xref: /linux/drivers/media/common/videobuf2/videobuf2-core.c (revision b70886ff5833cf499e77af77d2324ce8f68b60ce)
1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *	   Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *	(c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31 
32 #include <trace/events/vb2.h>
33 
34 #define PLANE_INDEX_BITS	3
35 #define PLANE_INDEX_SHIFT	(PAGE_SHIFT + PLANE_INDEX_BITS)
36 #define PLANE_INDEX_MASK	(BIT_MASK(PLANE_INDEX_BITS) - 1)
37 #define MAX_BUFFER_INDEX	BIT_MASK(30 - PLANE_INDEX_SHIFT)
38 #define BUFFER_INDEX_MASK	(MAX_BUFFER_INDEX - 1)
39 
40 #if BIT(PLANE_INDEX_BITS) != VIDEO_MAX_PLANES
41 #error PLANE_INDEX_BITS order must be equal to VIDEO_MAX_PLANES
42 #endif
43 
44 static int debug;
45 module_param(debug, int, 0644);
46 
47 #define dprintk(q, level, fmt, arg...)					\
48 	do {								\
49 		if (debug >= level)					\
50 			pr_info("[%s] %s: " fmt, (q)->name, __func__,	\
51 				## arg);				\
52 	} while (0)
53 
54 #ifdef CONFIG_VIDEO_ADV_DEBUG
55 
56 /*
57  * If advanced debugging is on, then count how often each op is called
58  * successfully, which can either be per-buffer or per-queue.
59  *
60  * This makes it easy to check that the 'init' and 'cleanup'
61  * (and variations thereof) stay balanced.
62  */
63 
64 #define log_memop(vb, op)						\
65 	dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n",		\
66 		(vb)->index, #op,					\
67 		(vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
68 
69 #define call_memop(vb, op, args...)					\
70 ({									\
71 	struct vb2_queue *_q = (vb)->vb2_queue;				\
72 	int err;							\
73 									\
74 	log_memop(vb, op);						\
75 	err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;		\
76 	if (!err)							\
77 		(vb)->cnt_mem_ ## op++;					\
78 	err;								\
79 })
80 
81 #define call_ptr_memop(op, vb, args...)					\
82 ({									\
83 	struct vb2_queue *_q = (vb)->vb2_queue;				\
84 	void *ptr;							\
85 									\
86 	log_memop(vb, op);						\
87 	ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL;	\
88 	if (!IS_ERR_OR_NULL(ptr))					\
89 		(vb)->cnt_mem_ ## op++;					\
90 	ptr;								\
91 })
92 
93 #define call_void_memop(vb, op, args...)				\
94 ({									\
95 	struct vb2_queue *_q = (vb)->vb2_queue;				\
96 									\
97 	log_memop(vb, op);						\
98 	if (_q->mem_ops->op)						\
99 		_q->mem_ops->op(args);					\
100 	(vb)->cnt_mem_ ## op++;						\
101 })
102 
103 #define log_qop(q, op)							\
104 	dprintk(q, 2, "call_qop(%s)%s\n", #op,				\
105 		(q)->ops->op ? "" : " (nop)")
106 
107 #define call_qop(q, op, args...)					\
108 ({									\
109 	int err;							\
110 									\
111 	log_qop(q, op);							\
112 	err = (q)->ops->op ? (q)->ops->op(args) : 0;			\
113 	if (!err)							\
114 		(q)->cnt_ ## op++;					\
115 	err;								\
116 })
117 
118 #define call_void_qop(q, op, args...)					\
119 ({									\
120 	log_qop(q, op);							\
121 	if ((q)->ops->op)						\
122 		(q)->ops->op(args);					\
123 	(q)->cnt_ ## op++;						\
124 })
125 
126 #define log_vb_qop(vb, op, args...)					\
127 	dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n",		\
128 		(vb)->index, #op,					\
129 		(vb)->vb2_queue->ops->op ? "" : " (nop)")
130 
131 #define call_vb_qop(vb, op, args...)					\
132 ({									\
133 	int err;							\
134 									\
135 	log_vb_qop(vb, op);						\
136 	err = (vb)->vb2_queue->ops->op ?				\
137 		(vb)->vb2_queue->ops->op(args) : 0;			\
138 	if (!err)							\
139 		(vb)->cnt_ ## op++;					\
140 	err;								\
141 })
142 
143 #define call_void_vb_qop(vb, op, args...)				\
144 ({									\
145 	log_vb_qop(vb, op);						\
146 	if ((vb)->vb2_queue->ops->op)					\
147 		(vb)->vb2_queue->ops->op(args);				\
148 	(vb)->cnt_ ## op++;						\
149 })
150 
151 #else
152 
153 #define call_memop(vb, op, args...)					\
154 	((vb)->vb2_queue->mem_ops->op ?					\
155 		(vb)->vb2_queue->mem_ops->op(args) : 0)
156 
157 #define call_ptr_memop(op, vb, args...)					\
158 	((vb)->vb2_queue->mem_ops->op ?					\
159 		(vb)->vb2_queue->mem_ops->op(vb, args) : NULL)
160 
161 #define call_void_memop(vb, op, args...)				\
162 	do {								\
163 		if ((vb)->vb2_queue->mem_ops->op)			\
164 			(vb)->vb2_queue->mem_ops->op(args);		\
165 	} while (0)
166 
167 #define call_qop(q, op, args...)					\
168 	((q)->ops->op ? (q)->ops->op(args) : 0)
169 
170 #define call_void_qop(q, op, args...)					\
171 	do {								\
172 		if ((q)->ops->op)					\
173 			(q)->ops->op(args);				\
174 	} while (0)
175 
176 #define call_vb_qop(vb, op, args...)					\
177 	((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
178 
179 #define call_void_vb_qop(vb, op, args...)				\
180 	do {								\
181 		if ((vb)->vb2_queue->ops->op)				\
182 			(vb)->vb2_queue->ops->op(args);			\
183 	} while (0)
184 
185 #endif
186 
187 #define call_bufop(q, op, args...)					\
188 ({									\
189 	int ret = 0;							\
190 	if (q && q->buf_ops && q->buf_ops->op)				\
191 		ret = q->buf_ops->op(args);				\
192 	ret;								\
193 })
194 
195 #define call_void_bufop(q, op, args...)					\
196 ({									\
197 	if (q && q->buf_ops && q->buf_ops->op)				\
198 		q->buf_ops->op(args);					\
199 })
200 
201 static void __vb2_queue_cancel(struct vb2_queue *q);
202 
203 static const char *vb2_state_name(enum vb2_buffer_state s)
204 {
205 	static const char * const state_names[] = {
206 		[VB2_BUF_STATE_DEQUEUED] = "dequeued",
207 		[VB2_BUF_STATE_IN_REQUEST] = "in request",
208 		[VB2_BUF_STATE_PREPARING] = "preparing",
209 		[VB2_BUF_STATE_QUEUED] = "queued",
210 		[VB2_BUF_STATE_ACTIVE] = "active",
211 		[VB2_BUF_STATE_DONE] = "done",
212 		[VB2_BUF_STATE_ERROR] = "error",
213 	};
214 
215 	if ((unsigned int)(s) < ARRAY_SIZE(state_names))
216 		return state_names[s];
217 	return "unknown";
218 }
219 
220 /*
221  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
222  */
223 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
224 {
225 	struct vb2_queue *q = vb->vb2_queue;
226 	void *mem_priv;
227 	int plane;
228 	int ret = -ENOMEM;
229 
230 	/*
231 	 * Allocate memory for all planes in this buffer
232 	 * NOTE: mmapped areas should be page aligned
233 	 */
234 	for (plane = 0; plane < vb->num_planes; ++plane) {
235 		/* Memops alloc requires size to be page aligned. */
236 		unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
237 
238 		/* Did it wrap around? */
239 		if (size < vb->planes[plane].length)
240 			goto free;
241 
242 		mem_priv = call_ptr_memop(alloc,
243 					  vb,
244 					  q->alloc_devs[plane] ? : q->dev,
245 					  size);
246 		if (IS_ERR_OR_NULL(mem_priv)) {
247 			if (mem_priv)
248 				ret = PTR_ERR(mem_priv);
249 			goto free;
250 		}
251 
252 		/* Associate allocator private data with this plane */
253 		vb->planes[plane].mem_priv = mem_priv;
254 	}
255 
256 	return 0;
257 free:
258 	/* Free already allocated memory if one of the allocations failed */
259 	for (; plane > 0; --plane) {
260 		call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
261 		vb->planes[plane - 1].mem_priv = NULL;
262 	}
263 
264 	return ret;
265 }
266 
267 /*
268  * __vb2_buf_mem_free() - free memory of the given buffer
269  */
270 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
271 {
272 	unsigned int plane;
273 
274 	for (plane = 0; plane < vb->num_planes; ++plane) {
275 		call_void_memop(vb, put, vb->planes[plane].mem_priv);
276 		vb->planes[plane].mem_priv = NULL;
277 		dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
278 			plane, vb->index);
279 	}
280 }
281 
282 /*
283  * __vb2_buf_userptr_put() - release userspace memory associated with
284  * a USERPTR buffer
285  */
286 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
287 {
288 	unsigned int plane;
289 
290 	for (plane = 0; plane < vb->num_planes; ++plane) {
291 		if (vb->planes[plane].mem_priv)
292 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
293 		vb->planes[plane].mem_priv = NULL;
294 	}
295 }
296 
297 /*
298  * __vb2_plane_dmabuf_put() - release memory associated with
299  * a DMABUF shared plane
300  */
301 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
302 {
303 	if (!p->mem_priv)
304 		return;
305 
306 	if (!p->dbuf_duplicated) {
307 		if (p->dbuf_mapped)
308 			call_void_memop(vb, unmap_dmabuf, p->mem_priv);
309 
310 		call_void_memop(vb, detach_dmabuf, p->mem_priv);
311 	}
312 
313 	dma_buf_put(p->dbuf);
314 	p->mem_priv = NULL;
315 	p->dbuf = NULL;
316 	p->dbuf_mapped = 0;
317 	p->bytesused = 0;
318 	p->length = 0;
319 	p->m.fd = 0;
320 	p->data_offset = 0;
321 	p->dbuf_duplicated = false;
322 }
323 
324 /*
325  * __vb2_buf_dmabuf_put() - release memory associated with
326  * a DMABUF shared buffer
327  */
328 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
329 {
330 	int plane;
331 
332 	/*
333 	 * When multiple planes share the same DMA buffer attachment, the plane
334 	 * with the lowest index owns the mem_priv.
335 	 * Put planes in the reversed order so that we don't leave invalid
336 	 * mem_priv behind.
337 	 */
338 	for (plane = vb->num_planes - 1; plane >= 0; --plane)
339 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
340 }
341 
342 /*
343  * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
344  * to sync caches
345  */
346 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
347 {
348 	unsigned int plane;
349 
350 	if (vb->synced)
351 		return;
352 
353 	vb->synced = 1;
354 	for (plane = 0; plane < vb->num_planes; ++plane)
355 		call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
356 }
357 
358 /*
359  * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
360  * to sync caches
361  */
362 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
363 {
364 	unsigned int plane;
365 
366 	if (!vb->synced)
367 		return;
368 
369 	vb->synced = 0;
370 	for (plane = 0; plane < vb->num_planes; ++plane)
371 		call_void_memop(vb, finish, vb->planes[plane].mem_priv);
372 }
373 
374 /*
375  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
376  * the buffer.
377  */
378 static void __setup_offsets(struct vb2_buffer *vb)
379 {
380 	struct vb2_queue *q = vb->vb2_queue;
381 	unsigned int plane;
382 	unsigned long offset = 0;
383 
384 	/*
385 	 * The offset "cookie" value has the following constraints:
386 	 * - a buffer can have up to 8 planes.
387 	 * - v4l2 mem2mem uses bit 30 to distinguish between
388 	 *   OUTPUT (aka "source", bit 30 is 0) and
389 	 *   CAPTURE (aka "destination", bit 30 is 1) buffers.
390 	 * - must be page aligned
391 	 * That led to this bit mapping when PAGE_SHIFT = 12:
392 	 * |30                |29        15|14       12|11 0|
393 	 * |DST_QUEUE_OFF_BASE|buffer index|plane index| 0  |
394 	 * where there are 15 bits to store the buffer index.
395 	 * Depending on PAGE_SHIFT value we can have fewer bits
396 	 * to store the buffer index.
397 	 */
398 	offset = vb->index << PLANE_INDEX_SHIFT;
399 
400 	for (plane = 0; plane < vb->num_planes; ++plane) {
401 		vb->planes[plane].m.offset = offset + (plane << PAGE_SHIFT);
402 
403 		dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
404 				vb->index, plane, offset);
405 	}
406 }
407 
408 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb)
409 {
410 	/*
411 	 * DMA exporter should take care of cache syncs, so we can avoid
412 	 * explicit ->prepare()/->finish() syncs. For other ->memory types
413 	 * we always need ->prepare() or/and ->finish() cache sync.
414 	 */
415 	if (q->memory == VB2_MEMORY_DMABUF) {
416 		vb->skip_cache_sync_on_finish = 1;
417 		vb->skip_cache_sync_on_prepare = 1;
418 		return;
419 	}
420 
421 	/*
422 	 * ->finish() cache sync can be avoided when queue direction is
423 	 * TO_DEVICE.
424 	 */
425 	if (q->dma_dir == DMA_TO_DEVICE)
426 		vb->skip_cache_sync_on_finish = 1;
427 }
428 
429 /**
430  * vb2_queue_add_buffer() - add a buffer to a queue
431  * @q:	pointer to &struct vb2_queue with videobuf2 queue.
432  * @vb:	pointer to &struct vb2_buffer to be added to the queue.
433  * @index: index where add vb2_buffer in the queue
434  */
435 static void vb2_queue_add_buffer(struct vb2_queue *q, struct vb2_buffer *vb, unsigned int index)
436 {
437 	WARN_ON(index >= q->max_num_buffers || test_bit(index, q->bufs_bitmap) || vb->vb2_queue);
438 
439 	q->bufs[index] = vb;
440 	vb->index = index;
441 	vb->vb2_queue = q;
442 	set_bit(index, q->bufs_bitmap);
443 }
444 
445 /**
446  * vb2_queue_remove_buffer() - remove a buffer from a queue
447  * @vb:	pointer to &struct vb2_buffer to be removed from the queue.
448  */
449 static void vb2_queue_remove_buffer(struct vb2_buffer *vb)
450 {
451 	clear_bit(vb->index, vb->vb2_queue->bufs_bitmap);
452 	vb->vb2_queue->bufs[vb->index] = NULL;
453 	vb->vb2_queue = NULL;
454 }
455 
456 /*
457  * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type)
458  * video buffer memory for all buffers/planes on the queue and initializes the
459  * queue
460  * @first_index: index of the first created buffer, all newly allocated buffers
461  *		 have indices in the range [first_index..first_index+count-1]
462  *
463  * Returns the number of buffers successfully allocated.
464  */
465 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
466 			     unsigned int num_buffers, unsigned int num_planes,
467 			     const unsigned int plane_sizes[VB2_MAX_PLANES],
468 			     unsigned int *first_index)
469 {
470 	unsigned int buffer, plane;
471 	struct vb2_buffer *vb;
472 	unsigned long index = q->max_num_buffers;
473 	int ret;
474 
475 	/*
476 	 * Ensure that the number of already queue + the number of buffers already
477 	 * in the queue is below q->max_num_buffers
478 	 */
479 	num_buffers = min_t(unsigned int, num_buffers,
480 			    q->max_num_buffers - vb2_get_num_buffers(q));
481 
482 	while (num_buffers) {
483 		index = bitmap_find_next_zero_area(q->bufs_bitmap, q->max_num_buffers,
484 						   0, num_buffers, 0);
485 
486 		if (index < q->max_num_buffers)
487 			break;
488 		/* Try to find free space for less buffers */
489 		num_buffers--;
490 	}
491 
492 	/* If there is no space left to allocate buffers return 0 to indicate the error */
493 	if (!num_buffers) {
494 		*first_index = 0;
495 		return 0;
496 	}
497 
498 	*first_index = index;
499 
500 	for (buffer = 0; buffer < num_buffers; ++buffer) {
501 		/* Allocate vb2 buffer structures */
502 		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
503 		if (!vb) {
504 			dprintk(q, 1, "memory alloc for buffer struct failed\n");
505 			break;
506 		}
507 
508 		vb->state = VB2_BUF_STATE_DEQUEUED;
509 		vb->num_planes = num_planes;
510 		vb->type = q->type;
511 		vb->memory = memory;
512 		init_buffer_cache_hints(q, vb);
513 		for (plane = 0; plane < num_planes; ++plane) {
514 			vb->planes[plane].length = plane_sizes[plane];
515 			vb->planes[plane].min_length = plane_sizes[plane];
516 		}
517 
518 		vb2_queue_add_buffer(q, vb, index++);
519 		call_void_bufop(q, init_buffer, vb);
520 
521 		/* Allocate video buffer memory for the MMAP type */
522 		if (memory == VB2_MEMORY_MMAP) {
523 			ret = __vb2_buf_mem_alloc(vb);
524 			if (ret) {
525 				dprintk(q, 1, "failed allocating memory for buffer %d\n",
526 					buffer);
527 				vb2_queue_remove_buffer(vb);
528 				kfree(vb);
529 				break;
530 			}
531 			__setup_offsets(vb);
532 			/*
533 			 * Call the driver-provided buffer initialization
534 			 * callback, if given. An error in initialization
535 			 * results in queue setup failure.
536 			 */
537 			ret = call_vb_qop(vb, buf_init, vb);
538 			if (ret) {
539 				dprintk(q, 1, "buffer %d %p initialization failed\n",
540 					buffer, vb);
541 				__vb2_buf_mem_free(vb);
542 				vb2_queue_remove_buffer(vb);
543 				kfree(vb);
544 				break;
545 			}
546 		}
547 	}
548 
549 	dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
550 		buffer, num_planes);
551 
552 	return buffer;
553 }
554 
555 /*
556  * __vb2_free_mem() - release video buffer memory for a given range of
557  * buffers in a given queue
558  */
559 static void __vb2_free_mem(struct vb2_queue *q, unsigned int start, unsigned int count)
560 {
561 	unsigned int i;
562 	struct vb2_buffer *vb;
563 
564 	for (i = start; i < start + count; i++) {
565 		vb = vb2_get_buffer(q, i);
566 		if (!vb)
567 			continue;
568 
569 		/* Free MMAP buffers or release USERPTR buffers */
570 		if (q->memory == VB2_MEMORY_MMAP)
571 			__vb2_buf_mem_free(vb);
572 		else if (q->memory == VB2_MEMORY_DMABUF)
573 			__vb2_buf_dmabuf_put(vb);
574 		else
575 			__vb2_buf_userptr_put(vb);
576 	}
577 }
578 
579 /*
580  * __vb2_queue_free() - free @count buffers from @start index of the queue - video memory and
581  * related information, if no buffers are left return the queue to an
582  * uninitialized state. Might be called even if the queue has already been freed.
583  */
584 static void __vb2_queue_free(struct vb2_queue *q, unsigned int start, unsigned int count)
585 {
586 	unsigned int i;
587 
588 	lockdep_assert_held(&q->mmap_lock);
589 
590 	/* Call driver-provided cleanup function for each buffer, if provided */
591 	for (i = start; i < start + count; i++) {
592 		struct vb2_buffer *vb = vb2_get_buffer(q, i);
593 
594 		if (vb && vb->planes[0].mem_priv)
595 			call_void_vb_qop(vb, buf_cleanup, vb);
596 	}
597 
598 	/* Release video buffer memory */
599 	__vb2_free_mem(q, start, count);
600 
601 #ifdef CONFIG_VIDEO_ADV_DEBUG
602 	/*
603 	 * Check that all the calls were balanced during the life-time of this
604 	 * queue. If not then dump the counters to the kernel log.
605 	 */
606 	if (vb2_get_num_buffers(q)) {
607 		bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
608 				  q->cnt_prepare_streaming != q->cnt_unprepare_streaming;
609 
610 		if (unbalanced) {
611 			pr_info("unbalanced counters for queue %p:\n", q);
612 			if (q->cnt_start_streaming != q->cnt_stop_streaming)
613 				pr_info("     setup: %u start_streaming: %u stop_streaming: %u\n",
614 					q->cnt_queue_setup, q->cnt_start_streaming,
615 					q->cnt_stop_streaming);
616 			if (q->cnt_prepare_streaming != q->cnt_unprepare_streaming)
617 				pr_info("     prepare_streaming: %u unprepare_streaming: %u\n",
618 					q->cnt_prepare_streaming, q->cnt_unprepare_streaming);
619 		}
620 		q->cnt_queue_setup = 0;
621 		q->cnt_prepare_streaming = 0;
622 		q->cnt_start_streaming = 0;
623 		q->cnt_stop_streaming = 0;
624 		q->cnt_unprepare_streaming = 0;
625 	}
626 	for (i = start; i < start + count; i++) {
627 		struct vb2_buffer *vb = vb2_get_buffer(q, i);
628 		bool unbalanced;
629 
630 		if (!vb)
631 			continue;
632 
633 		unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
634 			     vb->cnt_mem_prepare != vb->cnt_mem_finish ||
635 			     vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
636 			     vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
637 			     vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
638 			     vb->cnt_buf_queue != vb->cnt_buf_done ||
639 			     vb->cnt_buf_prepare != vb->cnt_buf_finish ||
640 			     vb->cnt_buf_init != vb->cnt_buf_cleanup;
641 
642 		if (unbalanced) {
643 			pr_info("unbalanced counters for queue %p, buffer %d:\n",
644 				q, i);
645 			if (vb->cnt_buf_init != vb->cnt_buf_cleanup)
646 				pr_info("     buf_init: %u buf_cleanup: %u\n",
647 					vb->cnt_buf_init, vb->cnt_buf_cleanup);
648 			if (vb->cnt_buf_prepare != vb->cnt_buf_finish)
649 				pr_info("     buf_prepare: %u buf_finish: %u\n",
650 					vb->cnt_buf_prepare, vb->cnt_buf_finish);
651 			if (vb->cnt_buf_queue != vb->cnt_buf_done)
652 				pr_info("     buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
653 					vb->cnt_buf_out_validate, vb->cnt_buf_queue,
654 					vb->cnt_buf_done, vb->cnt_buf_request_complete);
655 			if (vb->cnt_mem_alloc != vb->cnt_mem_put)
656 				pr_info("     alloc: %u put: %u\n",
657 					vb->cnt_mem_alloc, vb->cnt_mem_put);
658 			if (vb->cnt_mem_prepare != vb->cnt_mem_finish)
659 				pr_info("     prepare: %u finish: %u\n",
660 					vb->cnt_mem_prepare, vb->cnt_mem_finish);
661 			if (vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr)
662 				pr_info("     get_userptr: %u put_userptr: %u\n",
663 					vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
664 			if (vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf)
665 				pr_info("     attach_dmabuf: %u detach_dmabuf: %u\n",
666 					vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf);
667 			if (vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf)
668 				pr_info("     map_dmabuf: %u unmap_dmabuf: %u\n",
669 					vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
670 			pr_info("     get_dmabuf: %u num_users: %u\n",
671 				vb->cnt_mem_get_dmabuf,
672 				vb->cnt_mem_num_users);
673 		}
674 	}
675 #endif
676 
677 	/* Free vb2 buffers */
678 	for (i = start; i < start + count; i++) {
679 		struct vb2_buffer *vb = vb2_get_buffer(q, i);
680 
681 		if (!vb)
682 			continue;
683 
684 		vb2_queue_remove_buffer(vb);
685 		kfree(vb);
686 	}
687 
688 	if (!vb2_get_num_buffers(q)) {
689 		q->memory = VB2_MEMORY_UNKNOWN;
690 		INIT_LIST_HEAD(&q->queued_list);
691 	}
692 }
693 
694 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
695 {
696 	unsigned int plane;
697 	for (plane = 0; plane < vb->num_planes; ++plane) {
698 		void *mem_priv = vb->planes[plane].mem_priv;
699 		/*
700 		 * If num_users() has not been provided, call_memop
701 		 * will return 0, apparently nobody cares about this
702 		 * case anyway. If num_users() returns more than 1,
703 		 * we are not the only user of the plane's memory.
704 		 */
705 		if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
706 			return true;
707 	}
708 	return false;
709 }
710 EXPORT_SYMBOL(vb2_buffer_in_use);
711 
712 /*
713  * __buffers_in_use() - return true if any buffers on the queue are in use and
714  * the queue cannot be freed (by the means of REQBUFS(0)) call
715  */
716 static bool __buffers_in_use(struct vb2_queue *q)
717 {
718 	unsigned int buffer;
719 	for (buffer = 0; buffer < q->max_num_buffers; ++buffer) {
720 		struct vb2_buffer *vb = vb2_get_buffer(q, buffer);
721 
722 		if (!vb)
723 			continue;
724 
725 		if (vb2_buffer_in_use(q, vb))
726 			return true;
727 	}
728 	return false;
729 }
730 
731 void vb2_core_querybuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb)
732 {
733 	call_void_bufop(q, fill_user_buffer, vb, pb);
734 }
735 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
736 
737 /*
738  * __verify_userptr_ops() - verify that all memory operations required for
739  * USERPTR queue type have been provided
740  */
741 static int __verify_userptr_ops(struct vb2_queue *q)
742 {
743 	if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
744 	    !q->mem_ops->put_userptr)
745 		return -EINVAL;
746 
747 	return 0;
748 }
749 
750 /*
751  * __verify_mmap_ops() - verify that all memory operations required for
752  * MMAP queue type have been provided
753  */
754 static int __verify_mmap_ops(struct vb2_queue *q)
755 {
756 	if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
757 	    !q->mem_ops->put || !q->mem_ops->mmap)
758 		return -EINVAL;
759 
760 	return 0;
761 }
762 
763 /*
764  * __verify_dmabuf_ops() - verify that all memory operations required for
765  * DMABUF queue type have been provided
766  */
767 static int __verify_dmabuf_ops(struct vb2_queue *q)
768 {
769 	if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
770 	    !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
771 	    !q->mem_ops->unmap_dmabuf)
772 		return -EINVAL;
773 
774 	return 0;
775 }
776 
777 int vb2_verify_memory_type(struct vb2_queue *q,
778 		enum vb2_memory memory, unsigned int type)
779 {
780 	if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
781 	    memory != VB2_MEMORY_DMABUF) {
782 		dprintk(q, 1, "unsupported memory type\n");
783 		return -EINVAL;
784 	}
785 
786 	if (type != q->type) {
787 		dprintk(q, 1, "requested type is incorrect\n");
788 		return -EINVAL;
789 	}
790 
791 	/*
792 	 * Make sure all the required memory ops for given memory type
793 	 * are available.
794 	 */
795 	if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
796 		dprintk(q, 1, "MMAP for current setup unsupported\n");
797 		return -EINVAL;
798 	}
799 
800 	if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
801 		dprintk(q, 1, "USERPTR for current setup unsupported\n");
802 		return -EINVAL;
803 	}
804 
805 	if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
806 		dprintk(q, 1, "DMABUF for current setup unsupported\n");
807 		return -EINVAL;
808 	}
809 
810 	/*
811 	 * Place the busy tests at the end: -EBUSY can be ignored when
812 	 * create_bufs is called with count == 0, but count == 0 should still
813 	 * do the memory and type validation.
814 	 */
815 	if (vb2_fileio_is_active(q)) {
816 		dprintk(q, 1, "file io in progress\n");
817 		return -EBUSY;
818 	}
819 	return 0;
820 }
821 EXPORT_SYMBOL(vb2_verify_memory_type);
822 
823 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem)
824 {
825 	q->non_coherent_mem = 0;
826 
827 	if (!vb2_queue_allows_cache_hints(q))
828 		return;
829 	q->non_coherent_mem = non_coherent_mem;
830 }
831 
832 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem)
833 {
834 	if (non_coherent_mem != q->non_coherent_mem) {
835 		dprintk(q, 1, "memory coherency model mismatch\n");
836 		return false;
837 	}
838 	return true;
839 }
840 
841 static int vb2_core_allocated_buffers_storage(struct vb2_queue *q)
842 {
843 	if (!q->bufs)
844 		q->bufs = kcalloc(q->max_num_buffers, sizeof(*q->bufs), GFP_KERNEL);
845 	if (!q->bufs)
846 		return -ENOMEM;
847 
848 	if (!q->bufs_bitmap)
849 		q->bufs_bitmap = bitmap_zalloc(q->max_num_buffers, GFP_KERNEL);
850 	if (!q->bufs_bitmap) {
851 		kfree(q->bufs);
852 		q->bufs = NULL;
853 		return -ENOMEM;
854 	}
855 
856 	return 0;
857 }
858 
859 static void vb2_core_free_buffers_storage(struct vb2_queue *q)
860 {
861 	kfree(q->bufs);
862 	q->bufs = NULL;
863 	bitmap_free(q->bufs_bitmap);
864 	q->bufs_bitmap = NULL;
865 }
866 
867 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
868 		     unsigned int flags, unsigned int *count)
869 {
870 	unsigned int num_buffers, allocated_buffers, num_planes = 0;
871 	unsigned int q_num_bufs = vb2_get_num_buffers(q);
872 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
873 	bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
874 	unsigned int i, first_index;
875 	int ret = 0;
876 
877 	if (q->streaming) {
878 		dprintk(q, 1, "streaming active\n");
879 		return -EBUSY;
880 	}
881 
882 	if (q->waiting_in_dqbuf && *count) {
883 		dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
884 		return -EBUSY;
885 	}
886 
887 	if (*count == 0 || q_num_bufs != 0 ||
888 	    (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) ||
889 	    !verify_coherency_flags(q, non_coherent_mem)) {
890 		/*
891 		 * We already have buffers allocated, so first check if they
892 		 * are not in use and can be freed.
893 		 */
894 		mutex_lock(&q->mmap_lock);
895 		if (debug && q->memory == VB2_MEMORY_MMAP &&
896 		    __buffers_in_use(q))
897 			dprintk(q, 1, "memory in use, orphaning buffers\n");
898 
899 		/*
900 		 * Call queue_cancel to clean up any buffers in the
901 		 * QUEUED state which is possible if buffers were prepared or
902 		 * queued without ever calling STREAMON.
903 		 */
904 		__vb2_queue_cancel(q);
905 		__vb2_queue_free(q, 0, q->max_num_buffers);
906 		mutex_unlock(&q->mmap_lock);
907 
908 		q->is_busy = 0;
909 		/*
910 		 * In case of REQBUFS(0) return immediately without calling
911 		 * driver's queue_setup() callback and allocating resources.
912 		 */
913 		if (*count == 0)
914 			return 0;
915 	}
916 
917 	/*
918 	 * Make sure the requested values and current defaults are sane.
919 	 */
920 	num_buffers = max_t(unsigned int, *count, q->min_reqbufs_allocation);
921 	num_buffers = min_t(unsigned int, num_buffers, q->max_num_buffers);
922 	memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
923 	/*
924 	 * Set this now to ensure that drivers see the correct q->memory value
925 	 * in the queue_setup op.
926 	 */
927 	mutex_lock(&q->mmap_lock);
928 	ret = vb2_core_allocated_buffers_storage(q);
929 	q->memory = memory;
930 	mutex_unlock(&q->mmap_lock);
931 	if (ret)
932 		return ret;
933 	set_queue_coherency(q, non_coherent_mem);
934 
935 	/*
936 	 * Ask the driver how many buffers and planes per buffer it requires.
937 	 * Driver also sets the size and allocator context for each plane.
938 	 */
939 	ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
940 		       plane_sizes, q->alloc_devs);
941 	if (ret)
942 		goto error;
943 
944 	/* Check that driver has set sane values */
945 	if (WARN_ON(!num_planes)) {
946 		ret = -EINVAL;
947 		goto error;
948 	}
949 
950 	for (i = 0; i < num_planes; i++)
951 		if (WARN_ON(!plane_sizes[i])) {
952 			ret = -EINVAL;
953 			goto error;
954 		}
955 
956 	/* Finally, allocate buffers and video memory */
957 	allocated_buffers =
958 		__vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes, &first_index);
959 	if (allocated_buffers == 0) {
960 		/* There shouldn't be any buffers allocated, so first_index == 0 */
961 		WARN_ON(first_index);
962 		dprintk(q, 1, "memory allocation failed\n");
963 		ret = -ENOMEM;
964 		goto error;
965 	}
966 
967 	/*
968 	 * There is no point in continuing if we can't allocate the minimum
969 	 * number of buffers needed by this vb2_queue.
970 	 */
971 	if (allocated_buffers < q->min_reqbufs_allocation)
972 		ret = -ENOMEM;
973 
974 	/*
975 	 * Check if driver can handle the allocated number of buffers.
976 	 */
977 	if (!ret && allocated_buffers < num_buffers) {
978 		num_buffers = allocated_buffers;
979 		/*
980 		 * num_planes is set by the previous queue_setup(), but since it
981 		 * signals to queue_setup() whether it is called from create_bufs()
982 		 * vs reqbufs() we zero it here to signal that queue_setup() is
983 		 * called for the reqbufs() case.
984 		 */
985 		num_planes = 0;
986 
987 		ret = call_qop(q, queue_setup, q, &num_buffers,
988 			       &num_planes, plane_sizes, q->alloc_devs);
989 
990 		if (!ret && allocated_buffers < num_buffers)
991 			ret = -ENOMEM;
992 
993 		/*
994 		 * Either the driver has accepted a smaller number of buffers,
995 		 * or .queue_setup() returned an error
996 		 */
997 	}
998 
999 	mutex_lock(&q->mmap_lock);
1000 
1001 	if (ret < 0) {
1002 		/*
1003 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1004 		 * from already queued buffers and it will reset q->memory to
1005 		 * VB2_MEMORY_UNKNOWN.
1006 		 */
1007 		__vb2_queue_free(q, first_index, allocated_buffers);
1008 		mutex_unlock(&q->mmap_lock);
1009 		return ret;
1010 	}
1011 	mutex_unlock(&q->mmap_lock);
1012 
1013 	/*
1014 	 * Return the number of successfully allocated buffers
1015 	 * to the userspace.
1016 	 */
1017 	*count = allocated_buffers;
1018 	q->waiting_for_buffers = !q->is_output;
1019 	q->is_busy = 1;
1020 
1021 	return 0;
1022 
1023 error:
1024 	mutex_lock(&q->mmap_lock);
1025 	q->memory = VB2_MEMORY_UNKNOWN;
1026 	mutex_unlock(&q->mmap_lock);
1027 	vb2_core_free_buffers_storage(q);
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
1031 
1032 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
1033 			 unsigned int flags, unsigned int *count,
1034 			 unsigned int requested_planes,
1035 			 const unsigned int requested_sizes[],
1036 			 unsigned int *first_index)
1037 {
1038 	unsigned int num_planes = 0, num_buffers, allocated_buffers;
1039 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
1040 	bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
1041 	unsigned int q_num_bufs = vb2_get_num_buffers(q);
1042 	bool no_previous_buffers = !q_num_bufs;
1043 	int ret = 0;
1044 
1045 	if (q_num_bufs == q->max_num_buffers) {
1046 		dprintk(q, 1, "maximum number of buffers already allocated\n");
1047 		return -ENOBUFS;
1048 	}
1049 
1050 	if (no_previous_buffers) {
1051 		if (q->waiting_in_dqbuf && *count) {
1052 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1053 			return -EBUSY;
1054 		}
1055 		memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
1056 		/*
1057 		 * Set this now to ensure that drivers see the correct q->memory
1058 		 * value in the queue_setup op.
1059 		 */
1060 		mutex_lock(&q->mmap_lock);
1061 		ret = vb2_core_allocated_buffers_storage(q);
1062 		q->memory = memory;
1063 		mutex_unlock(&q->mmap_lock);
1064 		if (ret)
1065 			return ret;
1066 		q->waiting_for_buffers = !q->is_output;
1067 		set_queue_coherency(q, non_coherent_mem);
1068 	} else {
1069 		if (q->memory != memory) {
1070 			dprintk(q, 1, "memory model mismatch\n");
1071 			return -EINVAL;
1072 		}
1073 		if (!verify_coherency_flags(q, non_coherent_mem))
1074 			return -EINVAL;
1075 	}
1076 
1077 	num_buffers = min(*count, q->max_num_buffers - q_num_bufs);
1078 
1079 	if (requested_planes && requested_sizes) {
1080 		num_planes = requested_planes;
1081 		memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
1082 	}
1083 
1084 	/*
1085 	 * Ask the driver, whether the requested number of buffers, planes per
1086 	 * buffer and their sizes are acceptable
1087 	 */
1088 	ret = call_qop(q, queue_setup, q, &num_buffers,
1089 		       &num_planes, plane_sizes, q->alloc_devs);
1090 	if (ret)
1091 		goto error;
1092 
1093 	/* Finally, allocate buffers and video memory */
1094 	allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
1095 				num_planes, plane_sizes, first_index);
1096 	if (allocated_buffers == 0) {
1097 		dprintk(q, 1, "memory allocation failed\n");
1098 		ret = -ENOMEM;
1099 		goto error;
1100 	}
1101 
1102 	/*
1103 	 * Check if driver can handle the so far allocated number of buffers.
1104 	 */
1105 	if (allocated_buffers < num_buffers) {
1106 		num_buffers = allocated_buffers;
1107 
1108 		/*
1109 		 * num_buffers contains the total number of buffers, that the
1110 		 * queue driver has set up
1111 		 */
1112 		ret = call_qop(q, queue_setup, q, &num_buffers,
1113 			       &num_planes, plane_sizes, q->alloc_devs);
1114 
1115 		if (!ret && allocated_buffers < num_buffers)
1116 			ret = -ENOMEM;
1117 
1118 		/*
1119 		 * Either the driver has accepted a smaller number of buffers,
1120 		 * or .queue_setup() returned an error
1121 		 */
1122 	}
1123 
1124 	mutex_lock(&q->mmap_lock);
1125 
1126 	if (ret < 0) {
1127 		/*
1128 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1129 		 * from already queued buffers and it will reset q->memory to
1130 		 * VB2_MEMORY_UNKNOWN.
1131 		 */
1132 		__vb2_queue_free(q, *first_index, allocated_buffers);
1133 		mutex_unlock(&q->mmap_lock);
1134 		return -ENOMEM;
1135 	}
1136 	mutex_unlock(&q->mmap_lock);
1137 
1138 	/*
1139 	 * Return the number of successfully allocated buffers
1140 	 * to the userspace.
1141 	 */
1142 	*count = allocated_buffers;
1143 	q->is_busy = 1;
1144 
1145 	return 0;
1146 
1147 error:
1148 	if (no_previous_buffers) {
1149 		mutex_lock(&q->mmap_lock);
1150 		q->memory = VB2_MEMORY_UNKNOWN;
1151 		mutex_unlock(&q->mmap_lock);
1152 	}
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1156 
1157 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1158 {
1159 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1160 		return NULL;
1161 
1162 	return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv);
1163 
1164 }
1165 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1166 
1167 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1168 {
1169 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1170 		return NULL;
1171 
1172 	return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv);
1173 }
1174 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1175 
1176 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1177 {
1178 	struct vb2_queue *q = vb->vb2_queue;
1179 	unsigned long flags;
1180 
1181 	if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1182 		return;
1183 
1184 	if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1185 		    state != VB2_BUF_STATE_ERROR &&
1186 		    state != VB2_BUF_STATE_QUEUED))
1187 		state = VB2_BUF_STATE_ERROR;
1188 
1189 #ifdef CONFIG_VIDEO_ADV_DEBUG
1190 	/*
1191 	 * Although this is not a callback, it still does have to balance
1192 	 * with the buf_queue op. So update this counter manually.
1193 	 */
1194 	vb->cnt_buf_done++;
1195 #endif
1196 	dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1197 		vb->index, vb2_state_name(state));
1198 
1199 	if (state != VB2_BUF_STATE_QUEUED)
1200 		__vb2_buf_mem_finish(vb);
1201 
1202 	spin_lock_irqsave(&q->done_lock, flags);
1203 	if (state == VB2_BUF_STATE_QUEUED) {
1204 		vb->state = VB2_BUF_STATE_QUEUED;
1205 	} else {
1206 		/* Add the buffer to the done buffers list */
1207 		list_add_tail(&vb->done_entry, &q->done_list);
1208 		vb->state = state;
1209 	}
1210 	atomic_dec(&q->owned_by_drv_count);
1211 
1212 	if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1213 		media_request_object_unbind(&vb->req_obj);
1214 		media_request_object_put(&vb->req_obj);
1215 	}
1216 
1217 	spin_unlock_irqrestore(&q->done_lock, flags);
1218 
1219 	trace_vb2_buf_done(q, vb);
1220 
1221 	switch (state) {
1222 	case VB2_BUF_STATE_QUEUED:
1223 		return;
1224 	default:
1225 		/* Inform any processes that may be waiting for buffers */
1226 		wake_up(&q->done_wq);
1227 		break;
1228 	}
1229 }
1230 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1231 
1232 void vb2_discard_done(struct vb2_queue *q)
1233 {
1234 	struct vb2_buffer *vb;
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&q->done_lock, flags);
1238 	list_for_each_entry(vb, &q->done_list, done_entry)
1239 		vb->state = VB2_BUF_STATE_ERROR;
1240 	spin_unlock_irqrestore(&q->done_lock, flags);
1241 }
1242 EXPORT_SYMBOL_GPL(vb2_discard_done);
1243 
1244 /*
1245  * __prepare_mmap() - prepare an MMAP buffer
1246  */
1247 static int __prepare_mmap(struct vb2_buffer *vb)
1248 {
1249 	int ret = 0;
1250 
1251 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1252 			 vb, vb->planes);
1253 	return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1254 }
1255 
1256 /*
1257  * __prepare_userptr() - prepare a USERPTR buffer
1258  */
1259 static int __prepare_userptr(struct vb2_buffer *vb)
1260 {
1261 	struct vb2_plane planes[VB2_MAX_PLANES];
1262 	struct vb2_queue *q = vb->vb2_queue;
1263 	void *mem_priv;
1264 	unsigned int plane;
1265 	int ret = 0;
1266 	bool reacquired = vb->planes[0].mem_priv == NULL;
1267 
1268 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1269 	/* Copy relevant information provided by the userspace */
1270 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1271 			 vb, planes);
1272 	if (ret)
1273 		return ret;
1274 
1275 	for (plane = 0; plane < vb->num_planes; ++plane) {
1276 		/* Skip the plane if already verified */
1277 		if (vb->planes[plane].m.userptr &&
1278 			vb->planes[plane].m.userptr == planes[plane].m.userptr
1279 			&& vb->planes[plane].length == planes[plane].length)
1280 			continue;
1281 
1282 		dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1283 			plane);
1284 
1285 		/* Check if the provided plane buffer is large enough */
1286 		if (planes[plane].length < vb->planes[plane].min_length) {
1287 			dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1288 						planes[plane].length,
1289 						vb->planes[plane].min_length,
1290 						plane);
1291 			ret = -EINVAL;
1292 			goto err;
1293 		}
1294 
1295 		/* Release previously acquired memory if present */
1296 		if (vb->planes[plane].mem_priv) {
1297 			if (!reacquired) {
1298 				reacquired = true;
1299 				vb->copied_timestamp = 0;
1300 				call_void_vb_qop(vb, buf_cleanup, vb);
1301 			}
1302 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1303 		}
1304 
1305 		vb->planes[plane].mem_priv = NULL;
1306 		vb->planes[plane].bytesused = 0;
1307 		vb->planes[plane].length = 0;
1308 		vb->planes[plane].m.userptr = 0;
1309 		vb->planes[plane].data_offset = 0;
1310 
1311 		/* Acquire each plane's memory */
1312 		mem_priv = call_ptr_memop(get_userptr,
1313 					  vb,
1314 					  q->alloc_devs[plane] ? : q->dev,
1315 					  planes[plane].m.userptr,
1316 					  planes[plane].length);
1317 		if (IS_ERR(mem_priv)) {
1318 			dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1319 				plane);
1320 			ret = PTR_ERR(mem_priv);
1321 			goto err;
1322 		}
1323 		vb->planes[plane].mem_priv = mem_priv;
1324 	}
1325 
1326 	/*
1327 	 * Now that everything is in order, copy relevant information
1328 	 * provided by userspace.
1329 	 */
1330 	for (plane = 0; plane < vb->num_planes; ++plane) {
1331 		vb->planes[plane].bytesused = planes[plane].bytesused;
1332 		vb->planes[plane].length = planes[plane].length;
1333 		vb->planes[plane].m.userptr = planes[plane].m.userptr;
1334 		vb->planes[plane].data_offset = planes[plane].data_offset;
1335 	}
1336 
1337 	if (reacquired) {
1338 		/*
1339 		 * One or more planes changed, so we must call buf_init to do
1340 		 * the driver-specific initialization on the newly acquired
1341 		 * buffer, if provided.
1342 		 */
1343 		ret = call_vb_qop(vb, buf_init, vb);
1344 		if (ret) {
1345 			dprintk(q, 1, "buffer initialization failed\n");
1346 			goto err;
1347 		}
1348 	}
1349 
1350 	ret = call_vb_qop(vb, buf_prepare, vb);
1351 	if (ret) {
1352 		dprintk(q, 1, "buffer preparation failed\n");
1353 		call_void_vb_qop(vb, buf_cleanup, vb);
1354 		goto err;
1355 	}
1356 
1357 	return 0;
1358 err:
1359 	/* In case of errors, release planes that were already acquired */
1360 	for (plane = 0; plane < vb->num_planes; ++plane) {
1361 		if (vb->planes[plane].mem_priv)
1362 			call_void_memop(vb, put_userptr,
1363 				vb->planes[plane].mem_priv);
1364 		vb->planes[plane].mem_priv = NULL;
1365 		vb->planes[plane].m.userptr = 0;
1366 		vb->planes[plane].length = 0;
1367 	}
1368 
1369 	return ret;
1370 }
1371 
1372 /*
1373  * __prepare_dmabuf() - prepare a DMABUF buffer
1374  */
1375 static int __prepare_dmabuf(struct vb2_buffer *vb)
1376 {
1377 	struct vb2_plane planes[VB2_MAX_PLANES];
1378 	struct vb2_queue *q = vb->vb2_queue;
1379 	void *mem_priv;
1380 	unsigned int plane, i;
1381 	int ret = 0;
1382 	bool reacquired = vb->planes[0].mem_priv == NULL;
1383 
1384 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1385 	/* Copy relevant information provided by the userspace */
1386 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1387 			 vb, planes);
1388 	if (ret)
1389 		return ret;
1390 
1391 	for (plane = 0; plane < vb->num_planes; ++plane) {
1392 		struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1393 
1394 		planes[plane].dbuf = dbuf;
1395 
1396 		if (IS_ERR_OR_NULL(dbuf)) {
1397 			dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1398 				plane);
1399 			ret = -EINVAL;
1400 			goto err_put_planes;
1401 		}
1402 
1403 		/* use DMABUF size if length is not provided */
1404 		if (planes[plane].length == 0)
1405 			planes[plane].length = dbuf->size;
1406 
1407 		if (planes[plane].length < vb->planes[plane].min_length) {
1408 			dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1409 				planes[plane].length, plane,
1410 				vb->planes[plane].min_length);
1411 			ret = -EINVAL;
1412 			goto err_put_planes;
1413 		}
1414 
1415 		/* Skip the plane if already verified */
1416 		if (dbuf == vb->planes[plane].dbuf &&
1417 		    vb->planes[plane].length == planes[plane].length)
1418 			continue;
1419 
1420 		dprintk(q, 3, "buffer for plane %d changed\n", plane);
1421 
1422 		reacquired = true;
1423 	}
1424 
1425 	if (reacquired) {
1426 		if (vb->planes[0].mem_priv) {
1427 			vb->copied_timestamp = 0;
1428 			call_void_vb_qop(vb, buf_cleanup, vb);
1429 			__vb2_buf_dmabuf_put(vb);
1430 		}
1431 
1432 		for (plane = 0; plane < vb->num_planes; ++plane) {
1433 			/*
1434 			 * This is an optimization to reduce dma_buf attachment/mapping.
1435 			 * When the same dma_buf is used for multiple planes, there is no need
1436 			 * to create duplicated attachments.
1437 			 */
1438 			for (i = 0; i < plane; ++i) {
1439 				if (planes[plane].dbuf == vb->planes[i].dbuf &&
1440 				    q->alloc_devs[plane] == q->alloc_devs[i]) {
1441 					vb->planes[plane].dbuf_duplicated = true;
1442 					vb->planes[plane].dbuf = vb->planes[i].dbuf;
1443 					vb->planes[plane].mem_priv = vb->planes[i].mem_priv;
1444 					break;
1445 				}
1446 			}
1447 
1448 			if (vb->planes[plane].dbuf_duplicated)
1449 				continue;
1450 
1451 			/* Acquire each plane's memory */
1452 			mem_priv = call_ptr_memop(attach_dmabuf,
1453 						  vb,
1454 						  q->alloc_devs[plane] ? : q->dev,
1455 						  planes[plane].dbuf,
1456 						  planes[plane].length);
1457 			if (IS_ERR(mem_priv)) {
1458 				dprintk(q, 1, "failed to attach dmabuf\n");
1459 				ret = PTR_ERR(mem_priv);
1460 				goto err_put_vb2_buf;
1461 			}
1462 
1463 			vb->planes[plane].dbuf = planes[plane].dbuf;
1464 			vb->planes[plane].mem_priv = mem_priv;
1465 
1466 			/*
1467 			 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1468 			 * here instead just before the DMA, while queueing the buffer(s) so
1469 			 * userspace knows sooner rather than later if the dma-buf map fails.
1470 			 */
1471 			ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1472 			if (ret) {
1473 				dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1474 					plane);
1475 				goto err_put_vb2_buf;
1476 			}
1477 			vb->planes[plane].dbuf_mapped = 1;
1478 		}
1479 	} else {
1480 		for (plane = 0; plane < vb->num_planes; ++plane)
1481 			dma_buf_put(planes[plane].dbuf);
1482 	}
1483 
1484 	/*
1485 	 * Now that everything is in order, copy relevant information
1486 	 * provided by userspace.
1487 	 */
1488 	for (plane = 0; plane < vb->num_planes; ++plane) {
1489 		vb->planes[plane].bytesused = planes[plane].bytesused;
1490 		vb->planes[plane].length = planes[plane].length;
1491 		vb->planes[plane].m.fd = planes[plane].m.fd;
1492 		vb->planes[plane].data_offset = planes[plane].data_offset;
1493 	}
1494 
1495 	if (reacquired) {
1496 		/*
1497 		 * Call driver-specific initialization on the newly acquired buffer,
1498 		 * if provided.
1499 		 */
1500 		ret = call_vb_qop(vb, buf_init, vb);
1501 		if (ret) {
1502 			dprintk(q, 1, "buffer initialization failed\n");
1503 			goto err_put_vb2_buf;
1504 		}
1505 	}
1506 
1507 	ret = call_vb_qop(vb, buf_prepare, vb);
1508 	if (ret) {
1509 		dprintk(q, 1, "buffer preparation failed\n");
1510 		call_void_vb_qop(vb, buf_cleanup, vb);
1511 		goto err_put_vb2_buf;
1512 	}
1513 
1514 	return 0;
1515 
1516 err_put_planes:
1517 	for (plane = 0; plane < vb->num_planes; ++plane) {
1518 		if (!IS_ERR_OR_NULL(planes[plane].dbuf))
1519 			dma_buf_put(planes[plane].dbuf);
1520 	}
1521 err_put_vb2_buf:
1522 	/* In case of errors, release planes that were already acquired */
1523 	__vb2_buf_dmabuf_put(vb);
1524 
1525 	return ret;
1526 }
1527 
1528 /*
1529  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1530  */
1531 static void __enqueue_in_driver(struct vb2_buffer *vb)
1532 {
1533 	struct vb2_queue *q = vb->vb2_queue;
1534 
1535 	vb->state = VB2_BUF_STATE_ACTIVE;
1536 	atomic_inc(&q->owned_by_drv_count);
1537 
1538 	trace_vb2_buf_queue(q, vb);
1539 
1540 	call_void_vb_qop(vb, buf_queue, vb);
1541 }
1542 
1543 static int __buf_prepare(struct vb2_buffer *vb)
1544 {
1545 	struct vb2_queue *q = vb->vb2_queue;
1546 	enum vb2_buffer_state orig_state = vb->state;
1547 	int ret;
1548 
1549 	if (q->error) {
1550 		dprintk(q, 1, "fatal error occurred on queue\n");
1551 		return -EIO;
1552 	}
1553 
1554 	if (vb->prepared)
1555 		return 0;
1556 	WARN_ON(vb->synced);
1557 
1558 	if (q->is_output) {
1559 		ret = call_vb_qop(vb, buf_out_validate, vb);
1560 		if (ret) {
1561 			dprintk(q, 1, "buffer validation failed\n");
1562 			return ret;
1563 		}
1564 	}
1565 
1566 	vb->state = VB2_BUF_STATE_PREPARING;
1567 
1568 	switch (q->memory) {
1569 	case VB2_MEMORY_MMAP:
1570 		ret = __prepare_mmap(vb);
1571 		break;
1572 	case VB2_MEMORY_USERPTR:
1573 		ret = __prepare_userptr(vb);
1574 		break;
1575 	case VB2_MEMORY_DMABUF:
1576 		ret = __prepare_dmabuf(vb);
1577 		break;
1578 	default:
1579 		WARN(1, "Invalid queue type\n");
1580 		ret = -EINVAL;
1581 		break;
1582 	}
1583 
1584 	if (ret) {
1585 		dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1586 		vb->state = orig_state;
1587 		return ret;
1588 	}
1589 
1590 	__vb2_buf_mem_prepare(vb);
1591 	vb->prepared = 1;
1592 	vb->state = orig_state;
1593 
1594 	return 0;
1595 }
1596 
1597 static int vb2_req_prepare(struct media_request_object *obj)
1598 {
1599 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1600 	int ret;
1601 
1602 	if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1603 		return -EINVAL;
1604 
1605 	mutex_lock(vb->vb2_queue->lock);
1606 	ret = __buf_prepare(vb);
1607 	mutex_unlock(vb->vb2_queue->lock);
1608 	return ret;
1609 }
1610 
1611 static void __vb2_dqbuf(struct vb2_buffer *vb);
1612 
1613 static void vb2_req_unprepare(struct media_request_object *obj)
1614 {
1615 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1616 
1617 	mutex_lock(vb->vb2_queue->lock);
1618 	__vb2_dqbuf(vb);
1619 	vb->state = VB2_BUF_STATE_IN_REQUEST;
1620 	mutex_unlock(vb->vb2_queue->lock);
1621 	WARN_ON(!vb->req_obj.req);
1622 }
1623 
1624 static void vb2_req_queue(struct media_request_object *obj)
1625 {
1626 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1627 	int err;
1628 
1629 	mutex_lock(vb->vb2_queue->lock);
1630 	/*
1631 	 * There is no method to propagate an error from vb2_core_qbuf(),
1632 	 * so if this returns a non-0 value, then WARN.
1633 	 *
1634 	 * The only exception is -EIO which is returned if q->error is
1635 	 * set. We just ignore that, and expect this will be caught the
1636 	 * next time vb2_req_prepare() is called.
1637 	 */
1638 	err = vb2_core_qbuf(vb->vb2_queue, vb, NULL, NULL);
1639 	WARN_ON_ONCE(err && err != -EIO);
1640 	mutex_unlock(vb->vb2_queue->lock);
1641 }
1642 
1643 static void vb2_req_unbind(struct media_request_object *obj)
1644 {
1645 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1646 
1647 	if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1648 		call_void_bufop(vb->vb2_queue, init_buffer, vb);
1649 }
1650 
1651 static void vb2_req_release(struct media_request_object *obj)
1652 {
1653 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1654 
1655 	if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1656 		vb->state = VB2_BUF_STATE_DEQUEUED;
1657 		if (vb->request)
1658 			media_request_put(vb->request);
1659 		vb->request = NULL;
1660 	}
1661 }
1662 
1663 static const struct media_request_object_ops vb2_core_req_ops = {
1664 	.prepare = vb2_req_prepare,
1665 	.unprepare = vb2_req_unprepare,
1666 	.queue = vb2_req_queue,
1667 	.unbind = vb2_req_unbind,
1668 	.release = vb2_req_release,
1669 };
1670 
1671 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1672 {
1673 	return obj->ops == &vb2_core_req_ops;
1674 }
1675 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1676 
1677 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1678 {
1679 	struct media_request_object *obj;
1680 	unsigned long flags;
1681 	unsigned int buffer_cnt = 0;
1682 
1683 	spin_lock_irqsave(&req->lock, flags);
1684 	list_for_each_entry(obj, &req->objects, list)
1685 		if (vb2_request_object_is_buffer(obj))
1686 			buffer_cnt++;
1687 	spin_unlock_irqrestore(&req->lock, flags);
1688 
1689 	return buffer_cnt;
1690 }
1691 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1692 
1693 int vb2_core_prepare_buf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb)
1694 {
1695 	int ret;
1696 
1697 	if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1698 		dprintk(q, 1, "invalid buffer state %s\n",
1699 			vb2_state_name(vb->state));
1700 		return -EINVAL;
1701 	}
1702 	if (vb->prepared) {
1703 		dprintk(q, 1, "buffer already prepared\n");
1704 		return -EINVAL;
1705 	}
1706 
1707 	ret = __buf_prepare(vb);
1708 	if (ret)
1709 		return ret;
1710 
1711 	/* Fill buffer information for the userspace */
1712 	call_void_bufop(q, fill_user_buffer, vb, pb);
1713 
1714 	dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1715 
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1719 
1720 int vb2_core_remove_bufs(struct vb2_queue *q, unsigned int start, unsigned int count)
1721 {
1722 	unsigned int i, ret = 0;
1723 	unsigned int q_num_bufs = vb2_get_num_buffers(q);
1724 
1725 	if (count == 0)
1726 		return 0;
1727 
1728 	if (count > q_num_bufs)
1729 		return -EINVAL;
1730 
1731 	if (start > q->max_num_buffers - count)
1732 		return -EINVAL;
1733 
1734 	mutex_lock(&q->mmap_lock);
1735 
1736 	/* Check that all buffers in the range exist */
1737 	for (i = start; i < start + count; i++) {
1738 		struct vb2_buffer *vb = vb2_get_buffer(q, i);
1739 
1740 		if (!vb) {
1741 			ret = -EINVAL;
1742 			goto unlock;
1743 		}
1744 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1745 			ret = -EBUSY;
1746 			goto unlock;
1747 		}
1748 	}
1749 	__vb2_queue_free(q, start, count);
1750 	dprintk(q, 2, "%u buffers removed\n", count);
1751 
1752 unlock:
1753 	mutex_unlock(&q->mmap_lock);
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(vb2_core_remove_bufs);
1757 
1758 /*
1759  * vb2_start_streaming() - Attempt to start streaming.
1760  * @q:		videobuf2 queue
1761  *
1762  * Attempt to start streaming. When this function is called there must be
1763  * at least q->min_queued_buffers queued up (i.e. the minimum
1764  * number of buffers required for the DMA engine to function). If the
1765  * @start_streaming op fails it is supposed to return all the driver-owned
1766  * buffers back to vb2 in state QUEUED. Check if that happened and if
1767  * not warn and reclaim them forcefully.
1768  */
1769 static int vb2_start_streaming(struct vb2_queue *q)
1770 {
1771 	struct vb2_buffer *vb;
1772 	int ret;
1773 
1774 	/*
1775 	 * If any buffers were queued before streamon,
1776 	 * we can now pass them to driver for processing.
1777 	 */
1778 	list_for_each_entry(vb, &q->queued_list, queued_entry)
1779 		__enqueue_in_driver(vb);
1780 
1781 	/* Tell the driver to start streaming */
1782 	q->start_streaming_called = 1;
1783 	ret = call_qop(q, start_streaming, q,
1784 		       atomic_read(&q->owned_by_drv_count));
1785 	if (!ret)
1786 		return 0;
1787 
1788 	q->start_streaming_called = 0;
1789 
1790 	dprintk(q, 1, "driver refused to start streaming\n");
1791 	/*
1792 	 * If you see this warning, then the driver isn't cleaning up properly
1793 	 * after a failed start_streaming(). See the start_streaming()
1794 	 * documentation in videobuf2-core.h for more information how buffers
1795 	 * should be returned to vb2 in start_streaming().
1796 	 */
1797 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1798 		unsigned i;
1799 
1800 		/*
1801 		 * Forcefully reclaim buffers if the driver did not
1802 		 * correctly return them to vb2.
1803 		 */
1804 		for (i = 0; i < q->max_num_buffers; ++i) {
1805 			vb = vb2_get_buffer(q, i);
1806 
1807 			if (!vb)
1808 				continue;
1809 
1810 			if (vb->state == VB2_BUF_STATE_ACTIVE)
1811 				vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1812 		}
1813 		/* Must be zero now */
1814 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1815 	}
1816 	/*
1817 	 * If done_list is not empty, then start_streaming() didn't call
1818 	 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1819 	 * STATE_DONE.
1820 	 */
1821 	WARN_ON(!list_empty(&q->done_list));
1822 	return ret;
1823 }
1824 
1825 int vb2_core_qbuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb,
1826 		  struct media_request *req)
1827 {
1828 	enum vb2_buffer_state orig_state;
1829 	int ret;
1830 
1831 	if (q->error) {
1832 		dprintk(q, 1, "fatal error occurred on queue\n");
1833 		return -EIO;
1834 	}
1835 
1836 	if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1837 	    q->requires_requests) {
1838 		dprintk(q, 1, "qbuf requires a request\n");
1839 		return -EBADR;
1840 	}
1841 
1842 	if ((req && q->uses_qbuf) ||
1843 	    (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1844 	     q->uses_requests)) {
1845 		dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1846 		return -EBUSY;
1847 	}
1848 
1849 	if (req) {
1850 		int ret;
1851 
1852 		q->uses_requests = 1;
1853 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1854 			dprintk(q, 1, "buffer %d not in dequeued state\n",
1855 				vb->index);
1856 			return -EINVAL;
1857 		}
1858 
1859 		if (q->is_output && !vb->prepared) {
1860 			ret = call_vb_qop(vb, buf_out_validate, vb);
1861 			if (ret) {
1862 				dprintk(q, 1, "buffer validation failed\n");
1863 				return ret;
1864 			}
1865 		}
1866 
1867 		media_request_object_init(&vb->req_obj);
1868 
1869 		/* Make sure the request is in a safe state for updating. */
1870 		ret = media_request_lock_for_update(req);
1871 		if (ret)
1872 			return ret;
1873 		ret = media_request_object_bind(req, &vb2_core_req_ops,
1874 						q, true, &vb->req_obj);
1875 		media_request_unlock_for_update(req);
1876 		if (ret)
1877 			return ret;
1878 
1879 		vb->state = VB2_BUF_STATE_IN_REQUEST;
1880 
1881 		/*
1882 		 * Increment the refcount and store the request.
1883 		 * The request refcount is decremented again when the
1884 		 * buffer is dequeued. This is to prevent vb2_buffer_done()
1885 		 * from freeing the request from interrupt context, which can
1886 		 * happen if the application closed the request fd after
1887 		 * queueing the request.
1888 		 */
1889 		media_request_get(req);
1890 		vb->request = req;
1891 
1892 		/* Fill buffer information for the userspace */
1893 		if (pb) {
1894 			call_void_bufop(q, copy_timestamp, vb, pb);
1895 			call_void_bufop(q, fill_user_buffer, vb, pb);
1896 		}
1897 
1898 		dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1899 		return 0;
1900 	}
1901 
1902 	if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1903 		q->uses_qbuf = 1;
1904 
1905 	switch (vb->state) {
1906 	case VB2_BUF_STATE_DEQUEUED:
1907 	case VB2_BUF_STATE_IN_REQUEST:
1908 		if (!vb->prepared) {
1909 			ret = __buf_prepare(vb);
1910 			if (ret)
1911 				return ret;
1912 		}
1913 		break;
1914 	case VB2_BUF_STATE_PREPARING:
1915 		dprintk(q, 1, "buffer still being prepared\n");
1916 		return -EINVAL;
1917 	default:
1918 		dprintk(q, 1, "invalid buffer state %s\n",
1919 			vb2_state_name(vb->state));
1920 		return -EINVAL;
1921 	}
1922 
1923 	/*
1924 	 * Add to the queued buffers list, a buffer will stay on it until
1925 	 * dequeued in dqbuf.
1926 	 */
1927 	orig_state = vb->state;
1928 	list_add_tail(&vb->queued_entry, &q->queued_list);
1929 	q->queued_count++;
1930 	q->waiting_for_buffers = false;
1931 	vb->state = VB2_BUF_STATE_QUEUED;
1932 
1933 	if (pb)
1934 		call_void_bufop(q, copy_timestamp, vb, pb);
1935 
1936 	trace_vb2_qbuf(q, vb);
1937 
1938 	/*
1939 	 * If already streaming, give the buffer to driver for processing.
1940 	 * If not, the buffer will be given to driver on next streamon.
1941 	 */
1942 	if (q->start_streaming_called)
1943 		__enqueue_in_driver(vb);
1944 
1945 	/* Fill buffer information for the userspace */
1946 	if (pb)
1947 		call_void_bufop(q, fill_user_buffer, vb, pb);
1948 
1949 	/*
1950 	 * If streamon has been called, and we haven't yet called
1951 	 * start_streaming() since not enough buffers were queued, and
1952 	 * we now have reached the minimum number of queued buffers,
1953 	 * then we can finally call start_streaming().
1954 	 */
1955 	if (q->streaming && !q->start_streaming_called &&
1956 	    q->queued_count >= q->min_queued_buffers) {
1957 		ret = vb2_start_streaming(q);
1958 		if (ret) {
1959 			/*
1960 			 * Since vb2_core_qbuf will return with an error,
1961 			 * we should return it to state DEQUEUED since
1962 			 * the error indicates that the buffer wasn't queued.
1963 			 */
1964 			list_del(&vb->queued_entry);
1965 			q->queued_count--;
1966 			vb->state = orig_state;
1967 			return ret;
1968 		}
1969 	}
1970 
1971 	dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1975 
1976 /*
1977  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1978  * for dequeuing
1979  *
1980  * Will sleep if required for nonblocking == false.
1981  */
1982 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1983 {
1984 	/*
1985 	 * All operations on vb_done_list are performed under done_lock
1986 	 * spinlock protection. However, buffers may be removed from
1987 	 * it and returned to userspace only while holding both driver's
1988 	 * lock and the done_lock spinlock. Thus we can be sure that as
1989 	 * long as we hold the driver's lock, the list will remain not
1990 	 * empty if list_empty() check succeeds.
1991 	 */
1992 
1993 	for (;;) {
1994 		int ret;
1995 
1996 		if (q->waiting_in_dqbuf) {
1997 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1998 			return -EBUSY;
1999 		}
2000 
2001 		if (!q->streaming) {
2002 			dprintk(q, 1, "streaming off, will not wait for buffers\n");
2003 			return -EINVAL;
2004 		}
2005 
2006 		if (q->error) {
2007 			dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
2008 			return -EIO;
2009 		}
2010 
2011 		if (q->last_buffer_dequeued) {
2012 			dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
2013 			return -EPIPE;
2014 		}
2015 
2016 		if (!list_empty(&q->done_list)) {
2017 			/*
2018 			 * Found a buffer that we were waiting for.
2019 			 */
2020 			break;
2021 		}
2022 
2023 		if (nonblocking) {
2024 			dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
2025 			return -EAGAIN;
2026 		}
2027 
2028 		q->waiting_in_dqbuf = 1;
2029 		/*
2030 		 * We are streaming and blocking, wait for another buffer to
2031 		 * become ready or for streamoff. Driver's lock is released to
2032 		 * allow streamoff or qbuf to be called while waiting.
2033 		 */
2034 		mutex_unlock(q->lock);
2035 
2036 		/*
2037 		 * All locks have been released, it is safe to sleep now.
2038 		 */
2039 		dprintk(q, 3, "will sleep waiting for buffers\n");
2040 		ret = wait_event_interruptible(q->done_wq,
2041 				!list_empty(&q->done_list) || !q->streaming ||
2042 				q->error);
2043 
2044 		mutex_lock(q->lock);
2045 
2046 		q->waiting_in_dqbuf = 0;
2047 		/*
2048 		 * We need to reevaluate both conditions again after reacquiring
2049 		 * the locks or return an error if one occurred.
2050 		 */
2051 		if (ret) {
2052 			dprintk(q, 1, "sleep was interrupted\n");
2053 			return ret;
2054 		}
2055 	}
2056 	return 0;
2057 }
2058 
2059 /*
2060  * __vb2_get_done_vb() - get a buffer ready for dequeuing
2061  *
2062  * Will sleep if required for nonblocking == false.
2063  */
2064 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
2065 			     void *pb, int nonblocking)
2066 {
2067 	unsigned long flags;
2068 	int ret = 0;
2069 
2070 	/*
2071 	 * Wait for at least one buffer to become available on the done_list.
2072 	 */
2073 	ret = __vb2_wait_for_done_vb(q, nonblocking);
2074 	if (ret)
2075 		return ret;
2076 
2077 	/*
2078 	 * Driver's lock has been held since we last verified that done_list
2079 	 * is not empty, so no need for another list_empty(done_list) check.
2080 	 */
2081 	spin_lock_irqsave(&q->done_lock, flags);
2082 	*vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
2083 	/*
2084 	 * Only remove the buffer from done_list if all planes can be
2085 	 * handled. Some cases such as V4L2 file I/O and DVB have pb
2086 	 * == NULL; skip the check then as there's nothing to verify.
2087 	 */
2088 	if (pb)
2089 		ret = call_bufop(q, verify_planes_array, *vb, pb);
2090 	if (!ret)
2091 		list_del(&(*vb)->done_entry);
2092 	spin_unlock_irqrestore(&q->done_lock, flags);
2093 
2094 	return ret;
2095 }
2096 
2097 int vb2_wait_for_all_buffers(struct vb2_queue *q)
2098 {
2099 	if (!q->streaming) {
2100 		dprintk(q, 1, "streaming off, will not wait for buffers\n");
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (q->start_streaming_called)
2105 		wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
2109 
2110 /*
2111  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
2112  */
2113 static void __vb2_dqbuf(struct vb2_buffer *vb)
2114 {
2115 	struct vb2_queue *q = vb->vb2_queue;
2116 
2117 	/* nothing to do if the buffer is already dequeued */
2118 	if (vb->state == VB2_BUF_STATE_DEQUEUED)
2119 		return;
2120 
2121 	vb->state = VB2_BUF_STATE_DEQUEUED;
2122 
2123 	call_void_bufop(q, init_buffer, vb);
2124 }
2125 
2126 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
2127 		   bool nonblocking)
2128 {
2129 	struct vb2_buffer *vb = NULL;
2130 	int ret;
2131 
2132 	ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
2133 	if (ret < 0)
2134 		return ret;
2135 
2136 	switch (vb->state) {
2137 	case VB2_BUF_STATE_DONE:
2138 		dprintk(q, 3, "returning done buffer\n");
2139 		break;
2140 	case VB2_BUF_STATE_ERROR:
2141 		dprintk(q, 3, "returning done buffer with errors\n");
2142 		break;
2143 	default:
2144 		dprintk(q, 1, "invalid buffer state %s\n",
2145 			vb2_state_name(vb->state));
2146 		return -EINVAL;
2147 	}
2148 
2149 	call_void_vb_qop(vb, buf_finish, vb);
2150 	vb->prepared = 0;
2151 
2152 	if (pindex)
2153 		*pindex = vb->index;
2154 
2155 	/* Fill buffer information for the userspace */
2156 	if (pb)
2157 		call_void_bufop(q, fill_user_buffer, vb, pb);
2158 
2159 	/* Remove from vb2 queue */
2160 	list_del(&vb->queued_entry);
2161 	q->queued_count--;
2162 
2163 	trace_vb2_dqbuf(q, vb);
2164 
2165 	/* go back to dequeued state */
2166 	__vb2_dqbuf(vb);
2167 
2168 	if (WARN_ON(vb->req_obj.req)) {
2169 		media_request_object_unbind(&vb->req_obj);
2170 		media_request_object_put(&vb->req_obj);
2171 	}
2172 	if (vb->request)
2173 		media_request_put(vb->request);
2174 	vb->request = NULL;
2175 
2176 	dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
2177 		vb->index, vb2_state_name(vb->state));
2178 
2179 	return 0;
2180 
2181 }
2182 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
2183 
2184 /*
2185  * __vb2_queue_cancel() - cancel and stop (pause) streaming
2186  *
2187  * Removes all queued buffers from driver's queue and all buffers queued by
2188  * userspace from vb2's queue. Returns to state after reqbufs.
2189  */
2190 static void __vb2_queue_cancel(struct vb2_queue *q)
2191 {
2192 	unsigned int i;
2193 
2194 	/*
2195 	 * Tell driver to stop all transactions and release all queued
2196 	 * buffers.
2197 	 */
2198 	if (q->start_streaming_called)
2199 		call_void_qop(q, stop_streaming, q);
2200 
2201 	if (q->streaming)
2202 		call_void_qop(q, unprepare_streaming, q);
2203 
2204 	/*
2205 	 * If you see this warning, then the driver isn't cleaning up properly
2206 	 * in stop_streaming(). See the stop_streaming() documentation in
2207 	 * videobuf2-core.h for more information how buffers should be returned
2208 	 * to vb2 in stop_streaming().
2209 	 */
2210 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2211 		for (i = 0; i < q->max_num_buffers; i++) {
2212 			struct vb2_buffer *vb = vb2_get_buffer(q, i);
2213 
2214 			if (!vb)
2215 				continue;
2216 
2217 			if (vb->state == VB2_BUF_STATE_ACTIVE) {
2218 				pr_warn("driver bug: stop_streaming operation is leaving buffer %u in active state\n",
2219 					vb->index);
2220 				vb2_buffer_done(vb, VB2_BUF_STATE_ERROR);
2221 			}
2222 		}
2223 		/* Must be zero now */
2224 		WARN_ON(atomic_read(&q->owned_by_drv_count));
2225 	}
2226 
2227 	q->streaming = 0;
2228 	q->start_streaming_called = 0;
2229 	q->queued_count = 0;
2230 	q->error = 0;
2231 	q->uses_requests = 0;
2232 	q->uses_qbuf = 0;
2233 
2234 	/*
2235 	 * Remove all buffers from vb2's list...
2236 	 */
2237 	INIT_LIST_HEAD(&q->queued_list);
2238 	/*
2239 	 * ...and done list; userspace will not receive any buffers it
2240 	 * has not already dequeued before initiating cancel.
2241 	 */
2242 	INIT_LIST_HEAD(&q->done_list);
2243 	atomic_set(&q->owned_by_drv_count, 0);
2244 	wake_up_all(&q->done_wq);
2245 
2246 	/*
2247 	 * Reinitialize all buffers for next use.
2248 	 * Make sure to call buf_finish for any queued buffers. Normally
2249 	 * that's done in dqbuf, but that's not going to happen when we
2250 	 * cancel the whole queue. Note: this code belongs here, not in
2251 	 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2252 	 * call to __fill_user_buffer() after buf_finish(). That order can't
2253 	 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2254 	 */
2255 	for (i = 0; i < q->max_num_buffers; i++) {
2256 		struct vb2_buffer *vb;
2257 		struct media_request *req;
2258 
2259 		vb = vb2_get_buffer(q, i);
2260 		if (!vb)
2261 			continue;
2262 
2263 		req = vb->req_obj.req;
2264 		/*
2265 		 * If a request is associated with this buffer, then
2266 		 * call buf_request_cancel() to give the driver to complete()
2267 		 * related request objects. Otherwise those objects would
2268 		 * never complete.
2269 		 */
2270 		if (req) {
2271 			enum media_request_state state;
2272 			unsigned long flags;
2273 
2274 			spin_lock_irqsave(&req->lock, flags);
2275 			state = req->state;
2276 			spin_unlock_irqrestore(&req->lock, flags);
2277 
2278 			if (state == MEDIA_REQUEST_STATE_QUEUED)
2279 				call_void_vb_qop(vb, buf_request_complete, vb);
2280 		}
2281 
2282 		__vb2_buf_mem_finish(vb);
2283 
2284 		if (vb->prepared) {
2285 			call_void_vb_qop(vb, buf_finish, vb);
2286 			vb->prepared = 0;
2287 		}
2288 		__vb2_dqbuf(vb);
2289 
2290 		if (vb->req_obj.req) {
2291 			media_request_object_unbind(&vb->req_obj);
2292 			media_request_object_put(&vb->req_obj);
2293 		}
2294 		if (vb->request)
2295 			media_request_put(vb->request);
2296 		vb->request = NULL;
2297 		vb->copied_timestamp = 0;
2298 	}
2299 }
2300 
2301 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2302 {
2303 	unsigned int q_num_bufs = vb2_get_num_buffers(q);
2304 	int ret;
2305 
2306 	if (type != q->type) {
2307 		dprintk(q, 1, "invalid stream type\n");
2308 		return -EINVAL;
2309 	}
2310 
2311 	if (q->streaming) {
2312 		dprintk(q, 3, "already streaming\n");
2313 		return 0;
2314 	}
2315 
2316 	if (!q_num_bufs) {
2317 		dprintk(q, 1, "no buffers have been allocated\n");
2318 		return -EINVAL;
2319 	}
2320 
2321 	if (q_num_bufs < q->min_queued_buffers) {
2322 		dprintk(q, 1, "need at least %u allocated buffers\n",
2323 			q->min_queued_buffers);
2324 		return -EINVAL;
2325 	}
2326 
2327 	ret = call_qop(q, prepare_streaming, q);
2328 	if (ret)
2329 		return ret;
2330 
2331 	/*
2332 	 * Tell driver to start streaming provided sufficient buffers
2333 	 * are available.
2334 	 */
2335 	if (q->queued_count >= q->min_queued_buffers) {
2336 		ret = vb2_start_streaming(q);
2337 		if (ret)
2338 			goto unprepare;
2339 	}
2340 
2341 	q->streaming = 1;
2342 
2343 	dprintk(q, 3, "successful\n");
2344 	return 0;
2345 
2346 unprepare:
2347 	call_void_qop(q, unprepare_streaming, q);
2348 	return ret;
2349 }
2350 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2351 
2352 void vb2_queue_error(struct vb2_queue *q)
2353 {
2354 	q->error = 1;
2355 
2356 	wake_up_all(&q->done_wq);
2357 }
2358 EXPORT_SYMBOL_GPL(vb2_queue_error);
2359 
2360 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2361 {
2362 	if (type != q->type) {
2363 		dprintk(q, 1, "invalid stream type\n");
2364 		return -EINVAL;
2365 	}
2366 
2367 	/*
2368 	 * Cancel will pause streaming and remove all buffers from the driver
2369 	 * and vb2, effectively returning control over them to userspace.
2370 	 *
2371 	 * Note that we do this even if q->streaming == 0: if you prepare or
2372 	 * queue buffers, and then call streamoff without ever having called
2373 	 * streamon, you would still expect those buffers to be returned to
2374 	 * their normal dequeued state.
2375 	 */
2376 	__vb2_queue_cancel(q);
2377 	q->waiting_for_buffers = !q->is_output;
2378 	q->last_buffer_dequeued = false;
2379 
2380 	dprintk(q, 3, "successful\n");
2381 	return 0;
2382 }
2383 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2384 
2385 /*
2386  * __find_plane_by_offset() - find plane associated with the given offset
2387  */
2388 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long offset,
2389 			struct vb2_buffer **vb, unsigned int *plane)
2390 {
2391 	unsigned int buffer;
2392 
2393 	/*
2394 	 * Sanity checks to ensure the lock is held, MEMORY_MMAP is
2395 	 * used and fileio isn't active.
2396 	 */
2397 	lockdep_assert_held(&q->mmap_lock);
2398 
2399 	if (q->memory != VB2_MEMORY_MMAP) {
2400 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2401 		return -EINVAL;
2402 	}
2403 
2404 	if (vb2_fileio_is_active(q)) {
2405 		dprintk(q, 1, "file io in progress\n");
2406 		return -EBUSY;
2407 	}
2408 
2409 	/* Get buffer and plane from the offset */
2410 	buffer = (offset >> PLANE_INDEX_SHIFT) & BUFFER_INDEX_MASK;
2411 	*plane = (offset >> PAGE_SHIFT) & PLANE_INDEX_MASK;
2412 
2413 	*vb = vb2_get_buffer(q, buffer);
2414 	if (!*vb)
2415 		return -EINVAL;
2416 	if (*plane >= (*vb)->num_planes)
2417 		return -EINVAL;
2418 
2419 	return 0;
2420 }
2421 
2422 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2423 		    struct vb2_buffer *vb, unsigned int plane, unsigned int flags)
2424 {
2425 	struct vb2_plane *vb_plane;
2426 	int ret;
2427 	struct dma_buf *dbuf;
2428 
2429 	if (q->memory != VB2_MEMORY_MMAP) {
2430 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2431 		return -EINVAL;
2432 	}
2433 
2434 	if (!q->mem_ops->get_dmabuf) {
2435 		dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2440 		dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2441 		return -EINVAL;
2442 	}
2443 
2444 	if (type != q->type) {
2445 		dprintk(q, 1, "invalid buffer type\n");
2446 		return -EINVAL;
2447 	}
2448 
2449 	if (plane >= vb->num_planes) {
2450 		dprintk(q, 1, "buffer plane out of range\n");
2451 		return -EINVAL;
2452 	}
2453 
2454 	if (vb2_fileio_is_active(q)) {
2455 		dprintk(q, 1, "expbuf: file io in progress\n");
2456 		return -EBUSY;
2457 	}
2458 
2459 	vb_plane = &vb->planes[plane];
2460 
2461 	dbuf = call_ptr_memop(get_dmabuf,
2462 			      vb,
2463 			      vb_plane->mem_priv,
2464 			      flags & O_ACCMODE);
2465 	if (IS_ERR_OR_NULL(dbuf)) {
2466 		dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2467 			vb->index, plane);
2468 		return -EINVAL;
2469 	}
2470 
2471 	ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2472 	if (ret < 0) {
2473 		dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2474 			vb->index, plane, ret);
2475 		dma_buf_put(dbuf);
2476 		return ret;
2477 	}
2478 
2479 	dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2480 		vb->index, plane, ret);
2481 	*fd = ret;
2482 
2483 	return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2486 
2487 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2488 {
2489 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
2490 	struct vb2_buffer *vb;
2491 	unsigned int plane = 0;
2492 	int ret;
2493 	unsigned long length;
2494 
2495 	/*
2496 	 * Check memory area access mode.
2497 	 */
2498 	if (!(vma->vm_flags & VM_SHARED)) {
2499 		dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2500 		return -EINVAL;
2501 	}
2502 	if (q->is_output) {
2503 		if (!(vma->vm_flags & VM_WRITE)) {
2504 			dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2505 			return -EINVAL;
2506 		}
2507 	} else {
2508 		if (!(vma->vm_flags & VM_READ)) {
2509 			dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2510 			return -EINVAL;
2511 		}
2512 	}
2513 
2514 	mutex_lock(&q->mmap_lock);
2515 
2516 	/*
2517 	 * Find the plane corresponding to the offset passed by userspace. This
2518 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2519 	 */
2520 	ret = __find_plane_by_offset(q, offset, &vb, &plane);
2521 	if (ret)
2522 		goto unlock;
2523 
2524 	/*
2525 	 * MMAP requires page_aligned buffers.
2526 	 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2527 	 * so, we need to do the same here.
2528 	 */
2529 	length = PAGE_ALIGN(vb->planes[plane].length);
2530 	if (length < (vma->vm_end - vma->vm_start)) {
2531 		dprintk(q, 1,
2532 			"MMAP invalid, as it would overflow buffer length\n");
2533 		ret = -EINVAL;
2534 		goto unlock;
2535 	}
2536 
2537 	/*
2538 	 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2539 	 * not as a in-buffer offset. We always want to mmap a whole buffer
2540 	 * from its beginning.
2541 	 */
2542 	vma->vm_pgoff = 0;
2543 
2544 	ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2545 
2546 unlock:
2547 	mutex_unlock(&q->mmap_lock);
2548 	if (ret)
2549 		return ret;
2550 
2551 	dprintk(q, 3, "buffer %u, plane %d successfully mapped\n", vb->index, plane);
2552 	return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(vb2_mmap);
2555 
2556 #ifndef CONFIG_MMU
2557 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2558 				    unsigned long addr,
2559 				    unsigned long len,
2560 				    unsigned long pgoff,
2561 				    unsigned long flags)
2562 {
2563 	unsigned long offset = pgoff << PAGE_SHIFT;
2564 	struct vb2_buffer *vb;
2565 	unsigned int plane;
2566 	void *vaddr;
2567 	int ret;
2568 
2569 	mutex_lock(&q->mmap_lock);
2570 
2571 	/*
2572 	 * Find the plane corresponding to the offset passed by userspace. This
2573 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2574 	 */
2575 	ret = __find_plane_by_offset(q, offset, &vb, &plane);
2576 	if (ret)
2577 		goto unlock;
2578 
2579 	vaddr = vb2_plane_vaddr(vb, plane);
2580 	mutex_unlock(&q->mmap_lock);
2581 	return vaddr ? (unsigned long)vaddr : -EINVAL;
2582 
2583 unlock:
2584 	mutex_unlock(&q->mmap_lock);
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2588 #endif
2589 
2590 int vb2_core_queue_init(struct vb2_queue *q)
2591 {
2592 	/*
2593 	 * Sanity check
2594 	 */
2595 	/*
2596 	 * For drivers who don't support max_num_buffers ensure
2597 	 * a backward compatibility.
2598 	 */
2599 	if (!q->max_num_buffers)
2600 		q->max_num_buffers = VB2_MAX_FRAME;
2601 
2602 	/* The maximum is limited by offset cookie encoding pattern */
2603 	q->max_num_buffers = min_t(unsigned int, q->max_num_buffers, MAX_BUFFER_INDEX);
2604 
2605 	if (WARN_ON(!q)			  ||
2606 	    WARN_ON(!q->ops)		  ||
2607 	    WARN_ON(!q->mem_ops)	  ||
2608 	    WARN_ON(!q->type)		  ||
2609 	    WARN_ON(!q->io_modes)	  ||
2610 	    WARN_ON(!q->ops->queue_setup) ||
2611 	    WARN_ON(!q->ops->buf_queue))
2612 		return -EINVAL;
2613 
2614 	if (WARN_ON(q->max_num_buffers < VB2_MAX_FRAME) ||
2615 	    WARN_ON(q->min_queued_buffers > q->max_num_buffers))
2616 		return -EINVAL;
2617 
2618 	if (WARN_ON(q->requires_requests && !q->supports_requests))
2619 		return -EINVAL;
2620 
2621 	/*
2622 	 * This combination is not allowed since a non-zero value of
2623 	 * q->min_queued_buffers can cause vb2_core_qbuf() to fail if
2624 	 * it has to call start_streaming(), and the Request API expects
2625 	 * that queueing a request (and thus queueing a buffer contained
2626 	 * in that request) will always succeed. There is no method of
2627 	 * propagating an error back to userspace.
2628 	 */
2629 	if (WARN_ON(q->supports_requests && q->min_queued_buffers))
2630 		return -EINVAL;
2631 
2632 	/*
2633 	 * If the driver needs 'min_queued_buffers' in the queue before
2634 	 * calling start_streaming() then the minimum requirement is
2635 	 * 'min_queued_buffers + 1' to keep at least one buffer available
2636 	 * for userspace.
2637 	 */
2638 	if (q->min_reqbufs_allocation < q->min_queued_buffers + 1)
2639 		q->min_reqbufs_allocation = q->min_queued_buffers + 1;
2640 
2641 	if (WARN_ON(q->min_reqbufs_allocation > q->max_num_buffers))
2642 		return -EINVAL;
2643 
2644 	/* Warn if q->lock is NULL */
2645 	if (WARN_ON(!q->lock))
2646 		return -EINVAL;
2647 
2648 	INIT_LIST_HEAD(&q->queued_list);
2649 	INIT_LIST_HEAD(&q->done_list);
2650 	spin_lock_init(&q->done_lock);
2651 	mutex_init(&q->mmap_lock);
2652 	init_waitqueue_head(&q->done_wq);
2653 
2654 	q->memory = VB2_MEMORY_UNKNOWN;
2655 
2656 	if (q->buf_struct_size == 0)
2657 		q->buf_struct_size = sizeof(struct vb2_buffer);
2658 
2659 	if (q->bidirectional)
2660 		q->dma_dir = DMA_BIDIRECTIONAL;
2661 	else
2662 		q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2663 
2664 	if (q->name[0] == '\0')
2665 		snprintf(q->name, sizeof(q->name), "%s-%p",
2666 			 q->is_output ? "out" : "cap", q);
2667 
2668 	return 0;
2669 }
2670 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2671 
2672 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2673 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2674 void vb2_core_queue_release(struct vb2_queue *q)
2675 {
2676 	__vb2_cleanup_fileio(q);
2677 	__vb2_queue_cancel(q);
2678 	mutex_lock(&q->mmap_lock);
2679 	__vb2_queue_free(q, 0, q->max_num_buffers);
2680 	vb2_core_free_buffers_storage(q);
2681 	q->is_busy = 0;
2682 	mutex_unlock(&q->mmap_lock);
2683 }
2684 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2685 
2686 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2687 		poll_table *wait)
2688 {
2689 	__poll_t req_events = poll_requested_events(wait);
2690 	struct vb2_buffer *vb = NULL;
2691 	unsigned long flags;
2692 
2693 	/*
2694 	 * poll_wait() MUST be called on the first invocation on all the
2695 	 * potential queues of interest, even if we are not interested in their
2696 	 * events during this first call. Failure to do so will result in
2697 	 * queue's events to be ignored because the poll_table won't be capable
2698 	 * of adding new wait queues thereafter.
2699 	 */
2700 	poll_wait(file, &q->done_wq, wait);
2701 
2702 	if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2703 		return 0;
2704 	if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2705 		return 0;
2706 
2707 	/*
2708 	 * Start file I/O emulator only if streaming API has not been used yet.
2709 	 */
2710 	if (vb2_get_num_buffers(q) == 0 && !vb2_fileio_is_active(q)) {
2711 		if (!q->is_output && (q->io_modes & VB2_READ) &&
2712 				(req_events & (EPOLLIN | EPOLLRDNORM))) {
2713 			if (__vb2_init_fileio(q, 1))
2714 				return EPOLLERR;
2715 		}
2716 		if (q->is_output && (q->io_modes & VB2_WRITE) &&
2717 				(req_events & (EPOLLOUT | EPOLLWRNORM))) {
2718 			if (__vb2_init_fileio(q, 0))
2719 				return EPOLLERR;
2720 			/*
2721 			 * Write to OUTPUT queue can be done immediately.
2722 			 */
2723 			return EPOLLOUT | EPOLLWRNORM;
2724 		}
2725 	}
2726 
2727 	/*
2728 	 * There is nothing to wait for if the queue isn't streaming, or if the
2729 	 * error flag is set.
2730 	 */
2731 	if (!vb2_is_streaming(q) || q->error)
2732 		return EPOLLERR;
2733 
2734 	/*
2735 	 * If this quirk is set and QBUF hasn't been called yet then
2736 	 * return EPOLLERR as well. This only affects capture queues, output
2737 	 * queues will always initialize waiting_for_buffers to false.
2738 	 * This quirk is set by V4L2 for backwards compatibility reasons.
2739 	 */
2740 	if (q->quirk_poll_must_check_waiting_for_buffers &&
2741 	    q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2742 		return EPOLLERR;
2743 
2744 	/*
2745 	 * For output streams you can call write() as long as there are fewer
2746 	 * buffers queued than there are buffers available.
2747 	 */
2748 	if (q->is_output && q->fileio && q->queued_count < vb2_get_num_buffers(q))
2749 		return EPOLLOUT | EPOLLWRNORM;
2750 
2751 	if (list_empty(&q->done_list)) {
2752 		/*
2753 		 * If the last buffer was dequeued from a capture queue,
2754 		 * return immediately. DQBUF will return -EPIPE.
2755 		 */
2756 		if (q->last_buffer_dequeued)
2757 			return EPOLLIN | EPOLLRDNORM;
2758 	}
2759 
2760 	/*
2761 	 * Take first buffer available for dequeuing.
2762 	 */
2763 	spin_lock_irqsave(&q->done_lock, flags);
2764 	if (!list_empty(&q->done_list))
2765 		vb = list_first_entry(&q->done_list, struct vb2_buffer,
2766 					done_entry);
2767 	spin_unlock_irqrestore(&q->done_lock, flags);
2768 
2769 	if (vb && (vb->state == VB2_BUF_STATE_DONE
2770 			|| vb->state == VB2_BUF_STATE_ERROR)) {
2771 		return (q->is_output) ?
2772 				EPOLLOUT | EPOLLWRNORM :
2773 				EPOLLIN | EPOLLRDNORM;
2774 	}
2775 	return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(vb2_core_poll);
2778 
2779 /*
2780  * struct vb2_fileio_buf - buffer context used by file io emulator
2781  *
2782  * vb2 provides a compatibility layer and emulator of file io (read and
2783  * write) calls on top of streaming API. This structure is used for
2784  * tracking context related to the buffers.
2785  */
2786 struct vb2_fileio_buf {
2787 	void *vaddr;
2788 	unsigned int size;
2789 	unsigned int pos;
2790 	unsigned int queued:1;
2791 };
2792 
2793 /*
2794  * struct vb2_fileio_data - queue context used by file io emulator
2795  *
2796  * @cur_index:	the index of the buffer currently being read from or
2797  *		written to. If equal to number of buffers in the vb2_queue
2798  *		then a new buffer must be dequeued.
2799  * @initial_index: in the read() case all buffers are queued up immediately
2800  *		in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2801  *		buffers. However, in the write() case no buffers are initially
2802  *		queued, instead whenever a buffer is full it is queued up by
2803  *		__vb2_perform_fileio(). Only once all available buffers have
2804  *		been queued up will __vb2_perform_fileio() start to dequeue
2805  *		buffers. This means that initially __vb2_perform_fileio()
2806  *		needs to know what buffer index to use when it is queuing up
2807  *		the buffers for the first time. That initial index is stored
2808  *		in this field. Once it is equal to number of buffers in the
2809  *		vb2_queue all available buffers have been queued and
2810  *		__vb2_perform_fileio() should start the normal dequeue/queue cycle.
2811  *
2812  * vb2 provides a compatibility layer and emulator of file io (read and
2813  * write) calls on top of streaming API. For proper operation it required
2814  * this structure to save the driver state between each call of the read
2815  * or write function.
2816  */
2817 struct vb2_fileio_data {
2818 	unsigned int count;
2819 	unsigned int type;
2820 	unsigned int memory;
2821 	struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2822 	unsigned int cur_index;
2823 	unsigned int initial_index;
2824 	unsigned int q_count;
2825 	unsigned int dq_count;
2826 	unsigned read_once:1;
2827 	unsigned write_immediately:1;
2828 };
2829 
2830 /*
2831  * __vb2_init_fileio() - initialize file io emulator
2832  * @q:		videobuf2 queue
2833  * @read:	mode selector (1 means read, 0 means write)
2834  */
2835 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2836 {
2837 	struct vb2_fileio_data *fileio;
2838 	struct vb2_buffer *vb;
2839 	int i, ret;
2840 
2841 	/*
2842 	 * Sanity check
2843 	 */
2844 	if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2845 		    (!read && !(q->io_modes & VB2_WRITE))))
2846 		return -EINVAL;
2847 
2848 	/*
2849 	 * Check if device supports mapping buffers to kernel virtual space.
2850 	 */
2851 	if (!q->mem_ops->vaddr)
2852 		return -EBUSY;
2853 
2854 	/*
2855 	 * Check if streaming api has not been already activated.
2856 	 */
2857 	if (q->streaming || vb2_get_num_buffers(q) > 0)
2858 		return -EBUSY;
2859 
2860 	dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2861 		(read) ? "read" : "write", q->min_reqbufs_allocation, q->fileio_read_once,
2862 		q->fileio_write_immediately);
2863 
2864 	fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2865 	if (fileio == NULL)
2866 		return -ENOMEM;
2867 
2868 	fileio->read_once = q->fileio_read_once;
2869 	fileio->write_immediately = q->fileio_write_immediately;
2870 
2871 	/*
2872 	 * Request buffers and use MMAP type to force driver
2873 	 * to allocate buffers by itself.
2874 	 */
2875 	fileio->count = q->min_reqbufs_allocation;
2876 	fileio->memory = VB2_MEMORY_MMAP;
2877 	fileio->type = q->type;
2878 	q->fileio = fileio;
2879 	ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2880 	if (ret)
2881 		goto err_kfree;
2882 	/* vb2_fileio_data supports max VB2_MAX_FRAME buffers */
2883 	if (fileio->count > VB2_MAX_FRAME) {
2884 		dprintk(q, 1, "fileio: more than VB2_MAX_FRAME buffers requested\n");
2885 		ret = -ENOSPC;
2886 		goto err_reqbufs;
2887 	}
2888 
2889 	/*
2890 	 * Userspace can never add or delete buffers later, so there
2891 	 * will never be holes. It is safe to assume that vb2_get_buffer(q, 0)
2892 	 * will always return a valid vb pointer
2893 	 */
2894 	vb = vb2_get_buffer(q, 0);
2895 
2896 	/*
2897 	 * Check if plane_count is correct
2898 	 * (multiplane buffers are not supported).
2899 	 */
2900 	if (vb->num_planes != 1) {
2901 		ret = -EBUSY;
2902 		goto err_reqbufs;
2903 	}
2904 
2905 	/*
2906 	 * Get kernel address of each buffer.
2907 	 */
2908 	for (i = 0; i < vb2_get_num_buffers(q); i++) {
2909 		/* vb can never be NULL when using fileio. */
2910 		vb = vb2_get_buffer(q, i);
2911 
2912 		fileio->bufs[i].vaddr = vb2_plane_vaddr(vb, 0);
2913 		if (fileio->bufs[i].vaddr == NULL) {
2914 			ret = -EINVAL;
2915 			goto err_reqbufs;
2916 		}
2917 		fileio->bufs[i].size = vb2_plane_size(vb, 0);
2918 	}
2919 
2920 	/*
2921 	 * Read mode requires pre queuing of all buffers.
2922 	 */
2923 	if (read) {
2924 		/*
2925 		 * Queue all buffers.
2926 		 */
2927 		for (i = 0; i < vb2_get_num_buffers(q); i++) {
2928 			struct vb2_buffer *vb2 = vb2_get_buffer(q, i);
2929 
2930 			if (!vb2)
2931 				continue;
2932 
2933 			ret = vb2_core_qbuf(q, vb2, NULL, NULL);
2934 			if (ret)
2935 				goto err_reqbufs;
2936 			fileio->bufs[i].queued = 1;
2937 		}
2938 		/*
2939 		 * All buffers have been queued, so mark that by setting
2940 		 * initial_index to the number of buffers in the vb2_queue
2941 		 */
2942 		fileio->initial_index = vb2_get_num_buffers(q);
2943 		fileio->cur_index = fileio->initial_index;
2944 	}
2945 
2946 	/*
2947 	 * Start streaming.
2948 	 */
2949 	ret = vb2_core_streamon(q, q->type);
2950 	if (ret)
2951 		goto err_reqbufs;
2952 
2953 	return ret;
2954 
2955 err_reqbufs:
2956 	fileio->count = 0;
2957 	vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2958 
2959 err_kfree:
2960 	q->fileio = NULL;
2961 	kfree(fileio);
2962 	return ret;
2963 }
2964 
2965 /*
2966  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2967  * @q:		videobuf2 queue
2968  */
2969 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2970 {
2971 	struct vb2_fileio_data *fileio = q->fileio;
2972 
2973 	if (fileio) {
2974 		vb2_core_streamoff(q, q->type);
2975 		q->fileio = NULL;
2976 		fileio->count = 0;
2977 		vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2978 		kfree(fileio);
2979 		dprintk(q, 3, "file io emulator closed\n");
2980 	}
2981 	return 0;
2982 }
2983 
2984 /*
2985  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2986  * @q:		videobuf2 queue
2987  * @data:	pointed to target userspace buffer
2988  * @count:	number of bytes to read or write
2989  * @ppos:	file handle position tracking pointer
2990  * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
2991  * @read:	access mode selector (1 means read, 0 means write)
2992  */
2993 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2994 		loff_t *ppos, int nonblock, int read)
2995 {
2996 	struct vb2_fileio_data *fileio;
2997 	struct vb2_fileio_buf *buf;
2998 	bool is_multiplanar = q->is_multiplanar;
2999 	/*
3000 	 * When using write() to write data to an output video node the vb2 core
3001 	 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
3002 	 * else is able to provide this information with the write() operation.
3003 	 */
3004 	bool copy_timestamp = !read && q->copy_timestamp;
3005 	unsigned index;
3006 	int ret;
3007 
3008 	dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
3009 		read ? "read" : "write", (long)*ppos, count,
3010 		nonblock ? "non" : "");
3011 
3012 	if (!data)
3013 		return -EINVAL;
3014 
3015 	if (q->waiting_in_dqbuf) {
3016 		dprintk(q, 3, "another dup()ped fd is %s\n",
3017 			read ? "reading" : "writing");
3018 		return -EBUSY;
3019 	}
3020 
3021 	/*
3022 	 * Initialize emulator on first call.
3023 	 */
3024 	if (!vb2_fileio_is_active(q)) {
3025 		ret = __vb2_init_fileio(q, read);
3026 		dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
3027 		if (ret)
3028 			return ret;
3029 	}
3030 	fileio = q->fileio;
3031 
3032 	/*
3033 	 * Check if we need to dequeue the buffer.
3034 	 */
3035 	index = fileio->cur_index;
3036 	if (index >= vb2_get_num_buffers(q)) {
3037 		struct vb2_buffer *b;
3038 
3039 		/*
3040 		 * Call vb2_dqbuf to get buffer back.
3041 		 */
3042 		ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
3043 		dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
3044 		if (ret)
3045 			return ret;
3046 		fileio->dq_count += 1;
3047 
3048 		fileio->cur_index = index;
3049 		buf = &fileio->bufs[index];
3050 
3051 		/* b can never be NULL when using fileio. */
3052 		b = vb2_get_buffer(q, index);
3053 
3054 		/*
3055 		 * Get number of bytes filled by the driver
3056 		 */
3057 		buf->pos = 0;
3058 		buf->queued = 0;
3059 		buf->size = read ? vb2_get_plane_payload(b, 0)
3060 				 : vb2_plane_size(b, 0);
3061 		/* Compensate for data_offset on read in the multiplanar case. */
3062 		if (is_multiplanar && read &&
3063 				b->planes[0].data_offset < buf->size) {
3064 			buf->pos = b->planes[0].data_offset;
3065 			buf->size -= buf->pos;
3066 		}
3067 	} else {
3068 		buf = &fileio->bufs[index];
3069 	}
3070 
3071 	/*
3072 	 * Limit count on last few bytes of the buffer.
3073 	 */
3074 	if (buf->pos + count > buf->size) {
3075 		count = buf->size - buf->pos;
3076 		dprintk(q, 5, "reducing read count: %zd\n", count);
3077 	}
3078 
3079 	/*
3080 	 * Transfer data to userspace.
3081 	 */
3082 	dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
3083 		count, index, buf->pos);
3084 	if (read)
3085 		ret = copy_to_user(data, buf->vaddr + buf->pos, count);
3086 	else
3087 		ret = copy_from_user(buf->vaddr + buf->pos, data, count);
3088 	if (ret) {
3089 		dprintk(q, 3, "error copying data\n");
3090 		return -EFAULT;
3091 	}
3092 
3093 	/*
3094 	 * Update counters.
3095 	 */
3096 	buf->pos += count;
3097 	*ppos += count;
3098 
3099 	/*
3100 	 * Queue next buffer if required.
3101 	 */
3102 	if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
3103 		/* b can never be NULL when using fileio. */
3104 		struct vb2_buffer *b = vb2_get_buffer(q, index);
3105 
3106 		/*
3107 		 * Check if this is the last buffer to read.
3108 		 */
3109 		if (read && fileio->read_once && fileio->dq_count == 1) {
3110 			dprintk(q, 3, "read limit reached\n");
3111 			return __vb2_cleanup_fileio(q);
3112 		}
3113 
3114 		/*
3115 		 * Call vb2_qbuf and give buffer to the driver.
3116 		 */
3117 		b->planes[0].bytesused = buf->pos;
3118 
3119 		if (copy_timestamp)
3120 			b->timestamp = ktime_get_ns();
3121 		ret = vb2_core_qbuf(q, b, NULL, NULL);
3122 		dprintk(q, 5, "vb2_qbuf result: %d\n", ret);
3123 		if (ret)
3124 			return ret;
3125 
3126 		/*
3127 		 * Buffer has been queued, update the status
3128 		 */
3129 		buf->pos = 0;
3130 		buf->queued = 1;
3131 		buf->size = vb2_plane_size(b, 0);
3132 		fileio->q_count += 1;
3133 		/*
3134 		 * If we are queuing up buffers for the first time, then
3135 		 * increase initial_index by one.
3136 		 */
3137 		if (fileio->initial_index < vb2_get_num_buffers(q))
3138 			fileio->initial_index++;
3139 		/*
3140 		 * The next buffer to use is either a buffer that's going to be
3141 		 * queued for the first time (initial_index < number of buffers in the vb2_queue)
3142 		 * or it is equal to the number of buffers in the vb2_queue,
3143 		 * meaning that the next time we need to dequeue a buffer since
3144 		 * we've now queued up all the 'first time' buffers.
3145 		 */
3146 		fileio->cur_index = fileio->initial_index;
3147 	}
3148 
3149 	/*
3150 	 * Return proper number of bytes processed.
3151 	 */
3152 	if (ret == 0)
3153 		ret = count;
3154 	return ret;
3155 }
3156 
3157 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
3158 		loff_t *ppos, int nonblocking)
3159 {
3160 	return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
3161 }
3162 EXPORT_SYMBOL_GPL(vb2_read);
3163 
3164 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
3165 		loff_t *ppos, int nonblocking)
3166 {
3167 	return __vb2_perform_fileio(q, (char __user *) data, count,
3168 							ppos, nonblocking, 0);
3169 }
3170 EXPORT_SYMBOL_GPL(vb2_write);
3171 
3172 struct vb2_threadio_data {
3173 	struct task_struct *thread;
3174 	vb2_thread_fnc fnc;
3175 	void *priv;
3176 	bool stop;
3177 };
3178 
3179 static int vb2_thread(void *data)
3180 {
3181 	struct vb2_queue *q = data;
3182 	struct vb2_threadio_data *threadio = q->threadio;
3183 	bool copy_timestamp = false;
3184 	unsigned prequeue = 0;
3185 	unsigned index = 0;
3186 	int ret = 0;
3187 
3188 	if (q->is_output) {
3189 		prequeue = vb2_get_num_buffers(q);
3190 		copy_timestamp = q->copy_timestamp;
3191 	}
3192 
3193 	set_freezable();
3194 
3195 	for (;;) {
3196 		struct vb2_buffer *vb;
3197 
3198 		/*
3199 		 * Call vb2_dqbuf to get buffer back.
3200 		 */
3201 		if (prequeue) {
3202 			vb = vb2_get_buffer(q, index++);
3203 			if (!vb)
3204 				continue;
3205 			prequeue--;
3206 		} else {
3207 			mutex_lock(q->lock);
3208 			if (!threadio->stop)
3209 				ret = vb2_core_dqbuf(q, &index, NULL, 0);
3210 			mutex_unlock(q->lock);
3211 			dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
3212 			if (!ret)
3213 				vb = vb2_get_buffer(q, index);
3214 		}
3215 		if (ret || threadio->stop)
3216 			break;
3217 		try_to_freeze();
3218 
3219 		if (vb->state != VB2_BUF_STATE_ERROR)
3220 			if (threadio->fnc(vb, threadio->priv))
3221 				break;
3222 		if (copy_timestamp)
3223 			vb->timestamp = ktime_get_ns();
3224 		if (!threadio->stop) {
3225 			mutex_lock(q->lock);
3226 			ret = vb2_core_qbuf(q, vb, NULL, NULL);
3227 			mutex_unlock(q->lock);
3228 		}
3229 		if (ret || threadio->stop)
3230 			break;
3231 	}
3232 
3233 	/* Hmm, linux becomes *very* unhappy without this ... */
3234 	while (!kthread_should_stop()) {
3235 		set_current_state(TASK_INTERRUPTIBLE);
3236 		schedule();
3237 	}
3238 	return 0;
3239 }
3240 
3241 /*
3242  * This function should not be used for anything else but the videobuf2-dvb
3243  * support. If you think you have another good use-case for this, then please
3244  * contact the linux-media mailinglist first.
3245  */
3246 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3247 		     const char *thread_name)
3248 {
3249 	struct vb2_threadio_data *threadio;
3250 	int ret = 0;
3251 
3252 	if (q->threadio)
3253 		return -EBUSY;
3254 	if (vb2_is_busy(q))
3255 		return -EBUSY;
3256 	if (WARN_ON(q->fileio))
3257 		return -EBUSY;
3258 
3259 	threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3260 	if (threadio == NULL)
3261 		return -ENOMEM;
3262 	threadio->fnc = fnc;
3263 	threadio->priv = priv;
3264 
3265 	ret = __vb2_init_fileio(q, !q->is_output);
3266 	dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
3267 	if (ret)
3268 		goto nomem;
3269 	q->threadio = threadio;
3270 	threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3271 	if (IS_ERR(threadio->thread)) {
3272 		ret = PTR_ERR(threadio->thread);
3273 		threadio->thread = NULL;
3274 		goto nothread;
3275 	}
3276 	return 0;
3277 
3278 nothread:
3279 	__vb2_cleanup_fileio(q);
3280 nomem:
3281 	kfree(threadio);
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(vb2_thread_start);
3285 
3286 int vb2_thread_stop(struct vb2_queue *q)
3287 {
3288 	struct vb2_threadio_data *threadio = q->threadio;
3289 	int err;
3290 
3291 	if (threadio == NULL)
3292 		return 0;
3293 	threadio->stop = true;
3294 	/* Wake up all pending sleeps in the thread */
3295 	vb2_queue_error(q);
3296 	err = kthread_stop(threadio->thread);
3297 	__vb2_cleanup_fileio(q);
3298 	threadio->thread = NULL;
3299 	kfree(threadio);
3300 	q->threadio = NULL;
3301 	return err;
3302 }
3303 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3304 
3305 MODULE_DESCRIPTION("Media buffer core framework");
3306 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3307 MODULE_LICENSE("GPL");
3308 MODULE_IMPORT_NS("DMA_BUF");
3309