xref: /linux/net/vmw_vsock/af_vsock.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	lockdep_assert_held(&vsock_register_mutex);
411 
412 	if (!transport_local)
413 		return false;
414 
415 	if (remote_cid == VMADDR_CID_LOCAL)
416 		return true;
417 
418 	if (transport_g2h) {
419 		return remote_cid == transport_g2h->get_local_cid();
420 	} else {
421 		return remote_cid == VMADDR_CID_HOST;
422 	}
423 }
424 
425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 	if (!vsk->transport)
428 		return;
429 
430 	vsk->transport->destruct(vsk);
431 	module_put(vsk->transport->module);
432 	vsk->transport = NULL;
433 }
434 
435 /* Assign a transport to a socket and call the .init transport callback.
436  *
437  * Note: for connection oriented socket this must be called when vsk->remote_addr
438  * is set (e.g. during the connect() or when a connection request on a listener
439  * socket is received).
440  * The vsk->remote_addr is used to decide which transport to use:
441  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442  *    g2h is not loaded, will use local transport;
443  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
446  */
447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 	const struct vsock_transport *new_transport;
450 	struct sock *sk = sk_vsock(vsk);
451 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 	__u8 remote_flags;
453 	int ret;
454 
455 	/* If the packet is coming with the source and destination CIDs higher
456 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 	 * forwarded to the host should be established. Then the host will
458 	 * need to forward the packets to the guest.
459 	 *
460 	 * The flag is set on the (listen) receive path (psk is not NULL). On
461 	 * the connect path the flag can be set by the user space application.
462 	 */
463 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466 
467 	remote_flags = vsk->remote_addr.svm_flags;
468 
469 	mutex_lock(&vsock_register_mutex);
470 
471 	switch (sk->sk_type) {
472 	case SOCK_DGRAM:
473 		new_transport = transport_dgram;
474 		break;
475 	case SOCK_STREAM:
476 	case SOCK_SEQPACKET:
477 		if (vsock_use_local_transport(remote_cid))
478 			new_transport = transport_local;
479 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 			 (remote_flags & VMADDR_FLAG_TO_HOST))
481 			new_transport = transport_g2h;
482 		else
483 			new_transport = transport_h2g;
484 		break;
485 	default:
486 		ret = -ESOCKTNOSUPPORT;
487 		goto err;
488 	}
489 
490 	if (vsk->transport) {
491 		if (vsk->transport == new_transport) {
492 			ret = 0;
493 			goto err;
494 		}
495 
496 		/* transport->release() must be called with sock lock acquired.
497 		 * This path can only be taken during vsock_connect(), where we
498 		 * have already held the sock lock. In the other cases, this
499 		 * function is called on a new socket which is not assigned to
500 		 * any transport.
501 		 */
502 		vsk->transport->release(vsk);
503 		vsock_deassign_transport(vsk);
504 
505 		/* transport's release() and destruct() can touch some socket
506 		 * state, since we are reassigning the socket to a new transport
507 		 * during vsock_connect(), let's reset these fields to have a
508 		 * clean state.
509 		 */
510 		sock_reset_flag(sk, SOCK_DONE);
511 		sk->sk_state = TCP_CLOSE;
512 		vsk->peer_shutdown = 0;
513 	}
514 
515 	/* We increase the module refcnt to prevent the transport unloading
516 	 * while there are open sockets assigned to it.
517 	 */
518 	if (!new_transport || !try_module_get(new_transport->module)) {
519 		ret = -ENODEV;
520 		goto err;
521 	}
522 
523 	/* It's safe to release the mutex after a successful try_module_get().
524 	 * Whichever transport `new_transport` points at, it won't go away until
525 	 * the last module_put() below or in vsock_deassign_transport().
526 	 */
527 	mutex_unlock(&vsock_register_mutex);
528 
529 	if (sk->sk_type == SOCK_SEQPACKET) {
530 		if (!new_transport->seqpacket_allow ||
531 		    !new_transport->seqpacket_allow(remote_cid)) {
532 			module_put(new_transport->module);
533 			return -ESOCKTNOSUPPORT;
534 		}
535 	}
536 
537 	ret = new_transport->init(vsk, psk);
538 	if (ret) {
539 		module_put(new_transport->module);
540 		return ret;
541 	}
542 
543 	vsk->transport = new_transport;
544 
545 	return 0;
546 err:
547 	mutex_unlock(&vsock_register_mutex);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551 
552 /*
553  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555  */
556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 	u32 cid = VMADDR_CID_ANY;
559 
560 	mutex_lock(&vsock_register_mutex);
561 	if (*transport)
562 		cid = (*transport)->get_local_cid();
563 	mutex_unlock(&vsock_register_mutex);
564 
565 	return cid;
566 }
567 
568 bool vsock_find_cid(unsigned int cid)
569 {
570 	if (cid == vsock_registered_transport_cid(&transport_g2h))
571 		return true;
572 
573 	if (transport_h2g && cid == VMADDR_CID_HOST)
574 		return true;
575 
576 	if (transport_local && cid == VMADDR_CID_LOCAL)
577 		return true;
578 
579 	return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582 
583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 	struct vsock_sock *vlistener;
586 	struct vsock_sock *vconnected;
587 
588 	vlistener = vsock_sk(listener);
589 
590 	if (list_empty(&vlistener->accept_queue))
591 		return NULL;
592 
593 	vconnected = list_entry(vlistener->accept_queue.next,
594 				struct vsock_sock, accept_queue);
595 
596 	list_del_init(&vconnected->accept_queue);
597 	sock_put(listener);
598 	/* The caller will need a reference on the connected socket so we let
599 	 * it call sock_put().
600 	 */
601 
602 	return sk_vsock(vconnected);
603 }
604 
605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 	struct vsock_sock *vsk = vsock_sk(sk);
608 	return list_empty(&vsk->accept_queue);
609 }
610 
611 static bool vsock_is_pending(struct sock *sk)
612 {
613 	struct vsock_sock *vsk = vsock_sk(sk);
614 	return !list_empty(&vsk->pending_links);
615 }
616 
617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 	struct vsock_sock *vsk = vsock_sk(sk);
620 
621 	if (!vsk->transport)
622 		return -ENODEV;
623 
624 	return vsk->transport->shutdown(vsk, mode);
625 }
626 
627 static void vsock_pending_work(struct work_struct *work)
628 {
629 	struct sock *sk;
630 	struct sock *listener;
631 	struct vsock_sock *vsk;
632 	bool cleanup;
633 
634 	vsk = container_of(work, struct vsock_sock, pending_work.work);
635 	sk = sk_vsock(vsk);
636 	listener = vsk->listener;
637 	cleanup = true;
638 
639 	lock_sock(listener);
640 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641 
642 	if (vsock_is_pending(sk)) {
643 		vsock_remove_pending(listener, sk);
644 
645 		sk_acceptq_removed(listener);
646 	} else if (!vsk->rejected) {
647 		/* We are not on the pending list and accept() did not reject
648 		 * us, so we must have been accepted by our user process.  We
649 		 * just need to drop our references to the sockets and be on
650 		 * our way.
651 		 */
652 		cleanup = false;
653 		goto out;
654 	}
655 
656 	/* We need to remove ourself from the global connected sockets list so
657 	 * incoming packets can't find this socket, and to reduce the reference
658 	 * count.
659 	 */
660 	vsock_remove_connected(vsk);
661 
662 	sk->sk_state = TCP_CLOSE;
663 
664 out:
665 	release_sock(sk);
666 	release_sock(listener);
667 	if (cleanup)
668 		sock_put(sk);
669 
670 	sock_put(sk);
671 	sock_put(listener);
672 }
673 
674 /**** SOCKET OPERATIONS ****/
675 
676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 				    struct sockaddr_vm *addr)
678 {
679 	static u32 port;
680 	struct sockaddr_vm new_addr;
681 
682 	if (!port)
683 		port = get_random_u32_above(LAST_RESERVED_PORT);
684 
685 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686 
687 	if (addr->svm_port == VMADDR_PORT_ANY) {
688 		bool found = false;
689 		unsigned int i;
690 
691 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 			if (port == VMADDR_PORT_ANY ||
693 			    port <= LAST_RESERVED_PORT)
694 				port = LAST_RESERVED_PORT + 1;
695 
696 			new_addr.svm_port = port++;
697 
698 			if (!__vsock_find_bound_socket(&new_addr)) {
699 				found = true;
700 				break;
701 			}
702 		}
703 
704 		if (!found)
705 			return -EADDRNOTAVAIL;
706 	} else {
707 		/* If port is in reserved range, ensure caller
708 		 * has necessary privileges.
709 		 */
710 		if (addr->svm_port <= LAST_RESERVED_PORT &&
711 		    !capable(CAP_NET_BIND_SERVICE)) {
712 			return -EACCES;
713 		}
714 
715 		if (__vsock_find_bound_socket(&new_addr))
716 			return -EADDRINUSE;
717 	}
718 
719 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720 
721 	/* Remove connection oriented sockets from the unbound list and add them
722 	 * to the hash table for easy lookup by its address.  The unbound list
723 	 * is simply an extra entry at the end of the hash table, a trick used
724 	 * by AF_UNIX.
725 	 */
726 	__vsock_remove_bound(vsk);
727 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728 
729 	return 0;
730 }
731 
732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 			      struct sockaddr_vm *addr)
734 {
735 	return vsk->transport->dgram_bind(vsk, addr);
736 }
737 
738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 	struct vsock_sock *vsk = vsock_sk(sk);
741 	int retval;
742 
743 	/* First ensure this socket isn't already bound. */
744 	if (vsock_addr_bound(&vsk->local_addr))
745 		return -EINVAL;
746 
747 	/* Now bind to the provided address or select appropriate values if
748 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
749 	 * like AF_INET prevents binding to a non-local IP address (in most
750 	 * cases), we only allow binding to a local CID.
751 	 */
752 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 		return -EADDRNOTAVAIL;
754 
755 	switch (sk->sk_socket->type) {
756 	case SOCK_STREAM:
757 	case SOCK_SEQPACKET:
758 		spin_lock_bh(&vsock_table_lock);
759 		retval = __vsock_bind_connectible(vsk, addr);
760 		spin_unlock_bh(&vsock_table_lock);
761 		break;
762 
763 	case SOCK_DGRAM:
764 		retval = __vsock_bind_dgram(vsk, addr);
765 		break;
766 
767 	default:
768 		retval = -EINVAL;
769 		break;
770 	}
771 
772 	return retval;
773 }
774 
775 static void vsock_connect_timeout(struct work_struct *work);
776 
777 static struct sock *__vsock_create(struct net *net,
778 				   struct socket *sock,
779 				   struct sock *parent,
780 				   gfp_t priority,
781 				   unsigned short type,
782 				   int kern)
783 {
784 	struct sock *sk;
785 	struct vsock_sock *psk;
786 	struct vsock_sock *vsk;
787 
788 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 	if (!sk)
790 		return NULL;
791 
792 	sock_init_data(sock, sk);
793 
794 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
795 	 * non-NULL. We make sure that our sockets always have a type by
796 	 * setting it here if needed.
797 	 */
798 	if (!sock)
799 		sk->sk_type = type;
800 
801 	vsk = vsock_sk(sk);
802 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804 
805 	sk->sk_destruct = vsock_sk_destruct;
806 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 	sock_reset_flag(sk, SOCK_DONE);
808 
809 	INIT_LIST_HEAD(&vsk->bound_table);
810 	INIT_LIST_HEAD(&vsk->connected_table);
811 	vsk->listener = NULL;
812 	INIT_LIST_HEAD(&vsk->pending_links);
813 	INIT_LIST_HEAD(&vsk->accept_queue);
814 	vsk->rejected = false;
815 	vsk->sent_request = false;
816 	vsk->ignore_connecting_rst = false;
817 	vsk->peer_shutdown = 0;
818 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820 
821 	psk = parent ? vsock_sk(parent) : NULL;
822 	if (parent) {
823 		vsk->trusted = psk->trusted;
824 		vsk->owner = get_cred(psk->owner);
825 		vsk->connect_timeout = psk->connect_timeout;
826 		vsk->buffer_size = psk->buffer_size;
827 		vsk->buffer_min_size = psk->buffer_min_size;
828 		vsk->buffer_max_size = psk->buffer_max_size;
829 		security_sk_clone(parent, sk);
830 	} else {
831 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 		vsk->owner = get_current_cred();
833 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 	}
838 
839 	return sk;
840 }
841 
842 static bool sock_type_connectible(u16 type)
843 {
844 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846 
847 static void __vsock_release(struct sock *sk, int level)
848 {
849 	struct vsock_sock *vsk;
850 	struct sock *pending;
851 
852 	vsk = vsock_sk(sk);
853 	pending = NULL;	/* Compiler warning. */
854 
855 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 	 * version to avoid the warning "possible recursive locking
857 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 	 * is the same as lock_sock(sk).
859 	 */
860 	lock_sock_nested(sk, level);
861 
862 	/* Indicate to vsock_remove_sock() that the socket is being released and
863 	 * can be removed from the bound_table. Unlike transport reassignment
864 	 * case, where the socket must remain bound despite vsock_remove_sock()
865 	 * being called from the transport release() callback.
866 	 */
867 	sock_set_flag(sk, SOCK_DEAD);
868 
869 	if (vsk->transport)
870 		vsk->transport->release(vsk);
871 	else if (sock_type_connectible(sk->sk_type))
872 		vsock_remove_sock(vsk);
873 
874 	sock_orphan(sk);
875 	sk->sk_shutdown = SHUTDOWN_MASK;
876 
877 	skb_queue_purge(&sk->sk_receive_queue);
878 
879 	/* Clean up any sockets that never were accepted. */
880 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
882 		sock_put(pending);
883 	}
884 
885 	release_sock(sk);
886 	sock_put(sk);
887 }
888 
889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 	struct vsock_sock *vsk = vsock_sk(sk);
892 
893 	/* Flush MSG_ZEROCOPY leftovers. */
894 	__skb_queue_purge(&sk->sk_error_queue);
895 
896 	vsock_deassign_transport(vsk);
897 
898 	/* When clearing these addresses, there's no need to set the family and
899 	 * possibly register the address family with the kernel.
900 	 */
901 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903 
904 	put_cred(vsk->owner);
905 }
906 
907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 	int err;
910 
911 	err = sock_queue_rcv_skb(sk, skb);
912 	if (err)
913 		kfree_skb(skb);
914 
915 	return err;
916 }
917 
918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 			      parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924 
925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 	if (WARN_ON(!vsk->transport))
928 		return 0;
929 
930 	return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933 
934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 	struct sock *sk = sk_vsock(vsk);
937 
938 	if (WARN_ON(!vsk->transport))
939 		return 0;
940 
941 	if (sk->sk_type == SOCK_SEQPACKET)
942 		return vsk->transport->seqpacket_has_data(vsk);
943 	else
944 		return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947 
948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 	if (WARN_ON(!vsk->transport))
951 		return 0;
952 
953 	return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956 
957 void vsock_data_ready(struct sock *sk)
958 {
959 	struct vsock_sock *vsk = vsock_sk(sk);
960 
961 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 	    sock_flag(sk, SOCK_DONE))
963 		sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966 
967 /* Dummy callback required by sockmap.
968  * See unconditional call of saved_close() in sock_map_close().
969  */
970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973 
974 static int vsock_release(struct socket *sock)
975 {
976 	struct sock *sk = sock->sk;
977 
978 	if (!sk)
979 		return 0;
980 
981 	sk->sk_prot->close(sk, 0);
982 	__vsock_release(sk, 0);
983 	sock->sk = NULL;
984 	sock->state = SS_FREE;
985 
986 	return 0;
987 }
988 
989 static int
990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 	int err;
993 	struct sock *sk;
994 	struct sockaddr_vm *vm_addr;
995 
996 	sk = sock->sk;
997 
998 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 		return -EINVAL;
1000 
1001 	lock_sock(sk);
1002 	err = __vsock_bind(sk, vm_addr);
1003 	release_sock(sk);
1004 
1005 	return err;
1006 }
1007 
1008 static int vsock_getname(struct socket *sock,
1009 			 struct sockaddr *addr, int peer)
1010 {
1011 	int err;
1012 	struct sock *sk;
1013 	struct vsock_sock *vsk;
1014 	struct sockaddr_vm *vm_addr;
1015 
1016 	sk = sock->sk;
1017 	vsk = vsock_sk(sk);
1018 	err = 0;
1019 
1020 	lock_sock(sk);
1021 
1022 	if (peer) {
1023 		if (sock->state != SS_CONNECTED) {
1024 			err = -ENOTCONN;
1025 			goto out;
1026 		}
1027 		vm_addr = &vsk->remote_addr;
1028 	} else {
1029 		vm_addr = &vsk->local_addr;
1030 	}
1031 
1032 	BUILD_BUG_ON(sizeof(*vm_addr) > sizeof(struct sockaddr_storage));
1033 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1034 	err = sizeof(*vm_addr);
1035 
1036 out:
1037 	release_sock(sk);
1038 	return err;
1039 }
1040 
1041 void vsock_linger(struct sock *sk)
1042 {
1043 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1044 	ssize_t (*unsent)(struct vsock_sock *vsk);
1045 	struct vsock_sock *vsk = vsock_sk(sk);
1046 	long timeout;
1047 
1048 	if (!sock_flag(sk, SOCK_LINGER))
1049 		return;
1050 
1051 	timeout = sk->sk_lingertime;
1052 	if (!timeout)
1053 		return;
1054 
1055 	/* Transports must implement `unsent_bytes` if they want to support
1056 	 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1057 	 * the socket can be closed.
1058 	 */
1059 	unsent = vsk->transport->unsent_bytes;
1060 	if (!unsent)
1061 		return;
1062 
1063 	add_wait_queue(sk_sleep(sk), &wait);
1064 
1065 	do {
1066 		if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1067 			break;
1068 	} while (!signal_pending(current) && timeout);
1069 
1070 	remove_wait_queue(sk_sleep(sk), &wait);
1071 }
1072 EXPORT_SYMBOL_GPL(vsock_linger);
1073 
1074 static int vsock_shutdown(struct socket *sock, int mode)
1075 {
1076 	int err;
1077 	struct sock *sk;
1078 
1079 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1080 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1081 	 * here like the other address families do.  Note also that the
1082 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1083 	 * which is what we want.
1084 	 */
1085 	mode++;
1086 
1087 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1088 		return -EINVAL;
1089 
1090 	/* If this is a connection oriented socket and it is not connected then
1091 	 * bail out immediately.  If it is a DGRAM socket then we must first
1092 	 * kick the socket so that it wakes up from any sleeping calls, for
1093 	 * example recv(), and then afterwards return the error.
1094 	 */
1095 
1096 	sk = sock->sk;
1097 
1098 	lock_sock(sk);
1099 	if (sock->state == SS_UNCONNECTED) {
1100 		err = -ENOTCONN;
1101 		if (sock_type_connectible(sk->sk_type))
1102 			goto out;
1103 	} else {
1104 		sock->state = SS_DISCONNECTING;
1105 		err = 0;
1106 	}
1107 
1108 	/* Receive and send shutdowns are treated alike. */
1109 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1110 	if (mode) {
1111 		sk->sk_shutdown |= mode;
1112 		sk->sk_state_change(sk);
1113 
1114 		if (sock_type_connectible(sk->sk_type)) {
1115 			sock_reset_flag(sk, SOCK_DONE);
1116 			vsock_send_shutdown(sk, mode);
1117 		}
1118 	}
1119 
1120 out:
1121 	release_sock(sk);
1122 	return err;
1123 }
1124 
1125 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1126 			       poll_table *wait)
1127 {
1128 	struct sock *sk;
1129 	__poll_t mask;
1130 	struct vsock_sock *vsk;
1131 
1132 	sk = sock->sk;
1133 	vsk = vsock_sk(sk);
1134 
1135 	poll_wait(file, sk_sleep(sk), wait);
1136 	mask = 0;
1137 
1138 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1139 		/* Signify that there has been an error on this socket. */
1140 		mask |= EPOLLERR;
1141 
1142 	/* INET sockets treat local write shutdown and peer write shutdown as a
1143 	 * case of EPOLLHUP set.
1144 	 */
1145 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1146 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1147 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1148 		mask |= EPOLLHUP;
1149 	}
1150 
1151 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1152 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1153 		mask |= EPOLLRDHUP;
1154 	}
1155 
1156 	if (sk_is_readable(sk))
1157 		mask |= EPOLLIN | EPOLLRDNORM;
1158 
1159 	if (sock->type == SOCK_DGRAM) {
1160 		/* For datagram sockets we can read if there is something in
1161 		 * the queue and write as long as the socket isn't shutdown for
1162 		 * sending.
1163 		 */
1164 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1165 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1166 			mask |= EPOLLIN | EPOLLRDNORM;
1167 		}
1168 
1169 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1170 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1171 
1172 	} else if (sock_type_connectible(sk->sk_type)) {
1173 		const struct vsock_transport *transport;
1174 
1175 		lock_sock(sk);
1176 
1177 		transport = vsk->transport;
1178 
1179 		/* Listening sockets that have connections in their accept
1180 		 * queue can be read.
1181 		 */
1182 		if (sk->sk_state == TCP_LISTEN
1183 		    && !vsock_is_accept_queue_empty(sk))
1184 			mask |= EPOLLIN | EPOLLRDNORM;
1185 
1186 		/* If there is something in the queue then we can read. */
1187 		if (transport && transport->stream_is_active(vsk) &&
1188 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1189 			bool data_ready_now = false;
1190 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1191 			int ret = transport->notify_poll_in(
1192 					vsk, target, &data_ready_now);
1193 			if (ret < 0) {
1194 				mask |= EPOLLERR;
1195 			} else {
1196 				if (data_ready_now)
1197 					mask |= EPOLLIN | EPOLLRDNORM;
1198 
1199 			}
1200 		}
1201 
1202 		/* Sockets whose connections have been closed, reset, or
1203 		 * terminated should also be considered read, and we check the
1204 		 * shutdown flag for that.
1205 		 */
1206 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1207 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1208 			mask |= EPOLLIN | EPOLLRDNORM;
1209 		}
1210 
1211 		/* Connected sockets that can produce data can be written. */
1212 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1213 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1214 				bool space_avail_now = false;
1215 				int ret = transport->notify_poll_out(
1216 						vsk, 1, &space_avail_now);
1217 				if (ret < 0) {
1218 					mask |= EPOLLERR;
1219 				} else {
1220 					if (space_avail_now)
1221 						/* Remove EPOLLWRBAND since INET
1222 						 * sockets are not setting it.
1223 						 */
1224 						mask |= EPOLLOUT | EPOLLWRNORM;
1225 
1226 				}
1227 			}
1228 		}
1229 
1230 		/* Simulate INET socket poll behaviors, which sets
1231 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1232 		 * but local send is not shutdown.
1233 		 */
1234 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1235 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1236 				mask |= EPOLLOUT | EPOLLWRNORM;
1237 
1238 		}
1239 
1240 		release_sock(sk);
1241 	}
1242 
1243 	return mask;
1244 }
1245 
1246 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1247 {
1248 	struct vsock_sock *vsk = vsock_sk(sk);
1249 
1250 	if (WARN_ON_ONCE(!vsk->transport))
1251 		return -ENODEV;
1252 
1253 	return vsk->transport->read_skb(vsk, read_actor);
1254 }
1255 
1256 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1257 			       size_t len)
1258 {
1259 	int err;
1260 	struct sock *sk;
1261 	struct vsock_sock *vsk;
1262 	struct sockaddr_vm *remote_addr;
1263 	const struct vsock_transport *transport;
1264 
1265 	if (msg->msg_flags & MSG_OOB)
1266 		return -EOPNOTSUPP;
1267 
1268 	/* For now, MSG_DONTWAIT is always assumed... */
1269 	err = 0;
1270 	sk = sock->sk;
1271 	vsk = vsock_sk(sk);
1272 
1273 	lock_sock(sk);
1274 
1275 	transport = vsk->transport;
1276 
1277 	err = vsock_auto_bind(vsk);
1278 	if (err)
1279 		goto out;
1280 
1281 
1282 	/* If the provided message contains an address, use that.  Otherwise
1283 	 * fall back on the socket's remote handle (if it has been connected).
1284 	 */
1285 	if (msg->msg_name &&
1286 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1287 			    &remote_addr) == 0) {
1288 		/* Ensure this address is of the right type and is a valid
1289 		 * destination.
1290 		 */
1291 
1292 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1293 			remote_addr->svm_cid = transport->get_local_cid();
1294 
1295 		if (!vsock_addr_bound(remote_addr)) {
1296 			err = -EINVAL;
1297 			goto out;
1298 		}
1299 	} else if (sock->state == SS_CONNECTED) {
1300 		remote_addr = &vsk->remote_addr;
1301 
1302 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1303 			remote_addr->svm_cid = transport->get_local_cid();
1304 
1305 		/* XXX Should connect() or this function ensure remote_addr is
1306 		 * bound?
1307 		 */
1308 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1309 			err = -EINVAL;
1310 			goto out;
1311 		}
1312 	} else {
1313 		err = -EINVAL;
1314 		goto out;
1315 	}
1316 
1317 	if (!transport->dgram_allow(remote_addr->svm_cid,
1318 				    remote_addr->svm_port)) {
1319 		err = -EINVAL;
1320 		goto out;
1321 	}
1322 
1323 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1324 
1325 out:
1326 	release_sock(sk);
1327 	return err;
1328 }
1329 
1330 static int vsock_dgram_connect(struct socket *sock,
1331 			       struct sockaddr *addr, int addr_len, int flags)
1332 {
1333 	int err;
1334 	struct sock *sk;
1335 	struct vsock_sock *vsk;
1336 	struct sockaddr_vm *remote_addr;
1337 
1338 	sk = sock->sk;
1339 	vsk = vsock_sk(sk);
1340 
1341 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1342 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1343 		lock_sock(sk);
1344 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1345 				VMADDR_PORT_ANY);
1346 		sock->state = SS_UNCONNECTED;
1347 		release_sock(sk);
1348 		return 0;
1349 	} else if (err != 0)
1350 		return -EINVAL;
1351 
1352 	lock_sock(sk);
1353 
1354 	err = vsock_auto_bind(vsk);
1355 	if (err)
1356 		goto out;
1357 
1358 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1359 					 remote_addr->svm_port)) {
1360 		err = -EINVAL;
1361 		goto out;
1362 	}
1363 
1364 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1365 	sock->state = SS_CONNECTED;
1366 
1367 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1368 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1369 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1370 	 *
1371 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1372 	 * same approach can be see in other datagram socket types as well
1373 	 * (such as unix sockets).
1374 	 */
1375 	sk->sk_state = TCP_ESTABLISHED;
1376 
1377 out:
1378 	release_sock(sk);
1379 	return err;
1380 }
1381 
1382 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1383 			  size_t len, int flags)
1384 {
1385 	struct sock *sk = sock->sk;
1386 	struct vsock_sock *vsk = vsock_sk(sk);
1387 
1388 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1389 }
1390 
1391 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1392 			size_t len, int flags)
1393 {
1394 #ifdef CONFIG_BPF_SYSCALL
1395 	struct sock *sk = sock->sk;
1396 	const struct proto *prot;
1397 
1398 	prot = READ_ONCE(sk->sk_prot);
1399 	if (prot != &vsock_proto)
1400 		return prot->recvmsg(sk, msg, len, flags, NULL);
1401 #endif
1402 
1403 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1404 }
1405 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1406 
1407 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1408 			  int __user *arg)
1409 {
1410 	struct sock *sk = sock->sk;
1411 	struct vsock_sock *vsk;
1412 	int ret;
1413 
1414 	vsk = vsock_sk(sk);
1415 
1416 	switch (cmd) {
1417 	case SIOCINQ: {
1418 		ssize_t n_bytes;
1419 
1420 		if (!vsk->transport) {
1421 			ret = -EOPNOTSUPP;
1422 			break;
1423 		}
1424 
1425 		if (sock_type_connectible(sk->sk_type) &&
1426 		    sk->sk_state == TCP_LISTEN) {
1427 			ret = -EINVAL;
1428 			break;
1429 		}
1430 
1431 		n_bytes = vsock_stream_has_data(vsk);
1432 		if (n_bytes < 0) {
1433 			ret = n_bytes;
1434 			break;
1435 		}
1436 		ret = put_user(n_bytes, arg);
1437 		break;
1438 	}
1439 	case SIOCOUTQ: {
1440 		ssize_t n_bytes;
1441 
1442 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1443 			ret = -EOPNOTSUPP;
1444 			break;
1445 		}
1446 
1447 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1448 			ret = -EINVAL;
1449 			break;
1450 		}
1451 
1452 		n_bytes = vsk->transport->unsent_bytes(vsk);
1453 		if (n_bytes < 0) {
1454 			ret = n_bytes;
1455 			break;
1456 		}
1457 
1458 		ret = put_user(n_bytes, arg);
1459 		break;
1460 	}
1461 	default:
1462 		ret = -ENOIOCTLCMD;
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1469 		       unsigned long arg)
1470 {
1471 	int ret;
1472 
1473 	lock_sock(sock->sk);
1474 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1475 	release_sock(sock->sk);
1476 
1477 	return ret;
1478 }
1479 
1480 static const struct proto_ops vsock_dgram_ops = {
1481 	.family = PF_VSOCK,
1482 	.owner = THIS_MODULE,
1483 	.release = vsock_release,
1484 	.bind = vsock_bind,
1485 	.connect = vsock_dgram_connect,
1486 	.socketpair = sock_no_socketpair,
1487 	.accept = sock_no_accept,
1488 	.getname = vsock_getname,
1489 	.poll = vsock_poll,
1490 	.ioctl = vsock_ioctl,
1491 	.listen = sock_no_listen,
1492 	.shutdown = vsock_shutdown,
1493 	.sendmsg = vsock_dgram_sendmsg,
1494 	.recvmsg = vsock_dgram_recvmsg,
1495 	.mmap = sock_no_mmap,
1496 	.read_skb = vsock_read_skb,
1497 };
1498 
1499 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1500 {
1501 	const struct vsock_transport *transport = vsk->transport;
1502 
1503 	if (!transport || !transport->cancel_pkt)
1504 		return -EOPNOTSUPP;
1505 
1506 	return transport->cancel_pkt(vsk);
1507 }
1508 
1509 static void vsock_connect_timeout(struct work_struct *work)
1510 {
1511 	struct sock *sk;
1512 	struct vsock_sock *vsk;
1513 
1514 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1515 	sk = sk_vsock(vsk);
1516 
1517 	lock_sock(sk);
1518 	if (sk->sk_state == TCP_SYN_SENT &&
1519 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1520 		sk->sk_state = TCP_CLOSE;
1521 		sk->sk_socket->state = SS_UNCONNECTED;
1522 		sk->sk_err = ETIMEDOUT;
1523 		sk_error_report(sk);
1524 		vsock_transport_cancel_pkt(vsk);
1525 	}
1526 	release_sock(sk);
1527 
1528 	sock_put(sk);
1529 }
1530 
1531 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1532 			 int addr_len, int flags)
1533 {
1534 	int err;
1535 	struct sock *sk;
1536 	struct vsock_sock *vsk;
1537 	const struct vsock_transport *transport;
1538 	struct sockaddr_vm *remote_addr;
1539 	long timeout;
1540 	DEFINE_WAIT(wait);
1541 
1542 	err = 0;
1543 	sk = sock->sk;
1544 	vsk = vsock_sk(sk);
1545 
1546 	lock_sock(sk);
1547 
1548 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1549 	switch (sock->state) {
1550 	case SS_CONNECTED:
1551 		err = -EISCONN;
1552 		goto out;
1553 	case SS_DISCONNECTING:
1554 		err = -EINVAL;
1555 		goto out;
1556 	case SS_CONNECTING:
1557 		/* This continues on so we can move sock into the SS_CONNECTED
1558 		 * state once the connection has completed (at which point err
1559 		 * will be set to zero also).  Otherwise, we will either wait
1560 		 * for the connection or return -EALREADY should this be a
1561 		 * non-blocking call.
1562 		 */
1563 		err = -EALREADY;
1564 		if (flags & O_NONBLOCK)
1565 			goto out;
1566 		break;
1567 	default:
1568 		if ((sk->sk_state == TCP_LISTEN) ||
1569 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1570 			err = -EINVAL;
1571 			goto out;
1572 		}
1573 
1574 		/* Set the remote address that we are connecting to. */
1575 		memcpy(&vsk->remote_addr, remote_addr,
1576 		       sizeof(vsk->remote_addr));
1577 
1578 		err = vsock_assign_transport(vsk, NULL);
1579 		if (err)
1580 			goto out;
1581 
1582 		transport = vsk->transport;
1583 
1584 		/* The hypervisor and well-known contexts do not have socket
1585 		 * endpoints.
1586 		 */
1587 		if (!transport ||
1588 		    !transport->stream_allow(remote_addr->svm_cid,
1589 					     remote_addr->svm_port)) {
1590 			err = -ENETUNREACH;
1591 			goto out;
1592 		}
1593 
1594 		if (vsock_msgzerocopy_allow(transport)) {
1595 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1596 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1597 			/* If this option was set before 'connect()',
1598 			 * when transport was unknown, check that this
1599 			 * feature is supported here.
1600 			 */
1601 			err = -EOPNOTSUPP;
1602 			goto out;
1603 		}
1604 
1605 		err = vsock_auto_bind(vsk);
1606 		if (err)
1607 			goto out;
1608 
1609 		sk->sk_state = TCP_SYN_SENT;
1610 
1611 		err = transport->connect(vsk);
1612 		if (err < 0)
1613 			goto out;
1614 
1615 		/* sk_err might have been set as a result of an earlier
1616 		 * (failed) connect attempt.
1617 		 */
1618 		sk->sk_err = 0;
1619 
1620 		/* Mark sock as connecting and set the error code to in
1621 		 * progress in case this is a non-blocking connect.
1622 		 */
1623 		sock->state = SS_CONNECTING;
1624 		err = -EINPROGRESS;
1625 	}
1626 
1627 	/* The receive path will handle all communication until we are able to
1628 	 * enter the connected state.  Here we wait for the connection to be
1629 	 * completed or a notification of an error.
1630 	 */
1631 	timeout = vsk->connect_timeout;
1632 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1633 
1634 	/* If the socket is already closing or it is in an error state, there
1635 	 * is no point in waiting.
1636 	 */
1637 	while (sk->sk_state != TCP_ESTABLISHED &&
1638 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1639 		if (flags & O_NONBLOCK) {
1640 			/* If we're not going to block, we schedule a timeout
1641 			 * function to generate a timeout on the connection
1642 			 * attempt, in case the peer doesn't respond in a
1643 			 * timely manner. We hold on to the socket until the
1644 			 * timeout fires.
1645 			 */
1646 			sock_hold(sk);
1647 
1648 			/* If the timeout function is already scheduled,
1649 			 * reschedule it, then ungrab the socket refcount to
1650 			 * keep it balanced.
1651 			 */
1652 			if (mod_delayed_work(system_percpu_wq, &vsk->connect_work,
1653 					     timeout))
1654 				sock_put(sk);
1655 
1656 			/* Skip ahead to preserve error code set above. */
1657 			goto out_wait;
1658 		}
1659 
1660 		release_sock(sk);
1661 		timeout = schedule_timeout(timeout);
1662 		lock_sock(sk);
1663 
1664 		if (signal_pending(current)) {
1665 			err = sock_intr_errno(timeout);
1666 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1667 			sock->state = SS_UNCONNECTED;
1668 			vsock_transport_cancel_pkt(vsk);
1669 			vsock_remove_connected(vsk);
1670 			goto out_wait;
1671 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1672 			err = -ETIMEDOUT;
1673 			sk->sk_state = TCP_CLOSE;
1674 			sock->state = SS_UNCONNECTED;
1675 			vsock_transport_cancel_pkt(vsk);
1676 			goto out_wait;
1677 		}
1678 
1679 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1680 	}
1681 
1682 	if (sk->sk_err) {
1683 		err = -sk->sk_err;
1684 		sk->sk_state = TCP_CLOSE;
1685 		sock->state = SS_UNCONNECTED;
1686 	} else {
1687 		err = 0;
1688 	}
1689 
1690 out_wait:
1691 	finish_wait(sk_sleep(sk), &wait);
1692 out:
1693 	release_sock(sk);
1694 	return err;
1695 }
1696 
1697 static int vsock_accept(struct socket *sock, struct socket *newsock,
1698 			struct proto_accept_arg *arg)
1699 {
1700 	struct sock *listener;
1701 	int err;
1702 	struct sock *connected;
1703 	struct vsock_sock *vconnected;
1704 	long timeout;
1705 	DEFINE_WAIT(wait);
1706 
1707 	err = 0;
1708 	listener = sock->sk;
1709 
1710 	lock_sock(listener);
1711 
1712 	if (!sock_type_connectible(sock->type)) {
1713 		err = -EOPNOTSUPP;
1714 		goto out;
1715 	}
1716 
1717 	if (listener->sk_state != TCP_LISTEN) {
1718 		err = -EINVAL;
1719 		goto out;
1720 	}
1721 
1722 	/* Wait for children sockets to appear; these are the new sockets
1723 	 * created upon connection establishment.
1724 	 */
1725 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1726 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1727 
1728 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1729 	       listener->sk_err == 0) {
1730 		release_sock(listener);
1731 		timeout = schedule_timeout(timeout);
1732 		finish_wait(sk_sleep(listener), &wait);
1733 		lock_sock(listener);
1734 
1735 		if (signal_pending(current)) {
1736 			err = sock_intr_errno(timeout);
1737 			goto out;
1738 		} else if (timeout == 0) {
1739 			err = -EAGAIN;
1740 			goto out;
1741 		}
1742 
1743 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1744 	}
1745 	finish_wait(sk_sleep(listener), &wait);
1746 
1747 	if (listener->sk_err)
1748 		err = -listener->sk_err;
1749 
1750 	if (connected) {
1751 		sk_acceptq_removed(listener);
1752 
1753 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1754 		vconnected = vsock_sk(connected);
1755 
1756 		/* If the listener socket has received an error, then we should
1757 		 * reject this socket and return.  Note that we simply mark the
1758 		 * socket rejected, drop our reference, and let the cleanup
1759 		 * function handle the cleanup; the fact that we found it in
1760 		 * the listener's accept queue guarantees that the cleanup
1761 		 * function hasn't run yet.
1762 		 */
1763 		if (err) {
1764 			vconnected->rejected = true;
1765 		} else {
1766 			newsock->state = SS_CONNECTED;
1767 			sock_graft(connected, newsock);
1768 			if (vsock_msgzerocopy_allow(vconnected->transport))
1769 				set_bit(SOCK_SUPPORT_ZC,
1770 					&connected->sk_socket->flags);
1771 		}
1772 
1773 		release_sock(connected);
1774 		sock_put(connected);
1775 	}
1776 
1777 out:
1778 	release_sock(listener);
1779 	return err;
1780 }
1781 
1782 static int vsock_listen(struct socket *sock, int backlog)
1783 {
1784 	int err;
1785 	struct sock *sk;
1786 	struct vsock_sock *vsk;
1787 
1788 	sk = sock->sk;
1789 
1790 	lock_sock(sk);
1791 
1792 	if (!sock_type_connectible(sk->sk_type)) {
1793 		err = -EOPNOTSUPP;
1794 		goto out;
1795 	}
1796 
1797 	if (sock->state != SS_UNCONNECTED) {
1798 		err = -EINVAL;
1799 		goto out;
1800 	}
1801 
1802 	vsk = vsock_sk(sk);
1803 
1804 	if (!vsock_addr_bound(&vsk->local_addr)) {
1805 		err = -EINVAL;
1806 		goto out;
1807 	}
1808 
1809 	sk->sk_max_ack_backlog = backlog;
1810 	sk->sk_state = TCP_LISTEN;
1811 
1812 	err = 0;
1813 
1814 out:
1815 	release_sock(sk);
1816 	return err;
1817 }
1818 
1819 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1820 				     const struct vsock_transport *transport,
1821 				     u64 val)
1822 {
1823 	if (val > vsk->buffer_max_size)
1824 		val = vsk->buffer_max_size;
1825 
1826 	if (val < vsk->buffer_min_size)
1827 		val = vsk->buffer_min_size;
1828 
1829 	if (val != vsk->buffer_size &&
1830 	    transport && transport->notify_buffer_size)
1831 		transport->notify_buffer_size(vsk, &val);
1832 
1833 	vsk->buffer_size = val;
1834 }
1835 
1836 static int vsock_connectible_setsockopt(struct socket *sock,
1837 					int level,
1838 					int optname,
1839 					sockptr_t optval,
1840 					unsigned int optlen)
1841 {
1842 	int err;
1843 	struct sock *sk;
1844 	struct vsock_sock *vsk;
1845 	const struct vsock_transport *transport;
1846 	u64 val;
1847 
1848 	if (level != AF_VSOCK && level != SOL_SOCKET)
1849 		return -ENOPROTOOPT;
1850 
1851 #define COPY_IN(_v)                                       \
1852 	do {						  \
1853 		if (optlen < sizeof(_v)) {		  \
1854 			err = -EINVAL;			  \
1855 			goto exit;			  \
1856 		}					  \
1857 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1858 			err = -EFAULT;					\
1859 			goto exit;					\
1860 		}							\
1861 	} while (0)
1862 
1863 	err = 0;
1864 	sk = sock->sk;
1865 	vsk = vsock_sk(sk);
1866 
1867 	lock_sock(sk);
1868 
1869 	transport = vsk->transport;
1870 
1871 	if (level == SOL_SOCKET) {
1872 		int zerocopy;
1873 
1874 		if (optname != SO_ZEROCOPY) {
1875 			release_sock(sk);
1876 			return sock_setsockopt(sock, level, optname, optval, optlen);
1877 		}
1878 
1879 		/* Use 'int' type here, because variable to
1880 		 * set this option usually has this type.
1881 		 */
1882 		COPY_IN(zerocopy);
1883 
1884 		if (zerocopy < 0 || zerocopy > 1) {
1885 			err = -EINVAL;
1886 			goto exit;
1887 		}
1888 
1889 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1890 			err = -EOPNOTSUPP;
1891 			goto exit;
1892 		}
1893 
1894 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1895 		goto exit;
1896 	}
1897 
1898 	switch (optname) {
1899 	case SO_VM_SOCKETS_BUFFER_SIZE:
1900 		COPY_IN(val);
1901 		vsock_update_buffer_size(vsk, transport, val);
1902 		break;
1903 
1904 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1905 		COPY_IN(val);
1906 		vsk->buffer_max_size = val;
1907 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1908 		break;
1909 
1910 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1911 		COPY_IN(val);
1912 		vsk->buffer_min_size = val;
1913 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1914 		break;
1915 
1916 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1917 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1918 		struct __kernel_sock_timeval tv;
1919 
1920 		err = sock_copy_user_timeval(&tv, optval, optlen,
1921 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1922 		if (err)
1923 			break;
1924 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1925 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1926 			vsk->connect_timeout = tv.tv_sec * HZ +
1927 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1928 			if (vsk->connect_timeout == 0)
1929 				vsk->connect_timeout =
1930 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1931 
1932 		} else {
1933 			err = -ERANGE;
1934 		}
1935 		break;
1936 	}
1937 
1938 	default:
1939 		err = -ENOPROTOOPT;
1940 		break;
1941 	}
1942 
1943 #undef COPY_IN
1944 
1945 exit:
1946 	release_sock(sk);
1947 	return err;
1948 }
1949 
1950 static int vsock_connectible_getsockopt(struct socket *sock,
1951 					int level, int optname,
1952 					char __user *optval,
1953 					int __user *optlen)
1954 {
1955 	struct sock *sk = sock->sk;
1956 	struct vsock_sock *vsk = vsock_sk(sk);
1957 
1958 	union {
1959 		u64 val64;
1960 		struct old_timeval32 tm32;
1961 		struct __kernel_old_timeval tm;
1962 		struct  __kernel_sock_timeval stm;
1963 	} v;
1964 
1965 	int lv = sizeof(v.val64);
1966 	int len;
1967 
1968 	if (level != AF_VSOCK)
1969 		return -ENOPROTOOPT;
1970 
1971 	if (get_user(len, optlen))
1972 		return -EFAULT;
1973 
1974 	memset(&v, 0, sizeof(v));
1975 
1976 	switch (optname) {
1977 	case SO_VM_SOCKETS_BUFFER_SIZE:
1978 		v.val64 = vsk->buffer_size;
1979 		break;
1980 
1981 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1982 		v.val64 = vsk->buffer_max_size;
1983 		break;
1984 
1985 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1986 		v.val64 = vsk->buffer_min_size;
1987 		break;
1988 
1989 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1990 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1991 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1992 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1993 		break;
1994 
1995 	default:
1996 		return -ENOPROTOOPT;
1997 	}
1998 
1999 	if (len < lv)
2000 		return -EINVAL;
2001 	if (len > lv)
2002 		len = lv;
2003 	if (copy_to_user(optval, &v, len))
2004 		return -EFAULT;
2005 
2006 	if (put_user(len, optlen))
2007 		return -EFAULT;
2008 
2009 	return 0;
2010 }
2011 
2012 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2013 				     size_t len)
2014 {
2015 	struct sock *sk;
2016 	struct vsock_sock *vsk;
2017 	const struct vsock_transport *transport;
2018 	ssize_t total_written;
2019 	long timeout;
2020 	int err;
2021 	struct vsock_transport_send_notify_data send_data;
2022 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2023 
2024 	sk = sock->sk;
2025 	vsk = vsock_sk(sk);
2026 	total_written = 0;
2027 	err = 0;
2028 
2029 	if (msg->msg_flags & MSG_OOB)
2030 		return -EOPNOTSUPP;
2031 
2032 	lock_sock(sk);
2033 
2034 	transport = vsk->transport;
2035 
2036 	/* Callers should not provide a destination with connection oriented
2037 	 * sockets.
2038 	 */
2039 	if (msg->msg_namelen) {
2040 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2041 		goto out;
2042 	}
2043 
2044 	/* Send data only if both sides are not shutdown in the direction. */
2045 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
2046 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2047 		err = -EPIPE;
2048 		goto out;
2049 	}
2050 
2051 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2052 	    !vsock_addr_bound(&vsk->local_addr)) {
2053 		err = -ENOTCONN;
2054 		goto out;
2055 	}
2056 
2057 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2058 		err = -EDESTADDRREQ;
2059 		goto out;
2060 	}
2061 
2062 	if (msg->msg_flags & MSG_ZEROCOPY &&
2063 	    !vsock_msgzerocopy_allow(transport)) {
2064 		err = -EOPNOTSUPP;
2065 		goto out;
2066 	}
2067 
2068 	/* Wait for room in the produce queue to enqueue our user's data. */
2069 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2070 
2071 	err = transport->notify_send_init(vsk, &send_data);
2072 	if (err < 0)
2073 		goto out;
2074 
2075 	while (total_written < len) {
2076 		ssize_t written;
2077 
2078 		add_wait_queue(sk_sleep(sk), &wait);
2079 		while (vsock_stream_has_space(vsk) == 0 &&
2080 		       sk->sk_err == 0 &&
2081 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2082 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2083 
2084 			/* Don't wait for non-blocking sockets. */
2085 			if (timeout == 0) {
2086 				err = -EAGAIN;
2087 				remove_wait_queue(sk_sleep(sk), &wait);
2088 				goto out_err;
2089 			}
2090 
2091 			err = transport->notify_send_pre_block(vsk, &send_data);
2092 			if (err < 0) {
2093 				remove_wait_queue(sk_sleep(sk), &wait);
2094 				goto out_err;
2095 			}
2096 
2097 			release_sock(sk);
2098 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2099 			lock_sock(sk);
2100 			if (signal_pending(current)) {
2101 				err = sock_intr_errno(timeout);
2102 				remove_wait_queue(sk_sleep(sk), &wait);
2103 				goto out_err;
2104 			} else if (timeout == 0) {
2105 				err = -EAGAIN;
2106 				remove_wait_queue(sk_sleep(sk), &wait);
2107 				goto out_err;
2108 			}
2109 		}
2110 		remove_wait_queue(sk_sleep(sk), &wait);
2111 
2112 		/* These checks occur both as part of and after the loop
2113 		 * conditional since we need to check before and after
2114 		 * sleeping.
2115 		 */
2116 		if (sk->sk_err) {
2117 			err = -sk->sk_err;
2118 			goto out_err;
2119 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2120 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2121 			err = -EPIPE;
2122 			goto out_err;
2123 		}
2124 
2125 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2126 		if (err < 0)
2127 			goto out_err;
2128 
2129 		/* Note that enqueue will only write as many bytes as are free
2130 		 * in the produce queue, so we don't need to ensure len is
2131 		 * smaller than the queue size.  It is the caller's
2132 		 * responsibility to check how many bytes we were able to send.
2133 		 */
2134 
2135 		if (sk->sk_type == SOCK_SEQPACKET) {
2136 			written = transport->seqpacket_enqueue(vsk,
2137 						msg, len - total_written);
2138 		} else {
2139 			written = transport->stream_enqueue(vsk,
2140 					msg, len - total_written);
2141 		}
2142 
2143 		if (written < 0) {
2144 			err = written;
2145 			goto out_err;
2146 		}
2147 
2148 		total_written += written;
2149 
2150 		err = transport->notify_send_post_enqueue(
2151 				vsk, written, &send_data);
2152 		if (err < 0)
2153 			goto out_err;
2154 
2155 	}
2156 
2157 out_err:
2158 	if (total_written > 0) {
2159 		/* Return number of written bytes only if:
2160 		 * 1) SOCK_STREAM socket.
2161 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2162 		 */
2163 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2164 			err = total_written;
2165 	}
2166 out:
2167 	if (sk->sk_type == SOCK_STREAM)
2168 		err = sk_stream_error(sk, msg->msg_flags, err);
2169 
2170 	release_sock(sk);
2171 	return err;
2172 }
2173 
2174 static int vsock_connectible_wait_data(struct sock *sk,
2175 				       struct wait_queue_entry *wait,
2176 				       long timeout,
2177 				       struct vsock_transport_recv_notify_data *recv_data,
2178 				       size_t target)
2179 {
2180 	const struct vsock_transport *transport;
2181 	struct vsock_sock *vsk;
2182 	s64 data;
2183 	int err;
2184 
2185 	vsk = vsock_sk(sk);
2186 	err = 0;
2187 	transport = vsk->transport;
2188 
2189 	while (1) {
2190 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2191 		data = vsock_connectible_has_data(vsk);
2192 		if (data != 0)
2193 			break;
2194 
2195 		if (sk->sk_err != 0 ||
2196 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2197 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2198 			break;
2199 		}
2200 
2201 		/* Don't wait for non-blocking sockets. */
2202 		if (timeout == 0) {
2203 			err = -EAGAIN;
2204 			break;
2205 		}
2206 
2207 		if (recv_data) {
2208 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2209 			if (err < 0)
2210 				break;
2211 		}
2212 
2213 		release_sock(sk);
2214 		timeout = schedule_timeout(timeout);
2215 		lock_sock(sk);
2216 
2217 		if (signal_pending(current)) {
2218 			err = sock_intr_errno(timeout);
2219 			break;
2220 		} else if (timeout == 0) {
2221 			err = -EAGAIN;
2222 			break;
2223 		}
2224 	}
2225 
2226 	finish_wait(sk_sleep(sk), wait);
2227 
2228 	if (err)
2229 		return err;
2230 
2231 	/* Internal transport error when checking for available
2232 	 * data. XXX This should be changed to a connection
2233 	 * reset in a later change.
2234 	 */
2235 	if (data < 0)
2236 		return -ENOMEM;
2237 
2238 	return data;
2239 }
2240 
2241 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2242 				  size_t len, int flags)
2243 {
2244 	struct vsock_transport_recv_notify_data recv_data;
2245 	const struct vsock_transport *transport;
2246 	struct vsock_sock *vsk;
2247 	ssize_t copied;
2248 	size_t target;
2249 	long timeout;
2250 	int err;
2251 
2252 	DEFINE_WAIT(wait);
2253 
2254 	vsk = vsock_sk(sk);
2255 	transport = vsk->transport;
2256 
2257 	/* We must not copy less than target bytes into the user's buffer
2258 	 * before returning successfully, so we wait for the consume queue to
2259 	 * have that much data to consume before dequeueing.  Note that this
2260 	 * makes it impossible to handle cases where target is greater than the
2261 	 * queue size.
2262 	 */
2263 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2264 	if (target >= transport->stream_rcvhiwat(vsk)) {
2265 		err = -ENOMEM;
2266 		goto out;
2267 	}
2268 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2269 	copied = 0;
2270 
2271 	err = transport->notify_recv_init(vsk, target, &recv_data);
2272 	if (err < 0)
2273 		goto out;
2274 
2275 
2276 	while (1) {
2277 		ssize_t read;
2278 
2279 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2280 						  &recv_data, target);
2281 		if (err <= 0)
2282 			break;
2283 
2284 		err = transport->notify_recv_pre_dequeue(vsk, target,
2285 							 &recv_data);
2286 		if (err < 0)
2287 			break;
2288 
2289 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2290 		if (read < 0) {
2291 			err = read;
2292 			break;
2293 		}
2294 
2295 		copied += read;
2296 
2297 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2298 						!(flags & MSG_PEEK), &recv_data);
2299 		if (err < 0)
2300 			goto out;
2301 
2302 		if (read >= target || flags & MSG_PEEK)
2303 			break;
2304 
2305 		target -= read;
2306 	}
2307 
2308 	if (sk->sk_err)
2309 		err = -sk->sk_err;
2310 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2311 		err = 0;
2312 
2313 	if (copied > 0)
2314 		err = copied;
2315 
2316 out:
2317 	return err;
2318 }
2319 
2320 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2321 				     size_t len, int flags)
2322 {
2323 	const struct vsock_transport *transport;
2324 	struct vsock_sock *vsk;
2325 	ssize_t msg_len;
2326 	long timeout;
2327 	int err = 0;
2328 	DEFINE_WAIT(wait);
2329 
2330 	vsk = vsock_sk(sk);
2331 	transport = vsk->transport;
2332 
2333 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2334 
2335 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2336 	if (err <= 0)
2337 		goto out;
2338 
2339 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2340 
2341 	if (msg_len < 0) {
2342 		err = msg_len;
2343 		goto out;
2344 	}
2345 
2346 	if (sk->sk_err) {
2347 		err = -sk->sk_err;
2348 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2349 		err = 0;
2350 	} else {
2351 		/* User sets MSG_TRUNC, so return real length of
2352 		 * packet.
2353 		 */
2354 		if (flags & MSG_TRUNC)
2355 			err = msg_len;
2356 		else
2357 			err = len - msg_data_left(msg);
2358 
2359 		/* Always set MSG_TRUNC if real length of packet is
2360 		 * bigger than user's buffer.
2361 		 */
2362 		if (msg_len > len)
2363 			msg->msg_flags |= MSG_TRUNC;
2364 	}
2365 
2366 out:
2367 	return err;
2368 }
2369 
2370 int
2371 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2372 			    int flags)
2373 {
2374 	struct sock *sk;
2375 	struct vsock_sock *vsk;
2376 	const struct vsock_transport *transport;
2377 	int err;
2378 
2379 	sk = sock->sk;
2380 
2381 	if (unlikely(flags & MSG_ERRQUEUE))
2382 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2383 
2384 	vsk = vsock_sk(sk);
2385 	err = 0;
2386 
2387 	lock_sock(sk);
2388 
2389 	transport = vsk->transport;
2390 
2391 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2392 		/* Recvmsg is supposed to return 0 if a peer performs an
2393 		 * orderly shutdown. Differentiate between that case and when a
2394 		 * peer has not connected or a local shutdown occurred with the
2395 		 * SOCK_DONE flag.
2396 		 */
2397 		if (sock_flag(sk, SOCK_DONE))
2398 			err = 0;
2399 		else
2400 			err = -ENOTCONN;
2401 
2402 		goto out;
2403 	}
2404 
2405 	if (flags & MSG_OOB) {
2406 		err = -EOPNOTSUPP;
2407 		goto out;
2408 	}
2409 
2410 	/* We don't check peer_shutdown flag here since peer may actually shut
2411 	 * down, but there can be data in the queue that a local socket can
2412 	 * receive.
2413 	 */
2414 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2415 		err = 0;
2416 		goto out;
2417 	}
2418 
2419 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2420 	 * is not an error.  We may as well bail out now.
2421 	 */
2422 	if (!len) {
2423 		err = 0;
2424 		goto out;
2425 	}
2426 
2427 	if (sk->sk_type == SOCK_STREAM)
2428 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2429 	else
2430 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2431 
2432 out:
2433 	release_sock(sk);
2434 	return err;
2435 }
2436 
2437 int
2438 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2439 			  int flags)
2440 {
2441 #ifdef CONFIG_BPF_SYSCALL
2442 	struct sock *sk = sock->sk;
2443 	const struct proto *prot;
2444 
2445 	prot = READ_ONCE(sk->sk_prot);
2446 	if (prot != &vsock_proto)
2447 		return prot->recvmsg(sk, msg, len, flags, NULL);
2448 #endif
2449 
2450 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2451 }
2452 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2453 
2454 static int vsock_set_rcvlowat(struct sock *sk, int val)
2455 {
2456 	const struct vsock_transport *transport;
2457 	struct vsock_sock *vsk;
2458 
2459 	vsk = vsock_sk(sk);
2460 
2461 	if (val > vsk->buffer_size)
2462 		return -EINVAL;
2463 
2464 	transport = vsk->transport;
2465 
2466 	if (transport && transport->notify_set_rcvlowat) {
2467 		int err;
2468 
2469 		err = transport->notify_set_rcvlowat(vsk, val);
2470 		if (err)
2471 			return err;
2472 	}
2473 
2474 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2475 	return 0;
2476 }
2477 
2478 static const struct proto_ops vsock_stream_ops = {
2479 	.family = PF_VSOCK,
2480 	.owner = THIS_MODULE,
2481 	.release = vsock_release,
2482 	.bind = vsock_bind,
2483 	.connect = vsock_connect,
2484 	.socketpair = sock_no_socketpair,
2485 	.accept = vsock_accept,
2486 	.getname = vsock_getname,
2487 	.poll = vsock_poll,
2488 	.ioctl = vsock_ioctl,
2489 	.listen = vsock_listen,
2490 	.shutdown = vsock_shutdown,
2491 	.setsockopt = vsock_connectible_setsockopt,
2492 	.getsockopt = vsock_connectible_getsockopt,
2493 	.sendmsg = vsock_connectible_sendmsg,
2494 	.recvmsg = vsock_connectible_recvmsg,
2495 	.mmap = sock_no_mmap,
2496 	.set_rcvlowat = vsock_set_rcvlowat,
2497 	.read_skb = vsock_read_skb,
2498 };
2499 
2500 static const struct proto_ops vsock_seqpacket_ops = {
2501 	.family = PF_VSOCK,
2502 	.owner = THIS_MODULE,
2503 	.release = vsock_release,
2504 	.bind = vsock_bind,
2505 	.connect = vsock_connect,
2506 	.socketpair = sock_no_socketpair,
2507 	.accept = vsock_accept,
2508 	.getname = vsock_getname,
2509 	.poll = vsock_poll,
2510 	.ioctl = vsock_ioctl,
2511 	.listen = vsock_listen,
2512 	.shutdown = vsock_shutdown,
2513 	.setsockopt = vsock_connectible_setsockopt,
2514 	.getsockopt = vsock_connectible_getsockopt,
2515 	.sendmsg = vsock_connectible_sendmsg,
2516 	.recvmsg = vsock_connectible_recvmsg,
2517 	.mmap = sock_no_mmap,
2518 	.read_skb = vsock_read_skb,
2519 };
2520 
2521 static int vsock_create(struct net *net, struct socket *sock,
2522 			int protocol, int kern)
2523 {
2524 	struct vsock_sock *vsk;
2525 	struct sock *sk;
2526 	int ret;
2527 
2528 	if (!sock)
2529 		return -EINVAL;
2530 
2531 	if (protocol && protocol != PF_VSOCK)
2532 		return -EPROTONOSUPPORT;
2533 
2534 	switch (sock->type) {
2535 	case SOCK_DGRAM:
2536 		sock->ops = &vsock_dgram_ops;
2537 		break;
2538 	case SOCK_STREAM:
2539 		sock->ops = &vsock_stream_ops;
2540 		break;
2541 	case SOCK_SEQPACKET:
2542 		sock->ops = &vsock_seqpacket_ops;
2543 		break;
2544 	default:
2545 		return -ESOCKTNOSUPPORT;
2546 	}
2547 
2548 	sock->state = SS_UNCONNECTED;
2549 
2550 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2551 	if (!sk)
2552 		return -ENOMEM;
2553 
2554 	vsk = vsock_sk(sk);
2555 
2556 	if (sock->type == SOCK_DGRAM) {
2557 		ret = vsock_assign_transport(vsk, NULL);
2558 		if (ret < 0) {
2559 			sock->sk = NULL;
2560 			sock_put(sk);
2561 			return ret;
2562 		}
2563 	}
2564 
2565 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2566 	 * proto_ops, so there is no handler for custom logic.
2567 	 */
2568 	if (sock_type_connectible(sock->type))
2569 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2570 
2571 	vsock_insert_unbound(vsk);
2572 
2573 	return 0;
2574 }
2575 
2576 static const struct net_proto_family vsock_family_ops = {
2577 	.family = AF_VSOCK,
2578 	.create = vsock_create,
2579 	.owner = THIS_MODULE,
2580 };
2581 
2582 static long vsock_dev_do_ioctl(struct file *filp,
2583 			       unsigned int cmd, void __user *ptr)
2584 {
2585 	u32 __user *p = ptr;
2586 	int retval = 0;
2587 	u32 cid;
2588 
2589 	switch (cmd) {
2590 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2591 		/* To be compatible with the VMCI behavior, we prioritize the
2592 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2593 		 */
2594 		cid = vsock_registered_transport_cid(&transport_g2h);
2595 		if (cid == VMADDR_CID_ANY)
2596 			cid = vsock_registered_transport_cid(&transport_h2g);
2597 		if (cid == VMADDR_CID_ANY)
2598 			cid = vsock_registered_transport_cid(&transport_local);
2599 
2600 		if (put_user(cid, p) != 0)
2601 			retval = -EFAULT;
2602 		break;
2603 
2604 	default:
2605 		retval = -ENOIOCTLCMD;
2606 	}
2607 
2608 	return retval;
2609 }
2610 
2611 static long vsock_dev_ioctl(struct file *filp,
2612 			    unsigned int cmd, unsigned long arg)
2613 {
2614 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2615 }
2616 
2617 #ifdef CONFIG_COMPAT
2618 static long vsock_dev_compat_ioctl(struct file *filp,
2619 				   unsigned int cmd, unsigned long arg)
2620 {
2621 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2622 }
2623 #endif
2624 
2625 static const struct file_operations vsock_device_ops = {
2626 	.owner		= THIS_MODULE,
2627 	.unlocked_ioctl	= vsock_dev_ioctl,
2628 #ifdef CONFIG_COMPAT
2629 	.compat_ioctl	= vsock_dev_compat_ioctl,
2630 #endif
2631 	.open		= nonseekable_open,
2632 };
2633 
2634 static struct miscdevice vsock_device = {
2635 	.name		= "vsock",
2636 	.fops		= &vsock_device_ops,
2637 };
2638 
2639 static int __init vsock_init(void)
2640 {
2641 	int err = 0;
2642 
2643 	vsock_init_tables();
2644 
2645 	vsock_proto.owner = THIS_MODULE;
2646 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2647 	err = misc_register(&vsock_device);
2648 	if (err) {
2649 		pr_err("Failed to register misc device\n");
2650 		goto err_reset_transport;
2651 	}
2652 
2653 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2654 	if (err) {
2655 		pr_err("Cannot register vsock protocol\n");
2656 		goto err_deregister_misc;
2657 	}
2658 
2659 	err = sock_register(&vsock_family_ops);
2660 	if (err) {
2661 		pr_err("could not register af_vsock (%d) address family: %d\n",
2662 		       AF_VSOCK, err);
2663 		goto err_unregister_proto;
2664 	}
2665 
2666 	vsock_bpf_build_proto();
2667 
2668 	return 0;
2669 
2670 err_unregister_proto:
2671 	proto_unregister(&vsock_proto);
2672 err_deregister_misc:
2673 	misc_deregister(&vsock_device);
2674 err_reset_transport:
2675 	return err;
2676 }
2677 
2678 static void __exit vsock_exit(void)
2679 {
2680 	misc_deregister(&vsock_device);
2681 	sock_unregister(AF_VSOCK);
2682 	proto_unregister(&vsock_proto);
2683 }
2684 
2685 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2686 {
2687 	return vsk->transport;
2688 }
2689 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2690 
2691 int vsock_core_register(const struct vsock_transport *t, int features)
2692 {
2693 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2694 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2695 
2696 	if (err)
2697 		return err;
2698 
2699 	t_h2g = transport_h2g;
2700 	t_g2h = transport_g2h;
2701 	t_dgram = transport_dgram;
2702 	t_local = transport_local;
2703 
2704 	if (features & VSOCK_TRANSPORT_F_H2G) {
2705 		if (t_h2g) {
2706 			err = -EBUSY;
2707 			goto err_busy;
2708 		}
2709 		t_h2g = t;
2710 	}
2711 
2712 	if (features & VSOCK_TRANSPORT_F_G2H) {
2713 		if (t_g2h) {
2714 			err = -EBUSY;
2715 			goto err_busy;
2716 		}
2717 		t_g2h = t;
2718 	}
2719 
2720 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2721 		if (t_dgram) {
2722 			err = -EBUSY;
2723 			goto err_busy;
2724 		}
2725 		t_dgram = t;
2726 	}
2727 
2728 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2729 		if (t_local) {
2730 			err = -EBUSY;
2731 			goto err_busy;
2732 		}
2733 		t_local = t;
2734 	}
2735 
2736 	transport_h2g = t_h2g;
2737 	transport_g2h = t_g2h;
2738 	transport_dgram = t_dgram;
2739 	transport_local = t_local;
2740 
2741 err_busy:
2742 	mutex_unlock(&vsock_register_mutex);
2743 	return err;
2744 }
2745 EXPORT_SYMBOL_GPL(vsock_core_register);
2746 
2747 void vsock_core_unregister(const struct vsock_transport *t)
2748 {
2749 	mutex_lock(&vsock_register_mutex);
2750 
2751 	if (transport_h2g == t)
2752 		transport_h2g = NULL;
2753 
2754 	if (transport_g2h == t)
2755 		transport_g2h = NULL;
2756 
2757 	if (transport_dgram == t)
2758 		transport_dgram = NULL;
2759 
2760 	if (transport_local == t)
2761 		transport_local = NULL;
2762 
2763 	mutex_unlock(&vsock_register_mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2766 
2767 module_init(vsock_init);
2768 module_exit(vsock_exit);
2769 
2770 MODULE_AUTHOR("VMware, Inc.");
2771 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2772 MODULE_VERSION("1.0.2.0-k");
2773 MODULE_LICENSE("GPL v2");
2774