xref: /linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #include "../../vgic/vgic.h"
18 
19 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
20 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
21 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
22 
__gic_v3_get_lr(unsigned int lr)23 u64 __gic_v3_get_lr(unsigned int lr)
24 {
25 	switch (lr & 0xf) {
26 	case 0:
27 		return read_gicreg(ICH_LR0_EL2);
28 	case 1:
29 		return read_gicreg(ICH_LR1_EL2);
30 	case 2:
31 		return read_gicreg(ICH_LR2_EL2);
32 	case 3:
33 		return read_gicreg(ICH_LR3_EL2);
34 	case 4:
35 		return read_gicreg(ICH_LR4_EL2);
36 	case 5:
37 		return read_gicreg(ICH_LR5_EL2);
38 	case 6:
39 		return read_gicreg(ICH_LR6_EL2);
40 	case 7:
41 		return read_gicreg(ICH_LR7_EL2);
42 	case 8:
43 		return read_gicreg(ICH_LR8_EL2);
44 	case 9:
45 		return read_gicreg(ICH_LR9_EL2);
46 	case 10:
47 		return read_gicreg(ICH_LR10_EL2);
48 	case 11:
49 		return read_gicreg(ICH_LR11_EL2);
50 	case 12:
51 		return read_gicreg(ICH_LR12_EL2);
52 	case 13:
53 		return read_gicreg(ICH_LR13_EL2);
54 	case 14:
55 		return read_gicreg(ICH_LR14_EL2);
56 	case 15:
57 		return read_gicreg(ICH_LR15_EL2);
58 	}
59 
60 	unreachable();
61 }
62 
__gic_v3_set_lr(u64 val,int lr)63 void __gic_v3_set_lr(u64 val, int lr)
64 {
65 	switch (lr & 0xf) {
66 	case 0:
67 		write_gicreg(val, ICH_LR0_EL2);
68 		break;
69 	case 1:
70 		write_gicreg(val, ICH_LR1_EL2);
71 		break;
72 	case 2:
73 		write_gicreg(val, ICH_LR2_EL2);
74 		break;
75 	case 3:
76 		write_gicreg(val, ICH_LR3_EL2);
77 		break;
78 	case 4:
79 		write_gicreg(val, ICH_LR4_EL2);
80 		break;
81 	case 5:
82 		write_gicreg(val, ICH_LR5_EL2);
83 		break;
84 	case 6:
85 		write_gicreg(val, ICH_LR6_EL2);
86 		break;
87 	case 7:
88 		write_gicreg(val, ICH_LR7_EL2);
89 		break;
90 	case 8:
91 		write_gicreg(val, ICH_LR8_EL2);
92 		break;
93 	case 9:
94 		write_gicreg(val, ICH_LR9_EL2);
95 		break;
96 	case 10:
97 		write_gicreg(val, ICH_LR10_EL2);
98 		break;
99 	case 11:
100 		write_gicreg(val, ICH_LR11_EL2);
101 		break;
102 	case 12:
103 		write_gicreg(val, ICH_LR12_EL2);
104 		break;
105 	case 13:
106 		write_gicreg(val, ICH_LR13_EL2);
107 		break;
108 	case 14:
109 		write_gicreg(val, ICH_LR14_EL2);
110 		break;
111 	case 15:
112 		write_gicreg(val, ICH_LR15_EL2);
113 		break;
114 	}
115 }
116 
__vgic_v3_write_ap0rn(u32 val,int n)117 static void __vgic_v3_write_ap0rn(u32 val, int n)
118 {
119 	switch (n) {
120 	case 0:
121 		write_gicreg(val, ICH_AP0R0_EL2);
122 		break;
123 	case 1:
124 		write_gicreg(val, ICH_AP0R1_EL2);
125 		break;
126 	case 2:
127 		write_gicreg(val, ICH_AP0R2_EL2);
128 		break;
129 	case 3:
130 		write_gicreg(val, ICH_AP0R3_EL2);
131 		break;
132 	}
133 }
134 
__vgic_v3_write_ap1rn(u32 val,int n)135 static void __vgic_v3_write_ap1rn(u32 val, int n)
136 {
137 	switch (n) {
138 	case 0:
139 		write_gicreg(val, ICH_AP1R0_EL2);
140 		break;
141 	case 1:
142 		write_gicreg(val, ICH_AP1R1_EL2);
143 		break;
144 	case 2:
145 		write_gicreg(val, ICH_AP1R2_EL2);
146 		break;
147 	case 3:
148 		write_gicreg(val, ICH_AP1R3_EL2);
149 		break;
150 	}
151 }
152 
__vgic_v3_read_ap0rn(int n)153 static u32 __vgic_v3_read_ap0rn(int n)
154 {
155 	u32 val;
156 
157 	switch (n) {
158 	case 0:
159 		val = read_gicreg(ICH_AP0R0_EL2);
160 		break;
161 	case 1:
162 		val = read_gicreg(ICH_AP0R1_EL2);
163 		break;
164 	case 2:
165 		val = read_gicreg(ICH_AP0R2_EL2);
166 		break;
167 	case 3:
168 		val = read_gicreg(ICH_AP0R3_EL2);
169 		break;
170 	default:
171 		unreachable();
172 	}
173 
174 	return val;
175 }
176 
__vgic_v3_read_ap1rn(int n)177 static u32 __vgic_v3_read_ap1rn(int n)
178 {
179 	u32 val;
180 
181 	switch (n) {
182 	case 0:
183 		val = read_gicreg(ICH_AP1R0_EL2);
184 		break;
185 	case 1:
186 		val = read_gicreg(ICH_AP1R1_EL2);
187 		break;
188 	case 2:
189 		val = read_gicreg(ICH_AP1R2_EL2);
190 		break;
191 	case 3:
192 		val = read_gicreg(ICH_AP1R3_EL2);
193 		break;
194 	default:
195 		unreachable();
196 	}
197 
198 	return val;
199 }
200 
compute_ich_hcr(struct vgic_v3_cpu_if * cpu_if)201 static u64 compute_ich_hcr(struct vgic_v3_cpu_if *cpu_if)
202 {
203 	return cpu_if->vgic_hcr | vgic_ich_hcr_trap_bits();
204 }
205 
__vgic_v3_save_state(struct vgic_v3_cpu_if * cpu_if)206 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
207 {
208 	u64 used_lrs = cpu_if->used_lrs;
209 
210 	/*
211 	 * Make sure stores to the GIC via the memory mapped interface
212 	 * are now visible to the system register interface when reading the
213 	 * LRs, and when reading back the VMCR on non-VHE systems.
214 	 */
215 	if (used_lrs || !has_vhe()) {
216 		if (!cpu_if->vgic_sre) {
217 			dsb(sy);
218 			isb();
219 		}
220 	}
221 
222 	if (used_lrs) {
223 		int i;
224 		u32 elrsr;
225 
226 		elrsr = read_gicreg(ICH_ELRSR_EL2);
227 
228 		for (i = 0; i < used_lrs; i++) {
229 			if (elrsr & (1 << i))
230 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
231 			else
232 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
233 
234 			__gic_v3_set_lr(0, i);
235 		}
236 	}
237 
238 	cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
239 
240 	if (cpu_if->vgic_hcr & ICH_HCR_EL2_LRENPIE) {
241 		u64 val = read_gicreg(ICH_HCR_EL2);
242 		cpu_if->vgic_hcr &= ~ICH_HCR_EL2_EOIcount;
243 		cpu_if->vgic_hcr |= val & ICH_HCR_EL2_EOIcount;
244 	}
245 
246 	write_gicreg(0, ICH_HCR_EL2);
247 
248 	/*
249 	 * Hack alert: On NV, this results in a trap so that the above write
250 	 * actually takes effect... No synchronisation is necessary, as we
251 	 * only care about the effects when this traps.
252 	 */
253 	read_gicreg(ICH_MISR_EL2);
254 }
255 
__vgic_v3_restore_state(struct vgic_v3_cpu_if * cpu_if)256 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
257 {
258 	u64 used_lrs = cpu_if->used_lrs;
259 	int i;
260 
261 	write_gicreg(compute_ich_hcr(cpu_if), ICH_HCR_EL2);
262 
263 	for (i = 0; i < used_lrs; i++)
264 		__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
265 
266 	/*
267 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
268 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
269 	 * reached the (re)distributors. This ensure the guest will read the
270 	 * correct values from the memory-mapped interface.
271 	 */
272 	if (used_lrs || !has_vhe()) {
273 		if (!cpu_if->vgic_sre) {
274 			isb();
275 			dsb(sy);
276 		}
277 	}
278 }
279 
__vgic_v3_activate_traps(struct vgic_v3_cpu_if * cpu_if)280 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
281 {
282 	/*
283 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
284 	 * Group0 interrupt (as generated in GICv2 mode) to be
285 	 * delivered as a FIQ to the guest, with potentially fatal
286 	 * consequences. So we must make sure that ICC_SRE_EL1 has
287 	 * been actually programmed with the value we want before
288 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
289 	 * particular.  This logic must be called before
290 	 * __vgic_v3_restore_state().
291 	 *
292 	 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
293 	 * provisioned at all. In order to prevent illegal accesses to the
294 	 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
295 	 * so that the trap bits can take effect. Yes, we *loves* the GIC.
296 	 */
297 	if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
298 		write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
299 		isb();
300 	} else if (!cpu_if->vgic_sre) {
301 		write_gicreg(0, ICC_SRE_EL1);
302 		isb();
303 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
304 
305 
306 		if (has_vhe()) {
307 			/*
308 			 * Ensure that the write to the VMCR will have reached
309 			 * the (re)distributors. This ensure the guest will
310 			 * read the correct values from the memory-mapped
311 			 * interface.
312 			 */
313 			isb();
314 			dsb(sy);
315 		}
316 	}
317 
318 	/* Only disable SRE if the host implements the GICv2 interface */
319 	if (static_branch_unlikely(&vgic_v3_has_v2_compat)) {
320 		/*
321 		 * Prevent the guest from touching the ICC_SRE_EL1 system
322 		 * register. Note that this may not have any effect, as
323 		 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
324 		 */
325 		write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
326 			     ICC_SRE_EL2);
327 	}
328 
329 	/*
330 	 * If we need to trap system registers, we must write ICH_HCR_EL2
331 	 * anyway, even if no interrupts are being injected. Note that this
332 	 * also applies if we don't expect any system register access (no
333 	 * vgic at all). In any case, no need to provide MI configuration.
334 	 */
335 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
336 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
337 		write_gicreg(vgic_ich_hcr_trap_bits() | ICH_HCR_EL2_En, ICH_HCR_EL2);
338 }
339 
__vgic_v3_deactivate_traps(struct vgic_v3_cpu_if * cpu_if)340 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
341 {
342 	u64 val;
343 
344 	/* Only restore SRE if the host implements the GICv2 interface */
345 	if (static_branch_unlikely(&vgic_v3_has_v2_compat)) {
346 		val = read_gicreg(ICC_SRE_EL2);
347 		write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
348 
349 		if (!cpu_if->vgic_sre) {
350 			/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
351 			isb();
352 			write_gicreg(1, ICC_SRE_EL1);
353 		}
354 	}
355 
356 	/*
357 	 * If we were trapping system registers, we enabled the VGIC even if
358 	 * no interrupts were being injected, and we disable it again here.
359 	 */
360 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
361 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
362 		write_gicreg(0, ICH_HCR_EL2);
363 }
364 
__vgic_v3_save_aprs(struct vgic_v3_cpu_if * cpu_if)365 void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
366 {
367 	u64 val;
368 	u32 nr_pre_bits;
369 
370 	val = read_gicreg(ICH_VTR_EL2);
371 	nr_pre_bits = vtr_to_nr_pre_bits(val);
372 
373 	switch (nr_pre_bits) {
374 	case 7:
375 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
376 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
377 		fallthrough;
378 	case 6:
379 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
380 		fallthrough;
381 	default:
382 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
383 	}
384 
385 	switch (nr_pre_bits) {
386 	case 7:
387 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
388 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
389 		fallthrough;
390 	case 6:
391 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
392 		fallthrough;
393 	default:
394 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
395 	}
396 }
397 
__vgic_v3_restore_aprs(struct vgic_v3_cpu_if * cpu_if)398 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
399 {
400 	u64 val;
401 	u32 nr_pre_bits;
402 
403 	val = read_gicreg(ICH_VTR_EL2);
404 	nr_pre_bits = vtr_to_nr_pre_bits(val);
405 
406 	switch (nr_pre_bits) {
407 	case 7:
408 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
409 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
410 		fallthrough;
411 	case 6:
412 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
413 		fallthrough;
414 	default:
415 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
416 	}
417 
418 	switch (nr_pre_bits) {
419 	case 7:
420 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
421 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
422 		fallthrough;
423 	case 6:
424 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
425 		fallthrough;
426 	default:
427 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
428 	}
429 }
430 
__vgic_v3_init_lrs(void)431 void __vgic_v3_init_lrs(void)
432 {
433 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
434 	int i;
435 
436 	for (i = 0; i <= max_lr_idx; i++)
437 		__gic_v3_set_lr(0, i);
438 }
439 
440 /*
441  * Return the GIC CPU configuration:
442  * - [31:0]  ICH_VTR_EL2
443  * - [62:32] RES0
444  * - [63]    MMIO (GICv2) capable
445  */
__vgic_v3_get_gic_config(void)446 u64 __vgic_v3_get_gic_config(void)
447 {
448 	u64 val, sre;
449 	unsigned long flags = 0;
450 
451 	/*
452 	 * In compat mode, we cannot access ICC_SRE_EL1 at any EL
453 	 * other than EL1 itself; just return the
454 	 * ICH_VTR_EL2. ICC_IDR0_EL1 is only implemented on a GICv5
455 	 * system, so we first check if we have GICv5 support.
456 	 */
457 	if (cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
458 		return read_gicreg(ICH_VTR_EL2);
459 
460 	sre = read_gicreg(ICC_SRE_EL1);
461 	/*
462 	 * To check whether we have a MMIO-based (GICv2 compatible)
463 	 * CPU interface, we need to disable the system register
464 	 * view.
465 	 *
466 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
467 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
468 	 * interrupt overrides must be set. You've got to love this.
469 	 *
470 	 * As we always run VHE with HCR_xMO set, no extra xMO
471 	 * manipulation is required in that case.
472 	 *
473 	 * To safely disable SRE, we have to prevent any interrupt
474 	 * from firing (which would be deadly). This only makes sense
475 	 * on VHE, as interrupts are already masked for nVHE as part
476 	 * of the exception entry to EL2.
477 	 */
478 	if (has_vhe()) {
479 		flags = local_daif_save();
480 	} else {
481 		sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
482 		isb();
483 	}
484 
485 	write_gicreg(0, ICC_SRE_EL1);
486 	isb();
487 
488 	val = read_gicreg(ICC_SRE_EL1);
489 
490 	write_gicreg(sre, ICC_SRE_EL1);
491 	isb();
492 
493 	if (has_vhe()) {
494 		local_daif_restore(flags);
495 	} else {
496 		sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
497 		isb();
498 	}
499 
500 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
501 	val |= read_gicreg(ICH_VTR_EL2);
502 
503 	return val;
504 }
505 
__vgic_v3_compat_mode_enable(void)506 static void __vgic_v3_compat_mode_enable(void)
507 {
508 	if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
509 		return;
510 
511 	sysreg_clear_set_s(SYS_ICH_VCTLR_EL2, 0, ICH_VCTLR_EL2_V3);
512 	/* Wait for V3 to become enabled */
513 	isb();
514 }
515 
__vgic_v3_read_vmcr(void)516 static u64 __vgic_v3_read_vmcr(void)
517 {
518 	return read_gicreg(ICH_VMCR_EL2);
519 }
520 
__vgic_v3_write_vmcr(u32 vmcr)521 static void __vgic_v3_write_vmcr(u32 vmcr)
522 {
523 	write_gicreg(vmcr, ICH_VMCR_EL2);
524 }
525 
__vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if * cpu_if)526 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
527 {
528 	__vgic_v3_compat_mode_enable();
529 
530 	/*
531 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
532 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
533 	 * VMCR_EL2 save/restore in the world switch.
534 	 */
535 	if (cpu_if->vgic_sre)
536 		__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
537 	__vgic_v3_restore_aprs(cpu_if);
538 }
539 
__vgic_v3_bpr_min(void)540 static int __vgic_v3_bpr_min(void)
541 {
542 	/* See Pseudocode for VPriorityGroup */
543 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
544 }
545 
__vgic_v3_get_group(struct kvm_vcpu * vcpu)546 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
547 {
548 	u64 esr = kvm_vcpu_get_esr(vcpu);
549 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
550 
551 	return crm != 8;
552 }
553 
554 #define GICv3_IDLE_PRIORITY	0xff
555 
__vgic_v3_highest_priority_lr(struct kvm_vcpu * vcpu,u32 vmcr,u64 * lr_val)556 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
557 					 u64 *lr_val)
558 {
559 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
560 	u8 priority = GICv3_IDLE_PRIORITY;
561 	int i, lr = -1;
562 
563 	for (i = 0; i < used_lrs; i++) {
564 		u64 val = __gic_v3_get_lr(i);
565 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
566 
567 		/* Not pending in the state? */
568 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
569 			continue;
570 
571 		/* Group-0 interrupt, but Group-0 disabled? */
572 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
573 			continue;
574 
575 		/* Group-1 interrupt, but Group-1 disabled? */
576 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
577 			continue;
578 
579 		/* Not the highest priority? */
580 		if (lr_prio >= priority)
581 			continue;
582 
583 		/* This is a candidate */
584 		priority = lr_prio;
585 		*lr_val = val;
586 		lr = i;
587 	}
588 
589 	if (lr == -1)
590 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
591 
592 	return lr;
593 }
594 
__vgic_v3_find_active_lr(struct kvm_vcpu * vcpu,int intid,u64 * lr_val)595 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
596 				    u64 *lr_val)
597 {
598 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
599 	int i;
600 
601 	for (i = 0; i < used_lrs; i++) {
602 		u64 val = __gic_v3_get_lr(i);
603 
604 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
605 		    (val & ICH_LR_ACTIVE_BIT)) {
606 			*lr_val = val;
607 			return i;
608 		}
609 	}
610 
611 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
612 	return -1;
613 }
614 
__vgic_v3_get_highest_active_priority(void)615 static int __vgic_v3_get_highest_active_priority(void)
616 {
617 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
618 	u32 hap = 0;
619 	int i;
620 
621 	for (i = 0; i < nr_apr_regs; i++) {
622 		u32 val;
623 
624 		/*
625 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
626 		 * contain the active priority levels for this VCPU
627 		 * for the maximum number of supported priority
628 		 * levels, and we return the full priority level only
629 		 * if the BPR is programmed to its minimum, otherwise
630 		 * we return a combination of the priority level and
631 		 * subpriority, as determined by the setting of the
632 		 * BPR, but without the full subpriority.
633 		 */
634 		val  = __vgic_v3_read_ap0rn(i);
635 		val |= __vgic_v3_read_ap1rn(i);
636 		if (!val) {
637 			hap += 32;
638 			continue;
639 		}
640 
641 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
642 	}
643 
644 	return GICv3_IDLE_PRIORITY;
645 }
646 
__vgic_v3_get_bpr0(u32 vmcr)647 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
648 {
649 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
650 }
651 
__vgic_v3_get_bpr1(u32 vmcr)652 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
653 {
654 	unsigned int bpr;
655 
656 	if (vmcr & ICH_VMCR_CBPR_MASK) {
657 		bpr = __vgic_v3_get_bpr0(vmcr);
658 		if (bpr < 7)
659 			bpr++;
660 	} else {
661 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
662 	}
663 
664 	return bpr;
665 }
666 
667 /*
668  * Convert a priority to a preemption level, taking the relevant BPR
669  * into account by zeroing the sub-priority bits.
670  */
__vgic_v3_pri_to_pre(u8 pri,u32 vmcr,int grp)671 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
672 {
673 	unsigned int bpr;
674 
675 	if (!grp)
676 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
677 	else
678 		bpr = __vgic_v3_get_bpr1(vmcr);
679 
680 	return pri & (GENMASK(7, 0) << bpr);
681 }
682 
683 /*
684  * The priority value is independent of any of the BPR values, so we
685  * normalize it using the minimal BPR value. This guarantees that no
686  * matter what the guest does with its BPR, we can always set/get the
687  * same value of a priority.
688  */
__vgic_v3_set_active_priority(u8 pri,u32 vmcr,int grp)689 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
690 {
691 	u8 pre, ap;
692 	u32 val;
693 	int apr;
694 
695 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
696 	ap = pre >> __vgic_v3_bpr_min();
697 	apr = ap / 32;
698 
699 	if (!grp) {
700 		val = __vgic_v3_read_ap0rn(apr);
701 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
702 	} else {
703 		val = __vgic_v3_read_ap1rn(apr);
704 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
705 	}
706 }
707 
__vgic_v3_clear_highest_active_priority(void)708 static int __vgic_v3_clear_highest_active_priority(void)
709 {
710 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
711 	u32 hap = 0;
712 	int i;
713 
714 	for (i = 0; i < nr_apr_regs; i++) {
715 		u32 ap0, ap1;
716 		int c0, c1;
717 
718 		ap0 = __vgic_v3_read_ap0rn(i);
719 		ap1 = __vgic_v3_read_ap1rn(i);
720 		if (!ap0 && !ap1) {
721 			hap += 32;
722 			continue;
723 		}
724 
725 		c0 = ap0 ? __ffs(ap0) : 32;
726 		c1 = ap1 ? __ffs(ap1) : 32;
727 
728 		/* Always clear the LSB, which is the highest priority */
729 		if (c0 < c1) {
730 			ap0 &= ~BIT(c0);
731 			__vgic_v3_write_ap0rn(ap0, i);
732 			hap += c0;
733 		} else {
734 			ap1 &= ~BIT(c1);
735 			__vgic_v3_write_ap1rn(ap1, i);
736 			hap += c1;
737 		}
738 
739 		/* Rescale to 8 bits of priority */
740 		return hap << __vgic_v3_bpr_min();
741 	}
742 
743 	return GICv3_IDLE_PRIORITY;
744 }
745 
__vgic_v3_read_iar(struct kvm_vcpu * vcpu,u32 vmcr,int rt)746 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
747 {
748 	u64 lr_val;
749 	u8 lr_prio, pmr;
750 	int lr, grp;
751 
752 	grp = __vgic_v3_get_group(vcpu);
753 
754 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
755 	if (lr < 0)
756 		goto spurious;
757 
758 	if (grp != !!(lr_val & ICH_LR_GROUP))
759 		goto spurious;
760 
761 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
762 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
763 	if (pmr <= lr_prio)
764 		goto spurious;
765 
766 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
767 		goto spurious;
768 
769 	lr_val &= ~ICH_LR_STATE;
770 	lr_val |= ICH_LR_ACTIVE_BIT;
771 	__gic_v3_set_lr(lr_val, lr);
772 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
773 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
774 	return;
775 
776 spurious:
777 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
778 }
779 
__vgic_v3_clear_active_lr(int lr,u64 lr_val)780 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
781 {
782 	lr_val &= ~ICH_LR_ACTIVE_BIT;
783 	if (lr_val & ICH_LR_HW) {
784 		u32 pid;
785 
786 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
787 		gic_write_dir(pid);
788 	}
789 
790 	__gic_v3_set_lr(lr_val, lr);
791 }
792 
__vgic_v3_bump_eoicount(void)793 static void __vgic_v3_bump_eoicount(void)
794 {
795 	u32 hcr;
796 
797 	hcr = read_gicreg(ICH_HCR_EL2);
798 	hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
799 	write_gicreg(hcr, ICH_HCR_EL2);
800 }
801 
___vgic_v3_write_dir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)802 static int ___vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
803 {
804 	u32 vid = vcpu_get_reg(vcpu, rt);
805 	u64 lr_val;
806 	int lr;
807 
808 	/* EOImode == 0, nothing to be done here */
809 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
810 		return 1;
811 
812 	/* No deactivate to be performed on an LPI */
813 	if (vid >= VGIC_MIN_LPI)
814 		return 1;
815 
816 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
817 	if (lr != -1) {
818 		__vgic_v3_clear_active_lr(lr, lr_val);
819 		return 1;
820 	}
821 
822 	return 0;
823 }
824 
__vgic_v3_write_dir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)825 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
826 {
827 	if (!___vgic_v3_write_dir(vcpu, vmcr, rt))
828 		__vgic_v3_bump_eoicount();
829 }
830 
__vgic_v3_write_eoir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)831 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
832 {
833 	u32 vid = vcpu_get_reg(vcpu, rt);
834 	u64 lr_val;
835 	u8 lr_prio, act_prio;
836 	int lr, grp;
837 
838 	grp = __vgic_v3_get_group(vcpu);
839 
840 	/* Drop priority in any case */
841 	act_prio = __vgic_v3_clear_highest_active_priority();
842 
843 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
844 	if (lr == -1) {
845 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
846 		if (!(vid >= VGIC_MIN_LPI))
847 			__vgic_v3_bump_eoicount();
848 		return;
849 	}
850 
851 	/* EOImode == 1 and not an LPI, nothing to be done here */
852 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
853 		return;
854 
855 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
856 
857 	/* If priorities or group do not match, the guest has fscked-up. */
858 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
859 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
860 		return;
861 
862 	/* Let's now perform the deactivation */
863 	__vgic_v3_clear_active_lr(lr, lr_val);
864 }
865 
__vgic_v3_read_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)866 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
867 {
868 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
869 }
870 
__vgic_v3_read_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)871 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
872 {
873 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
874 }
875 
__vgic_v3_write_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)876 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
877 {
878 	u64 val = vcpu_get_reg(vcpu, rt);
879 
880 	if (val & 1)
881 		vmcr |= ICH_VMCR_ENG0_MASK;
882 	else
883 		vmcr &= ~ICH_VMCR_ENG0_MASK;
884 
885 	__vgic_v3_write_vmcr(vmcr);
886 }
887 
__vgic_v3_write_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)888 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
889 {
890 	u64 val = vcpu_get_reg(vcpu, rt);
891 
892 	if (val & 1)
893 		vmcr |= ICH_VMCR_ENG1_MASK;
894 	else
895 		vmcr &= ~ICH_VMCR_ENG1_MASK;
896 
897 	__vgic_v3_write_vmcr(vmcr);
898 }
899 
__vgic_v3_read_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)900 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
901 {
902 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
903 }
904 
__vgic_v3_read_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)905 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
906 {
907 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
908 }
909 
__vgic_v3_write_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)910 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
911 {
912 	u64 val = vcpu_get_reg(vcpu, rt);
913 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
914 
915 	/* Enforce BPR limiting */
916 	if (val < bpr_min)
917 		val = bpr_min;
918 
919 	val <<= ICH_VMCR_BPR0_SHIFT;
920 	val &= ICH_VMCR_BPR0_MASK;
921 	vmcr &= ~ICH_VMCR_BPR0_MASK;
922 	vmcr |= val;
923 
924 	__vgic_v3_write_vmcr(vmcr);
925 }
926 
__vgic_v3_write_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)927 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
928 {
929 	u64 val = vcpu_get_reg(vcpu, rt);
930 	u8 bpr_min = __vgic_v3_bpr_min();
931 
932 	if (vmcr & ICH_VMCR_CBPR_MASK)
933 		return;
934 
935 	/* Enforce BPR limiting */
936 	if (val < bpr_min)
937 		val = bpr_min;
938 
939 	val <<= ICH_VMCR_BPR1_SHIFT;
940 	val &= ICH_VMCR_BPR1_MASK;
941 	vmcr &= ~ICH_VMCR_BPR1_MASK;
942 	vmcr |= val;
943 
944 	__vgic_v3_write_vmcr(vmcr);
945 }
946 
__vgic_v3_read_apxrn(struct kvm_vcpu * vcpu,int rt,int n)947 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
948 {
949 	u32 val;
950 
951 	if (!__vgic_v3_get_group(vcpu))
952 		val = __vgic_v3_read_ap0rn(n);
953 	else
954 		val = __vgic_v3_read_ap1rn(n);
955 
956 	vcpu_set_reg(vcpu, rt, val);
957 }
958 
__vgic_v3_write_apxrn(struct kvm_vcpu * vcpu,int rt,int n)959 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
960 {
961 	u32 val = vcpu_get_reg(vcpu, rt);
962 
963 	if (!__vgic_v3_get_group(vcpu))
964 		__vgic_v3_write_ap0rn(val, n);
965 	else
966 		__vgic_v3_write_ap1rn(val, n);
967 }
968 
__vgic_v3_read_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)969 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
970 					    u32 vmcr, int rt)
971 {
972 	__vgic_v3_read_apxrn(vcpu, rt, 0);
973 }
974 
__vgic_v3_read_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)975 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
976 					    u32 vmcr, int rt)
977 {
978 	__vgic_v3_read_apxrn(vcpu, rt, 1);
979 }
980 
__vgic_v3_read_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)981 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
982 {
983 	__vgic_v3_read_apxrn(vcpu, rt, 2);
984 }
985 
__vgic_v3_read_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)986 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
987 {
988 	__vgic_v3_read_apxrn(vcpu, rt, 3);
989 }
990 
__vgic_v3_write_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)991 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
992 {
993 	__vgic_v3_write_apxrn(vcpu, rt, 0);
994 }
995 
__vgic_v3_write_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)996 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
997 {
998 	__vgic_v3_write_apxrn(vcpu, rt, 1);
999 }
1000 
__vgic_v3_write_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1001 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1002 {
1003 	__vgic_v3_write_apxrn(vcpu, rt, 2);
1004 }
1005 
__vgic_v3_write_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1006 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1007 {
1008 	__vgic_v3_write_apxrn(vcpu, rt, 3);
1009 }
1010 
__vgic_v3_read_hppir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1011 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1012 {
1013 	u64 lr_val;
1014 	int lr, lr_grp, grp;
1015 
1016 	grp = __vgic_v3_get_group(vcpu);
1017 
1018 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
1019 	if (lr == -1)
1020 		goto spurious;
1021 
1022 	lr_grp = !!(lr_val & ICH_LR_GROUP);
1023 	if (lr_grp != grp)
1024 		lr_val = ICC_IAR1_EL1_SPURIOUS;
1025 
1026 spurious:
1027 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
1028 }
1029 
__vgic_v3_read_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1030 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1031 {
1032 	vmcr &= ICH_VMCR_PMR_MASK;
1033 	vmcr >>= ICH_VMCR_PMR_SHIFT;
1034 	vcpu_set_reg(vcpu, rt, vmcr);
1035 }
1036 
__vgic_v3_write_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1037 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1038 {
1039 	u32 val = vcpu_get_reg(vcpu, rt);
1040 
1041 	val <<= ICH_VMCR_PMR_SHIFT;
1042 	val &= ICH_VMCR_PMR_MASK;
1043 	vmcr &= ~ICH_VMCR_PMR_MASK;
1044 	vmcr |= val;
1045 
1046 	write_gicreg(vmcr, ICH_VMCR_EL2);
1047 }
1048 
__vgic_v3_read_rpr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1049 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1050 {
1051 	u32 val = __vgic_v3_get_highest_active_priority();
1052 	vcpu_set_reg(vcpu, rt, val);
1053 }
1054 
__vgic_v3_read_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1055 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1056 {
1057 	u32 vtr, val;
1058 
1059 	vtr = read_gicreg(ICH_VTR_EL2);
1060 	/* PRIbits */
1061 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1062 	/* IDbits */
1063 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1064 	/* A3V */
1065 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1066 	/* EOImode */
1067 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1068 	/* CBPR */
1069 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1070 
1071 	vcpu_set_reg(vcpu, rt, val);
1072 }
1073 
__vgic_v3_write_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1074 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1075 {
1076 	u32 val = vcpu_get_reg(vcpu, rt);
1077 
1078 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1079 		vmcr |= ICH_VMCR_CBPR_MASK;
1080 	else
1081 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1082 
1083 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1084 		vmcr |= ICH_VMCR_EOIM_MASK;
1085 	else
1086 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1087 
1088 	write_gicreg(vmcr, ICH_VMCR_EL2);
1089 }
1090 
__vgic_v3_check_trap_forwarding(struct kvm_vcpu * vcpu,u32 sysreg,bool is_read)1091 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1092 					    u32 sysreg, bool is_read)
1093 {
1094 	u64 ich_hcr;
1095 
1096 	if (!is_nested_ctxt(vcpu))
1097 		return false;
1098 
1099 	ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1100 
1101 	switch (sysreg) {
1102 	case SYS_ICC_IGRPEN0_EL1:
1103 		if (is_read &&
1104 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1105 			return true;
1106 
1107 		if (!is_read &&
1108 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1109 			return true;
1110 
1111 		fallthrough;
1112 
1113 	case SYS_ICC_AP0Rn_EL1(0):
1114 	case SYS_ICC_AP0Rn_EL1(1):
1115 	case SYS_ICC_AP0Rn_EL1(2):
1116 	case SYS_ICC_AP0Rn_EL1(3):
1117 	case SYS_ICC_BPR0_EL1:
1118 	case SYS_ICC_EOIR0_EL1:
1119 	case SYS_ICC_HPPIR0_EL1:
1120 	case SYS_ICC_IAR0_EL1:
1121 		return ich_hcr & ICH_HCR_EL2_TALL0;
1122 
1123 	case SYS_ICC_IGRPEN1_EL1:
1124 		if (is_read &&
1125 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1126 			return true;
1127 
1128 		if (!is_read &&
1129 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1130 			return true;
1131 
1132 		fallthrough;
1133 
1134 	case SYS_ICC_AP1Rn_EL1(0):
1135 	case SYS_ICC_AP1Rn_EL1(1):
1136 	case SYS_ICC_AP1Rn_EL1(2):
1137 	case SYS_ICC_AP1Rn_EL1(3):
1138 	case SYS_ICC_BPR1_EL1:
1139 	case SYS_ICC_EOIR1_EL1:
1140 	case SYS_ICC_HPPIR1_EL1:
1141 	case SYS_ICC_IAR1_EL1:
1142 		return ich_hcr & ICH_HCR_EL2_TALL1;
1143 
1144 	case SYS_ICC_DIR_EL1:
1145 		if (ich_hcr & ICH_HCR_EL2_TDIR)
1146 			return true;
1147 
1148 		fallthrough;
1149 
1150 	case SYS_ICC_RPR_EL1:
1151 	case SYS_ICC_CTLR_EL1:
1152 	case SYS_ICC_PMR_EL1:
1153 		return ich_hcr & ICH_HCR_EL2_TC;
1154 
1155 	default:
1156 		return false;
1157 	}
1158 }
1159 
__vgic_v3_perform_cpuif_access(struct kvm_vcpu * vcpu)1160 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1161 {
1162 	int rt;
1163 	u64 esr;
1164 	u32 vmcr;
1165 	void (*fn)(struct kvm_vcpu *, u32, int);
1166 	bool is_read;
1167 	u32 sysreg;
1168 
1169 	if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1170 		return 0;
1171 
1172 	esr = kvm_vcpu_get_esr(vcpu);
1173 	if (vcpu_mode_is_32bit(vcpu)) {
1174 		if (!kvm_condition_valid(vcpu)) {
1175 			__kvm_skip_instr(vcpu);
1176 			return 1;
1177 		}
1178 
1179 		sysreg = esr_cp15_to_sysreg(esr);
1180 	} else {
1181 		sysreg = esr_sys64_to_sysreg(esr);
1182 	}
1183 
1184 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1185 
1186 	if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1187 		return 0;
1188 
1189 	switch (sysreg) {
1190 	case SYS_ICC_IAR0_EL1:
1191 	case SYS_ICC_IAR1_EL1:
1192 		if (unlikely(!is_read))
1193 			return 0;
1194 		fn = __vgic_v3_read_iar;
1195 		break;
1196 	case SYS_ICC_EOIR0_EL1:
1197 	case SYS_ICC_EOIR1_EL1:
1198 		if (unlikely(is_read))
1199 			return 0;
1200 		fn = __vgic_v3_write_eoir;
1201 		break;
1202 	case SYS_ICC_IGRPEN1_EL1:
1203 		if (is_read)
1204 			fn = __vgic_v3_read_igrpen1;
1205 		else
1206 			fn = __vgic_v3_write_igrpen1;
1207 		break;
1208 	case SYS_ICC_BPR1_EL1:
1209 		if (is_read)
1210 			fn = __vgic_v3_read_bpr1;
1211 		else
1212 			fn = __vgic_v3_write_bpr1;
1213 		break;
1214 	case SYS_ICC_AP0Rn_EL1(0):
1215 	case SYS_ICC_AP1Rn_EL1(0):
1216 		if (is_read)
1217 			fn = __vgic_v3_read_apxr0;
1218 		else
1219 			fn = __vgic_v3_write_apxr0;
1220 		break;
1221 	case SYS_ICC_AP0Rn_EL1(1):
1222 	case SYS_ICC_AP1Rn_EL1(1):
1223 		if (is_read)
1224 			fn = __vgic_v3_read_apxr1;
1225 		else
1226 			fn = __vgic_v3_write_apxr1;
1227 		break;
1228 	case SYS_ICC_AP0Rn_EL1(2):
1229 	case SYS_ICC_AP1Rn_EL1(2):
1230 		if (is_read)
1231 			fn = __vgic_v3_read_apxr2;
1232 		else
1233 			fn = __vgic_v3_write_apxr2;
1234 		break;
1235 	case SYS_ICC_AP0Rn_EL1(3):
1236 	case SYS_ICC_AP1Rn_EL1(3):
1237 		if (is_read)
1238 			fn = __vgic_v3_read_apxr3;
1239 		else
1240 			fn = __vgic_v3_write_apxr3;
1241 		break;
1242 	case SYS_ICC_HPPIR0_EL1:
1243 	case SYS_ICC_HPPIR1_EL1:
1244 		if (unlikely(!is_read))
1245 			return 0;
1246 		fn = __vgic_v3_read_hppir;
1247 		break;
1248 	case SYS_ICC_IGRPEN0_EL1:
1249 		if (is_read)
1250 			fn = __vgic_v3_read_igrpen0;
1251 		else
1252 			fn = __vgic_v3_write_igrpen0;
1253 		break;
1254 	case SYS_ICC_BPR0_EL1:
1255 		if (is_read)
1256 			fn = __vgic_v3_read_bpr0;
1257 		else
1258 			fn = __vgic_v3_write_bpr0;
1259 		break;
1260 	case SYS_ICC_DIR_EL1:
1261 		if (unlikely(is_read))
1262 			return 0;
1263 		/*
1264 		 * Full exit if required to handle overflow deactivation,
1265 		 * unless we can emulate it in the LRs (likely the majority
1266 		 * of the cases).
1267 		 */
1268 		if (vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr & ICH_HCR_EL2_TDIR) {
1269 			int ret;
1270 
1271 			ret = ___vgic_v3_write_dir(vcpu, __vgic_v3_read_vmcr(),
1272 						   kvm_vcpu_sys_get_rt(vcpu));
1273 			if (ret)
1274 				__kvm_skip_instr(vcpu);
1275 
1276 			return ret;
1277 		}
1278 		fn = __vgic_v3_write_dir;
1279 		break;
1280 	case SYS_ICC_RPR_EL1:
1281 		if (unlikely(!is_read))
1282 			return 0;
1283 		fn = __vgic_v3_read_rpr;
1284 		break;
1285 	case SYS_ICC_CTLR_EL1:
1286 		if (is_read)
1287 			fn = __vgic_v3_read_ctlr;
1288 		else
1289 			fn = __vgic_v3_write_ctlr;
1290 		break;
1291 	case SYS_ICC_PMR_EL1:
1292 		if (is_read)
1293 			fn = __vgic_v3_read_pmr;
1294 		else
1295 			fn = __vgic_v3_write_pmr;
1296 		break;
1297 	default:
1298 		return 0;
1299 	}
1300 
1301 	vmcr = __vgic_v3_read_vmcr();
1302 	rt = kvm_vcpu_sys_get_rt(vcpu);
1303 	fn(vcpu, vmcr, rt);
1304 
1305 	__kvm_skip_instr(vcpu);
1306 
1307 	return 1;
1308 }
1309