xref: /linux/tools/testing/selftests/kvm/include/kvm_util.h (revision f3826aa9962b4572d01083c84ac0f8345f121168)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7 
8 #include "test_util.h"
9 
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17 
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20 
21 #include <sys/eventfd.h>
22 #include <sys/ioctl.h>
23 
24 #include <pthread.h>
25 
26 #include "kvm_util_arch.h"
27 #include "kvm_util_types.h"
28 #include "sparsebit.h"
29 
30 #define KVM_DEV_PATH "/dev/kvm"
31 #define KVM_MAX_VCPUS 512
32 
33 #define NSEC_PER_SEC 1000000000L
34 
35 struct userspace_mem_region {
36 	struct kvm_userspace_memory_region2 region;
37 	struct sparsebit *unused_phy_pages;
38 	struct sparsebit *protected_phy_pages;
39 	int fd;
40 	off_t offset;
41 	enum vm_mem_backing_src_type backing_src_type;
42 	void *host_mem;
43 	void *host_alias;
44 	void *mmap_start;
45 	void *mmap_alias;
46 	size_t mmap_size;
47 	struct rb_node gpa_node;
48 	struct rb_node hva_node;
49 	struct hlist_node slot_node;
50 };
51 
52 struct kvm_binary_stats {
53 	int fd;
54 	struct kvm_stats_header header;
55 	struct kvm_stats_desc *desc;
56 };
57 
58 struct kvm_vcpu {
59 	struct list_head list;
60 	uint32_t id;
61 	int fd;
62 	struct kvm_vm *vm;
63 	struct kvm_run *run;
64 #ifdef __x86_64__
65 	struct kvm_cpuid2 *cpuid;
66 #endif
67 #ifdef __aarch64__
68 	struct kvm_vcpu_init init;
69 #endif
70 	struct kvm_binary_stats stats;
71 	struct kvm_dirty_gfn *dirty_gfns;
72 	uint32_t fetch_index;
73 	uint32_t dirty_gfns_count;
74 };
75 
76 struct userspace_mem_regions {
77 	struct rb_root gpa_tree;
78 	struct rb_root hva_tree;
79 	DECLARE_HASHTABLE(slot_hash, 9);
80 };
81 
82 enum kvm_mem_region_type {
83 	MEM_REGION_CODE,
84 	MEM_REGION_DATA,
85 	MEM_REGION_PT,
86 	MEM_REGION_TEST_DATA,
87 	NR_MEM_REGIONS,
88 };
89 
90 struct kvm_vm {
91 	int mode;
92 	unsigned long type;
93 	int kvm_fd;
94 	int fd;
95 	unsigned int pgtable_levels;
96 	unsigned int page_size;
97 	unsigned int page_shift;
98 	unsigned int pa_bits;
99 	unsigned int va_bits;
100 	uint64_t max_gfn;
101 	struct list_head vcpus;
102 	struct userspace_mem_regions regions;
103 	struct sparsebit *vpages_valid;
104 	struct sparsebit *vpages_mapped;
105 	bool has_irqchip;
106 	bool pgd_created;
107 	vm_paddr_t ucall_mmio_addr;
108 	vm_paddr_t pgd;
109 	vm_vaddr_t handlers;
110 	uint32_t dirty_ring_size;
111 	uint64_t gpa_tag_mask;
112 
113 	struct kvm_vm_arch arch;
114 
115 	struct kvm_binary_stats stats;
116 
117 	/*
118 	 * KVM region slots. These are the default memslots used by page
119 	 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
120 	 * memslot.
121 	 */
122 	uint32_t memslots[NR_MEM_REGIONS];
123 };
124 
125 struct vcpu_reg_sublist {
126 	const char *name;
127 	long capability;
128 	int feature;
129 	int feature_type;
130 	bool finalize;
131 	__u64 *regs;
132 	__u64 regs_n;
133 	__u64 *rejects_set;
134 	__u64 rejects_set_n;
135 	__u64 *skips_set;
136 	__u64 skips_set_n;
137 };
138 
139 struct vcpu_reg_list {
140 	char *name;
141 	struct vcpu_reg_sublist sublists[];
142 };
143 
144 #define for_each_sublist(c, s)		\
145 	for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
146 
147 #define kvm_for_each_vcpu(vm, i, vcpu)			\
148 	for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++)	\
149 		if (!((vcpu) = vm->vcpus[i]))		\
150 			continue;			\
151 		else
152 
153 struct userspace_mem_region *
154 memslot2region(struct kvm_vm *vm, uint32_t memslot);
155 
156 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
157 							     enum kvm_mem_region_type type)
158 {
159 	assert(type < NR_MEM_REGIONS);
160 	return memslot2region(vm, vm->memslots[type]);
161 }
162 
163 /* Minimum allocated guest virtual and physical addresses */
164 #define KVM_UTIL_MIN_VADDR		0x2000
165 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR	0x180000
166 
167 #define DEFAULT_GUEST_STACK_VADDR_MIN	0xab6000
168 #define DEFAULT_STACK_PGS		5
169 
170 enum vm_guest_mode {
171 	VM_MODE_P52V48_4K,
172 	VM_MODE_P52V48_16K,
173 	VM_MODE_P52V48_64K,
174 	VM_MODE_P48V48_4K,
175 	VM_MODE_P48V48_16K,
176 	VM_MODE_P48V48_64K,
177 	VM_MODE_P40V48_4K,
178 	VM_MODE_P40V48_16K,
179 	VM_MODE_P40V48_64K,
180 	VM_MODE_PXXV48_4K,	/* For 48bits VA but ANY bits PA */
181 	VM_MODE_P47V64_4K,
182 	VM_MODE_P44V64_4K,
183 	VM_MODE_P36V48_4K,
184 	VM_MODE_P36V48_16K,
185 	VM_MODE_P36V48_64K,
186 	VM_MODE_P47V47_16K,
187 	VM_MODE_P36V47_16K,
188 	NUM_VM_MODES,
189 };
190 
191 struct vm_shape {
192 	uint32_t type;
193 	uint8_t  mode;
194 	uint8_t  pad0;
195 	uint16_t pad1;
196 };
197 
198 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
199 
200 #define VM_TYPE_DEFAULT			0
201 
202 #define VM_SHAPE(__mode)			\
203 ({						\
204 	struct vm_shape shape = {		\
205 		.mode = (__mode),		\
206 		.type = VM_TYPE_DEFAULT		\
207 	};					\
208 						\
209 	shape;					\
210 })
211 
212 #if defined(__aarch64__)
213 
214 extern enum vm_guest_mode vm_mode_default;
215 
216 #define VM_MODE_DEFAULT			vm_mode_default
217 #define MIN_PAGE_SHIFT			12U
218 #define ptes_per_page(page_size)	((page_size) / 8)
219 
220 #elif defined(__x86_64__)
221 
222 #define VM_MODE_DEFAULT			VM_MODE_PXXV48_4K
223 #define MIN_PAGE_SHIFT			12U
224 #define ptes_per_page(page_size)	((page_size) / 8)
225 
226 #elif defined(__s390x__)
227 
228 #define VM_MODE_DEFAULT			VM_MODE_P44V64_4K
229 #define MIN_PAGE_SHIFT			12U
230 #define ptes_per_page(page_size)	((page_size) / 16)
231 
232 #elif defined(__riscv)
233 
234 #if __riscv_xlen == 32
235 #error "RISC-V 32-bit kvm selftests not supported"
236 #endif
237 
238 #define VM_MODE_DEFAULT			VM_MODE_P40V48_4K
239 #define MIN_PAGE_SHIFT			12U
240 #define ptes_per_page(page_size)	((page_size) / 8)
241 
242 #elif defined(__loongarch__)
243 #define VM_MODE_DEFAULT			VM_MODE_P47V47_16K
244 #define MIN_PAGE_SHIFT			12U
245 #define ptes_per_page(page_size)	((page_size) / 8)
246 
247 #endif
248 
249 #define VM_SHAPE_DEFAULT	VM_SHAPE(VM_MODE_DEFAULT)
250 
251 #define MIN_PAGE_SIZE		(1U << MIN_PAGE_SHIFT)
252 #define PTES_PER_MIN_PAGE	ptes_per_page(MIN_PAGE_SIZE)
253 
254 struct vm_guest_mode_params {
255 	unsigned int pa_bits;
256 	unsigned int va_bits;
257 	unsigned int page_size;
258 	unsigned int page_shift;
259 };
260 extern const struct vm_guest_mode_params vm_guest_mode_params[];
261 
262 int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
263 int open_path_or_exit(const char *path, int flags);
264 int open_kvm_dev_path_or_exit(void);
265 
266 int kvm_get_module_param_integer(const char *module_name, const char *param);
267 bool kvm_get_module_param_bool(const char *module_name, const char *param);
268 
269 static inline bool get_kvm_param_bool(const char *param)
270 {
271 	return kvm_get_module_param_bool("kvm", param);
272 }
273 
274 static inline int get_kvm_param_integer(const char *param)
275 {
276 	return kvm_get_module_param_integer("kvm", param);
277 }
278 
279 unsigned int kvm_check_cap(long cap);
280 
281 static inline bool kvm_has_cap(long cap)
282 {
283 	return kvm_check_cap(cap);
284 }
285 
286 #define __KVM_SYSCALL_ERROR(_name, _ret) \
287 	"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
288 
289 /*
290  * Use the "inner", double-underscore macro when reporting errors from within
291  * other macros so that the name of ioctl() and not its literal numeric value
292  * is printed on error.  The "outer" macro is strongly preferred when reporting
293  * errors "directly", i.e. without an additional layer of macros, as it reduces
294  * the probability of passing in the wrong string.
295  */
296 #define __KVM_IOCTL_ERROR(_name, _ret)	__KVM_SYSCALL_ERROR(_name, _ret)
297 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
298 
299 #define kvm_do_ioctl(fd, cmd, arg)						\
300 ({										\
301 	kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd));	\
302 	ioctl(fd, cmd, arg);							\
303 })
304 
305 #define __kvm_ioctl(kvm_fd, cmd, arg)				\
306 	kvm_do_ioctl(kvm_fd, cmd, arg)
307 
308 #define kvm_ioctl(kvm_fd, cmd, arg)				\
309 ({								\
310 	int ret = __kvm_ioctl(kvm_fd, cmd, arg);		\
311 								\
312 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret));	\
313 })
314 
315 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
316 
317 #define __vm_ioctl(vm, cmd, arg)				\
318 ({								\
319 	static_assert_is_vm(vm);				\
320 	kvm_do_ioctl((vm)->fd, cmd, arg);			\
321 })
322 
323 /*
324  * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
325  * the ioctl() failed because KVM killed/bugged the VM.  To detect a dead VM,
326  * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
327  * selftests existed and (b) should never outright fail, i.e. is supposed to
328  * return 0 or 1.  If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
329  * VM and its vCPUs, including KVM_CHECK_EXTENSION.
330  */
331 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm)				\
332 do {											\
333 	int __errno = errno;								\
334 											\
335 	static_assert_is_vm(vm);							\
336 											\
337 	if (cond)									\
338 		break;									\
339 											\
340 	if (errno == EIO &&								\
341 	    __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) {	\
342 		TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO");	\
343 		TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues");	\
344 	}										\
345 	errno = __errno;								\
346 	TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret));				\
347 } while (0)
348 
349 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm)		\
350 	__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
351 
352 #define vm_ioctl(vm, cmd, arg)					\
353 ({								\
354 	int ret = __vm_ioctl(vm, cmd, arg);			\
355 								\
356 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm);		\
357 })
358 
359 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
360 
361 #define __vcpu_ioctl(vcpu, cmd, arg)				\
362 ({								\
363 	static_assert_is_vcpu(vcpu);				\
364 	kvm_do_ioctl((vcpu)->fd, cmd, arg);			\
365 })
366 
367 #define vcpu_ioctl(vcpu, cmd, arg)				\
368 ({								\
369 	int ret = __vcpu_ioctl(vcpu, cmd, arg);			\
370 								\
371 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm);	\
372 })
373 
374 /*
375  * Looks up and returns the value corresponding to the capability
376  * (KVM_CAP_*) given by cap.
377  */
378 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
379 {
380 	int ret =  __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
381 
382 	TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
383 	return ret;
384 }
385 
386 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
387 {
388 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
389 
390 	return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
391 }
392 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
393 {
394 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
395 
396 	vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
397 }
398 
399 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
400 					    uint64_t size, uint64_t attributes)
401 {
402 	struct kvm_memory_attributes attr = {
403 		.attributes = attributes,
404 		.address = gpa,
405 		.size = size,
406 		.flags = 0,
407 	};
408 
409 	/*
410 	 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes.  These flows
411 	 * need significant enhancements to support multiple attributes.
412 	 */
413 	TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
414 		    "Update me to support multiple attributes!");
415 
416 	vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
417 }
418 
419 
420 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
421 				      uint64_t size)
422 {
423 	vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
424 }
425 
426 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
427 				     uint64_t size)
428 {
429 	vm_set_memory_attributes(vm, gpa, size, 0);
430 }
431 
432 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
433 			    bool punch_hole);
434 
435 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
436 					   uint64_t size)
437 {
438 	vm_guest_mem_fallocate(vm, gpa, size, true);
439 }
440 
441 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
442 					 uint64_t size)
443 {
444 	vm_guest_mem_fallocate(vm, gpa, size, false);
445 }
446 
447 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
448 const char *vm_guest_mode_string(uint32_t i);
449 
450 void kvm_vm_free(struct kvm_vm *vmp);
451 void kvm_vm_restart(struct kvm_vm *vmp);
452 void kvm_vm_release(struct kvm_vm *vmp);
453 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
454 int kvm_memfd_alloc(size_t size, bool hugepages);
455 
456 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
457 
458 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
459 {
460 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
461 
462 	vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
463 }
464 
465 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
466 					  uint64_t first_page, uint32_t num_pages)
467 {
468 	struct kvm_clear_dirty_log args = {
469 		.dirty_bitmap = log,
470 		.slot = slot,
471 		.first_page = first_page,
472 		.num_pages = num_pages
473 	};
474 
475 	vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
476 }
477 
478 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
479 {
480 	return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
481 }
482 
483 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
484 						uint64_t address,
485 						uint64_t size, bool pio)
486 {
487 	struct kvm_coalesced_mmio_zone zone = {
488 		.addr = address,
489 		.size = size,
490 		.pio  = pio,
491 	};
492 
493 	vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
494 }
495 
496 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
497 						  uint64_t address,
498 						  uint64_t size, bool pio)
499 {
500 	struct kvm_coalesced_mmio_zone zone = {
501 		.addr = address,
502 		.size = size,
503 		.pio  = pio,
504 	};
505 
506 	vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
507 }
508 
509 static inline int vm_get_stats_fd(struct kvm_vm *vm)
510 {
511 	int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
512 
513 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
514 	return fd;
515 }
516 
517 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
518 			      uint32_t flags)
519 {
520 	struct kvm_irqfd irqfd = {
521 		.fd = eventfd,
522 		.gsi = gsi,
523 		.flags = flags,
524 		.resamplefd = -1,
525 	};
526 
527 	return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
528 }
529 
530 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
531 			      uint32_t flags)
532 {
533 	int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
534 
535 	TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
536 }
537 
538 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
539 {
540 	kvm_irqfd(vm, gsi, eventfd, 0);
541 }
542 
543 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
544 {
545 	kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
546 }
547 
548 static inline int kvm_new_eventfd(void)
549 {
550 	int fd = eventfd(0, 0);
551 
552 	TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
553 	return fd;
554 }
555 
556 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
557 {
558 	ssize_t ret;
559 
560 	ret = pread(stats_fd, header, sizeof(*header), 0);
561 	TEST_ASSERT(ret == sizeof(*header),
562 		    "Failed to read '%lu' header bytes, ret = '%ld'",
563 		    sizeof(*header), ret);
564 }
565 
566 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
567 					      struct kvm_stats_header *header);
568 
569 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
570 {
571 	 /*
572 	  * The base size of the descriptor is defined by KVM's ABI, but the
573 	  * size of the name field is variable, as far as KVM's ABI is
574 	  * concerned. For a given instance of KVM, the name field is the same
575 	  * size for all stats and is provided in the overall stats header.
576 	  */
577 	return sizeof(struct kvm_stats_desc) + header->name_size;
578 }
579 
580 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
581 							  int index,
582 							  struct kvm_stats_header *header)
583 {
584 	/*
585 	 * Note, size_desc includes the size of the name field, which is
586 	 * variable. i.e. this is NOT equivalent to &stats_desc[i].
587 	 */
588 	return (void *)stats + index * get_stats_descriptor_size(header);
589 }
590 
591 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
592 		    struct kvm_stats_desc *desc, uint64_t *data,
593 		    size_t max_elements);
594 
595 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
596 		  uint64_t *data, size_t max_elements);
597 
598 #define __get_stat(stats, stat)							\
599 ({										\
600 	uint64_t data;								\
601 										\
602 	kvm_get_stat(stats, #stat, &data, 1);					\
603 	data;									\
604 })
605 
606 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
607 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
608 
609 static inline bool read_smt_control(char *buf, size_t buf_size)
610 {
611 	FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
612 	bool ret;
613 
614 	if (!f)
615 		return false;
616 
617 	ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
618 	fclose(f);
619 
620 	return ret;
621 }
622 
623 static inline bool is_smt_possible(void)
624 {
625 	char buf[16];
626 
627 	if (read_smt_control(buf, sizeof(buf)) &&
628 	    (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
629 		return false;
630 
631 	return true;
632 }
633 
634 static inline bool is_smt_on(void)
635 {
636 	char buf[16];
637 
638 	if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
639 		return true;
640 
641 	return false;
642 }
643 
644 void vm_create_irqchip(struct kvm_vm *vm);
645 
646 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
647 					uint64_t flags)
648 {
649 	struct kvm_create_guest_memfd guest_memfd = {
650 		.size = size,
651 		.flags = flags,
652 	};
653 
654 	return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
655 }
656 
657 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
658 					uint64_t flags)
659 {
660 	int fd = __vm_create_guest_memfd(vm, size, flags);
661 
662 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
663 	return fd;
664 }
665 
666 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667 			       uint64_t gpa, uint64_t size, void *hva);
668 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669 				uint64_t gpa, uint64_t size, void *hva);
670 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
671 				uint64_t gpa, uint64_t size, void *hva,
672 				uint32_t guest_memfd, uint64_t guest_memfd_offset);
673 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
674 				 uint64_t gpa, uint64_t size, void *hva,
675 				 uint32_t guest_memfd, uint64_t guest_memfd_offset);
676 
677 void vm_userspace_mem_region_add(struct kvm_vm *vm,
678 	enum vm_mem_backing_src_type src_type,
679 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
680 	uint32_t flags);
681 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
682 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
683 		uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
684 
685 #ifndef vm_arch_has_protected_memory
686 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
687 {
688 	return false;
689 }
690 #endif
691 
692 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
693 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
694 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
695 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
696 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
697 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
699 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
700 			    enum kvm_mem_region_type type);
701 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
702 				 vm_vaddr_t vaddr_min,
703 				 enum kvm_mem_region_type type);
704 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
705 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
706 				 enum kvm_mem_region_type type);
707 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
708 
709 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
710 	      unsigned int npages);
711 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
712 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
713 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
714 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
715 
716 #ifndef vcpu_arch_put_guest
717 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
718 #endif
719 
720 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
721 {
722 	return gpa & ~vm->gpa_tag_mask;
723 }
724 
725 void vcpu_run(struct kvm_vcpu *vcpu);
726 int _vcpu_run(struct kvm_vcpu *vcpu);
727 
728 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
729 {
730 	return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
731 }
732 
733 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
734 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
735 
736 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
737 				   uint64_t arg0)
738 {
739 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
740 
741 	vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
742 }
743 
744 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
745 					struct kvm_guest_debug *debug)
746 {
747 	vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
748 }
749 
750 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
751 				     struct kvm_mp_state *mp_state)
752 {
753 	vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
754 }
755 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
756 				     struct kvm_mp_state *mp_state)
757 {
758 	vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
759 }
760 
761 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
762 {
763 	vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
764 }
765 
766 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
767 {
768 	vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
769 }
770 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
771 {
772 	vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
773 
774 }
775 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
776 {
777 	vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
778 }
779 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
780 {
781 	return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
782 }
783 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
784 {
785 	vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
786 }
787 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
788 {
789 	vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
790 }
791 
792 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
793 {
794 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
795 
796 	return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
797 }
798 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
799 {
800 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
801 
802 	return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
803 }
804 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
805 {
806 	uint64_t val;
807 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
808 
809 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
810 
811 	vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
812 	return val;
813 }
814 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
815 {
816 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
817 
818 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
819 
820 	vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
821 }
822 
823 #ifdef __KVM_HAVE_VCPU_EVENTS
824 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
825 				   struct kvm_vcpu_events *events)
826 {
827 	vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
828 }
829 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
830 				   struct kvm_vcpu_events *events)
831 {
832 	vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
833 }
834 #endif
835 #ifdef __x86_64__
836 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
837 					 struct kvm_nested_state *state)
838 {
839 	vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
840 }
841 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
842 					  struct kvm_nested_state *state)
843 {
844 	return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
845 }
846 
847 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
848 					 struct kvm_nested_state *state)
849 {
850 	vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
851 }
852 #endif
853 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
854 {
855 	int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
856 
857 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
858 	return fd;
859 }
860 
861 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
862 
863 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
864 {
865 	int ret = __kvm_has_device_attr(dev_fd, group, attr);
866 
867 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
868 }
869 
870 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
871 
872 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
873 				       uint64_t attr, void *val)
874 {
875 	int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
876 
877 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
878 }
879 
880 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
881 
882 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
883 				       uint64_t attr, void *val)
884 {
885 	int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
886 
887 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
888 }
889 
890 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
891 					 uint64_t attr)
892 {
893 	return __kvm_has_device_attr(vcpu->fd, group, attr);
894 }
895 
896 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
897 					uint64_t attr)
898 {
899 	kvm_has_device_attr(vcpu->fd, group, attr);
900 }
901 
902 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
903 					 uint64_t attr, void *val)
904 {
905 	return __kvm_device_attr_get(vcpu->fd, group, attr, val);
906 }
907 
908 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
909 					uint64_t attr, void *val)
910 {
911 	kvm_device_attr_get(vcpu->fd, group, attr, val);
912 }
913 
914 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
915 					 uint64_t attr, void *val)
916 {
917 	return __kvm_device_attr_set(vcpu->fd, group, attr, val);
918 }
919 
920 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
921 					uint64_t attr, void *val)
922 {
923 	kvm_device_attr_set(vcpu->fd, group, attr, val);
924 }
925 
926 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
927 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
928 
929 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
930 {
931 	int fd = __kvm_create_device(vm, type);
932 
933 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
934 	return fd;
935 }
936 
937 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
938 
939 /*
940  * VM VCPU Args Set
941  *
942  * Input Args:
943  *   vm - Virtual Machine
944  *   num - number of arguments
945  *   ... - arguments, each of type uint64_t
946  *
947  * Output Args: None
948  *
949  * Return: None
950  *
951  * Sets the first @num input parameters for the function at @vcpu's entry point,
952  * per the C calling convention of the architecture, to the values given as
953  * variable args. Each of the variable args is expected to be of type uint64_t.
954  * The maximum @num can be is specific to the architecture.
955  */
956 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
957 
958 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
960 
961 #define KVM_MAX_IRQ_ROUTES		4096
962 
963 struct kvm_irq_routing *kvm_gsi_routing_create(void);
964 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
965 		uint32_t gsi, uint32_t pin);
966 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
968 
969 const char *exit_reason_str(unsigned int exit_reason);
970 
971 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
972 			     uint32_t memslot);
973 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
974 				vm_paddr_t paddr_min, uint32_t memslot,
975 				bool protected);
976 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
977 
978 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
979 					    vm_paddr_t paddr_min, uint32_t memslot)
980 {
981 	/*
982 	 * By default, allocate memory as protected for VMs that support
983 	 * protected memory, as the majority of memory for such VMs is
984 	 * protected, i.e. using shared memory is effectively opt-in.
985 	 */
986 	return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
987 				    vm_arch_has_protected_memory(vm));
988 }
989 
990 /*
991  * ____vm_create() does KVM_CREATE_VM and little else.  __vm_create() also
992  * loads the test binary into guest memory and creates an IRQ chip (x86 only).
993  * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
994  * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
995  */
996 struct kvm_vm *____vm_create(struct vm_shape shape);
997 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
998 			   uint64_t nr_extra_pages);
999 
1000 static inline struct kvm_vm *vm_create_barebones(void)
1001 {
1002 	return ____vm_create(VM_SHAPE_DEFAULT);
1003 }
1004 
1005 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1006 {
1007 	const struct vm_shape shape = {
1008 		.mode = VM_MODE_DEFAULT,
1009 		.type = type,
1010 	};
1011 
1012 	return ____vm_create(shape);
1013 }
1014 
1015 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1016 {
1017 	return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1018 }
1019 
1020 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1021 				      uint64_t extra_mem_pages,
1022 				      void *guest_code, struct kvm_vcpu *vcpus[]);
1023 
1024 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1025 						  void *guest_code,
1026 						  struct kvm_vcpu *vcpus[])
1027 {
1028 	return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1029 				      guest_code, vcpus);
1030 }
1031 
1032 
1033 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1034 					       struct kvm_vcpu **vcpu,
1035 					       uint64_t extra_mem_pages,
1036 					       void *guest_code);
1037 
1038 /*
1039  * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1040  * additional pages of guest memory.  Returns the VM and vCPU (via out param).
1041  */
1042 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1043 						       uint64_t extra_mem_pages,
1044 						       void *guest_code)
1045 {
1046 	return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1047 					       extra_mem_pages, guest_code);
1048 }
1049 
1050 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1051 						     void *guest_code)
1052 {
1053 	return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1054 }
1055 
1056 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1057 							   struct kvm_vcpu **vcpu,
1058 							   void *guest_code)
1059 {
1060 	return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1061 }
1062 
1063 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1064 
1065 void kvm_set_files_rlimit(uint32_t nr_vcpus);
1066 
1067 int __pin_task_to_cpu(pthread_t task, int cpu);
1068 
1069 static inline void pin_task_to_cpu(pthread_t task, int cpu)
1070 {
1071 	int r;
1072 
1073 	r = __pin_task_to_cpu(task, cpu);
1074 	TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1075 }
1076 
1077 static inline int pin_task_to_any_cpu(pthread_t task)
1078 {
1079 	int cpu = sched_getcpu();
1080 
1081 	pin_task_to_cpu(task, cpu);
1082 	return cpu;
1083 }
1084 
1085 static inline void pin_self_to_cpu(int cpu)
1086 {
1087 	pin_task_to_cpu(pthread_self(), cpu);
1088 }
1089 
1090 static inline int pin_self_to_any_cpu(void)
1091 {
1092 	return pin_task_to_any_cpu(pthread_self());
1093 }
1094 
1095 void kvm_print_vcpu_pinning_help(void);
1096 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1097 			    int nr_vcpus);
1098 
1099 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1100 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1101 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1102 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1103 static inline unsigned int
1104 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1105 {
1106 	unsigned int n;
1107 	n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1108 #ifdef __s390x__
1109 	/* s390 requires 1M aligned guest sizes */
1110 	n = (n + 255) & ~255;
1111 #endif
1112 	return n;
1113 }
1114 
1115 #define sync_global_to_guest(vm, g) ({				\
1116 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1117 	memcpy(_p, &(g), sizeof(g));				\
1118 })
1119 
1120 #define sync_global_from_guest(vm, g) ({			\
1121 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1122 	memcpy(&(g), _p, sizeof(g));				\
1123 })
1124 
1125 /*
1126  * Write a global value, but only in the VM's (guest's) domain.  Primarily used
1127  * for "globals" that hold per-VM values (VMs always duplicate code and global
1128  * data into their own region of physical memory), but can be used anytime it's
1129  * undesirable to change the host's copy of the global.
1130  */
1131 #define write_guest_global(vm, g, val) ({			\
1132 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1133 	typeof(g) _val = val;					\
1134 								\
1135 	memcpy(_p, &(_val), sizeof(g));				\
1136 })
1137 
1138 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1139 
1140 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1141 		    uint8_t indent);
1142 
1143 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1144 			     uint8_t indent)
1145 {
1146 	vcpu_arch_dump(stream, vcpu, indent);
1147 }
1148 
1149 /*
1150  * Adds a vCPU with reasonable defaults (e.g. a stack)
1151  *
1152  * Input Args:
1153  *   vm - Virtual Machine
1154  *   vcpu_id - The id of the VCPU to add to the VM.
1155  */
1156 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1157 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1158 
1159 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1160 					   void *guest_code)
1161 {
1162 	struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1163 
1164 	vcpu_arch_set_entry_point(vcpu, guest_code);
1165 
1166 	return vcpu;
1167 }
1168 
1169 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1170 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1171 
1172 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1173 						uint32_t vcpu_id)
1174 {
1175 	return vm_arch_vcpu_recreate(vm, vcpu_id);
1176 }
1177 
1178 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1179 
1180 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1181 
1182 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1183 {
1184 	virt_arch_pgd_alloc(vm);
1185 }
1186 
1187 /*
1188  * VM Virtual Page Map
1189  *
1190  * Input Args:
1191  *   vm - Virtual Machine
1192  *   vaddr - VM Virtual Address
1193  *   paddr - VM Physical Address
1194  *   memslot - Memory region slot for new virtual translation tables
1195  *
1196  * Output Args: None
1197  *
1198  * Return: None
1199  *
1200  * Within @vm, creates a virtual translation for the page starting
1201  * at @vaddr to the page starting at @paddr.
1202  */
1203 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1204 
1205 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1206 {
1207 	virt_arch_pg_map(vm, vaddr, paddr);
1208 }
1209 
1210 
1211 /*
1212  * Address Guest Virtual to Guest Physical
1213  *
1214  * Input Args:
1215  *   vm - Virtual Machine
1216  *   gva - VM virtual address
1217  *
1218  * Output Args: None
1219  *
1220  * Return:
1221  *   Equivalent VM physical address
1222  *
1223  * Returns the VM physical address of the translated VM virtual
1224  * address given by @gva.
1225  */
1226 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227 
1228 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229 {
1230 	return addr_arch_gva2gpa(vm, gva);
1231 }
1232 
1233 /*
1234  * Virtual Translation Tables Dump
1235  *
1236  * Input Args:
1237  *   stream - Output FILE stream
1238  *   vm     - Virtual Machine
1239  *   indent - Left margin indent amount
1240  *
1241  * Output Args: None
1242  *
1243  * Return: None
1244  *
1245  * Dumps to the FILE stream given by @stream, the contents of all the
1246  * virtual translation tables for the VM given by @vm.
1247  */
1248 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249 
1250 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251 {
1252 	virt_arch_dump(stream, vm, indent);
1253 }
1254 
1255 
1256 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257 {
1258 	return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259 }
1260 
1261 /*
1262  * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263  * to allow for arch-specific setup that is common to all tests, e.g. computing
1264  * the default guest "mode".
1265  */
1266 void kvm_selftest_arch_init(void);
1267 
1268 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270 void kvm_arch_vm_release(struct kvm_vm *vm);
1271 
1272 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273 
1274 uint32_t guest_get_vcpuid(void);
1275 
1276 #endif /* SELFTEST_KVM_UTIL_H */
1277