xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static size_t vcpu_mmap_sz(void);
28 
__open_path_or_exit(const char * path,int flags,const char * enoent_help)29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	if (fd < 0)
35 		goto error;
36 
37 	return fd;
38 
39 error:
40 	if (errno == EACCES || errno == ENOENT)
41 		ksft_exit_skip("- Cannot open '%s': %s.  %s\n",
42 			       path, strerror(errno),
43 			       errno == EACCES ? "Root required?" : enoent_help);
44 	TEST_FAIL("Failed to open '%s'", path);
45 }
46 
open_path_or_exit(const char * path,int flags)47 int open_path_or_exit(const char *path, int flags)
48 {
49 	return __open_path_or_exit(path, flags, "");
50 }
51 
52 /*
53  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54  *
55  * Input Args:
56  *   flags - The flags to pass when opening KVM_DEV_PATH.
57  *
58  * Return:
59  *   The opened file descriptor of /dev/kvm.
60  */
_open_kvm_dev_path_or_exit(int flags)61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 	return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65 
open_kvm_dev_path_or_exit(void)66 int open_kvm_dev_path_or_exit(void)
67 {
68 	return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70 
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)71 static ssize_t get_module_param(const char *module_name, const char *param,
72 				void *buffer, size_t buffer_size)
73 {
74 	const int path_size = 128;
75 	char path[path_size];
76 	ssize_t bytes_read;
77 	int fd, r;
78 
79 	/* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 	close(open_kvm_dev_path_or_exit());
81 
82 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 		     module_name, param);
84 	TEST_ASSERT(r < path_size,
85 		    "Failed to construct sysfs path in %d bytes.", path_size);
86 
87 	fd = open_path_or_exit(path, O_RDONLY);
88 
89 	bytes_read = read(fd, buffer, buffer_size);
90 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 		    path, bytes_read, buffer_size);
92 
93 	r = close(fd);
94 	TEST_ASSERT(!r, "close(%s) failed", path);
95 	return bytes_read;
96 }
97 
kvm_get_module_param_integer(const char * module_name,const char * param)98 int kvm_get_module_param_integer(const char *module_name, const char *param)
99 {
100 	/*
101 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 	 * at the end.
104 	 */
105 	char value[16 + 1 + 1];
106 	ssize_t r;
107 
108 	memset(value, '\0', sizeof(value));
109 
110 	r = get_module_param(module_name, param, value, sizeof(value));
111 	TEST_ASSERT(value[r - 1] == '\n',
112 		    "Expected trailing newline, got char '%c'", value[r - 1]);
113 
114 	/*
115 	 * Squash the newline, otherwise atoi_paranoid() will complain about
116 	 * trailing non-NUL characters in the string.
117 	 */
118 	value[r - 1] = '\0';
119 	return atoi_paranoid(value);
120 }
121 
kvm_get_module_param_bool(const char * module_name,const char * param)122 bool kvm_get_module_param_bool(const char *module_name, const char *param)
123 {
124 	char value;
125 	ssize_t r;
126 
127 	r = get_module_param(module_name, param, &value, sizeof(value));
128 	TEST_ASSERT_EQ(r, 1);
129 
130 	if (value == 'Y')
131 		return true;
132 	else if (value == 'N')
133 		return false;
134 
135 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137 
138 /*
139  * Capability
140  *
141  * Input Args:
142  *   cap - Capability
143  *
144  * Output Args: None
145  *
146  * Return:
147  *   On success, the Value corresponding to the capability (KVM_CAP_*)
148  *   specified by the value of cap.  On failure a TEST_ASSERT failure
149  *   is produced.
150  *
151  * Looks up and returns the value corresponding to the capability
152  * (KVM_CAP_*) given by cap.
153  */
kvm_check_cap(long cap)154 unsigned int kvm_check_cap(long cap)
155 {
156 	int ret;
157 	int kvm_fd;
158 
159 	kvm_fd = open_kvm_dev_path_or_exit();
160 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
161 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
162 
163 	close(kvm_fd);
164 
165 	return (unsigned int)ret;
166 }
167 
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
169 {
170 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
171 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
172 	else
173 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
174 	vm->dirty_ring_size = ring_size;
175 }
176 
vm_open(struct kvm_vm * vm)177 static void vm_open(struct kvm_vm *vm)
178 {
179 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
180 
181 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
182 
183 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
184 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
185 
186 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
187 		vm->stats.fd = vm_get_stats_fd(vm);
188 	else
189 		vm->stats.fd = -1;
190 }
191 
vm_guest_mode_string(uint32_t i)192 const char *vm_guest_mode_string(uint32_t i)
193 {
194 	static const char * const strings[] = {
195 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
196 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
197 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
198 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
199 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
200 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
201 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
202 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
203 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
204 		[VM_MODE_PXXVYY_4K]	= "PA-bits:ANY, VA-bits:48 or 57, 4K pages",
205 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
206 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
207 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
208 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
209 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
210 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
211 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
212 	};
213 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
214 		       "Missing new mode strings?");
215 
216 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
217 
218 	return strings[i];
219 }
220 
221 const struct vm_guest_mode_params vm_guest_mode_params[] = {
222 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
223 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
224 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
225 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
226 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
227 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
228 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
229 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
230 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
231 	[VM_MODE_PXXVYY_4K]	= {  0,  0,  0x1000, 12 },
232 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
233 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
234 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
235 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
236 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
237 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
238 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
239 };
240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
241 	       "Missing new mode params?");
242 
243 /*
244  * Initializes vm->vpages_valid to match the canonical VA space of the
245  * architecture.
246  *
247  * The default implementation is valid for architectures which split the
248  * range addressed by a single page table into a low and high region
249  * based on the MSB of the VA. On architectures with this behavior
250  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
251  */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
253 {
254 	sparsebit_set_num(vm->vpages_valid,
255 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
256 	sparsebit_set_num(vm->vpages_valid,
257 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
258 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
259 }
260 
____vm_create(struct vm_shape shape)261 struct kvm_vm *____vm_create(struct vm_shape shape)
262 {
263 	struct kvm_vm *vm;
264 
265 	vm = calloc(1, sizeof(*vm));
266 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
267 
268 	INIT_LIST_HEAD(&vm->vcpus);
269 	vm->regions.gpa_tree = RB_ROOT;
270 	vm->regions.hva_tree = RB_ROOT;
271 	hash_init(vm->regions.slot_hash);
272 
273 	vm->mode = shape.mode;
274 	vm->type = shape.type;
275 
276 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
277 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
278 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
279 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
280 
281 	/* Setup mode specific traits. */
282 	switch (vm->mode) {
283 	case VM_MODE_P52V48_4K:
284 		vm->pgtable_levels = 4;
285 		break;
286 	case VM_MODE_P52V48_64K:
287 		vm->pgtable_levels = 3;
288 		break;
289 	case VM_MODE_P48V48_4K:
290 		vm->pgtable_levels = 4;
291 		break;
292 	case VM_MODE_P48V48_64K:
293 		vm->pgtable_levels = 3;
294 		break;
295 	case VM_MODE_P40V48_4K:
296 	case VM_MODE_P36V48_4K:
297 		vm->pgtable_levels = 4;
298 		break;
299 	case VM_MODE_P40V48_64K:
300 	case VM_MODE_P36V48_64K:
301 		vm->pgtable_levels = 3;
302 		break;
303 	case VM_MODE_P52V48_16K:
304 	case VM_MODE_P48V48_16K:
305 	case VM_MODE_P40V48_16K:
306 	case VM_MODE_P36V48_16K:
307 		vm->pgtable_levels = 4;
308 		break;
309 	case VM_MODE_P47V47_16K:
310 	case VM_MODE_P36V47_16K:
311 		vm->pgtable_levels = 3;
312 		break;
313 	case VM_MODE_PXXVYY_4K:
314 #ifdef __x86_64__
315 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
316 		kvm_init_vm_address_properties(vm);
317 
318 		pr_debug("Guest physical address width detected: %d\n",
319 			 vm->pa_bits);
320 		pr_debug("Guest virtual address width detected: %d\n",
321 			 vm->va_bits);
322 
323 		if (vm->va_bits == 57) {
324 			vm->pgtable_levels = 5;
325 		} else {
326 			TEST_ASSERT(vm->va_bits == 48,
327 				    "Unexpected guest virtual address width: %d",
328 				    vm->va_bits);
329 			vm->pgtable_levels = 4;
330 		}
331 #else
332 		TEST_FAIL("VM_MODE_PXXVYY_4K not supported on non-x86 platforms");
333 #endif
334 		break;
335 	case VM_MODE_P47V64_4K:
336 		vm->pgtable_levels = 5;
337 		break;
338 	case VM_MODE_P44V64_4K:
339 		vm->pgtable_levels = 5;
340 		break;
341 	default:
342 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
343 	}
344 
345 #ifdef __aarch64__
346 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
347 	if (vm->pa_bits != 40)
348 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
349 #endif
350 
351 	vm_open(vm);
352 
353 	/* Limit to VA-bit canonical virtual addresses. */
354 	vm->vpages_valid = sparsebit_alloc();
355 	vm_vaddr_populate_bitmap(vm);
356 
357 	/* Limit physical addresses to PA-bits. */
358 	vm->max_gfn = vm_compute_max_gfn(vm);
359 
360 	/* Allocate and setup memory for guest. */
361 	vm->vpages_mapped = sparsebit_alloc();
362 
363 	return vm;
364 }
365 
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)366 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
367 				     uint32_t nr_runnable_vcpus,
368 				     uint64_t extra_mem_pages)
369 {
370 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
371 	uint64_t nr_pages;
372 
373 	TEST_ASSERT(nr_runnable_vcpus,
374 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
375 
376 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
377 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
378 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
379 
380 	/*
381 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
382 	 * test code and other per-VM assets that will be loaded into memslot0.
383 	 */
384 	nr_pages = 512;
385 
386 	/* Account for the per-vCPU stacks on behalf of the test. */
387 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
388 
389 	/*
390 	 * Account for the number of pages needed for the page tables.  The
391 	 * maximum page table size for a memory region will be when the
392 	 * smallest page size is used. Considering each page contains x page
393 	 * table descriptors, the total extra size for page tables (for extra
394 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
395 	 * than N/x*2.
396 	 */
397 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
398 
399 	/* Account for the number of pages needed by ucall. */
400 	nr_pages += ucall_nr_pages_required(page_size);
401 
402 	return vm_adjust_num_guest_pages(mode, nr_pages);
403 }
404 
kvm_set_files_rlimit(uint32_t nr_vcpus)405 void kvm_set_files_rlimit(uint32_t nr_vcpus)
406 {
407 	/*
408 	 * Each vCPU will open two file descriptors: the vCPU itself and the
409 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
410 	 * buffer for all other files a test may open.
411 	 */
412 	int nr_fds_wanted = nr_vcpus * 2 + 100;
413 	struct rlimit rl;
414 
415 	/*
416 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
417 	 * try raising the limits if needed.
418 	 */
419 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
420 
421 	if (rl.rlim_cur < nr_fds_wanted) {
422 		rl.rlim_cur = nr_fds_wanted;
423 		if (rl.rlim_max < nr_fds_wanted) {
424 			int old_rlim_max = rl.rlim_max;
425 
426 			rl.rlim_max = nr_fds_wanted;
427 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
428 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
429 				       old_rlim_max, nr_fds_wanted);
430 		} else {
431 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
432 		}
433 	}
434 
435 }
436 
is_guest_memfd_required(struct vm_shape shape)437 static bool is_guest_memfd_required(struct vm_shape shape)
438 {
439 #ifdef __x86_64__
440 	return shape.type == KVM_X86_SNP_VM;
441 #else
442 	return false;
443 #endif
444 }
445 
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)446 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
447 			   uint64_t nr_extra_pages)
448 {
449 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
450 						 nr_extra_pages);
451 	struct userspace_mem_region *slot0;
452 	struct kvm_vm *vm;
453 	int i, flags;
454 
455 	kvm_set_files_rlimit(nr_runnable_vcpus);
456 
457 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
458 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
459 
460 	vm = ____vm_create(shape);
461 
462 	/*
463 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
464 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
465 	 */
466 	flags = 0;
467 	if (is_guest_memfd_required(shape))
468 		flags |= KVM_MEM_GUEST_MEMFD;
469 
470 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
471 	for (i = 0; i < NR_MEM_REGIONS; i++)
472 		vm->memslots[i] = 0;
473 
474 	kvm_vm_elf_load(vm, program_invocation_name);
475 
476 	/*
477 	 * TODO: Add proper defines to protect the library's memslots, and then
478 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
479 	 * read-only memslots as MMIO, and creating a read-only memslot for the
480 	 * MMIO region would prevent silently clobbering the MMIO region.
481 	 */
482 	slot0 = memslot2region(vm, 0);
483 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
484 
485 	if (guest_random_seed != last_guest_seed) {
486 		pr_info("Random seed: 0x%x\n", guest_random_seed);
487 		last_guest_seed = guest_random_seed;
488 	}
489 	guest_rng = new_guest_random_state(guest_random_seed);
490 	sync_global_to_guest(vm, guest_rng);
491 
492 	kvm_arch_vm_post_create(vm, nr_runnable_vcpus);
493 
494 	return vm;
495 }
496 
497 /*
498  * VM Create with customized parameters
499  *
500  * Input Args:
501  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
502  *   nr_vcpus - VCPU count
503  *   extra_mem_pages - Non-slot0 physical memory total size
504  *   guest_code - Guest entry point
505  *   vcpuids - VCPU IDs
506  *
507  * Output Args: None
508  *
509  * Return:
510  *   Pointer to opaque structure that describes the created VM.
511  *
512  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
513  * extra_mem_pages is only used to calculate the maximum page table size,
514  * no real memory allocation for non-slot0 memory in this function.
515  */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])516 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
517 				      uint64_t extra_mem_pages,
518 				      void *guest_code, struct kvm_vcpu *vcpus[])
519 {
520 	struct kvm_vm *vm;
521 	int i;
522 
523 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
524 
525 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
526 
527 	for (i = 0; i < nr_vcpus; ++i)
528 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
529 
530 	kvm_arch_vm_finalize_vcpus(vm);
531 	return vm;
532 }
533 
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)534 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
535 					       struct kvm_vcpu **vcpu,
536 					       uint64_t extra_mem_pages,
537 					       void *guest_code)
538 {
539 	struct kvm_vcpu *vcpus[1];
540 	struct kvm_vm *vm;
541 
542 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
543 
544 	*vcpu = vcpus[0];
545 	return vm;
546 }
547 
548 /*
549  * VM Restart
550  *
551  * Input Args:
552  *   vm - VM that has been released before
553  *
554  * Output Args: None
555  *
556  * Reopens the file descriptors associated to the VM and reinstates the
557  * global state, such as the irqchip and the memory regions that are mapped
558  * into the guest.
559  */
kvm_vm_restart(struct kvm_vm * vmp)560 void kvm_vm_restart(struct kvm_vm *vmp)
561 {
562 	int ctr;
563 	struct userspace_mem_region *region;
564 
565 	vm_open(vmp);
566 	if (vmp->has_irqchip)
567 		vm_create_irqchip(vmp);
568 
569 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
570 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
571 
572 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
573 			    "  rc: %i errno: %i\n"
574 			    "  slot: %u flags: 0x%x\n"
575 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
576 			    ret, errno, region->region.slot,
577 			    region->region.flags,
578 			    region->region.guest_phys_addr,
579 			    region->region.memory_size);
580 	}
581 }
582 
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)583 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
584 					      uint32_t vcpu_id)
585 {
586 	return __vm_vcpu_add(vm, vcpu_id);
587 }
588 
vm_recreate_with_one_vcpu(struct kvm_vm * vm)589 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
590 {
591 	kvm_vm_restart(vm);
592 
593 	return vm_vcpu_recreate(vm, 0);
594 }
595 
__pin_task_to_cpu(pthread_t task,int cpu)596 int __pin_task_to_cpu(pthread_t task, int cpu)
597 {
598 	cpu_set_t cpuset;
599 
600 	CPU_ZERO(&cpuset);
601 	CPU_SET(cpu, &cpuset);
602 
603 	return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
604 }
605 
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)606 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
607 {
608 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
609 
610 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
611 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
612 	return pcpu;
613 }
614 
kvm_print_vcpu_pinning_help(void)615 void kvm_print_vcpu_pinning_help(void)
616 {
617 	const char *name = program_invocation_name;
618 
619 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
620 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
621 	       "     entry for the main application task (specified via entry\n"
622 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
623 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
624 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
625 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
626 	       "         %s -v 3 -c 22,23,24,50\n\n"
627 	       "     To leave the application task unpinned, drop the final entry:\n\n"
628 	       "         %s -v 3 -c 22,23,24\n\n"
629 	       "     (default: no pinning)\n", name, name);
630 }
631 
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)632 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
633 			    int nr_vcpus)
634 {
635 	cpu_set_t allowed_mask;
636 	char *cpu, *cpu_list;
637 	char delim[2] = ",";
638 	int i, r;
639 
640 	cpu_list = strdup(pcpus_string);
641 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
642 
643 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
644 	TEST_ASSERT(!r, "sched_getaffinity() failed");
645 
646 	cpu = strtok(cpu_list, delim);
647 
648 	/* 1. Get all pcpus for vcpus. */
649 	for (i = 0; i < nr_vcpus; i++) {
650 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
651 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
652 		cpu = strtok(NULL, delim);
653 	}
654 
655 	/* 2. Check if the main worker needs to be pinned. */
656 	if (cpu) {
657 		pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
658 		cpu = strtok(NULL, delim);
659 	}
660 
661 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
662 	free(cpu_list);
663 }
664 
665 /*
666  * Userspace Memory Region Find
667  *
668  * Input Args:
669  *   vm - Virtual Machine
670  *   start - Starting VM physical address
671  *   end - Ending VM physical address, inclusive.
672  *
673  * Output Args: None
674  *
675  * Return:
676  *   Pointer to overlapping region, NULL if no such region.
677  *
678  * Searches for a region with any physical memory that overlaps with
679  * any portion of the guest physical addresses from start to end
680  * inclusive.  If multiple overlapping regions exist, a pointer to any
681  * of the regions is returned.  Null is returned only when no overlapping
682  * region exists.
683  */
684 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)685 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
686 {
687 	struct rb_node *node;
688 
689 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
690 		struct userspace_mem_region *region =
691 			container_of(node, struct userspace_mem_region, gpa_node);
692 		uint64_t existing_start = region->region.guest_phys_addr;
693 		uint64_t existing_end = region->region.guest_phys_addr
694 			+ region->region.memory_size - 1;
695 		if (start <= existing_end && end >= existing_start)
696 			return region;
697 
698 		if (start < existing_start)
699 			node = node->rb_left;
700 		else
701 			node = node->rb_right;
702 	}
703 
704 	return NULL;
705 }
706 
kvm_stats_release(struct kvm_binary_stats * stats)707 static void kvm_stats_release(struct kvm_binary_stats *stats)
708 {
709 	if (stats->fd < 0)
710 		return;
711 
712 	if (stats->desc) {
713 		free(stats->desc);
714 		stats->desc = NULL;
715 	}
716 
717 	kvm_close(stats->fd);
718 	stats->fd = -1;
719 }
720 
vcpu_arch_free(struct kvm_vcpu * vcpu)721 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
722 {
723 
724 }
725 
726 /*
727  * VM VCPU Remove
728  *
729  * Input Args:
730  *   vcpu - VCPU to remove
731  *
732  * Output Args: None
733  *
734  * Return: None, TEST_ASSERT failures for all error conditions
735  *
736  * Removes a vCPU from a VM and frees its resources.
737  */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)738 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
739 {
740 	if (vcpu->dirty_gfns) {
741 		kvm_munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
742 		vcpu->dirty_gfns = NULL;
743 	}
744 
745 	kvm_munmap(vcpu->run, vcpu_mmap_sz());
746 
747 	kvm_close(vcpu->fd);
748 	kvm_stats_release(&vcpu->stats);
749 
750 	list_del(&vcpu->list);
751 
752 	vcpu_arch_free(vcpu);
753 	free(vcpu);
754 }
755 
kvm_vm_release(struct kvm_vm * vmp)756 void kvm_vm_release(struct kvm_vm *vmp)
757 {
758 	struct kvm_vcpu *vcpu, *tmp;
759 
760 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
761 		vm_vcpu_rm(vmp, vcpu);
762 
763 	kvm_close(vmp->fd);
764 	kvm_close(vmp->kvm_fd);
765 
766 	/* Free cached stats metadata and close FD */
767 	kvm_stats_release(&vmp->stats);
768 
769 	kvm_arch_vm_release(vmp);
770 }
771 
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)772 static void __vm_mem_region_delete(struct kvm_vm *vm,
773 				   struct userspace_mem_region *region)
774 {
775 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
776 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
777 	hash_del(&region->slot_node);
778 
779 	sparsebit_free(&region->unused_phy_pages);
780 	sparsebit_free(&region->protected_phy_pages);
781 	kvm_munmap(region->mmap_start, region->mmap_size);
782 	if (region->fd >= 0) {
783 		/* There's an extra map when using shared memory. */
784 		kvm_munmap(region->mmap_alias, region->mmap_size);
785 		close(region->fd);
786 	}
787 	if (region->region.guest_memfd >= 0)
788 		close(region->region.guest_memfd);
789 
790 	free(region);
791 }
792 
793 /*
794  * Destroys and frees the VM pointed to by vmp.
795  */
kvm_vm_free(struct kvm_vm * vmp)796 void kvm_vm_free(struct kvm_vm *vmp)
797 {
798 	int ctr;
799 	struct hlist_node *node;
800 	struct userspace_mem_region *region;
801 
802 	if (vmp == NULL)
803 		return;
804 
805 	/* Free userspace_mem_regions. */
806 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
807 		__vm_mem_region_delete(vmp, region);
808 
809 	/* Free sparsebit arrays. */
810 	sparsebit_free(&vmp->vpages_valid);
811 	sparsebit_free(&vmp->vpages_mapped);
812 
813 	kvm_vm_release(vmp);
814 
815 	/* Free the structure describing the VM. */
816 	free(vmp);
817 }
818 
kvm_memfd_alloc(size_t size,bool hugepages)819 int kvm_memfd_alloc(size_t size, bool hugepages)
820 {
821 	int memfd_flags = MFD_CLOEXEC;
822 	int fd;
823 
824 	if (hugepages)
825 		memfd_flags |= MFD_HUGETLB;
826 
827 	fd = memfd_create("kvm_selftest", memfd_flags);
828 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
829 
830 	kvm_ftruncate(fd, size);
831 	kvm_fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
832 
833 	return fd;
834 }
835 
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)836 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
837 					       struct userspace_mem_region *region)
838 {
839 	struct rb_node **cur, *parent;
840 
841 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
842 		struct userspace_mem_region *cregion;
843 
844 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
845 		parent = *cur;
846 		if (region->region.guest_phys_addr <
847 		    cregion->region.guest_phys_addr)
848 			cur = &(*cur)->rb_left;
849 		else {
850 			TEST_ASSERT(region->region.guest_phys_addr !=
851 				    cregion->region.guest_phys_addr,
852 				    "Duplicate GPA in region tree");
853 
854 			cur = &(*cur)->rb_right;
855 		}
856 	}
857 
858 	rb_link_node(&region->gpa_node, parent, cur);
859 	rb_insert_color(&region->gpa_node, gpa_tree);
860 }
861 
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)862 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
863 					       struct userspace_mem_region *region)
864 {
865 	struct rb_node **cur, *parent;
866 
867 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
868 		struct userspace_mem_region *cregion;
869 
870 		cregion = container_of(*cur, typeof(*cregion), hva_node);
871 		parent = *cur;
872 		if (region->host_mem < cregion->host_mem)
873 			cur = &(*cur)->rb_left;
874 		else {
875 			TEST_ASSERT(region->host_mem !=
876 				    cregion->host_mem,
877 				    "Duplicate HVA in region tree");
878 
879 			cur = &(*cur)->rb_right;
880 		}
881 	}
882 
883 	rb_link_node(&region->hva_node, parent, cur);
884 	rb_insert_color(&region->hva_node, hva_tree);
885 }
886 
887 
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)888 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
889 				uint64_t gpa, uint64_t size, void *hva)
890 {
891 	struct kvm_userspace_memory_region region = {
892 		.slot = slot,
893 		.flags = flags,
894 		.guest_phys_addr = gpa,
895 		.memory_size = size,
896 		.userspace_addr = (uintptr_t)hva,
897 	};
898 
899 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
900 }
901 
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)902 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
903 			       uint64_t gpa, uint64_t size, void *hva)
904 {
905 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
906 
907 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
908 		    errno, strerror(errno));
909 }
910 
911 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
912 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
913 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
914 
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)915 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
916 				 uint64_t gpa, uint64_t size, void *hva,
917 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
918 {
919 	struct kvm_userspace_memory_region2 region = {
920 		.slot = slot,
921 		.flags = flags,
922 		.guest_phys_addr = gpa,
923 		.memory_size = size,
924 		.userspace_addr = (uintptr_t)hva,
925 		.guest_memfd = guest_memfd,
926 		.guest_memfd_offset = guest_memfd_offset,
927 	};
928 
929 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
930 
931 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
932 }
933 
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)934 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
935 				uint64_t gpa, uint64_t size, void *hva,
936 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
937 {
938 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
939 					       guest_memfd, guest_memfd_offset);
940 
941 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
942 		    errno, strerror(errno));
943 }
944 
945 
946 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t gpa,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)947 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
948 		uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
949 		int guest_memfd, uint64_t guest_memfd_offset)
950 {
951 	int ret;
952 	struct userspace_mem_region *region;
953 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
954 	size_t mem_size = npages * vm->page_size;
955 	size_t alignment;
956 
957 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
958 
959 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
960 		"Number of guest pages is not compatible with the host. "
961 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
962 
963 	TEST_ASSERT((gpa % vm->page_size) == 0, "Guest physical "
964 		"address not on a page boundary.\n"
965 		"  gpa: 0x%lx vm->page_size: 0x%x",
966 		gpa, vm->page_size);
967 	TEST_ASSERT((((gpa >> vm->page_shift) + npages) - 1)
968 		<= vm->max_gfn, "Physical range beyond maximum "
969 		"supported physical address,\n"
970 		"  gpa: 0x%lx npages: 0x%lx\n"
971 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
972 		gpa, npages, vm->max_gfn, vm->page_size);
973 
974 	/*
975 	 * Confirm a mem region with an overlapping address doesn't
976 	 * already exist.
977 	 */
978 	region = (struct userspace_mem_region *) userspace_mem_region_find(
979 		vm, gpa, (gpa + npages * vm->page_size) - 1);
980 	if (region != NULL)
981 		TEST_FAIL("overlapping userspace_mem_region already "
982 			"exists\n"
983 			"  requested gpa: 0x%lx npages: 0x%lx page_size: 0x%x\n"
984 			"  existing gpa: 0x%lx size: 0x%lx",
985 			gpa, npages, vm->page_size,
986 			(uint64_t) region->region.guest_phys_addr,
987 			(uint64_t) region->region.memory_size);
988 
989 	/* Confirm no region with the requested slot already exists. */
990 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
991 			       slot) {
992 		if (region->region.slot != slot)
993 			continue;
994 
995 		TEST_FAIL("A mem region with the requested slot "
996 			"already exists.\n"
997 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
998 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
999 			slot, gpa, npages, region->region.slot,
1000 			(uint64_t) region->region.guest_phys_addr,
1001 			(uint64_t) region->region.memory_size);
1002 	}
1003 
1004 	/* Allocate and initialize new mem region structure. */
1005 	region = calloc(1, sizeof(*region));
1006 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1007 	region->mmap_size = mem_size;
1008 
1009 #ifdef __s390x__
1010 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1011 	alignment = 0x100000;
1012 #else
1013 	alignment = 1;
1014 #endif
1015 
1016 	/*
1017 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1018 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1019 	 * because mmap will always return an address aligned to the HugeTLB
1020 	 * page size.
1021 	 */
1022 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1023 		alignment = max(backing_src_pagesz, alignment);
1024 
1025 	TEST_ASSERT_EQ(gpa, align_up(gpa, backing_src_pagesz));
1026 
1027 	/* Add enough memory to align up if necessary */
1028 	if (alignment > 1)
1029 		region->mmap_size += alignment;
1030 
1031 	region->fd = -1;
1032 	if (backing_src_is_shared(src_type))
1033 		region->fd = kvm_memfd_alloc(region->mmap_size,
1034 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1035 
1036 	region->mmap_start = kvm_mmap(region->mmap_size, PROT_READ | PROT_WRITE,
1037 				      vm_mem_backing_src_alias(src_type)->flag,
1038 				      region->fd);
1039 
1040 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1041 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1042 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1043 		    region->mmap_start, backing_src_pagesz);
1044 
1045 	/* Align host address */
1046 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1047 
1048 	/* As needed perform madvise */
1049 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1050 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1051 		ret = madvise(region->host_mem, mem_size,
1052 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1053 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1054 			    region->host_mem, mem_size,
1055 			    vm_mem_backing_src_alias(src_type)->name);
1056 	}
1057 
1058 	region->backing_src_type = src_type;
1059 
1060 	if (flags & KVM_MEM_GUEST_MEMFD) {
1061 		if (guest_memfd < 0) {
1062 			uint32_t guest_memfd_flags = 0;
1063 			TEST_ASSERT(!guest_memfd_offset,
1064 				    "Offset must be zero when creating new guest_memfd");
1065 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1066 		} else {
1067 			/*
1068 			 * Install a unique fd for each memslot so that the fd
1069 			 * can be closed when the region is deleted without
1070 			 * needing to track if the fd is owned by the framework
1071 			 * or by the caller.
1072 			 */
1073 			guest_memfd = kvm_dup(guest_memfd);
1074 		}
1075 
1076 		region->region.guest_memfd = guest_memfd;
1077 		region->region.guest_memfd_offset = guest_memfd_offset;
1078 	} else {
1079 		region->region.guest_memfd = -1;
1080 	}
1081 
1082 	region->unused_phy_pages = sparsebit_alloc();
1083 	if (vm_arch_has_protected_memory(vm))
1084 		region->protected_phy_pages = sparsebit_alloc();
1085 	sparsebit_set_num(region->unused_phy_pages, gpa >> vm->page_shift, npages);
1086 	region->region.slot = slot;
1087 	region->region.flags = flags;
1088 	region->region.guest_phys_addr = gpa;
1089 	region->region.memory_size = npages * vm->page_size;
1090 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1091 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1092 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1093 		"  rc: %i errno: %i\n"
1094 		"  slot: %u flags: 0x%x\n"
1095 		"  guest_phys_addr: 0x%lx size: 0x%llx guest_memfd: %d",
1096 		ret, errno, slot, flags, gpa, region->region.memory_size,
1097 		region->region.guest_memfd);
1098 
1099 	/* Add to quick lookup data structures */
1100 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1101 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1102 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1103 
1104 	/* If shared memory, create an alias. */
1105 	if (region->fd >= 0) {
1106 		region->mmap_alias = kvm_mmap(region->mmap_size,
1107 					      PROT_READ | PROT_WRITE,
1108 					      vm_mem_backing_src_alias(src_type)->flag,
1109 					      region->fd);
1110 
1111 		/* Align host alias address */
1112 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1113 	}
1114 }
1115 
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t gpa,uint32_t slot,uint64_t npages,uint32_t flags)1116 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1117 				 enum vm_mem_backing_src_type src_type,
1118 				 uint64_t gpa, uint32_t slot, uint64_t npages,
1119 				 uint32_t flags)
1120 {
1121 	vm_mem_add(vm, src_type, gpa, slot, npages, flags, -1, 0);
1122 }
1123 
1124 /*
1125  * Memslot to region
1126  *
1127  * Input Args:
1128  *   vm - Virtual Machine
1129  *   memslot - KVM memory slot ID
1130  *
1131  * Output Args: None
1132  *
1133  * Return:
1134  *   Pointer to memory region structure that describe memory region
1135  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1136  *   on error (e.g. currently no memory region using memslot as a KVM
1137  *   memory slot ID).
1138  */
1139 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1140 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1141 {
1142 	struct userspace_mem_region *region;
1143 
1144 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1145 			       memslot)
1146 		if (region->region.slot == memslot)
1147 			return region;
1148 
1149 	fprintf(stderr, "No mem region with the requested slot found,\n"
1150 		"  requested slot: %u\n", memslot);
1151 	fputs("---- vm dump ----\n", stderr);
1152 	vm_dump(stderr, vm, 2);
1153 	TEST_FAIL("Mem region not found");
1154 	return NULL;
1155 }
1156 
1157 /*
1158  * VM Memory Region Flags Set
1159  *
1160  * Input Args:
1161  *   vm - Virtual Machine
1162  *   flags - Starting guest physical address
1163  *
1164  * Output Args: None
1165  *
1166  * Return: None
1167  *
1168  * Sets the flags of the memory region specified by the value of slot,
1169  * to the values given by flags.
1170  */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1171 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1172 {
1173 	int ret;
1174 	struct userspace_mem_region *region;
1175 
1176 	region = memslot2region(vm, slot);
1177 
1178 	region->region.flags = flags;
1179 
1180 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1181 
1182 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1183 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1184 		ret, errno, slot, flags);
1185 }
1186 
vm_mem_region_reload(struct kvm_vm * vm,uint32_t slot)1187 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot)
1188 {
1189 	struct userspace_mem_region *region = memslot2region(vm, slot);
1190 	struct kvm_userspace_memory_region2 tmp = region->region;
1191 
1192 	tmp.memory_size = 0;
1193 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &tmp);
1194 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1195 }
1196 
1197 /*
1198  * VM Memory Region Move
1199  *
1200  * Input Args:
1201  *   vm - Virtual Machine
1202  *   slot - Slot of the memory region to move
1203  *   new_gpa - Starting guest physical address
1204  *
1205  * Output Args: None
1206  *
1207  * Return: None
1208  *
1209  * Change the gpa of a memory region.
1210  */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1211 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1212 {
1213 	struct userspace_mem_region *region;
1214 	int ret;
1215 
1216 	region = memslot2region(vm, slot);
1217 
1218 	region->region.guest_phys_addr = new_gpa;
1219 
1220 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1221 
1222 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1223 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1224 		    ret, errno, slot, new_gpa);
1225 }
1226 
1227 /*
1228  * VM Memory Region Delete
1229  *
1230  * Input Args:
1231  *   vm - Virtual Machine
1232  *   slot - Slot of the memory region to delete
1233  *
1234  * Output Args: None
1235  *
1236  * Return: None
1237  *
1238  * Delete a memory region.
1239  */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1240 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1241 {
1242 	struct userspace_mem_region *region = memslot2region(vm, slot);
1243 
1244 	region->region.memory_size = 0;
1245 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1246 
1247 	__vm_mem_region_delete(vm, region);
1248 }
1249 
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1250 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1251 			    bool punch_hole)
1252 {
1253 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1254 	struct userspace_mem_region *region;
1255 	uint64_t end = base + size;
1256 	uint64_t gpa, len;
1257 	off_t fd_offset;
1258 	int ret;
1259 
1260 	for (gpa = base; gpa < end; gpa += len) {
1261 		uint64_t offset;
1262 
1263 		region = userspace_mem_region_find(vm, gpa, gpa);
1264 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1265 			    "Private memory region not found for GPA 0x%lx", gpa);
1266 
1267 		offset = gpa - region->region.guest_phys_addr;
1268 		fd_offset = region->region.guest_memfd_offset + offset;
1269 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1270 
1271 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1272 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1273 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1274 			    region->region.guest_memfd, mode, fd_offset);
1275 	}
1276 }
1277 
1278 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1279 static size_t vcpu_mmap_sz(void)
1280 {
1281 	int dev_fd, ret;
1282 
1283 	dev_fd = open_kvm_dev_path_or_exit();
1284 
1285 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1286 	TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run),
1287 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1288 
1289 	close(dev_fd);
1290 
1291 	return ret;
1292 }
1293 
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1294 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1295 {
1296 	struct kvm_vcpu *vcpu;
1297 
1298 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1299 		if (vcpu->id == vcpu_id)
1300 			return true;
1301 	}
1302 
1303 	return false;
1304 }
1305 
1306 /*
1307  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1308  * No additional vCPU setup is done.  Returns the vCPU.
1309  */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1310 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1311 {
1312 	struct kvm_vcpu *vcpu;
1313 
1314 	/* Confirm a vcpu with the specified id doesn't already exist. */
1315 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1316 
1317 	/* Allocate and initialize new vcpu structure. */
1318 	vcpu = calloc(1, sizeof(*vcpu));
1319 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1320 
1321 	vcpu->vm = vm;
1322 	vcpu->id = vcpu_id;
1323 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1324 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1325 
1326 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1327 		"smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi",
1328 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1329 	vcpu->run = kvm_mmap(vcpu_mmap_sz(), PROT_READ | PROT_WRITE,
1330 			     MAP_SHARED, vcpu->fd);
1331 
1332 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1333 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1334 	else
1335 		vcpu->stats.fd = -1;
1336 
1337 	/* Add to linked-list of VCPUs. */
1338 	list_add(&vcpu->list, &vm->vcpus);
1339 
1340 	return vcpu;
1341 }
1342 
1343 /*
1344  * VM Virtual Address Unused Gap
1345  *
1346  * Input Args:
1347  *   vm - Virtual Machine
1348  *   sz - Size (bytes)
1349  *   vaddr_min - Minimum Virtual Address
1350  *
1351  * Output Args: None
1352  *
1353  * Return:
1354  *   Lowest virtual address at or below vaddr_min, with at least
1355  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1356  *   size sz is available.
1357  *
1358  * Within the VM specified by vm, locates the lowest starting virtual
1359  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1360  * TEST_ASSERT failure occurs for invalid input or no area of at least
1361  * sz unallocated bytes >= vaddr_min is available.
1362  */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1363 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1364 			       vm_vaddr_t vaddr_min)
1365 {
1366 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1367 
1368 	/* Determine lowest permitted virtual page index. */
1369 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1370 	if ((pgidx_start * vm->page_size) < vaddr_min)
1371 		goto no_va_found;
1372 
1373 	/* Loop over section with enough valid virtual page indexes. */
1374 	if (!sparsebit_is_set_num(vm->vpages_valid,
1375 		pgidx_start, pages))
1376 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1377 			pgidx_start, pages);
1378 	do {
1379 		/*
1380 		 * Are there enough unused virtual pages available at
1381 		 * the currently proposed starting virtual page index.
1382 		 * If not, adjust proposed starting index to next
1383 		 * possible.
1384 		 */
1385 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1386 			pgidx_start, pages))
1387 			goto va_found;
1388 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1389 			pgidx_start, pages);
1390 		if (pgidx_start == 0)
1391 			goto no_va_found;
1392 
1393 		/*
1394 		 * If needed, adjust proposed starting virtual address,
1395 		 * to next range of valid virtual addresses.
1396 		 */
1397 		if (!sparsebit_is_set_num(vm->vpages_valid,
1398 			pgidx_start, pages)) {
1399 			pgidx_start = sparsebit_next_set_num(
1400 				vm->vpages_valid, pgidx_start, pages);
1401 			if (pgidx_start == 0)
1402 				goto no_va_found;
1403 		}
1404 	} while (pgidx_start != 0);
1405 
1406 no_va_found:
1407 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1408 
1409 	/* NOT REACHED */
1410 	return -1;
1411 
1412 va_found:
1413 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1414 		pgidx_start, pages),
1415 		"Unexpected, invalid virtual page index range,\n"
1416 		"  pgidx_start: 0x%lx\n"
1417 		"  pages: 0x%lx",
1418 		pgidx_start, pages);
1419 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1420 		pgidx_start, pages),
1421 		"Unexpected, pages already mapped,\n"
1422 		"  pgidx_start: 0x%lx\n"
1423 		"  pages: 0x%lx",
1424 		pgidx_start, pages);
1425 
1426 	return pgidx_start * vm->page_size;
1427 }
1428 
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1429 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1430 				     vm_vaddr_t vaddr_min,
1431 				     enum kvm_mem_region_type type,
1432 				     bool protected)
1433 {
1434 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1435 
1436 	virt_pgd_alloc(vm);
1437 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1438 						KVM_UTIL_MIN_PFN * vm->page_size,
1439 						vm->memslots[type], protected);
1440 
1441 	/*
1442 	 * Find an unused range of virtual page addresses of at least
1443 	 * pages in length.
1444 	 */
1445 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1446 
1447 	/* Map the virtual pages. */
1448 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1449 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1450 
1451 		virt_pg_map(vm, vaddr, paddr);
1452 	}
1453 
1454 	return vaddr_start;
1455 }
1456 
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1457 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1458 			    enum kvm_mem_region_type type)
1459 {
1460 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1461 				  vm_arch_has_protected_memory(vm));
1462 }
1463 
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1464 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1465 				 vm_vaddr_t vaddr_min,
1466 				 enum kvm_mem_region_type type)
1467 {
1468 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1469 }
1470 
1471 /*
1472  * VM Virtual Address Allocate
1473  *
1474  * Input Args:
1475  *   vm - Virtual Machine
1476  *   sz - Size in bytes
1477  *   vaddr_min - Minimum starting virtual address
1478  *
1479  * Output Args: None
1480  *
1481  * Return:
1482  *   Starting guest virtual address
1483  *
1484  * Allocates at least sz bytes within the virtual address space of the vm
1485  * given by vm.  The allocated bytes are mapped to a virtual address >=
1486  * the address given by vaddr_min.  Note that each allocation uses a
1487  * a unique set of pages, with the minimum real allocation being at least
1488  * a page. The allocated physical space comes from the TEST_DATA memory region.
1489  */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1490 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1491 {
1492 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1493 }
1494 
1495 /*
1496  * VM Virtual Address Allocate Pages
1497  *
1498  * Input Args:
1499  *   vm - Virtual Machine
1500  *
1501  * Output Args: None
1502  *
1503  * Return:
1504  *   Starting guest virtual address
1505  *
1506  * Allocates at least N system pages worth of bytes within the virtual address
1507  * space of the vm.
1508  */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1509 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1510 {
1511 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1512 }
1513 
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1514 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1515 {
1516 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1517 }
1518 
1519 /*
1520  * VM Virtual Address Allocate Page
1521  *
1522  * Input Args:
1523  *   vm - Virtual Machine
1524  *
1525  * Output Args: None
1526  *
1527  * Return:
1528  *   Starting guest virtual address
1529  *
1530  * Allocates at least one system page worth of bytes within the virtual address
1531  * space of the vm.
1532  */
vm_vaddr_alloc_page(struct kvm_vm * vm)1533 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1534 {
1535 	return vm_vaddr_alloc_pages(vm, 1);
1536 }
1537 
1538 /*
1539  * Map a range of VM virtual address to the VM's physical address
1540  *
1541  * Input Args:
1542  *   vm - Virtual Machine
1543  *   vaddr - Virtuall address to map
1544  *   paddr - VM Physical Address
1545  *   npages - The number of pages to map
1546  *
1547  * Output Args: None
1548  *
1549  * Return: None
1550  *
1551  * Within the VM given by @vm, creates a virtual translation for
1552  * @npages starting at @vaddr to the page range starting at @paddr.
1553  */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1554 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1555 	      unsigned int npages)
1556 {
1557 	size_t page_size = vm->page_size;
1558 	size_t size = npages * page_size;
1559 
1560 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1561 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1562 
1563 	while (npages--) {
1564 		virt_pg_map(vm, vaddr, paddr);
1565 
1566 		vaddr += page_size;
1567 		paddr += page_size;
1568 	}
1569 }
1570 
1571 /*
1572  * Address VM Physical to Host Virtual
1573  *
1574  * Input Args:
1575  *   vm - Virtual Machine
1576  *   gpa - VM physical address
1577  *
1578  * Output Args: None
1579  *
1580  * Return:
1581  *   Equivalent host virtual address
1582  *
1583  * Locates the memory region containing the VM physical address given
1584  * by gpa, within the VM given by vm.  When found, the host virtual
1585  * address providing the memory to the vm physical address is returned.
1586  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1587  */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1588 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1589 {
1590 	struct userspace_mem_region *region;
1591 
1592 	gpa = vm_untag_gpa(vm, gpa);
1593 
1594 	region = userspace_mem_region_find(vm, gpa, gpa);
1595 	if (!region) {
1596 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1597 		return NULL;
1598 	}
1599 
1600 	return (void *)((uintptr_t)region->host_mem
1601 		+ (gpa - region->region.guest_phys_addr));
1602 }
1603 
1604 /*
1605  * Address Host Virtual to VM Physical
1606  *
1607  * Input Args:
1608  *   vm - Virtual Machine
1609  *   hva - Host virtual address
1610  *
1611  * Output Args: None
1612  *
1613  * Return:
1614  *   Equivalent VM physical address
1615  *
1616  * Locates the memory region containing the host virtual address given
1617  * by hva, within the VM given by vm.  When found, the equivalent
1618  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1619  * region containing hva exists.
1620  */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1621 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1622 {
1623 	struct rb_node *node;
1624 
1625 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1626 		struct userspace_mem_region *region =
1627 			container_of(node, struct userspace_mem_region, hva_node);
1628 
1629 		if (hva >= region->host_mem) {
1630 			if (hva <= (region->host_mem
1631 				+ region->region.memory_size - 1))
1632 				return (vm_paddr_t)((uintptr_t)
1633 					region->region.guest_phys_addr
1634 					+ (hva - (uintptr_t)region->host_mem));
1635 
1636 			node = node->rb_right;
1637 		} else
1638 			node = node->rb_left;
1639 	}
1640 
1641 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1642 	return -1;
1643 }
1644 
1645 /*
1646  * Address VM physical to Host Virtual *alias*.
1647  *
1648  * Input Args:
1649  *   vm - Virtual Machine
1650  *   gpa - VM physical address
1651  *
1652  * Output Args: None
1653  *
1654  * Return:
1655  *   Equivalent address within the host virtual *alias* area, or NULL
1656  *   (without failing the test) if the guest memory is not shared (so
1657  *   no alias exists).
1658  *
1659  * Create a writable, shared virtual=>physical alias for the specific GPA.
1660  * The primary use case is to allow the host selftest to manipulate guest
1661  * memory without mapping said memory in the guest's address space. And, for
1662  * userfaultfd-based demand paging, to do so without triggering userfaults.
1663  */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1664 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1665 {
1666 	struct userspace_mem_region *region;
1667 	uintptr_t offset;
1668 
1669 	region = userspace_mem_region_find(vm, gpa, gpa);
1670 	if (!region)
1671 		return NULL;
1672 
1673 	if (!region->host_alias)
1674 		return NULL;
1675 
1676 	offset = gpa - region->region.guest_phys_addr;
1677 	return (void *) ((uintptr_t) region->host_alias + offset);
1678 }
1679 
1680 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1681 void vm_create_irqchip(struct kvm_vm *vm)
1682 {
1683 	int r;
1684 
1685 	/*
1686 	 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1687 	 * split model (x86 only) if that fails (KVM x86 allows compiling out
1688 	 * support for KVM_CREATE_IRQCHIP).
1689 	 */
1690 	r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1691 	if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1692 		vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1693 	else
1694 		TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1695 
1696 	vm->has_irqchip = true;
1697 }
1698 
_vcpu_run(struct kvm_vcpu * vcpu)1699 int _vcpu_run(struct kvm_vcpu *vcpu)
1700 {
1701 	int rc;
1702 
1703 	do {
1704 		rc = __vcpu_run(vcpu);
1705 	} while (rc == -1 && errno == EINTR);
1706 
1707 	if (!rc)
1708 		assert_on_unhandled_exception(vcpu);
1709 
1710 	return rc;
1711 }
1712 
1713 /*
1714  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1715  * Assert if the KVM returns an error (other than -EINTR).
1716  */
vcpu_run(struct kvm_vcpu * vcpu)1717 void vcpu_run(struct kvm_vcpu *vcpu)
1718 {
1719 	int ret = _vcpu_run(vcpu);
1720 
1721 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1722 }
1723 
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1724 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1725 {
1726 	int ret;
1727 
1728 	vcpu->run->immediate_exit = 1;
1729 	ret = __vcpu_run(vcpu);
1730 	vcpu->run->immediate_exit = 0;
1731 
1732 	TEST_ASSERT(ret == -1 && errno == EINTR,
1733 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1734 		    ret, errno);
1735 }
1736 
1737 /*
1738  * Get the list of guest registers which are supported for
1739  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1740  * it is the caller's responsibility to free the list.
1741  */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1742 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1743 {
1744 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1745 	int ret;
1746 
1747 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1748 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1749 
1750 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1751 	reg_list->n = reg_list_n.n;
1752 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1753 	return reg_list;
1754 }
1755 
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1756 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1757 {
1758 	uint32_t page_size = getpagesize();
1759 	uint32_t size = vcpu->vm->dirty_ring_size;
1760 
1761 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1762 
1763 	if (!vcpu->dirty_gfns) {
1764 		void *addr;
1765 
1766 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1767 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1768 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1769 
1770 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1771 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1772 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1773 
1774 		addr = __kvm_mmap(size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1775 				  page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1776 
1777 		vcpu->dirty_gfns = addr;
1778 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1779 	}
1780 
1781 	return vcpu->dirty_gfns;
1782 }
1783 
1784 /*
1785  * Device Ioctl
1786  */
1787 
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1788 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1789 {
1790 	struct kvm_device_attr attribute = {
1791 		.group = group,
1792 		.attr = attr,
1793 		.flags = 0,
1794 	};
1795 
1796 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1797 }
1798 
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1799 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1800 {
1801 	struct kvm_create_device create_dev = {
1802 		.type = type,
1803 		.flags = KVM_CREATE_DEVICE_TEST,
1804 	};
1805 
1806 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1807 }
1808 
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1809 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1810 {
1811 	struct kvm_create_device create_dev = {
1812 		.type = type,
1813 		.fd = -1,
1814 		.flags = 0,
1815 	};
1816 	int err;
1817 
1818 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1819 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1820 	return err ? : create_dev.fd;
1821 }
1822 
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1823 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1824 {
1825 	struct kvm_device_attr kvmattr = {
1826 		.group = group,
1827 		.attr = attr,
1828 		.flags = 0,
1829 		.addr = (uintptr_t)val,
1830 	};
1831 
1832 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1833 }
1834 
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1835 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1836 {
1837 	struct kvm_device_attr kvmattr = {
1838 		.group = group,
1839 		.attr = attr,
1840 		.flags = 0,
1841 		.addr = (uintptr_t)val,
1842 	};
1843 
1844 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1845 }
1846 
1847 /*
1848  * IRQ related functions.
1849  */
1850 
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1851 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1852 {
1853 	struct kvm_irq_level irq_level = {
1854 		.irq    = irq,
1855 		.level  = level,
1856 	};
1857 
1858 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1859 }
1860 
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1861 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1862 {
1863 	int ret = _kvm_irq_line(vm, irq, level);
1864 
1865 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1866 }
1867 
kvm_gsi_routing_create(void)1868 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1869 {
1870 	struct kvm_irq_routing *routing;
1871 	size_t size;
1872 
1873 	size = sizeof(struct kvm_irq_routing);
1874 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1875 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1876 	routing = calloc(1, size);
1877 	assert(routing);
1878 
1879 	return routing;
1880 }
1881 
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1882 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1883 		uint32_t gsi, uint32_t pin)
1884 {
1885 	int i;
1886 
1887 	assert(routing);
1888 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1889 
1890 	i = routing->nr;
1891 	routing->entries[i].gsi = gsi;
1892 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1893 	routing->entries[i].flags = 0;
1894 	routing->entries[i].u.irqchip.irqchip = 0;
1895 	routing->entries[i].u.irqchip.pin = pin;
1896 	routing->nr++;
1897 }
1898 
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1899 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1900 {
1901 	int ret;
1902 
1903 	assert(routing);
1904 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1905 	free(routing);
1906 
1907 	return ret;
1908 }
1909 
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1910 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1911 {
1912 	int ret;
1913 
1914 	ret = _kvm_gsi_routing_write(vm, routing);
1915 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1916 }
1917 
1918 /*
1919  * VM Dump
1920  *
1921  * Input Args:
1922  *   vm - Virtual Machine
1923  *   indent - Left margin indent amount
1924  *
1925  * Output Args:
1926  *   stream - Output FILE stream
1927  *
1928  * Return: None
1929  *
1930  * Dumps the current state of the VM given by vm, to the FILE stream
1931  * given by stream.
1932  */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1933 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1934 {
1935 	int ctr;
1936 	struct userspace_mem_region *region;
1937 	struct kvm_vcpu *vcpu;
1938 
1939 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1940 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1941 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1942 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1943 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1944 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1945 			"host_virt: %p\n", indent + 2, "",
1946 			(uint64_t) region->region.guest_phys_addr,
1947 			(uint64_t) region->region.memory_size,
1948 			region->host_mem);
1949 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1950 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1951 		if (region->protected_phy_pages) {
1952 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1953 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1954 		}
1955 	}
1956 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1957 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1958 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1959 		vm->pgd_created);
1960 	if (vm->pgd_created) {
1961 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1962 			indent + 2, "");
1963 		virt_dump(stream, vm, indent + 4);
1964 	}
1965 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1966 
1967 	list_for_each_entry(vcpu, &vm->vcpus, list)
1968 		vcpu_dump(stream, vcpu, indent + 2);
1969 }
1970 
1971 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1972 
1973 /* Known KVM exit reasons */
1974 static struct exit_reason {
1975 	unsigned int reason;
1976 	const char *name;
1977 } exit_reasons_known[] = {
1978 	KVM_EXIT_STRING(UNKNOWN),
1979 	KVM_EXIT_STRING(EXCEPTION),
1980 	KVM_EXIT_STRING(IO),
1981 	KVM_EXIT_STRING(HYPERCALL),
1982 	KVM_EXIT_STRING(DEBUG),
1983 	KVM_EXIT_STRING(HLT),
1984 	KVM_EXIT_STRING(MMIO),
1985 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1986 	KVM_EXIT_STRING(SHUTDOWN),
1987 	KVM_EXIT_STRING(FAIL_ENTRY),
1988 	KVM_EXIT_STRING(INTR),
1989 	KVM_EXIT_STRING(SET_TPR),
1990 	KVM_EXIT_STRING(TPR_ACCESS),
1991 	KVM_EXIT_STRING(S390_SIEIC),
1992 	KVM_EXIT_STRING(S390_RESET),
1993 	KVM_EXIT_STRING(DCR),
1994 	KVM_EXIT_STRING(NMI),
1995 	KVM_EXIT_STRING(INTERNAL_ERROR),
1996 	KVM_EXIT_STRING(OSI),
1997 	KVM_EXIT_STRING(PAPR_HCALL),
1998 	KVM_EXIT_STRING(S390_UCONTROL),
1999 	KVM_EXIT_STRING(WATCHDOG),
2000 	KVM_EXIT_STRING(S390_TSCH),
2001 	KVM_EXIT_STRING(EPR),
2002 	KVM_EXIT_STRING(SYSTEM_EVENT),
2003 	KVM_EXIT_STRING(S390_STSI),
2004 	KVM_EXIT_STRING(IOAPIC_EOI),
2005 	KVM_EXIT_STRING(HYPERV),
2006 	KVM_EXIT_STRING(ARM_NISV),
2007 	KVM_EXIT_STRING(X86_RDMSR),
2008 	KVM_EXIT_STRING(X86_WRMSR),
2009 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2010 	KVM_EXIT_STRING(AP_RESET_HOLD),
2011 	KVM_EXIT_STRING(X86_BUS_LOCK),
2012 	KVM_EXIT_STRING(XEN),
2013 	KVM_EXIT_STRING(RISCV_SBI),
2014 	KVM_EXIT_STRING(RISCV_CSR),
2015 	KVM_EXIT_STRING(NOTIFY),
2016 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2017 	KVM_EXIT_STRING(MEMORY_FAULT),
2018 	KVM_EXIT_STRING(ARM_SEA),
2019 };
2020 
2021 /*
2022  * Exit Reason String
2023  *
2024  * Input Args:
2025  *   exit_reason - Exit reason
2026  *
2027  * Output Args: None
2028  *
2029  * Return:
2030  *   Constant string pointer describing the exit reason.
2031  *
2032  * Locates and returns a constant string that describes the KVM exit
2033  * reason given by exit_reason.  If no such string is found, a constant
2034  * string of "Unknown" is returned.
2035  */
exit_reason_str(unsigned int exit_reason)2036 const char *exit_reason_str(unsigned int exit_reason)
2037 {
2038 	unsigned int n1;
2039 
2040 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2041 		if (exit_reason == exit_reasons_known[n1].reason)
2042 			return exit_reasons_known[n1].name;
2043 	}
2044 
2045 	return "Unknown";
2046 }
2047 
2048 /*
2049  * Physical Contiguous Page Allocator
2050  *
2051  * Input Args:
2052  *   vm - Virtual Machine
2053  *   num - number of pages
2054  *   paddr_min - Physical address minimum
2055  *   memslot - Memory region to allocate page from
2056  *   protected - True if the pages will be used as protected/private memory
2057  *
2058  * Output Args: None
2059  *
2060  * Return:
2061  *   Starting physical address
2062  *
2063  * Within the VM specified by vm, locates a range of available physical
2064  * pages at or above paddr_min. If found, the pages are marked as in use
2065  * and their base address is returned. A TEST_ASSERT failure occurs if
2066  * not enough pages are available at or above paddr_min.
2067  */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2068 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2069 				vm_paddr_t paddr_min, uint32_t memslot,
2070 				bool protected)
2071 {
2072 	struct userspace_mem_region *region;
2073 	sparsebit_idx_t pg, base;
2074 
2075 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2076 
2077 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2078 		"not divisible by page size.\n"
2079 		"  paddr_min: 0x%lx page_size: 0x%x",
2080 		paddr_min, vm->page_size);
2081 
2082 	region = memslot2region(vm, memslot);
2083 	TEST_ASSERT(!protected || region->protected_phy_pages,
2084 		    "Region doesn't support protected memory");
2085 
2086 	base = pg = paddr_min >> vm->page_shift;
2087 	do {
2088 		for (; pg < base + num; ++pg) {
2089 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2090 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2091 				break;
2092 			}
2093 		}
2094 	} while (pg && pg != base + num);
2095 
2096 	if (pg == 0) {
2097 		fprintf(stderr, "No guest physical page available, "
2098 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2099 			paddr_min, vm->page_size, memslot);
2100 		fputs("---- vm dump ----\n", stderr);
2101 		vm_dump(stderr, vm, 2);
2102 		abort();
2103 	}
2104 
2105 	for (pg = base; pg < base + num; ++pg) {
2106 		sparsebit_clear(region->unused_phy_pages, pg);
2107 		if (protected)
2108 			sparsebit_set(region->protected_phy_pages, pg);
2109 	}
2110 
2111 	return base * vm->page_size;
2112 }
2113 
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2114 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2115 			     uint32_t memslot)
2116 {
2117 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2118 }
2119 
vm_alloc_page_table(struct kvm_vm * vm)2120 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2121 {
2122 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2123 				 vm->memslots[MEM_REGION_PT]);
2124 }
2125 
2126 /*
2127  * Address Guest Virtual to Host Virtual
2128  *
2129  * Input Args:
2130  *   vm - Virtual Machine
2131  *   gva - VM virtual address
2132  *
2133  * Output Args: None
2134  *
2135  * Return:
2136  *   Equivalent host virtual address
2137  */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2138 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2139 {
2140 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2141 }
2142 
vm_compute_max_gfn(struct kvm_vm * vm)2143 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2144 {
2145 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2146 }
2147 
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2148 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2149 				      unsigned int page_shift,
2150 				      unsigned int new_page_shift,
2151 				      bool ceil)
2152 {
2153 	unsigned int n = 1 << (new_page_shift - page_shift);
2154 
2155 	if (page_shift >= new_page_shift)
2156 		return num_pages * (1 << (page_shift - new_page_shift));
2157 
2158 	return num_pages / n + !!(ceil && num_pages % n);
2159 }
2160 
getpageshift(void)2161 static inline int getpageshift(void)
2162 {
2163 	return __builtin_ffs(getpagesize()) - 1;
2164 }
2165 
2166 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2167 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2168 {
2169 	return vm_calc_num_pages(num_guest_pages,
2170 				 vm_guest_mode_params[mode].page_shift,
2171 				 getpageshift(), true);
2172 }
2173 
2174 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2175 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2176 {
2177 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2178 				 vm_guest_mode_params[mode].page_shift, false);
2179 }
2180 
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2181 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2182 {
2183 	unsigned int n;
2184 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2185 	return vm_adjust_num_guest_pages(mode, n);
2186 }
2187 
2188 /*
2189  * Read binary stats descriptors
2190  *
2191  * Input Args:
2192  *   stats_fd - the file descriptor for the binary stats file from which to read
2193  *   header - the binary stats metadata header corresponding to the given FD
2194  *
2195  * Output Args: None
2196  *
2197  * Return:
2198  *   A pointer to a newly allocated series of stat descriptors.
2199  *   Caller is responsible for freeing the returned kvm_stats_desc.
2200  *
2201  * Read the stats descriptors from the binary stats interface.
2202  */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2203 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2204 					      struct kvm_stats_header *header)
2205 {
2206 	struct kvm_stats_desc *stats_desc;
2207 	ssize_t desc_size, total_size, ret;
2208 
2209 	desc_size = get_stats_descriptor_size(header);
2210 	total_size = header->num_desc * desc_size;
2211 
2212 	stats_desc = calloc(header->num_desc, desc_size);
2213 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2214 
2215 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2216 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2217 
2218 	return stats_desc;
2219 }
2220 
2221 /*
2222  * Read stat data for a particular stat
2223  *
2224  * Input Args:
2225  *   stats_fd - the file descriptor for the binary stats file from which to read
2226  *   header - the binary stats metadata header corresponding to the given FD
2227  *   desc - the binary stat metadata for the particular stat to be read
2228  *   max_elements - the maximum number of 8-byte values to read into data
2229  *
2230  * Output Args:
2231  *   data - the buffer into which stat data should be read
2232  *
2233  * Read the data values of a specified stat from the binary stats interface.
2234  */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2235 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2236 		    struct kvm_stats_desc *desc, uint64_t *data,
2237 		    size_t max_elements)
2238 {
2239 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2240 	size_t size = nr_elements * sizeof(*data);
2241 	ssize_t ret;
2242 
2243 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2244 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2245 
2246 	ret = pread(stats_fd, data, size,
2247 		    header->data_offset + desc->offset);
2248 
2249 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2250 		    desc->name, errno, strerror(errno));
2251 	TEST_ASSERT(ret == size,
2252 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2253 		    desc->name, size, ret);
2254 }
2255 
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2256 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2257 		  uint64_t *data, size_t max_elements)
2258 {
2259 	struct kvm_stats_desc *desc;
2260 	size_t size_desc;
2261 	int i;
2262 
2263 	if (!stats->desc) {
2264 		read_stats_header(stats->fd, &stats->header);
2265 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2266 	}
2267 
2268 	size_desc = get_stats_descriptor_size(&stats->header);
2269 
2270 	for (i = 0; i < stats->header.num_desc; ++i) {
2271 		desc = (void *)stats->desc + (i * size_desc);
2272 
2273 		if (strcmp(desc->name, name))
2274 			continue;
2275 
2276 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2277 		return;
2278 	}
2279 
2280 	TEST_FAIL("Unable to find stat '%s'", name);
2281 }
2282 
kvm_arch_vm_post_create(struct kvm_vm * vm,unsigned int nr_vcpus)2283 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
2284 {
2285 }
2286 
kvm_arch_vm_finalize_vcpus(struct kvm_vm * vm)2287 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
2288 {
2289 }
2290 
kvm_arch_vm_release(struct kvm_vm * vm)2291 __weak void kvm_arch_vm_release(struct kvm_vm *vm)
2292 {
2293 }
2294 
kvm_selftest_arch_init(void)2295 __weak void kvm_selftest_arch_init(void)
2296 {
2297 }
2298 
report_unexpected_signal(int signum)2299 static void report_unexpected_signal(int signum)
2300 {
2301 #define KVM_CASE_SIGNUM(sig)					\
2302 	case sig: TEST_FAIL("Unexpected " #sig " (%d)\n", signum)
2303 
2304 	switch (signum) {
2305 	KVM_CASE_SIGNUM(SIGBUS);
2306 	KVM_CASE_SIGNUM(SIGSEGV);
2307 	KVM_CASE_SIGNUM(SIGILL);
2308 	KVM_CASE_SIGNUM(SIGFPE);
2309 	default:
2310 		TEST_FAIL("Unexpected signal %d\n", signum);
2311 	}
2312 }
2313 
kvm_selftest_init(void)2314 void __attribute((constructor)) kvm_selftest_init(void)
2315 {
2316 	struct sigaction sig_sa = {
2317 		.sa_handler = report_unexpected_signal,
2318 	};
2319 
2320 	/* Tell stdout not to buffer its content. */
2321 	setbuf(stdout, NULL);
2322 
2323 	sigaction(SIGBUS, &sig_sa, NULL);
2324 	sigaction(SIGSEGV, &sig_sa, NULL);
2325 	sigaction(SIGILL, &sig_sa, NULL);
2326 	sigaction(SIGFPE, &sig_sa, NULL);
2327 
2328 	guest_random_seed = last_guest_seed = random();
2329 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2330 
2331 	kvm_selftest_arch_init();
2332 }
2333 
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2334 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2335 {
2336 	sparsebit_idx_t pg = 0;
2337 	struct userspace_mem_region *region;
2338 
2339 	if (!vm_arch_has_protected_memory(vm))
2340 		return false;
2341 
2342 	region = userspace_mem_region_find(vm, paddr, paddr);
2343 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2344 
2345 	pg = paddr >> vm->page_shift;
2346 	return sparsebit_is_set(region->protected_phy_pages, pg);
2347 }
2348 
kvm_arch_has_default_irqchip(void)2349 __weak bool kvm_arch_has_default_irqchip(void)
2350 {
2351 	return false;
2352 }
2353