xref: /linux/kernel/events/uprobes.c (revision 8c7c1b5506e593ce00c42214b4fcafd640ceeb42)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>		/* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h>		/* folio_free_swap */
22 #include <linux/ptrace.h>	/* user_enable_single_step */
23 #include <linux/kdebug.h>	/* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 #include <linux/oom.h>          /* check_stable_address_space */
32 
33 #include <linux/uprobes.h>
34 
35 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
36 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
37 
38 static struct rb_root uprobes_tree = RB_ROOT;
39 /*
40  * allows us to skip the uprobe_mmap if there are no uprobe events active
41  * at this time.  Probably a fine grained per inode count is better?
42  */
43 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
44 
45 static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
46 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
47 
48 #define UPROBES_HASH_SZ	13
49 /* serialize uprobe->pending_list */
50 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
51 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52 
53 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
54 
55 /* Covers return_instance's uprobe lifetime. */
56 DEFINE_STATIC_SRCU(uretprobes_srcu);
57 
58 /* Have a copy of original instruction */
59 #define UPROBE_COPY_INSN	0
60 
61 struct uprobe {
62 	struct rb_node		rb_node;	/* node in the rb tree */
63 	refcount_t		ref;
64 	struct rw_semaphore	register_rwsem;
65 	struct rw_semaphore	consumer_rwsem;
66 	struct list_head	pending_list;
67 	struct list_head	consumers;
68 	struct inode		*inode;		/* Also hold a ref to inode */
69 	union {
70 		struct rcu_head		rcu;
71 		struct work_struct	work;
72 	};
73 	loff_t			offset;
74 	loff_t			ref_ctr_offset;
75 	unsigned long		flags;		/* "unsigned long" so bitops work */
76 
77 	/*
78 	 * The generic code assumes that it has two members of unknown type
79 	 * owned by the arch-specific code:
80 	 *
81 	 * 	insn -	copy_insn() saves the original instruction here for
82 	 *		arch_uprobe_analyze_insn().
83 	 *
84 	 *	ixol -	potentially modified instruction to execute out of
85 	 *		line, copied to xol_area by xol_get_insn_slot().
86 	 */
87 	struct arch_uprobe	arch;
88 };
89 
90 struct delayed_uprobe {
91 	struct list_head list;
92 	struct uprobe *uprobe;
93 	struct mm_struct *mm;
94 };
95 
96 static DEFINE_MUTEX(delayed_uprobe_lock);
97 static LIST_HEAD(delayed_uprobe_list);
98 
99 /*
100  * Execute out of line area: anonymous executable mapping installed
101  * by the probed task to execute the copy of the original instruction
102  * mangled by set_swbp().
103  *
104  * On a breakpoint hit, thread contests for a slot.  It frees the
105  * slot after singlestep. Currently a fixed number of slots are
106  * allocated.
107  */
108 struct xol_area {
109 	wait_queue_head_t 		wq;		/* if all slots are busy */
110 	unsigned long 			*bitmap;	/* 0 = free slot */
111 
112 	struct page			*page;
113 	/*
114 	 * We keep the vma's vm_start rather than a pointer to the vma
115 	 * itself.  The probed process or a naughty kernel module could make
116 	 * the vma go away, and we must handle that reasonably gracefully.
117 	 */
118 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
119 };
120 
uprobe_warn(struct task_struct * t,const char * msg)121 static void uprobe_warn(struct task_struct *t, const char *msg)
122 {
123 	pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
124 }
125 
126 /*
127  * valid_vma: Verify if the specified vma is an executable vma
128  * Relax restrictions while unregistering: vm_flags might have
129  * changed after breakpoint was inserted.
130  *	- is_register: indicates if we are in register context.
131  *	- Return 1 if the specified virtual address is in an
132  *	  executable vma.
133  */
valid_vma(struct vm_area_struct * vma,bool is_register)134 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
135 {
136 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
137 
138 	if (is_register)
139 		flags |= VM_WRITE;
140 
141 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
142 }
143 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)144 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
145 {
146 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
147 }
148 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)149 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
150 {
151 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
152 }
153 
154 /**
155  * __replace_page - replace page in vma by new page.
156  * based on replace_page in mm/ksm.c
157  *
158  * @vma:      vma that holds the pte pointing to page
159  * @addr:     address the old @page is mapped at
160  * @old_page: the page we are replacing by new_page
161  * @new_page: the modified page we replace page by
162  *
163  * If @new_page is NULL, only unmap @old_page.
164  *
165  * Returns 0 on success, negative error code otherwise.
166  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)167 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
168 				struct page *old_page, struct page *new_page)
169 {
170 	struct folio *old_folio = page_folio(old_page);
171 	struct folio *new_folio;
172 	struct mm_struct *mm = vma->vm_mm;
173 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
174 	int err;
175 	struct mmu_notifier_range range;
176 	pte_t pte;
177 
178 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
179 				addr + PAGE_SIZE);
180 
181 	if (new_page) {
182 		new_folio = page_folio(new_page);
183 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
184 		if (err)
185 			return err;
186 	}
187 
188 	/* For folio_free_swap() below */
189 	folio_lock(old_folio);
190 
191 	mmu_notifier_invalidate_range_start(&range);
192 	err = -EAGAIN;
193 	if (!page_vma_mapped_walk(&pvmw))
194 		goto unlock;
195 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
196 	pte = ptep_get(pvmw.pte);
197 
198 	/*
199 	 * Handle PFN swap PTES, such as device-exclusive ones, that actually
200 	 * map pages: simply trigger GUP again to fix it up.
201 	 */
202 	if (unlikely(!pte_present(pte))) {
203 		page_vma_mapped_walk_done(&pvmw);
204 		goto unlock;
205 	}
206 
207 	if (new_page) {
208 		folio_get(new_folio);
209 		folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
210 		folio_add_lru_vma(new_folio, vma);
211 	} else
212 		/* no new page, just dec_mm_counter for old_page */
213 		dec_mm_counter(mm, MM_ANONPAGES);
214 
215 	if (!folio_test_anon(old_folio)) {
216 		dec_mm_counter(mm, mm_counter_file(old_folio));
217 		inc_mm_counter(mm, MM_ANONPAGES);
218 	}
219 
220 	flush_cache_page(vma, addr, pte_pfn(pte));
221 	ptep_clear_flush(vma, addr, pvmw.pte);
222 	if (new_page)
223 		set_pte_at(mm, addr, pvmw.pte,
224 			   mk_pte(new_page, vma->vm_page_prot));
225 
226 	folio_remove_rmap_pte(old_folio, old_page, vma);
227 	if (!folio_mapped(old_folio))
228 		folio_free_swap(old_folio);
229 	page_vma_mapped_walk_done(&pvmw);
230 	folio_put(old_folio);
231 
232 	err = 0;
233  unlock:
234 	mmu_notifier_invalidate_range_end(&range);
235 	folio_unlock(old_folio);
236 	return err;
237 }
238 
239 /**
240  * is_swbp_insn - check if instruction is breakpoint instruction.
241  * @insn: instruction to be checked.
242  * Default implementation of is_swbp_insn
243  * Returns true if @insn is a breakpoint instruction.
244  */
is_swbp_insn(uprobe_opcode_t * insn)245 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
246 {
247 	return *insn == UPROBE_SWBP_INSN;
248 }
249 
250 /**
251  * is_trap_insn - check if instruction is breakpoint instruction.
252  * @insn: instruction to be checked.
253  * Default implementation of is_trap_insn
254  * Returns true if @insn is a breakpoint instruction.
255  *
256  * This function is needed for the case where an architecture has multiple
257  * trap instructions (like powerpc).
258  */
is_trap_insn(uprobe_opcode_t * insn)259 bool __weak is_trap_insn(uprobe_opcode_t *insn)
260 {
261 	return is_swbp_insn(insn);
262 }
263 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)264 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
265 {
266 	void *kaddr = kmap_atomic(page);
267 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
268 	kunmap_atomic(kaddr);
269 }
270 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)271 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
272 {
273 	void *kaddr = kmap_atomic(page);
274 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
275 	kunmap_atomic(kaddr);
276 }
277 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)278 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
279 {
280 	uprobe_opcode_t old_opcode;
281 	bool is_swbp;
282 
283 	/*
284 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
285 	 * We do not check if it is any other 'trap variant' which could
286 	 * be conditional trap instruction such as the one powerpc supports.
287 	 *
288 	 * The logic is that we do not care if the underlying instruction
289 	 * is a trap variant; uprobes always wins over any other (gdb)
290 	 * breakpoint.
291 	 */
292 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
293 	is_swbp = is_swbp_insn(&old_opcode);
294 
295 	if (is_swbp_insn(new_opcode)) {
296 		if (is_swbp)		/* register: already installed? */
297 			return 0;
298 	} else {
299 		if (!is_swbp)		/* unregister: was it changed by us? */
300 			return 0;
301 	}
302 
303 	return 1;
304 }
305 
306 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)307 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
308 {
309 	struct delayed_uprobe *du;
310 
311 	list_for_each_entry(du, &delayed_uprobe_list, list)
312 		if (du->uprobe == uprobe && du->mm == mm)
313 			return du;
314 	return NULL;
315 }
316 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)317 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319 	struct delayed_uprobe *du;
320 
321 	if (delayed_uprobe_check(uprobe, mm))
322 		return 0;
323 
324 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
325 	if (!du)
326 		return -ENOMEM;
327 
328 	du->uprobe = uprobe;
329 	du->mm = mm;
330 	list_add(&du->list, &delayed_uprobe_list);
331 	return 0;
332 }
333 
delayed_uprobe_delete(struct delayed_uprobe * du)334 static void delayed_uprobe_delete(struct delayed_uprobe *du)
335 {
336 	if (WARN_ON(!du))
337 		return;
338 	list_del(&du->list);
339 	kfree(du);
340 }
341 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)342 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
343 {
344 	struct list_head *pos, *q;
345 	struct delayed_uprobe *du;
346 
347 	if (!uprobe && !mm)
348 		return;
349 
350 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
351 		du = list_entry(pos, struct delayed_uprobe, list);
352 
353 		if (uprobe && du->uprobe != uprobe)
354 			continue;
355 		if (mm && du->mm != mm)
356 			continue;
357 
358 		delayed_uprobe_delete(du);
359 	}
360 }
361 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)362 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
363 			      struct vm_area_struct *vma)
364 {
365 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
366 
367 	return uprobe->ref_ctr_offset &&
368 		vma->vm_file &&
369 		file_inode(vma->vm_file) == uprobe->inode &&
370 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
371 		vma->vm_start <= vaddr &&
372 		vma->vm_end > vaddr;
373 }
374 
375 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)376 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
377 {
378 	VMA_ITERATOR(vmi, mm, 0);
379 	struct vm_area_struct *tmp;
380 
381 	for_each_vma(vmi, tmp)
382 		if (valid_ref_ctr_vma(uprobe, tmp))
383 			return tmp;
384 
385 	return NULL;
386 }
387 
388 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)389 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
390 {
391 	void *kaddr;
392 	struct page *page;
393 	int ret;
394 	short *ptr;
395 
396 	if (!vaddr || !d)
397 		return -EINVAL;
398 
399 	ret = get_user_pages_remote(mm, vaddr, 1,
400 				    FOLL_WRITE, &page, NULL);
401 	if (unlikely(ret <= 0)) {
402 		/*
403 		 * We are asking for 1 page. If get_user_pages_remote() fails,
404 		 * it may return 0, in that case we have to return error.
405 		 */
406 		return ret == 0 ? -EBUSY : ret;
407 	}
408 
409 	kaddr = kmap_atomic(page);
410 	ptr = kaddr + (vaddr & ~PAGE_MASK);
411 
412 	if (unlikely(*ptr + d < 0)) {
413 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
414 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
415 		ret = -EINVAL;
416 		goto out;
417 	}
418 
419 	*ptr += d;
420 	ret = 0;
421 out:
422 	kunmap_atomic(kaddr);
423 	put_page(page);
424 	return ret;
425 }
426 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)427 static void update_ref_ctr_warn(struct uprobe *uprobe,
428 				struct mm_struct *mm, short d)
429 {
430 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
431 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
432 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
433 		(unsigned long long) uprobe->offset,
434 		(unsigned long long) uprobe->ref_ctr_offset, mm);
435 }
436 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)437 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
438 			  short d)
439 {
440 	struct vm_area_struct *rc_vma;
441 	unsigned long rc_vaddr;
442 	int ret = 0;
443 
444 	rc_vma = find_ref_ctr_vma(uprobe, mm);
445 
446 	if (rc_vma) {
447 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
448 		ret = __update_ref_ctr(mm, rc_vaddr, d);
449 		if (ret)
450 			update_ref_ctr_warn(uprobe, mm, d);
451 
452 		if (d > 0)
453 			return ret;
454 	}
455 
456 	mutex_lock(&delayed_uprobe_lock);
457 	if (d > 0)
458 		ret = delayed_uprobe_add(uprobe, mm);
459 	else
460 		delayed_uprobe_remove(uprobe, mm);
461 	mutex_unlock(&delayed_uprobe_lock);
462 
463 	return ret;
464 }
465 
466 /*
467  * NOTE:
468  * Expect the breakpoint instruction to be the smallest size instruction for
469  * the architecture. If an arch has variable length instruction and the
470  * breakpoint instruction is not of the smallest length instruction
471  * supported by that architecture then we need to modify is_trap_at_addr and
472  * uprobe_write_opcode accordingly. This would never be a problem for archs
473  * that have fixed length instructions.
474  *
475  * uprobe_write_opcode - write the opcode at a given virtual address.
476  * @auprobe: arch specific probepoint information.
477  * @mm: the probed process address space.
478  * @vaddr: the virtual address to store the opcode.
479  * @opcode: opcode to be written at @vaddr.
480  *
481  * Called with mm->mmap_lock held for read or write.
482  * Return 0 (success) or a negative errno.
483  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)484 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
485 			unsigned long vaddr, uprobe_opcode_t opcode)
486 {
487 	struct uprobe *uprobe;
488 	struct page *old_page, *new_page;
489 	struct vm_area_struct *vma;
490 	int ret, is_register, ref_ctr_updated = 0;
491 	bool orig_page_huge = false;
492 	unsigned int gup_flags = FOLL_FORCE;
493 
494 	is_register = is_swbp_insn(&opcode);
495 	uprobe = container_of(auprobe, struct uprobe, arch);
496 
497 retry:
498 	if (is_register)
499 		gup_flags |= FOLL_SPLIT_PMD;
500 	/* Read the page with vaddr into memory */
501 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
502 	if (IS_ERR(old_page))
503 		return PTR_ERR(old_page);
504 
505 	ret = verify_opcode(old_page, vaddr, &opcode);
506 	if (ret <= 0)
507 		goto put_old;
508 
509 	if (is_zero_page(old_page)) {
510 		ret = -EINVAL;
511 		goto put_old;
512 	}
513 
514 	if (WARN(!is_register && PageCompound(old_page),
515 		 "uprobe unregister should never work on compound page\n")) {
516 		ret = -EINVAL;
517 		goto put_old;
518 	}
519 
520 	/* We are going to replace instruction, update ref_ctr. */
521 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
522 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
523 		if (ret)
524 			goto put_old;
525 
526 		ref_ctr_updated = 1;
527 	}
528 
529 	ret = 0;
530 	if (!is_register && !PageAnon(old_page))
531 		goto put_old;
532 
533 	ret = anon_vma_prepare(vma);
534 	if (ret)
535 		goto put_old;
536 
537 	ret = -ENOMEM;
538 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
539 	if (!new_page)
540 		goto put_old;
541 
542 	__SetPageUptodate(new_page);
543 	copy_highpage(new_page, old_page);
544 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
545 
546 	if (!is_register) {
547 		struct page *orig_page;
548 		pgoff_t index;
549 
550 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
551 
552 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
553 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
554 					  index);
555 
556 		if (orig_page) {
557 			if (PageUptodate(orig_page) &&
558 			    pages_identical(new_page, orig_page)) {
559 				/* let go new_page */
560 				put_page(new_page);
561 				new_page = NULL;
562 
563 				if (PageCompound(orig_page))
564 					orig_page_huge = true;
565 			}
566 			put_page(orig_page);
567 		}
568 	}
569 
570 	ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
571 	if (new_page)
572 		put_page(new_page);
573 put_old:
574 	put_page(old_page);
575 
576 	if (unlikely(ret == -EAGAIN))
577 		goto retry;
578 
579 	/* Revert back reference counter if instruction update failed. */
580 	if (ret && is_register && ref_ctr_updated)
581 		update_ref_ctr(uprobe, mm, -1);
582 
583 	/* try collapse pmd for compound page */
584 	if (!ret && orig_page_huge)
585 		collapse_pte_mapped_thp(mm, vaddr, false);
586 
587 	return ret;
588 }
589 
590 /**
591  * set_swbp - store breakpoint at a given address.
592  * @auprobe: arch specific probepoint information.
593  * @mm: the probed process address space.
594  * @vaddr: the virtual address to insert the opcode.
595  *
596  * For mm @mm, store the breakpoint instruction at @vaddr.
597  * Return 0 (success) or a negative errno.
598  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)599 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
600 {
601 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
602 }
603 
604 /**
605  * set_orig_insn - Restore the original instruction.
606  * @mm: the probed process address space.
607  * @auprobe: arch specific probepoint information.
608  * @vaddr: the virtual address to insert the opcode.
609  *
610  * For mm @mm, restore the original opcode (opcode) at @vaddr.
611  * Return 0 (success) or a negative errno.
612  */
613 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)614 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
615 {
616 	return uprobe_write_opcode(auprobe, mm, vaddr,
617 			*(uprobe_opcode_t *)&auprobe->insn);
618 }
619 
620 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)621 static struct uprobe *get_uprobe(struct uprobe *uprobe)
622 {
623 	refcount_inc(&uprobe->ref);
624 	return uprobe;
625 }
626 
627 /*
628  * uprobe should have guaranteed lifetime, which can be either of:
629  *   - caller already has refcount taken (and wants an extra one);
630  *   - uprobe is RCU protected and won't be freed until after grace period;
631  *   - we are holding uprobes_treelock (for read or write, doesn't matter).
632  */
try_get_uprobe(struct uprobe * uprobe)633 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
634 {
635 	if (refcount_inc_not_zero(&uprobe->ref))
636 		return uprobe;
637 	return NULL;
638 }
639 
uprobe_is_active(struct uprobe * uprobe)640 static inline bool uprobe_is_active(struct uprobe *uprobe)
641 {
642 	return !RB_EMPTY_NODE(&uprobe->rb_node);
643 }
644 
uprobe_free_rcu_tasks_trace(struct rcu_head * rcu)645 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
646 {
647 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
648 
649 	kfree(uprobe);
650 }
651 
uprobe_free_srcu(struct rcu_head * rcu)652 static void uprobe_free_srcu(struct rcu_head *rcu)
653 {
654 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
655 
656 	call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
657 }
658 
uprobe_free_deferred(struct work_struct * work)659 static void uprobe_free_deferred(struct work_struct *work)
660 {
661 	struct uprobe *uprobe = container_of(work, struct uprobe, work);
662 
663 	write_lock(&uprobes_treelock);
664 
665 	if (uprobe_is_active(uprobe)) {
666 		write_seqcount_begin(&uprobes_seqcount);
667 		rb_erase(&uprobe->rb_node, &uprobes_tree);
668 		write_seqcount_end(&uprobes_seqcount);
669 	}
670 
671 	write_unlock(&uprobes_treelock);
672 
673 	/*
674 	 * If application munmap(exec_vma) before uprobe_unregister()
675 	 * gets called, we don't get a chance to remove uprobe from
676 	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
677 	 */
678 	mutex_lock(&delayed_uprobe_lock);
679 	delayed_uprobe_remove(uprobe, NULL);
680 	mutex_unlock(&delayed_uprobe_lock);
681 
682 	/* start srcu -> rcu_tasks_trace -> kfree chain */
683 	call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
684 }
685 
put_uprobe(struct uprobe * uprobe)686 static void put_uprobe(struct uprobe *uprobe)
687 {
688 	if (!refcount_dec_and_test(&uprobe->ref))
689 		return;
690 
691 	INIT_WORK(&uprobe->work, uprobe_free_deferred);
692 	schedule_work(&uprobe->work);
693 }
694 
695 /* Initialize hprobe as SRCU-protected "leased" uprobe */
hprobe_init_leased(struct hprobe * hprobe,struct uprobe * uprobe,int srcu_idx)696 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
697 {
698 	WARN_ON(!uprobe);
699 	hprobe->state = HPROBE_LEASED;
700 	hprobe->uprobe = uprobe;
701 	hprobe->srcu_idx = srcu_idx;
702 }
703 
704 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
hprobe_init_stable(struct hprobe * hprobe,struct uprobe * uprobe)705 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
706 {
707 	hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
708 	hprobe->uprobe = uprobe;
709 	hprobe->srcu_idx = -1;
710 }
711 
712 /*
713  * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
714  * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
715  * used only once for a given hprobe.
716  *
717  * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
718  * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
719  * is appropriate.
720  */
hprobe_consume(struct hprobe * hprobe,enum hprobe_state * hstate)721 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
722 {
723 	*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
724 	switch (*hstate) {
725 	case HPROBE_LEASED:
726 	case HPROBE_STABLE:
727 		return hprobe->uprobe;
728 	case HPROBE_GONE:	/* uprobe is NULL, no SRCU */
729 	case HPROBE_CONSUMED:	/* uprobe was finalized already, do nothing */
730 		return NULL;
731 	default:
732 		WARN(1, "hprobe invalid state %d", *hstate);
733 		return NULL;
734 	}
735 }
736 
737 /*
738  * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
739  * hprobe_finalize() can only be used from current context after
740  * hprobe_consume() call (which determines uprobe and hstate value).
741  */
hprobe_finalize(struct hprobe * hprobe,enum hprobe_state hstate)742 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
743 {
744 	switch (hstate) {
745 	case HPROBE_LEASED:
746 		__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
747 		break;
748 	case HPROBE_STABLE:
749 		put_uprobe(hprobe->uprobe);
750 		break;
751 	case HPROBE_GONE:
752 	case HPROBE_CONSUMED:
753 		break;
754 	default:
755 		WARN(1, "hprobe invalid state %d", hstate);
756 		break;
757 	}
758 }
759 
760 /*
761  * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
762  * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
763  * them can win the race to perform SRCU unlocking. Whoever wins must perform
764  * SRCU unlock.
765  *
766  * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
767  * to begin with or we failed to bump its refcount and it's going away.
768  *
769  * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
770  * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
771  * an extra refcount for caller to assume and use. Otherwise, it's not
772  * guaranteed that returned uprobe has a positive refcount, so caller has to
773  * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
774  * SRCU lock region. See dup_utask().
775  */
hprobe_expire(struct hprobe * hprobe,bool get)776 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
777 {
778 	enum hprobe_state hstate;
779 
780 	/*
781 	 * Caller should guarantee that return_instance is not going to be
782 	 * freed from under us. This can be achieved either through holding
783 	 * rcu_read_lock() or by owning return_instance in the first place.
784 	 *
785 	 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
786 	 * SRCU lock is held properly.
787 	 */
788 	lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
789 
790 	hstate = READ_ONCE(hprobe->state);
791 	switch (hstate) {
792 	case HPROBE_STABLE:
793 		/* uprobe has positive refcount, bump refcount, if necessary */
794 		return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
795 	case HPROBE_GONE:
796 		/*
797 		 * SRCU was unlocked earlier and we didn't manage to take
798 		 * uprobe refcnt, so it's effectively NULL
799 		 */
800 		return NULL;
801 	case HPROBE_CONSUMED:
802 		/*
803 		 * uprobe was consumed, so it's effectively NULL as far as
804 		 * uretprobe processing logic is concerned
805 		 */
806 		return NULL;
807 	case HPROBE_LEASED: {
808 		struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
809 		/*
810 		 * Try to switch hprobe state, guarding against
811 		 * hprobe_consume() or another hprobe_expire() racing with us.
812 		 * Note, if we failed to get uprobe refcount, we use special
813 		 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
814 		 * be used as it will be freed after SRCU is unlocked.
815 		 */
816 		if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
817 			/* We won the race, we are the ones to unlock SRCU */
818 			__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
819 			return get ? get_uprobe(uprobe) : uprobe;
820 		}
821 
822 		/*
823 		 * We lost the race, undo refcount bump (if it ever happened),
824 		 * unless caller would like an extra refcount anyways.
825 		 */
826 		if (uprobe && !get)
827 			put_uprobe(uprobe);
828 		/*
829 		 * Even if hprobe_consume() or another hprobe_expire() wins
830 		 * the state update race and unlocks SRCU from under us, we
831 		 * still have a guarantee that underyling uprobe won't be
832 		 * freed due to ongoing caller's SRCU lock region, so we can
833 		 * return it regardless. Also, if `get` was true, we also have
834 		 * an extra ref for the caller to own. This is used in dup_utask().
835 		 */
836 		return uprobe;
837 	}
838 	default:
839 		WARN(1, "unknown hprobe state %d", hstate);
840 		return NULL;
841 	}
842 }
843 
844 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)845 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
846 	       const struct uprobe *r)
847 {
848 	if (l_inode < r->inode)
849 		return -1;
850 
851 	if (l_inode > r->inode)
852 		return 1;
853 
854 	if (l_offset < r->offset)
855 		return -1;
856 
857 	if (l_offset > r->offset)
858 		return 1;
859 
860 	return 0;
861 }
862 
863 #define __node_2_uprobe(node) \
864 	rb_entry((node), struct uprobe, rb_node)
865 
866 struct __uprobe_key {
867 	struct inode *inode;
868 	loff_t offset;
869 };
870 
__uprobe_cmp_key(const void * key,const struct rb_node * b)871 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
872 {
873 	const struct __uprobe_key *a = key;
874 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
875 }
876 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)877 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
878 {
879 	struct uprobe *u = __node_2_uprobe(a);
880 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
881 }
882 
883 /*
884  * Assumes being inside RCU protected region.
885  * No refcount is taken on returned uprobe.
886  */
find_uprobe_rcu(struct inode * inode,loff_t offset)887 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
888 {
889 	struct __uprobe_key key = {
890 		.inode = inode,
891 		.offset = offset,
892 	};
893 	struct rb_node *node;
894 	unsigned int seq;
895 
896 	lockdep_assert(rcu_read_lock_trace_held());
897 
898 	do {
899 		seq = read_seqcount_begin(&uprobes_seqcount);
900 		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
901 		/*
902 		 * Lockless RB-tree lookups can result only in false negatives.
903 		 * If the element is found, it is correct and can be returned
904 		 * under RCU protection. If we find nothing, we need to
905 		 * validate that seqcount didn't change. If it did, we have to
906 		 * try again as we might have missed the element (false
907 		 * negative). If seqcount is unchanged, search truly failed.
908 		 */
909 		if (node)
910 			return __node_2_uprobe(node);
911 	} while (read_seqcount_retry(&uprobes_seqcount, seq));
912 
913 	return NULL;
914 }
915 
916 /*
917  * Attempt to insert a new uprobe into uprobes_tree.
918  *
919  * If uprobe already exists (for given inode+offset), we just increment
920  * refcount of previously existing uprobe.
921  *
922  * If not, a provided new instance of uprobe is inserted into the tree (with
923  * assumed initial refcount == 1).
924  *
925  * In any case, we return a uprobe instance that ends up being in uprobes_tree.
926  * Caller has to clean up new uprobe instance, if it ended up not being
927  * inserted into the tree.
928  *
929  * We assume that uprobes_treelock is held for writing.
930  */
__insert_uprobe(struct uprobe * uprobe)931 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
932 {
933 	struct rb_node *node;
934 again:
935 	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
936 	if (node) {
937 		struct uprobe *u = __node_2_uprobe(node);
938 
939 		if (!try_get_uprobe(u)) {
940 			rb_erase(node, &uprobes_tree);
941 			RB_CLEAR_NODE(&u->rb_node);
942 			goto again;
943 		}
944 
945 		return u;
946 	}
947 
948 	return uprobe;
949 }
950 
951 /*
952  * Acquire uprobes_treelock and insert uprobe into uprobes_tree
953  * (or reuse existing one, see __insert_uprobe() comments above).
954  */
insert_uprobe(struct uprobe * uprobe)955 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
956 {
957 	struct uprobe *u;
958 
959 	write_lock(&uprobes_treelock);
960 	write_seqcount_begin(&uprobes_seqcount);
961 	u = __insert_uprobe(uprobe);
962 	write_seqcount_end(&uprobes_seqcount);
963 	write_unlock(&uprobes_treelock);
964 
965 	return u;
966 }
967 
968 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)969 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
970 {
971 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
972 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
973 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
974 		(unsigned long long) cur_uprobe->ref_ctr_offset,
975 		(unsigned long long) uprobe->ref_ctr_offset);
976 }
977 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)978 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
979 				   loff_t ref_ctr_offset)
980 {
981 	struct uprobe *uprobe, *cur_uprobe;
982 
983 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
984 	if (!uprobe)
985 		return ERR_PTR(-ENOMEM);
986 
987 	uprobe->inode = inode;
988 	uprobe->offset = offset;
989 	uprobe->ref_ctr_offset = ref_ctr_offset;
990 	INIT_LIST_HEAD(&uprobe->consumers);
991 	init_rwsem(&uprobe->register_rwsem);
992 	init_rwsem(&uprobe->consumer_rwsem);
993 	RB_CLEAR_NODE(&uprobe->rb_node);
994 	refcount_set(&uprobe->ref, 1);
995 
996 	/* add to uprobes_tree, sorted on inode:offset */
997 	cur_uprobe = insert_uprobe(uprobe);
998 	/* a uprobe exists for this inode:offset combination */
999 	if (cur_uprobe != uprobe) {
1000 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1001 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1002 			put_uprobe(cur_uprobe);
1003 			kfree(uprobe);
1004 			return ERR_PTR(-EINVAL);
1005 		}
1006 		kfree(uprobe);
1007 		uprobe = cur_uprobe;
1008 	}
1009 
1010 	return uprobe;
1011 }
1012 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)1013 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1014 {
1015 	static atomic64_t id;
1016 
1017 	down_write(&uprobe->consumer_rwsem);
1018 	list_add_rcu(&uc->cons_node, &uprobe->consumers);
1019 	uc->id = (__u64) atomic64_inc_return(&id);
1020 	up_write(&uprobe->consumer_rwsem);
1021 }
1022 
1023 /*
1024  * For uprobe @uprobe, delete the consumer @uc.
1025  * Should never be called with consumer that's not part of @uprobe->consumers.
1026  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)1027 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1028 {
1029 	down_write(&uprobe->consumer_rwsem);
1030 	list_del_rcu(&uc->cons_node);
1031 	up_write(&uprobe->consumer_rwsem);
1032 }
1033 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)1034 static int __copy_insn(struct address_space *mapping, struct file *filp,
1035 			void *insn, int nbytes, loff_t offset)
1036 {
1037 	struct page *page;
1038 	/*
1039 	 * Ensure that the page that has the original instruction is populated
1040 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1041 	 * see uprobe_register().
1042 	 */
1043 	if (mapping->a_ops->read_folio)
1044 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1045 	else
1046 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1047 	if (IS_ERR(page))
1048 		return PTR_ERR(page);
1049 
1050 	copy_from_page(page, offset, insn, nbytes);
1051 	put_page(page);
1052 
1053 	return 0;
1054 }
1055 
copy_insn(struct uprobe * uprobe,struct file * filp)1056 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1057 {
1058 	struct address_space *mapping = uprobe->inode->i_mapping;
1059 	loff_t offs = uprobe->offset;
1060 	void *insn = &uprobe->arch.insn;
1061 	int size = sizeof(uprobe->arch.insn);
1062 	int len, err = -EIO;
1063 
1064 	/* Copy only available bytes, -EIO if nothing was read */
1065 	do {
1066 		if (offs >= i_size_read(uprobe->inode))
1067 			break;
1068 
1069 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1070 		err = __copy_insn(mapping, filp, insn, len, offs);
1071 		if (err)
1072 			break;
1073 
1074 		insn += len;
1075 		offs += len;
1076 		size -= len;
1077 	} while (size);
1078 
1079 	return err;
1080 }
1081 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)1082 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1083 				struct mm_struct *mm, unsigned long vaddr)
1084 {
1085 	int ret = 0;
1086 
1087 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1088 		return ret;
1089 
1090 	/* TODO: move this into _register, until then we abuse this sem. */
1091 	down_write(&uprobe->consumer_rwsem);
1092 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1093 		goto out;
1094 
1095 	ret = copy_insn(uprobe, file);
1096 	if (ret)
1097 		goto out;
1098 
1099 	ret = -ENOTSUPP;
1100 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1101 		goto out;
1102 
1103 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1104 	if (ret)
1105 		goto out;
1106 
1107 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1108 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1109 
1110  out:
1111 	up_write(&uprobe->consumer_rwsem);
1112 
1113 	return ret;
1114 }
1115 
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)1116 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1117 {
1118 	return !uc->filter || uc->filter(uc, mm);
1119 }
1120 
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)1121 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1122 {
1123 	struct uprobe_consumer *uc;
1124 	bool ret = false;
1125 
1126 	down_read(&uprobe->consumer_rwsem);
1127 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1128 		ret = consumer_filter(uc, mm);
1129 		if (ret)
1130 			break;
1131 	}
1132 	up_read(&uprobe->consumer_rwsem);
1133 
1134 	return ret;
1135 }
1136 
1137 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)1138 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
1139 			struct vm_area_struct *vma, unsigned long vaddr)
1140 {
1141 	bool first_uprobe;
1142 	int ret;
1143 
1144 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1145 	if (ret)
1146 		return ret;
1147 
1148 	/*
1149 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1150 	 * the task can hit this breakpoint right after __replace_page().
1151 	 */
1152 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1153 	if (first_uprobe)
1154 		set_bit(MMF_HAS_UPROBES, &mm->flags);
1155 
1156 	ret = set_swbp(&uprobe->arch, mm, vaddr);
1157 	if (!ret)
1158 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1159 	else if (first_uprobe)
1160 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
1161 
1162 	return ret;
1163 }
1164 
1165 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)1166 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
1167 {
1168 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
1169 	return set_orig_insn(&uprobe->arch, mm, vaddr);
1170 }
1171 
1172 struct map_info {
1173 	struct map_info *next;
1174 	struct mm_struct *mm;
1175 	unsigned long vaddr;
1176 };
1177 
free_map_info(struct map_info * info)1178 static inline struct map_info *free_map_info(struct map_info *info)
1179 {
1180 	struct map_info *next = info->next;
1181 	kfree(info);
1182 	return next;
1183 }
1184 
1185 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1186 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1187 {
1188 	unsigned long pgoff = offset >> PAGE_SHIFT;
1189 	struct vm_area_struct *vma;
1190 	struct map_info *curr = NULL;
1191 	struct map_info *prev = NULL;
1192 	struct map_info *info;
1193 	int more = 0;
1194 
1195  again:
1196 	i_mmap_lock_read(mapping);
1197 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1198 		if (!valid_vma(vma, is_register))
1199 			continue;
1200 
1201 		if (!prev && !more) {
1202 			/*
1203 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1204 			 * reclaim. This is optimistic, no harm done if it fails.
1205 			 */
1206 			prev = kmalloc(sizeof(struct map_info),
1207 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1208 			if (prev)
1209 				prev->next = NULL;
1210 		}
1211 		if (!prev) {
1212 			more++;
1213 			continue;
1214 		}
1215 
1216 		if (!mmget_not_zero(vma->vm_mm))
1217 			continue;
1218 
1219 		info = prev;
1220 		prev = prev->next;
1221 		info->next = curr;
1222 		curr = info;
1223 
1224 		info->mm = vma->vm_mm;
1225 		info->vaddr = offset_to_vaddr(vma, offset);
1226 	}
1227 	i_mmap_unlock_read(mapping);
1228 
1229 	if (!more)
1230 		goto out;
1231 
1232 	prev = curr;
1233 	while (curr) {
1234 		mmput(curr->mm);
1235 		curr = curr->next;
1236 	}
1237 
1238 	do {
1239 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1240 		if (!info) {
1241 			curr = ERR_PTR(-ENOMEM);
1242 			goto out;
1243 		}
1244 		info->next = prev;
1245 		prev = info;
1246 	} while (--more);
1247 
1248 	goto again;
1249  out:
1250 	while (prev)
1251 		prev = free_map_info(prev);
1252 	return curr;
1253 }
1254 
1255 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1256 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1257 {
1258 	bool is_register = !!new;
1259 	struct map_info *info;
1260 	int err = 0;
1261 
1262 	percpu_down_write(&dup_mmap_sem);
1263 	info = build_map_info(uprobe->inode->i_mapping,
1264 					uprobe->offset, is_register);
1265 	if (IS_ERR(info)) {
1266 		err = PTR_ERR(info);
1267 		goto out;
1268 	}
1269 
1270 	while (info) {
1271 		struct mm_struct *mm = info->mm;
1272 		struct vm_area_struct *vma;
1273 
1274 		if (err && is_register)
1275 			goto free;
1276 		/*
1277 		 * We take mmap_lock for writing to avoid the race with
1278 		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1279 		 * Thus this install_breakpoint() can not make
1280 		 * is_trap_at_addr() true right after find_uprobe_rcu()
1281 		 * returns NULL in find_active_uprobe_rcu().
1282 		 */
1283 		mmap_write_lock(mm);
1284 		if (check_stable_address_space(mm))
1285 			goto unlock;
1286 
1287 		vma = find_vma(mm, info->vaddr);
1288 		if (!vma || !valid_vma(vma, is_register) ||
1289 		    file_inode(vma->vm_file) != uprobe->inode)
1290 			goto unlock;
1291 
1292 		if (vma->vm_start > info->vaddr ||
1293 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1294 			goto unlock;
1295 
1296 		if (is_register) {
1297 			/* consult only the "caller", new consumer. */
1298 			if (consumer_filter(new, mm))
1299 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1300 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1301 			if (!filter_chain(uprobe, mm))
1302 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1303 		}
1304 
1305  unlock:
1306 		mmap_write_unlock(mm);
1307  free:
1308 		mmput(mm);
1309 		info = free_map_info(info);
1310 	}
1311  out:
1312 	percpu_up_write(&dup_mmap_sem);
1313 	return err;
1314 }
1315 
1316 /**
1317  * uprobe_unregister_nosync - unregister an already registered probe.
1318  * @uprobe: uprobe to remove
1319  * @uc: identify which probe if multiple probes are colocated.
1320  */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1321 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1322 {
1323 	int err;
1324 
1325 	down_write(&uprobe->register_rwsem);
1326 	consumer_del(uprobe, uc);
1327 	err = register_for_each_vma(uprobe, NULL);
1328 	up_write(&uprobe->register_rwsem);
1329 
1330 	/* TODO : cant unregister? schedule a worker thread */
1331 	if (unlikely(err)) {
1332 		uprobe_warn(current, "unregister, leaking uprobe");
1333 		return;
1334 	}
1335 
1336 	put_uprobe(uprobe);
1337 }
1338 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1339 
uprobe_unregister_sync(void)1340 void uprobe_unregister_sync(void)
1341 {
1342 	/*
1343 	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1344 	 * uprobe->consumers list under RCU protection without holding
1345 	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1346 	 * make sure that we can't call into just unregistered
1347 	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1348 	 * unlucky enough caller can free consumer's memory and cause
1349 	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1350 	 */
1351 	synchronize_rcu_tasks_trace();
1352 	synchronize_srcu(&uretprobes_srcu);
1353 }
1354 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1355 
1356 /**
1357  * uprobe_register - register a probe
1358  * @inode: the file in which the probe has to be placed.
1359  * @offset: offset from the start of the file.
1360  * @ref_ctr_offset: offset of SDT marker / reference counter
1361  * @uc: information on howto handle the probe..
1362  *
1363  * Apart from the access refcount, uprobe_register() takes a creation
1364  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1365  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1366  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1367  * @uprobe even before the register operation is complete. Creation
1368  * refcount is released when the last @uc for the @uprobe
1369  * unregisters. Caller of uprobe_register() is required to keep @inode
1370  * (and the containing mount) referenced.
1371  *
1372  * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1373  */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1374 struct uprobe *uprobe_register(struct inode *inode,
1375 				loff_t offset, loff_t ref_ctr_offset,
1376 				struct uprobe_consumer *uc)
1377 {
1378 	struct uprobe *uprobe;
1379 	int ret;
1380 
1381 	/* Uprobe must have at least one set consumer */
1382 	if (!uc->handler && !uc->ret_handler)
1383 		return ERR_PTR(-EINVAL);
1384 
1385 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1386 	if (!inode->i_mapping->a_ops->read_folio &&
1387 	    !shmem_mapping(inode->i_mapping))
1388 		return ERR_PTR(-EIO);
1389 	/* Racy, just to catch the obvious mistakes */
1390 	if (offset > i_size_read(inode))
1391 		return ERR_PTR(-EINVAL);
1392 
1393 	/*
1394 	 * This ensures that copy_from_page(), copy_to_page() and
1395 	 * __update_ref_ctr() can't cross page boundary.
1396 	 */
1397 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1398 		return ERR_PTR(-EINVAL);
1399 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1400 		return ERR_PTR(-EINVAL);
1401 
1402 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1403 	if (IS_ERR(uprobe))
1404 		return uprobe;
1405 
1406 	down_write(&uprobe->register_rwsem);
1407 	consumer_add(uprobe, uc);
1408 	ret = register_for_each_vma(uprobe, uc);
1409 	up_write(&uprobe->register_rwsem);
1410 
1411 	if (ret) {
1412 		uprobe_unregister_nosync(uprobe, uc);
1413 		/*
1414 		 * Registration might have partially succeeded, so we can have
1415 		 * this consumer being called right at this time. We need to
1416 		 * sync here. It's ok, it's unlikely slow path.
1417 		 */
1418 		uprobe_unregister_sync();
1419 		return ERR_PTR(ret);
1420 	}
1421 
1422 	return uprobe;
1423 }
1424 EXPORT_SYMBOL_GPL(uprobe_register);
1425 
1426 /**
1427  * uprobe_apply - add or remove the breakpoints according to @uc->filter
1428  * @uprobe: uprobe which "owns" the breakpoint
1429  * @uc: consumer which wants to add more or remove some breakpoints
1430  * @add: add or remove the breakpoints
1431  * Return: 0 on success or negative error code.
1432  */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1433 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1434 {
1435 	struct uprobe_consumer *con;
1436 	int ret = -ENOENT;
1437 
1438 	down_write(&uprobe->register_rwsem);
1439 
1440 	rcu_read_lock_trace();
1441 	list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1442 		if (con == uc) {
1443 			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1444 			break;
1445 		}
1446 	}
1447 	rcu_read_unlock_trace();
1448 
1449 	up_write(&uprobe->register_rwsem);
1450 
1451 	return ret;
1452 }
1453 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1454 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1455 {
1456 	VMA_ITERATOR(vmi, mm, 0);
1457 	struct vm_area_struct *vma;
1458 	int err = 0;
1459 
1460 	mmap_read_lock(mm);
1461 	for_each_vma(vmi, vma) {
1462 		unsigned long vaddr;
1463 		loff_t offset;
1464 
1465 		if (!valid_vma(vma, false) ||
1466 		    file_inode(vma->vm_file) != uprobe->inode)
1467 			continue;
1468 
1469 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1470 		if (uprobe->offset <  offset ||
1471 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1472 			continue;
1473 
1474 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1475 		err |= remove_breakpoint(uprobe, mm, vaddr);
1476 	}
1477 	mmap_read_unlock(mm);
1478 
1479 	return err;
1480 }
1481 
1482 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1483 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1484 {
1485 	struct rb_node *n = uprobes_tree.rb_node;
1486 
1487 	while (n) {
1488 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1489 
1490 		if (inode < u->inode) {
1491 			n = n->rb_left;
1492 		} else if (inode > u->inode) {
1493 			n = n->rb_right;
1494 		} else {
1495 			if (max < u->offset)
1496 				n = n->rb_left;
1497 			else if (min > u->offset)
1498 				n = n->rb_right;
1499 			else
1500 				break;
1501 		}
1502 	}
1503 
1504 	return n;
1505 }
1506 
1507 /*
1508  * For a given range in vma, build a list of probes that need to be inserted.
1509  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1510 static void build_probe_list(struct inode *inode,
1511 				struct vm_area_struct *vma,
1512 				unsigned long start, unsigned long end,
1513 				struct list_head *head)
1514 {
1515 	loff_t min, max;
1516 	struct rb_node *n, *t;
1517 	struct uprobe *u;
1518 
1519 	INIT_LIST_HEAD(head);
1520 	min = vaddr_to_offset(vma, start);
1521 	max = min + (end - start) - 1;
1522 
1523 	read_lock(&uprobes_treelock);
1524 	n = find_node_in_range(inode, min, max);
1525 	if (n) {
1526 		for (t = n; t; t = rb_prev(t)) {
1527 			u = rb_entry(t, struct uprobe, rb_node);
1528 			if (u->inode != inode || u->offset < min)
1529 				break;
1530 			/* if uprobe went away, it's safe to ignore it */
1531 			if (try_get_uprobe(u))
1532 				list_add(&u->pending_list, head);
1533 		}
1534 		for (t = n; (t = rb_next(t)); ) {
1535 			u = rb_entry(t, struct uprobe, rb_node);
1536 			if (u->inode != inode || u->offset > max)
1537 				break;
1538 			/* if uprobe went away, it's safe to ignore it */
1539 			if (try_get_uprobe(u))
1540 				list_add(&u->pending_list, head);
1541 		}
1542 	}
1543 	read_unlock(&uprobes_treelock);
1544 }
1545 
1546 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1547 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1548 {
1549 	struct list_head *pos, *q;
1550 	struct delayed_uprobe *du;
1551 	unsigned long vaddr;
1552 	int ret = 0, err = 0;
1553 
1554 	mutex_lock(&delayed_uprobe_lock);
1555 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1556 		du = list_entry(pos, struct delayed_uprobe, list);
1557 
1558 		if (du->mm != vma->vm_mm ||
1559 		    !valid_ref_ctr_vma(du->uprobe, vma))
1560 			continue;
1561 
1562 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1563 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1564 		if (ret) {
1565 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1566 			if (!err)
1567 				err = ret;
1568 		}
1569 		delayed_uprobe_delete(du);
1570 	}
1571 	mutex_unlock(&delayed_uprobe_lock);
1572 	return err;
1573 }
1574 
1575 /*
1576  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1577  *
1578  * Currently we ignore all errors and always return 0, the callers
1579  * can't handle the failure anyway.
1580  */
uprobe_mmap(struct vm_area_struct * vma)1581 int uprobe_mmap(struct vm_area_struct *vma)
1582 {
1583 	struct list_head tmp_list;
1584 	struct uprobe *uprobe, *u;
1585 	struct inode *inode;
1586 
1587 	if (no_uprobe_events())
1588 		return 0;
1589 
1590 	if (vma->vm_file &&
1591 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1592 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1593 		delayed_ref_ctr_inc(vma);
1594 
1595 	if (!valid_vma(vma, true))
1596 		return 0;
1597 
1598 	inode = file_inode(vma->vm_file);
1599 	if (!inode)
1600 		return 0;
1601 
1602 	mutex_lock(uprobes_mmap_hash(inode));
1603 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1604 	/*
1605 	 * We can race with uprobe_unregister(), this uprobe can be already
1606 	 * removed. But in this case filter_chain() must return false, all
1607 	 * consumers have gone away.
1608 	 */
1609 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1610 		if (!fatal_signal_pending(current) &&
1611 		    filter_chain(uprobe, vma->vm_mm)) {
1612 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1613 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1614 		}
1615 		put_uprobe(uprobe);
1616 	}
1617 	mutex_unlock(uprobes_mmap_hash(inode));
1618 
1619 	return 0;
1620 }
1621 
1622 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1623 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1624 {
1625 	loff_t min, max;
1626 	struct inode *inode;
1627 	struct rb_node *n;
1628 
1629 	inode = file_inode(vma->vm_file);
1630 
1631 	min = vaddr_to_offset(vma, start);
1632 	max = min + (end - start) - 1;
1633 
1634 	read_lock(&uprobes_treelock);
1635 	n = find_node_in_range(inode, min, max);
1636 	read_unlock(&uprobes_treelock);
1637 
1638 	return !!n;
1639 }
1640 
1641 /*
1642  * Called in context of a munmap of a vma.
1643  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1644 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1645 {
1646 	if (no_uprobe_events() || !valid_vma(vma, false))
1647 		return;
1648 
1649 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1650 		return;
1651 
1652 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1653 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1654 		return;
1655 
1656 	if (vma_has_uprobes(vma, start, end))
1657 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1658 }
1659 
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1660 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1661 			    struct vm_area_struct *vma, struct vm_fault *vmf)
1662 {
1663 	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1664 
1665 	vmf->page = area->page;
1666 	get_page(vmf->page);
1667 	return 0;
1668 }
1669 
xol_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)1670 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1671 {
1672 	return -EPERM;
1673 }
1674 
1675 static const struct vm_special_mapping xol_mapping = {
1676 	.name = "[uprobes]",
1677 	.fault = xol_fault,
1678 	.mremap = xol_mremap,
1679 };
1680 
1681 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1682 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1683 {
1684 	struct vm_area_struct *vma;
1685 	int ret;
1686 
1687 	if (mmap_write_lock_killable(mm))
1688 		return -EINTR;
1689 
1690 	if (mm->uprobes_state.xol_area) {
1691 		ret = -EALREADY;
1692 		goto fail;
1693 	}
1694 
1695 	if (!area->vaddr) {
1696 		/* Try to map as high as possible, this is only a hint. */
1697 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1698 						PAGE_SIZE, 0, 0);
1699 		if (IS_ERR_VALUE(area->vaddr)) {
1700 			ret = area->vaddr;
1701 			goto fail;
1702 		}
1703 	}
1704 
1705 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1706 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1707 				VM_SEALED_SYSMAP,
1708 				&xol_mapping);
1709 	if (IS_ERR(vma)) {
1710 		ret = PTR_ERR(vma);
1711 		goto fail;
1712 	}
1713 
1714 	ret = 0;
1715 	/* pairs with get_xol_area() */
1716 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1717  fail:
1718 	mmap_write_unlock(mm);
1719 
1720 	return ret;
1721 }
1722 
arch_uprobe_trampoline(unsigned long * psize)1723 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1724 {
1725 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1726 
1727 	*psize = UPROBE_SWBP_INSN_SIZE;
1728 	return &insn;
1729 }
1730 
__create_xol_area(unsigned long vaddr)1731 static struct xol_area *__create_xol_area(unsigned long vaddr)
1732 {
1733 	struct mm_struct *mm = current->mm;
1734 	unsigned long insns_size;
1735 	struct xol_area *area;
1736 	void *insns;
1737 
1738 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1739 	if (unlikely(!area))
1740 		goto out;
1741 
1742 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1743 			       GFP_KERNEL);
1744 	if (!area->bitmap)
1745 		goto free_area;
1746 
1747 	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1748 	if (!area->page)
1749 		goto free_bitmap;
1750 
1751 	area->vaddr = vaddr;
1752 	init_waitqueue_head(&area->wq);
1753 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1754 	set_bit(0, area->bitmap);
1755 	insns = arch_uprobe_trampoline(&insns_size);
1756 	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1757 
1758 	if (!xol_add_vma(mm, area))
1759 		return area;
1760 
1761 	__free_page(area->page);
1762  free_bitmap:
1763 	kfree(area->bitmap);
1764  free_area:
1765 	kfree(area);
1766  out:
1767 	return NULL;
1768 }
1769 
1770 /*
1771  * get_xol_area - Allocate process's xol_area if necessary.
1772  * This area will be used for storing instructions for execution out of line.
1773  *
1774  * Returns the allocated area or NULL.
1775  */
get_xol_area(void)1776 static struct xol_area *get_xol_area(void)
1777 {
1778 	struct mm_struct *mm = current->mm;
1779 	struct xol_area *area;
1780 
1781 	if (!mm->uprobes_state.xol_area)
1782 		__create_xol_area(0);
1783 
1784 	/* Pairs with xol_add_vma() smp_store_release() */
1785 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1786 	return area;
1787 }
1788 
1789 /*
1790  * uprobe_clear_state - Free the area allocated for slots.
1791  */
uprobe_clear_state(struct mm_struct * mm)1792 void uprobe_clear_state(struct mm_struct *mm)
1793 {
1794 	struct xol_area *area = mm->uprobes_state.xol_area;
1795 
1796 	mutex_lock(&delayed_uprobe_lock);
1797 	delayed_uprobe_remove(NULL, mm);
1798 	mutex_unlock(&delayed_uprobe_lock);
1799 
1800 	if (!area)
1801 		return;
1802 
1803 	put_page(area->page);
1804 	kfree(area->bitmap);
1805 	kfree(area);
1806 }
1807 
uprobe_start_dup_mmap(void)1808 void uprobe_start_dup_mmap(void)
1809 {
1810 	percpu_down_read(&dup_mmap_sem);
1811 }
1812 
uprobe_end_dup_mmap(void)1813 void uprobe_end_dup_mmap(void)
1814 {
1815 	percpu_up_read(&dup_mmap_sem);
1816 }
1817 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1818 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1819 {
1820 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1821 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1822 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1823 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1824 	}
1825 }
1826 
xol_get_slot_nr(struct xol_area * area)1827 static unsigned long xol_get_slot_nr(struct xol_area *area)
1828 {
1829 	unsigned long slot_nr;
1830 
1831 	slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1832 	if (slot_nr < UINSNS_PER_PAGE) {
1833 		if (!test_and_set_bit(slot_nr, area->bitmap))
1834 			return slot_nr;
1835 	}
1836 
1837 	return UINSNS_PER_PAGE;
1838 }
1839 
1840 /*
1841  * xol_get_insn_slot - allocate a slot for xol.
1842  */
xol_get_insn_slot(struct uprobe * uprobe,struct uprobe_task * utask)1843 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1844 {
1845 	struct xol_area *area = get_xol_area();
1846 	unsigned long slot_nr;
1847 
1848 	if (!area)
1849 		return false;
1850 
1851 	wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1852 
1853 	utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1854 	arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1855 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1856 	return true;
1857 }
1858 
1859 /*
1860  * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1861  */
xol_free_insn_slot(struct uprobe_task * utask)1862 static void xol_free_insn_slot(struct uprobe_task *utask)
1863 {
1864 	struct xol_area *area = current->mm->uprobes_state.xol_area;
1865 	unsigned long offset = utask->xol_vaddr - area->vaddr;
1866 	unsigned int slot_nr;
1867 
1868 	utask->xol_vaddr = 0;
1869 	/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1870 	if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1871 		return;
1872 
1873 	slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1874 	clear_bit(slot_nr, area->bitmap);
1875 	smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1876 	if (waitqueue_active(&area->wq))
1877 		wake_up(&area->wq);
1878 }
1879 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1880 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1881 				  void *src, unsigned long len)
1882 {
1883 	/* Initialize the slot */
1884 	copy_to_page(page, vaddr, src, len);
1885 
1886 	/*
1887 	 * We probably need flush_icache_user_page() but it needs vma.
1888 	 * This should work on most of architectures by default. If
1889 	 * architecture needs to do something different it can define
1890 	 * its own version of the function.
1891 	 */
1892 	flush_dcache_page(page);
1893 }
1894 
1895 /**
1896  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1897  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1898  * instruction.
1899  * Return the address of the breakpoint instruction.
1900  */
uprobe_get_swbp_addr(struct pt_regs * regs)1901 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1902 {
1903 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1904 }
1905 
uprobe_get_trap_addr(struct pt_regs * regs)1906 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1907 {
1908 	struct uprobe_task *utask = current->utask;
1909 
1910 	if (unlikely(utask && utask->active_uprobe))
1911 		return utask->vaddr;
1912 
1913 	return instruction_pointer(regs);
1914 }
1915 
ri_pool_push(struct uprobe_task * utask,struct return_instance * ri)1916 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1917 {
1918 	ri->cons_cnt = 0;
1919 	ri->next = utask->ri_pool;
1920 	utask->ri_pool = ri;
1921 }
1922 
ri_pool_pop(struct uprobe_task * utask)1923 static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1924 {
1925 	struct return_instance *ri = utask->ri_pool;
1926 
1927 	if (likely(ri))
1928 		utask->ri_pool = ri->next;
1929 
1930 	return ri;
1931 }
1932 
ri_free(struct return_instance * ri)1933 static void ri_free(struct return_instance *ri)
1934 {
1935 	kfree(ri->extra_consumers);
1936 	kfree_rcu(ri, rcu);
1937 }
1938 
free_ret_instance(struct uprobe_task * utask,struct return_instance * ri,bool cleanup_hprobe)1939 static void free_ret_instance(struct uprobe_task *utask,
1940 			      struct return_instance *ri, bool cleanup_hprobe)
1941 {
1942 	unsigned seq;
1943 
1944 	if (cleanup_hprobe) {
1945 		enum hprobe_state hstate;
1946 
1947 		(void)hprobe_consume(&ri->hprobe, &hstate);
1948 		hprobe_finalize(&ri->hprobe, hstate);
1949 	}
1950 
1951 	/*
1952 	 * At this point return_instance is unlinked from utask's
1953 	 * return_instances list and this has become visible to ri_timer().
1954 	 * If seqcount now indicates that ri_timer's return instance
1955 	 * processing loop isn't active, we can return ri into the pool of
1956 	 * to-be-reused return instances for future uretprobes. If ri_timer()
1957 	 * happens to be running right now, though, we fallback to safety and
1958 	 * just perform RCU-delated freeing of ri.
1959 	 */
1960 	if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1961 		/* immediate reuse of ri without RCU GP is OK */
1962 		ri_pool_push(utask, ri);
1963 	} else {
1964 		/* we might be racing with ri_timer(), so play it safe */
1965 		ri_free(ri);
1966 	}
1967 }
1968 
1969 /*
1970  * Called with no locks held.
1971  * Called in context of an exiting or an exec-ing thread.
1972  */
uprobe_free_utask(struct task_struct * t)1973 void uprobe_free_utask(struct task_struct *t)
1974 {
1975 	struct uprobe_task *utask = t->utask;
1976 	struct return_instance *ri, *ri_next;
1977 
1978 	if (!utask)
1979 		return;
1980 
1981 	t->utask = NULL;
1982 	WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1983 
1984 	timer_delete_sync(&utask->ri_timer);
1985 
1986 	ri = utask->return_instances;
1987 	while (ri) {
1988 		ri_next = ri->next;
1989 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
1990 		ri = ri_next;
1991 	}
1992 
1993 	/* free_ret_instance() above might add to ri_pool, so this loop should come last */
1994 	ri = utask->ri_pool;
1995 	while (ri) {
1996 		ri_next = ri->next;
1997 		ri_free(ri);
1998 		ri = ri_next;
1999 	}
2000 
2001 	kfree(utask);
2002 }
2003 
2004 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2005 
2006 #define for_each_ret_instance_rcu(pos, head) \
2007 	for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2008 
ri_timer(struct timer_list * timer)2009 static void ri_timer(struct timer_list *timer)
2010 {
2011 	struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2012 	struct return_instance *ri;
2013 
2014 	/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2015 	guard(srcu)(&uretprobes_srcu);
2016 	/* RCU protects return_instance from freeing. */
2017 	guard(rcu)();
2018 
2019 	write_seqcount_begin(&utask->ri_seqcount);
2020 
2021 	for_each_ret_instance_rcu(ri, utask->return_instances)
2022 		hprobe_expire(&ri->hprobe, false);
2023 
2024 	write_seqcount_end(&utask->ri_seqcount);
2025 }
2026 
alloc_utask(void)2027 static struct uprobe_task *alloc_utask(void)
2028 {
2029 	struct uprobe_task *utask;
2030 
2031 	utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2032 	if (!utask)
2033 		return NULL;
2034 
2035 	timer_setup(&utask->ri_timer, ri_timer, 0);
2036 	seqcount_init(&utask->ri_seqcount);
2037 
2038 	return utask;
2039 }
2040 
2041 /*
2042  * Allocate a uprobe_task object for the task if necessary.
2043  * Called when the thread hits a breakpoint.
2044  *
2045  * Returns:
2046  * - pointer to new uprobe_task on success
2047  * - NULL otherwise
2048  */
get_utask(void)2049 static struct uprobe_task *get_utask(void)
2050 {
2051 	if (!current->utask)
2052 		current->utask = alloc_utask();
2053 	return current->utask;
2054 }
2055 
alloc_return_instance(struct uprobe_task * utask)2056 static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2057 {
2058 	struct return_instance *ri;
2059 
2060 	ri = ri_pool_pop(utask);
2061 	if (ri)
2062 		return ri;
2063 
2064 	ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2065 	if (!ri)
2066 		return ZERO_SIZE_PTR;
2067 
2068 	return ri;
2069 }
2070 
dup_return_instance(struct return_instance * old)2071 static struct return_instance *dup_return_instance(struct return_instance *old)
2072 {
2073 	struct return_instance *ri;
2074 
2075 	ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2076 	if (!ri)
2077 		return NULL;
2078 
2079 	if (unlikely(old->cons_cnt > 1)) {
2080 		ri->extra_consumers = kmemdup(old->extra_consumers,
2081 					      sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2082 					      GFP_KERNEL);
2083 		if (!ri->extra_consumers) {
2084 			kfree(ri);
2085 			return NULL;
2086 		}
2087 	}
2088 
2089 	return ri;
2090 }
2091 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)2092 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2093 {
2094 	struct uprobe_task *n_utask;
2095 	struct return_instance **p, *o, *n;
2096 	struct uprobe *uprobe;
2097 
2098 	n_utask = alloc_utask();
2099 	if (!n_utask)
2100 		return -ENOMEM;
2101 	t->utask = n_utask;
2102 
2103 	/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2104 	guard(srcu)(&uretprobes_srcu);
2105 
2106 	p = &n_utask->return_instances;
2107 	for (o = o_utask->return_instances; o; o = o->next) {
2108 		n = dup_return_instance(o);
2109 		if (!n)
2110 			return -ENOMEM;
2111 
2112 		/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2113 		uprobe = hprobe_expire(&o->hprobe, true);
2114 
2115 		/*
2116 		 * New utask will have stable properly refcounted uprobe or
2117 		 * NULL. Even if we failed to get refcounted uprobe, we still
2118 		 * need to preserve full set of return_instances for proper
2119 		 * uretprobe handling and nesting in forked task.
2120 		 */
2121 		hprobe_init_stable(&n->hprobe, uprobe);
2122 
2123 		n->next = NULL;
2124 		rcu_assign_pointer(*p, n);
2125 		p = &n->next;
2126 
2127 		n_utask->depth++;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
dup_xol_work(struct callback_head * work)2133 static void dup_xol_work(struct callback_head *work)
2134 {
2135 	if (current->flags & PF_EXITING)
2136 		return;
2137 
2138 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
2139 			!fatal_signal_pending(current))
2140 		uprobe_warn(current, "dup xol area");
2141 }
2142 
2143 /*
2144  * Called in context of a new clone/fork from copy_process.
2145  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)2146 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2147 {
2148 	struct uprobe_task *utask = current->utask;
2149 	struct mm_struct *mm = current->mm;
2150 	struct xol_area *area;
2151 
2152 	t->utask = NULL;
2153 
2154 	if (!utask || !utask->return_instances)
2155 		return;
2156 
2157 	if (mm == t->mm && !(flags & CLONE_VFORK))
2158 		return;
2159 
2160 	if (dup_utask(t, utask))
2161 		return uprobe_warn(t, "dup ret instances");
2162 
2163 	/* The task can fork() after dup_xol_work() fails */
2164 	area = mm->uprobes_state.xol_area;
2165 	if (!area)
2166 		return uprobe_warn(t, "dup xol area");
2167 
2168 	if (mm == t->mm)
2169 		return;
2170 
2171 	t->utask->dup_xol_addr = area->vaddr;
2172 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2173 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2174 }
2175 
2176 /*
2177  * Current area->vaddr notion assume the trampoline address is always
2178  * equal area->vaddr.
2179  *
2180  * Returns -1 in case the xol_area is not allocated.
2181  */
uprobe_get_trampoline_vaddr(void)2182 unsigned long uprobe_get_trampoline_vaddr(void)
2183 {
2184 	unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2185 	struct xol_area *area;
2186 
2187 	/* Pairs with xol_add_vma() smp_store_release() */
2188 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2189 	if (area)
2190 		trampoline_vaddr = area->vaddr;
2191 
2192 	return trampoline_vaddr;
2193 }
2194 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)2195 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2196 					struct pt_regs *regs)
2197 {
2198 	struct return_instance *ri = utask->return_instances, *ri_next;
2199 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2200 
2201 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2202 		ri_next = ri->next;
2203 		rcu_assign_pointer(utask->return_instances, ri_next);
2204 		utask->depth--;
2205 
2206 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2207 		ri = ri_next;
2208 	}
2209 }
2210 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs,struct return_instance * ri)2211 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2212 			      struct return_instance *ri)
2213 {
2214 	struct uprobe_task *utask = current->utask;
2215 	unsigned long orig_ret_vaddr, trampoline_vaddr;
2216 	bool chained;
2217 	int srcu_idx;
2218 
2219 	if (!get_xol_area())
2220 		goto free;
2221 
2222 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
2223 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2224 				" nestedness limit pid/tgid=%d/%d\n",
2225 				current->pid, current->tgid);
2226 		goto free;
2227 	}
2228 
2229 	trampoline_vaddr = uprobe_get_trampoline_vaddr();
2230 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2231 	if (orig_ret_vaddr == -1)
2232 		goto free;
2233 
2234 	/* drop the entries invalidated by longjmp() */
2235 	chained = (orig_ret_vaddr == trampoline_vaddr);
2236 	cleanup_return_instances(utask, chained, regs);
2237 
2238 	/*
2239 	 * We don't want to keep trampoline address in stack, rather keep the
2240 	 * original return address of first caller thru all the consequent
2241 	 * instances. This also makes breakpoint unwrapping easier.
2242 	 */
2243 	if (chained) {
2244 		if (!utask->return_instances) {
2245 			/*
2246 			 * This situation is not possible. Likely we have an
2247 			 * attack from user-space.
2248 			 */
2249 			uprobe_warn(current, "handle tail call");
2250 			goto free;
2251 		}
2252 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2253 	}
2254 
2255 	/* __srcu_read_lock() because SRCU lock survives switch to user space */
2256 	srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2257 
2258 	ri->func = instruction_pointer(regs);
2259 	ri->stack = user_stack_pointer(regs);
2260 	ri->orig_ret_vaddr = orig_ret_vaddr;
2261 	ri->chained = chained;
2262 
2263 	utask->depth++;
2264 
2265 	hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2266 	ri->next = utask->return_instances;
2267 	rcu_assign_pointer(utask->return_instances, ri);
2268 
2269 	mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2270 
2271 	return;
2272 free:
2273 	ri_free(ri);
2274 }
2275 
2276 /* Prepare to single-step probed instruction out of line. */
2277 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2278 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2279 {
2280 	struct uprobe_task *utask = current->utask;
2281 	int err;
2282 
2283 	if (!try_get_uprobe(uprobe))
2284 		return -EINVAL;
2285 
2286 	if (!xol_get_insn_slot(uprobe, utask)) {
2287 		err = -ENOMEM;
2288 		goto err_out;
2289 	}
2290 
2291 	utask->vaddr = bp_vaddr;
2292 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2293 	if (unlikely(err)) {
2294 		xol_free_insn_slot(utask);
2295 		goto err_out;
2296 	}
2297 
2298 	utask->active_uprobe = uprobe;
2299 	utask->state = UTASK_SSTEP;
2300 	return 0;
2301 err_out:
2302 	put_uprobe(uprobe);
2303 	return err;
2304 }
2305 
2306 /*
2307  * If we are singlestepping, then ensure this thread is not connected to
2308  * non-fatal signals until completion of singlestep.  When xol insn itself
2309  * triggers the signal,  restart the original insn even if the task is
2310  * already SIGKILL'ed (since coredump should report the correct ip).  This
2311  * is even more important if the task has a handler for SIGSEGV/etc, The
2312  * _same_ instruction should be repeated again after return from the signal
2313  * handler, and SSTEP can never finish in this case.
2314  */
uprobe_deny_signal(void)2315 bool uprobe_deny_signal(void)
2316 {
2317 	struct task_struct *t = current;
2318 	struct uprobe_task *utask = t->utask;
2319 
2320 	if (likely(!utask || !utask->active_uprobe))
2321 		return false;
2322 
2323 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2324 
2325 	if (task_sigpending(t)) {
2326 		utask->signal_denied = true;
2327 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2328 
2329 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2330 			utask->state = UTASK_SSTEP_TRAPPED;
2331 			set_tsk_thread_flag(t, TIF_UPROBE);
2332 		}
2333 	}
2334 
2335 	return true;
2336 }
2337 
mmf_recalc_uprobes(struct mm_struct * mm)2338 static void mmf_recalc_uprobes(struct mm_struct *mm)
2339 {
2340 	VMA_ITERATOR(vmi, mm, 0);
2341 	struct vm_area_struct *vma;
2342 
2343 	for_each_vma(vmi, vma) {
2344 		if (!valid_vma(vma, false))
2345 			continue;
2346 		/*
2347 		 * This is not strictly accurate, we can race with
2348 		 * uprobe_unregister() and see the already removed
2349 		 * uprobe if delete_uprobe() was not yet called.
2350 		 * Or this uprobe can be filtered out.
2351 		 */
2352 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2353 			return;
2354 	}
2355 
2356 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2357 }
2358 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2359 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2360 {
2361 	struct page *page;
2362 	uprobe_opcode_t opcode;
2363 	int result;
2364 
2365 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2366 		return -EINVAL;
2367 
2368 	pagefault_disable();
2369 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2370 	pagefault_enable();
2371 
2372 	if (likely(result == 0))
2373 		goto out;
2374 
2375 	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2376 	if (result < 0)
2377 		return result;
2378 
2379 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2380 	put_page(page);
2381  out:
2382 	/* This needs to return true for any variant of the trap insn */
2383 	return is_trap_insn(&opcode);
2384 }
2385 
find_active_uprobe_speculative(unsigned long bp_vaddr)2386 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2387 {
2388 	struct mm_struct *mm = current->mm;
2389 	struct uprobe *uprobe = NULL;
2390 	struct vm_area_struct *vma;
2391 	struct file *vm_file;
2392 	loff_t offset;
2393 	unsigned int seq;
2394 
2395 	guard(rcu)();
2396 
2397 	if (!mmap_lock_speculate_try_begin(mm, &seq))
2398 		return NULL;
2399 
2400 	vma = vma_lookup(mm, bp_vaddr);
2401 	if (!vma)
2402 		return NULL;
2403 
2404 	/*
2405 	 * vm_file memory can be reused for another instance of struct file,
2406 	 * but can't be freed from under us, so it's safe to read fields from
2407 	 * it, even if the values are some garbage values; ultimately
2408 	 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2409 	 * that whatever we speculatively found is correct
2410 	 */
2411 	vm_file = READ_ONCE(vma->vm_file);
2412 	if (!vm_file)
2413 		return NULL;
2414 
2415 	offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2416 	uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2417 	if (!uprobe)
2418 		return NULL;
2419 
2420 	/* now double check that nothing about MM changed */
2421 	if (mmap_lock_speculate_retry(mm, seq))
2422 		return NULL;
2423 
2424 	return uprobe;
2425 }
2426 
2427 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2428 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2429 {
2430 	struct mm_struct *mm = current->mm;
2431 	struct uprobe *uprobe = NULL;
2432 	struct vm_area_struct *vma;
2433 
2434 	uprobe = find_active_uprobe_speculative(bp_vaddr);
2435 	if (uprobe)
2436 		return uprobe;
2437 
2438 	mmap_read_lock(mm);
2439 	vma = vma_lookup(mm, bp_vaddr);
2440 	if (vma) {
2441 		if (vma->vm_file) {
2442 			struct inode *inode = file_inode(vma->vm_file);
2443 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2444 
2445 			uprobe = find_uprobe_rcu(inode, offset);
2446 		}
2447 
2448 		if (!uprobe)
2449 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2450 	} else {
2451 		*is_swbp = -EFAULT;
2452 	}
2453 
2454 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2455 		mmf_recalc_uprobes(mm);
2456 	mmap_read_unlock(mm);
2457 
2458 	return uprobe;
2459 }
2460 
push_consumer(struct return_instance * ri,__u64 id,__u64 cookie)2461 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2462 {
2463 	struct return_consumer *ric;
2464 
2465 	if (unlikely(ri == ZERO_SIZE_PTR))
2466 		return ri;
2467 
2468 	if (unlikely(ri->cons_cnt > 0)) {
2469 		ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2470 		if (!ric) {
2471 			ri_free(ri);
2472 			return ZERO_SIZE_PTR;
2473 		}
2474 		ri->extra_consumers = ric;
2475 	}
2476 
2477 	ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2478 	ric->id = id;
2479 	ric->cookie = cookie;
2480 
2481 	ri->cons_cnt++;
2482 	return ri;
2483 }
2484 
2485 static struct return_consumer *
return_consumer_find(struct return_instance * ri,int * iter,int id)2486 return_consumer_find(struct return_instance *ri, int *iter, int id)
2487 {
2488 	struct return_consumer *ric;
2489 	int idx;
2490 
2491 	for (idx = *iter; idx < ri->cons_cnt; idx++)
2492 	{
2493 		ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2494 		if (ric->id == id) {
2495 			*iter = idx + 1;
2496 			return ric;
2497 		}
2498 	}
2499 
2500 	return NULL;
2501 }
2502 
ignore_ret_handler(int rc)2503 static bool ignore_ret_handler(int rc)
2504 {
2505 	return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2506 }
2507 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2508 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2509 {
2510 	struct uprobe_consumer *uc;
2511 	bool has_consumers = false, remove = true;
2512 	struct return_instance *ri = NULL;
2513 	struct uprobe_task *utask = current->utask;
2514 
2515 	utask->auprobe = &uprobe->arch;
2516 
2517 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2518 		bool session = uc->handler && uc->ret_handler;
2519 		__u64 cookie = 0;
2520 		int rc = 0;
2521 
2522 		if (uc->handler) {
2523 			rc = uc->handler(uc, regs, &cookie);
2524 			WARN(rc < 0 || rc > 2,
2525 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2526 		}
2527 
2528 		remove &= rc == UPROBE_HANDLER_REMOVE;
2529 		has_consumers = true;
2530 
2531 		if (!uc->ret_handler || ignore_ret_handler(rc))
2532 			continue;
2533 
2534 		if (!ri)
2535 			ri = alloc_return_instance(utask);
2536 
2537 		if (session)
2538 			ri = push_consumer(ri, uc->id, cookie);
2539 	}
2540 	utask->auprobe = NULL;
2541 
2542 	if (!ZERO_OR_NULL_PTR(ri))
2543 		prepare_uretprobe(uprobe, regs, ri);
2544 
2545 	if (remove && has_consumers) {
2546 		down_read(&uprobe->register_rwsem);
2547 
2548 		/* re-check that removal is still required, this time under lock */
2549 		if (!filter_chain(uprobe, current->mm)) {
2550 			WARN_ON(!uprobe_is_active(uprobe));
2551 			unapply_uprobe(uprobe, current->mm);
2552 		}
2553 
2554 		up_read(&uprobe->register_rwsem);
2555 	}
2556 }
2557 
2558 static void
handle_uretprobe_chain(struct return_instance * ri,struct uprobe * uprobe,struct pt_regs * regs)2559 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2560 {
2561 	struct return_consumer *ric;
2562 	struct uprobe_consumer *uc;
2563 	int ric_idx = 0;
2564 
2565 	/* all consumers unsubscribed meanwhile */
2566 	if (unlikely(!uprobe))
2567 		return;
2568 
2569 	rcu_read_lock_trace();
2570 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2571 		bool session = uc->handler && uc->ret_handler;
2572 
2573 		if (uc->ret_handler) {
2574 			ric = return_consumer_find(ri, &ric_idx, uc->id);
2575 			if (!session || ric)
2576 				uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2577 		}
2578 	}
2579 	rcu_read_unlock_trace();
2580 }
2581 
find_next_ret_chain(struct return_instance * ri)2582 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2583 {
2584 	bool chained;
2585 
2586 	do {
2587 		chained = ri->chained;
2588 		ri = ri->next;	/* can't be NULL if chained */
2589 	} while (chained);
2590 
2591 	return ri;
2592 }
2593 
uprobe_handle_trampoline(struct pt_regs * regs)2594 void uprobe_handle_trampoline(struct pt_regs *regs)
2595 {
2596 	struct uprobe_task *utask;
2597 	struct return_instance *ri, *ri_next, *next_chain;
2598 	struct uprobe *uprobe;
2599 	enum hprobe_state hstate;
2600 	bool valid;
2601 
2602 	utask = current->utask;
2603 	if (!utask)
2604 		goto sigill;
2605 
2606 	ri = utask->return_instances;
2607 	if (!ri)
2608 		goto sigill;
2609 
2610 	do {
2611 		/*
2612 		 * We should throw out the frames invalidated by longjmp().
2613 		 * If this chain is valid, then the next one should be alive
2614 		 * or NULL; the latter case means that nobody but ri->func
2615 		 * could hit this trampoline on return. TODO: sigaltstack().
2616 		 */
2617 		next_chain = find_next_ret_chain(ri);
2618 		valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2619 
2620 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2621 		do {
2622 			/* pop current instance from the stack of pending return instances,
2623 			 * as it's not pending anymore: we just fixed up original
2624 			 * instruction pointer in regs and are about to call handlers;
2625 			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2626 			 * captured stack traces from uretprobe handlers, in which pending
2627 			 * trampoline addresses on the stack are replaced with correct
2628 			 * original return addresses
2629 			 */
2630 			ri_next = ri->next;
2631 			rcu_assign_pointer(utask->return_instances, ri_next);
2632 			utask->depth--;
2633 
2634 			uprobe = hprobe_consume(&ri->hprobe, &hstate);
2635 			if (valid)
2636 				handle_uretprobe_chain(ri, uprobe, regs);
2637 			hprobe_finalize(&ri->hprobe, hstate);
2638 
2639 			/* We already took care of hprobe, no need to waste more time on that. */
2640 			free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2641 			ri = ri_next;
2642 		} while (ri != next_chain);
2643 	} while (!valid);
2644 
2645 	return;
2646 
2647 sigill:
2648 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2649 	force_sig(SIGILL);
2650 }
2651 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2652 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2653 {
2654 	return false;
2655 }
2656 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2657 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2658 					struct pt_regs *regs)
2659 {
2660 	return true;
2661 }
2662 
2663 /*
2664  * Run handler and ask thread to singlestep.
2665  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2666  */
handle_swbp(struct pt_regs * regs)2667 static void handle_swbp(struct pt_regs *regs)
2668 {
2669 	struct uprobe *uprobe;
2670 	unsigned long bp_vaddr;
2671 	int is_swbp;
2672 
2673 	bp_vaddr = uprobe_get_swbp_addr(regs);
2674 	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2675 		return uprobe_handle_trampoline(regs);
2676 
2677 	rcu_read_lock_trace();
2678 
2679 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2680 	if (!uprobe) {
2681 		if (is_swbp > 0) {
2682 			/* No matching uprobe; signal SIGTRAP. */
2683 			force_sig(SIGTRAP);
2684 		} else {
2685 			/*
2686 			 * Either we raced with uprobe_unregister() or we can't
2687 			 * access this memory. The latter is only possible if
2688 			 * another thread plays with our ->mm. In both cases
2689 			 * we can simply restart. If this vma was unmapped we
2690 			 * can pretend this insn was not executed yet and get
2691 			 * the (correct) SIGSEGV after restart.
2692 			 */
2693 			instruction_pointer_set(regs, bp_vaddr);
2694 		}
2695 		goto out;
2696 	}
2697 
2698 	/* change it in advance for ->handler() and restart */
2699 	instruction_pointer_set(regs, bp_vaddr);
2700 
2701 	/*
2702 	 * TODO: move copy_insn/etc into _register and remove this hack.
2703 	 * After we hit the bp, _unregister + _register can install the
2704 	 * new and not-yet-analyzed uprobe at the same address, restart.
2705 	 */
2706 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2707 		goto out;
2708 
2709 	/*
2710 	 * Pairs with the smp_wmb() in prepare_uprobe().
2711 	 *
2712 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2713 	 * we must also see the stores to &uprobe->arch performed by the
2714 	 * prepare_uprobe() call.
2715 	 */
2716 	smp_rmb();
2717 
2718 	/* Tracing handlers use ->utask to communicate with fetch methods */
2719 	if (!get_utask())
2720 		goto out;
2721 
2722 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2723 		goto out;
2724 
2725 	handler_chain(uprobe, regs);
2726 
2727 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2728 		goto out;
2729 
2730 	if (pre_ssout(uprobe, regs, bp_vaddr))
2731 		goto out;
2732 
2733 out:
2734 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2735 	rcu_read_unlock_trace();
2736 }
2737 
2738 /*
2739  * Perform required fix-ups and disable singlestep.
2740  * Allow pending signals to take effect.
2741  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2742 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2743 {
2744 	struct uprobe *uprobe;
2745 	int err = 0;
2746 
2747 	uprobe = utask->active_uprobe;
2748 	if (utask->state == UTASK_SSTEP_ACK)
2749 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2750 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2751 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2752 	else
2753 		WARN_ON_ONCE(1);
2754 
2755 	put_uprobe(uprobe);
2756 	utask->active_uprobe = NULL;
2757 	utask->state = UTASK_RUNNING;
2758 	xol_free_insn_slot(utask);
2759 
2760 	if (utask->signal_denied) {
2761 		set_thread_flag(TIF_SIGPENDING);
2762 		utask->signal_denied = false;
2763 	}
2764 
2765 	if (unlikely(err)) {
2766 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2767 		force_sig(SIGILL);
2768 	}
2769 }
2770 
2771 /*
2772  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2773  * allows the thread to return from interrupt. After that handle_swbp()
2774  * sets utask->active_uprobe.
2775  *
2776  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2777  * and allows the thread to return from interrupt.
2778  *
2779  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2780  * uprobe_notify_resume().
2781  */
uprobe_notify_resume(struct pt_regs * regs)2782 void uprobe_notify_resume(struct pt_regs *regs)
2783 {
2784 	struct uprobe_task *utask;
2785 
2786 	clear_thread_flag(TIF_UPROBE);
2787 
2788 	utask = current->utask;
2789 	if (utask && utask->active_uprobe)
2790 		handle_singlestep(utask, regs);
2791 	else
2792 		handle_swbp(regs);
2793 }
2794 
2795 /*
2796  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2797  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2798  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2799 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2800 {
2801 	if (!current->mm)
2802 		return 0;
2803 
2804 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2805 	    (!current->utask || !current->utask->return_instances))
2806 		return 0;
2807 
2808 	set_thread_flag(TIF_UPROBE);
2809 	return 1;
2810 }
2811 
2812 /*
2813  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2814  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2815  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2816 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2817 {
2818 	struct uprobe_task *utask = current->utask;
2819 
2820 	if (!current->mm || !utask || !utask->active_uprobe)
2821 		/* task is currently not uprobed */
2822 		return 0;
2823 
2824 	utask->state = UTASK_SSTEP_ACK;
2825 	set_thread_flag(TIF_UPROBE);
2826 	return 1;
2827 }
2828 
2829 static struct notifier_block uprobe_exception_nb = {
2830 	.notifier_call		= arch_uprobe_exception_notify,
2831 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2832 };
2833 
uprobes_init(void)2834 void __init uprobes_init(void)
2835 {
2836 	int i;
2837 
2838 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2839 		mutex_init(&uprobes_mmap_mutex[i]);
2840 
2841 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2842 }
2843