xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22 #include "led.h"
23 
24 bool rtw_disable_lps_deep_mode;
25 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
26 bool rtw_bf_support = true;
27 unsigned int rtw_debug_mask;
28 EXPORT_SYMBOL(rtw_debug_mask);
29 /* EDCCA is enabled during normal behavior. For debugging purpose in
30  * a noisy environment, it can be disabled via edcca debugfs. Because
31  * all rtw88 devices will probably be affected if environment is noisy,
32  * rtw_edcca_enabled is just declared by driver instead of by device.
33  * So, turning it off will take effect for all rtw88 devices before
34  * there is a tough reason to maintain rtw_edcca_enabled by device.
35  */
36 bool rtw_edcca_enabled = true;
37 
38 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
39 module_param_named(support_bf, rtw_bf_support, bool, 0644);
40 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
41 
42 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
43 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
44 MODULE_PARM_DESC(debug_mask, "Debugging mask");
45 
46 static struct ieee80211_channel rtw_channeltable_2g[] = {
47 	{.center_freq = 2412, .hw_value = 1,},
48 	{.center_freq = 2417, .hw_value = 2,},
49 	{.center_freq = 2422, .hw_value = 3,},
50 	{.center_freq = 2427, .hw_value = 4,},
51 	{.center_freq = 2432, .hw_value = 5,},
52 	{.center_freq = 2437, .hw_value = 6,},
53 	{.center_freq = 2442, .hw_value = 7,},
54 	{.center_freq = 2447, .hw_value = 8,},
55 	{.center_freq = 2452, .hw_value = 9,},
56 	{.center_freq = 2457, .hw_value = 10,},
57 	{.center_freq = 2462, .hw_value = 11,},
58 	{.center_freq = 2467, .hw_value = 12,},
59 	{.center_freq = 2472, .hw_value = 13,},
60 	{.center_freq = 2484, .hw_value = 14,},
61 };
62 
63 static struct ieee80211_channel rtw_channeltable_5g[] = {
64 	{.center_freq = 5180, .hw_value = 36,},
65 	{.center_freq = 5200, .hw_value = 40,},
66 	{.center_freq = 5220, .hw_value = 44,},
67 	{.center_freq = 5240, .hw_value = 48,},
68 	{.center_freq = 5260, .hw_value = 52,},
69 	{.center_freq = 5280, .hw_value = 56,},
70 	{.center_freq = 5300, .hw_value = 60,},
71 	{.center_freq = 5320, .hw_value = 64,},
72 	{.center_freq = 5500, .hw_value = 100,},
73 	{.center_freq = 5520, .hw_value = 104,},
74 	{.center_freq = 5540, .hw_value = 108,},
75 	{.center_freq = 5560, .hw_value = 112,},
76 	{.center_freq = 5580, .hw_value = 116,},
77 	{.center_freq = 5600, .hw_value = 120,},
78 	{.center_freq = 5620, .hw_value = 124,},
79 	{.center_freq = 5640, .hw_value = 128,},
80 	{.center_freq = 5660, .hw_value = 132,},
81 	{.center_freq = 5680, .hw_value = 136,},
82 	{.center_freq = 5700, .hw_value = 140,},
83 	{.center_freq = 5720, .hw_value = 144,},
84 	{.center_freq = 5745, .hw_value = 149,},
85 	{.center_freq = 5765, .hw_value = 153,},
86 	{.center_freq = 5785, .hw_value = 157,},
87 	{.center_freq = 5805, .hw_value = 161,},
88 	{.center_freq = 5825, .hw_value = 165,
89 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
90 };
91 
92 static struct ieee80211_rate rtw_ratetable[] = {
93 	{.bitrate = 10, .hw_value = 0x00,},
94 	{.bitrate = 20, .hw_value = 0x01,},
95 	{.bitrate = 55, .hw_value = 0x02,},
96 	{.bitrate = 110, .hw_value = 0x03,},
97 	{.bitrate = 60, .hw_value = 0x04,},
98 	{.bitrate = 90, .hw_value = 0x05,},
99 	{.bitrate = 120, .hw_value = 0x06,},
100 	{.bitrate = 180, .hw_value = 0x07,},
101 	{.bitrate = 240, .hw_value = 0x08,},
102 	{.bitrate = 360, .hw_value = 0x09,},
103 	{.bitrate = 480, .hw_value = 0x0a,},
104 	{.bitrate = 540, .hw_value = 0x0b,},
105 };
106 
107 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
108 	{
109 		.max = 1,
110 		.types = BIT(NL80211_IFTYPE_STATION),
111 	},
112 	{
113 		.max = 1,
114 		.types = BIT(NL80211_IFTYPE_AP),
115 	}
116 };
117 
118 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
119 	{
120 		.limits = rtw_iface_limits,
121 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
122 		.max_interfaces = 2,
123 		.num_different_channels = 1,
124 	}
125 };
126 
rtw_desc_to_bitrate(u8 desc_rate)127 u16 rtw_desc_to_bitrate(u8 desc_rate)
128 {
129 	struct ieee80211_rate rate;
130 
131 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
132 		return 0;
133 
134 	rate = rtw_ratetable[desc_rate];
135 
136 	return rate.bitrate;
137 }
138 
139 static const struct ieee80211_supported_band rtw_band_2ghz = {
140 	.band = NL80211_BAND_2GHZ,
141 
142 	.channels = rtw_channeltable_2g,
143 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
144 
145 	.bitrates = rtw_ratetable,
146 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
147 
148 	.ht_cap = {0},
149 	.vht_cap = {0},
150 };
151 
152 static const struct ieee80211_supported_band rtw_band_5ghz = {
153 	.band = NL80211_BAND_5GHZ,
154 
155 	.channels = rtw_channeltable_5g,
156 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
157 
158 	/* 5G has no CCK rates */
159 	.bitrates = rtw_ratetable + 4,
160 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
161 
162 	.ht_cap = {0},
163 	.vht_cap = {0},
164 };
165 
166 struct rtw_watch_dog_iter_data {
167 	struct rtw_dev *rtwdev;
168 	struct rtw_vif *rtwvif;
169 };
170 
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)171 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
172 {
173 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
174 	u8 fix_rate_enable = 0;
175 	u8 new_csi_rate_idx;
176 
177 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
178 	    rtwvif->bfee.role != RTW_BFEE_MU)
179 		return;
180 
181 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
182 			      bf_info->cur_csi_rpt_rate,
183 			      fix_rate_enable, &new_csi_rate_idx);
184 
185 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
186 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
187 }
188 
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)189 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
190 {
191 	struct rtw_watch_dog_iter_data *iter_data = data;
192 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
193 
194 	if (vif->type == NL80211_IFTYPE_STATION)
195 		if (vif->cfg.assoc)
196 			iter_data->rtwvif = rtwvif;
197 
198 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
199 
200 	rtwvif->stats.tx_unicast = 0;
201 	rtwvif->stats.rx_unicast = 0;
202 	rtwvif->stats.tx_cnt = 0;
203 	rtwvif->stats.rx_cnt = 0;
204 }
205 
rtw_sw_beacon_loss_check(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,int received_beacons)206 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
207 				     struct rtw_vif *rtwvif, int received_beacons)
208 {
209 	int watchdog_delay = 2000000 / 1024; /* TU */
210 	int beacon_int, expected_beacons;
211 
212 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
213 		return;
214 
215 	beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
216 	expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
217 
218 	rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
219 }
220 
221 /* process TX/RX statistics periodically for hardware,
222  * the information helps hardware to enhance performance
223  */
rtw_watch_dog_work(struct work_struct * work)224 static void rtw_watch_dog_work(struct work_struct *work)
225 {
226 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
227 					      watch_dog_work.work);
228 	struct rtw_traffic_stats *stats = &rtwdev->stats;
229 	struct rtw_watch_dog_iter_data data = {};
230 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
231 	int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
232 	u32 tx_unicast_mbps, rx_unicast_mbps;
233 	bool ps_active;
234 
235 	mutex_lock(&rtwdev->mutex);
236 
237 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
238 		goto unlock;
239 
240 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
241 				     RTW_WATCH_DOG_DELAY_TIME);
242 
243 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
244 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
245 	else
246 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
247 
248 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
249 		rtw_coex_wl_status_change_notify(rtwdev, 0);
250 
251 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
252 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
253 		ps_active = true;
254 	else
255 		ps_active = false;
256 
257 	tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
258 	rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
259 
260 	ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
261 	ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
262 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
263 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
264 
265 	/* reset tx/rx statictics */
266 	stats->tx_unicast = 0;
267 	stats->rx_unicast = 0;
268 	stats->tx_cnt = 0;
269 	stats->rx_cnt = 0;
270 
271 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
272 		goto unlock;
273 
274 	/* make sure BB/RF is working for dynamic mech */
275 	rtw_leave_lps(rtwdev);
276 	rtw_coex_wl_status_check(rtwdev);
277 	rtw_coex_query_bt_hid_list(rtwdev);
278 	rtw_coex_active_query_bt_info(rtwdev);
279 
280 	rtw_phy_dynamic_mechanism(rtwdev);
281 
282 	rtw_hci_dynamic_rx_agg(rtwdev,
283 			       tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
284 
285 	data.rtwdev = rtwdev;
286 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
287 	 * to avoid taking local->iflist_mtx mutex
288 	 */
289 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
290 
291 	rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
292 
293 	/* fw supports only one station associated to enter lps, if there are
294 	 * more than two stations associated to the AP, then we can not enter
295 	 * lps, because fw does not handle the overlapped beacon interval
296 	 *
297 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
298 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
299 	 * get that vif and check if device is having traffic more than the
300 	 * threshold.
301 	 */
302 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
303 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
304 		rtw_enter_lps(rtwdev, data.rtwvif->port);
305 
306 	rtwdev->watch_dog_cnt++;
307 
308 unlock:
309 	mutex_unlock(&rtwdev->mutex);
310 }
311 
rtw_c2h_work(struct work_struct * work)312 static void rtw_c2h_work(struct work_struct *work)
313 {
314 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
315 	struct sk_buff *skb, *tmp;
316 
317 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
318 		skb_unlink(skb, &rtwdev->c2h_queue);
319 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
320 		dev_kfree_skb_any(skb);
321 	}
322 }
323 
rtw_ips_work(struct work_struct * work)324 static void rtw_ips_work(struct work_struct *work)
325 {
326 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
327 
328 	mutex_lock(&rtwdev->mutex);
329 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
330 		rtw_enter_ips(rtwdev);
331 	mutex_unlock(&rtwdev->mutex);
332 }
333 
rtw_sta_rc_work(struct work_struct * work)334 static void rtw_sta_rc_work(struct work_struct *work)
335 {
336 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
337 					       rc_work);
338 	struct rtw_dev *rtwdev = si->rtwdev;
339 
340 	mutex_lock(&rtwdev->mutex);
341 	rtw_update_sta_info(rtwdev, si, true);
342 	mutex_unlock(&rtwdev->mutex);
343 }
344 
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)345 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
346 		struct ieee80211_vif *vif)
347 {
348 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
349 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
350 	int i;
351 
352 	if (vif->type == NL80211_IFTYPE_STATION) {
353 		si->mac_id = rtwvif->mac_id;
354 	} else {
355 		si->mac_id = rtw_acquire_macid(rtwdev);
356 		if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
357 			return -ENOSPC;
358 	}
359 
360 	si->rtwdev = rtwdev;
361 	si->sta = sta;
362 	si->vif = vif;
363 	si->init_ra_lv = 1;
364 	ewma_rssi_init(&si->avg_rssi);
365 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
366 		rtw_txq_init(rtwdev, sta->txq[i]);
367 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
368 
369 	rtw_update_sta_info(rtwdev, si, true);
370 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
371 
372 	rtwdev->sta_cnt++;
373 	rtwdev->beacon_loss = false;
374 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
375 		sta->addr, si->mac_id);
376 
377 	return 0;
378 }
379 
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)380 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
381 		    bool fw_exist)
382 {
383 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
384 	struct ieee80211_vif *vif = si->vif;
385 	int i;
386 
387 	cancel_work_sync(&si->rc_work);
388 
389 	if (vif->type != NL80211_IFTYPE_STATION)
390 		rtw_release_macid(rtwdev, si->mac_id);
391 	if (fw_exist)
392 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
393 
394 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
395 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
396 
397 	kfree(si->mask);
398 
399 	rtwdev->sta_cnt--;
400 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
401 		sta->addr, si->mac_id);
402 }
403 
404 struct rtw_fwcd_hdr {
405 	u32 item;
406 	u32 size;
407 	u32 padding1;
408 	u32 padding2;
409 } __packed;
410 
rtw_fwcd_prep(struct rtw_dev * rtwdev)411 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
412 {
413 	const struct rtw_chip_info *chip = rtwdev->chip;
414 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
415 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
416 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
417 	u8 i;
418 
419 	if (segs) {
420 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
421 
422 		for (i = 0; i < segs->num; i++)
423 			prep_size += segs->segs[i];
424 	}
425 
426 	desc->data = vmalloc(prep_size);
427 	if (!desc->data)
428 		return -ENOMEM;
429 
430 	desc->size = prep_size;
431 	desc->next = desc->data;
432 
433 	return 0;
434 }
435 
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)436 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
437 {
438 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
439 	struct rtw_fwcd_hdr *hdr;
440 	u8 *next;
441 
442 	if (!desc->data) {
443 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
444 		return NULL;
445 	}
446 
447 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
448 	if (next - desc->data + size > desc->size) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
450 		return NULL;
451 	}
452 
453 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
454 	hdr->item = item;
455 	hdr->size = size;
456 	hdr->padding1 = 0x01234567;
457 	hdr->padding2 = 0x89abcdef;
458 	desc->next = next + size;
459 
460 	return next;
461 }
462 
rtw_fwcd_dump(struct rtw_dev * rtwdev)463 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
464 {
465 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
466 
467 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
468 
469 	/* Data will be freed after lifetime of device coredump. After calling
470 	 * dev_coredump, data is supposed to be handled by the device coredump
471 	 * framework. Note that a new dump will be discarded if a previous one
472 	 * hasn't been released yet.
473 	 */
474 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
475 }
476 
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)477 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
478 {
479 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
480 
481 	if (free_self) {
482 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
483 		vfree(desc->data);
484 	}
485 
486 	desc->data = NULL;
487 	desc->next = NULL;
488 }
489 
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)490 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
491 {
492 	u32 size = rtwdev->chip->fw_rxff_size;
493 	u32 *buf;
494 	u8 seq;
495 
496 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
497 	if (!buf)
498 		return -ENOMEM;
499 
500 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
501 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
502 		return -EINVAL;
503 	}
504 
505 	if (GET_FW_DUMP_LEN(buf) == 0) {
506 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
507 		return -EINVAL;
508 	}
509 
510 	seq = GET_FW_DUMP_SEQ(buf);
511 	if (seq > 0) {
512 		rtw_dbg(rtwdev, RTW_DBG_FW,
513 			"fw crash dump's seq is wrong: %d\n", seq);
514 		return -EINVAL;
515 	}
516 
517 	return 0;
518 }
519 
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)520 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
521 		u32 fwcd_item)
522 {
523 	u32 rxff = rtwdev->chip->fw_rxff_size;
524 	u32 dump_size, done_size = 0;
525 	u8 *buf;
526 	int ret;
527 
528 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
529 	if (!buf)
530 		return -ENOMEM;
531 
532 	while (size) {
533 		dump_size = size > rxff ? rxff : size;
534 
535 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
536 					  dump_size);
537 		if (ret) {
538 			rtw_err(rtwdev,
539 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
540 				ocp_src, done_size);
541 			return ret;
542 		}
543 
544 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
545 				       dump_size, (u32 *)(buf + done_size));
546 		if (ret) {
547 			rtw_err(rtwdev,
548 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
549 				ocp_src, done_size);
550 			return ret;
551 		}
552 
553 		size -= dump_size;
554 		done_size += dump_size;
555 	}
556 
557 	return 0;
558 }
559 EXPORT_SYMBOL(rtw_dump_fw);
560 
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)561 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
562 {
563 	u8 *buf;
564 	u32 i;
565 
566 	if (addr & 0x3) {
567 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
568 		return -EINVAL;
569 	}
570 
571 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
572 	if (!buf)
573 		return -ENOMEM;
574 
575 	for (i = 0; i < size; i += 4)
576 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
577 
578 	return 0;
579 }
580 EXPORT_SYMBOL(rtw_dump_reg);
581 
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)582 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
583 			   struct ieee80211_bss_conf *conf)
584 {
585 	struct ieee80211_vif *vif = NULL;
586 
587 	if (conf)
588 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
589 
590 	if (conf && vif->cfg.assoc) {
591 		rtwvif->aid = vif->cfg.aid;
592 		rtwvif->net_type = RTW_NET_MGD_LINKED;
593 	} else {
594 		rtwvif->aid = 0;
595 		rtwvif->net_type = RTW_NET_NO_LINK;
596 	}
597 }
598 
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)599 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
600 			       struct ieee80211_vif *vif,
601 			       struct ieee80211_sta *sta,
602 			       struct ieee80211_key_conf *key,
603 			       void *data)
604 {
605 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
606 	struct rtw_sec_desc *sec = &rtwdev->sec;
607 
608 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
609 }
610 
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)611 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
612 {
613 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
614 
615 	if (rtwdev->sta_cnt == 0) {
616 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
617 		return;
618 	}
619 	rtw_sta_remove(rtwdev, sta, false);
620 }
621 
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)622 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
623 {
624 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
625 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
626 
627 	rtw_bf_disassoc(rtwdev, vif, NULL);
628 	rtw_vif_assoc_changed(rtwvif, NULL);
629 	rtw_txq_cleanup(rtwdev, vif->txq);
630 
631 	rtw_release_macid(rtwdev, rtwvif->mac_id);
632 }
633 
rtw_fw_recovery(struct rtw_dev * rtwdev)634 void rtw_fw_recovery(struct rtw_dev *rtwdev)
635 {
636 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
637 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
638 }
639 
__fw_recovery_work(struct rtw_dev * rtwdev)640 static void __fw_recovery_work(struct rtw_dev *rtwdev)
641 {
642 	int ret = 0;
643 
644 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
645 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
646 
647 	ret = rtw_fwcd_prep(rtwdev);
648 	if (ret)
649 		goto free;
650 	ret = rtw_fw_dump_crash_log(rtwdev);
651 	if (ret)
652 		goto free;
653 	ret = rtw_chip_dump_fw_crash(rtwdev);
654 	if (ret)
655 		goto free;
656 
657 	rtw_fwcd_dump(rtwdev);
658 free:
659 	rtw_fwcd_free(rtwdev, !!ret);
660 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
661 
662 	WARN(1, "firmware crash, start reset and recover\n");
663 
664 	rcu_read_lock();
665 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
666 	rcu_read_unlock();
667 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
668 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
669 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
670 	rtw_enter_ips(rtwdev);
671 }
672 
rtw_fw_recovery_work(struct work_struct * work)673 static void rtw_fw_recovery_work(struct work_struct *work)
674 {
675 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
676 					      fw_recovery_work);
677 
678 	mutex_lock(&rtwdev->mutex);
679 	__fw_recovery_work(rtwdev);
680 	mutex_unlock(&rtwdev->mutex);
681 
682 	ieee80211_restart_hw(rtwdev->hw);
683 }
684 
685 struct rtw_txq_ba_iter_data {
686 };
687 
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)688 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
689 {
690 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
691 	int ret;
692 	u8 tid;
693 
694 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
695 	while (tid != IEEE80211_NUM_TIDS) {
696 		clear_bit(tid, si->tid_ba);
697 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
698 		if (ret == -EINVAL) {
699 			struct ieee80211_txq *txq;
700 			struct rtw_txq *rtwtxq;
701 
702 			txq = sta->txq[tid];
703 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
704 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
705 		}
706 
707 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
708 	}
709 }
710 
rtw_txq_ba_work(struct work_struct * work)711 static void rtw_txq_ba_work(struct work_struct *work)
712 {
713 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
714 	struct rtw_txq_ba_iter_data data;
715 
716 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
717 }
718 
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)719 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
720 {
721 	if (IS_CH_2G_BAND(channel))
722 		pkt_stat->band = NL80211_BAND_2GHZ;
723 	else if (IS_CH_5G_BAND(channel))
724 		pkt_stat->band = NL80211_BAND_5GHZ;
725 	else
726 		return;
727 
728 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
729 }
730 EXPORT_SYMBOL(rtw_set_rx_freq_band);
731 
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)732 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
733 {
734 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
735 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
736 }
737 
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)738 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
739 			u8 primary_channel, enum rtw_supported_band band,
740 			enum rtw_bandwidth bandwidth)
741 {
742 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
743 	struct rtw_hal *hal = &rtwdev->hal;
744 	u8 *cch_by_bw = hal->cch_by_bw;
745 	u32 center_freq, primary_freq;
746 	enum rtw_sar_bands sar_band;
747 	u8 primary_channel_idx;
748 
749 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
750 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
751 
752 	/* assign the center channel used while 20M bw is selected */
753 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
754 
755 	/* assign the center channel used while current bw is selected */
756 	cch_by_bw[bandwidth] = center_channel;
757 
758 	switch (bandwidth) {
759 	case RTW_CHANNEL_WIDTH_20:
760 	default:
761 		primary_channel_idx = RTW_SC_DONT_CARE;
762 		break;
763 	case RTW_CHANNEL_WIDTH_40:
764 		if (primary_freq > center_freq)
765 			primary_channel_idx = RTW_SC_20_UPPER;
766 		else
767 			primary_channel_idx = RTW_SC_20_LOWER;
768 		break;
769 	case RTW_CHANNEL_WIDTH_80:
770 		if (primary_freq > center_freq) {
771 			if (primary_freq - center_freq == 10)
772 				primary_channel_idx = RTW_SC_20_UPPER;
773 			else
774 				primary_channel_idx = RTW_SC_20_UPMOST;
775 
776 			/* assign the center channel used
777 			 * while 40M bw is selected
778 			 */
779 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
780 		} else {
781 			if (center_freq - primary_freq == 10)
782 				primary_channel_idx = RTW_SC_20_LOWER;
783 			else
784 				primary_channel_idx = RTW_SC_20_LOWEST;
785 
786 			/* assign the center channel used
787 			 * while 40M bw is selected
788 			 */
789 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
790 		}
791 		break;
792 	}
793 
794 	switch (center_channel) {
795 	case 1 ... 14:
796 		sar_band = RTW_SAR_BAND_0;
797 		break;
798 	case 36 ... 64:
799 		sar_band = RTW_SAR_BAND_1;
800 		break;
801 	case 100 ... 144:
802 		sar_band = RTW_SAR_BAND_3;
803 		break;
804 	case 149 ... 177:
805 		sar_band = RTW_SAR_BAND_4;
806 		break;
807 	default:
808 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
809 		sar_band = RTW_SAR_BAND_0;
810 		break;
811 	}
812 
813 	hal->current_primary_channel_index = primary_channel_idx;
814 	hal->current_band_width = bandwidth;
815 	hal->primary_channel = primary_channel;
816 	hal->current_channel = center_channel;
817 	hal->current_band_type = band;
818 	hal->sar_band = sar_band;
819 }
820 
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)821 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
822 			    struct rtw_channel_params *chan_params)
823 {
824 	struct ieee80211_channel *channel = chandef->chan;
825 	enum nl80211_chan_width width = chandef->width;
826 	u32 primary_freq, center_freq;
827 	u8 center_chan;
828 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
829 
830 	center_chan = channel->hw_value;
831 	primary_freq = channel->center_freq;
832 	center_freq = chandef->center_freq1;
833 
834 	switch (width) {
835 	case NL80211_CHAN_WIDTH_20_NOHT:
836 	case NL80211_CHAN_WIDTH_20:
837 		bandwidth = RTW_CHANNEL_WIDTH_20;
838 		break;
839 	case NL80211_CHAN_WIDTH_40:
840 		bandwidth = RTW_CHANNEL_WIDTH_40;
841 		if (primary_freq > center_freq)
842 			center_chan -= 2;
843 		else
844 			center_chan += 2;
845 		break;
846 	case NL80211_CHAN_WIDTH_80:
847 		bandwidth = RTW_CHANNEL_WIDTH_80;
848 		if (primary_freq > center_freq) {
849 			if (primary_freq - center_freq == 10)
850 				center_chan -= 2;
851 			else
852 				center_chan -= 6;
853 		} else {
854 			if (center_freq - primary_freq == 10)
855 				center_chan += 2;
856 			else
857 				center_chan += 6;
858 		}
859 		break;
860 	default:
861 		center_chan = 0;
862 		break;
863 	}
864 
865 	chan_params->center_chan = center_chan;
866 	chan_params->bandwidth = bandwidth;
867 	chan_params->primary_chan = channel->hw_value;
868 }
869 
rtw_set_channel(struct rtw_dev * rtwdev)870 void rtw_set_channel(struct rtw_dev *rtwdev)
871 {
872 	const struct rtw_chip_info *chip = rtwdev->chip;
873 	struct ieee80211_hw *hw = rtwdev->hw;
874 	struct rtw_hal *hal = &rtwdev->hal;
875 	struct rtw_channel_params ch_param;
876 	u8 center_chan, primary_chan, bandwidth, band;
877 
878 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
879 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
880 		return;
881 
882 	center_chan = ch_param.center_chan;
883 	primary_chan = ch_param.primary_chan;
884 	bandwidth = ch_param.bandwidth;
885 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
886 
887 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
888 
889 	if (rtwdev->scan_info.op_chan)
890 		rtw_store_op_chan(rtwdev, true);
891 
892 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
893 			       hal->current_primary_channel_index);
894 
895 	if (hal->current_band_type == RTW_BAND_5G) {
896 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
897 	} else {
898 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
899 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
900 		else
901 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
902 	}
903 
904 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
905 
906 	/* if the channel isn't set for scanning, we will do RF calibration
907 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
908 	 * during scanning on each channel takes too long.
909 	 */
910 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
911 		rtwdev->need_rfk = true;
912 }
913 
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)914 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
915 {
916 	const struct rtw_chip_info *chip = rtwdev->chip;
917 
918 	if (rtwdev->need_rfk) {
919 		rtwdev->need_rfk = false;
920 		chip->ops->phy_calibration(rtwdev);
921 	}
922 }
923 
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)924 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
925 {
926 	int i;
927 
928 	for (i = 0; i < ETH_ALEN; i++)
929 		rtw_write8(rtwdev, start + i, addr[i]);
930 }
931 
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)932 void rtw_vif_port_config(struct rtw_dev *rtwdev,
933 			 struct rtw_vif *rtwvif,
934 			 u32 config)
935 {
936 	u32 addr, mask;
937 
938 	if (config & PORT_SET_MAC_ADDR) {
939 		addr = rtwvif->conf->mac_addr.addr;
940 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
941 	}
942 	if (config & PORT_SET_BSSID) {
943 		addr = rtwvif->conf->bssid.addr;
944 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
945 	}
946 	if (config & PORT_SET_NET_TYPE) {
947 		addr = rtwvif->conf->net_type.addr;
948 		mask = rtwvif->conf->net_type.mask;
949 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
950 	}
951 	if (config & PORT_SET_AID) {
952 		addr = rtwvif->conf->aid.addr;
953 		mask = rtwvif->conf->aid.mask;
954 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
955 	}
956 	if (config & PORT_SET_BCN_CTRL) {
957 		addr = rtwvif->conf->bcn_ctrl.addr;
958 		mask = rtwvif->conf->bcn_ctrl.mask;
959 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
960 	}
961 }
962 
hw_bw_cap_to_bitamp(u8 bw_cap)963 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
964 {
965 	u8 bw = 0;
966 
967 	switch (bw_cap) {
968 	case EFUSE_HW_CAP_IGNORE:
969 	case EFUSE_HW_CAP_SUPP_BW80:
970 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
971 		fallthrough;
972 	case EFUSE_HW_CAP_SUPP_BW40:
973 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
974 		fallthrough;
975 	default:
976 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
977 		break;
978 	}
979 
980 	return bw;
981 }
982 
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)983 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
984 {
985 	const struct rtw_chip_info *chip = rtwdev->chip;
986 	struct rtw_hal *hal = &rtwdev->hal;
987 
988 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
989 	    hw_ant_num >= hal->rf_path_num)
990 		return;
991 
992 	switch (hw_ant_num) {
993 	case 1:
994 		hal->rf_type = RF_1T1R;
995 		hal->rf_path_num = 1;
996 		if (!chip->fix_rf_phy_num)
997 			hal->rf_phy_num = hal->rf_path_num;
998 		hal->antenna_tx = BB_PATH_A;
999 		hal->antenna_rx = BB_PATH_A;
1000 		break;
1001 	default:
1002 		WARN(1, "invalid hw configuration from efuse\n");
1003 		break;
1004 	}
1005 }
1006 
get_vht_ra_mask(struct ieee80211_sta * sta)1007 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1008 {
1009 	u64 ra_mask = 0;
1010 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1011 	u8 vht_mcs_cap;
1012 	int i, nss;
1013 
1014 	/* 4SS, every two bits for MCS7/8/9 */
1015 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1016 		vht_mcs_cap = mcs_map & 0x3;
1017 		switch (vht_mcs_cap) {
1018 		case 2: /* MCS9 */
1019 			ra_mask |= 0x3ffULL << nss;
1020 			break;
1021 		case 1: /* MCS8 */
1022 			ra_mask |= 0x1ffULL << nss;
1023 			break;
1024 		case 0: /* MCS7 */
1025 			ra_mask |= 0x0ffULL << nss;
1026 			break;
1027 		default:
1028 			break;
1029 		}
1030 	}
1031 
1032 	return ra_mask;
1033 }
1034 
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1035 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1036 {
1037 	u8 rate_id = 0;
1038 
1039 	switch (wireless_set) {
1040 	case WIRELESS_CCK:
1041 		rate_id = RTW_RATEID_B_20M;
1042 		break;
1043 	case WIRELESS_OFDM:
1044 		rate_id = RTW_RATEID_G;
1045 		break;
1046 	case WIRELESS_CCK | WIRELESS_OFDM:
1047 		rate_id = RTW_RATEID_BG;
1048 		break;
1049 	case WIRELESS_OFDM | WIRELESS_HT:
1050 		if (tx_num == 1)
1051 			rate_id = RTW_RATEID_GN_N1SS;
1052 		else if (tx_num == 2)
1053 			rate_id = RTW_RATEID_GN_N2SS;
1054 		else if (tx_num == 3)
1055 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1056 		break;
1057 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1058 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1059 			if (tx_num == 1)
1060 				rate_id = RTW_RATEID_BGN_40M_1SS;
1061 			else if (tx_num == 2)
1062 				rate_id = RTW_RATEID_BGN_40M_2SS;
1063 			else if (tx_num == 3)
1064 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1065 			else if (tx_num == 4)
1066 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1067 		} else {
1068 			if (tx_num == 1)
1069 				rate_id = RTW_RATEID_BGN_20M_1SS;
1070 			else if (tx_num == 2)
1071 				rate_id = RTW_RATEID_BGN_20M_2SS;
1072 			else if (tx_num == 3)
1073 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1074 			else if (tx_num == 4)
1075 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1076 		}
1077 		break;
1078 	case WIRELESS_OFDM | WIRELESS_VHT:
1079 		if (tx_num == 1)
1080 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1081 		else if (tx_num == 2)
1082 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1083 		else if (tx_num == 3)
1084 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1085 		else if (tx_num == 4)
1086 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1087 		break;
1088 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1089 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1090 			if (tx_num == 1)
1091 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1092 			else if (tx_num == 2)
1093 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1094 			else if (tx_num == 3)
1095 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1096 			else if (tx_num == 4)
1097 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1098 		} else {
1099 			if (tx_num == 1)
1100 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1101 			else if (tx_num == 2)
1102 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1103 			else if (tx_num == 3)
1104 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1105 			else if (tx_num == 4)
1106 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1107 		}
1108 		break;
1109 	default:
1110 		break;
1111 	}
1112 
1113 	return rate_id;
1114 }
1115 
1116 #define RA_MASK_CCK_RATES	0x0000f
1117 #define RA_MASK_OFDM_RATES	0x00ff0
1118 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1119 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1120 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1121 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1122 				 RA_MASK_HT_RATES_2SS | \
1123 				 RA_MASK_HT_RATES_3SS)
1124 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1125 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1126 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1127 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1128 				 RA_MASK_VHT_RATES_2SS | \
1129 				 RA_MASK_VHT_RATES_3SS)
1130 #define RA_MASK_CCK_IN_BG	0x00005
1131 #define RA_MASK_CCK_IN_HT	0x00005
1132 #define RA_MASK_CCK_IN_VHT	0x00005
1133 #define RA_MASK_OFDM_IN_VHT	0x00010
1134 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1135 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1136 
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1137 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1138 {
1139 	u8 rssi_level = si->rssi_level;
1140 
1141 	if (wireless_set == WIRELESS_CCK)
1142 		return 0xffffffffffffffffULL;
1143 
1144 	if (rssi_level == 0)
1145 		return 0xffffffffffffffffULL;
1146 	else if (rssi_level == 1)
1147 		return 0xfffffffffffffff0ULL;
1148 	else if (rssi_level == 2)
1149 		return 0xffffffffffffefe0ULL;
1150 	else if (rssi_level == 3)
1151 		return 0xffffffffffffcfc0ULL;
1152 	else if (rssi_level == 4)
1153 		return 0xffffffffffff8f80ULL;
1154 	else
1155 		return 0xffffffffffff0f00ULL;
1156 }
1157 
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1158 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1159 {
1160 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1161 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1162 
1163 	if (ra_mask == 0)
1164 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1165 
1166 	return ra_mask;
1167 }
1168 
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1169 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1170 			     u64 ra_mask, bool is_vht_enable)
1171 {
1172 	struct rtw_hal *hal = &rtwdev->hal;
1173 	const struct cfg80211_bitrate_mask *mask = si->mask;
1174 	u64 cfg_mask = GENMASK_ULL(63, 0);
1175 	u8 band;
1176 
1177 	if (!si->use_cfg_mask)
1178 		return ra_mask;
1179 
1180 	band = hal->current_band_type;
1181 	if (band == RTW_BAND_2G) {
1182 		band = NL80211_BAND_2GHZ;
1183 		cfg_mask = mask->control[band].legacy;
1184 	} else if (band == RTW_BAND_5G) {
1185 		band = NL80211_BAND_5GHZ;
1186 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1187 					   RA_MASK_OFDM_RATES);
1188 	}
1189 
1190 	if (!is_vht_enable) {
1191 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1192 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1193 						    RA_MASK_HT_RATES_1SS);
1194 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1195 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1196 						    RA_MASK_HT_RATES_2SS);
1197 	} else {
1198 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1199 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1200 						    RA_MASK_VHT_RATES_1SS);
1201 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1202 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1203 						    RA_MASK_VHT_RATES_2SS);
1204 	}
1205 
1206 	ra_mask &= cfg_mask;
1207 
1208 	return ra_mask;
1209 }
1210 
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1211 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1212 			 bool reset_ra_mask)
1213 {
1214 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1215 	struct ieee80211_sta *sta = si->sta;
1216 	struct rtw_efuse *efuse = &rtwdev->efuse;
1217 	struct rtw_hal *hal = &rtwdev->hal;
1218 	u8 wireless_set;
1219 	u8 bw_mode;
1220 	u8 rate_id;
1221 	u8 stbc_en = 0;
1222 	u8 ldpc_en = 0;
1223 	u8 tx_num = 1;
1224 	u64 ra_mask = 0;
1225 	u64 ra_mask_bak = 0;
1226 	bool is_vht_enable = false;
1227 	bool is_support_sgi = false;
1228 
1229 	if (sta->deflink.vht_cap.vht_supported) {
1230 		is_vht_enable = true;
1231 		ra_mask |= get_vht_ra_mask(sta);
1232 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1233 			stbc_en = VHT_STBC_EN;
1234 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1235 			ldpc_en = VHT_LDPC_EN;
1236 	} else if (sta->deflink.ht_cap.ht_supported) {
1237 		ra_mask |= ((u64)sta->deflink.ht_cap.mcs.rx_mask[3] << 36) |
1238 			   ((u64)sta->deflink.ht_cap.mcs.rx_mask[2] << 28) |
1239 			   (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1240 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1241 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1242 			stbc_en = HT_STBC_EN;
1243 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1244 			ldpc_en = HT_LDPC_EN;
1245 	}
1246 
1247 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1248 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1249 	else if (efuse->hw_cap.nss == 2)
1250 		ra_mask &= RA_MASK_VHT_RATES_2SS | RA_MASK_HT_RATES_2SS |
1251 			   RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1252 
1253 	if (hal->current_band_type == RTW_BAND_5G) {
1254 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1255 		ra_mask_bak = ra_mask;
1256 		if (sta->deflink.vht_cap.vht_supported) {
1257 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1258 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1259 		} else if (sta->deflink.ht_cap.ht_supported) {
1260 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1261 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1262 		} else {
1263 			wireless_set = WIRELESS_OFDM;
1264 		}
1265 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1266 	} else if (hal->current_band_type == RTW_BAND_2G) {
1267 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1268 		ra_mask_bak = ra_mask;
1269 		if (sta->deflink.vht_cap.vht_supported) {
1270 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1271 				   RA_MASK_OFDM_IN_VHT;
1272 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1273 				       WIRELESS_HT | WIRELESS_VHT;
1274 		} else if (sta->deflink.ht_cap.ht_supported) {
1275 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1276 				   RA_MASK_OFDM_IN_HT_2G;
1277 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1278 				       WIRELESS_HT;
1279 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1280 			wireless_set = WIRELESS_CCK;
1281 		} else {
1282 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1283 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1284 		}
1285 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1286 	} else {
1287 		rtw_err(rtwdev, "Unknown band type\n");
1288 		ra_mask_bak = ra_mask;
1289 		wireless_set = 0;
1290 	}
1291 
1292 	switch (sta->deflink.bandwidth) {
1293 	case IEEE80211_STA_RX_BW_80:
1294 		bw_mode = RTW_CHANNEL_WIDTH_80;
1295 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1296 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1297 		break;
1298 	case IEEE80211_STA_RX_BW_40:
1299 		bw_mode = RTW_CHANNEL_WIDTH_40;
1300 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1301 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1302 		break;
1303 	default:
1304 		bw_mode = RTW_CHANNEL_WIDTH_20;
1305 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1306 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1307 		break;
1308 	}
1309 
1310 	if (sta->deflink.vht_cap.vht_supported ||
1311 	    sta->deflink.ht_cap.ht_supported)
1312 		tx_num = efuse->hw_cap.nss;
1313 
1314 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1315 
1316 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1317 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1318 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1319 
1320 	si->bw_mode = bw_mode;
1321 	si->stbc_en = stbc_en;
1322 	si->ldpc_en = ldpc_en;
1323 	si->sgi_enable = is_support_sgi;
1324 	si->vht_enable = is_vht_enable;
1325 	si->ra_mask = ra_mask;
1326 	si->rate_id = rate_id;
1327 
1328 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1329 }
1330 
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1331 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1332 {
1333 	const struct rtw_chip_info *chip = rtwdev->chip;
1334 	struct rtw_fw_state *fw;
1335 	int ret = 0;
1336 
1337 	fw = &rtwdev->fw;
1338 	wait_for_completion(&fw->completion);
1339 	if (!fw->firmware)
1340 		ret = -EINVAL;
1341 
1342 	if (chip->wow_fw_name) {
1343 		fw = &rtwdev->wow_fw;
1344 		wait_for_completion(&fw->completion);
1345 		if (!fw->firmware)
1346 			ret = -EINVAL;
1347 	}
1348 
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL(rtw_wait_firmware_completion);
1352 
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1353 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1354 						       struct rtw_fw_state *fw)
1355 {
1356 	const struct rtw_chip_info *chip = rtwdev->chip;
1357 
1358 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1359 	    !fw->feature)
1360 		return LPS_DEEP_MODE_NONE;
1361 
1362 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1363 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1364 		return LPS_DEEP_MODE_PG;
1365 
1366 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1367 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1368 		return LPS_DEEP_MODE_LCLK;
1369 
1370 	return LPS_DEEP_MODE_NONE;
1371 }
1372 
rtw_power_on(struct rtw_dev * rtwdev)1373 int rtw_power_on(struct rtw_dev *rtwdev)
1374 {
1375 	const struct rtw_chip_info *chip = rtwdev->chip;
1376 	struct rtw_fw_state *fw = &rtwdev->fw;
1377 	bool wifi_only;
1378 	int ret;
1379 
1380 	ret = rtw_hci_setup(rtwdev);
1381 	if (ret) {
1382 		rtw_err(rtwdev, "failed to setup hci\n");
1383 		goto err;
1384 	}
1385 
1386 	/* power on MAC before firmware downloaded */
1387 	ret = rtw_mac_power_on(rtwdev);
1388 	if (ret) {
1389 		rtw_err(rtwdev, "failed to power on mac\n");
1390 		goto err;
1391 	}
1392 
1393 	ret = rtw_wait_firmware_completion(rtwdev);
1394 	if (ret) {
1395 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1396 		goto err_off;
1397 	}
1398 
1399 	ret = rtw_download_firmware(rtwdev, fw);
1400 	if (ret) {
1401 		rtw_err(rtwdev, "failed to download firmware\n");
1402 		goto err_off;
1403 	}
1404 
1405 	/* config mac after firmware downloaded */
1406 	ret = rtw_mac_init(rtwdev);
1407 	if (ret) {
1408 		rtw_err(rtwdev, "failed to configure mac\n");
1409 		goto err_off;
1410 	}
1411 
1412 	chip->ops->phy_set_param(rtwdev);
1413 
1414 	ret = rtw_hci_start(rtwdev);
1415 	if (ret) {
1416 		rtw_err(rtwdev, "failed to start hci\n");
1417 		goto err_off;
1418 	}
1419 
1420 	/* send H2C after HCI has started */
1421 	rtw_fw_send_general_info(rtwdev);
1422 	rtw_fw_send_phydm_info(rtwdev);
1423 
1424 	wifi_only = !rtwdev->efuse.btcoex;
1425 	rtw_coex_power_on_setting(rtwdev);
1426 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1427 
1428 	return 0;
1429 
1430 err_off:
1431 	rtw_mac_power_off(rtwdev);
1432 
1433 err:
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(rtw_power_on);
1437 
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1438 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1439 {
1440 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1441 		return;
1442 
1443 	if (start) {
1444 		rtw_fw_scan_notify(rtwdev, true);
1445 	} else {
1446 		reinit_completion(&rtwdev->fw_scan_density);
1447 		rtw_fw_scan_notify(rtwdev, false);
1448 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1449 						 SCAN_NOTIFY_TIMEOUT))
1450 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1451 	}
1452 }
1453 
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1454 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1455 			 const u8 *mac_addr, bool hw_scan)
1456 {
1457 	u32 config = 0;
1458 	int ret = 0;
1459 
1460 	rtw_leave_lps(rtwdev);
1461 
1462 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1463 		ret = rtw_leave_ips(rtwdev);
1464 		if (ret) {
1465 			rtw_err(rtwdev, "failed to leave idle state\n");
1466 			return;
1467 		}
1468 	}
1469 
1470 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1471 	config |= PORT_SET_MAC_ADDR;
1472 	rtw_vif_port_config(rtwdev, rtwvif, config);
1473 
1474 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1475 	rtw_core_fw_scan_notify(rtwdev, true);
1476 
1477 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1478 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1479 }
1480 
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1481 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1482 			    bool hw_scan)
1483 {
1484 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1485 	u32 config = 0;
1486 
1487 	if (!rtwvif)
1488 		return;
1489 
1490 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1491 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1492 
1493 	rtw_core_fw_scan_notify(rtwdev, false);
1494 
1495 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1496 	config |= PORT_SET_MAC_ADDR;
1497 	rtw_vif_port_config(rtwdev, rtwvif, config);
1498 
1499 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1500 
1501 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1502 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1503 }
1504 
rtw_core_start(struct rtw_dev * rtwdev)1505 int rtw_core_start(struct rtw_dev *rtwdev)
1506 {
1507 	int ret;
1508 
1509 	ret = rtwdev->chip->ops->power_on(rtwdev);
1510 	if (ret)
1511 		return ret;
1512 
1513 	rtw_sec_enable_sec_engine(rtwdev);
1514 
1515 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1516 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1517 
1518 	/* rcr reset after powered on */
1519 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1520 
1521 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1522 				     RTW_WATCH_DOG_DELAY_TIME);
1523 
1524 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1525 
1526 	return 0;
1527 }
1528 
rtw_power_off(struct rtw_dev * rtwdev)1529 void rtw_power_off(struct rtw_dev *rtwdev)
1530 {
1531 	rtw_hci_stop(rtwdev);
1532 	rtw_coex_power_off_setting(rtwdev);
1533 	rtw_mac_power_off(rtwdev);
1534 }
1535 EXPORT_SYMBOL(rtw_power_off);
1536 
rtw_core_stop(struct rtw_dev * rtwdev)1537 void rtw_core_stop(struct rtw_dev *rtwdev)
1538 {
1539 	struct rtw_coex *coex = &rtwdev->coex;
1540 
1541 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1542 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1543 
1544 	mutex_unlock(&rtwdev->mutex);
1545 
1546 	cancel_work_sync(&rtwdev->c2h_work);
1547 	cancel_work_sync(&rtwdev->update_beacon_work);
1548 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1549 	cancel_delayed_work_sync(&coex->bt_relink_work);
1550 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1551 	cancel_delayed_work_sync(&coex->defreeze_work);
1552 	cancel_delayed_work_sync(&coex->wl_remain_work);
1553 	cancel_delayed_work_sync(&coex->bt_remain_work);
1554 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1555 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1556 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1557 
1558 	mutex_lock(&rtwdev->mutex);
1559 
1560 	rtwdev->chip->ops->power_off(rtwdev);
1561 }
1562 
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1563 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1564 			    struct ieee80211_sta_ht_cap *ht_cap)
1565 {
1566 	const struct rtw_chip_info *chip = rtwdev->chip;
1567 	struct rtw_efuse *efuse = &rtwdev->efuse;
1568 	int i;
1569 
1570 	ht_cap->ht_supported = true;
1571 	ht_cap->cap = 0;
1572 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1573 			IEEE80211_HT_CAP_MAX_AMSDU |
1574 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1575 
1576 	if (rtw_chip_has_rx_ldpc(rtwdev))
1577 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1578 	if (rtw_chip_has_tx_stbc(rtwdev))
1579 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1580 
1581 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1582 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1583 				IEEE80211_HT_CAP_DSSSCCK40 |
1584 				IEEE80211_HT_CAP_SGI_40;
1585 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1586 	ht_cap->ampdu_density = chip->ampdu_density;
1587 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1588 
1589 	for (i = 0; i < efuse->hw_cap.nss; i++)
1590 		ht_cap->mcs.rx_mask[i] = 0xFF;
1591 	ht_cap->mcs.rx_mask[4] = 0x01;
1592 	ht_cap->mcs.rx_highest = cpu_to_le16(150 * efuse->hw_cap.nss);
1593 }
1594 
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1595 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1596 			     struct ieee80211_sta_vht_cap *vht_cap)
1597 {
1598 	struct rtw_efuse *efuse = &rtwdev->efuse;
1599 	u16 mcs_map = 0;
1600 	__le16 highest;
1601 	int i;
1602 
1603 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1604 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1605 		return;
1606 
1607 	vht_cap->vht_supported = true;
1608 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1609 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1610 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1611 		       IEEE80211_VHT_CAP_HTC_VHT |
1612 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1613 		       0;
1614 	if (rtwdev->hal.rf_path_num > 1)
1615 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1616 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1617 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1618 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1619 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1620 
1621 	if (rtw_chip_has_rx_ldpc(rtwdev))
1622 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1623 
1624 	for (i = 0; i < 8; i++) {
1625 		if (i < efuse->hw_cap.nss)
1626 			mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
1627 		else
1628 			mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
1629 	}
1630 
1631 	highest = cpu_to_le16(390 * efuse->hw_cap.nss);
1632 
1633 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1634 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1635 	vht_cap->vht_mcs.rx_highest = highest;
1636 	vht_cap->vht_mcs.tx_highest = highest;
1637 }
1638 
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1639 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1640 {
1641 	u16 len;
1642 
1643 	len = rtwdev->chip->max_scan_ie_len;
1644 
1645 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1646 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1647 		len = IEEE80211_MAX_DATA_LEN;
1648 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1649 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1650 
1651 	return len;
1652 }
1653 
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1654 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1655 				   const struct rtw_chip_info *chip)
1656 {
1657 	struct rtw_dev *rtwdev = hw->priv;
1658 	struct ieee80211_supported_band *sband;
1659 
1660 	if (chip->band & RTW_BAND_2G) {
1661 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1662 		if (!sband)
1663 			goto err_out;
1664 		if (chip->ht_supported)
1665 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1666 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1667 	}
1668 
1669 	if (chip->band & RTW_BAND_5G) {
1670 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1671 		if (!sband)
1672 			goto err_out;
1673 		if (chip->ht_supported)
1674 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1675 		if (chip->vht_supported)
1676 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1677 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1678 	}
1679 
1680 	return;
1681 
1682 err_out:
1683 	rtw_err(rtwdev, "failed to set supported band\n");
1684 }
1685 
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1686 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1687 				     const struct rtw_chip_info *chip)
1688 {
1689 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1690 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1691 }
1692 
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1693 static void rtw_vif_smps_iter(void *data, u8 *mac,
1694 			      struct ieee80211_vif *vif)
1695 {
1696 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1697 
1698 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1699 		return;
1700 
1701 	if (rtwdev->hal.txrx_1ss)
1702 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1703 	else
1704 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1705 }
1706 
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1707 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1708 {
1709 	const struct rtw_chip_info *chip = rtwdev->chip;
1710 	struct rtw_hal *hal = &rtwdev->hal;
1711 
1712 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1713 		return;
1714 
1715 	rtwdev->hal.txrx_1ss = txrx_1ss;
1716 	if (txrx_1ss)
1717 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1718 	else
1719 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1720 					    hal->antenna_rx, false);
1721 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1722 }
1723 
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1724 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1725 				      struct rtw_fw_state *fw)
1726 {
1727 	u32 feature;
1728 	const struct rtw_fw_hdr *fw_hdr =
1729 				(const struct rtw_fw_hdr *)fw->firmware->data;
1730 
1731 	feature = le32_to_cpu(fw_hdr->feature);
1732 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1733 
1734 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1735 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1736 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1737 }
1738 
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1739 static void __update_firmware_info(struct rtw_dev *rtwdev,
1740 				   struct rtw_fw_state *fw)
1741 {
1742 	const struct rtw_fw_hdr *fw_hdr =
1743 				(const struct rtw_fw_hdr *)fw->firmware->data;
1744 
1745 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1746 	fw->version = le16_to_cpu(fw_hdr->version);
1747 	fw->sub_version = fw_hdr->subversion;
1748 	fw->sub_index = fw_hdr->subindex;
1749 
1750 	__update_firmware_feature(rtwdev, fw);
1751 }
1752 
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1753 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1754 					  struct rtw_fw_state *fw)
1755 {
1756 	struct rtw_fw_hdr_legacy *legacy =
1757 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1758 
1759 	fw->h2c_version = 0;
1760 	fw->version = le16_to_cpu(legacy->version);
1761 	fw->sub_version = legacy->subversion1;
1762 	fw->sub_index = legacy->subversion2;
1763 }
1764 
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1765 static void update_firmware_info(struct rtw_dev *rtwdev,
1766 				 struct rtw_fw_state *fw)
1767 {
1768 	if (rtw_chip_wcpu_11n(rtwdev))
1769 		__update_firmware_info_legacy(rtwdev, fw);
1770 	else
1771 		__update_firmware_info(rtwdev, fw);
1772 }
1773 
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1774 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1775 {
1776 	struct rtw_fw_state *fw = context;
1777 	struct rtw_dev *rtwdev = fw->rtwdev;
1778 
1779 	if (!firmware || !firmware->data) {
1780 		rtw_err(rtwdev, "failed to request firmware\n");
1781 		complete_all(&fw->completion);
1782 		return;
1783 	}
1784 
1785 	fw->firmware = firmware;
1786 	update_firmware_info(rtwdev, fw);
1787 	complete_all(&fw->completion);
1788 
1789 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1790 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1791 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1792 }
1793 
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1794 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1795 {
1796 	const char *fw_name;
1797 	struct rtw_fw_state *fw;
1798 	int ret;
1799 
1800 	switch (type) {
1801 	case RTW_WOWLAN_FW:
1802 		fw = &rtwdev->wow_fw;
1803 		fw_name = rtwdev->chip->wow_fw_name;
1804 		break;
1805 
1806 	case RTW_NORMAL_FW:
1807 		fw = &rtwdev->fw;
1808 		fw_name = rtwdev->chip->fw_name;
1809 		break;
1810 
1811 	default:
1812 		rtw_warn(rtwdev, "unsupported firmware type\n");
1813 		return -ENOENT;
1814 	}
1815 
1816 	fw->type = type;
1817 	fw->rtwdev = rtwdev;
1818 	init_completion(&fw->completion);
1819 
1820 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1821 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1822 	if (ret) {
1823 		rtw_err(rtwdev, "failed to async firmware request\n");
1824 		return ret;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1830 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1831 {
1832 	const struct rtw_chip_info *chip = rtwdev->chip;
1833 	struct rtw_hal *hal = &rtwdev->hal;
1834 	struct rtw_efuse *efuse = &rtwdev->efuse;
1835 
1836 	switch (rtw_hci_type(rtwdev)) {
1837 	case RTW_HCI_TYPE_PCIE:
1838 		rtwdev->hci.rpwm_addr = 0x03d9;
1839 		rtwdev->hci.cpwm_addr = 0x03da;
1840 		break;
1841 	case RTW_HCI_TYPE_SDIO:
1842 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1843 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1844 		break;
1845 	case RTW_HCI_TYPE_USB:
1846 		rtwdev->hci.rpwm_addr = 0xfe58;
1847 		rtwdev->hci.cpwm_addr = 0xfe57;
1848 		break;
1849 	default:
1850 		rtw_err(rtwdev, "unsupported hci type\n");
1851 		return -EINVAL;
1852 	}
1853 
1854 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1855 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1856 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1857 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1858 		hal->rf_type = RF_2T2R;
1859 		hal->rf_path_num = 2;
1860 		hal->antenna_tx = BB_PATH_AB;
1861 		hal->antenna_rx = BB_PATH_AB;
1862 	} else {
1863 		hal->rf_type = RF_1T1R;
1864 		hal->rf_path_num = 1;
1865 		hal->antenna_tx = BB_PATH_A;
1866 		hal->antenna_rx = BB_PATH_A;
1867 	}
1868 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1869 			  hal->rf_path_num;
1870 
1871 	efuse->physical_size = chip->phy_efuse_size;
1872 	efuse->logical_size = chip->log_efuse_size;
1873 	efuse->protect_size = chip->ptct_efuse_size;
1874 
1875 	/* default use ack */
1876 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1877 
1878 	hal->bfee_sts_cap = 3;
1879 
1880 	return 0;
1881 }
1882 
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1883 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1884 {
1885 	struct rtw_fw_state *fw = &rtwdev->fw;
1886 	int ret;
1887 
1888 	ret = rtw_hci_setup(rtwdev);
1889 	if (ret) {
1890 		rtw_err(rtwdev, "failed to setup hci\n");
1891 		goto err;
1892 	}
1893 
1894 	ret = rtw_mac_power_on(rtwdev);
1895 	if (ret) {
1896 		rtw_err(rtwdev, "failed to power on mac\n");
1897 		goto err;
1898 	}
1899 
1900 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1901 
1902 	wait_for_completion(&fw->completion);
1903 	if (!fw->firmware) {
1904 		ret = -EINVAL;
1905 		rtw_err(rtwdev, "failed to load firmware\n");
1906 		goto err;
1907 	}
1908 
1909 	ret = rtw_download_firmware(rtwdev, fw);
1910 	if (ret) {
1911 		rtw_err(rtwdev, "failed to download firmware\n");
1912 		goto err_off;
1913 	}
1914 
1915 	return 0;
1916 
1917 err_off:
1918 	rtw_mac_power_off(rtwdev);
1919 
1920 err:
1921 	return ret;
1922 }
1923 
rtw_dump_hw_feature(struct rtw_dev * rtwdev)1924 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1925 {
1926 	struct rtw_efuse *efuse = &rtwdev->efuse;
1927 	u8 hw_feature[HW_FEATURE_LEN];
1928 	u8 id;
1929 	u8 bw;
1930 	int i;
1931 
1932 	if (!rtwdev->chip->hw_feature_report)
1933 		return 0;
1934 
1935 	id = rtw_read8(rtwdev, REG_C2HEVT);
1936 	if (id != C2H_HW_FEATURE_REPORT) {
1937 		rtw_err(rtwdev, "failed to read hw feature report\n");
1938 		return -EBUSY;
1939 	}
1940 
1941 	for (i = 0; i < HW_FEATURE_LEN; i++)
1942 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1943 
1944 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1945 
1946 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1947 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1948 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1949 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1950 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1951 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1952 
1953 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1954 
1955 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1956 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1957 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1958 
1959 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1960 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1961 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1962 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1963 
1964 	return 0;
1965 }
1966 
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)1967 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1968 {
1969 	rtw_hci_stop(rtwdev);
1970 	rtw_mac_power_off(rtwdev);
1971 }
1972 
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)1973 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1974 {
1975 	struct rtw_efuse *efuse = &rtwdev->efuse;
1976 	int ret;
1977 
1978 	mutex_lock(&rtwdev->mutex);
1979 
1980 	/* power on mac to read efuse */
1981 	ret = rtw_chip_efuse_enable(rtwdev);
1982 	if (ret)
1983 		goto out_unlock;
1984 
1985 	ret = rtw_parse_efuse_map(rtwdev);
1986 	if (ret)
1987 		goto out_disable;
1988 
1989 	ret = rtw_dump_hw_feature(rtwdev);
1990 	if (ret)
1991 		goto out_disable;
1992 
1993 	ret = rtw_check_supported_rfe(rtwdev);
1994 	if (ret)
1995 		goto out_disable;
1996 
1997 	if (efuse->crystal_cap == 0xff)
1998 		efuse->crystal_cap = 0;
1999 	if (efuse->pa_type_2g == 0xff)
2000 		efuse->pa_type_2g = 0;
2001 	if (efuse->pa_type_5g == 0xff)
2002 		efuse->pa_type_5g = 0;
2003 	if (efuse->lna_type_2g == 0xff)
2004 		efuse->lna_type_2g = 0;
2005 	if (efuse->lna_type_5g == 0xff)
2006 		efuse->lna_type_5g = 0;
2007 	if (efuse->channel_plan == 0xff)
2008 		efuse->channel_plan = 0x7f;
2009 	if (efuse->rf_board_option == 0xff)
2010 		efuse->rf_board_option = 0;
2011 	if (efuse->bt_setting & BIT(0))
2012 		efuse->share_ant = true;
2013 	if (efuse->regd == 0xff)
2014 		efuse->regd = 0;
2015 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2016 		efuse->tx_bb_swing_setting_2g = 0;
2017 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2018 		efuse->tx_bb_swing_setting_5g = 0;
2019 
2020 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2021 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2022 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2023 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2024 	efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2025 
2026 	if (!is_valid_ether_addr(efuse->addr)) {
2027 		eth_random_addr(efuse->addr);
2028 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2029 	}
2030 
2031 out_disable:
2032 	rtw_chip_efuse_disable(rtwdev);
2033 
2034 out_unlock:
2035 	mutex_unlock(&rtwdev->mutex);
2036 	return ret;
2037 }
2038 
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2039 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2040 {
2041 	struct rtw_hal *hal = &rtwdev->hal;
2042 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2043 
2044 	if (!rfe_def)
2045 		return -ENODEV;
2046 
2047 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2048 
2049 	rtw_phy_init_tx_power(rtwdev);
2050 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2051 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2052 	rtw_phy_tx_power_by_rate_config(hal);
2053 	rtw_phy_tx_power_limit_config(hal);
2054 
2055 	return 0;
2056 }
2057 
rtw_chip_info_setup(struct rtw_dev * rtwdev)2058 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2059 {
2060 	int ret;
2061 
2062 	ret = rtw_chip_parameter_setup(rtwdev);
2063 	if (ret) {
2064 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2065 		goto err_out;
2066 	}
2067 
2068 	ret = rtw_chip_efuse_info_setup(rtwdev);
2069 	if (ret) {
2070 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2071 		goto err_out;
2072 	}
2073 
2074 	ret = rtw_chip_board_info_setup(rtwdev);
2075 	if (ret) {
2076 		rtw_err(rtwdev, "failed to setup chip board info\n");
2077 		goto err_out;
2078 	}
2079 
2080 	return 0;
2081 
2082 err_out:
2083 	return ret;
2084 }
2085 EXPORT_SYMBOL(rtw_chip_info_setup);
2086 
rtw_stats_init(struct rtw_dev * rtwdev)2087 static void rtw_stats_init(struct rtw_dev *rtwdev)
2088 {
2089 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2090 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2091 	int i;
2092 
2093 	ewma_tp_init(&stats->tx_ewma_tp);
2094 	ewma_tp_init(&stats->rx_ewma_tp);
2095 
2096 	for (i = 0; i < RTW_EVM_NUM; i++)
2097 		ewma_evm_init(&dm_info->ewma_evm[i]);
2098 	for (i = 0; i < RTW_SNR_NUM; i++)
2099 		ewma_snr_init(&dm_info->ewma_snr[i]);
2100 }
2101 
rtw_core_init(struct rtw_dev * rtwdev)2102 int rtw_core_init(struct rtw_dev *rtwdev)
2103 {
2104 	const struct rtw_chip_info *chip = rtwdev->chip;
2105 	struct rtw_coex *coex = &rtwdev->coex;
2106 	int ret;
2107 
2108 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2109 	INIT_LIST_HEAD(&rtwdev->txqs);
2110 
2111 	timer_setup(&rtwdev->tx_report.purge_timer,
2112 		    rtw_tx_report_purge_timer, 0);
2113 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2114 	if (!rtwdev->tx_wq) {
2115 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2116 		return -ENOMEM;
2117 	}
2118 
2119 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2120 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2121 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2122 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2123 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2124 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2125 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2126 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2127 			  rtw_coex_bt_multi_link_remain_work);
2128 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2129 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2130 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2131 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2132 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2133 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2134 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2135 	skb_queue_head_init(&rtwdev->c2h_queue);
2136 	skb_queue_head_init(&rtwdev->coex.queue);
2137 	skb_queue_head_init(&rtwdev->tx_report.queue);
2138 
2139 	spin_lock_init(&rtwdev->txq_lock);
2140 	spin_lock_init(&rtwdev->tx_report.q_lock);
2141 
2142 	mutex_init(&rtwdev->mutex);
2143 	mutex_init(&rtwdev->hal.tx_power_mutex);
2144 
2145 	init_waitqueue_head(&rtwdev->coex.wait);
2146 	init_completion(&rtwdev->lps_leave_check);
2147 	init_completion(&rtwdev->fw_scan_density);
2148 
2149 	rtwdev->sec.total_cam_num = 32;
2150 	rtwdev->hal.current_channel = 1;
2151 	rtwdev->dm_info.fix_rate = U8_MAX;
2152 
2153 	rtw_stats_init(rtwdev);
2154 
2155 	/* default rx filter setting */
2156 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2157 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2158 			  BIT_AB | BIT_AM | BIT_APM;
2159 
2160 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2161 	if (ret) {
2162 		rtw_warn(rtwdev, "no firmware loaded\n");
2163 		goto out;
2164 	}
2165 
2166 	if (chip->wow_fw_name) {
2167 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2168 		if (ret) {
2169 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2170 			wait_for_completion(&rtwdev->fw.completion);
2171 			if (rtwdev->fw.firmware)
2172 				release_firmware(rtwdev->fw.firmware);
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	return 0;
2178 
2179 out:
2180 	destroy_workqueue(rtwdev->tx_wq);
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL(rtw_core_init);
2184 
rtw_core_deinit(struct rtw_dev * rtwdev)2185 void rtw_core_deinit(struct rtw_dev *rtwdev)
2186 {
2187 	struct rtw_fw_state *fw = &rtwdev->fw;
2188 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2189 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2190 	unsigned long flags;
2191 
2192 	rtw_wait_firmware_completion(rtwdev);
2193 
2194 	if (fw->firmware)
2195 		release_firmware(fw->firmware);
2196 
2197 	if (wow_fw->firmware)
2198 		release_firmware(wow_fw->firmware);
2199 
2200 	destroy_workqueue(rtwdev->tx_wq);
2201 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2202 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2203 	skb_queue_purge(&rtwdev->tx_report.queue);
2204 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2205 	skb_queue_purge(&rtwdev->coex.queue);
2206 	skb_queue_purge(&rtwdev->c2h_queue);
2207 
2208 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2209 				 build_list) {
2210 		list_del(&rsvd_pkt->build_list);
2211 		kfree(rsvd_pkt);
2212 	}
2213 
2214 	mutex_destroy(&rtwdev->mutex);
2215 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2216 }
2217 EXPORT_SYMBOL(rtw_core_deinit);
2218 
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2219 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2220 {
2221 	bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2222 	struct rtw_hal *hal = &rtwdev->hal;
2223 	int max_tx_headroom = 0;
2224 	int ret;
2225 
2226 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2227 
2228 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2229 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2230 
2231 	hw->extra_tx_headroom = max_tx_headroom;
2232 	hw->queues = IEEE80211_NUM_ACS;
2233 	hw->txq_data_size = sizeof(struct rtw_txq);
2234 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2235 	hw->vif_data_size = sizeof(struct rtw_vif);
2236 
2237 	ieee80211_hw_set(hw, SIGNAL_DBM);
2238 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2239 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2240 	ieee80211_hw_set(hw, MFP_CAPABLE);
2241 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2242 	ieee80211_hw_set(hw, SUPPORTS_PS);
2243 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2244 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2245 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2246 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2247 	ieee80211_hw_set(hw, TX_AMSDU);
2248 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2249 
2250 	if (sta_mode_only)
2251 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2252 	else
2253 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2254 					     BIT(NL80211_IFTYPE_AP) |
2255 					     BIT(NL80211_IFTYPE_ADHOC);
2256 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2257 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2258 
2259 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2260 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2261 
2262 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2263 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2264 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2265 
2266 	if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2267 		hw->wiphy->iface_combinations = rtw_iface_combs;
2268 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2269 	}
2270 
2271 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2272 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2273 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2274 
2275 #ifdef CONFIG_PM
2276 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2277 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2278 #endif
2279 	rtw_set_supported_band(hw, rtwdev->chip);
2280 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2281 
2282 	hw->wiphy->sar_capa = &rtw_sar_capa;
2283 
2284 	ret = rtw_regd_init(rtwdev);
2285 	if (ret) {
2286 		rtw_err(rtwdev, "failed to init regd\n");
2287 		return ret;
2288 	}
2289 
2290 	rtw_led_init(rtwdev);
2291 
2292 	ret = ieee80211_register_hw(hw);
2293 	if (ret) {
2294 		rtw_err(rtwdev, "failed to register hw\n");
2295 		goto led_deinit;
2296 	}
2297 
2298 	ret = rtw_regd_hint(rtwdev);
2299 	if (ret) {
2300 		rtw_err(rtwdev, "failed to hint regd\n");
2301 		goto led_deinit;
2302 	}
2303 
2304 	rtw_debugfs_init(rtwdev);
2305 
2306 	rtwdev->bf_info.bfer_mu_cnt = 0;
2307 	rtwdev->bf_info.bfer_su_cnt = 0;
2308 
2309 	return 0;
2310 
2311 led_deinit:
2312 	rtw_led_deinit(rtwdev);
2313 	return ret;
2314 }
2315 EXPORT_SYMBOL(rtw_register_hw);
2316 
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2317 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2318 {
2319 	const struct rtw_chip_info *chip = rtwdev->chip;
2320 
2321 	ieee80211_unregister_hw(hw);
2322 	rtw_unset_supported_band(hw, chip);
2323 	rtw_debugfs_deinit(rtwdev);
2324 	rtw_led_deinit(rtwdev);
2325 }
2326 EXPORT_SYMBOL(rtw_unregister_hw);
2327 
2328 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2329 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2330 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2331 {
2332 	u8 i;
2333 
2334 	for (i = 0; i < nbytes; i++) {
2335 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2336 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2337 
2338 		rtw_write8(rtwdev, reg1->addr + i, v2);
2339 		rtw_write8(rtwdev, reg2->addr + i, v1);
2340 	}
2341 }
2342 
2343 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2344 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2345 		       const struct rtw_hw_reg *reg2)
2346 {
2347 	u32 v1, v2;
2348 
2349 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2350 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2351 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2352 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2353 }
2354 
2355 struct rtw_iter_port_switch_data {
2356 	struct rtw_dev *rtwdev;
2357 	struct rtw_vif *rtwvif_ap;
2358 };
2359 
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2360 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2361 {
2362 	struct rtw_iter_port_switch_data *iter_data = data;
2363 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2364 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2365 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2366 	const struct rtw_hw_reg *reg1, *reg2;
2367 
2368 	if (rtwvif_target->port != RTW_PORT_0)
2369 		return;
2370 
2371 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2372 		rtwvif_ap->port, rtwvif_target->port);
2373 
2374 	/* Leave LPS so the value swapped are not in PS mode */
2375 	rtw_leave_lps(rtwdev);
2376 
2377 	reg1 = &rtwvif_ap->conf->net_type;
2378 	reg2 = &rtwvif_target->conf->net_type;
2379 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2380 
2381 	reg1 = &rtwvif_ap->conf->mac_addr;
2382 	reg2 = &rtwvif_target->conf->mac_addr;
2383 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2384 
2385 	reg1 = &rtwvif_ap->conf->bssid;
2386 	reg2 = &rtwvif_target->conf->bssid;
2387 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2388 
2389 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2390 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2391 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2392 
2393 	swap(rtwvif_target->port, rtwvif_ap->port);
2394 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2395 
2396 	rtw_fw_default_port(rtwdev, rtwvif_target);
2397 }
2398 
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2399 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2400 {
2401 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2402 	struct rtw_iter_port_switch_data iter_data;
2403 
2404 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2405 		return;
2406 
2407 	iter_data.rtwdev = rtwdev;
2408 	iter_data.rtwvif_ap = rtwvif;
2409 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2410 }
2411 
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2412 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2413 {
2414 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2415 	bool *active = data;
2416 
2417 	if (*active)
2418 		return;
2419 
2420 	if (vif->type != NL80211_IFTYPE_STATION)
2421 		return;
2422 
2423 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2424 		*active = true;
2425 }
2426 
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2427 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2428 {
2429 	bool sta_active = false;
2430 
2431 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2432 
2433 	return rtwdev->ap_active || sta_active;
2434 }
2435 
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2436 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2437 {
2438 	if (!rtwdev->ap_active)
2439 		return;
2440 
2441 	if (enable) {
2442 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2443 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2444 	} else {
2445 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2446 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2447 	}
2448 }
2449 
2450 MODULE_AUTHOR("Realtek Corporation");
2451 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2452 MODULE_LICENSE("Dual BSD/GPL");
2453