MITIGATION_AUTO) {
1089 		if (should_mitigate_vuln(X86_BUG_GDS))
1090 			gds_mitigation = GDS_MITIGATION_FULL;
1091 		else
1092 			gds_mitigation = GDS_MITIGATION_OFF;
1093 	}
1094 
1095 	/* No microcode */
1096 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
1097 		if (gds_mitigation != GDS_MITIGATION_FORCE)
1098 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
1099 		return;
1100 	}
1101 
1102 	/* Microcode has mitigation, use it */
1103 	if (gds_mitigation == GDS_MITIGATION_FORCE)
1104 		gds_mitigation = GDS_MITIGATION_FULL;
1105 
1106 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1107 	if (mcu_ctrl & GDS_MITG_LOCKED) {
1108 		if (gds_mitigation == GDS_MITIGATION_OFF)
1109 			pr_warn("Mitigation locked. Disable failed.\n");
1110 
1111 		/*
1112 		 * The mitigation is selected from the boot CPU. All other CPUs
1113 		 * _should_ have the same state. If the boot CPU isn't locked
1114 		 * but others are then update_gds_msr() will WARN() of the state
1115 		 * mismatch. If the boot CPU is locked update_gds_msr() will
1116 		 * ensure the other CPUs have the mitigation enabled.
1117 		 */
1118 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
1119 	}
1120 }
1121 
gds_apply_mitigation(void)1122 static void __init gds_apply_mitigation(void)
1123 {
1124 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1125 		return;
1126 
1127 	/* Microcode is present */
1128 	if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)
1129 		update_gds_msr();
1130 	else if (gds_mitigation == GDS_MITIGATION_FORCE) {
1131 		/*
1132 		 * This only needs to be done on the boot CPU so do it
1133 		 * here rather than in update_gds_msr()
1134 		 */
1135 		setup_clear_cpu_cap(X86_FEATURE_AVX);
1136 		pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
1137 	}
1138 
1139 	pr_info("%s\n", gds_strings[gds_mitigation]);
1140 }
1141 
gds_parse_cmdline(char * str)1142 static int __init gds_parse_cmdline(char *str)
1143 {
1144 	if (!str)
1145 		return -EINVAL;
1146 
1147 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1148 		return 0;
1149 
1150 	if (!strcmp(str, "off"))
1151 		gds_mitigation = GDS_MITIGATION_OFF;
1152 	else if (!strcmp(str, "force"))
1153 		gds_mitigation = GDS_MITIGATION_FORCE;
1154 
1155 	return 0;
1156 }
1157 early_param("gather_data_sampling", gds_parse_cmdline);
1158 
1159 #undef pr_fmt
1160 #define pr_fmt(fmt)     "Spectre V1 : " fmt
1161 
1162 enum spectre_v1_mitigation {
1163 	SPECTRE_V1_MITIGATION_NONE,
1164 	SPECTRE_V1_MITIGATION_AUTO,
1165 };
1166 
1167 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
1168 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
1169 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
1170 
1171 static const char * const spectre_v1_strings[] = {
1172 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
1173 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
1174 };
1175 
1176 /*
1177  * Does SMAP provide full mitigation against speculative kernel access to
1178  * userspace?
1179  */
smap_works_speculatively(void)1180 static bool smap_works_speculatively(void)
1181 {
1182 	if (!boot_cpu_has(X86_FEATURE_SMAP))
1183 		return false;
1184 
1185 	/*
1186 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
1187 	 * prevent speculative access to user data in the L1 cache.
1188 	 * Consider SMAP to be non-functional as a mitigation on these
1189 	 * CPUs.
1190 	 */
1191 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
1192 		return false;
1193 
1194 	return true;
1195 }
1196 
spectre_v1_select_mitigation(void)1197 static void __init spectre_v1_select_mitigation(void)
1198 {
1199 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1200 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1201 
1202 	if (!should_mitigate_vuln(X86_BUG_SPECTRE_V1))
1203 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1204 }
1205 
spectre_v1_apply_mitigation(void)1206 static void __init spectre_v1_apply_mitigation(void)
1207 {
1208 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1209 		return;
1210 
1211 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
1212 		/*
1213 		 * With Spectre v1, a user can speculatively control either
1214 		 * path of a conditional swapgs with a user-controlled GS
1215 		 * value.  The mitigation is to add lfences to both code paths.
1216 		 *
1217 		 * If FSGSBASE is enabled, the user can put a kernel address in
1218 		 * GS, in which case SMAP provides no protection.
1219 		 *
1220 		 * If FSGSBASE is disabled, the user can only put a user space
1221 		 * address in GS.  That makes an attack harder, but still
1222 		 * possible if there's no SMAP protection.
1223 		 */
1224 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
1225 		    !smap_works_speculatively()) {
1226 			/*
1227 			 * Mitigation can be provided from SWAPGS itself or
1228 			 * PTI as the CR3 write in the Meltdown mitigation
1229 			 * is serializing.
1230 			 *
1231 			 * If neither is there, mitigate with an LFENCE to
1232 			 * stop speculation through swapgs.
1233 			 */
1234 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
1235 			    !boot_cpu_has(X86_FEATURE_PTI))
1236 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
1237 
1238 			/*
1239 			 * Enable lfences in the kernel entry (non-swapgs)
1240 			 * paths, to prevent user entry from speculatively
1241 			 * skipping swapgs.
1242 			 */
1243 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
1244 		}
1245 	}
1246 
1247 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1248 }
1249 
nospectre_v1_cmdline(char * str)1250 static int __init nospectre_v1_cmdline(char *str)
1251 {
1252 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1253 	return 0;
1254 }
1255 early_param("nospectre_v1", nospectre_v1_cmdline);
1256 
1257 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
1258 
1259 /* Depends on spectre_v2 mitigation selected already */
cdt_possible(enum spectre_v2_mitigation mode)1260 static inline bool cdt_possible(enum spectre_v2_mitigation mode)
1261 {
1262 	if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) ||
1263 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE))
1264 		return false;
1265 
1266 	if (mode == SPECTRE_V2_RETPOLINE ||
1267 	    mode == SPECTRE_V2_EIBRS_RETPOLINE)
1268 		return true;
1269 
1270 	return false;
1271 }
1272 
1273 #undef pr_fmt
1274 #define pr_fmt(fmt)     "RETBleed: " fmt
1275 
1276 enum its_mitigation {
1277 	ITS_MITIGATION_OFF,
1278 	ITS_MITIGATION_AUTO,
1279 	ITS_MITIGATION_VMEXIT_ONLY,
1280 	ITS_MITIGATION_ALIGNED_THUNKS,
1281 	ITS_MITIGATION_RETPOLINE_STUFF,
1282 };
1283 
1284 static enum its_mitigation its_mitigation __ro_after_init =
1285 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_MITIGATION_AUTO : ITS_MITIGATION_OFF;
1286 
1287 enum retbleed_mitigation {
1288 	RETBLEED_MITIGATION_NONE,
1289 	RETBLEED_MITIGATION_AUTO,
1290 	RETBLEED_MITIGATION_UNRET,
1291 	RETBLEED_MITIGATION_IBPB,
1292 	RETBLEED_MITIGATION_IBRS,
1293 	RETBLEED_MITIGATION_EIBRS,
1294 	RETBLEED_MITIGATION_STUFF,
1295 };
1296 
1297 static const char * const retbleed_strings[] = {
1298 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1299 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1300 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1301 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1302 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1303 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1304 };
1305 
1306 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1307 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE;
1308 
1309 static int __ro_after_init retbleed_nosmt = false;
1310 
1311 enum srso_mitigation {
1312 	SRSO_MITIGATION_NONE,
1313 	SRSO_MITIGATION_AUTO,
1314 	SRSO_MITIGATION_UCODE_NEEDED,
1315 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
1316 	SRSO_MITIGATION_MICROCODE,
1317 	SRSO_MITIGATION_NOSMT,
1318 	SRSO_MITIGATION_SAFE_RET,
1319 	SRSO_MITIGATION_IBPB,
1320 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
1321 	SRSO_MITIGATION_BP_SPEC_REDUCE,
1322 };
1323 
1324 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO;
1325 
retbleed_parse_cmdline(char * str)1326 static int __init retbleed_parse_cmdline(char *str)
1327 {
1328 	if (!str)
1329 		return -EINVAL;
1330 
1331 	while (str) {
1332 		char *next = strchr(str, ',');
1333 		if (next) {
1334 			*next = 0;
1335 			next++;
1336 		}
1337 
1338 		if (!strcmp(str, "off")) {
1339 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1340 		} else if (!strcmp(str, "auto")) {
1341 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1342 		} else if (!strcmp(str, "unret")) {
1343 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1344 		} else if (!strcmp(str, "ibpb")) {
1345 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1346 		} else if (!strcmp(str, "stuff")) {
1347 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1348 		} else if (!strcmp(str, "nosmt")) {
1349 			retbleed_nosmt = true;
1350 		} else if (!strcmp(str, "force")) {
1351 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1352 		} else {
1353 			pr_err("Ignoring unknown retbleed option (%s).", str);
1354 		}
1355 
1356 		str = next;
1357 	}
1358 
1359 	return 0;
1360 }
1361 early_param("retbleed", retbleed_parse_cmdline);
1362 
1363 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1364 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1365 
retbleed_select_mitigation(void)1366 static void __init retbleed_select_mitigation(void)
1367 {
1368 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) {
1369 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1370 		return;
1371 	}
1372 
1373 	switch (retbleed_mitigation) {
1374 	case RETBLEED_MITIGATION_UNRET:
1375 		if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1376 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1377 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1378 		}
1379 		break;
1380 	case RETBLEED_MITIGATION_IBPB:
1381 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1382 			pr_err("WARNING: CPU does not support IBPB.\n");
1383 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1384 		} else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1385 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1386 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1387 		}
1388 		break;
1389 	case RETBLEED_MITIGATION_STUFF:
1390 		if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1391 			pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1392 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1393 		} else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1394 			pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n");
1395 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1396 		}
1397 		break;
1398 	default:
1399 		break;
1400 	}
1401 
1402 	if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO)
1403 		return;
1404 
1405 	if (!should_mitigate_vuln(X86_BUG_RETBLEED)) {
1406 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1407 		return;
1408 	}
1409 
1410 	/* Intel mitigation selected in retbleed_update_mitigation() */
1411 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1412 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1413 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1414 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1415 		else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1416 			 boot_cpu_has(X86_FEATURE_IBPB))
1417 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1418 		else
1419 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1420 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1421 		/* Final mitigation depends on spectre-v2 selection */
1422 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1423 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1424 		else if (boot_cpu_has(X86_FEATURE_IBRS))
1425 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1426 		else
1427 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1428 	}
1429 }
1430 
retbleed_update_mitigation(void)1431 static void __init retbleed_update_mitigation(void)
1432 {
1433 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED))
1434 		return;
1435 
1436 	 /* ITS can also enable stuffing */
1437 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF)
1438 		retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1439 
1440 	/* If SRSO is using IBPB, that works for retbleed too */
1441 	if (srso_mitigation == SRSO_MITIGATION_IBPB)
1442 		retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1443 
1444 	if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF &&
1445 	    !cdt_possible(spectre_v2_enabled)) {
1446 		pr_err("WARNING: retbleed=stuff depends on retpoline\n");
1447 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1448 	}
1449 
1450 	/*
1451 	 * Let IBRS trump all on Intel without affecting the effects of the
1452 	 * retbleed= cmdline option except for call depth based stuffing
1453 	 */
1454 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1455 		switch (spectre_v2_enabled) {
1456 		case SPECTRE_V2_IBRS:
1457 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1458 			break;
1459 		case SPECTRE_V2_EIBRS:
1460 		case SPECTRE_V2_EIBRS_RETPOLINE:
1461 		case SPECTRE_V2_EIBRS_LFENCE:
1462 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1463 			break;
1464 		default:
1465 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) {
1466 				pr_err(RETBLEED_INTEL_MSG);
1467 				retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1468 			}
1469 		}
1470 	}
1471 
1472 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1473 }
1474 
retbleed_apply_mitigation(void)1475 static void __init retbleed_apply_mitigation(void)
1476 {
1477 	bool mitigate_smt = false;
1478 
1479 	switch (retbleed_mitigation) {
1480 	case RETBLEED_MITIGATION_NONE:
1481 		return;
1482 
1483 	case RETBLEED_MITIGATION_UNRET:
1484 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1485 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1486 
1487 		set_return_thunk(retbleed_return_thunk);
1488 
1489 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1490 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1491 			pr_err(RETBLEED_UNTRAIN_MSG);
1492 
1493 		mitigate_smt = true;
1494 		break;
1495 
1496 	case RETBLEED_MITIGATION_IBPB:
1497 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1498 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1499 		mitigate_smt = true;
1500 
1501 		/*
1502 		 * IBPB on entry already obviates the need for
1503 		 * software-based untraining so clear those in case some
1504 		 * other mitigation like SRSO has selected them.
1505 		 */
1506 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1507 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1508 
1509 		/*
1510 		 * There is no need for RSB filling: write_ibpb() ensures
1511 		 * all predictions, including the RSB, are invalidated,
1512 		 * regardless of IBPB implementation.
1513 		 */
1514 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1515 
1516 		break;
1517 
1518 	case RETBLEED_MITIGATION_STUFF:
1519 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1520 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1521 
1522 		set_return_thunk(call_depth_return_thunk);
1523 		break;
1524 
1525 	default:
1526 		break;
1527 	}
1528 
1529 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1530 	    (retbleed_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
1531 		cpu_smt_disable(false);
1532 }
1533 
1534 #undef pr_fmt
1535 #define pr_fmt(fmt)     "ITS: " fmt
1536 
1537 static const char * const its_strings[] = {
1538 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1539 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1540 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1541 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1542 };
1543 
its_parse_cmdline(char * str)1544 static int __init its_parse_cmdline(char *str)
1545 {
1546 	if (!str)
1547 		return -EINVAL;
1548 
1549 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1550 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1551 		return 0;
1552 	}
1553 
1554 	if (!strcmp(str, "off")) {
1555 		its_mitigation = ITS_MITIGATION_OFF;
1556 	} else if (!strcmp(str, "on")) {
1557 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1558 	} else if (!strcmp(str, "force")) {
1559 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1560 		setup_force_cpu_bug(X86_BUG_ITS);
1561 	} else if (!strcmp(str, "vmexit")) {
1562 		its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1563 	} else if (!strcmp(str, "stuff")) {
1564 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1565 	} else {
1566 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1567 	}
1568 
1569 	return 0;
1570 }
1571 early_param("indirect_target_selection", its_parse_cmdline);
1572 
its_select_mitigation(void)1573 static void __init its_select_mitigation(void)
1574 {
1575 	if (!boot_cpu_has_bug(X86_BUG_ITS)) {
1576 		its_mitigation = ITS_MITIGATION_OFF;
1577 		return;
1578 	}
1579 
1580 	if (its_mitigation == ITS_MITIGATION_AUTO) {
1581 		if (should_mitigate_vuln(X86_BUG_ITS))
1582 			its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1583 		else
1584 			its_mitigation = ITS_MITIGATION_OFF;
1585 	}
1586 
1587 	if (its_mitigation == ITS_MITIGATION_OFF)
1588 		return;
1589 
1590 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1591 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1592 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1593 		its_mitigation = ITS_MITIGATION_OFF;
1594 		return;
1595 	}
1596 
1597 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1598 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1599 		its_mitigation = ITS_MITIGATION_OFF;
1600 		return;
1601 	}
1602 
1603 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1604 	    !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1605 		pr_err("RSB stuff mitigation not supported, using default\n");
1606 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1607 	}
1608 
1609 	if (its_mitigation == ITS_MITIGATION_VMEXIT_ONLY &&
1610 	    !boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY))
1611 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1612 }
1613 
its_update_mitigation(void)1614 static void __init its_update_mitigation(void)
1615 {
1616 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1617 		return;
1618 
1619 	switch (spectre_v2_enabled) {
1620 	case SPECTRE_V2_NONE:
1621 		if (its_mitigation != ITS_MITIGATION_OFF)
1622 			pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1623 		its_mitigation = ITS_MITIGATION_OFF;
1624 		break;
1625 	case SPECTRE_V2_RETPOLINE:
1626 	case SPECTRE_V2_EIBRS_RETPOLINE:
1627 		/* Retpoline+CDT mitigates ITS */
1628 		if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF)
1629 			its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1630 		break;
1631 	case SPECTRE_V2_LFENCE:
1632 	case SPECTRE_V2_EIBRS_LFENCE:
1633 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1634 		its_mitigation = ITS_MITIGATION_OFF;
1635 		break;
1636 	default:
1637 		break;
1638 	}
1639 
1640 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1641 	    !cdt_possible(spectre_v2_enabled))
1642 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1643 
1644 	pr_info("%s\n", its_strings[its_mitigation]);
1645 }
1646 
its_apply_mitigation(void)1647 static void __init its_apply_mitigation(void)
1648 {
1649 	switch (its_mitigation) {
1650 	case ITS_MITIGATION_OFF:
1651 	case ITS_MITIGATION_AUTO:
1652 	case ITS_MITIGATION_VMEXIT_ONLY:
1653 		break;
1654 	case ITS_MITIGATION_ALIGNED_THUNKS:
1655 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1656 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1657 
1658 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1659 		set_return_thunk(its_return_thunk);
1660 		break;
1661 	case ITS_MITIGATION_RETPOLINE_STUFF:
1662 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1663 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1664 		set_return_thunk(call_depth_return_thunk);
1665 		break;
1666 	}
1667 }
1668 
1669 #undef pr_fmt
1670 #define pr_fmt(fmt)	"Transient Scheduler Attacks: " fmt
1671 
1672 enum tsa_mitigations {
1673 	TSA_MITIGATION_NONE,
1674 	TSA_MITIGATION_AUTO,
1675 	TSA_MITIGATION_UCODE_NEEDED,
1676 	TSA_MITIGATION_USER_KERNEL,
1677 	TSA_MITIGATION_VM,
1678 	TSA_MITIGATION_FULL,
1679 };
1680 
1681 static const char * const tsa_strings[] = {
1682 	[TSA_MITIGATION_NONE]		= "Vulnerable",
1683 	[TSA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1684 	[TSA_MITIGATION_USER_KERNEL]	= "Mitigation: Clear CPU buffers: user/kernel boundary",
1685 	[TSA_MITIGATION_VM]		= "Mitigation: Clear CPU buffers: VM",
1686 	[TSA_MITIGATION_FULL]		= "Mitigation: Clear CPU buffers",
1687 };
1688 
1689 static enum tsa_mitigations tsa_mitigation __ro_after_init =
1690 	IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_AUTO : TSA_MITIGATION_NONE;
1691 
tsa_parse_cmdline(char * str)1692 static int __init tsa_parse_cmdline(char *str)
1693 {
1694 	if (!str)
1695 		return -EINVAL;
1696 
1697 	if (!strcmp(str, "off"))
1698 		tsa_mitigation = TSA_MITIGATION_NONE;
1699 	else if (!strcmp(str, "on"))
1700 		tsa_mitigation = TSA_MITIGATION_FULL;
1701 	else if (!strcmp(str, "user"))
1702 		tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1703 	else if (!strcmp(str, "vm"))
1704 		tsa_mitigation = TSA_MITIGATION_VM;
1705 	else
1706 		pr_err("Ignoring unknown tsa=%s option.\n", str);
1707 
1708 	return 0;
1709 }
1710 early_param("tsa", tsa_parse_cmdline);
1711 
tsa_select_mitigation(void)1712 static void __init tsa_select_mitigation(void)
1713 {
1714 	if (!boot_cpu_has_bug(X86_BUG_TSA)) {
1715 		tsa_mitigation = TSA_MITIGATION_NONE;
1716 		return;
1717 	}
1718 
1719 	if (tsa_mitigation == TSA_MITIGATION_AUTO) {
1720 		bool vm = false, uk = false;
1721 
1722 		tsa_mitigation = TSA_MITIGATION_NONE;
1723 
1724 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
1725 		    cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) {
1726 			tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1727 			uk = true;
1728 		}
1729 
1730 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
1731 		    cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
1732 			tsa_mitigation = TSA_MITIGATION_VM;
1733 			vm = true;
1734 		}
1735 
1736 		if (uk && vm)
1737 			tsa_mitigation = TSA_MITIGATION_FULL;
1738 	}
1739 
1740 	if (tsa_mitigation == TSA_MITIGATION_NONE)
1741 		return;
1742 
1743 	if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR))
1744 		tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED;
1745 
1746 	/*
1747 	 * No need to set verw_clear_cpu_buf_mitigation_selected - it
1748 	 * doesn't fit all cases here and it is not needed because this
1749 	 * is the only VERW-based mitigation on AMD.
1750 	 */
1751 	pr_info("%s\n", tsa_strings[tsa_mitigation]);
1752 }
1753 
tsa_apply_mitigation(void)1754 static void __init tsa_apply_mitigation(void)
1755 {
1756 	switch (tsa_mitigation) {
1757 	case TSA_MITIGATION_USER_KERNEL:
1758 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1759 		break;
1760 	case TSA_MITIGATION_VM:
1761 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1762 		break;
1763 	case TSA_MITIGATION_FULL:
1764 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1765 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1766 		break;
1767 	default:
1768 		break;
1769 	}
1770 }
1771 
1772 #undef pr_fmt
1773 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1774 
1775 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1776 	SPECTRE_V2_USER_NONE;
1777 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1778 	SPECTRE_V2_USER_NONE;
1779 
1780 #ifdef CONFIG_MITIGATION_RETPOLINE
1781 static bool spectre_v2_bad_module;
1782 
retpoline_module_ok(bool has_retpoline)1783 bool retpoline_module_ok(bool has_retpoline)
1784 {
1785 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1786 		return true;
1787 
1788 	pr_err("System may be vulnerable to spectre v2\n");
1789 	spectre_v2_bad_module = true;
1790 	return false;
1791 }
1792 
spectre_v2_module_string(void)1793 static inline const char *spectre_v2_module_string(void)
1794 {
1795 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1796 }
1797 #else
spectre_v2_module_string(void)1798 static inline const char *spectre_v2_module_string(void) { return ""; }
1799 #endif
1800 
1801 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1802 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1803 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1804 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1805 
1806 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1807 void unpriv_ebpf_notify(int new_state)
1808 {
1809 	if (new_state)
1810 		return;
1811 
1812 	/* Unprivileged eBPF is enabled */
1813 
1814 	switch (spectre_v2_enabled) {
1815 	case SPECTRE_V2_EIBRS:
1816 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1817 		break;
1818 	case SPECTRE_V2_EIBRS_LFENCE:
1819 		if (sched_smt_active())
1820 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1821 		break;
1822 	default:
1823 		break;
1824 	}
1825 }
1826 #endif
1827 
match_option(const char * arg,int arglen,const char * opt)1828 static inline bool match_option(const char *arg, int arglen, const char *opt)
1829 {
1830 	int len = strlen(opt);
1831 
1832 	return len == arglen && !strncmp(arg, opt, len);
1833 }
1834 
1835 /* The kernel command line selection for spectre v2 */
1836 enum spectre_v2_mitigation_cmd {
1837 	SPECTRE_V2_CMD_NONE,
1838 	SPECTRE_V2_CMD_AUTO,
1839 	SPECTRE_V2_CMD_FORCE,
1840 	SPECTRE_V2_CMD_RETPOLINE,
1841 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1842 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1843 	SPECTRE_V2_CMD_EIBRS,
1844 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1845 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1846 	SPECTRE_V2_CMD_IBRS,
1847 };
1848 
1849 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init =
1850 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1851 
1852 enum spectre_v2_user_mitigation_cmd {
1853 	SPECTRE_V2_USER_CMD_NONE,
1854 	SPECTRE_V2_USER_CMD_AUTO,
1855 	SPECTRE_V2_USER_CMD_FORCE,
1856 	SPECTRE_V2_USER_CMD_PRCTL,
1857 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1858 	SPECTRE_V2_USER_CMD_SECCOMP,
1859 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1860 };
1861 
1862 static enum spectre_v2_user_mitigation_cmd spectre_v2_user_cmd __ro_after_init =
1863 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE;
1864 
1865 static const char * const spectre_v2_user_strings[] = {
1866 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1867 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1868 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1869 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1870 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1871 };
1872 
spectre_v2_user_parse_cmdline(char * str)1873 static int __init spectre_v2_user_parse_cmdline(char *str)
1874 {
1875 	if (!str)
1876 		return -EINVAL;
1877 
1878 	if (!strcmp(str, "auto"))
1879 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_AUTO;
1880 	else if (!strcmp(str, "off"))
1881 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_NONE;
1882 	else if (!strcmp(str, "on"))
1883 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_FORCE;
1884 	else if (!strcmp(str, "prctl"))
1885 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL;
1886 	else if (!strcmp(str, "prctl,ibpb"))
1887 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL_IBPB;
1888 	else if (!strcmp(str, "seccomp"))
1889 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP;
1890 	else if (!strcmp(str, "seccomp,ibpb"))
1891 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP_IBPB;
1892 	else
1893 		pr_err("Ignoring unknown spectre_v2_user option (%s).", str);
1894 
1895 	return 0;
1896 }
1897 early_param("spectre_v2_user", spectre_v2_user_parse_cmdline);
1898 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1899 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1900 {
1901 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1902 }
1903 
spectre_v2_user_select_mitigation(void)1904 static void __init spectre_v2_user_select_mitigation(void)
1905 {
1906 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1907 		return;
1908 
1909 	switch (spectre_v2_user_cmd) {
1910 	case SPECTRE_V2_USER_CMD_NONE:
1911 		return;
1912 	case SPECTRE_V2_USER_CMD_FORCE:
1913 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1914 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1915 		break;
1916 	case SPECTRE_V2_USER_CMD_AUTO:
1917 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2_USER))
1918 			break;
1919 		spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1920 		if (smt_mitigations == SMT_MITIGATIONS_OFF)
1921 			break;
1922 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1923 		break;
1924 	case SPECTRE_V2_USER_CMD_PRCTL:
1925 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_PRCTL;
1926 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1927 		break;
1928 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1929 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1930 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1931 		break;
1932 	case SPECTRE_V2_USER_CMD_SECCOMP:
1933 		if (IS_ENABLED(CONFIG_SECCOMP))
1934 			spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP;
1935 		else
1936 			spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1937 		spectre_v2_user_stibp = spectre_v2_user_ibpb;
1938 		break;
1939 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1940 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1941 		if (IS_ENABLED(CONFIG_SECCOMP))
1942 			spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP;
1943 		else
1944 			spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1945 		break;
1946 	}
1947 
1948 	/*
1949 	 * At this point, an STIBP mode other than "off" has been set.
1950 	 * If STIBP support is not being forced, check if STIBP always-on
1951 	 * is preferred.
1952 	 */
1953 	if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1954 	     spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) &&
1955 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1956 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1957 
1958 	if (!boot_cpu_has(X86_FEATURE_IBPB))
1959 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1960 
1961 	if (!boot_cpu_has(X86_FEATURE_STIBP))
1962 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1963 }
1964 
spectre_v2_user_update_mitigation(void)1965 static void __init spectre_v2_user_update_mitigation(void)
1966 {
1967 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1968 		return;
1969 
1970 	/* The spectre_v2 cmd line can override spectre_v2_user options */
1971 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) {
1972 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1973 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1974 	} else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) {
1975 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1976 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1977 	}
1978 
1979 	/*
1980 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1981 	 * is not required.
1982 	 *
1983 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1984 	 * injection in user-mode as the IBRS bit remains always set which
1985 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1986 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1987 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1988 	 * These modes therefore disable the implicit cross-thread protection,
1989 	 * so allow for STIBP to be selected in those cases.
1990 	 */
1991 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1992 	    !cpu_smt_possible() ||
1993 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1994 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS))) {
1995 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1996 		return;
1997 	}
1998 
1999 	if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE &&
2000 	    (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2001 	     retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) {
2002 		if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT &&
2003 		    spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED)
2004 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
2005 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
2006 	}
2007 	pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]);
2008 }
2009 
spectre_v2_user_apply_mitigation(void)2010 static void __init spectre_v2_user_apply_mitigation(void)
2011 {
2012 	/* Initialize Indirect Branch Prediction Barrier */
2013 	if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) {
2014 		static_branch_enable(&switch_vcpu_ibpb);
2015 
2016 		switch (spectre_v2_user_ibpb) {
2017 		case SPECTRE_V2_USER_STRICT:
2018 			static_branch_enable(&switch_mm_always_ibpb);
2019 			break;
2020 		case SPECTRE_V2_USER_PRCTL:
2021 		case SPECTRE_V2_USER_SECCOMP:
2022 			static_branch_enable(&switch_mm_cond_ibpb);
2023 			break;
2024 		default:
2025 			break;
2026 		}
2027 
2028 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
2029 			static_key_enabled(&switch_mm_always_ibpb) ?
2030 			"always-on" : "conditional");
2031 	}
2032 }
2033 
2034 static const char * const spectre_v2_strings[] = {
2035 	[SPECTRE_V2_NONE]			= "Vulnerable",
2036 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
2037 	[SPECTRE_V2_LFENCE]			= "Vulnerable: LFENCE",
2038 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
2039 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
2040 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
2041 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
2042 };
2043 
2044 static bool nospectre_v2 __ro_after_init;
2045 
nospectre_v2_parse_cmdline(char * str)2046 static int __init nospectre_v2_parse_cmdline(char *str)
2047 {
2048 	nospectre_v2 = true;
2049 	spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2050 	return 0;
2051 }
2052 early_param("nospectre_v2", nospectre_v2_parse_cmdline);
2053 
spectre_v2_parse_cmdline(char * str)2054 static int __init spectre_v2_parse_cmdline(char *str)
2055 {
2056 	if (!str)
2057 		return -EINVAL;
2058 
2059 	if (nospectre_v2)
2060 		return 0;
2061 
2062 	if (!strcmp(str, "off")) {
2063 		spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2064 	} else if (!strcmp(str, "on")) {
2065 		spectre_v2_cmd = SPECTRE_V2_CMD_FORCE;
2066 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
2067 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
2068 	} else if (!strcmp(str, "retpoline")) {
2069 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE;
2070 	} else if (!strcmp(str, "retpoline,amd") ||
2071 		 !strcmp(str, "retpoline,lfence")) {
2072 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_LFENCE;
2073 	} else if (!strcmp(str, "retpoline,generic")) {
2074 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_GENERIC;
2075 	} else if (!strcmp(str, "eibrs")) {
2076 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS;
2077 	} else if (!strcmp(str, "eibrs,lfence")) {
2078 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_LFENCE;
2079 	} else if (!strcmp(str, "eibrs,retpoline")) {
2080 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_RETPOLINE;
2081 	} else if (!strcmp(str, "auto")) {
2082 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2083 	} else if (!strcmp(str, "ibrs")) {
2084 		spectre_v2_cmd = SPECTRE_V2_CMD_IBRS;
2085 	} else {
2086 		pr_err("Ignoring unknown spectre_v2 option (%s).", str);
2087 	}
2088 
2089 	return 0;
2090 }
2091 early_param("spectre_v2", spectre_v2_parse_cmdline);
2092 
spectre_v2_select_retpoline(void)2093 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
2094 {
2095 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2096 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
2097 		return SPECTRE_V2_NONE;
2098 	}
2099 
2100 	return SPECTRE_V2_RETPOLINE;
2101 }
2102 
2103 static bool __ro_after_init rrsba_disabled;
2104 
2105 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)2106 static void __init spec_ctrl_disable_kernel_rrsba(void)
2107 {
2108 	if (rrsba_disabled)
2109 		return;
2110 
2111 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
2112 		rrsba_disabled = true;
2113 		return;
2114 	}
2115 
2116 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
2117 		return;
2118 
2119 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
2120 	update_spec_ctrl(x86_spec_ctrl_base);
2121 	rrsba_disabled = true;
2122 }
2123 
spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)2124 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
2125 {
2126 	/*
2127 	 * WARNING! There are many subtleties to consider when changing *any*
2128 	 * code related to RSB-related mitigations.  Before doing so, carefully
2129 	 * read the following document, and update if necessary:
2130 	 *
2131 	 *   Documentation/admin-guide/hw-vuln/rsb.rst
2132 	 *
2133 	 * In an overly simplified nutshell:
2134 	 *
2135 	 *   - User->user RSB attacks are conditionally mitigated during
2136 	 *     context switches by cond_mitigation -> write_ibpb().
2137 	 *
2138 	 *   - User->kernel and guest->host attacks are mitigated by eIBRS or
2139 	 *     RSB filling.
2140 	 *
2141 	 *     Though, depending on config, note that other alternative
2142 	 *     mitigations may end up getting used instead, e.g., IBPB on
2143 	 *     entry/vmexit, call depth tracking, or return thunks.
2144 	 */
2145 
2146 	switch (mode) {
2147 	case SPECTRE_V2_NONE:
2148 		break;
2149 
2150 	case SPECTRE_V2_EIBRS:
2151 	case SPECTRE_V2_EIBRS_LFENCE:
2152 	case SPECTRE_V2_EIBRS_RETPOLINE:
2153 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2154 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
2155 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
2156 		}
2157 		break;
2158 
2159 	case SPECTRE_V2_RETPOLINE:
2160 	case SPECTRE_V2_LFENCE:
2161 	case SPECTRE_V2_IBRS:
2162 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
2163 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
2164 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2165 		break;
2166 
2167 	default:
2168 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
2169 		dump_stack();
2170 		break;
2171 	}
2172 }
2173 
2174 /*
2175  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
2176  * branch history in userspace. Not needed if BHI_NO is set.
2177  */
spec_ctrl_bhi_dis(void)2178 static bool __init spec_ctrl_bhi_dis(void)
2179 {
2180 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
2181 		return false;
2182 
2183 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
2184 	update_spec_ctrl(x86_spec_ctrl_base);
2185 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
2186 
2187 	return true;
2188 }
2189 
2190 enum bhi_mitigations {
2191 	BHI_MITIGATION_OFF,
2192 	BHI_MITIGATION_AUTO,
2193 	BHI_MITIGATION_ON,
2194 	BHI_MITIGATION_VMEXIT_ONLY,
2195 };
2196 
2197 static enum bhi_mitigations bhi_mitigation __ro_after_init =
2198 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF;
2199 
spectre_bhi_parse_cmdline(char * str)2200 static int __init spectre_bhi_parse_cmdline(char *str)
2201 {
2202 	if (!str)
2203 		return -EINVAL;
2204 
2205 	if (!strcmp(str, "off"))
2206 		bhi_mitigation = BHI_MITIGATION_OFF;
2207 	else if (!strcmp(str, "on"))
2208 		bhi_mitigation = BHI_MITIGATION_ON;
2209 	else if (!strcmp(str, "vmexit"))
2210 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2211 	else
2212 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
2213 
2214 	return 0;
2215 }
2216 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
2217 
bhi_select_mitigation(void)2218 static void __init bhi_select_mitigation(void)
2219 {
2220 	if (!boot_cpu_has(X86_BUG_BHI))
2221 		bhi_mitigation = BHI_MITIGATION_OFF;
2222 
2223 	if (bhi_mitigation != BHI_MITIGATION_AUTO)
2224 		return;
2225 
2226 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) {
2227 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
2228 			bhi_mitigation = BHI_MITIGATION_ON;
2229 		else
2230 			bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2231 	} else {
2232 		bhi_mitigation = BHI_MITIGATION_OFF;
2233 	}
2234 }
2235 
bhi_update_mitigation(void)2236 static void __init bhi_update_mitigation(void)
2237 {
2238 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE)
2239 		bhi_mitigation = BHI_MITIGATION_OFF;
2240 }
2241 
bhi_apply_mitigation(void)2242 static void __init bhi_apply_mitigation(void)
2243 {
2244 	if (bhi_mitigation == BHI_MITIGATION_OFF)
2245 		return;
2246 
2247 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
2248 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2249 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
2250 		spec_ctrl_disable_kernel_rrsba();
2251 		if (rrsba_disabled)
2252 			return;
2253 	}
2254 
2255 	if (!IS_ENABLED(CONFIG_X86_64))
2256 		return;
2257 
2258 	/* Mitigate in hardware if supported */
2259 	if (spec_ctrl_bhi_dis())
2260 		return;
2261 
2262 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
2263 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
2264 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2265 		return;
2266 	}
2267 
2268 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
2269 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
2270 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2271 }
2272 
spectre_v2_select_mitigation(void)2273 static void __init spectre_v2_select_mitigation(void)
2274 {
2275 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE ||
2276 	     spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2277 	     spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
2278 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2279 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2280 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2281 		pr_err("RETPOLINE selected but not compiled in. Switching to AUTO select\n");
2282 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2283 	}
2284 
2285 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS ||
2286 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2287 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2288 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2289 		pr_err("EIBRS selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n");
2290 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2291 	}
2292 
2293 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2294 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
2295 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
2296 		pr_err("LFENCE selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n");
2297 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2298 	}
2299 
2300 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
2301 		pr_err("IBRS selected but not compiled in. Switching to AUTO select\n");
2302 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2303 	}
2304 
2305 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
2306 		pr_err("IBRS selected but not Intel CPU. Switching to AUTO select\n");
2307 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2308 	}
2309 
2310 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
2311 		pr_err("IBRS selected but CPU doesn't have IBRS. Switching to AUTO select\n");
2312 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2313 	}
2314 
2315 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
2316 		pr_err("IBRS selected but running as XenPV guest. Switching to AUTO select\n");
2317 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2318 	}
2319 
2320 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) {
2321 		spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2322 		return;
2323 	}
2324 
2325 	switch (spectre_v2_cmd) {
2326 	case SPECTRE_V2_CMD_NONE:
2327 		return;
2328 
2329 	case SPECTRE_V2_CMD_AUTO:
2330 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2))
2331 			break;
2332 		fallthrough;
2333 	case SPECTRE_V2_CMD_FORCE:
2334 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2335 			spectre_v2_enabled = SPECTRE_V2_EIBRS;
2336 			break;
2337 		}
2338 
2339 		spectre_v2_enabled = spectre_v2_select_retpoline();
2340 		break;
2341 
2342 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
2343 		pr_err(SPECTRE_V2_LFENCE_MSG);
2344 		spectre_v2_enabled = SPECTRE_V2_LFENCE;
2345 		break;
2346 
2347 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
2348 		spectre_v2_enabled = SPECTRE_V2_RETPOLINE;
2349 		break;
2350 
2351 	case SPECTRE_V2_CMD_RETPOLINE:
2352 		spectre_v2_enabled = spectre_v2_select_retpoline();
2353 		break;
2354 
2355 	case SPECTRE_V2_CMD_IBRS:
2356 		spectre_v2_enabled = SPECTRE_V2_IBRS;
2357 		break;
2358 
2359 	case SPECTRE_V2_CMD_EIBRS:
2360 		spectre_v2_enabled = SPECTRE_V2_EIBRS;
2361 		break;
2362 
2363 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
2364 		spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE;
2365 		break;
2366 
2367 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
2368 		spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE;
2369 		break;
2370 	}
2371 }
2372 
spectre_v2_update_mitigation(void)2373 static void __init spectre_v2_update_mitigation(void)
2374 {
2375 	if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO &&
2376 	    !spectre_v2_in_eibrs_mode(spectre_v2_enabled)) {
2377 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
2378 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2379 		    retbleed_mitigation != RETBLEED_MITIGATION_NONE &&
2380 		    retbleed_mitigation != RETBLEED_MITIGATION_STUFF &&
2381 		    boot_cpu_has(X86_FEATURE_IBRS) &&
2382 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
2383 			spectre_v2_enabled = SPECTRE_V2_IBRS;
2384 		}
2385 	}
2386 
2387 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2388 		pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]);
2389 }
2390 
spectre_v2_apply_mitigation(void)2391 static void __init spectre_v2_apply_mitigation(void)
2392 {
2393 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2394 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
2395 
2396 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2397 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
2398 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
2399 		} else {
2400 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
2401 			update_spec_ctrl(x86_spec_ctrl_base);
2402 		}
2403 	}
2404 
2405 	switch (spectre_v2_enabled) {
2406 	case SPECTRE_V2_NONE:
2407 		return;
2408 
2409 	case SPECTRE_V2_EIBRS:
2410 		break;
2411 
2412 	case SPECTRE_V2_IBRS:
2413 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
2414 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
2415 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
2416 		break;
2417 
2418 	case SPECTRE_V2_LFENCE:
2419 	case SPECTRE_V2_EIBRS_LFENCE:
2420 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
2421 		fallthrough;
2422 
2423 	case SPECTRE_V2_RETPOLINE:
2424 	case SPECTRE_V2_EIBRS_RETPOLINE:
2425 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
2426 		break;
2427 	}
2428 
2429 	/*
2430 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
2431 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
2432 	 * prediction from a non-RSB predictor is still a risk.
2433 	 */
2434 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE ||
2435 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE ||
2436 	    spectre_v2_enabled == SPECTRE_V2_RETPOLINE)
2437 		spec_ctrl_disable_kernel_rrsba();
2438 
2439 	spectre_v2_select_rsb_mitigation(spectre_v2_enabled);
2440 
2441 	/*
2442 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2443 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2444 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2445 	 * otherwise enabled.
2446 	 *
2447 	 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of
2448 	 * boot_cpu_has(), because the user might select retpoline on the kernel
2449 	 * command line and if the CPU supports Enhanced IBRS, kernel might
2450 	 * un-intentionally not enable IBRS around firmware calls.
2451 	 */
2452 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2453 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2454 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2455 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2456 
2457 		if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) {
2458 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2459 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2460 		}
2461 
2462 	} else if (boot_cpu_has(X86_FEATURE_IBRS) &&
2463 		   !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2464 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2465 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2466 	}
2467 }
2468 
update_stibp_msr(void * __unused)2469 static void update_stibp_msr(void * __unused)
2470 {
2471 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2472 	update_spec_ctrl(val);
2473 }
2474 
2475 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)2476 static void update_stibp_strict(void)
2477 {
2478 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2479 
2480 	if (sched_smt_active())
2481 		mask |= SPEC_CTRL_STIBP;
2482 
2483 	if (mask == x86_spec_ctrl_base)
2484 		return;
2485 
2486 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2487 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2488 	x86_spec_ctrl_base = mask;
2489 	on_each_cpu(update_stibp_msr, NULL, 1);
2490 }
2491 
2492 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)2493 static void update_indir_branch_cond(void)
2494 {
2495 	if (sched_smt_active())
2496 		static_branch_enable(&switch_to_cond_stibp);
2497 	else
2498 		static_branch_disable(&switch_to_cond_stibp);
2499 }
2500 
2501 #undef pr_fmt
2502 #define pr_fmt(fmt) fmt
2503 
2504 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)2505 static void update_mds_branch_idle(void)
2506 {
2507 	/*
2508 	 * Enable the idle clearing if SMT is active on CPUs which are
2509 	 * affected only by MSBDS and not any other MDS variant.
2510 	 *
2511 	 * The other variants cannot be mitigated when SMT is enabled, so
2512 	 * clearing the buffers on idle just to prevent the Store Buffer
2513 	 * repartitioning leak would be a window dressing exercise.
2514 	 */
2515 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2516 		return;
2517 
2518 	if (sched_smt_active()) {
2519 		static_branch_enable(&cpu_buf_idle_clear);
2520 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2521 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2522 		static_branch_disable(&cpu_buf_idle_clear);
2523 	}
2524 }
2525 
2526 #undef pr_fmt
2527 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2528 
2529 static enum ssb_mitigation ssb_mode __ro_after_init =
2530 	IS_ENABLED(CONFIG_MITIGATION_SSB) ? SPEC_STORE_BYPASS_AUTO : SPEC_STORE_BYPASS_NONE;
2531 
2532 static const char * const ssb_strings[] = {
2533 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2534 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2535 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2536 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2537 };
2538 
2539 static bool nossb __ro_after_init;
2540 
nossb_parse_cmdline(char * str)2541 static int __init nossb_parse_cmdline(char *str)
2542 {
2543 	nossb = true;
2544 	ssb_mode = SPEC_STORE_BYPASS_NONE;
2545 	return 0;
2546 }
2547 early_param("nospec_store_bypass_disable", nossb_parse_cmdline);
2548 
ssb_parse_cmdline(char * str)2549 static int __init ssb_parse_cmdline(char *str)
2550 {
2551 	if (!str)
2552 		return -EINVAL;
2553 
2554 	if (nossb)
2555 		return 0;
2556 
2557 	if (!strcmp(str, "auto"))
2558 		ssb_mode = SPEC_STORE_BYPASS_AUTO;
2559 	else if (!strcmp(str, "on"))
2560 		ssb_mode = SPEC_STORE_BYPASS_DISABLE;
2561 	else if (!strcmp(str, "off"))
2562 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2563 	else if (!strcmp(str, "prctl"))
2564 		ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2565 	else if (!strcmp(str, "seccomp"))
2566 		ssb_mode = IS_ENABLED(CONFIG_SECCOMP) ?
2567 			SPEC_STORE_BYPASS_SECCOMP : SPEC_STORE_BYPASS_PRCTL;
2568 	else
2569 		pr_err("Ignoring unknown spec_store_bypass_disable option (%s).\n",
2570 			str);
2571 
2572 	return 0;
2573 }
2574 early_param("spec_store_bypass_disable", ssb_parse_cmdline);
2575 
ssb_select_mitigation(void)2576 static void __init ssb_select_mitigation(void)
2577 {
2578 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) {
2579 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2580 		return;
2581 	}
2582 
2583 	if (ssb_mode == SPEC_STORE_BYPASS_AUTO) {
2584 		if (should_mitigate_vuln(X86_BUG_SPEC_STORE_BYPASS))
2585 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2586 		else
2587 			ssb_mode = SPEC_STORE_BYPASS_NONE;
2588 	}
2589 
2590 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2591 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2592 
2593 	pr_info("%s\n", ssb_strings[ssb_mode]);
2594 }
2595 
ssb_apply_mitigation(void)2596 static void __init ssb_apply_mitigation(void)
2597 {
2598 	/*
2599 	 * We have three CPU feature flags that are in play here:
2600 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2601 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2602 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2603 	 */
2604 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) {
2605 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2606 		/*
2607 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2608 		 * use a completely different MSR and bit dependent on family.
2609 		 */
2610 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2611 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2612 			x86_amd_ssb_disable();
2613 		} else {
2614 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2615 			update_spec_ctrl(x86_spec_ctrl_base);
2616 		}
2617 	}
2618 }
2619 
2620 #undef pr_fmt
2621 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2622 
task_update_spec_tif(struct task_struct * tsk)2623 static void task_update_spec_tif(struct task_struct *tsk)
2624 {
2625 	/* Force the update of the real TIF bits */
2626 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2627 
2628 	/*
2629 	 * Immediately update the speculation control MSRs for the current
2630 	 * task, but for a non-current task delay setting the CPU
2631 	 * mitigation until it is scheduled next.
2632 	 *
2633 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2634 	 * always the current task.
2635 	 */
2636 	if (tsk == current)
2637 		speculation_ctrl_update_current();
2638 }
2639 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2640 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2641 {
2642 
2643 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2644 		return -EPERM;
2645 
2646 	switch (ctrl) {
2647 	case PR_SPEC_ENABLE:
2648 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2649 		return 0;
2650 	case PR_SPEC_DISABLE:
2651 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2652 		return 0;
2653 	default:
2654 		return -ERANGE;
2655 	}
2656 }
2657 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2658 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2659 {
2660 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2661 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2662 		return -ENXIO;
2663 
2664 	switch (ctrl) {
2665 	case PR_SPEC_ENABLE:
2666 		/* If speculation is force disabled, enable is not allowed */
2667 		if (task_spec_ssb_force_disable(task))
2668 			return -EPERM;
2669 		task_clear_spec_ssb_disable(task);
2670 		task_clear_spec_ssb_noexec(task);
2671 		task_update_spec_tif(task);
2672 		break;
2673 	case PR_SPEC_DISABLE:
2674 		task_set_spec_ssb_disable(task);
2675 		task_clear_spec_ssb_noexec(task);
2676 		task_update_spec_tif(task);
2677 		break;
2678 	case PR_SPEC_FORCE_DISABLE:
2679 		task_set_spec_ssb_disable(task);
2680 		task_set_spec_ssb_force_disable(task);
2681 		task_clear_spec_ssb_noexec(task);
2682 		task_update_spec_tif(task);
2683 		break;
2684 	case PR_SPEC_DISABLE_NOEXEC:
2685 		if (task_spec_ssb_force_disable(task))
2686 			return -EPERM;
2687 		task_set_spec_ssb_disable(task);
2688 		task_set_spec_ssb_noexec(task);
2689 		task_update_spec_tif(task);
2690 		break;
2691 	default:
2692 		return -ERANGE;
2693 	}
2694 	return 0;
2695 }
2696 
is_spec_ib_user_controlled(void)2697 static bool is_spec_ib_user_controlled(void)
2698 {
2699 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2700 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2701 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2702 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2703 }
2704 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2705 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2706 {
2707 	switch (ctrl) {
2708 	case PR_SPEC_ENABLE:
2709 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2710 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2711 			return 0;
2712 
2713 		/*
2714 		 * With strict mode for both IBPB and STIBP, the instruction
2715 		 * code paths avoid checking this task flag and instead,
2716 		 * unconditionally run the instruction. However, STIBP and IBPB
2717 		 * are independent and either can be set to conditionally
2718 		 * enabled regardless of the mode of the other.
2719 		 *
2720 		 * If either is set to conditional, allow the task flag to be
2721 		 * updated, unless it was force-disabled by a previous prctl
2722 		 * call. Currently, this is possible on an AMD CPU which has the
2723 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2724 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2725 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2726 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2727 		 */
2728 		if (!is_spec_ib_user_controlled() ||
2729 		    task_spec_ib_force_disable(task))
2730 			return -EPERM;
2731 
2732 		task_clear_spec_ib_disable(task);
2733 		task_update_spec_tif(task);
2734 		break;
2735 	case PR_SPEC_DISABLE:
2736 	case PR_SPEC_FORCE_DISABLE:
2737 		/*
2738 		 * Indirect branch speculation is always allowed when
2739 		 * mitigation is force disabled.
2740 		 */
2741 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2742 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2743 			return -EPERM;
2744 
2745 		if (!is_spec_ib_user_controlled())
2746 			return 0;
2747 
2748 		task_set_spec_ib_disable(task);
2749 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2750 			task_set_spec_ib_force_disable(task);
2751 		task_update_spec_tif(task);
2752 		if (task == current)
2753 			indirect_branch_prediction_barrier();
2754 		break;
2755 	default:
2756 		return -ERANGE;
2757 	}
2758 	return 0;
2759 }
2760 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2761 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2762 			     unsigned long ctrl)
2763 {
2764 	switch (which) {
2765 	case PR_SPEC_STORE_BYPASS:
2766 		return ssb_prctl_set(task, ctrl);
2767 	case PR_SPEC_INDIRECT_BRANCH:
2768 		return ib_prctl_set(task, ctrl);
2769 	case PR_SPEC_L1D_FLUSH:
2770 		return l1d_flush_prctl_set(task, ctrl);
2771 	default:
2772 		return -ENODEV;
2773 	}
2774 }
2775 
2776 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2777 void arch_seccomp_spec_mitigate(struct task_struct *task)
2778 {
2779 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2780 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2781 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2782 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2783 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2784 }
2785 #endif
2786 
l1d_flush_prctl_get(struct task_struct * task)2787 static int l1d_flush_prctl_get(struct task_struct *task)
2788 {
2789 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2790 		return PR_SPEC_FORCE_DISABLE;
2791 
2792 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2793 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2794 	else
2795 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2796 }
2797 
ssb_prctl_get(struct task_struct * task)2798 static int ssb_prctl_get(struct task_struct *task)
2799 {
2800 	switch (ssb_mode) {
2801 	case SPEC_STORE_BYPASS_NONE:
2802 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2803 			return PR_SPEC_ENABLE;
2804 		return PR_SPEC_NOT_AFFECTED;
2805 	case SPEC_STORE_BYPASS_DISABLE:
2806 		return PR_SPEC_DISABLE;
2807 	case SPEC_STORE_BYPASS_SECCOMP:
2808 	case SPEC_STORE_BYPASS_PRCTL:
2809 	case SPEC_STORE_BYPASS_AUTO:
2810 		if (task_spec_ssb_force_disable(task))
2811 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2812 		if (task_spec_ssb_noexec(task))
2813 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2814 		if (task_spec_ssb_disable(task))
2815 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2816 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2817 	}
2818 	BUG();
2819 }
2820 
ib_prctl_get(struct task_struct * task)2821 static int ib_prctl_get(struct task_struct *task)
2822 {
2823 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2824 		return PR_SPEC_NOT_AFFECTED;
2825 
2826 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2827 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2828 		return PR_SPEC_ENABLE;
2829 	else if (is_spec_ib_user_controlled()) {
2830 		if (task_spec_ib_force_disable(task))
2831 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2832 		if (task_spec_ib_disable(task))
2833 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2834 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2835 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2836 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2837 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2838 		return PR_SPEC_DISABLE;
2839 	else
2840 		return PR_SPEC_NOT_AFFECTED;
2841 }
2842 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2843 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2844 {
2845 	switch (which) {
2846 	case PR_SPEC_STORE_BYPASS:
2847 		return ssb_prctl_get(task);
2848 	case PR_SPEC_INDIRECT_BRANCH:
2849 		return ib_prctl_get(task);
2850 	case PR_SPEC_L1D_FLUSH:
2851 		return l1d_flush_prctl_get(task);
2852 	default:
2853 		return -ENODEV;
2854 	}
2855 }
2856 
x86_spec_ctrl_setup_ap(void)2857 void x86_spec_ctrl_setup_ap(void)
2858 {
2859 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2860 		update_spec_ctrl(x86_spec_ctrl_base);
2861 
2862 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2863 		x86_amd_ssb_disable();
2864 }
2865 
2866 bool itlb_multihit_kvm_mitigation;
2867 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2868 
2869 #undef pr_fmt
2870 #define pr_fmt(fmt)	"L1TF: " fmt
2871 
2872 /* Default mitigation for L1TF-affected CPUs */
2873 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2874 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF;
2875 #if IS_ENABLED(CONFIG_KVM_INTEL)
2876 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2877 #endif
2878 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2879 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2880 
2881 /*
2882  * These CPUs all support 44bits physical address space internally in the
2883  * cache but CPUID can report a smaller number of physical address bits.
2884  *
2885  * The L1TF mitigation uses the top most address bit for the inversion of
2886  * non present PTEs. When the installed memory reaches into the top most
2887  * address bit due to memory holes, which has been observed on machines
2888  * which report 36bits physical address bits and have 32G RAM installed,
2889  * then the mitigation range check in l1tf_select_mitigation() triggers.
2890  * This is a false positive because the mitigation is still possible due to
2891  * the fact that the cache uses 44bit internally. Use the cache bits
2892  * instead of the reported physical bits and adjust them on the affected
2893  * machines to 44bit if the reported bits are less than 44.
2894  */
override_cache_bits(struct cpuinfo_x86 * c)2895 static void override_cache_bits(struct cpuinfo_x86 *c)
2896 {
2897 	if (c->x86 != 6)
2898 		return;
2899 
2900 	switch (c->x86_vfm) {
2901 	case INTEL_NEHALEM:
2902 	case INTEL_WESTMERE:
2903 	case INTEL_SANDYBRIDGE:
2904 	case INTEL_IVYBRIDGE:
2905 	case INTEL_HASWELL:
2906 	case INTEL_HASWELL_L:
2907 	case INTEL_HASWELL_G:
2908 	case INTEL_BROADWELL:
2909 	case INTEL_BROADWELL_G:
2910 	case INTEL_SKYLAKE_L:
2911 	case INTEL_SKYLAKE:
2912 	case INTEL_KABYLAKE_L:
2913 	case INTEL_KABYLAKE:
2914 		if (c->x86_cache_bits < 44)
2915 			c->x86_cache_bits = 44;
2916 		break;
2917 	}
2918 }
2919 
l1tf_select_mitigation(void)2920 static void __init l1tf_select_mitigation(void)
2921 {
2922 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
2923 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2924 		return;
2925 	}
2926 
2927 	if (l1tf_mitigation != L1TF_MITIGATION_AUTO)
2928 		return;
2929 
2930 	if (!should_mitigate_vuln(X86_BUG_L1TF)) {
2931 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2932 		return;
2933 	}
2934 
2935 	if (smt_mitigations == SMT_MITIGATIONS_ON)
2936 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2937 	else
2938 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2939 }
2940 
l1tf_apply_mitigation(void)2941 static void __init l1tf_apply_mitigation(void)
2942 {
2943 	u64 half_pa;
2944 
2945 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2946 		return;
2947 
2948 	override_cache_bits(&boot_cpu_data);
2949 
2950 	switch (l1tf_mitigation) {
2951 	case L1TF_MITIGATION_OFF:
2952 	case L1TF_MITIGATION_FLUSH_NOWARN:
2953 	case L1TF_MITIGATION_FLUSH:
2954 	case L1TF_MITIGATION_AUTO:
2955 		break;
2956 	case L1TF_MITIGATION_FLUSH_NOSMT:
2957 	case L1TF_MITIGATION_FULL:
2958 		cpu_smt_disable(false);
2959 		break;
2960 	case L1TF_MITIGATION_FULL_FORCE:
2961 		cpu_smt_disable(true);
2962 		break;
2963 	}
2964 
2965 #if CONFIG_PGTABLE_LEVELS == 2
2966 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2967 	return;
2968 #endif
2969 
2970 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2971 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2972 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2973 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2974 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2975 				half_pa);
2976 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2977 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2978 		return;
2979 	}
2980 
2981 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2982 }
2983 
l1tf_cmdline(char * str)2984 static int __init l1tf_cmdline(char *str)
2985 {
2986 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2987 		return 0;
2988 
2989 	if (!str)
2990 		return -EINVAL;
2991 
2992 	if (!strcmp(str, "off"))
2993 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2994 	else if (!strcmp(str, "flush,nowarn"))
2995 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2996 	else if (!strcmp(str, "flush"))
2997 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2998 	else if (!strcmp(str, "flush,nosmt"))
2999 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
3000 	else if (!strcmp(str, "full"))
3001 		l1tf_mitigation = L1TF_MITIGATION_FULL;
3002 	else if (!strcmp(str, "full,force"))
3003 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
3004 
3005 	return 0;
3006 }
3007 early_param("l1tf", l1tf_cmdline);
3008 
3009 #undef pr_fmt
3010 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
3011 
3012 static const char * const srso_strings[] = {
3013 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
3014 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
3015 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
3016 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
3017 	[SRSO_MITIGATION_NOSMT]			= "Mitigation: SMT disabled",
3018 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
3019 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
3020 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
3021 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
3022 };
3023 
srso_parse_cmdline(char * str)3024 static int __init srso_parse_cmdline(char *str)
3025 {
3026 	if (!str)
3027 		return -EINVAL;
3028 
3029 	if (!strcmp(str, "off"))
3030 		srso_mitigation = SRSO_MITIGATION_NONE;
3031 	else if (!strcmp(str, "microcode"))
3032 		srso_mitigation = SRSO_MITIGATION_MICROCODE;
3033 	else if (!strcmp(str, "safe-ret"))
3034 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3035 	else if (!strcmp(str, "ibpb"))
3036 		srso_mitigation = SRSO_MITIGATION_IBPB;
3037 	else if (!strcmp(str, "ibpb-vmexit"))
3038 		srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3039 	else
3040 		pr_err("Ignoring unknown SRSO option (%s).", str);
3041 
3042 	return 0;
3043 }
3044 early_param("spec_rstack_overflow", srso_parse_cmdline);
3045 
3046 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
3047 
srso_select_mitigation(void)3048 static void __init srso_select_mitigation(void)
3049 {
3050 	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
3051 		srso_mitigation = SRSO_MITIGATION_NONE;
3052 		return;
3053 	}
3054 
3055 	if (srso_mitigation == SRSO_MITIGATION_AUTO) {
3056 		/*
3057 		 * Use safe-RET if user->kernel or guest->host protection is
3058 		 * required.  Otherwise the 'microcode' mitigation is sufficient
3059 		 * to protect the user->user and guest->guest vectors.
3060 		 */
3061 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
3062 		    (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) &&
3063 		     !boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))) {
3064 			srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3065 		} else if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
3066 			   cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
3067 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
3068 		} else {
3069 			srso_mitigation = SRSO_MITIGATION_NONE;
3070 			return;
3071 		}
3072 	}
3073 
3074 	/* Zen1/2 with SMT off aren't vulnerable to SRSO. */
3075 	if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
3076 		srso_mitigation = SRSO_MITIGATION_NOSMT;
3077 		return;
3078 	}
3079 
3080 	if (!boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) {
3081 		pr_warn("IBPB-extending microcode not applied!\n");
3082 		pr_warn(SRSO_NOTICE);
3083 
3084 		/*
3085 		 * Safe-RET provides partial mitigation without microcode, but
3086 		 * other mitigations require microcode to provide any
3087 		 * mitigations.
3088 		 */
3089 		if (srso_mitigation == SRSO_MITIGATION_SAFE_RET)
3090 			srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
3091 		else
3092 			srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
3093 	}
3094 
3095 	switch (srso_mitigation) {
3096 	case SRSO_MITIGATION_SAFE_RET:
3097 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3098 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) {
3099 			srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3100 			goto ibpb_on_vmexit;
3101 		}
3102 
3103 		if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
3104 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
3105 			srso_mitigation = SRSO_MITIGATION_NONE;
3106 		}
3107 		break;
3108 ibpb_on_vmexit:
3109 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3110 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
3111 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
3112 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
3113 			break;
3114 		}
3115 		fallthrough;
3116 	case SRSO_MITIGATION_IBPB:
3117 		if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
3118 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
3119 			srso_mitigation = SRSO_MITIGATION_NONE;
3120 		}
3121 		break;
3122 	default:
3123 		break;
3124 	}
3125 }
3126 
srso_update_mitigation(void)3127 static void __init srso_update_mitigation(void)
3128 {
3129 	if (!boot_cpu_has_bug(X86_BUG_SRSO))
3130 		return;
3131 
3132 	/* If retbleed is using IBPB, that works for SRSO as well */
3133 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB &&
3134 	    boot_cpu_has(X86_FEATURE_IBPB_BRTYPE))
3135 		srso_mitigation = SRSO_MITIGATION_IBPB;
3136 
3137 	pr_info("%s\n", srso_strings[srso_mitigation]);
3138 }
3139 
srso_apply_mitigation(void)3140 static void __init srso_apply_mitigation(void)
3141 {
3142 	/*
3143 	 * Clear the feature flag if this mitigation is not selected as that
3144 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
3145 	 */
3146 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
3147 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
3148 
3149 	if (srso_mitigation == SRSO_MITIGATION_NONE) {
3150 		if (boot_cpu_has(X86_FEATURE_SBPB))
3151 			x86_pred_cmd = PRED_CMD_SBPB;
3152 		return;
3153 	}
3154 
3155 	switch (srso_mitigation) {
3156 	case SRSO_MITIGATION_SAFE_RET:
3157 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3158 		/*
3159 		 * Enable the return thunk for generated code
3160 		 * like ftrace, static_call, etc.
3161 		 */
3162 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
3163 		setup_force_cpu_cap(X86_FEATURE_UNRET);
3164 
3165 		if (boot_cpu_data.x86 == 0x19) {
3166 			setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
3167 			set_return_thunk(srso_alias_return_thunk);
3168 		} else {
3169 			setup_force_cpu_cap(X86_FEATURE_SRSO);
3170 			set_return_thunk(srso_return_thunk);
3171 		}
3172 		break;
3173 	case SRSO_MITIGATION_IBPB:
3174 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
3175 		/*
3176 		 * IBPB on entry already obviates the need for
3177 		 * software-based untraining so clear those in case some
3178 		 * other mitigation like Retbleed has selected them.
3179 		 */
3180 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
3181 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
3182 		fallthrough;
3183 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3184 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
3185 		/*
3186 		 * There is no need for RSB filling: entry_ibpb() ensures
3187 		 * all predictions, including the RSB, are invalidated,
3188 		 * regardless of IBPB implementation.
3189 		 */
3190 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
3191 		break;
3192 	default:
3193 		break;
3194 	}
3195 }
3196 
3197 #undef pr_fmt
3198 #define pr_fmt(fmt)	"VMSCAPE: " fmt
3199 
3200 enum vmscape_mitigations {
3201 	VMSCAPE_MITIGATION_NONE,
3202 	VMSCAPE_MITIGATION_AUTO,
3203 	VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER,
3204 	VMSCAPE_MITIGATION_IBPB_ON_VMEXIT,
3205 };
3206 
3207 static const char * const vmscape_strings[] = {
3208 	[VMSCAPE_MITIGATION_NONE]		= "Vulnerable",
3209 	/* [VMSCAPE_MITIGATION_AUTO] */
3210 	[VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER]	= "Mitigation: IBPB before exit to userspace",
3211 	[VMSCAPE_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT",
3212 };
3213 
3214 static enum vmscape_mitigations vmscape_mitigation __ro_after_init =
3215 	IS_ENABLED(CONFIG_MITIGATION_VMSCAPE) ? VMSCAPE_MITIGATION_AUTO : VMSCAPE_MITIGATION_NONE;
3216 
vmscape_parse_cmdline(char * str)3217 static int __init vmscape_parse_cmdline(char *str)
3218 {
3219 	if (!str)
3220 		return -EINVAL;
3221 
3222 	if (!strcmp(str, "off")) {
3223 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3224 	} else if (!strcmp(str, "ibpb")) {
3225 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
3226 	} else if (!strcmp(str, "force")) {
3227 		setup_force_cpu_bug(X86_BUG_VMSCAPE);
3228 		vmscape_mitigation = VMSCAPE_MITIGATION_AUTO;
3229 	} else {
3230 		pr_err("Ignoring unknown vmscape=%s option.\n", str);
3231 	}
3232 
3233 	return 0;
3234 }
3235 early_param("vmscape", vmscape_parse_cmdline);
3236 
vmscape_select_mitigation(void)3237 static void __init vmscape_select_mitigation(void)
3238 {
3239 	if (!boot_cpu_has_bug(X86_BUG_VMSCAPE) ||
3240 	    !boot_cpu_has(X86_FEATURE_IBPB)) {
3241 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3242 		return;
3243 	}
3244 
3245 	if (vmscape_mitigation == VMSCAPE_MITIGATION_AUTO) {
3246 		if (should_mitigate_vuln(X86_BUG_VMSCAPE))
3247 			vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
3248 		else
3249 			vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3250 	}
3251 }
3252 
vmscape_update_mitigation(void)3253 static void __init vmscape_update_mitigation(void)
3254 {
3255 	if (!boot_cpu_has_bug(X86_BUG_VMSCAPE))
3256 		return;
3257 
3258 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB ||
3259 	    srso_mitigation == SRSO_MITIGATION_IBPB_ON_VMEXIT)
3260 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_ON_VMEXIT;
3261 
3262 	pr_info("%s\n", vmscape_strings[vmscape_mitigation]);
3263 }
3264 
vmscape_apply_mitigation(void)3265 static void __init vmscape_apply_mitigation(void)
3266 {
3267 	if (vmscape_mitigation == VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER)
3268 		setup_force_cpu_cap(X86_FEATURE_IBPB_EXIT_TO_USER);
3269 }
3270 
3271 #undef pr_fmt
3272 #define pr_fmt(fmt) fmt
3273 
3274 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
3275 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
3276 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
3277 #define VMSCAPE_MSG_SMT "VMSCAPE: SMT on, STIBP is required for full protection. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/vmscape.html for more details.\n"
3278 
cpu_bugs_smt_update(void)3279 void cpu_bugs_smt_update(void)
3280 {
3281 	mutex_lock(&spec_ctrl_mutex);
3282 
3283 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3284 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3285 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
3286 
3287 	switch (spectre_v2_user_stibp) {
3288 	case SPECTRE_V2_USER_NONE:
3289 		break;
3290 	case SPECTRE_V2_USER_STRICT:
3291 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3292 		update_stibp_strict();
3293 		break;
3294 	case SPECTRE_V2_USER_PRCTL:
3295 	case SPECTRE_V2_USER_SECCOMP:
3296 		update_indir_branch_cond();
3297 		break;
3298 	}
3299 
3300 	switch (mds_mitigation) {
3301 	case MDS_MITIGATION_FULL:
3302 	case MDS_MITIGATION_AUTO:
3303 	case MDS_MITIGATION_VMWERV:
3304 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
3305 			pr_warn_once(MDS_MSG_SMT);
3306 		update_mds_branch_idle();
3307 		break;
3308 	case MDS_MITIGATION_OFF:
3309 		break;
3310 	}
3311 
3312 	switch (taa_mitigation) {
3313 	case TAA_MITIGATION_VERW:
3314 	case TAA_MITIGATION_AUTO:
3315 	case TAA_MITIGATION_UCODE_NEEDED:
3316 		if (sched_smt_active())
3317 			pr_warn_once(TAA_MSG_SMT);
3318 		break;
3319 	case TAA_MITIGATION_TSX_DISABLED:
3320 	case TAA_MITIGATION_OFF:
3321 		break;
3322 	}
3323 
3324 	switch (mmio_mitigation) {
3325 	case MMIO_MITIGATION_VERW:
3326 	case MMIO_MITIGATION_AUTO:
3327 	case MMIO_MITIGATION_UCODE_NEEDED:
3328 		if (sched_smt_active())
3329 			pr_warn_once(MMIO_MSG_SMT);
3330 		break;
3331 	case MMIO_MITIGATION_OFF:
3332 		break;
3333 	}
3334 
3335 	switch (tsa_mitigation) {
3336 	case TSA_MITIGATION_USER_KERNEL:
3337 	case TSA_MITIGATION_VM:
3338 	case TSA_MITIGATION_AUTO:
3339 	case TSA_MITIGATION_FULL:
3340 		/*
3341 		 * TSA-SQ can potentially lead to info leakage between
3342 		 * SMT threads.
3343 		 */
3344 		if (sched_smt_active())
3345 			static_branch_enable(&cpu_buf_idle_clear);
3346 		else
3347 			static_branch_disable(&cpu_buf_idle_clear);
3348 		break;
3349 	case TSA_MITIGATION_NONE:
3350 	case TSA_MITIGATION_UCODE_NEEDED:
3351 		break;
3352 	}
3353 
3354 	switch (vmscape_mitigation) {
3355 	case VMSCAPE_MITIGATION_NONE:
3356 	case VMSCAPE_MITIGATION_AUTO:
3357 		break;
3358 	case VMSCAPE_MITIGATION_IBPB_ON_VMEXIT:
3359 	case VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER:
3360 		/*
3361 		 * Hypervisors can be attacked across-threads, warn for SMT when
3362 		 * STIBP is not already enabled system-wide.
3363 		 *
3364 		 * Intel eIBRS (!AUTOIBRS) implies STIBP on.
3365 		 */
3366 		if (!sched_smt_active() ||
3367 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3368 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ||
3369 		    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3370 		     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
3371 			break;
3372 		pr_warn_once(VMSCAPE_MSG_SMT);
3373 		break;
3374 	}
3375 
3376 	mutex_unlock(&spec_ctrl_mutex);
3377 }
3378 
3379 #ifdef CONFIG_SYSFS
3380 
3381 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3382 
3383 #if IS_ENABLED(CONFIG_KVM_INTEL)
3384 static const char * const l1tf_vmx_states[] = {
3385 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3386 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3387 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3388 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3389 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3390 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3391 };
3392 
l1tf_show_state(char * buf)3393 static ssize_t l1tf_show_state(char *buf)
3394 {
3395 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3396 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3397 
3398 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3399 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3400 	     sched_smt_active())) {
3401 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3402 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3403 	}
3404 
3405 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3406 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3407 			  sched_smt_active() ? "vulnerable" : "disabled");
3408 }
3409 
itlb_multihit_show_state(char * buf)3410 static ssize_t itlb_multihit_show_state(char *buf)
3411 {
3412 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3413 	    !boot_cpu_has(X86_FEATURE_VMX))
3414 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3415 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3416 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3417 	else if (itlb_multihit_kvm_mitigation)
3418 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3419 	else
3420 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3421 }
3422 #else
l1tf_show_state(char * buf)3423 static ssize_t l1tf_show_state(char *buf)
3424 {
3425 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3426 }
3427 
itlb_multihit_show_state(char * buf)3428 static ssize_t itlb_multihit_show_state(char *buf)
3429 {
3430 	return sysfs_emit(buf, "Processor vulnerable\n");
3431 }
3432 #endif
3433 
mds_show_state(char * buf)3434 static ssize_t mds_show_state(char *buf)
3435 {
3436 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3437 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3438 				  mds_strings[mds_mitigation]);
3439 	}
3440 
3441 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3442 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3443 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3444 				   sched_smt_active() ? "mitigated" : "disabled"));
3445 	}
3446 
3447 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3448 			  sched_smt_active() ? "vulnerable" : "disabled");
3449 }
3450 
tsx_async_abort_show_state(char * buf)3451 static ssize_t tsx_async_abort_show_state(char *buf)
3452 {
3453 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3454 	    (taa_mitigation == TAA_MITIGATION_OFF))
3455 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3456 
3457 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3458 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3459 				  taa_strings[taa_mitigation]);
3460 	}
3461 
3462 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3463 			  sched_smt_active() ? "vulnerable" : "disabled");
3464 }
3465 
mmio_stale_data_show_state(char * buf)3466 static ssize_t mmio_stale_data_show_state(char *buf)
3467 {
3468 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3469 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3470 
3471 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3472 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3473 				  mmio_strings[mmio_mitigation]);
3474 	}
3475 
3476 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3477 			  sched_smt_active() ? "vulnerable" : "disabled");
3478 }
3479 
rfds_show_state(char * buf)3480 static ssize_t rfds_show_state(char *buf)
3481 {
3482 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3483 }
3484 
old_microcode_show_state(char * buf)3485 static ssize_t old_microcode_show_state(char *buf)
3486 {
3487 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
3488 		return sysfs_emit(buf, "Unknown: running under hypervisor");
3489 
3490 	return sysfs_emit(buf, "Vulnerable\n");
3491 }
3492 
its_show_state(char * buf)3493 static ssize_t its_show_state(char *buf)
3494 {
3495 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3496 }
3497 
stibp_state(void)3498 static char *stibp_state(void)
3499 {
3500 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3501 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3502 		return "";
3503 
3504 	switch (spectre_v2_user_stibp) {
3505 	case SPECTRE_V2_USER_NONE:
3506 		return "; STIBP: disabled";
3507 	case SPECTRE_V2_USER_STRICT:
3508 		return "; STIBP: forced";
3509 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3510 		return "; STIBP: always-on";
3511 	case SPECTRE_V2_USER_PRCTL:
3512 	case SPECTRE_V2_USER_SECCOMP:
3513 		if (static_key_enabled(&switch_to_cond_stibp))
3514 			return "; STIBP: conditional";
3515 	}
3516 	return "";
3517 }
3518 
ibpb_state(void)3519 static char *ibpb_state(void)
3520 {
3521 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3522 		if (static_key_enabled(&switch_mm_always_ibpb))
3523 			return "; IBPB: always-on";
3524 		if (static_key_enabled(&switch_mm_cond_ibpb))
3525 			return "; IBPB: conditional";
3526 		return "; IBPB: disabled";
3527 	}
3528 	return "";
3529 }
3530 
pbrsb_eibrs_state(void)3531 static char *pbrsb_eibrs_state(void)
3532 {
3533 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3534 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3535 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3536 			return "; PBRSB-eIBRS: SW sequence";
3537 		else
3538 			return "; PBRSB-eIBRS: Vulnerable";
3539 	} else {
3540 		return "; PBRSB-eIBRS: Not affected";
3541 	}
3542 }
3543 
spectre_bhi_state(void)3544 static const char *spectre_bhi_state(void)
3545 {
3546 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3547 		return "; BHI: Not affected";
3548 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3549 		return "; BHI: BHI_DIS_S";
3550 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3551 		return "; BHI: SW loop, KVM: SW loop";
3552 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3553 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3554 		 rrsba_disabled)
3555 		return "; BHI: Retpoline";
3556 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT))
3557 		return "; BHI: Vulnerable, KVM: SW loop";
3558 
3559 	return "; BHI: Vulnerable";
3560 }
3561 
spectre_v2_show_state(char * buf)3562 static ssize_t spectre_v2_show_state(char *buf)
3563 {
3564 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3565 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3566 
3567 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3568 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3569 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3570 
3571 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3572 			  spectre_v2_strings[spectre_v2_enabled],
3573 			  ibpb_state(),
3574 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3575 			  stibp_state(),
3576 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3577 			  pbrsb_eibrs_state(),
3578 			  spectre_bhi_state(),
3579 			  /* this should always be at the end */
3580 			  spectre_v2_module_string());
3581 }
3582 
srbds_show_state(char * buf)3583 static ssize_t srbds_show_state(char *buf)
3584 {
3585 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3586 }
3587 
retbleed_show_state(char * buf)3588 static ssize_t retbleed_show_state(char *buf)
3589 {
3590 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3591 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3592 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3593 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3594 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3595 
3596 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3597 				  !sched_smt_active() ? "disabled" :
3598 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3599 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3600 				  "enabled with STIBP protection" : "vulnerable");
3601 	}
3602 
3603 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3604 }
3605 
srso_show_state(char * buf)3606 static ssize_t srso_show_state(char *buf)
3607 {
3608 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3609 }
3610 
gds_show_state(char * buf)3611 static ssize_t gds_show_state(char *buf)
3612 {
3613 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3614 }
3615 
tsa_show_state(char * buf)3616 static ssize_t tsa_show_state(char *buf)
3617 {
3618 	return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]);
3619 }
3620 
vmscape_show_state(char * buf)3621 static ssize_t vmscape_show_state(char *buf)
3622 {
3623 	return sysfs_emit(buf, "%s\n", vmscape_strings[vmscape_mitigation]);
3624 }
3625 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)3626 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3627 			       char *buf, unsigned int bug)
3628 {
3629 	if (!boot_cpu_has_bug(bug))
3630 		return sysfs_emit(buf, "Not affected\n");
3631 
3632 	switch (bug) {
3633 	case X86_BUG_CPU_MELTDOWN:
3634 		if (boot_cpu_has(X86_FEATURE_PTI))
3635 			return sysfs_emit(buf, "Mitigation: PTI\n");
3636 
3637 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3638 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3639 
3640 		break;
3641 
3642 	case X86_BUG_SPECTRE_V1:
3643 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3644 
3645 	case X86_BUG_SPECTRE_V2:
3646 		return spectre_v2_show_state(buf);
3647 
3648 	case X86_BUG_SPEC_STORE_BYPASS:
3649 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3650 
3651 	case X86_BUG_L1TF:
3652 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3653 			return l1tf_show_state(buf);
3654 		break;
3655 
3656 	case X86_BUG_MDS:
3657 		return mds_show_state(buf);
3658 
3659 	case X86_BUG_TAA:
3660 		return tsx_async_abort_show_state(buf);
3661 
3662 	case X86_BUG_ITLB_MULTIHIT:
3663 		return itlb_multihit_show_state(buf);
3664 
3665 	case X86_BUG_SRBDS:
3666 		return srbds_show_state(buf);
3667 
3668 	case X86_BUG_MMIO_STALE_DATA:
3669 		return mmio_stale_data_show_state(buf);
3670 
3671 	case X86_BUG_RETBLEED:
3672 		return retbleed_show_state(buf);
3673 
3674 	case X86_BUG_SRSO:
3675 		return srso_show_state(buf);
3676 
3677 	case X86_BUG_GDS:
3678 		return gds_show_state(buf);
3679 
3680 	case X86_BUG_RFDS:
3681 		return rfds_show_state(buf);
3682 
3683 	case X86_BUG_OLD_MICROCODE:
3684 		return old_microcode_show_state(buf);
3685 
3686 	case X86_BUG_ITS:
3687 		return its_show_state(buf);
3688 
3689 	case X86_BUG_TSA:
3690 		return tsa_show_state(buf);
3691 
3692 	case X86_BUG_VMSCAPE:
3693 		return vmscape_show_state(buf);
3694 
3695 	default:
3696 		break;
3697 	}
3698 
3699 	return sysfs_emit(buf, "Vulnerable\n");
3700 }
3701 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3702 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3703 {
3704 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3705 }
3706 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3707 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3708 {
3709 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3710 }
3711 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3712 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3713 {
3714 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3715 }
3716 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3717 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3718 {
3719 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3720 }
3721 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3722 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3723 {
3724 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3725 }
3726 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3727 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3728 {
3729 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3730 }
3731 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3732 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3733 {
3734 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3735 }
3736 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3737 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3738 {
3739 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3740 }
3741 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3742 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3743 {
3744 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3745 }
3746 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3747 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3748 {
3749 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3750 }
3751 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3752 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3753 {
3754 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3755 }
3756 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3757 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3758 {
3759 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3760 }
3761 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3762 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3763 {
3764 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3765 }
3766 
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3767 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3768 {
3769 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3770 }
3771 
cpu_show_old_microcode(struct device * dev,struct device_attribute * attr,char * buf)3772 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf)
3773 {
3774 	return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE);
3775 }
3776 
cpu_show_indirect_target_selection(struct device * dev,struct device_attribute * attr,char * buf)3777 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3778 {
3779 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3780 }
3781 
cpu_show_tsa(struct device * dev,struct device_attribute * attr,char * buf)3782 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf)
3783 {
3784 	return cpu_show_common(dev, attr, buf, X86_BUG_TSA);
3785 }
3786 
cpu_show_vmscape(struct device * dev,struct device_attribute * attr,char * buf)3787 ssize_t cpu_show_vmscape(struct device *dev, struct device_attribute *attr, char *buf)
3788 {
3789 	return cpu_show_common(dev, attr, buf, X86_BUG_VMSCAPE);
3790 }
3791 #endif
3792 
__warn_thunk(void)3793 void __warn_thunk(void)
3794 {
3795 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3796 }
3797