1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 .name = "AF_VSOCK",
125 .owner = THIS_MODULE,
126 .obj_size = sizeof(struct vsock_sock),
127 .close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 .psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132
133 /* The default peer timeout indicates how long we will wait for a peer response
134 * to a control message.
135 */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137
138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151
152 /**** UTILS ****/
153
154 /* Each bound VSocket is stored in the bind hash table and each connected
155 * VSocket is stored in the connected hash table.
156 *
157 * Unbound sockets are all put on the same list attached to the end of the hash
158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
159 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160 * represents the list that addr hashes to).
161 *
162 * Specifically, we initialize the vsock_bind_table array to a size of
163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
166 * mods with VSOCK_HASH_SIZE to ensure this.
167 */
168 #define MAX_PORT_RETRIES 24
169
170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
173
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst) \
176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst) \
178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk) \
180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 struct sock *sk = sk_vsock(vsk);
193 struct sockaddr_vm local_addr;
194
195 if (vsock_addr_bound(&vsk->local_addr))
196 return 0;
197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 return __vsock_bind(sk, &local_addr);
199 }
200
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 int i;
204
205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 INIT_LIST_HEAD(&vsock_bind_table[i]);
207
208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 struct vsock_sock *vsk)
214 {
215 sock_hold(&vsk->sk);
216 list_add(&vsk->bound_table, list);
217 }
218
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 struct vsock_sock *vsk)
221 {
222 sock_hold(&vsk->sk);
223 list_add(&vsk->connected_table, list);
224 }
225
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 list_del_init(&vsk->bound_table);
229 sock_put(&vsk->sk);
230 }
231
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 list_del_init(&vsk->connected_table);
235 sock_put(&vsk->sk);
236 }
237
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 struct vsock_sock *vsk;
241
242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 return sk_vsock(vsk);
245
246 if (addr->svm_port == vsk->local_addr.svm_port &&
247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 addr->svm_cid == VMADDR_CID_ANY))
249 return sk_vsock(vsk);
250 }
251
252 return NULL;
253 }
254
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 struct sockaddr_vm *dst)
257 {
258 struct vsock_sock *vsk;
259
260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 connected_table) {
262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 dst->svm_port == vsk->local_addr.svm_port) {
264 return sk_vsock(vsk);
265 }
266 }
267
268 return NULL;
269 }
270
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
282
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 struct sock *sk;
310
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
315
316 spin_unlock_bh(&vsock_table_lock);
317
318 return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
324 {
325 struct sock *sk;
326
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
331
332 spin_unlock_bh(&vsock_table_lock);
333
334 return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 /* Transport reassignment must not remove the binding. */
341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 vsock_remove_bound(vsk);
343
344 vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 void (*fn)(struct sock *sk))
350 {
351 int i;
352
353 spin_lock_bh(&vsock_table_lock);
354
355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 struct vsock_sock *vsk;
357 list_for_each_entry(vsk, &vsock_connected_table[i],
358 connected_table) {
359 if (vsk->transport != transport)
360 continue;
361
362 fn(sk_vsock(vsk));
363 }
364 }
365
366 spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
374
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
377
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 struct vsock_sock *vpending = vsock_sk(pending);
387
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
401
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 lockdep_assert_held(&vsock_register_mutex);
411
412 if (!transport_local)
413 return false;
414
415 if (remote_cid == VMADDR_CID_LOCAL)
416 return true;
417
418 if (transport_g2h) {
419 return remote_cid == transport_g2h->get_local_cid();
420 } else {
421 return remote_cid == VMADDR_CID_HOST;
422 }
423 }
424
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 if (!vsk->transport)
428 return;
429
430 vsk->transport->destruct(vsk);
431 module_put(vsk->transport->module);
432 vsk->transport = NULL;
433 }
434
435 /* Assign a transport to a socket and call the .init transport callback.
436 *
437 * Note: for connection oriented socket this must be called when vsk->remote_addr
438 * is set (e.g. during the connect() or when a connection request on a listener
439 * socket is received).
440 * The vsk->remote_addr is used to decide which transport to use:
441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442 * g2h is not loaded, will use local transport;
443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
446 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 const struct vsock_transport *new_transport;
450 struct sock *sk = sk_vsock(vsk);
451 unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 __u8 remote_flags;
453 int ret;
454
455 /* If the packet is coming with the source and destination CIDs higher
456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 * forwarded to the host should be established. Then the host will
458 * need to forward the packets to the guest.
459 *
460 * The flag is set on the (listen) receive path (psk is not NULL). On
461 * the connect path the flag can be set by the user space application.
462 */
463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466
467 remote_flags = vsk->remote_addr.svm_flags;
468
469 mutex_lock(&vsock_register_mutex);
470
471 switch (sk->sk_type) {
472 case SOCK_DGRAM:
473 new_transport = transport_dgram;
474 break;
475 case SOCK_STREAM:
476 case SOCK_SEQPACKET:
477 if (vsock_use_local_transport(remote_cid))
478 new_transport = transport_local;
479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 (remote_flags & VMADDR_FLAG_TO_HOST))
481 new_transport = transport_g2h;
482 else
483 new_transport = transport_h2g;
484 break;
485 default:
486 ret = -ESOCKTNOSUPPORT;
487 goto err;
488 }
489
490 if (vsk->transport && vsk->transport == new_transport) {
491 ret = 0;
492 goto err;
493 }
494
495 /* We increase the module refcnt to prevent the transport unloading
496 * while there are open sockets assigned to it.
497 */
498 if (!new_transport || !try_module_get(new_transport->module)) {
499 ret = -ENODEV;
500 goto err;
501 }
502
503 /* It's safe to release the mutex after a successful try_module_get().
504 * Whichever transport `new_transport` points at, it won't go away until
505 * the last module_put() below or in vsock_deassign_transport().
506 */
507 mutex_unlock(&vsock_register_mutex);
508
509 if (vsk->transport) {
510 /* transport->release() must be called with sock lock acquired.
511 * This path can only be taken during vsock_connect(), where we
512 * have already held the sock lock. In the other cases, this
513 * function is called on a new socket which is not assigned to
514 * any transport.
515 */
516 vsk->transport->release(vsk);
517 vsock_deassign_transport(vsk);
518
519 /* transport's release() and destruct() can touch some socket
520 * state, since we are reassigning the socket to a new transport
521 * during vsock_connect(), let's reset these fields to have a
522 * clean state.
523 */
524 sock_reset_flag(sk, SOCK_DONE);
525 sk->sk_state = TCP_CLOSE;
526 vsk->peer_shutdown = 0;
527 }
528
529 if (sk->sk_type == SOCK_SEQPACKET) {
530 if (!new_transport->seqpacket_allow ||
531 !new_transport->seqpacket_allow(remote_cid)) {
532 module_put(new_transport->module);
533 return -ESOCKTNOSUPPORT;
534 }
535 }
536
537 ret = new_transport->init(vsk, psk);
538 if (ret) {
539 module_put(new_transport->module);
540 return ret;
541 }
542
543 vsk->transport = new_transport;
544
545 return 0;
546 err:
547 mutex_unlock(&vsock_register_mutex);
548 return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551
552 /*
553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554 * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555 */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 u32 cid = VMADDR_CID_ANY;
559
560 mutex_lock(&vsock_register_mutex);
561 if (*transport)
562 cid = (*transport)->get_local_cid();
563 mutex_unlock(&vsock_register_mutex);
564
565 return cid;
566 }
567
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 if (cid == vsock_registered_transport_cid(&transport_g2h))
571 return true;
572
573 if (transport_h2g && cid == VMADDR_CID_HOST)
574 return true;
575
576 if (transport_local && cid == VMADDR_CID_LOCAL)
577 return true;
578
579 return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 struct vsock_sock *vlistener;
586 struct vsock_sock *vconnected;
587
588 vlistener = vsock_sk(listener);
589
590 if (list_empty(&vlistener->accept_queue))
591 return NULL;
592
593 vconnected = list_entry(vlistener->accept_queue.next,
594 struct vsock_sock, accept_queue);
595
596 list_del_init(&vconnected->accept_queue);
597 sock_put(listener);
598 /* The caller will need a reference on the connected socket so we let
599 * it call sock_put().
600 */
601
602 return sk_vsock(vconnected);
603 }
604
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 struct vsock_sock *vsk = vsock_sk(sk);
608 return list_empty(&vsk->accept_queue);
609 }
610
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 struct vsock_sock *vsk = vsock_sk(sk);
614 return !list_empty(&vsk->pending_links);
615 }
616
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 struct vsock_sock *vsk = vsock_sk(sk);
620
621 if (!vsk->transport)
622 return -ENODEV;
623
624 return vsk->transport->shutdown(vsk, mode);
625 }
626
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 struct sock *sk;
630 struct sock *listener;
631 struct vsock_sock *vsk;
632 bool cleanup;
633
634 vsk = container_of(work, struct vsock_sock, pending_work.work);
635 sk = sk_vsock(vsk);
636 listener = vsk->listener;
637 cleanup = true;
638
639 lock_sock(listener);
640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641
642 if (vsock_is_pending(sk)) {
643 vsock_remove_pending(listener, sk);
644
645 sk_acceptq_removed(listener);
646 } else if (!vsk->rejected) {
647 /* We are not on the pending list and accept() did not reject
648 * us, so we must have been accepted by our user process. We
649 * just need to drop our references to the sockets and be on
650 * our way.
651 */
652 cleanup = false;
653 goto out;
654 }
655
656 /* We need to remove ourself from the global connected sockets list so
657 * incoming packets can't find this socket, and to reduce the reference
658 * count.
659 */
660 vsock_remove_connected(vsk);
661
662 sk->sk_state = TCP_CLOSE;
663
664 out:
665 release_sock(sk);
666 release_sock(listener);
667 if (cleanup)
668 sock_put(sk);
669
670 sock_put(sk);
671 sock_put(listener);
672 }
673
674 /**** SOCKET OPERATIONS ****/
675
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 struct sockaddr_vm *addr)
678 {
679 static u32 port;
680 struct sockaddr_vm new_addr;
681
682 if (!port)
683 port = get_random_u32_above(LAST_RESERVED_PORT);
684
685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686
687 if (addr->svm_port == VMADDR_PORT_ANY) {
688 bool found = false;
689 unsigned int i;
690
691 for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 if (port == VMADDR_PORT_ANY ||
693 port <= LAST_RESERVED_PORT)
694 port = LAST_RESERVED_PORT + 1;
695
696 new_addr.svm_port = port++;
697
698 if (!__vsock_find_bound_socket(&new_addr)) {
699 found = true;
700 break;
701 }
702 }
703
704 if (!found)
705 return -EADDRNOTAVAIL;
706 } else {
707 /* If port is in reserved range, ensure caller
708 * has necessary privileges.
709 */
710 if (addr->svm_port <= LAST_RESERVED_PORT &&
711 !capable(CAP_NET_BIND_SERVICE)) {
712 return -EACCES;
713 }
714
715 if (__vsock_find_bound_socket(&new_addr))
716 return -EADDRINUSE;
717 }
718
719 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720
721 /* Remove connection oriented sockets from the unbound list and add them
722 * to the hash table for easy lookup by its address. The unbound list
723 * is simply an extra entry at the end of the hash table, a trick used
724 * by AF_UNIX.
725 */
726 __vsock_remove_bound(vsk);
727 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728
729 return 0;
730 }
731
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 struct sockaddr_vm *addr)
734 {
735 return vsk->transport->dgram_bind(vsk, addr);
736 }
737
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 struct vsock_sock *vsk = vsock_sk(sk);
741 int retval;
742
743 /* First ensure this socket isn't already bound. */
744 if (vsock_addr_bound(&vsk->local_addr))
745 return -EINVAL;
746
747 /* Now bind to the provided address or select appropriate values if
748 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
749 * like AF_INET prevents binding to a non-local IP address (in most
750 * cases), we only allow binding to a local CID.
751 */
752 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 return -EADDRNOTAVAIL;
754
755 switch (sk->sk_socket->type) {
756 case SOCK_STREAM:
757 case SOCK_SEQPACKET:
758 spin_lock_bh(&vsock_table_lock);
759 retval = __vsock_bind_connectible(vsk, addr);
760 spin_unlock_bh(&vsock_table_lock);
761 break;
762
763 case SOCK_DGRAM:
764 retval = __vsock_bind_dgram(vsk, addr);
765 break;
766
767 default:
768 retval = -EINVAL;
769 break;
770 }
771
772 return retval;
773 }
774
775 static void vsock_connect_timeout(struct work_struct *work);
776
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)777 static struct sock *__vsock_create(struct net *net,
778 struct socket *sock,
779 struct sock *parent,
780 gfp_t priority,
781 unsigned short type,
782 int kern)
783 {
784 struct sock *sk;
785 struct vsock_sock *psk;
786 struct vsock_sock *vsk;
787
788 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 if (!sk)
790 return NULL;
791
792 sock_init_data(sock, sk);
793
794 /* sk->sk_type is normally set in sock_init_data, but only if sock is
795 * non-NULL. We make sure that our sockets always have a type by
796 * setting it here if needed.
797 */
798 if (!sock)
799 sk->sk_type = type;
800
801 vsk = vsock_sk(sk);
802 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804
805 sk->sk_destruct = vsock_sk_destruct;
806 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 sock_reset_flag(sk, SOCK_DONE);
808
809 INIT_LIST_HEAD(&vsk->bound_table);
810 INIT_LIST_HEAD(&vsk->connected_table);
811 vsk->listener = NULL;
812 INIT_LIST_HEAD(&vsk->pending_links);
813 INIT_LIST_HEAD(&vsk->accept_queue);
814 vsk->rejected = false;
815 vsk->sent_request = false;
816 vsk->ignore_connecting_rst = false;
817 vsk->peer_shutdown = 0;
818 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820
821 psk = parent ? vsock_sk(parent) : NULL;
822 if (parent) {
823 vsk->trusted = psk->trusted;
824 vsk->owner = get_cred(psk->owner);
825 vsk->connect_timeout = psk->connect_timeout;
826 vsk->buffer_size = psk->buffer_size;
827 vsk->buffer_min_size = psk->buffer_min_size;
828 vsk->buffer_max_size = psk->buffer_max_size;
829 security_sk_clone(parent, sk);
830 } else {
831 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 vsk->owner = get_current_cred();
833 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 }
838
839 return sk;
840 }
841
sock_type_connectible(u16 type)842 static bool sock_type_connectible(u16 type)
843 {
844 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846
__vsock_release(struct sock * sk,int level)847 static void __vsock_release(struct sock *sk, int level)
848 {
849 struct vsock_sock *vsk;
850 struct sock *pending;
851
852 vsk = vsock_sk(sk);
853 pending = NULL; /* Compiler warning. */
854
855 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 * version to avoid the warning "possible recursive locking
857 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 * is the same as lock_sock(sk).
859 */
860 lock_sock_nested(sk, level);
861
862 /* Indicate to vsock_remove_sock() that the socket is being released and
863 * can be removed from the bound_table. Unlike transport reassignment
864 * case, where the socket must remain bound despite vsock_remove_sock()
865 * being called from the transport release() callback.
866 */
867 sock_set_flag(sk, SOCK_DEAD);
868
869 if (vsk->transport)
870 vsk->transport->release(vsk);
871 else if (sock_type_connectible(sk->sk_type))
872 vsock_remove_sock(vsk);
873
874 sock_orphan(sk);
875 sk->sk_shutdown = SHUTDOWN_MASK;
876
877 skb_queue_purge(&sk->sk_receive_queue);
878
879 /* Clean up any sockets that never were accepted. */
880 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 __vsock_release(pending, SINGLE_DEPTH_NESTING);
882 sock_put(pending);
883 }
884
885 release_sock(sk);
886 sock_put(sk);
887 }
888
vsock_sk_destruct(struct sock * sk)889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 struct vsock_sock *vsk = vsock_sk(sk);
892
893 /* Flush MSG_ZEROCOPY leftovers. */
894 __skb_queue_purge(&sk->sk_error_queue);
895
896 vsock_deassign_transport(vsk);
897
898 /* When clearing these addresses, there's no need to set the family and
899 * possibly register the address family with the kernel.
900 */
901 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903
904 put_cred(vsk->owner);
905 }
906
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 int err;
910
911 err = sock_queue_rcv_skb(sk, skb);
912 if (err)
913 kfree_skb(skb);
914
915 return err;
916 }
917
vsock_create_connected(struct sock * parent)918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924
vsock_stream_has_data(struct vsock_sock * vsk)925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 if (WARN_ON(!vsk->transport))
928 return 0;
929
930 return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933
vsock_connectible_has_data(struct vsock_sock * vsk)934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 struct sock *sk = sk_vsock(vsk);
937
938 if (WARN_ON(!vsk->transport))
939 return 0;
940
941 if (sk->sk_type == SOCK_SEQPACKET)
942 return vsk->transport->seqpacket_has_data(vsk);
943 else
944 return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947
vsock_stream_has_space(struct vsock_sock * vsk)948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 if (WARN_ON(!vsk->transport))
951 return 0;
952
953 return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956
vsock_data_ready(struct sock * sk)957 void vsock_data_ready(struct sock *sk)
958 {
959 struct vsock_sock *vsk = vsock_sk(sk);
960
961 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 sock_flag(sk, SOCK_DONE))
963 sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966
967 /* Dummy callback required by sockmap.
968 * See unconditional call of saved_close() in sock_map_close().
969 */
vsock_close(struct sock * sk,long timeout)970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973
vsock_release(struct socket * sock)974 static int vsock_release(struct socket *sock)
975 {
976 struct sock *sk = sock->sk;
977
978 if (!sk)
979 return 0;
980
981 sk->sk_prot->close(sk, 0);
982 __vsock_release(sk, 0);
983 sock->sk = NULL;
984 sock->state = SS_FREE;
985
986 return 0;
987 }
988
989 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 int err;
993 struct sock *sk;
994 struct sockaddr_vm *vm_addr;
995
996 sk = sock->sk;
997
998 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 return -EINVAL;
1000
1001 lock_sock(sk);
1002 err = __vsock_bind(sk, vm_addr);
1003 release_sock(sk);
1004
1005 return err;
1006 }
1007
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1008 static int vsock_getname(struct socket *sock,
1009 struct sockaddr *addr, int peer)
1010 {
1011 int err;
1012 struct sock *sk;
1013 struct vsock_sock *vsk;
1014 struct sockaddr_vm *vm_addr;
1015
1016 sk = sock->sk;
1017 vsk = vsock_sk(sk);
1018 err = 0;
1019
1020 lock_sock(sk);
1021
1022 if (peer) {
1023 if (sock->state != SS_CONNECTED) {
1024 err = -ENOTCONN;
1025 goto out;
1026 }
1027 vm_addr = &vsk->remote_addr;
1028 } else {
1029 vm_addr = &vsk->local_addr;
1030 }
1031
1032 BUILD_BUG_ON(sizeof(*vm_addr) > sizeof(struct sockaddr_storage));
1033 memcpy(addr, vm_addr, sizeof(*vm_addr));
1034 err = sizeof(*vm_addr);
1035
1036 out:
1037 release_sock(sk);
1038 return err;
1039 }
1040
vsock_linger(struct sock * sk)1041 void vsock_linger(struct sock *sk)
1042 {
1043 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1044 ssize_t (*unsent)(struct vsock_sock *vsk);
1045 struct vsock_sock *vsk = vsock_sk(sk);
1046 long timeout;
1047
1048 if (!sock_flag(sk, SOCK_LINGER))
1049 return;
1050
1051 timeout = sk->sk_lingertime;
1052 if (!timeout)
1053 return;
1054
1055 /* Transports must implement `unsent_bytes` if they want to support
1056 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1057 * the socket can be closed.
1058 */
1059 unsent = vsk->transport->unsent_bytes;
1060 if (!unsent)
1061 return;
1062
1063 add_wait_queue(sk_sleep(sk), &wait);
1064
1065 do {
1066 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1067 break;
1068 } while (!signal_pending(current) && timeout);
1069
1070 remove_wait_queue(sk_sleep(sk), &wait);
1071 }
1072 EXPORT_SYMBOL_GPL(vsock_linger);
1073
vsock_shutdown(struct socket * sock,int mode)1074 static int vsock_shutdown(struct socket *sock, int mode)
1075 {
1076 int err;
1077 struct sock *sk;
1078
1079 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1080 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1081 * here like the other address families do. Note also that the
1082 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1083 * which is what we want.
1084 */
1085 mode++;
1086
1087 if ((mode & ~SHUTDOWN_MASK) || !mode)
1088 return -EINVAL;
1089
1090 /* If this is a connection oriented socket and it is not connected then
1091 * bail out immediately. If it is a DGRAM socket then we must first
1092 * kick the socket so that it wakes up from any sleeping calls, for
1093 * example recv(), and then afterwards return the error.
1094 */
1095
1096 sk = sock->sk;
1097
1098 lock_sock(sk);
1099 if (sock->state == SS_UNCONNECTED) {
1100 err = -ENOTCONN;
1101 if (sock_type_connectible(sk->sk_type))
1102 goto out;
1103 } else {
1104 sock->state = SS_DISCONNECTING;
1105 err = 0;
1106 }
1107
1108 /* Receive and send shutdowns are treated alike. */
1109 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1110 if (mode) {
1111 sk->sk_shutdown |= mode;
1112 sk->sk_state_change(sk);
1113
1114 if (sock_type_connectible(sk->sk_type)) {
1115 sock_reset_flag(sk, SOCK_DONE);
1116 vsock_send_shutdown(sk, mode);
1117 }
1118 }
1119
1120 out:
1121 release_sock(sk);
1122 return err;
1123 }
1124
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1125 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1126 poll_table *wait)
1127 {
1128 struct sock *sk;
1129 __poll_t mask;
1130 struct vsock_sock *vsk;
1131
1132 sk = sock->sk;
1133 vsk = vsock_sk(sk);
1134
1135 poll_wait(file, sk_sleep(sk), wait);
1136 mask = 0;
1137
1138 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1139 /* Signify that there has been an error on this socket. */
1140 mask |= EPOLLERR;
1141
1142 /* INET sockets treat local write shutdown and peer write shutdown as a
1143 * case of EPOLLHUP set.
1144 */
1145 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1146 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1147 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1148 mask |= EPOLLHUP;
1149 }
1150
1151 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1152 vsk->peer_shutdown & SEND_SHUTDOWN) {
1153 mask |= EPOLLRDHUP;
1154 }
1155
1156 if (sk_is_readable(sk))
1157 mask |= EPOLLIN | EPOLLRDNORM;
1158
1159 if (sock->type == SOCK_DGRAM) {
1160 /* For datagram sockets we can read if there is something in
1161 * the queue and write as long as the socket isn't shutdown for
1162 * sending.
1163 */
1164 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1165 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1166 mask |= EPOLLIN | EPOLLRDNORM;
1167 }
1168
1169 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1170 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1171
1172 } else if (sock_type_connectible(sk->sk_type)) {
1173 const struct vsock_transport *transport;
1174
1175 lock_sock(sk);
1176
1177 transport = vsk->transport;
1178
1179 /* Listening sockets that have connections in their accept
1180 * queue can be read.
1181 */
1182 if (sk->sk_state == TCP_LISTEN
1183 && !vsock_is_accept_queue_empty(sk))
1184 mask |= EPOLLIN | EPOLLRDNORM;
1185
1186 /* If there is something in the queue then we can read. */
1187 if (transport && transport->stream_is_active(vsk) &&
1188 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1189 bool data_ready_now = false;
1190 int target = sock_rcvlowat(sk, 0, INT_MAX);
1191 int ret = transport->notify_poll_in(
1192 vsk, target, &data_ready_now);
1193 if (ret < 0) {
1194 mask |= EPOLLERR;
1195 } else {
1196 if (data_ready_now)
1197 mask |= EPOLLIN | EPOLLRDNORM;
1198
1199 }
1200 }
1201
1202 /* Sockets whose connections have been closed, reset, or
1203 * terminated should also be considered read, and we check the
1204 * shutdown flag for that.
1205 */
1206 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1207 vsk->peer_shutdown & SEND_SHUTDOWN) {
1208 mask |= EPOLLIN | EPOLLRDNORM;
1209 }
1210
1211 /* Connected sockets that can produce data can be written. */
1212 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1213 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1214 bool space_avail_now = false;
1215 int ret = transport->notify_poll_out(
1216 vsk, 1, &space_avail_now);
1217 if (ret < 0) {
1218 mask |= EPOLLERR;
1219 } else {
1220 if (space_avail_now)
1221 /* Remove EPOLLWRBAND since INET
1222 * sockets are not setting it.
1223 */
1224 mask |= EPOLLOUT | EPOLLWRNORM;
1225
1226 }
1227 }
1228 }
1229
1230 /* Simulate INET socket poll behaviors, which sets
1231 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1232 * but local send is not shutdown.
1233 */
1234 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1235 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1236 mask |= EPOLLOUT | EPOLLWRNORM;
1237
1238 }
1239
1240 release_sock(sk);
1241 }
1242
1243 return mask;
1244 }
1245
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1246 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1247 {
1248 struct vsock_sock *vsk = vsock_sk(sk);
1249
1250 if (WARN_ON_ONCE(!vsk->transport))
1251 return -ENODEV;
1252
1253 return vsk->transport->read_skb(vsk, read_actor);
1254 }
1255
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1256 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1257 size_t len)
1258 {
1259 int err;
1260 struct sock *sk;
1261 struct vsock_sock *vsk;
1262 struct sockaddr_vm *remote_addr;
1263 const struct vsock_transport *transport;
1264
1265 if (msg->msg_flags & MSG_OOB)
1266 return -EOPNOTSUPP;
1267
1268 /* For now, MSG_DONTWAIT is always assumed... */
1269 err = 0;
1270 sk = sock->sk;
1271 vsk = vsock_sk(sk);
1272
1273 lock_sock(sk);
1274
1275 transport = vsk->transport;
1276
1277 err = vsock_auto_bind(vsk);
1278 if (err)
1279 goto out;
1280
1281
1282 /* If the provided message contains an address, use that. Otherwise
1283 * fall back on the socket's remote handle (if it has been connected).
1284 */
1285 if (msg->msg_name &&
1286 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1287 &remote_addr) == 0) {
1288 /* Ensure this address is of the right type and is a valid
1289 * destination.
1290 */
1291
1292 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1293 remote_addr->svm_cid = transport->get_local_cid();
1294
1295 if (!vsock_addr_bound(remote_addr)) {
1296 err = -EINVAL;
1297 goto out;
1298 }
1299 } else if (sock->state == SS_CONNECTED) {
1300 remote_addr = &vsk->remote_addr;
1301
1302 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1303 remote_addr->svm_cid = transport->get_local_cid();
1304
1305 /* XXX Should connect() or this function ensure remote_addr is
1306 * bound?
1307 */
1308 if (!vsock_addr_bound(&vsk->remote_addr)) {
1309 err = -EINVAL;
1310 goto out;
1311 }
1312 } else {
1313 err = -EINVAL;
1314 goto out;
1315 }
1316
1317 if (!transport->dgram_allow(remote_addr->svm_cid,
1318 remote_addr->svm_port)) {
1319 err = -EINVAL;
1320 goto out;
1321 }
1322
1323 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1324
1325 out:
1326 release_sock(sk);
1327 return err;
1328 }
1329
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1330 static int vsock_dgram_connect(struct socket *sock,
1331 struct sockaddr *addr, int addr_len, int flags)
1332 {
1333 int err;
1334 struct sock *sk;
1335 struct vsock_sock *vsk;
1336 struct sockaddr_vm *remote_addr;
1337
1338 sk = sock->sk;
1339 vsk = vsock_sk(sk);
1340
1341 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1342 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1343 lock_sock(sk);
1344 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1345 VMADDR_PORT_ANY);
1346 sock->state = SS_UNCONNECTED;
1347 release_sock(sk);
1348 return 0;
1349 } else if (err != 0)
1350 return -EINVAL;
1351
1352 lock_sock(sk);
1353
1354 err = vsock_auto_bind(vsk);
1355 if (err)
1356 goto out;
1357
1358 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1359 remote_addr->svm_port)) {
1360 err = -EINVAL;
1361 goto out;
1362 }
1363
1364 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1365 sock->state = SS_CONNECTED;
1366
1367 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1368 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1369 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1370 *
1371 * This doesn't seem to be abnormal state for datagram sockets, as the
1372 * same approach can be see in other datagram socket types as well
1373 * (such as unix sockets).
1374 */
1375 sk->sk_state = TCP_ESTABLISHED;
1376
1377 out:
1378 release_sock(sk);
1379 return err;
1380 }
1381
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1382 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1383 size_t len, int flags)
1384 {
1385 struct sock *sk = sock->sk;
1386 struct vsock_sock *vsk = vsock_sk(sk);
1387
1388 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1389 }
1390
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1391 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1392 size_t len, int flags)
1393 {
1394 #ifdef CONFIG_BPF_SYSCALL
1395 struct sock *sk = sock->sk;
1396 const struct proto *prot;
1397
1398 prot = READ_ONCE(sk->sk_prot);
1399 if (prot != &vsock_proto)
1400 return prot->recvmsg(sk, msg, len, flags, NULL);
1401 #endif
1402
1403 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1404 }
1405 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1406
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1407 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1408 int __user *arg)
1409 {
1410 struct sock *sk = sock->sk;
1411 struct vsock_sock *vsk;
1412 int ret;
1413
1414 vsk = vsock_sk(sk);
1415
1416 switch (cmd) {
1417 case SIOCINQ: {
1418 ssize_t n_bytes;
1419
1420 if (!vsk->transport) {
1421 ret = -EOPNOTSUPP;
1422 break;
1423 }
1424
1425 if (sock_type_connectible(sk->sk_type) &&
1426 sk->sk_state == TCP_LISTEN) {
1427 ret = -EINVAL;
1428 break;
1429 }
1430
1431 n_bytes = vsock_stream_has_data(vsk);
1432 if (n_bytes < 0) {
1433 ret = n_bytes;
1434 break;
1435 }
1436 ret = put_user(n_bytes, arg);
1437 break;
1438 }
1439 case SIOCOUTQ: {
1440 ssize_t n_bytes;
1441
1442 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1443 ret = -EOPNOTSUPP;
1444 break;
1445 }
1446
1447 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1448 ret = -EINVAL;
1449 break;
1450 }
1451
1452 n_bytes = vsk->transport->unsent_bytes(vsk);
1453 if (n_bytes < 0) {
1454 ret = n_bytes;
1455 break;
1456 }
1457
1458 ret = put_user(n_bytes, arg);
1459 break;
1460 }
1461 default:
1462 ret = -ENOIOCTLCMD;
1463 }
1464
1465 return ret;
1466 }
1467
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1468 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1469 unsigned long arg)
1470 {
1471 int ret;
1472
1473 lock_sock(sock->sk);
1474 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1475 release_sock(sock->sk);
1476
1477 return ret;
1478 }
1479
1480 static const struct proto_ops vsock_dgram_ops = {
1481 .family = PF_VSOCK,
1482 .owner = THIS_MODULE,
1483 .release = vsock_release,
1484 .bind = vsock_bind,
1485 .connect = vsock_dgram_connect,
1486 .socketpair = sock_no_socketpair,
1487 .accept = sock_no_accept,
1488 .getname = vsock_getname,
1489 .poll = vsock_poll,
1490 .ioctl = vsock_ioctl,
1491 .listen = sock_no_listen,
1492 .shutdown = vsock_shutdown,
1493 .sendmsg = vsock_dgram_sendmsg,
1494 .recvmsg = vsock_dgram_recvmsg,
1495 .mmap = sock_no_mmap,
1496 .read_skb = vsock_read_skb,
1497 };
1498
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1499 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1500 {
1501 const struct vsock_transport *transport = vsk->transport;
1502
1503 if (!transport || !transport->cancel_pkt)
1504 return -EOPNOTSUPP;
1505
1506 return transport->cancel_pkt(vsk);
1507 }
1508
vsock_connect_timeout(struct work_struct * work)1509 static void vsock_connect_timeout(struct work_struct *work)
1510 {
1511 struct sock *sk;
1512 struct vsock_sock *vsk;
1513
1514 vsk = container_of(work, struct vsock_sock, connect_work.work);
1515 sk = sk_vsock(vsk);
1516
1517 lock_sock(sk);
1518 if (sk->sk_state == TCP_SYN_SENT &&
1519 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1520 sk->sk_state = TCP_CLOSE;
1521 sk->sk_socket->state = SS_UNCONNECTED;
1522 sk->sk_err = ETIMEDOUT;
1523 sk_error_report(sk);
1524 vsock_transport_cancel_pkt(vsk);
1525 }
1526 release_sock(sk);
1527
1528 sock_put(sk);
1529 }
1530
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1531 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1532 int addr_len, int flags)
1533 {
1534 int err;
1535 struct sock *sk;
1536 struct vsock_sock *vsk;
1537 const struct vsock_transport *transport;
1538 struct sockaddr_vm *remote_addr;
1539 long timeout;
1540 DEFINE_WAIT(wait);
1541
1542 err = 0;
1543 sk = sock->sk;
1544 vsk = vsock_sk(sk);
1545
1546 lock_sock(sk);
1547
1548 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1549 switch (sock->state) {
1550 case SS_CONNECTED:
1551 err = -EISCONN;
1552 goto out;
1553 case SS_DISCONNECTING:
1554 err = -EINVAL;
1555 goto out;
1556 case SS_CONNECTING:
1557 /* This continues on so we can move sock into the SS_CONNECTED
1558 * state once the connection has completed (at which point err
1559 * will be set to zero also). Otherwise, we will either wait
1560 * for the connection or return -EALREADY should this be a
1561 * non-blocking call.
1562 */
1563 err = -EALREADY;
1564 if (flags & O_NONBLOCK)
1565 goto out;
1566 break;
1567 default:
1568 if ((sk->sk_state == TCP_LISTEN) ||
1569 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1570 err = -EINVAL;
1571 goto out;
1572 }
1573
1574 /* Set the remote address that we are connecting to. */
1575 memcpy(&vsk->remote_addr, remote_addr,
1576 sizeof(vsk->remote_addr));
1577
1578 err = vsock_assign_transport(vsk, NULL);
1579 if (err)
1580 goto out;
1581
1582 transport = vsk->transport;
1583
1584 /* The hypervisor and well-known contexts do not have socket
1585 * endpoints.
1586 */
1587 if (!transport ||
1588 !transport->stream_allow(remote_addr->svm_cid,
1589 remote_addr->svm_port)) {
1590 err = -ENETUNREACH;
1591 goto out;
1592 }
1593
1594 if (vsock_msgzerocopy_allow(transport)) {
1595 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1596 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1597 /* If this option was set before 'connect()',
1598 * when transport was unknown, check that this
1599 * feature is supported here.
1600 */
1601 err = -EOPNOTSUPP;
1602 goto out;
1603 }
1604
1605 err = vsock_auto_bind(vsk);
1606 if (err)
1607 goto out;
1608
1609 sk->sk_state = TCP_SYN_SENT;
1610
1611 err = transport->connect(vsk);
1612 if (err < 0)
1613 goto out;
1614
1615 /* sk_err might have been set as a result of an earlier
1616 * (failed) connect attempt.
1617 */
1618 sk->sk_err = 0;
1619
1620 /* Mark sock as connecting and set the error code to in
1621 * progress in case this is a non-blocking connect.
1622 */
1623 sock->state = SS_CONNECTING;
1624 err = -EINPROGRESS;
1625 }
1626
1627 /* The receive path will handle all communication until we are able to
1628 * enter the connected state. Here we wait for the connection to be
1629 * completed or a notification of an error.
1630 */
1631 timeout = vsk->connect_timeout;
1632 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1633
1634 /* If the socket is already closing or it is in an error state, there
1635 * is no point in waiting.
1636 */
1637 while (sk->sk_state != TCP_ESTABLISHED &&
1638 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1639 if (flags & O_NONBLOCK) {
1640 /* If we're not going to block, we schedule a timeout
1641 * function to generate a timeout on the connection
1642 * attempt, in case the peer doesn't respond in a
1643 * timely manner. We hold on to the socket until the
1644 * timeout fires.
1645 */
1646 sock_hold(sk);
1647
1648 /* If the timeout function is already scheduled,
1649 * reschedule it, then ungrab the socket refcount to
1650 * keep it balanced.
1651 */
1652 if (mod_delayed_work(system_percpu_wq, &vsk->connect_work,
1653 timeout))
1654 sock_put(sk);
1655
1656 /* Skip ahead to preserve error code set above. */
1657 goto out_wait;
1658 }
1659
1660 release_sock(sk);
1661 timeout = schedule_timeout(timeout);
1662 lock_sock(sk);
1663
1664 /* Connection established. Whatever happens to socket once we
1665 * release it, that's not connect()'s concern. No need to go
1666 * into signal and timeout handling. Call it a day.
1667 *
1668 * Note that allowing to "reset" an already established socket
1669 * here is racy and insecure.
1670 */
1671 if (sk->sk_state == TCP_ESTABLISHED)
1672 break;
1673
1674 /* If connection was _not_ established and a signal/timeout came
1675 * to be, we want the socket's state reset. User space may want
1676 * to retry.
1677 *
1678 * sk_state != TCP_ESTABLISHED implies that socket is not on
1679 * vsock_connected_table. We keep the binding and the transport
1680 * assigned.
1681 */
1682 if (signal_pending(current) || timeout == 0) {
1683 err = timeout == 0 ? -ETIMEDOUT : sock_intr_errno(timeout);
1684
1685 /* Listener might have already responded with
1686 * VIRTIO_VSOCK_OP_RESPONSE. Its handling expects our
1687 * sk_state == TCP_SYN_SENT, which hereby we break.
1688 * In such case VIRTIO_VSOCK_OP_RST will follow.
1689 */
1690 sk->sk_state = TCP_CLOSE;
1691 sock->state = SS_UNCONNECTED;
1692
1693 /* Try to cancel VIRTIO_VSOCK_OP_REQUEST skb sent out by
1694 * transport->connect().
1695 */
1696 vsock_transport_cancel_pkt(vsk);
1697
1698 goto out_wait;
1699 }
1700
1701 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1702 }
1703
1704 if (sk->sk_err) {
1705 err = -sk->sk_err;
1706 sk->sk_state = TCP_CLOSE;
1707 sock->state = SS_UNCONNECTED;
1708 } else {
1709 err = 0;
1710 }
1711
1712 out_wait:
1713 finish_wait(sk_sleep(sk), &wait);
1714 out:
1715 release_sock(sk);
1716 return err;
1717 }
1718
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1719 static int vsock_accept(struct socket *sock, struct socket *newsock,
1720 struct proto_accept_arg *arg)
1721 {
1722 struct sock *listener;
1723 int err;
1724 struct sock *connected;
1725 struct vsock_sock *vconnected;
1726 long timeout;
1727 DEFINE_WAIT(wait);
1728
1729 err = 0;
1730 listener = sock->sk;
1731
1732 lock_sock(listener);
1733
1734 if (!sock_type_connectible(sock->type)) {
1735 err = -EOPNOTSUPP;
1736 goto out;
1737 }
1738
1739 if (listener->sk_state != TCP_LISTEN) {
1740 err = -EINVAL;
1741 goto out;
1742 }
1743
1744 /* Wait for children sockets to appear; these are the new sockets
1745 * created upon connection establishment.
1746 */
1747 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1748 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1749
1750 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1751 listener->sk_err == 0) {
1752 release_sock(listener);
1753 timeout = schedule_timeout(timeout);
1754 finish_wait(sk_sleep(listener), &wait);
1755 lock_sock(listener);
1756
1757 if (signal_pending(current)) {
1758 err = sock_intr_errno(timeout);
1759 goto out;
1760 } else if (timeout == 0) {
1761 err = -EAGAIN;
1762 goto out;
1763 }
1764
1765 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1766 }
1767 finish_wait(sk_sleep(listener), &wait);
1768
1769 if (listener->sk_err)
1770 err = -listener->sk_err;
1771
1772 if (connected) {
1773 sk_acceptq_removed(listener);
1774
1775 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1776 vconnected = vsock_sk(connected);
1777
1778 /* If the listener socket has received an error, then we should
1779 * reject this socket and return. Note that we simply mark the
1780 * socket rejected, drop our reference, and let the cleanup
1781 * function handle the cleanup; the fact that we found it in
1782 * the listener's accept queue guarantees that the cleanup
1783 * function hasn't run yet.
1784 */
1785 if (err) {
1786 vconnected->rejected = true;
1787 } else {
1788 newsock->state = SS_CONNECTED;
1789 sock_graft(connected, newsock);
1790 if (vsock_msgzerocopy_allow(vconnected->transport))
1791 set_bit(SOCK_SUPPORT_ZC,
1792 &connected->sk_socket->flags);
1793 }
1794
1795 release_sock(connected);
1796 sock_put(connected);
1797 }
1798
1799 out:
1800 release_sock(listener);
1801 return err;
1802 }
1803
vsock_listen(struct socket * sock,int backlog)1804 static int vsock_listen(struct socket *sock, int backlog)
1805 {
1806 int err;
1807 struct sock *sk;
1808 struct vsock_sock *vsk;
1809
1810 sk = sock->sk;
1811
1812 lock_sock(sk);
1813
1814 if (!sock_type_connectible(sk->sk_type)) {
1815 err = -EOPNOTSUPP;
1816 goto out;
1817 }
1818
1819 if (sock->state != SS_UNCONNECTED) {
1820 err = -EINVAL;
1821 goto out;
1822 }
1823
1824 vsk = vsock_sk(sk);
1825
1826 if (!vsock_addr_bound(&vsk->local_addr)) {
1827 err = -EINVAL;
1828 goto out;
1829 }
1830
1831 sk->sk_max_ack_backlog = backlog;
1832 sk->sk_state = TCP_LISTEN;
1833
1834 err = 0;
1835
1836 out:
1837 release_sock(sk);
1838 return err;
1839 }
1840
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1841 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1842 const struct vsock_transport *transport,
1843 u64 val)
1844 {
1845 if (val > vsk->buffer_max_size)
1846 val = vsk->buffer_max_size;
1847
1848 if (val < vsk->buffer_min_size)
1849 val = vsk->buffer_min_size;
1850
1851 if (val != vsk->buffer_size &&
1852 transport && transport->notify_buffer_size)
1853 transport->notify_buffer_size(vsk, &val);
1854
1855 vsk->buffer_size = val;
1856 }
1857
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1858 static int vsock_connectible_setsockopt(struct socket *sock,
1859 int level,
1860 int optname,
1861 sockptr_t optval,
1862 unsigned int optlen)
1863 {
1864 int err;
1865 struct sock *sk;
1866 struct vsock_sock *vsk;
1867 const struct vsock_transport *transport;
1868 u64 val;
1869
1870 if (level != AF_VSOCK && level != SOL_SOCKET)
1871 return -ENOPROTOOPT;
1872
1873 #define COPY_IN(_v) \
1874 do { \
1875 if (optlen < sizeof(_v)) { \
1876 err = -EINVAL; \
1877 goto exit; \
1878 } \
1879 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1880 err = -EFAULT; \
1881 goto exit; \
1882 } \
1883 } while (0)
1884
1885 err = 0;
1886 sk = sock->sk;
1887 vsk = vsock_sk(sk);
1888
1889 lock_sock(sk);
1890
1891 transport = vsk->transport;
1892
1893 if (level == SOL_SOCKET) {
1894 int zerocopy;
1895
1896 if (optname != SO_ZEROCOPY) {
1897 release_sock(sk);
1898 return sock_setsockopt(sock, level, optname, optval, optlen);
1899 }
1900
1901 /* Use 'int' type here, because variable to
1902 * set this option usually has this type.
1903 */
1904 COPY_IN(zerocopy);
1905
1906 if (zerocopy < 0 || zerocopy > 1) {
1907 err = -EINVAL;
1908 goto exit;
1909 }
1910
1911 if (transport && !vsock_msgzerocopy_allow(transport)) {
1912 err = -EOPNOTSUPP;
1913 goto exit;
1914 }
1915
1916 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1917 goto exit;
1918 }
1919
1920 switch (optname) {
1921 case SO_VM_SOCKETS_BUFFER_SIZE:
1922 COPY_IN(val);
1923 vsock_update_buffer_size(vsk, transport, val);
1924 break;
1925
1926 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1927 COPY_IN(val);
1928 vsk->buffer_max_size = val;
1929 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1930 break;
1931
1932 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1933 COPY_IN(val);
1934 vsk->buffer_min_size = val;
1935 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1936 break;
1937
1938 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1939 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1940 struct __kernel_sock_timeval tv;
1941
1942 err = sock_copy_user_timeval(&tv, optval, optlen,
1943 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1944 if (err)
1945 break;
1946 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1947 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1948 vsk->connect_timeout = tv.tv_sec * HZ +
1949 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1950 if (vsk->connect_timeout == 0)
1951 vsk->connect_timeout =
1952 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1953
1954 } else {
1955 err = -ERANGE;
1956 }
1957 break;
1958 }
1959
1960 default:
1961 err = -ENOPROTOOPT;
1962 break;
1963 }
1964
1965 #undef COPY_IN
1966
1967 exit:
1968 release_sock(sk);
1969 return err;
1970 }
1971
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1972 static int vsock_connectible_getsockopt(struct socket *sock,
1973 int level, int optname,
1974 char __user *optval,
1975 int __user *optlen)
1976 {
1977 struct sock *sk = sock->sk;
1978 struct vsock_sock *vsk = vsock_sk(sk);
1979
1980 union {
1981 u64 val64;
1982 struct old_timeval32 tm32;
1983 struct __kernel_old_timeval tm;
1984 struct __kernel_sock_timeval stm;
1985 } v;
1986
1987 int lv = sizeof(v.val64);
1988 int len;
1989
1990 if (level != AF_VSOCK)
1991 return -ENOPROTOOPT;
1992
1993 if (get_user(len, optlen))
1994 return -EFAULT;
1995
1996 memset(&v, 0, sizeof(v));
1997
1998 switch (optname) {
1999 case SO_VM_SOCKETS_BUFFER_SIZE:
2000 v.val64 = vsk->buffer_size;
2001 break;
2002
2003 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
2004 v.val64 = vsk->buffer_max_size;
2005 break;
2006
2007 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
2008 v.val64 = vsk->buffer_min_size;
2009 break;
2010
2011 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
2012 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
2013 lv = sock_get_timeout(vsk->connect_timeout, &v,
2014 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
2015 break;
2016
2017 default:
2018 return -ENOPROTOOPT;
2019 }
2020
2021 if (len < lv)
2022 return -EINVAL;
2023 if (len > lv)
2024 len = lv;
2025 if (copy_to_user(optval, &v, len))
2026 return -EFAULT;
2027
2028 if (put_user(len, optlen))
2029 return -EFAULT;
2030
2031 return 0;
2032 }
2033
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2034 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2035 size_t len)
2036 {
2037 struct sock *sk;
2038 struct vsock_sock *vsk;
2039 const struct vsock_transport *transport;
2040 ssize_t total_written;
2041 long timeout;
2042 int err;
2043 struct vsock_transport_send_notify_data send_data;
2044 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2045
2046 sk = sock->sk;
2047 vsk = vsock_sk(sk);
2048 total_written = 0;
2049 err = 0;
2050
2051 if (msg->msg_flags & MSG_OOB)
2052 return -EOPNOTSUPP;
2053
2054 lock_sock(sk);
2055
2056 transport = vsk->transport;
2057
2058 /* Callers should not provide a destination with connection oriented
2059 * sockets.
2060 */
2061 if (msg->msg_namelen) {
2062 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2063 goto out;
2064 }
2065
2066 /* Send data only if both sides are not shutdown in the direction. */
2067 if (sk->sk_shutdown & SEND_SHUTDOWN ||
2068 vsk->peer_shutdown & RCV_SHUTDOWN) {
2069 err = -EPIPE;
2070 goto out;
2071 }
2072
2073 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2074 !vsock_addr_bound(&vsk->local_addr)) {
2075 err = -ENOTCONN;
2076 goto out;
2077 }
2078
2079 if (!vsock_addr_bound(&vsk->remote_addr)) {
2080 err = -EDESTADDRREQ;
2081 goto out;
2082 }
2083
2084 if (msg->msg_flags & MSG_ZEROCOPY &&
2085 !vsock_msgzerocopy_allow(transport)) {
2086 err = -EOPNOTSUPP;
2087 goto out;
2088 }
2089
2090 /* Wait for room in the produce queue to enqueue our user's data. */
2091 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2092
2093 err = transport->notify_send_init(vsk, &send_data);
2094 if (err < 0)
2095 goto out;
2096
2097 while (total_written < len) {
2098 ssize_t written;
2099
2100 add_wait_queue(sk_sleep(sk), &wait);
2101 while (vsock_stream_has_space(vsk) == 0 &&
2102 sk->sk_err == 0 &&
2103 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2104 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2105
2106 /* Don't wait for non-blocking sockets. */
2107 if (timeout == 0) {
2108 err = -EAGAIN;
2109 remove_wait_queue(sk_sleep(sk), &wait);
2110 goto out_err;
2111 }
2112
2113 err = transport->notify_send_pre_block(vsk, &send_data);
2114 if (err < 0) {
2115 remove_wait_queue(sk_sleep(sk), &wait);
2116 goto out_err;
2117 }
2118
2119 release_sock(sk);
2120 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2121 lock_sock(sk);
2122 if (signal_pending(current)) {
2123 err = sock_intr_errno(timeout);
2124 remove_wait_queue(sk_sleep(sk), &wait);
2125 goto out_err;
2126 } else if (timeout == 0) {
2127 err = -EAGAIN;
2128 remove_wait_queue(sk_sleep(sk), &wait);
2129 goto out_err;
2130 }
2131 }
2132 remove_wait_queue(sk_sleep(sk), &wait);
2133
2134 /* These checks occur both as part of and after the loop
2135 * conditional since we need to check before and after
2136 * sleeping.
2137 */
2138 if (sk->sk_err) {
2139 err = -sk->sk_err;
2140 goto out_err;
2141 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2142 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2143 err = -EPIPE;
2144 goto out_err;
2145 }
2146
2147 err = transport->notify_send_pre_enqueue(vsk, &send_data);
2148 if (err < 0)
2149 goto out_err;
2150
2151 /* Note that enqueue will only write as many bytes as are free
2152 * in the produce queue, so we don't need to ensure len is
2153 * smaller than the queue size. It is the caller's
2154 * responsibility to check how many bytes we were able to send.
2155 */
2156
2157 if (sk->sk_type == SOCK_SEQPACKET) {
2158 written = transport->seqpacket_enqueue(vsk,
2159 msg, len - total_written);
2160 } else {
2161 written = transport->stream_enqueue(vsk,
2162 msg, len - total_written);
2163 }
2164
2165 if (written < 0) {
2166 err = written;
2167 goto out_err;
2168 }
2169
2170 total_written += written;
2171
2172 err = transport->notify_send_post_enqueue(
2173 vsk, written, &send_data);
2174 if (err < 0)
2175 goto out_err;
2176
2177 }
2178
2179 out_err:
2180 if (total_written > 0) {
2181 /* Return number of written bytes only if:
2182 * 1) SOCK_STREAM socket.
2183 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2184 */
2185 if (sk->sk_type == SOCK_STREAM || total_written == len)
2186 err = total_written;
2187 }
2188 out:
2189 if (sk->sk_type == SOCK_STREAM)
2190 err = sk_stream_error(sk, msg->msg_flags, err);
2191
2192 release_sock(sk);
2193 return err;
2194 }
2195
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2196 static int vsock_connectible_wait_data(struct sock *sk,
2197 struct wait_queue_entry *wait,
2198 long timeout,
2199 struct vsock_transport_recv_notify_data *recv_data,
2200 size_t target)
2201 {
2202 const struct vsock_transport *transport;
2203 struct vsock_sock *vsk;
2204 s64 data;
2205 int err;
2206
2207 vsk = vsock_sk(sk);
2208 err = 0;
2209 transport = vsk->transport;
2210
2211 while (1) {
2212 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2213 data = vsock_connectible_has_data(vsk);
2214 if (data != 0)
2215 break;
2216
2217 if (sk->sk_err != 0 ||
2218 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2219 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2220 break;
2221 }
2222
2223 /* Don't wait for non-blocking sockets. */
2224 if (timeout == 0) {
2225 err = -EAGAIN;
2226 break;
2227 }
2228
2229 if (recv_data) {
2230 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2231 if (err < 0)
2232 break;
2233 }
2234
2235 release_sock(sk);
2236 timeout = schedule_timeout(timeout);
2237 lock_sock(sk);
2238
2239 if (signal_pending(current)) {
2240 err = sock_intr_errno(timeout);
2241 break;
2242 } else if (timeout == 0) {
2243 err = -EAGAIN;
2244 break;
2245 }
2246 }
2247
2248 finish_wait(sk_sleep(sk), wait);
2249
2250 if (err)
2251 return err;
2252
2253 /* Internal transport error when checking for available
2254 * data. XXX This should be changed to a connection
2255 * reset in a later change.
2256 */
2257 if (data < 0)
2258 return -ENOMEM;
2259
2260 return data;
2261 }
2262
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2263 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2264 size_t len, int flags)
2265 {
2266 struct vsock_transport_recv_notify_data recv_data;
2267 const struct vsock_transport *transport;
2268 struct vsock_sock *vsk;
2269 ssize_t copied;
2270 size_t target;
2271 long timeout;
2272 int err;
2273
2274 DEFINE_WAIT(wait);
2275
2276 vsk = vsock_sk(sk);
2277 transport = vsk->transport;
2278
2279 /* We must not copy less than target bytes into the user's buffer
2280 * before returning successfully, so we wait for the consume queue to
2281 * have that much data to consume before dequeueing. Note that this
2282 * makes it impossible to handle cases where target is greater than the
2283 * queue size.
2284 */
2285 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2286 if (target >= transport->stream_rcvhiwat(vsk)) {
2287 err = -ENOMEM;
2288 goto out;
2289 }
2290 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2291 copied = 0;
2292
2293 err = transport->notify_recv_init(vsk, target, &recv_data);
2294 if (err < 0)
2295 goto out;
2296
2297
2298 while (1) {
2299 ssize_t read;
2300
2301 err = vsock_connectible_wait_data(sk, &wait, timeout,
2302 &recv_data, target);
2303 if (err <= 0)
2304 break;
2305
2306 err = transport->notify_recv_pre_dequeue(vsk, target,
2307 &recv_data);
2308 if (err < 0)
2309 break;
2310
2311 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2312 if (read < 0) {
2313 err = read;
2314 break;
2315 }
2316
2317 copied += read;
2318
2319 err = transport->notify_recv_post_dequeue(vsk, target, read,
2320 !(flags & MSG_PEEK), &recv_data);
2321 if (err < 0)
2322 goto out;
2323
2324 if (read >= target || flags & MSG_PEEK)
2325 break;
2326
2327 target -= read;
2328 }
2329
2330 if (sk->sk_err)
2331 err = -sk->sk_err;
2332 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2333 err = 0;
2334
2335 if (copied > 0)
2336 err = copied;
2337
2338 out:
2339 return err;
2340 }
2341
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2342 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2343 size_t len, int flags)
2344 {
2345 const struct vsock_transport *transport;
2346 struct vsock_sock *vsk;
2347 ssize_t msg_len;
2348 long timeout;
2349 int err = 0;
2350 DEFINE_WAIT(wait);
2351
2352 vsk = vsock_sk(sk);
2353 transport = vsk->transport;
2354
2355 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2356
2357 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2358 if (err <= 0)
2359 goto out;
2360
2361 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2362
2363 if (msg_len < 0) {
2364 err = msg_len;
2365 goto out;
2366 }
2367
2368 if (sk->sk_err) {
2369 err = -sk->sk_err;
2370 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2371 err = 0;
2372 } else {
2373 /* User sets MSG_TRUNC, so return real length of
2374 * packet.
2375 */
2376 if (flags & MSG_TRUNC)
2377 err = msg_len;
2378 else
2379 err = len - msg_data_left(msg);
2380
2381 /* Always set MSG_TRUNC if real length of packet is
2382 * bigger than user's buffer.
2383 */
2384 if (msg_len > len)
2385 msg->msg_flags |= MSG_TRUNC;
2386 }
2387
2388 out:
2389 return err;
2390 }
2391
2392 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2393 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2394 int flags)
2395 {
2396 struct sock *sk;
2397 struct vsock_sock *vsk;
2398 const struct vsock_transport *transport;
2399 int err;
2400
2401 sk = sock->sk;
2402
2403 if (unlikely(flags & MSG_ERRQUEUE))
2404 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2405
2406 vsk = vsock_sk(sk);
2407 err = 0;
2408
2409 lock_sock(sk);
2410
2411 transport = vsk->transport;
2412
2413 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2414 /* Recvmsg is supposed to return 0 if a peer performs an
2415 * orderly shutdown. Differentiate between that case and when a
2416 * peer has not connected or a local shutdown occurred with the
2417 * SOCK_DONE flag.
2418 */
2419 if (sock_flag(sk, SOCK_DONE))
2420 err = 0;
2421 else
2422 err = -ENOTCONN;
2423
2424 goto out;
2425 }
2426
2427 if (flags & MSG_OOB) {
2428 err = -EOPNOTSUPP;
2429 goto out;
2430 }
2431
2432 /* We don't check peer_shutdown flag here since peer may actually shut
2433 * down, but there can be data in the queue that a local socket can
2434 * receive.
2435 */
2436 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2437 err = 0;
2438 goto out;
2439 }
2440
2441 /* It is valid on Linux to pass in a zero-length receive buffer. This
2442 * is not an error. We may as well bail out now.
2443 */
2444 if (!len) {
2445 err = 0;
2446 goto out;
2447 }
2448
2449 if (sk->sk_type == SOCK_STREAM)
2450 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2451 else
2452 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2453
2454 out:
2455 release_sock(sk);
2456 return err;
2457 }
2458
2459 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2460 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2461 int flags)
2462 {
2463 #ifdef CONFIG_BPF_SYSCALL
2464 struct sock *sk = sock->sk;
2465 const struct proto *prot;
2466
2467 prot = READ_ONCE(sk->sk_prot);
2468 if (prot != &vsock_proto)
2469 return prot->recvmsg(sk, msg, len, flags, NULL);
2470 #endif
2471
2472 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2473 }
2474 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2475
vsock_set_rcvlowat(struct sock * sk,int val)2476 static int vsock_set_rcvlowat(struct sock *sk, int val)
2477 {
2478 const struct vsock_transport *transport;
2479 struct vsock_sock *vsk;
2480
2481 vsk = vsock_sk(sk);
2482
2483 if (val > vsk->buffer_size)
2484 return -EINVAL;
2485
2486 transport = vsk->transport;
2487
2488 if (transport && transport->notify_set_rcvlowat) {
2489 int err;
2490
2491 err = transport->notify_set_rcvlowat(vsk, val);
2492 if (err)
2493 return err;
2494 }
2495
2496 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2497 return 0;
2498 }
2499
2500 static const struct proto_ops vsock_stream_ops = {
2501 .family = PF_VSOCK,
2502 .owner = THIS_MODULE,
2503 .release = vsock_release,
2504 .bind = vsock_bind,
2505 .connect = vsock_connect,
2506 .socketpair = sock_no_socketpair,
2507 .accept = vsock_accept,
2508 .getname = vsock_getname,
2509 .poll = vsock_poll,
2510 .ioctl = vsock_ioctl,
2511 .listen = vsock_listen,
2512 .shutdown = vsock_shutdown,
2513 .setsockopt = vsock_connectible_setsockopt,
2514 .getsockopt = vsock_connectible_getsockopt,
2515 .sendmsg = vsock_connectible_sendmsg,
2516 .recvmsg = vsock_connectible_recvmsg,
2517 .mmap = sock_no_mmap,
2518 .set_rcvlowat = vsock_set_rcvlowat,
2519 .read_skb = vsock_read_skb,
2520 };
2521
2522 static const struct proto_ops vsock_seqpacket_ops = {
2523 .family = PF_VSOCK,
2524 .owner = THIS_MODULE,
2525 .release = vsock_release,
2526 .bind = vsock_bind,
2527 .connect = vsock_connect,
2528 .socketpair = sock_no_socketpair,
2529 .accept = vsock_accept,
2530 .getname = vsock_getname,
2531 .poll = vsock_poll,
2532 .ioctl = vsock_ioctl,
2533 .listen = vsock_listen,
2534 .shutdown = vsock_shutdown,
2535 .setsockopt = vsock_connectible_setsockopt,
2536 .getsockopt = vsock_connectible_getsockopt,
2537 .sendmsg = vsock_connectible_sendmsg,
2538 .recvmsg = vsock_connectible_recvmsg,
2539 .mmap = sock_no_mmap,
2540 .read_skb = vsock_read_skb,
2541 };
2542
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2543 static int vsock_create(struct net *net, struct socket *sock,
2544 int protocol, int kern)
2545 {
2546 struct vsock_sock *vsk;
2547 struct sock *sk;
2548 int ret;
2549
2550 if (!sock)
2551 return -EINVAL;
2552
2553 if (protocol && protocol != PF_VSOCK)
2554 return -EPROTONOSUPPORT;
2555
2556 switch (sock->type) {
2557 case SOCK_DGRAM:
2558 sock->ops = &vsock_dgram_ops;
2559 break;
2560 case SOCK_STREAM:
2561 sock->ops = &vsock_stream_ops;
2562 break;
2563 case SOCK_SEQPACKET:
2564 sock->ops = &vsock_seqpacket_ops;
2565 break;
2566 default:
2567 return -ESOCKTNOSUPPORT;
2568 }
2569
2570 sock->state = SS_UNCONNECTED;
2571
2572 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2573 if (!sk)
2574 return -ENOMEM;
2575
2576 vsk = vsock_sk(sk);
2577
2578 if (sock->type == SOCK_DGRAM) {
2579 ret = vsock_assign_transport(vsk, NULL);
2580 if (ret < 0) {
2581 sock->sk = NULL;
2582 sock_put(sk);
2583 return ret;
2584 }
2585 }
2586
2587 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2588 * proto_ops, so there is no handler for custom logic.
2589 */
2590 if (sock_type_connectible(sock->type))
2591 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2592
2593 vsock_insert_unbound(vsk);
2594
2595 return 0;
2596 }
2597
2598 static const struct net_proto_family vsock_family_ops = {
2599 .family = AF_VSOCK,
2600 .create = vsock_create,
2601 .owner = THIS_MODULE,
2602 };
2603
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2604 static long vsock_dev_do_ioctl(struct file *filp,
2605 unsigned int cmd, void __user *ptr)
2606 {
2607 u32 __user *p = ptr;
2608 int retval = 0;
2609 u32 cid;
2610
2611 switch (cmd) {
2612 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2613 /* To be compatible with the VMCI behavior, we prioritize the
2614 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2615 */
2616 cid = vsock_registered_transport_cid(&transport_g2h);
2617 if (cid == VMADDR_CID_ANY)
2618 cid = vsock_registered_transport_cid(&transport_h2g);
2619 if (cid == VMADDR_CID_ANY)
2620 cid = vsock_registered_transport_cid(&transport_local);
2621
2622 if (put_user(cid, p) != 0)
2623 retval = -EFAULT;
2624 break;
2625
2626 default:
2627 retval = -ENOIOCTLCMD;
2628 }
2629
2630 return retval;
2631 }
2632
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2633 static long vsock_dev_ioctl(struct file *filp,
2634 unsigned int cmd, unsigned long arg)
2635 {
2636 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2637 }
2638
2639 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2640 static long vsock_dev_compat_ioctl(struct file *filp,
2641 unsigned int cmd, unsigned long arg)
2642 {
2643 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2644 }
2645 #endif
2646
2647 static const struct file_operations vsock_device_ops = {
2648 .owner = THIS_MODULE,
2649 .unlocked_ioctl = vsock_dev_ioctl,
2650 #ifdef CONFIG_COMPAT
2651 .compat_ioctl = vsock_dev_compat_ioctl,
2652 #endif
2653 .open = nonseekable_open,
2654 };
2655
2656 static struct miscdevice vsock_device = {
2657 .name = "vsock",
2658 .fops = &vsock_device_ops,
2659 };
2660
vsock_init(void)2661 static int __init vsock_init(void)
2662 {
2663 int err = 0;
2664
2665 vsock_init_tables();
2666
2667 vsock_proto.owner = THIS_MODULE;
2668 vsock_device.minor = MISC_DYNAMIC_MINOR;
2669 err = misc_register(&vsock_device);
2670 if (err) {
2671 pr_err("Failed to register misc device\n");
2672 goto err_reset_transport;
2673 }
2674
2675 err = proto_register(&vsock_proto, 1); /* we want our slab */
2676 if (err) {
2677 pr_err("Cannot register vsock protocol\n");
2678 goto err_deregister_misc;
2679 }
2680
2681 err = sock_register(&vsock_family_ops);
2682 if (err) {
2683 pr_err("could not register af_vsock (%d) address family: %d\n",
2684 AF_VSOCK, err);
2685 goto err_unregister_proto;
2686 }
2687
2688 vsock_bpf_build_proto();
2689
2690 return 0;
2691
2692 err_unregister_proto:
2693 proto_unregister(&vsock_proto);
2694 err_deregister_misc:
2695 misc_deregister(&vsock_device);
2696 err_reset_transport:
2697 return err;
2698 }
2699
vsock_exit(void)2700 static void __exit vsock_exit(void)
2701 {
2702 misc_deregister(&vsock_device);
2703 sock_unregister(AF_VSOCK);
2704 proto_unregister(&vsock_proto);
2705 }
2706
vsock_core_get_transport(struct vsock_sock * vsk)2707 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2708 {
2709 return vsk->transport;
2710 }
2711 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2712
vsock_core_register(const struct vsock_transport * t,int features)2713 int vsock_core_register(const struct vsock_transport *t, int features)
2714 {
2715 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2716 int err = mutex_lock_interruptible(&vsock_register_mutex);
2717
2718 if (err)
2719 return err;
2720
2721 t_h2g = transport_h2g;
2722 t_g2h = transport_g2h;
2723 t_dgram = transport_dgram;
2724 t_local = transport_local;
2725
2726 if (features & VSOCK_TRANSPORT_F_H2G) {
2727 if (t_h2g) {
2728 err = -EBUSY;
2729 goto err_busy;
2730 }
2731 t_h2g = t;
2732 }
2733
2734 if (features & VSOCK_TRANSPORT_F_G2H) {
2735 if (t_g2h) {
2736 err = -EBUSY;
2737 goto err_busy;
2738 }
2739 t_g2h = t;
2740 }
2741
2742 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2743 if (t_dgram) {
2744 err = -EBUSY;
2745 goto err_busy;
2746 }
2747 t_dgram = t;
2748 }
2749
2750 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2751 if (t_local) {
2752 err = -EBUSY;
2753 goto err_busy;
2754 }
2755 t_local = t;
2756 }
2757
2758 transport_h2g = t_h2g;
2759 transport_g2h = t_g2h;
2760 transport_dgram = t_dgram;
2761 transport_local = t_local;
2762
2763 err_busy:
2764 mutex_unlock(&vsock_register_mutex);
2765 return err;
2766 }
2767 EXPORT_SYMBOL_GPL(vsock_core_register);
2768
vsock_core_unregister(const struct vsock_transport * t)2769 void vsock_core_unregister(const struct vsock_transport *t)
2770 {
2771 mutex_lock(&vsock_register_mutex);
2772
2773 if (transport_h2g == t)
2774 transport_h2g = NULL;
2775
2776 if (transport_g2h == t)
2777 transport_g2h = NULL;
2778
2779 if (transport_dgram == t)
2780 transport_dgram = NULL;
2781
2782 if (transport_local == t)
2783 transport_local = NULL;
2784
2785 mutex_unlock(&vsock_register_mutex);
2786 }
2787 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2788
2789 module_init(vsock_init);
2790 module_exit(vsock_exit);
2791
2792 MODULE_AUTHOR("VMware, Inc.");
2793 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2794 MODULE_VERSION("1.0.2.0-k");
2795 MODULE_LICENSE("GPL v2");
2796