1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlb.h>
45 #include <asm/pgalloc.h>
46 #include "internal.h"
47 #include "swap.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/thp.h>
51
52 /*
53 * By default, transparent hugepage support is disabled in order to avoid
54 * risking an increased memory footprint for applications that are not
55 * guaranteed to benefit from it. When transparent hugepage support is
56 * enabled, it is for all mappings, and khugepaged scans all mappings.
57 * Defrag is invoked by khugepaged hugepage allocations and by page faults
58 * for all hugepage allocations.
59 */
60 unsigned long transparent_hugepage_flags __read_mostly =
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
62 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
63 #endif
64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
66 #endif
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
70
71 static struct shrinker *deferred_split_shrinker;
72 static unsigned long deferred_split_count(struct shrinker *shrink,
73 struct shrink_control *sc);
74 static unsigned long deferred_split_scan(struct shrinker *shrink,
75 struct shrink_control *sc);
76 static bool split_underused_thp = true;
77
78 static atomic_t huge_zero_refcount;
79 struct folio *huge_zero_folio __read_mostly;
80 unsigned long huge_zero_pfn __read_mostly = ~0UL;
81 unsigned long huge_anon_orders_always __read_mostly;
82 unsigned long huge_anon_orders_madvise __read_mostly;
83 unsigned long huge_anon_orders_inherit __read_mostly;
84 static bool anon_orders_configured __initdata;
85
file_thp_enabled(struct vm_area_struct * vma)86 static inline bool file_thp_enabled(struct vm_area_struct *vma)
87 {
88 struct inode *inode;
89
90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
91 return false;
92
93 if (!vma->vm_file)
94 return false;
95
96 inode = file_inode(vma->vm_file);
97
98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
99 }
100
__thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
102 unsigned long vm_flags,
103 unsigned long tva_flags,
104 unsigned long orders)
105 {
106 bool smaps = tva_flags & TVA_SMAPS;
107 bool in_pf = tva_flags & TVA_IN_PF;
108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
109 unsigned long supported_orders;
110
111 /* Check the intersection of requested and supported orders. */
112 if (vma_is_anonymous(vma))
113 supported_orders = THP_ORDERS_ALL_ANON;
114 else if (vma_is_special_huge(vma))
115 supported_orders = THP_ORDERS_ALL_SPECIAL;
116 else
117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
118
119 orders &= supported_orders;
120 if (!orders)
121 return 0;
122
123 if (!vma->vm_mm) /* vdso */
124 return 0;
125
126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
127 return 0;
128
129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
130 if (vma_is_dax(vma))
131 return in_pf ? orders : 0;
132
133 /*
134 * khugepaged special VMA and hugetlb VMA.
135 * Must be checked after dax since some dax mappings may have
136 * VM_MIXEDMAP set.
137 */
138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
139 return 0;
140
141 /*
142 * Check alignment for file vma and size for both file and anon vma by
143 * filtering out the unsuitable orders.
144 *
145 * Skip the check for page fault. Huge fault does the check in fault
146 * handlers.
147 */
148 if (!in_pf) {
149 int order = highest_order(orders);
150 unsigned long addr;
151
152 while (orders) {
153 addr = vma->vm_end - (PAGE_SIZE << order);
154 if (thp_vma_suitable_order(vma, addr, order))
155 break;
156 order = next_order(&orders, order);
157 }
158
159 if (!orders)
160 return 0;
161 }
162
163 /*
164 * Enabled via shmem mount options or sysfs settings.
165 * Must be done before hugepage flags check since shmem has its
166 * own flags.
167 */
168 if (!in_pf && shmem_file(vma->vm_file))
169 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
170 vma, vma->vm_pgoff, 0,
171 !enforce_sysfs);
172
173 if (!vma_is_anonymous(vma)) {
174 /*
175 * Enforce sysfs THP requirements as necessary. Anonymous vmas
176 * were already handled in thp_vma_allowable_orders().
177 */
178 if (enforce_sysfs &&
179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
180 !hugepage_global_always())))
181 return 0;
182
183 /*
184 * Trust that ->huge_fault() handlers know what they are doing
185 * in fault path.
186 */
187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
188 return orders;
189 /* Only regular file is valid in collapse path */
190 if (((!in_pf || smaps)) && file_thp_enabled(vma))
191 return orders;
192 return 0;
193 }
194
195 if (vma_is_temporary_stack(vma))
196 return 0;
197
198 /*
199 * THPeligible bit of smaps should show 1 for proper VMAs even
200 * though anon_vma is not initialized yet.
201 *
202 * Allow page fault since anon_vma may be not initialized until
203 * the first page fault.
204 */
205 if (!vma->anon_vma)
206 return (smaps || in_pf) ? orders : 0;
207
208 return orders;
209 }
210
get_huge_zero_page(void)211 static bool get_huge_zero_page(void)
212 {
213 struct folio *zero_folio;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return true;
217
218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_folio) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return false;
223 }
224 /* Ensure zero folio won't have large_rmappable flag set. */
225 folio_clear_large_rmappable(zero_folio);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 preempt_enable();
229 folio_put(zero_folio);
230 goto retry;
231 }
232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234 /* We take additional reference here. It will be put back by shrinker */
235 atomic_set(&huge_zero_refcount, 2);
236 preempt_enable();
237 count_vm_event(THP_ZERO_PAGE_ALLOC);
238 return true;
239 }
240
put_huge_zero_page(void)241 static void put_huge_zero_page(void)
242 {
243 /*
244 * Counter should never go to zero here. Only shrinker can put
245 * last reference.
246 */
247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249
mm_get_huge_zero_folio(struct mm_struct * mm)250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 return READ_ONCE(huge_zero_folio);
254
255 if (!get_huge_zero_page())
256 return NULL;
257
258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
259 put_huge_zero_page();
260
261 return READ_ONCE(huge_zero_folio);
262 }
263
mm_put_huge_zero_folio(struct mm_struct * mm)264 void mm_put_huge_zero_folio(struct mm_struct *mm)
265 {
266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
267 put_huge_zero_page();
268 }
269
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
271 struct shrink_control *sc)
272 {
273 /* we can free zero page only if last reference remains */
274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
275 }
276
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
278 struct shrink_control *sc)
279 {
280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
282 BUG_ON(zero_folio == NULL);
283 WRITE_ONCE(huge_zero_pfn, ~0UL);
284 folio_put(zero_folio);
285 return HPAGE_PMD_NR;
286 }
287
288 return 0;
289 }
290
291 static struct shrinker *huge_zero_page_shrinker;
292
293 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)294 static ssize_t enabled_show(struct kobject *kobj,
295 struct kobj_attribute *attr, char *buf)
296 {
297 const char *output;
298
299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
300 output = "[always] madvise never";
301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
302 &transparent_hugepage_flags))
303 output = "always [madvise] never";
304 else
305 output = "always madvise [never]";
306
307 return sysfs_emit(buf, "%s\n", output);
308 }
309
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)310 static ssize_t enabled_store(struct kobject *kobj,
311 struct kobj_attribute *attr,
312 const char *buf, size_t count)
313 {
314 ssize_t ret = count;
315
316 if (sysfs_streq(buf, "always")) {
317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319 } else if (sysfs_streq(buf, "madvise")) {
320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322 } else if (sysfs_streq(buf, "never")) {
323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
325 } else
326 ret = -EINVAL;
327
328 if (ret > 0) {
329 int err = start_stop_khugepaged();
330 if (err)
331 ret = err;
332 }
333 return ret;
334 }
335
336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
337
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)338 ssize_t single_hugepage_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341 {
342 return sysfs_emit(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
344 }
345
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)346 ssize_t single_hugepage_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350 {
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
361 set_bit(flag, &transparent_hugepage_flags);
362 else
363 clear_bit(flag, &transparent_hugepage_flags);
364
365 return count;
366 }
367
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)368 static ssize_t defrag_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370 {
371 const char *output;
372
373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
374 &transparent_hugepage_flags))
375 output = "[always] defer defer+madvise madvise never";
376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
377 &transparent_hugepage_flags))
378 output = "always [defer] defer+madvise madvise never";
379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
380 &transparent_hugepage_flags))
381 output = "always defer [defer+madvise] madvise never";
382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
383 &transparent_hugepage_flags))
384 output = "always defer defer+madvise [madvise] never";
385 else
386 output = "always defer defer+madvise madvise [never]";
387
388 return sysfs_emit(buf, "%s\n", output);
389 }
390
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)391 static ssize_t defrag_store(struct kobject *kobj,
392 struct kobj_attribute *attr,
393 const char *buf, size_t count)
394 {
395 if (sysfs_streq(buf, "always")) {
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400 } else if (sysfs_streq(buf, "defer+madvise")) {
401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 } else if (sysfs_streq(buf, "defer")) {
406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410 } else if (sysfs_streq(buf, "madvise")) {
411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 } else if (sysfs_streq(buf, "never")) {
416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420 } else
421 return -EINVAL;
422
423 return count;
424 }
425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
426
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)427 static ssize_t use_zero_page_show(struct kobject *kobj,
428 struct kobj_attribute *attr, char *buf)
429 {
430 return single_hugepage_flag_show(kobj, attr, buf,
431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
432 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)433 static ssize_t use_zero_page_store(struct kobject *kobj,
434 struct kobj_attribute *attr, const char *buf, size_t count)
435 {
436 return single_hugepage_flag_store(kobj, attr, buf, count,
437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
440
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)441 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
442 struct kobj_attribute *attr, char *buf)
443 {
444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
445 }
446 static struct kobj_attribute hpage_pmd_size_attr =
447 __ATTR_RO(hpage_pmd_size);
448
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)449 static ssize_t split_underused_thp_show(struct kobject *kobj,
450 struct kobj_attribute *attr, char *buf)
451 {
452 return sysfs_emit(buf, "%d\n", split_underused_thp);
453 }
454
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)455 static ssize_t split_underused_thp_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458 {
459 int err = kstrtobool(buf, &split_underused_thp);
460
461 if (err < 0)
462 return err;
463
464 return count;
465 }
466
467 static struct kobj_attribute split_underused_thp_attr = __ATTR(
468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
469
470 static struct attribute *hugepage_attr[] = {
471 &enabled_attr.attr,
472 &defrag_attr.attr,
473 &use_zero_page_attr.attr,
474 &hpage_pmd_size_attr.attr,
475 #ifdef CONFIG_SHMEM
476 &shmem_enabled_attr.attr,
477 #endif
478 &split_underused_thp_attr.attr,
479 NULL,
480 };
481
482 static const struct attribute_group hugepage_attr_group = {
483 .attrs = hugepage_attr,
484 };
485
486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
487 static void thpsize_release(struct kobject *kobj);
488 static DEFINE_SPINLOCK(huge_anon_orders_lock);
489 static LIST_HEAD(thpsize_list);
490
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)491 static ssize_t anon_enabled_show(struct kobject *kobj,
492 struct kobj_attribute *attr, char *buf)
493 {
494 int order = to_thpsize(kobj)->order;
495 const char *output;
496
497 if (test_bit(order, &huge_anon_orders_always))
498 output = "[always] inherit madvise never";
499 else if (test_bit(order, &huge_anon_orders_inherit))
500 output = "always [inherit] madvise never";
501 else if (test_bit(order, &huge_anon_orders_madvise))
502 output = "always inherit [madvise] never";
503 else
504 output = "always inherit madvise [never]";
505
506 return sysfs_emit(buf, "%s\n", output);
507 }
508
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)509 static ssize_t anon_enabled_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512 {
513 int order = to_thpsize(kobj)->order;
514 ssize_t ret = count;
515
516 if (sysfs_streq(buf, "always")) {
517 spin_lock(&huge_anon_orders_lock);
518 clear_bit(order, &huge_anon_orders_inherit);
519 clear_bit(order, &huge_anon_orders_madvise);
520 set_bit(order, &huge_anon_orders_always);
521 spin_unlock(&huge_anon_orders_lock);
522 } else if (sysfs_streq(buf, "inherit")) {
523 spin_lock(&huge_anon_orders_lock);
524 clear_bit(order, &huge_anon_orders_always);
525 clear_bit(order, &huge_anon_orders_madvise);
526 set_bit(order, &huge_anon_orders_inherit);
527 spin_unlock(&huge_anon_orders_lock);
528 } else if (sysfs_streq(buf, "madvise")) {
529 spin_lock(&huge_anon_orders_lock);
530 clear_bit(order, &huge_anon_orders_always);
531 clear_bit(order, &huge_anon_orders_inherit);
532 set_bit(order, &huge_anon_orders_madvise);
533 spin_unlock(&huge_anon_orders_lock);
534 } else if (sysfs_streq(buf, "never")) {
535 spin_lock(&huge_anon_orders_lock);
536 clear_bit(order, &huge_anon_orders_always);
537 clear_bit(order, &huge_anon_orders_inherit);
538 clear_bit(order, &huge_anon_orders_madvise);
539 spin_unlock(&huge_anon_orders_lock);
540 } else
541 ret = -EINVAL;
542
543 if (ret > 0) {
544 int err;
545
546 err = start_stop_khugepaged();
547 if (err)
548 ret = err;
549 }
550 return ret;
551 }
552
553 static struct kobj_attribute anon_enabled_attr =
554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
555
556 static struct attribute *anon_ctrl_attrs[] = {
557 &anon_enabled_attr.attr,
558 NULL,
559 };
560
561 static const struct attribute_group anon_ctrl_attr_grp = {
562 .attrs = anon_ctrl_attrs,
563 };
564
565 static struct attribute *file_ctrl_attrs[] = {
566 #ifdef CONFIG_SHMEM
567 &thpsize_shmem_enabled_attr.attr,
568 #endif
569 NULL,
570 };
571
572 static const struct attribute_group file_ctrl_attr_grp = {
573 .attrs = file_ctrl_attrs,
574 };
575
576 static struct attribute *any_ctrl_attrs[] = {
577 NULL,
578 };
579
580 static const struct attribute_group any_ctrl_attr_grp = {
581 .attrs = any_ctrl_attrs,
582 };
583
584 static const struct kobj_type thpsize_ktype = {
585 .release = &thpsize_release,
586 .sysfs_ops = &kobj_sysfs_ops,
587 };
588
589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
590
sum_mthp_stat(int order,enum mthp_stat_item item)591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
592 {
593 unsigned long sum = 0;
594 int cpu;
595
596 for_each_possible_cpu(cpu) {
597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
598
599 sum += this->stats[order][item];
600 }
601
602 return sum;
603 }
604
605 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
606 static ssize_t _name##_show(struct kobject *kobj, \
607 struct kobj_attribute *attr, char *buf) \
608 { \
609 int order = to_thpsize(kobj)->order; \
610 \
611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
612 } \
613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
614
615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
620 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
621 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
622 #ifdef CONFIG_SHMEM
623 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
624 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
625 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
626 #endif
627 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
628 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
629 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
630 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
631 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
632
633 static struct attribute *anon_stats_attrs[] = {
634 &anon_fault_alloc_attr.attr,
635 &anon_fault_fallback_attr.attr,
636 &anon_fault_fallback_charge_attr.attr,
637 #ifndef CONFIG_SHMEM
638 &zswpout_attr.attr,
639 &swpin_attr.attr,
640 &swpout_attr.attr,
641 &swpout_fallback_attr.attr,
642 #endif
643 &split_deferred_attr.attr,
644 &nr_anon_attr.attr,
645 &nr_anon_partially_mapped_attr.attr,
646 NULL,
647 };
648
649 static struct attribute_group anon_stats_attr_grp = {
650 .name = "stats",
651 .attrs = anon_stats_attrs,
652 };
653
654 static struct attribute *file_stats_attrs[] = {
655 #ifdef CONFIG_SHMEM
656 &shmem_alloc_attr.attr,
657 &shmem_fallback_attr.attr,
658 &shmem_fallback_charge_attr.attr,
659 #endif
660 NULL,
661 };
662
663 static struct attribute_group file_stats_attr_grp = {
664 .name = "stats",
665 .attrs = file_stats_attrs,
666 };
667
668 static struct attribute *any_stats_attrs[] = {
669 #ifdef CONFIG_SHMEM
670 &zswpout_attr.attr,
671 &swpin_attr.attr,
672 &swpout_attr.attr,
673 &swpout_fallback_attr.attr,
674 #endif
675 &split_attr.attr,
676 &split_failed_attr.attr,
677 NULL,
678 };
679
680 static struct attribute_group any_stats_attr_grp = {
681 .name = "stats",
682 .attrs = any_stats_attrs,
683 };
684
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)685 static int sysfs_add_group(struct kobject *kobj,
686 const struct attribute_group *grp)
687 {
688 int ret = -ENOENT;
689
690 /*
691 * If the group is named, try to merge first, assuming the subdirectory
692 * was already created. This avoids the warning emitted by
693 * sysfs_create_group() if the directory already exists.
694 */
695 if (grp->name)
696 ret = sysfs_merge_group(kobj, grp);
697 if (ret)
698 ret = sysfs_create_group(kobj, grp);
699
700 return ret;
701 }
702
thpsize_create(int order,struct kobject * parent)703 static struct thpsize *thpsize_create(int order, struct kobject *parent)
704 {
705 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
706 struct thpsize *thpsize;
707 int ret = -ENOMEM;
708
709 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
710 if (!thpsize)
711 goto err;
712
713 thpsize->order = order;
714
715 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
716 "hugepages-%lukB", size);
717 if (ret) {
718 kfree(thpsize);
719 goto err;
720 }
721
722
723 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
724 if (ret)
725 goto err_put;
726
727 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
728 if (ret)
729 goto err_put;
730
731 if (BIT(order) & THP_ORDERS_ALL_ANON) {
732 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
733 if (ret)
734 goto err_put;
735
736 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
737 if (ret)
738 goto err_put;
739 }
740
741 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
742 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
743 if (ret)
744 goto err_put;
745
746 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
747 if (ret)
748 goto err_put;
749 }
750
751 return thpsize;
752 err_put:
753 kobject_put(&thpsize->kobj);
754 err:
755 return ERR_PTR(ret);
756 }
757
thpsize_release(struct kobject * kobj)758 static void thpsize_release(struct kobject *kobj)
759 {
760 kfree(to_thpsize(kobj));
761 }
762
hugepage_init_sysfs(struct kobject ** hugepage_kobj)763 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
764 {
765 int err;
766 struct thpsize *thpsize;
767 unsigned long orders;
768 int order;
769
770 /*
771 * Default to setting PMD-sized THP to inherit the global setting and
772 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
773 * constant so we have to do this here.
774 */
775 if (!anon_orders_configured)
776 huge_anon_orders_inherit = BIT(PMD_ORDER);
777
778 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
779 if (unlikely(!*hugepage_kobj)) {
780 pr_err("failed to create transparent hugepage kobject\n");
781 return -ENOMEM;
782 }
783
784 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
785 if (err) {
786 pr_err("failed to register transparent hugepage group\n");
787 goto delete_obj;
788 }
789
790 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
791 if (err) {
792 pr_err("failed to register transparent hugepage group\n");
793 goto remove_hp_group;
794 }
795
796 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
797 order = highest_order(orders);
798 while (orders) {
799 thpsize = thpsize_create(order, *hugepage_kobj);
800 if (IS_ERR(thpsize)) {
801 pr_err("failed to create thpsize for order %d\n", order);
802 err = PTR_ERR(thpsize);
803 goto remove_all;
804 }
805 list_add(&thpsize->node, &thpsize_list);
806 order = next_order(&orders, order);
807 }
808
809 return 0;
810
811 remove_all:
812 hugepage_exit_sysfs(*hugepage_kobj);
813 return err;
814 remove_hp_group:
815 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
816 delete_obj:
817 kobject_put(*hugepage_kobj);
818 return err;
819 }
820
hugepage_exit_sysfs(struct kobject * hugepage_kobj)821 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
822 {
823 struct thpsize *thpsize, *tmp;
824
825 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
826 list_del(&thpsize->node);
827 kobject_put(&thpsize->kobj);
828 }
829
830 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
831 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
832 kobject_put(hugepage_kobj);
833 }
834 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)835 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
836 {
837 return 0;
838 }
839
hugepage_exit_sysfs(struct kobject * hugepage_kobj)840 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
841 {
842 }
843 #endif /* CONFIG_SYSFS */
844
thp_shrinker_init(void)845 static int __init thp_shrinker_init(void)
846 {
847 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
848 if (!huge_zero_page_shrinker)
849 return -ENOMEM;
850
851 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
852 SHRINKER_MEMCG_AWARE |
853 SHRINKER_NONSLAB,
854 "thp-deferred_split");
855 if (!deferred_split_shrinker) {
856 shrinker_free(huge_zero_page_shrinker);
857 return -ENOMEM;
858 }
859
860 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
861 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
862 shrinker_register(huge_zero_page_shrinker);
863
864 deferred_split_shrinker->count_objects = deferred_split_count;
865 deferred_split_shrinker->scan_objects = deferred_split_scan;
866 shrinker_register(deferred_split_shrinker);
867
868 return 0;
869 }
870
thp_shrinker_exit(void)871 static void __init thp_shrinker_exit(void)
872 {
873 shrinker_free(huge_zero_page_shrinker);
874 shrinker_free(deferred_split_shrinker);
875 }
876
hugepage_init(void)877 static int __init hugepage_init(void)
878 {
879 int err;
880 struct kobject *hugepage_kobj;
881
882 if (!has_transparent_hugepage()) {
883 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
884 return -EINVAL;
885 }
886
887 /*
888 * hugepages can't be allocated by the buddy allocator
889 */
890 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
891
892 err = hugepage_init_sysfs(&hugepage_kobj);
893 if (err)
894 goto err_sysfs;
895
896 err = khugepaged_init();
897 if (err)
898 goto err_slab;
899
900 err = thp_shrinker_init();
901 if (err)
902 goto err_shrinker;
903
904 /*
905 * By default disable transparent hugepages on smaller systems,
906 * where the extra memory used could hurt more than TLB overhead
907 * is likely to save. The admin can still enable it through /sys.
908 */
909 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
910 transparent_hugepage_flags = 0;
911 return 0;
912 }
913
914 err = start_stop_khugepaged();
915 if (err)
916 goto err_khugepaged;
917
918 return 0;
919 err_khugepaged:
920 thp_shrinker_exit();
921 err_shrinker:
922 khugepaged_destroy();
923 err_slab:
924 hugepage_exit_sysfs(hugepage_kobj);
925 err_sysfs:
926 return err;
927 }
928 subsys_initcall(hugepage_init);
929
setup_transparent_hugepage(char * str)930 static int __init setup_transparent_hugepage(char *str)
931 {
932 int ret = 0;
933 if (!str)
934 goto out;
935 if (!strcmp(str, "always")) {
936 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
937 &transparent_hugepage_flags);
938 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
939 &transparent_hugepage_flags);
940 ret = 1;
941 } else if (!strcmp(str, "madvise")) {
942 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
943 &transparent_hugepage_flags);
944 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
945 &transparent_hugepage_flags);
946 ret = 1;
947 } else if (!strcmp(str, "never")) {
948 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
949 &transparent_hugepage_flags);
950 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
951 &transparent_hugepage_flags);
952 ret = 1;
953 }
954 out:
955 if (!ret)
956 pr_warn("transparent_hugepage= cannot parse, ignored\n");
957 return ret;
958 }
959 __setup("transparent_hugepage=", setup_transparent_hugepage);
960
961 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)962 static int __init setup_thp_anon(char *str)
963 {
964 char *token, *range, *policy, *subtoken;
965 unsigned long always, inherit, madvise;
966 char *start_size, *end_size;
967 int start, end, nr;
968 char *p;
969
970 if (!str || strlen(str) + 1 > PAGE_SIZE)
971 goto err;
972 strscpy(str_dup, str);
973
974 always = huge_anon_orders_always;
975 madvise = huge_anon_orders_madvise;
976 inherit = huge_anon_orders_inherit;
977 p = str_dup;
978 while ((token = strsep(&p, ";")) != NULL) {
979 range = strsep(&token, ":");
980 policy = token;
981
982 if (!policy)
983 goto err;
984
985 while ((subtoken = strsep(&range, ",")) != NULL) {
986 if (strchr(subtoken, '-')) {
987 start_size = strsep(&subtoken, "-");
988 end_size = subtoken;
989
990 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
991 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
992 } else {
993 start_size = end_size = subtoken;
994 start = end = get_order_from_str(subtoken,
995 THP_ORDERS_ALL_ANON);
996 }
997
998 if (start == -EINVAL) {
999 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1000 goto err;
1001 }
1002
1003 if (end == -EINVAL) {
1004 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1005 goto err;
1006 }
1007
1008 if (start < 0 || end < 0 || start > end)
1009 goto err;
1010
1011 nr = end - start + 1;
1012 if (!strcmp(policy, "always")) {
1013 bitmap_set(&always, start, nr);
1014 bitmap_clear(&inherit, start, nr);
1015 bitmap_clear(&madvise, start, nr);
1016 } else if (!strcmp(policy, "madvise")) {
1017 bitmap_set(&madvise, start, nr);
1018 bitmap_clear(&inherit, start, nr);
1019 bitmap_clear(&always, start, nr);
1020 } else if (!strcmp(policy, "inherit")) {
1021 bitmap_set(&inherit, start, nr);
1022 bitmap_clear(&madvise, start, nr);
1023 bitmap_clear(&always, start, nr);
1024 } else if (!strcmp(policy, "never")) {
1025 bitmap_clear(&inherit, start, nr);
1026 bitmap_clear(&madvise, start, nr);
1027 bitmap_clear(&always, start, nr);
1028 } else {
1029 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1030 goto err;
1031 }
1032 }
1033 }
1034
1035 huge_anon_orders_always = always;
1036 huge_anon_orders_madvise = madvise;
1037 huge_anon_orders_inherit = inherit;
1038 anon_orders_configured = true;
1039 return 1;
1040
1041 err:
1042 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1043 return 0;
1044 }
1045 __setup("thp_anon=", setup_thp_anon);
1046
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1047 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1048 {
1049 if (likely(vma->vm_flags & VM_WRITE))
1050 pmd = pmd_mkwrite(pmd, vma);
1051 return pmd;
1052 }
1053
1054 #ifdef CONFIG_MEMCG
1055 static inline
get_deferred_split_queue(struct folio * folio)1056 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1057 {
1058 struct mem_cgroup *memcg = folio_memcg(folio);
1059 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1060
1061 if (memcg)
1062 return &memcg->deferred_split_queue;
1063 else
1064 return &pgdat->deferred_split_queue;
1065 }
1066 #else
1067 static inline
get_deferred_split_queue(struct folio * folio)1068 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1069 {
1070 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1071
1072 return &pgdat->deferred_split_queue;
1073 }
1074 #endif
1075
is_transparent_hugepage(const struct folio * folio)1076 static inline bool is_transparent_hugepage(const struct folio *folio)
1077 {
1078 if (!folio_test_large(folio))
1079 return false;
1080
1081 return is_huge_zero_folio(folio) ||
1082 folio_test_large_rmappable(folio);
1083 }
1084
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1085 static unsigned long __thp_get_unmapped_area(struct file *filp,
1086 unsigned long addr, unsigned long len,
1087 loff_t off, unsigned long flags, unsigned long size,
1088 vm_flags_t vm_flags)
1089 {
1090 loff_t off_end = off + len;
1091 loff_t off_align = round_up(off, size);
1092 unsigned long len_pad, ret, off_sub;
1093
1094 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1095 return 0;
1096
1097 if (off_end <= off_align || (off_end - off_align) < size)
1098 return 0;
1099
1100 len_pad = len + size;
1101 if (len_pad < len || (off + len_pad) < off)
1102 return 0;
1103
1104 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1105 off >> PAGE_SHIFT, flags, vm_flags);
1106
1107 /*
1108 * The failure might be due to length padding. The caller will retry
1109 * without the padding.
1110 */
1111 if (IS_ERR_VALUE(ret))
1112 return 0;
1113
1114 /*
1115 * Do not try to align to THP boundary if allocation at the address
1116 * hint succeeds.
1117 */
1118 if (ret == addr)
1119 return addr;
1120
1121 off_sub = (off - ret) & (size - 1);
1122
1123 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1124 return ret + size;
1125
1126 ret += off_sub;
1127 return ret;
1128 }
1129
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1130 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1131 unsigned long len, unsigned long pgoff, unsigned long flags,
1132 vm_flags_t vm_flags)
1133 {
1134 unsigned long ret;
1135 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1136
1137 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1138 if (ret)
1139 return ret;
1140
1141 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1142 vm_flags);
1143 }
1144
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1145 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1146 unsigned long len, unsigned long pgoff, unsigned long flags)
1147 {
1148 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1149 }
1150 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1151
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1152 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1153 unsigned long addr)
1154 {
1155 gfp_t gfp = vma_thp_gfp_mask(vma);
1156 const int order = HPAGE_PMD_ORDER;
1157 struct folio *folio;
1158
1159 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1160
1161 if (unlikely(!folio)) {
1162 count_vm_event(THP_FAULT_FALLBACK);
1163 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1164 return NULL;
1165 }
1166
1167 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1168 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1169 folio_put(folio);
1170 count_vm_event(THP_FAULT_FALLBACK);
1171 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1172 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1173 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1174 return NULL;
1175 }
1176 folio_throttle_swaprate(folio, gfp);
1177
1178 /*
1179 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1180 * or user folios require special handling, folio_zero_user() is used to
1181 * make sure that the page corresponding to the faulting address will be
1182 * hot in the cache after zeroing.
1183 */
1184 if (user_alloc_needs_zeroing())
1185 folio_zero_user(folio, addr);
1186 /*
1187 * The memory barrier inside __folio_mark_uptodate makes sure that
1188 * folio_zero_user writes become visible before the set_pmd_at()
1189 * write.
1190 */
1191 __folio_mark_uptodate(folio);
1192 return folio;
1193 }
1194
map_anon_folio_pmd(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1195 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1196 struct vm_area_struct *vma, unsigned long haddr)
1197 {
1198 pmd_t entry;
1199
1200 entry = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1203 folio_add_lru_vma(folio, vma);
1204 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1205 update_mmu_cache_pmd(vma, haddr, pmd);
1206 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1207 count_vm_event(THP_FAULT_ALLOC);
1208 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1209 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1210 }
1211
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1212 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1213 {
1214 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1215 struct vm_area_struct *vma = vmf->vma;
1216 struct folio *folio;
1217 pgtable_t pgtable;
1218 vm_fault_t ret = 0;
1219
1220 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1221 if (unlikely(!folio))
1222 return VM_FAULT_FALLBACK;
1223
1224 pgtable = pte_alloc_one(vma->vm_mm);
1225 if (unlikely(!pgtable)) {
1226 ret = VM_FAULT_OOM;
1227 goto release;
1228 }
1229
1230 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1231 if (unlikely(!pmd_none(*vmf->pmd))) {
1232 goto unlock_release;
1233 } else {
1234 ret = check_stable_address_space(vma->vm_mm);
1235 if (ret)
1236 goto unlock_release;
1237
1238 /* Deliver the page fault to userland */
1239 if (userfaultfd_missing(vma)) {
1240 spin_unlock(vmf->ptl);
1241 folio_put(folio);
1242 pte_free(vma->vm_mm, pgtable);
1243 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1244 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1245 return ret;
1246 }
1247 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1248 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1249 mm_inc_nr_ptes(vma->vm_mm);
1250 deferred_split_folio(folio, false);
1251 spin_unlock(vmf->ptl);
1252 }
1253
1254 return 0;
1255 unlock_release:
1256 spin_unlock(vmf->ptl);
1257 release:
1258 if (pgtable)
1259 pte_free(vma->vm_mm, pgtable);
1260 folio_put(folio);
1261 return ret;
1262
1263 }
1264
1265 /*
1266 * always: directly stall for all thp allocations
1267 * defer: wake kswapd and fail if not immediately available
1268 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1269 * fail if not immediately available
1270 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1271 * available
1272 * never: never stall for any thp allocation
1273 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1274 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1275 {
1276 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1277
1278 /* Always do synchronous compaction */
1279 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1280 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1281
1282 /* Kick kcompactd and fail quickly */
1283 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1284 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1285
1286 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1287 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1288 return GFP_TRANSHUGE_LIGHT |
1289 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1290 __GFP_KSWAPD_RECLAIM);
1291
1292 /* Only do synchronous compaction if madvised */
1293 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1294 return GFP_TRANSHUGE_LIGHT |
1295 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1296
1297 return GFP_TRANSHUGE_LIGHT;
1298 }
1299
1300 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1301 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1302 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1303 struct folio *zero_folio)
1304 {
1305 pmd_t entry;
1306 if (!pmd_none(*pmd))
1307 return;
1308 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1309 entry = pmd_mkhuge(entry);
1310 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1311 set_pmd_at(mm, haddr, pmd, entry);
1312 mm_inc_nr_ptes(mm);
1313 }
1314
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1315 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1316 {
1317 struct vm_area_struct *vma = vmf->vma;
1318 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1319 vm_fault_t ret;
1320
1321 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1322 return VM_FAULT_FALLBACK;
1323 ret = vmf_anon_prepare(vmf);
1324 if (ret)
1325 return ret;
1326 khugepaged_enter_vma(vma, vma->vm_flags);
1327
1328 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1329 !mm_forbids_zeropage(vma->vm_mm) &&
1330 transparent_hugepage_use_zero_page()) {
1331 pgtable_t pgtable;
1332 struct folio *zero_folio;
1333 vm_fault_t ret;
1334
1335 pgtable = pte_alloc_one(vma->vm_mm);
1336 if (unlikely(!pgtable))
1337 return VM_FAULT_OOM;
1338 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1339 if (unlikely(!zero_folio)) {
1340 pte_free(vma->vm_mm, pgtable);
1341 count_vm_event(THP_FAULT_FALLBACK);
1342 return VM_FAULT_FALLBACK;
1343 }
1344 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1345 ret = 0;
1346 if (pmd_none(*vmf->pmd)) {
1347 ret = check_stable_address_space(vma->vm_mm);
1348 if (ret) {
1349 spin_unlock(vmf->ptl);
1350 pte_free(vma->vm_mm, pgtable);
1351 } else if (userfaultfd_missing(vma)) {
1352 spin_unlock(vmf->ptl);
1353 pte_free(vma->vm_mm, pgtable);
1354 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1355 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1356 } else {
1357 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1358 haddr, vmf->pmd, zero_folio);
1359 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360 spin_unlock(vmf->ptl);
1361 }
1362 } else {
1363 spin_unlock(vmf->ptl);
1364 pte_free(vma->vm_mm, pgtable);
1365 }
1366 return ret;
1367 }
1368
1369 return __do_huge_pmd_anonymous_page(vmf);
1370 }
1371
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)1372 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1373 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1374 pgtable_t pgtable)
1375 {
1376 struct mm_struct *mm = vma->vm_mm;
1377 pmd_t entry;
1378 spinlock_t *ptl;
1379
1380 ptl = pmd_lock(mm, pmd);
1381 if (!pmd_none(*pmd)) {
1382 if (write) {
1383 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1384 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1385 goto out_unlock;
1386 }
1387 entry = pmd_mkyoung(*pmd);
1388 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1389 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1390 update_mmu_cache_pmd(vma, addr, pmd);
1391 }
1392
1393 goto out_unlock;
1394 }
1395
1396 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1397 if (pfn_t_devmap(pfn))
1398 entry = pmd_mkdevmap(entry);
1399 else
1400 entry = pmd_mkspecial(entry);
1401 if (write) {
1402 entry = pmd_mkyoung(pmd_mkdirty(entry));
1403 entry = maybe_pmd_mkwrite(entry, vma);
1404 }
1405
1406 if (pgtable) {
1407 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1408 mm_inc_nr_ptes(mm);
1409 pgtable = NULL;
1410 }
1411
1412 set_pmd_at(mm, addr, pmd, entry);
1413 update_mmu_cache_pmd(vma, addr, pmd);
1414
1415 out_unlock:
1416 spin_unlock(ptl);
1417 if (pgtable)
1418 pte_free(mm, pgtable);
1419 }
1420
1421 /**
1422 * vmf_insert_pfn_pmd - insert a pmd size pfn
1423 * @vmf: Structure describing the fault
1424 * @pfn: pfn to insert
1425 * @write: whether it's a write fault
1426 *
1427 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1428 *
1429 * Return: vm_fault_t value.
1430 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)1431 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1432 {
1433 unsigned long addr = vmf->address & PMD_MASK;
1434 struct vm_area_struct *vma = vmf->vma;
1435 pgprot_t pgprot = vma->vm_page_prot;
1436 pgtable_t pgtable = NULL;
1437
1438 /*
1439 * If we had pmd_special, we could avoid all these restrictions,
1440 * but we need to be consistent with PTEs and architectures that
1441 * can't support a 'special' bit.
1442 */
1443 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1444 !pfn_t_devmap(pfn));
1445 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1446 (VM_PFNMAP|VM_MIXEDMAP));
1447 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1448
1449 if (addr < vma->vm_start || addr >= vma->vm_end)
1450 return VM_FAULT_SIGBUS;
1451
1452 if (arch_needs_pgtable_deposit()) {
1453 pgtable = pte_alloc_one(vma->vm_mm);
1454 if (!pgtable)
1455 return VM_FAULT_OOM;
1456 }
1457
1458 track_pfn_insert(vma, &pgprot, pfn);
1459
1460 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1461 return VM_FAULT_NOPAGE;
1462 }
1463 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1464
1465 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1466 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1467 {
1468 if (likely(vma->vm_flags & VM_WRITE))
1469 pud = pud_mkwrite(pud);
1470 return pud;
1471 }
1472
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)1473 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1474 pud_t *pud, pfn_t pfn, bool write)
1475 {
1476 struct mm_struct *mm = vma->vm_mm;
1477 pgprot_t prot = vma->vm_page_prot;
1478 pud_t entry;
1479 spinlock_t *ptl;
1480
1481 ptl = pud_lock(mm, pud);
1482 if (!pud_none(*pud)) {
1483 if (write) {
1484 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1485 goto out_unlock;
1486 entry = pud_mkyoung(*pud);
1487 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1488 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1489 update_mmu_cache_pud(vma, addr, pud);
1490 }
1491 goto out_unlock;
1492 }
1493
1494 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1495 if (pfn_t_devmap(pfn))
1496 entry = pud_mkdevmap(entry);
1497 else
1498 entry = pud_mkspecial(entry);
1499 if (write) {
1500 entry = pud_mkyoung(pud_mkdirty(entry));
1501 entry = maybe_pud_mkwrite(entry, vma);
1502 }
1503 set_pud_at(mm, addr, pud, entry);
1504 update_mmu_cache_pud(vma, addr, pud);
1505
1506 out_unlock:
1507 spin_unlock(ptl);
1508 }
1509
1510 /**
1511 * vmf_insert_pfn_pud - insert a pud size pfn
1512 * @vmf: Structure describing the fault
1513 * @pfn: pfn to insert
1514 * @write: whether it's a write fault
1515 *
1516 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1517 *
1518 * Return: vm_fault_t value.
1519 */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)1520 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1521 {
1522 unsigned long addr = vmf->address & PUD_MASK;
1523 struct vm_area_struct *vma = vmf->vma;
1524 pgprot_t pgprot = vma->vm_page_prot;
1525
1526 /*
1527 * If we had pud_special, we could avoid all these restrictions,
1528 * but we need to be consistent with PTEs and architectures that
1529 * can't support a 'special' bit.
1530 */
1531 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1532 !pfn_t_devmap(pfn));
1533 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1534 (VM_PFNMAP|VM_MIXEDMAP));
1535 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1536
1537 if (addr < vma->vm_start || addr >= vma->vm_end)
1538 return VM_FAULT_SIGBUS;
1539
1540 track_pfn_insert(vma, &pgprot, pfn);
1541
1542 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1543 return VM_FAULT_NOPAGE;
1544 }
1545 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1546 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1547
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1548 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1549 pmd_t *pmd, bool write)
1550 {
1551 pmd_t _pmd;
1552
1553 _pmd = pmd_mkyoung(*pmd);
1554 if (write)
1555 _pmd = pmd_mkdirty(_pmd);
1556 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1557 pmd, _pmd, write))
1558 update_mmu_cache_pmd(vma, addr, pmd);
1559 }
1560
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1561 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1562 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1563 {
1564 unsigned long pfn = pmd_pfn(*pmd);
1565 struct mm_struct *mm = vma->vm_mm;
1566 struct page *page;
1567 int ret;
1568
1569 assert_spin_locked(pmd_lockptr(mm, pmd));
1570
1571 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1572 return NULL;
1573
1574 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1575 /* pass */;
1576 else
1577 return NULL;
1578
1579 if (flags & FOLL_TOUCH)
1580 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1581
1582 /*
1583 * device mapped pages can only be returned if the
1584 * caller will manage the page reference count.
1585 */
1586 if (!(flags & (FOLL_GET | FOLL_PIN)))
1587 return ERR_PTR(-EEXIST);
1588
1589 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1590 *pgmap = get_dev_pagemap(pfn, *pgmap);
1591 if (!*pgmap)
1592 return ERR_PTR(-EFAULT);
1593 page = pfn_to_page(pfn);
1594 ret = try_grab_folio(page_folio(page), 1, flags);
1595 if (ret)
1596 page = ERR_PTR(ret);
1597
1598 return page;
1599 }
1600
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1601 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1602 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1603 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1604 {
1605 spinlock_t *dst_ptl, *src_ptl;
1606 struct page *src_page;
1607 struct folio *src_folio;
1608 pmd_t pmd;
1609 pgtable_t pgtable = NULL;
1610 int ret = -ENOMEM;
1611
1612 pmd = pmdp_get_lockless(src_pmd);
1613 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1614 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1615 src_ptl = pmd_lockptr(src_mm, src_pmd);
1616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1617 /*
1618 * No need to recheck the pmd, it can't change with write
1619 * mmap lock held here.
1620 *
1621 * Meanwhile, making sure it's not a CoW VMA with writable
1622 * mapping, otherwise it means either the anon page wrongly
1623 * applied special bit, or we made the PRIVATE mapping be
1624 * able to wrongly write to the backend MMIO.
1625 */
1626 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1627 goto set_pmd;
1628 }
1629
1630 /* Skip if can be re-fill on fault */
1631 if (!vma_is_anonymous(dst_vma))
1632 return 0;
1633
1634 pgtable = pte_alloc_one(dst_mm);
1635 if (unlikely(!pgtable))
1636 goto out;
1637
1638 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1639 src_ptl = pmd_lockptr(src_mm, src_pmd);
1640 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1641
1642 ret = -EAGAIN;
1643 pmd = *src_pmd;
1644
1645 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1646 if (unlikely(is_swap_pmd(pmd))) {
1647 swp_entry_t entry = pmd_to_swp_entry(pmd);
1648
1649 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1650 if (!is_readable_migration_entry(entry)) {
1651 entry = make_readable_migration_entry(
1652 swp_offset(entry));
1653 pmd = swp_entry_to_pmd(entry);
1654 if (pmd_swp_soft_dirty(*src_pmd))
1655 pmd = pmd_swp_mksoft_dirty(pmd);
1656 if (pmd_swp_uffd_wp(*src_pmd))
1657 pmd = pmd_swp_mkuffd_wp(pmd);
1658 set_pmd_at(src_mm, addr, src_pmd, pmd);
1659 }
1660 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1661 mm_inc_nr_ptes(dst_mm);
1662 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1663 if (!userfaultfd_wp(dst_vma))
1664 pmd = pmd_swp_clear_uffd_wp(pmd);
1665 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1666 ret = 0;
1667 goto out_unlock;
1668 }
1669 #endif
1670
1671 if (unlikely(!pmd_trans_huge(pmd))) {
1672 pte_free(dst_mm, pgtable);
1673 goto out_unlock;
1674 }
1675 /*
1676 * When page table lock is held, the huge zero pmd should not be
1677 * under splitting since we don't split the page itself, only pmd to
1678 * a page table.
1679 */
1680 if (is_huge_zero_pmd(pmd)) {
1681 /*
1682 * mm_get_huge_zero_folio() will never allocate a new
1683 * folio here, since we already have a zero page to
1684 * copy. It just takes a reference.
1685 */
1686 mm_get_huge_zero_folio(dst_mm);
1687 goto out_zero_page;
1688 }
1689
1690 src_page = pmd_page(pmd);
1691 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1692 src_folio = page_folio(src_page);
1693
1694 folio_get(src_folio);
1695 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1696 /* Page maybe pinned: split and retry the fault on PTEs. */
1697 folio_put(src_folio);
1698 pte_free(dst_mm, pgtable);
1699 spin_unlock(src_ptl);
1700 spin_unlock(dst_ptl);
1701 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1702 return -EAGAIN;
1703 }
1704 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1705 out_zero_page:
1706 mm_inc_nr_ptes(dst_mm);
1707 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1708 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1709 if (!userfaultfd_wp(dst_vma))
1710 pmd = pmd_clear_uffd_wp(pmd);
1711 pmd = pmd_wrprotect(pmd);
1712 set_pmd:
1713 pmd = pmd_mkold(pmd);
1714 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1715
1716 ret = 0;
1717 out_unlock:
1718 spin_unlock(src_ptl);
1719 spin_unlock(dst_ptl);
1720 out:
1721 return ret;
1722 }
1723
1724 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1725 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1726 pud_t *pud, bool write)
1727 {
1728 pud_t _pud;
1729
1730 _pud = pud_mkyoung(*pud);
1731 if (write)
1732 _pud = pud_mkdirty(_pud);
1733 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1734 pud, _pud, write))
1735 update_mmu_cache_pud(vma, addr, pud);
1736 }
1737
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1738 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1739 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1740 struct vm_area_struct *vma)
1741 {
1742 spinlock_t *dst_ptl, *src_ptl;
1743 pud_t pud;
1744 int ret;
1745
1746 dst_ptl = pud_lock(dst_mm, dst_pud);
1747 src_ptl = pud_lockptr(src_mm, src_pud);
1748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1749
1750 ret = -EAGAIN;
1751 pud = *src_pud;
1752 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1753 goto out_unlock;
1754
1755 /*
1756 * TODO: once we support anonymous pages, use
1757 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1758 */
1759 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1760 pudp_set_wrprotect(src_mm, addr, src_pud);
1761 pud = pud_wrprotect(pud);
1762 }
1763 pud = pud_mkold(pud);
1764 set_pud_at(dst_mm, addr, dst_pud, pud);
1765
1766 ret = 0;
1767 out_unlock:
1768 spin_unlock(src_ptl);
1769 spin_unlock(dst_ptl);
1770 return ret;
1771 }
1772
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1773 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1774 {
1775 bool write = vmf->flags & FAULT_FLAG_WRITE;
1776
1777 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1778 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1779 goto unlock;
1780
1781 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1782 unlock:
1783 spin_unlock(vmf->ptl);
1784 }
1785 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1786
huge_pmd_set_accessed(struct vm_fault * vmf)1787 void huge_pmd_set_accessed(struct vm_fault *vmf)
1788 {
1789 bool write = vmf->flags & FAULT_FLAG_WRITE;
1790
1791 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1792 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1793 goto unlock;
1794
1795 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1796
1797 unlock:
1798 spin_unlock(vmf->ptl);
1799 }
1800
do_huge_zero_wp_pmd(struct vm_fault * vmf)1801 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1802 {
1803 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1804 struct vm_area_struct *vma = vmf->vma;
1805 struct mmu_notifier_range range;
1806 struct folio *folio;
1807 vm_fault_t ret = 0;
1808
1809 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1810 if (unlikely(!folio))
1811 return VM_FAULT_FALLBACK;
1812
1813 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1814 haddr + HPAGE_PMD_SIZE);
1815 mmu_notifier_invalidate_range_start(&range);
1816 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1817 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1818 goto release;
1819 ret = check_stable_address_space(vma->vm_mm);
1820 if (ret)
1821 goto release;
1822 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1823 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1824 goto unlock;
1825 release:
1826 folio_put(folio);
1827 unlock:
1828 spin_unlock(vmf->ptl);
1829 mmu_notifier_invalidate_range_end(&range);
1830 return ret;
1831 }
1832
do_huge_pmd_wp_page(struct vm_fault * vmf)1833 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1834 {
1835 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1836 struct vm_area_struct *vma = vmf->vma;
1837 struct folio *folio;
1838 struct page *page;
1839 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1840 pmd_t orig_pmd = vmf->orig_pmd;
1841
1842 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1843 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1844
1845 if (is_huge_zero_pmd(orig_pmd)) {
1846 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1847
1848 if (!(ret & VM_FAULT_FALLBACK))
1849 return ret;
1850
1851 /* Fallback to splitting PMD if THP cannot be allocated */
1852 goto fallback;
1853 }
1854
1855 spin_lock(vmf->ptl);
1856
1857 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1858 spin_unlock(vmf->ptl);
1859 return 0;
1860 }
1861
1862 page = pmd_page(orig_pmd);
1863 folio = page_folio(page);
1864 VM_BUG_ON_PAGE(!PageHead(page), page);
1865
1866 /* Early check when only holding the PT lock. */
1867 if (PageAnonExclusive(page))
1868 goto reuse;
1869
1870 if (!folio_trylock(folio)) {
1871 folio_get(folio);
1872 spin_unlock(vmf->ptl);
1873 folio_lock(folio);
1874 spin_lock(vmf->ptl);
1875 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1876 spin_unlock(vmf->ptl);
1877 folio_unlock(folio);
1878 folio_put(folio);
1879 return 0;
1880 }
1881 folio_put(folio);
1882 }
1883
1884 /* Recheck after temporarily dropping the PT lock. */
1885 if (PageAnonExclusive(page)) {
1886 folio_unlock(folio);
1887 goto reuse;
1888 }
1889
1890 /*
1891 * See do_wp_page(): we can only reuse the folio exclusively if
1892 * there are no additional references. Note that we always drain
1893 * the LRU cache immediately after adding a THP.
1894 */
1895 if (folio_ref_count(folio) >
1896 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1897 goto unlock_fallback;
1898 if (folio_test_swapcache(folio))
1899 folio_free_swap(folio);
1900 if (folio_ref_count(folio) == 1) {
1901 pmd_t entry;
1902
1903 folio_move_anon_rmap(folio, vma);
1904 SetPageAnonExclusive(page);
1905 folio_unlock(folio);
1906 reuse:
1907 if (unlikely(unshare)) {
1908 spin_unlock(vmf->ptl);
1909 return 0;
1910 }
1911 entry = pmd_mkyoung(orig_pmd);
1912 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1913 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1914 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1915 spin_unlock(vmf->ptl);
1916 return 0;
1917 }
1918
1919 unlock_fallback:
1920 folio_unlock(folio);
1921 spin_unlock(vmf->ptl);
1922 fallback:
1923 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1924 return VM_FAULT_FALLBACK;
1925 }
1926
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1927 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1928 unsigned long addr, pmd_t pmd)
1929 {
1930 struct page *page;
1931
1932 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1933 return false;
1934
1935 /* Don't touch entries that are not even readable (NUMA hinting). */
1936 if (pmd_protnone(pmd))
1937 return false;
1938
1939 /* Do we need write faults for softdirty tracking? */
1940 if (pmd_needs_soft_dirty_wp(vma, pmd))
1941 return false;
1942
1943 /* Do we need write faults for uffd-wp tracking? */
1944 if (userfaultfd_huge_pmd_wp(vma, pmd))
1945 return false;
1946
1947 if (!(vma->vm_flags & VM_SHARED)) {
1948 /* See can_change_pte_writable(). */
1949 page = vm_normal_page_pmd(vma, addr, pmd);
1950 return page && PageAnon(page) && PageAnonExclusive(page);
1951 }
1952
1953 /* See can_change_pte_writable(). */
1954 return pmd_dirty(pmd);
1955 }
1956
1957 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1958 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1959 {
1960 struct vm_area_struct *vma = vmf->vma;
1961 struct folio *folio;
1962 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1963 int nid = NUMA_NO_NODE;
1964 int target_nid, last_cpupid;
1965 pmd_t pmd, old_pmd;
1966 bool writable = false;
1967 int flags = 0;
1968
1969 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1970 old_pmd = pmdp_get(vmf->pmd);
1971
1972 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1973 spin_unlock(vmf->ptl);
1974 return 0;
1975 }
1976
1977 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1978
1979 /*
1980 * Detect now whether the PMD could be writable; this information
1981 * is only valid while holding the PT lock.
1982 */
1983 writable = pmd_write(pmd);
1984 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1985 can_change_pmd_writable(vma, vmf->address, pmd))
1986 writable = true;
1987
1988 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1989 if (!folio)
1990 goto out_map;
1991
1992 nid = folio_nid(folio);
1993
1994 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1995 &last_cpupid);
1996 if (target_nid == NUMA_NO_NODE)
1997 goto out_map;
1998 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1999 flags |= TNF_MIGRATE_FAIL;
2000 goto out_map;
2001 }
2002 /* The folio is isolated and isolation code holds a folio reference. */
2003 spin_unlock(vmf->ptl);
2004 writable = false;
2005
2006 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
2007 flags |= TNF_MIGRATED;
2008 nid = target_nid;
2009 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2010 return 0;
2011 }
2012
2013 flags |= TNF_MIGRATE_FAIL;
2014 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2015 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2016 spin_unlock(vmf->ptl);
2017 return 0;
2018 }
2019 out_map:
2020 /* Restore the PMD */
2021 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2022 pmd = pmd_mkyoung(pmd);
2023 if (writable)
2024 pmd = pmd_mkwrite(pmd, vma);
2025 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2026 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2027 spin_unlock(vmf->ptl);
2028
2029 if (nid != NUMA_NO_NODE)
2030 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2031 return 0;
2032 }
2033
2034 /*
2035 * Return true if we do MADV_FREE successfully on entire pmd page.
2036 * Otherwise, return false.
2037 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2038 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2039 pmd_t *pmd, unsigned long addr, unsigned long next)
2040 {
2041 spinlock_t *ptl;
2042 pmd_t orig_pmd;
2043 struct folio *folio;
2044 struct mm_struct *mm = tlb->mm;
2045 bool ret = false;
2046
2047 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2048
2049 ptl = pmd_trans_huge_lock(pmd, vma);
2050 if (!ptl)
2051 goto out_unlocked;
2052
2053 orig_pmd = *pmd;
2054 if (is_huge_zero_pmd(orig_pmd))
2055 goto out;
2056
2057 if (unlikely(!pmd_present(orig_pmd))) {
2058 VM_BUG_ON(thp_migration_supported() &&
2059 !is_pmd_migration_entry(orig_pmd));
2060 goto out;
2061 }
2062
2063 folio = pmd_folio(orig_pmd);
2064 /*
2065 * If other processes are mapping this folio, we couldn't discard
2066 * the folio unless they all do MADV_FREE so let's skip the folio.
2067 */
2068 if (folio_likely_mapped_shared(folio))
2069 goto out;
2070
2071 if (!folio_trylock(folio))
2072 goto out;
2073
2074 /*
2075 * If user want to discard part-pages of THP, split it so MADV_FREE
2076 * will deactivate only them.
2077 */
2078 if (next - addr != HPAGE_PMD_SIZE) {
2079 folio_get(folio);
2080 spin_unlock(ptl);
2081 split_folio(folio);
2082 folio_unlock(folio);
2083 folio_put(folio);
2084 goto out_unlocked;
2085 }
2086
2087 if (folio_test_dirty(folio))
2088 folio_clear_dirty(folio);
2089 folio_unlock(folio);
2090
2091 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2092 pmdp_invalidate(vma, addr, pmd);
2093 orig_pmd = pmd_mkold(orig_pmd);
2094 orig_pmd = pmd_mkclean(orig_pmd);
2095
2096 set_pmd_at(mm, addr, pmd, orig_pmd);
2097 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2098 }
2099
2100 folio_mark_lazyfree(folio);
2101 ret = true;
2102 out:
2103 spin_unlock(ptl);
2104 out_unlocked:
2105 return ret;
2106 }
2107
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2108 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2109 {
2110 pgtable_t pgtable;
2111
2112 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2113 pte_free(mm, pgtable);
2114 mm_dec_nr_ptes(mm);
2115 }
2116
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2117 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2118 pmd_t *pmd, unsigned long addr)
2119 {
2120 pmd_t orig_pmd;
2121 spinlock_t *ptl;
2122
2123 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2124
2125 ptl = __pmd_trans_huge_lock(pmd, vma);
2126 if (!ptl)
2127 return 0;
2128 /*
2129 * For architectures like ppc64 we look at deposited pgtable
2130 * when calling pmdp_huge_get_and_clear. So do the
2131 * pgtable_trans_huge_withdraw after finishing pmdp related
2132 * operations.
2133 */
2134 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2135 tlb->fullmm);
2136 arch_check_zapped_pmd(vma, orig_pmd);
2137 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2138 if (vma_is_special_huge(vma)) {
2139 if (arch_needs_pgtable_deposit())
2140 zap_deposited_table(tlb->mm, pmd);
2141 spin_unlock(ptl);
2142 } else if (is_huge_zero_pmd(orig_pmd)) {
2143 zap_deposited_table(tlb->mm, pmd);
2144 spin_unlock(ptl);
2145 } else {
2146 struct folio *folio = NULL;
2147 int flush_needed = 1;
2148
2149 if (pmd_present(orig_pmd)) {
2150 struct page *page = pmd_page(orig_pmd);
2151
2152 folio = page_folio(page);
2153 folio_remove_rmap_pmd(folio, page, vma);
2154 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2155 VM_BUG_ON_PAGE(!PageHead(page), page);
2156 } else if (thp_migration_supported()) {
2157 swp_entry_t entry;
2158
2159 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2160 entry = pmd_to_swp_entry(orig_pmd);
2161 folio = pfn_swap_entry_folio(entry);
2162 flush_needed = 0;
2163 } else
2164 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2165
2166 if (folio_test_anon(folio)) {
2167 zap_deposited_table(tlb->mm, pmd);
2168 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2169 } else {
2170 if (arch_needs_pgtable_deposit())
2171 zap_deposited_table(tlb->mm, pmd);
2172 add_mm_counter(tlb->mm, mm_counter_file(folio),
2173 -HPAGE_PMD_NR);
2174 }
2175
2176 spin_unlock(ptl);
2177 if (flush_needed)
2178 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2179 }
2180 return 1;
2181 }
2182
2183 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2184 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2185 spinlock_t *old_pmd_ptl,
2186 struct vm_area_struct *vma)
2187 {
2188 /*
2189 * With split pmd lock we also need to move preallocated
2190 * PTE page table if new_pmd is on different PMD page table.
2191 *
2192 * We also don't deposit and withdraw tables for file pages.
2193 */
2194 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2195 }
2196 #endif
2197
move_soft_dirty_pmd(pmd_t pmd)2198 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2199 {
2200 #ifdef CONFIG_MEM_SOFT_DIRTY
2201 if (unlikely(is_pmd_migration_entry(pmd)))
2202 pmd = pmd_swp_mksoft_dirty(pmd);
2203 else if (pmd_present(pmd))
2204 pmd = pmd_mksoft_dirty(pmd);
2205 #endif
2206 return pmd;
2207 }
2208
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2209 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2210 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2211 {
2212 spinlock_t *old_ptl, *new_ptl;
2213 pmd_t pmd;
2214 struct mm_struct *mm = vma->vm_mm;
2215 bool force_flush = false;
2216
2217 /*
2218 * The destination pmd shouldn't be established, free_pgtables()
2219 * should have released it; but move_page_tables() might have already
2220 * inserted a page table, if racing against shmem/file collapse.
2221 */
2222 if (!pmd_none(*new_pmd)) {
2223 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2224 return false;
2225 }
2226
2227 /*
2228 * We don't have to worry about the ordering of src and dst
2229 * ptlocks because exclusive mmap_lock prevents deadlock.
2230 */
2231 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2232 if (old_ptl) {
2233 new_ptl = pmd_lockptr(mm, new_pmd);
2234 if (new_ptl != old_ptl)
2235 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2236 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2237 if (pmd_present(pmd))
2238 force_flush = true;
2239 VM_BUG_ON(!pmd_none(*new_pmd));
2240
2241 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2242 pgtable_t pgtable;
2243 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2244 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2245 }
2246 pmd = move_soft_dirty_pmd(pmd);
2247 set_pmd_at(mm, new_addr, new_pmd, pmd);
2248 if (force_flush)
2249 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2250 if (new_ptl != old_ptl)
2251 spin_unlock(new_ptl);
2252 spin_unlock(old_ptl);
2253 return true;
2254 }
2255 return false;
2256 }
2257
2258 /*
2259 * Returns
2260 * - 0 if PMD could not be locked
2261 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2262 * or if prot_numa but THP migration is not supported
2263 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2264 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2265 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2266 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2267 unsigned long cp_flags)
2268 {
2269 struct mm_struct *mm = vma->vm_mm;
2270 spinlock_t *ptl;
2271 pmd_t oldpmd, entry;
2272 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2273 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2274 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2275 int ret = 1;
2276
2277 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2278
2279 if (prot_numa && !thp_migration_supported())
2280 return 1;
2281
2282 ptl = __pmd_trans_huge_lock(pmd, vma);
2283 if (!ptl)
2284 return 0;
2285
2286 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2287 if (is_swap_pmd(*pmd)) {
2288 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2289 struct folio *folio = pfn_swap_entry_folio(entry);
2290 pmd_t newpmd;
2291
2292 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2293 if (is_writable_migration_entry(entry)) {
2294 /*
2295 * A protection check is difficult so
2296 * just be safe and disable write
2297 */
2298 if (folio_test_anon(folio))
2299 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2300 else
2301 entry = make_readable_migration_entry(swp_offset(entry));
2302 newpmd = swp_entry_to_pmd(entry);
2303 if (pmd_swp_soft_dirty(*pmd))
2304 newpmd = pmd_swp_mksoft_dirty(newpmd);
2305 } else {
2306 newpmd = *pmd;
2307 }
2308
2309 if (uffd_wp)
2310 newpmd = pmd_swp_mkuffd_wp(newpmd);
2311 else if (uffd_wp_resolve)
2312 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2313 if (!pmd_same(*pmd, newpmd))
2314 set_pmd_at(mm, addr, pmd, newpmd);
2315 goto unlock;
2316 }
2317 #endif
2318
2319 if (prot_numa) {
2320 struct folio *folio;
2321 bool toptier;
2322 /*
2323 * Avoid trapping faults against the zero page. The read-only
2324 * data is likely to be read-cached on the local CPU and
2325 * local/remote hits to the zero page are not interesting.
2326 */
2327 if (is_huge_zero_pmd(*pmd))
2328 goto unlock;
2329
2330 if (pmd_protnone(*pmd))
2331 goto unlock;
2332
2333 folio = pmd_folio(*pmd);
2334 toptier = node_is_toptier(folio_nid(folio));
2335 /*
2336 * Skip scanning top tier node if normal numa
2337 * balancing is disabled
2338 */
2339 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2340 toptier)
2341 goto unlock;
2342
2343 if (folio_use_access_time(folio))
2344 folio_xchg_access_time(folio,
2345 jiffies_to_msecs(jiffies));
2346 }
2347 /*
2348 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2349 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2350 * which is also under mmap_read_lock(mm):
2351 *
2352 * CPU0: CPU1:
2353 * change_huge_pmd(prot_numa=1)
2354 * pmdp_huge_get_and_clear_notify()
2355 * madvise_dontneed()
2356 * zap_pmd_range()
2357 * pmd_trans_huge(*pmd) == 0 (without ptl)
2358 * // skip the pmd
2359 * set_pmd_at();
2360 * // pmd is re-established
2361 *
2362 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2363 * which may break userspace.
2364 *
2365 * pmdp_invalidate_ad() is required to make sure we don't miss
2366 * dirty/young flags set by hardware.
2367 */
2368 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2369
2370 entry = pmd_modify(oldpmd, newprot);
2371 if (uffd_wp)
2372 entry = pmd_mkuffd_wp(entry);
2373 else if (uffd_wp_resolve)
2374 /*
2375 * Leave the write bit to be handled by PF interrupt
2376 * handler, then things like COW could be properly
2377 * handled.
2378 */
2379 entry = pmd_clear_uffd_wp(entry);
2380
2381 /* See change_pte_range(). */
2382 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2383 can_change_pmd_writable(vma, addr, entry))
2384 entry = pmd_mkwrite(entry, vma);
2385
2386 ret = HPAGE_PMD_NR;
2387 set_pmd_at(mm, addr, pmd, entry);
2388
2389 if (huge_pmd_needs_flush(oldpmd, entry))
2390 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2391 unlock:
2392 spin_unlock(ptl);
2393 return ret;
2394 }
2395
2396 /*
2397 * Returns:
2398 *
2399 * - 0: if pud leaf changed from under us
2400 * - 1: if pud can be skipped
2401 * - HPAGE_PUD_NR: if pud was successfully processed
2402 */
2403 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2404 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2405 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2406 unsigned long cp_flags)
2407 {
2408 struct mm_struct *mm = vma->vm_mm;
2409 pud_t oldpud, entry;
2410 spinlock_t *ptl;
2411
2412 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2413
2414 /* NUMA balancing doesn't apply to dax */
2415 if (cp_flags & MM_CP_PROT_NUMA)
2416 return 1;
2417
2418 /*
2419 * Huge entries on userfault-wp only works with anonymous, while we
2420 * don't have anonymous PUDs yet.
2421 */
2422 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2423 return 1;
2424
2425 ptl = __pud_trans_huge_lock(pudp, vma);
2426 if (!ptl)
2427 return 0;
2428
2429 /*
2430 * Can't clear PUD or it can race with concurrent zapping. See
2431 * change_huge_pmd().
2432 */
2433 oldpud = pudp_invalidate(vma, addr, pudp);
2434 entry = pud_modify(oldpud, newprot);
2435 set_pud_at(mm, addr, pudp, entry);
2436 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2437
2438 spin_unlock(ptl);
2439 return HPAGE_PUD_NR;
2440 }
2441 #endif
2442
2443 #ifdef CONFIG_USERFAULTFD
2444 /*
2445 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2446 * the caller, but it must return after releasing the page_table_lock.
2447 * Just move the page from src_pmd to dst_pmd if possible.
2448 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2449 * repeated by the caller, or other errors in case of failure.
2450 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2451 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2452 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2453 unsigned long dst_addr, unsigned long src_addr)
2454 {
2455 pmd_t _dst_pmd, src_pmdval;
2456 struct page *src_page;
2457 struct folio *src_folio;
2458 struct anon_vma *src_anon_vma;
2459 spinlock_t *src_ptl, *dst_ptl;
2460 pgtable_t src_pgtable;
2461 struct mmu_notifier_range range;
2462 int err = 0;
2463
2464 src_pmdval = *src_pmd;
2465 src_ptl = pmd_lockptr(mm, src_pmd);
2466
2467 lockdep_assert_held(src_ptl);
2468 vma_assert_locked(src_vma);
2469 vma_assert_locked(dst_vma);
2470
2471 /* Sanity checks before the operation */
2472 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2473 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2474 spin_unlock(src_ptl);
2475 return -EINVAL;
2476 }
2477
2478 if (!pmd_trans_huge(src_pmdval)) {
2479 spin_unlock(src_ptl);
2480 if (is_pmd_migration_entry(src_pmdval)) {
2481 pmd_migration_entry_wait(mm, &src_pmdval);
2482 return -EAGAIN;
2483 }
2484 return -ENOENT;
2485 }
2486
2487 src_page = pmd_page(src_pmdval);
2488
2489 if (!is_huge_zero_pmd(src_pmdval)) {
2490 if (unlikely(!PageAnonExclusive(src_page))) {
2491 spin_unlock(src_ptl);
2492 return -EBUSY;
2493 }
2494
2495 src_folio = page_folio(src_page);
2496 folio_get(src_folio);
2497 } else
2498 src_folio = NULL;
2499
2500 spin_unlock(src_ptl);
2501
2502 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2503 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2504 src_addr + HPAGE_PMD_SIZE);
2505 mmu_notifier_invalidate_range_start(&range);
2506
2507 if (src_folio) {
2508 folio_lock(src_folio);
2509
2510 /*
2511 * split_huge_page walks the anon_vma chain without the page
2512 * lock. Serialize against it with the anon_vma lock, the page
2513 * lock is not enough.
2514 */
2515 src_anon_vma = folio_get_anon_vma(src_folio);
2516 if (!src_anon_vma) {
2517 err = -EAGAIN;
2518 goto unlock_folio;
2519 }
2520 anon_vma_lock_write(src_anon_vma);
2521 } else
2522 src_anon_vma = NULL;
2523
2524 dst_ptl = pmd_lockptr(mm, dst_pmd);
2525 double_pt_lock(src_ptl, dst_ptl);
2526 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2527 !pmd_same(*dst_pmd, dst_pmdval))) {
2528 err = -EAGAIN;
2529 goto unlock_ptls;
2530 }
2531 if (src_folio) {
2532 if (folio_maybe_dma_pinned(src_folio) ||
2533 !PageAnonExclusive(&src_folio->page)) {
2534 err = -EBUSY;
2535 goto unlock_ptls;
2536 }
2537
2538 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2539 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2540 err = -EBUSY;
2541 goto unlock_ptls;
2542 }
2543
2544 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2545 /* Folio got pinned from under us. Put it back and fail the move. */
2546 if (folio_maybe_dma_pinned(src_folio)) {
2547 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2548 err = -EBUSY;
2549 goto unlock_ptls;
2550 }
2551
2552 folio_move_anon_rmap(src_folio, dst_vma);
2553 src_folio->index = linear_page_index(dst_vma, dst_addr);
2554
2555 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2556 /* Follow mremap() behavior and treat the entry dirty after the move */
2557 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2558 } else {
2559 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2560 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2561 }
2562 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2563
2564 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2565 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2566 unlock_ptls:
2567 double_pt_unlock(src_ptl, dst_ptl);
2568 if (src_anon_vma) {
2569 anon_vma_unlock_write(src_anon_vma);
2570 put_anon_vma(src_anon_vma);
2571 }
2572 unlock_folio:
2573 /* unblock rmap walks */
2574 if (src_folio)
2575 folio_unlock(src_folio);
2576 mmu_notifier_invalidate_range_end(&range);
2577 if (src_folio)
2578 folio_put(src_folio);
2579 return err;
2580 }
2581 #endif /* CONFIG_USERFAULTFD */
2582
2583 /*
2584 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2585 *
2586 * Note that if it returns page table lock pointer, this routine returns without
2587 * unlocking page table lock. So callers must unlock it.
2588 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2589 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2590 {
2591 spinlock_t *ptl;
2592 ptl = pmd_lock(vma->vm_mm, pmd);
2593 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2594 pmd_devmap(*pmd)))
2595 return ptl;
2596 spin_unlock(ptl);
2597 return NULL;
2598 }
2599
2600 /*
2601 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2602 *
2603 * Note that if it returns page table lock pointer, this routine returns without
2604 * unlocking page table lock. So callers must unlock it.
2605 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2606 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2607 {
2608 spinlock_t *ptl;
2609
2610 ptl = pud_lock(vma->vm_mm, pud);
2611 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2612 return ptl;
2613 spin_unlock(ptl);
2614 return NULL;
2615 }
2616
2617 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2618 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2619 pud_t *pud, unsigned long addr)
2620 {
2621 spinlock_t *ptl;
2622 pud_t orig_pud;
2623
2624 ptl = __pud_trans_huge_lock(pud, vma);
2625 if (!ptl)
2626 return 0;
2627
2628 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2629 arch_check_zapped_pud(vma, orig_pud);
2630 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2631 if (vma_is_special_huge(vma)) {
2632 spin_unlock(ptl);
2633 /* No zero page support yet */
2634 } else {
2635 /* No support for anonymous PUD pages yet */
2636 BUG();
2637 }
2638 return 1;
2639 }
2640
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2641 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2642 unsigned long haddr)
2643 {
2644 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2645 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2646 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2647 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2648
2649 count_vm_event(THP_SPLIT_PUD);
2650
2651 pudp_huge_clear_flush(vma, haddr, pud);
2652 }
2653
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2654 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2655 unsigned long address)
2656 {
2657 spinlock_t *ptl;
2658 struct mmu_notifier_range range;
2659
2660 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2661 address & HPAGE_PUD_MASK,
2662 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2663 mmu_notifier_invalidate_range_start(&range);
2664 ptl = pud_lock(vma->vm_mm, pud);
2665 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2666 goto out;
2667 __split_huge_pud_locked(vma, pud, range.start);
2668
2669 out:
2670 spin_unlock(ptl);
2671 mmu_notifier_invalidate_range_end(&range);
2672 }
2673 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2674 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2675 unsigned long address)
2676 {
2677 }
2678 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2679
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2680 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2681 unsigned long haddr, pmd_t *pmd)
2682 {
2683 struct mm_struct *mm = vma->vm_mm;
2684 pgtable_t pgtable;
2685 pmd_t _pmd, old_pmd;
2686 unsigned long addr;
2687 pte_t *pte;
2688 int i;
2689
2690 /*
2691 * Leave pmd empty until pte is filled note that it is fine to delay
2692 * notification until mmu_notifier_invalidate_range_end() as we are
2693 * replacing a zero pmd write protected page with a zero pte write
2694 * protected page.
2695 *
2696 * See Documentation/mm/mmu_notifier.rst
2697 */
2698 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2699
2700 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2701 pmd_populate(mm, &_pmd, pgtable);
2702
2703 pte = pte_offset_map(&_pmd, haddr);
2704 VM_BUG_ON(!pte);
2705 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2706 pte_t entry;
2707
2708 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2709 entry = pte_mkspecial(entry);
2710 if (pmd_uffd_wp(old_pmd))
2711 entry = pte_mkuffd_wp(entry);
2712 VM_BUG_ON(!pte_none(ptep_get(pte)));
2713 set_pte_at(mm, addr, pte, entry);
2714 pte++;
2715 }
2716 pte_unmap(pte - 1);
2717 smp_wmb(); /* make pte visible before pmd */
2718 pmd_populate(mm, pmd, pgtable);
2719 }
2720
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2721 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2722 unsigned long haddr, bool freeze)
2723 {
2724 struct mm_struct *mm = vma->vm_mm;
2725 struct folio *folio;
2726 struct page *page;
2727 pgtable_t pgtable;
2728 pmd_t old_pmd, _pmd;
2729 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2730 bool anon_exclusive = false, dirty = false;
2731 unsigned long addr;
2732 pte_t *pte;
2733 int i;
2734
2735 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2736 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2737 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2738 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2739 && !pmd_devmap(*pmd));
2740
2741 count_vm_event(THP_SPLIT_PMD);
2742
2743 if (!vma_is_anonymous(vma)) {
2744 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2745 /*
2746 * We are going to unmap this huge page. So
2747 * just go ahead and zap it
2748 */
2749 if (arch_needs_pgtable_deposit())
2750 zap_deposited_table(mm, pmd);
2751 if (vma_is_special_huge(vma))
2752 return;
2753 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2754 swp_entry_t entry;
2755
2756 entry = pmd_to_swp_entry(old_pmd);
2757 folio = pfn_swap_entry_folio(entry);
2758 } else {
2759 page = pmd_page(old_pmd);
2760 folio = page_folio(page);
2761 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2762 folio_mark_dirty(folio);
2763 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2764 folio_set_referenced(folio);
2765 folio_remove_rmap_pmd(folio, page, vma);
2766 folio_put(folio);
2767 }
2768 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2769 return;
2770 }
2771
2772 if (is_huge_zero_pmd(*pmd)) {
2773 /*
2774 * FIXME: Do we want to invalidate secondary mmu by calling
2775 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2776 * inside __split_huge_pmd() ?
2777 *
2778 * We are going from a zero huge page write protected to zero
2779 * small page also write protected so it does not seems useful
2780 * to invalidate secondary mmu at this time.
2781 */
2782 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2783 }
2784
2785 pmd_migration = is_pmd_migration_entry(*pmd);
2786 if (unlikely(pmd_migration)) {
2787 swp_entry_t entry;
2788
2789 old_pmd = *pmd;
2790 entry = pmd_to_swp_entry(old_pmd);
2791 page = pfn_swap_entry_to_page(entry);
2792 write = is_writable_migration_entry(entry);
2793 if (PageAnon(page))
2794 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2795 young = is_migration_entry_young(entry);
2796 dirty = is_migration_entry_dirty(entry);
2797 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2798 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2799 } else {
2800 /*
2801 * Up to this point the pmd is present and huge and userland has
2802 * the whole access to the hugepage during the split (which
2803 * happens in place). If we overwrite the pmd with the not-huge
2804 * version pointing to the pte here (which of course we could if
2805 * all CPUs were bug free), userland could trigger a small page
2806 * size TLB miss on the small sized TLB while the hugepage TLB
2807 * entry is still established in the huge TLB. Some CPU doesn't
2808 * like that. See
2809 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2810 * 383 on page 105. Intel should be safe but is also warns that
2811 * it's only safe if the permission and cache attributes of the
2812 * two entries loaded in the two TLB is identical (which should
2813 * be the case here). But it is generally safer to never allow
2814 * small and huge TLB entries for the same virtual address to be
2815 * loaded simultaneously. So instead of doing "pmd_populate();
2816 * flush_pmd_tlb_range();" we first mark the current pmd
2817 * notpresent (atomically because here the pmd_trans_huge must
2818 * remain set at all times on the pmd until the split is
2819 * complete for this pmd), then we flush the SMP TLB and finally
2820 * we write the non-huge version of the pmd entry with
2821 * pmd_populate.
2822 */
2823 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2824 page = pmd_page(old_pmd);
2825 folio = page_folio(page);
2826 if (pmd_dirty(old_pmd)) {
2827 dirty = true;
2828 folio_set_dirty(folio);
2829 }
2830 write = pmd_write(old_pmd);
2831 young = pmd_young(old_pmd);
2832 soft_dirty = pmd_soft_dirty(old_pmd);
2833 uffd_wp = pmd_uffd_wp(old_pmd);
2834
2835 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2836 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2837
2838 /*
2839 * Without "freeze", we'll simply split the PMD, propagating the
2840 * PageAnonExclusive() flag for each PTE by setting it for
2841 * each subpage -- no need to (temporarily) clear.
2842 *
2843 * With "freeze" we want to replace mapped pages by
2844 * migration entries right away. This is only possible if we
2845 * managed to clear PageAnonExclusive() -- see
2846 * set_pmd_migration_entry().
2847 *
2848 * In case we cannot clear PageAnonExclusive(), split the PMD
2849 * only and let try_to_migrate_one() fail later.
2850 *
2851 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2852 */
2853 anon_exclusive = PageAnonExclusive(page);
2854 if (freeze && anon_exclusive &&
2855 folio_try_share_anon_rmap_pmd(folio, page))
2856 freeze = false;
2857 if (!freeze) {
2858 rmap_t rmap_flags = RMAP_NONE;
2859
2860 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2861 if (anon_exclusive)
2862 rmap_flags |= RMAP_EXCLUSIVE;
2863 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2864 vma, haddr, rmap_flags);
2865 }
2866 }
2867
2868 /*
2869 * Withdraw the table only after we mark the pmd entry invalid.
2870 * This's critical for some architectures (Power).
2871 */
2872 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2873 pmd_populate(mm, &_pmd, pgtable);
2874
2875 pte = pte_offset_map(&_pmd, haddr);
2876 VM_BUG_ON(!pte);
2877
2878 /*
2879 * Note that NUMA hinting access restrictions are not transferred to
2880 * avoid any possibility of altering permissions across VMAs.
2881 */
2882 if (freeze || pmd_migration) {
2883 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2884 pte_t entry;
2885 swp_entry_t swp_entry;
2886
2887 if (write)
2888 swp_entry = make_writable_migration_entry(
2889 page_to_pfn(page + i));
2890 else if (anon_exclusive)
2891 swp_entry = make_readable_exclusive_migration_entry(
2892 page_to_pfn(page + i));
2893 else
2894 swp_entry = make_readable_migration_entry(
2895 page_to_pfn(page + i));
2896 if (young)
2897 swp_entry = make_migration_entry_young(swp_entry);
2898 if (dirty)
2899 swp_entry = make_migration_entry_dirty(swp_entry);
2900 entry = swp_entry_to_pte(swp_entry);
2901 if (soft_dirty)
2902 entry = pte_swp_mksoft_dirty(entry);
2903 if (uffd_wp)
2904 entry = pte_swp_mkuffd_wp(entry);
2905
2906 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2907 set_pte_at(mm, addr, pte + i, entry);
2908 }
2909 } else {
2910 pte_t entry;
2911
2912 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2913 if (write)
2914 entry = pte_mkwrite(entry, vma);
2915 if (!young)
2916 entry = pte_mkold(entry);
2917 /* NOTE: this may set soft-dirty too on some archs */
2918 if (dirty)
2919 entry = pte_mkdirty(entry);
2920 if (soft_dirty)
2921 entry = pte_mksoft_dirty(entry);
2922 if (uffd_wp)
2923 entry = pte_mkuffd_wp(entry);
2924
2925 for (i = 0; i < HPAGE_PMD_NR; i++)
2926 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2927
2928 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2929 }
2930 pte_unmap(pte);
2931
2932 if (!pmd_migration)
2933 folio_remove_rmap_pmd(folio, page, vma);
2934 if (freeze)
2935 put_page(page);
2936
2937 smp_wmb(); /* make pte visible before pmd */
2938 pmd_populate(mm, pmd, pgtable);
2939 }
2940
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)2941 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2942 pmd_t *pmd, bool freeze, struct folio *folio)
2943 {
2944 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2945 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2946 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2947 VM_BUG_ON(freeze && !folio);
2948
2949 /*
2950 * When the caller requests to set up a migration entry, we
2951 * require a folio to check the PMD against. Otherwise, there
2952 * is a risk of replacing the wrong folio.
2953 */
2954 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2955 is_pmd_migration_entry(*pmd)) {
2956 if (folio && folio != pmd_folio(*pmd))
2957 return;
2958 __split_huge_pmd_locked(vma, pmd, address, freeze);
2959 }
2960 }
2961
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2962 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2963 unsigned long address, bool freeze, struct folio *folio)
2964 {
2965 spinlock_t *ptl;
2966 struct mmu_notifier_range range;
2967
2968 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2969 address & HPAGE_PMD_MASK,
2970 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2971 mmu_notifier_invalidate_range_start(&range);
2972 ptl = pmd_lock(vma->vm_mm, pmd);
2973 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2974 spin_unlock(ptl);
2975 mmu_notifier_invalidate_range_end(&range);
2976 }
2977
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2978 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2979 bool freeze, struct folio *folio)
2980 {
2981 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2982
2983 if (!pmd)
2984 return;
2985
2986 __split_huge_pmd(vma, pmd, address, freeze, folio);
2987 }
2988
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2989 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2990 {
2991 /*
2992 * If the new address isn't hpage aligned and it could previously
2993 * contain an hugepage: check if we need to split an huge pmd.
2994 */
2995 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2996 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2997 ALIGN(address, HPAGE_PMD_SIZE)))
2998 split_huge_pmd_address(vma, address, false, NULL);
2999 }
3000
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)3001 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3002 unsigned long start,
3003 unsigned long end,
3004 long adjust_next)
3005 {
3006 /* Check if we need to split start first. */
3007 split_huge_pmd_if_needed(vma, start);
3008
3009 /* Check if we need to split end next. */
3010 split_huge_pmd_if_needed(vma, end);
3011
3012 /*
3013 * If we're also updating the next vma vm_start,
3014 * check if we need to split it.
3015 */
3016 if (adjust_next > 0) {
3017 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
3018 unsigned long nstart = next->vm_start;
3019 nstart += adjust_next;
3020 split_huge_pmd_if_needed(next, nstart);
3021 }
3022 }
3023
unmap_folio(struct folio * folio)3024 static void unmap_folio(struct folio *folio)
3025 {
3026 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3027 TTU_BATCH_FLUSH;
3028
3029 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3030
3031 if (folio_test_pmd_mappable(folio))
3032 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3033
3034 /*
3035 * Anon pages need migration entries to preserve them, but file
3036 * pages can simply be left unmapped, then faulted back on demand.
3037 * If that is ever changed (perhaps for mlock), update remap_page().
3038 */
3039 if (folio_test_anon(folio))
3040 try_to_migrate(folio, ttu_flags);
3041 else
3042 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3043
3044 try_to_unmap_flush();
3045 }
3046
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3047 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3048 unsigned long addr, pmd_t *pmdp,
3049 struct folio *folio)
3050 {
3051 struct mm_struct *mm = vma->vm_mm;
3052 int ref_count, map_count;
3053 pmd_t orig_pmd = *pmdp;
3054
3055 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
3056 return false;
3057
3058 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3059
3060 /*
3061 * Syncing against concurrent GUP-fast:
3062 * - clear PMD; barrier; read refcount
3063 * - inc refcount; barrier; read PMD
3064 */
3065 smp_mb();
3066
3067 ref_count = folio_ref_count(folio);
3068 map_count = folio_mapcount(folio);
3069
3070 /*
3071 * Order reads for folio refcount and dirty flag
3072 * (see comments in __remove_mapping()).
3073 */
3074 smp_rmb();
3075
3076 /*
3077 * If the folio or its PMD is redirtied at this point, or if there
3078 * are unexpected references, we will give up to discard this folio
3079 * and remap it.
3080 *
3081 * The only folio refs must be one from isolation plus the rmap(s).
3082 */
3083 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3084 ref_count != map_count + 1) {
3085 set_pmd_at(mm, addr, pmdp, orig_pmd);
3086 return false;
3087 }
3088
3089 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3090 zap_deposited_table(mm, pmdp);
3091 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3092 if (vma->vm_flags & VM_LOCKED)
3093 mlock_drain_local();
3094 folio_put(folio);
3095
3096 return true;
3097 }
3098
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3099 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3100 pmd_t *pmdp, struct folio *folio)
3101 {
3102 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3103 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3104 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3105
3106 if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3107 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3108
3109 return false;
3110 }
3111
remap_page(struct folio * folio,unsigned long nr,int flags)3112 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3113 {
3114 int i = 0;
3115
3116 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3117 if (!folio_test_anon(folio))
3118 return;
3119 for (;;) {
3120 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3121 i += folio_nr_pages(folio);
3122 if (i >= nr)
3123 break;
3124 folio = folio_next(folio);
3125 }
3126 }
3127
lru_add_page_tail(struct folio * folio,struct page * tail,struct lruvec * lruvec,struct list_head * list)3128 static void lru_add_page_tail(struct folio *folio, struct page *tail,
3129 struct lruvec *lruvec, struct list_head *list)
3130 {
3131 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3132 VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3133 lockdep_assert_held(&lruvec->lru_lock);
3134
3135 if (list) {
3136 /* page reclaim is reclaiming a huge page */
3137 VM_WARN_ON(folio_test_lru(folio));
3138 get_page(tail);
3139 list_add_tail(&tail->lru, list);
3140 } else {
3141 /* head is still on lru (and we have it frozen) */
3142 VM_WARN_ON(!folio_test_lru(folio));
3143 if (folio_test_unevictable(folio))
3144 tail->mlock_count = 0;
3145 else
3146 list_add_tail(&tail->lru, &folio->lru);
3147 SetPageLRU(tail);
3148 }
3149 }
3150
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list,unsigned int new_order)3151 static void __split_huge_page_tail(struct folio *folio, int tail,
3152 struct lruvec *lruvec, struct list_head *list,
3153 unsigned int new_order)
3154 {
3155 struct page *head = &folio->page;
3156 struct page *page_tail = head + tail;
3157 /*
3158 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3159 * Don't pass it around before clear_compound_head().
3160 */
3161 struct folio *new_folio = (struct folio *)page_tail;
3162
3163 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3164
3165 /*
3166 * Clone page flags before unfreezing refcount.
3167 *
3168 * After successful get_page_unless_zero() might follow flags change,
3169 * for example lock_page() which set PG_waiters.
3170 *
3171 * Note that for mapped sub-pages of an anonymous THP,
3172 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3173 * the migration entry instead from where remap_page() will restore it.
3174 * We can still have PG_anon_exclusive set on effectively unmapped and
3175 * unreferenced sub-pages of an anonymous THP: we can simply drop
3176 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3177 */
3178 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3179 page_tail->flags |= (head->flags &
3180 ((1L << PG_referenced) |
3181 (1L << PG_swapbacked) |
3182 (1L << PG_swapcache) |
3183 (1L << PG_mlocked) |
3184 (1L << PG_uptodate) |
3185 (1L << PG_active) |
3186 (1L << PG_workingset) |
3187 (1L << PG_locked) |
3188 (1L << PG_unevictable) |
3189 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3190 (1L << PG_arch_2) |
3191 #endif
3192 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3193 (1L << PG_arch_3) |
3194 #endif
3195 (1L << PG_dirty) |
3196 LRU_GEN_MASK | LRU_REFS_MASK));
3197
3198 /* ->mapping in first and second tail page is replaced by other uses */
3199 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3200 page_tail);
3201 new_folio->mapping = folio->mapping;
3202 new_folio->index = folio->index + tail;
3203
3204 /*
3205 * page->private should not be set in tail pages. Fix up and warn once
3206 * if private is unexpectedly set.
3207 */
3208 if (unlikely(page_tail->private)) {
3209 VM_WARN_ON_ONCE_PAGE(true, page_tail);
3210 page_tail->private = 0;
3211 }
3212 if (folio_test_swapcache(folio))
3213 new_folio->swap.val = folio->swap.val + tail;
3214
3215 /* Page flags must be visible before we make the page non-compound. */
3216 smp_wmb();
3217
3218 /*
3219 * Clear PageTail before unfreezing page refcount.
3220 *
3221 * After successful get_page_unless_zero() might follow put_page()
3222 * which needs correct compound_head().
3223 */
3224 clear_compound_head(page_tail);
3225 if (new_order) {
3226 prep_compound_page(page_tail, new_order);
3227 folio_set_large_rmappable(new_folio);
3228 }
3229
3230 /* Finally unfreeze refcount. Additional reference from page cache. */
3231 page_ref_unfreeze(page_tail,
3232 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3233 folio_nr_pages(new_folio) : 0));
3234
3235 if (folio_test_young(folio))
3236 folio_set_young(new_folio);
3237 if (folio_test_idle(folio))
3238 folio_set_idle(new_folio);
3239
3240 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3241
3242 /*
3243 * always add to the tail because some iterators expect new
3244 * pages to show after the currently processed elements - e.g.
3245 * migrate_pages
3246 */
3247 lru_add_page_tail(folio, page_tail, lruvec, list);
3248 }
3249
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned int new_order)3250 static void __split_huge_page(struct page *page, struct list_head *list,
3251 pgoff_t end, unsigned int new_order)
3252 {
3253 struct folio *folio = page_folio(page);
3254 struct page *head = &folio->page;
3255 struct lruvec *lruvec;
3256 struct address_space *swap_cache = NULL;
3257 unsigned long offset = 0;
3258 int i, nr_dropped = 0;
3259 unsigned int new_nr = 1 << new_order;
3260 int order = folio_order(folio);
3261 unsigned int nr = 1 << order;
3262
3263 /* complete memcg works before add pages to LRU */
3264 split_page_memcg(head, order, new_order);
3265
3266 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3267 offset = swap_cache_index(folio->swap);
3268 swap_cache = swap_address_space(folio->swap);
3269 xa_lock(&swap_cache->i_pages);
3270 }
3271
3272 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3273 lruvec = folio_lruvec_lock(folio);
3274
3275 ClearPageHasHWPoisoned(head);
3276
3277 for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3278 struct folio *tail;
3279 __split_huge_page_tail(folio, i, lruvec, list, new_order);
3280 tail = page_folio(head + i);
3281 /* Some pages can be beyond EOF: drop them from page cache */
3282 if (tail->index >= end) {
3283 if (shmem_mapping(folio->mapping))
3284 nr_dropped++;
3285 else if (folio_test_clear_dirty(tail))
3286 folio_account_cleaned(tail,
3287 inode_to_wb(folio->mapping->host));
3288 __filemap_remove_folio(tail, NULL);
3289 folio_put(tail);
3290 } else if (!folio_test_anon(folio)) {
3291 __xa_store(&folio->mapping->i_pages, tail->index,
3292 tail, 0);
3293 } else if (swap_cache) {
3294 __xa_store(&swap_cache->i_pages, offset + i,
3295 tail, 0);
3296 }
3297 }
3298
3299 if (!new_order)
3300 ClearPageCompound(head);
3301 else {
3302 struct folio *new_folio = (struct folio *)head;
3303
3304 folio_set_order(new_folio, new_order);
3305 }
3306 unlock_page_lruvec(lruvec);
3307 /* Caller disabled irqs, so they are still disabled here */
3308
3309 split_page_owner(head, order, new_order);
3310 pgalloc_tag_split(folio, order, new_order);
3311
3312 /* See comment in __split_huge_page_tail() */
3313 if (folio_test_anon(folio)) {
3314 /* Additional pin to swap cache */
3315 if (folio_test_swapcache(folio)) {
3316 folio_ref_add(folio, 1 + new_nr);
3317 xa_unlock(&swap_cache->i_pages);
3318 } else {
3319 folio_ref_inc(folio);
3320 }
3321 } else {
3322 /* Additional pin to page cache */
3323 folio_ref_add(folio, 1 + new_nr);
3324 xa_unlock(&folio->mapping->i_pages);
3325 }
3326 local_irq_enable();
3327
3328 if (nr_dropped)
3329 shmem_uncharge(folio->mapping->host, nr_dropped);
3330 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3331
3332 /*
3333 * set page to its compound_head when split to non order-0 pages, so
3334 * we can skip unlocking it below, since PG_locked is transferred to
3335 * the compound_head of the page and the caller will unlock it.
3336 */
3337 if (new_order)
3338 page = compound_head(page);
3339
3340 for (i = 0; i < nr; i += new_nr) {
3341 struct page *subpage = head + i;
3342 struct folio *new_folio = page_folio(subpage);
3343 if (subpage == page)
3344 continue;
3345 folio_unlock(new_folio);
3346
3347 /*
3348 * Subpages may be freed if there wasn't any mapping
3349 * like if add_to_swap() is running on a lru page that
3350 * had its mapping zapped. And freeing these pages
3351 * requires taking the lru_lock so we do the put_page
3352 * of the tail pages after the split is complete.
3353 */
3354 free_page_and_swap_cache(subpage);
3355 }
3356 }
3357
3358 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3359 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3360 {
3361 int extra_pins;
3362
3363 /* Additional pins from page cache */
3364 if (folio_test_anon(folio))
3365 extra_pins = folio_test_swapcache(folio) ?
3366 folio_nr_pages(folio) : 0;
3367 else
3368 extra_pins = folio_nr_pages(folio);
3369 if (pextra_pins)
3370 *pextra_pins = extra_pins;
3371 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3372 caller_pins;
3373 }
3374
3375 /*
3376 * This function splits a large folio into smaller folios of order @new_order.
3377 * @page can point to any page of the large folio to split. The split operation
3378 * does not change the position of @page.
3379 *
3380 * Prerequisites:
3381 *
3382 * 1) The caller must hold a reference on the @page's owning folio, also known
3383 * as the large folio.
3384 *
3385 * 2) The large folio must be locked.
3386 *
3387 * 3) The folio must not be pinned. Any unexpected folio references, including
3388 * GUP pins, will result in the folio not getting split; instead, the caller
3389 * will receive an -EAGAIN.
3390 *
3391 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3392 * supported for non-file-backed folios, because folio->_deferred_list, which
3393 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3394 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3395 * since they do not use _deferred_list.
3396 *
3397 * After splitting, the caller's folio reference will be transferred to @page,
3398 * resulting in a raised refcount of @page after this call. The other pages may
3399 * be freed if they are not mapped.
3400 *
3401 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3402 *
3403 * Pages in @new_order will inherit the mapping, flags, and so on from the
3404 * huge page.
3405 *
3406 * Returns 0 if the huge page was split successfully.
3407 *
3408 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3409 * the folio was concurrently removed from the page cache.
3410 *
3411 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3412 * under writeback, if fs-specific folio metadata cannot currently be
3413 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3414 * truncation).
3415 *
3416 * Callers should ensure that the order respects the address space mapping
3417 * min-order if one is set for non-anonymous folios.
3418 *
3419 * Returns -EINVAL when trying to split to an order that is incompatible
3420 * with the folio. Splitting to order 0 is compatible with all folios.
3421 */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3422 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3423 unsigned int new_order)
3424 {
3425 struct folio *folio = page_folio(page);
3426 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3427 /* reset xarray order to new order after split */
3428 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3429 bool is_anon = folio_test_anon(folio);
3430 struct address_space *mapping = NULL;
3431 struct anon_vma *anon_vma = NULL;
3432 int order = folio_order(folio);
3433 int extra_pins, ret;
3434 pgoff_t end;
3435 bool is_hzp;
3436
3437 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3438 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3439
3440 if (new_order >= folio_order(folio))
3441 return -EINVAL;
3442
3443 if (is_anon) {
3444 /* order-1 is not supported for anonymous THP. */
3445 if (new_order == 1) {
3446 VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3447 return -EINVAL;
3448 }
3449 } else if (new_order) {
3450 /* Split shmem folio to non-zero order not supported */
3451 if (shmem_mapping(folio->mapping)) {
3452 VM_WARN_ONCE(1,
3453 "Cannot split shmem folio to non-0 order");
3454 return -EINVAL;
3455 }
3456 /*
3457 * No split if the file system does not support large folio.
3458 * Note that we might still have THPs in such mappings due to
3459 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3460 * does not actually support large folios properly.
3461 */
3462 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3463 !mapping_large_folio_support(folio->mapping)) {
3464 VM_WARN_ONCE(1,
3465 "Cannot split file folio to non-0 order");
3466 return -EINVAL;
3467 }
3468 }
3469
3470 /* Only swapping a whole PMD-mapped folio is supported */
3471 if (folio_test_swapcache(folio) && new_order)
3472 return -EINVAL;
3473
3474 is_hzp = is_huge_zero_folio(folio);
3475 if (is_hzp) {
3476 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3477 return -EBUSY;
3478 }
3479
3480 if (folio_test_writeback(folio))
3481 return -EBUSY;
3482
3483 if (is_anon) {
3484 /*
3485 * The caller does not necessarily hold an mmap_lock that would
3486 * prevent the anon_vma disappearing so we first we take a
3487 * reference to it and then lock the anon_vma for write. This
3488 * is similar to folio_lock_anon_vma_read except the write lock
3489 * is taken to serialise against parallel split or collapse
3490 * operations.
3491 */
3492 anon_vma = folio_get_anon_vma(folio);
3493 if (!anon_vma) {
3494 ret = -EBUSY;
3495 goto out;
3496 }
3497 end = -1;
3498 mapping = NULL;
3499 anon_vma_lock_write(anon_vma);
3500 } else {
3501 unsigned int min_order;
3502 gfp_t gfp;
3503
3504 mapping = folio->mapping;
3505
3506 /* Truncated ? */
3507 if (!mapping) {
3508 ret = -EBUSY;
3509 goto out;
3510 }
3511
3512 min_order = mapping_min_folio_order(folio->mapping);
3513 if (new_order < min_order) {
3514 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3515 min_order);
3516 ret = -EINVAL;
3517 goto out;
3518 }
3519
3520 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3521 GFP_RECLAIM_MASK);
3522
3523 if (!filemap_release_folio(folio, gfp)) {
3524 ret = -EBUSY;
3525 goto out;
3526 }
3527
3528 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3529 if (xas_error(&xas)) {
3530 ret = xas_error(&xas);
3531 goto out;
3532 }
3533
3534 anon_vma = NULL;
3535 i_mmap_lock_read(mapping);
3536
3537 /*
3538 *__split_huge_page() may need to trim off pages beyond EOF:
3539 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3540 * which cannot be nested inside the page tree lock. So note
3541 * end now: i_size itself may be changed at any moment, but
3542 * folio lock is good enough to serialize the trimming.
3543 */
3544 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3545 if (shmem_mapping(mapping))
3546 end = shmem_fallocend(mapping->host, end);
3547 }
3548
3549 /*
3550 * Racy check if we can split the page, before unmap_folio() will
3551 * split PMDs
3552 */
3553 if (!can_split_folio(folio, 1, &extra_pins)) {
3554 ret = -EAGAIN;
3555 goto out_unlock;
3556 }
3557
3558 unmap_folio(folio);
3559
3560 /* block interrupt reentry in xa_lock and spinlock */
3561 local_irq_disable();
3562 if (mapping) {
3563 /*
3564 * Check if the folio is present in page cache.
3565 * We assume all tail are present too, if folio is there.
3566 */
3567 xas_lock(&xas);
3568 xas_reset(&xas);
3569 if (xas_load(&xas) != folio)
3570 goto fail;
3571 }
3572
3573 /* Prevent deferred_split_scan() touching ->_refcount */
3574 spin_lock(&ds_queue->split_queue_lock);
3575 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3576 if (folio_order(folio) > 1 &&
3577 !list_empty(&folio->_deferred_list)) {
3578 ds_queue->split_queue_len--;
3579 if (folio_test_partially_mapped(folio)) {
3580 folio_clear_partially_mapped(folio);
3581 mod_mthp_stat(folio_order(folio),
3582 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3583 }
3584 /*
3585 * Reinitialize page_deferred_list after removing the
3586 * page from the split_queue, otherwise a subsequent
3587 * split will see list corruption when checking the
3588 * page_deferred_list.
3589 */
3590 list_del_init(&folio->_deferred_list);
3591 }
3592 spin_unlock(&ds_queue->split_queue_lock);
3593 if (mapping) {
3594 int nr = folio_nr_pages(folio);
3595
3596 xas_split(&xas, folio, folio_order(folio));
3597 if (folio_test_pmd_mappable(folio) &&
3598 new_order < HPAGE_PMD_ORDER) {
3599 if (folio_test_swapbacked(folio)) {
3600 __lruvec_stat_mod_folio(folio,
3601 NR_SHMEM_THPS, -nr);
3602 } else {
3603 __lruvec_stat_mod_folio(folio,
3604 NR_FILE_THPS, -nr);
3605 filemap_nr_thps_dec(mapping);
3606 }
3607 }
3608 }
3609
3610 if (is_anon) {
3611 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3612 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3613 }
3614 __split_huge_page(page, list, end, new_order);
3615 ret = 0;
3616 } else {
3617 spin_unlock(&ds_queue->split_queue_lock);
3618 fail:
3619 if (mapping)
3620 xas_unlock(&xas);
3621 local_irq_enable();
3622 remap_page(folio, folio_nr_pages(folio), 0);
3623 ret = -EAGAIN;
3624 }
3625
3626 out_unlock:
3627 if (anon_vma) {
3628 anon_vma_unlock_write(anon_vma);
3629 put_anon_vma(anon_vma);
3630 }
3631 if (mapping)
3632 i_mmap_unlock_read(mapping);
3633 out:
3634 xas_destroy(&xas);
3635 if (order == HPAGE_PMD_ORDER)
3636 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3637 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3638 return ret;
3639 }
3640
min_order_for_split(struct folio * folio)3641 int min_order_for_split(struct folio *folio)
3642 {
3643 if (folio_test_anon(folio))
3644 return 0;
3645
3646 if (!folio->mapping) {
3647 if (folio_test_pmd_mappable(folio))
3648 count_vm_event(THP_SPLIT_PAGE_FAILED);
3649 return -EBUSY;
3650 }
3651
3652 return mapping_min_folio_order(folio->mapping);
3653 }
3654
split_folio_to_list(struct folio * folio,struct list_head * list)3655 int split_folio_to_list(struct folio *folio, struct list_head *list)
3656 {
3657 int ret = min_order_for_split(folio);
3658
3659 if (ret < 0)
3660 return ret;
3661
3662 return split_huge_page_to_list_to_order(&folio->page, list, ret);
3663 }
3664
3665 /*
3666 * __folio_unqueue_deferred_split() is not to be called directly:
3667 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3668 * limits its calls to those folios which may have a _deferred_list for
3669 * queueing THP splits, and that list is (racily observed to be) non-empty.
3670 *
3671 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3672 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3673 * might be in use on deferred_split_scan()'s unlocked on-stack list.
3674 *
3675 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3676 * therefore important to unqueue deferred split before changing folio memcg.
3677 */
__folio_unqueue_deferred_split(struct folio * folio)3678 bool __folio_unqueue_deferred_split(struct folio *folio)
3679 {
3680 struct deferred_split *ds_queue;
3681 unsigned long flags;
3682 bool unqueued = false;
3683
3684 WARN_ON_ONCE(folio_ref_count(folio));
3685 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3686
3687 ds_queue = get_deferred_split_queue(folio);
3688 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3689 if (!list_empty(&folio->_deferred_list)) {
3690 ds_queue->split_queue_len--;
3691 if (folio_test_partially_mapped(folio)) {
3692 folio_clear_partially_mapped(folio);
3693 mod_mthp_stat(folio_order(folio),
3694 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3695 }
3696 list_del_init(&folio->_deferred_list);
3697 unqueued = true;
3698 }
3699 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3700
3701 return unqueued; /* useful for debug warnings */
3702 }
3703
3704 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)3705 void deferred_split_folio(struct folio *folio, bool partially_mapped)
3706 {
3707 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3708 #ifdef CONFIG_MEMCG
3709 struct mem_cgroup *memcg = folio_memcg(folio);
3710 #endif
3711 unsigned long flags;
3712
3713 /*
3714 * Order 1 folios have no space for a deferred list, but we also
3715 * won't waste much memory by not adding them to the deferred list.
3716 */
3717 if (folio_order(folio) <= 1)
3718 return;
3719
3720 if (!partially_mapped && !split_underused_thp)
3721 return;
3722
3723 /*
3724 * Exclude swapcache: originally to avoid a corrupt deferred split
3725 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3726 * but if page reclaim is already handling the same folio, it is
3727 * unnecessary to handle it again in the shrinker, so excluding
3728 * swapcache here may still be a useful optimization.
3729 */
3730 if (folio_test_swapcache(folio))
3731 return;
3732
3733 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3734 if (partially_mapped) {
3735 if (!folio_test_partially_mapped(folio)) {
3736 folio_set_partially_mapped(folio);
3737 if (folio_test_pmd_mappable(folio))
3738 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3739 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3740 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3741
3742 }
3743 } else {
3744 /* partially mapped folios cannot become non-partially mapped */
3745 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3746 }
3747 if (list_empty(&folio->_deferred_list)) {
3748 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3749 ds_queue->split_queue_len++;
3750 #ifdef CONFIG_MEMCG
3751 if (memcg)
3752 set_shrinker_bit(memcg, folio_nid(folio),
3753 deferred_split_shrinker->id);
3754 #endif
3755 }
3756 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3757 }
3758
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)3759 static unsigned long deferred_split_count(struct shrinker *shrink,
3760 struct shrink_control *sc)
3761 {
3762 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3763 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3764
3765 #ifdef CONFIG_MEMCG
3766 if (sc->memcg)
3767 ds_queue = &sc->memcg->deferred_split_queue;
3768 #endif
3769 return READ_ONCE(ds_queue->split_queue_len);
3770 }
3771
thp_underused(struct folio * folio)3772 static bool thp_underused(struct folio *folio)
3773 {
3774 int num_zero_pages = 0, num_filled_pages = 0;
3775 void *kaddr;
3776 int i;
3777
3778 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3779 return false;
3780
3781 for (i = 0; i < folio_nr_pages(folio); i++) {
3782 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3783 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3784 num_zero_pages++;
3785 if (num_zero_pages > khugepaged_max_ptes_none) {
3786 kunmap_local(kaddr);
3787 return true;
3788 }
3789 } else {
3790 /*
3791 * Another path for early exit once the number
3792 * of non-zero filled pages exceeds threshold.
3793 */
3794 num_filled_pages++;
3795 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3796 kunmap_local(kaddr);
3797 return false;
3798 }
3799 }
3800 kunmap_local(kaddr);
3801 }
3802 return false;
3803 }
3804
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)3805 static unsigned long deferred_split_scan(struct shrinker *shrink,
3806 struct shrink_control *sc)
3807 {
3808 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3809 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3810 unsigned long flags;
3811 LIST_HEAD(list);
3812 struct folio *folio, *next, *prev = NULL;
3813 int split = 0, removed = 0;
3814
3815 #ifdef CONFIG_MEMCG
3816 if (sc->memcg)
3817 ds_queue = &sc->memcg->deferred_split_queue;
3818 #endif
3819
3820 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3821 /* Take pin on all head pages to avoid freeing them under us */
3822 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3823 _deferred_list) {
3824 if (folio_try_get(folio)) {
3825 list_move(&folio->_deferred_list, &list);
3826 } else {
3827 /* We lost race with folio_put() */
3828 if (folio_test_partially_mapped(folio)) {
3829 folio_clear_partially_mapped(folio);
3830 mod_mthp_stat(folio_order(folio),
3831 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3832 }
3833 list_del_init(&folio->_deferred_list);
3834 ds_queue->split_queue_len--;
3835 }
3836 if (!--sc->nr_to_scan)
3837 break;
3838 }
3839 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3840
3841 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3842 bool did_split = false;
3843 bool underused = false;
3844
3845 if (!folio_test_partially_mapped(folio)) {
3846 underused = thp_underused(folio);
3847 if (!underused)
3848 goto next;
3849 }
3850 if (!folio_trylock(folio))
3851 goto next;
3852 if (!split_folio(folio)) {
3853 did_split = true;
3854 if (underused)
3855 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3856 split++;
3857 }
3858 folio_unlock(folio);
3859 next:
3860 /*
3861 * split_folio() removes folio from list on success.
3862 * Only add back to the queue if folio is partially mapped.
3863 * If thp_underused returns false, or if split_folio fails
3864 * in the case it was underused, then consider it used and
3865 * don't add it back to split_queue.
3866 */
3867 if (did_split) {
3868 ; /* folio already removed from list */
3869 } else if (!folio_test_partially_mapped(folio)) {
3870 list_del_init(&folio->_deferred_list);
3871 removed++;
3872 } else {
3873 /*
3874 * That unlocked list_del_init() above would be unsafe,
3875 * unless its folio is separated from any earlier folios
3876 * left on the list (which may be concurrently unqueued)
3877 * by one safe folio with refcount still raised.
3878 */
3879 swap(folio, prev);
3880 }
3881 if (folio)
3882 folio_put(folio);
3883 }
3884
3885 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3886 list_splice_tail(&list, &ds_queue->split_queue);
3887 ds_queue->split_queue_len -= removed;
3888 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3889
3890 if (prev)
3891 folio_put(prev);
3892
3893 /*
3894 * Stop shrinker if we didn't split any page, but the queue is empty.
3895 * This can happen if pages were freed under us.
3896 */
3897 if (!split && list_empty(&ds_queue->split_queue))
3898 return SHRINK_STOP;
3899 return split;
3900 }
3901
3902 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)3903 static void split_huge_pages_all(void)
3904 {
3905 struct zone *zone;
3906 struct page *page;
3907 struct folio *folio;
3908 unsigned long pfn, max_zone_pfn;
3909 unsigned long total = 0, split = 0;
3910
3911 pr_debug("Split all THPs\n");
3912 for_each_zone(zone) {
3913 if (!managed_zone(zone))
3914 continue;
3915 max_zone_pfn = zone_end_pfn(zone);
3916 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3917 int nr_pages;
3918
3919 page = pfn_to_online_page(pfn);
3920 if (!page || PageTail(page))
3921 continue;
3922 folio = page_folio(page);
3923 if (!folio_try_get(folio))
3924 continue;
3925
3926 if (unlikely(page_folio(page) != folio))
3927 goto next;
3928
3929 if (zone != folio_zone(folio))
3930 goto next;
3931
3932 if (!folio_test_large(folio)
3933 || folio_test_hugetlb(folio)
3934 || !folio_test_lru(folio))
3935 goto next;
3936
3937 total++;
3938 folio_lock(folio);
3939 nr_pages = folio_nr_pages(folio);
3940 if (!split_folio(folio))
3941 split++;
3942 pfn += nr_pages - 1;
3943 folio_unlock(folio);
3944 next:
3945 folio_put(folio);
3946 cond_resched();
3947 }
3948 }
3949
3950 pr_debug("%lu of %lu THP split\n", split, total);
3951 }
3952
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)3953 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3954 {
3955 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3956 is_vm_hugetlb_page(vma);
3957 }
3958
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order)3959 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3960 unsigned long vaddr_end, unsigned int new_order)
3961 {
3962 int ret = 0;
3963 struct task_struct *task;
3964 struct mm_struct *mm;
3965 unsigned long total = 0, split = 0;
3966 unsigned long addr;
3967
3968 vaddr_start &= PAGE_MASK;
3969 vaddr_end &= PAGE_MASK;
3970
3971 task = find_get_task_by_vpid(pid);
3972 if (!task) {
3973 ret = -ESRCH;
3974 goto out;
3975 }
3976
3977 /* Find the mm_struct */
3978 mm = get_task_mm(task);
3979 put_task_struct(task);
3980
3981 if (!mm) {
3982 ret = -EINVAL;
3983 goto out;
3984 }
3985
3986 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3987 pid, vaddr_start, vaddr_end);
3988
3989 mmap_read_lock(mm);
3990 /*
3991 * always increase addr by PAGE_SIZE, since we could have a PTE page
3992 * table filled with PTE-mapped THPs, each of which is distinct.
3993 */
3994 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3995 struct vm_area_struct *vma = vma_lookup(mm, addr);
3996 struct folio_walk fw;
3997 struct folio *folio;
3998 struct address_space *mapping;
3999 unsigned int target_order = new_order;
4000
4001 if (!vma)
4002 break;
4003
4004 /* skip special VMA and hugetlb VMA */
4005 if (vma_not_suitable_for_thp_split(vma)) {
4006 addr = vma->vm_end;
4007 continue;
4008 }
4009
4010 folio = folio_walk_start(&fw, vma, addr, 0);
4011 if (!folio)
4012 continue;
4013
4014 if (!is_transparent_hugepage(folio))
4015 goto next;
4016
4017 if (!folio_test_anon(folio)) {
4018 mapping = folio->mapping;
4019 target_order = max(new_order,
4020 mapping_min_folio_order(mapping));
4021 }
4022
4023 if (target_order >= folio_order(folio))
4024 goto next;
4025
4026 total++;
4027 /*
4028 * For folios with private, split_huge_page_to_list_to_order()
4029 * will try to drop it before split and then check if the folio
4030 * can be split or not. So skip the check here.
4031 */
4032 if (!folio_test_private(folio) &&
4033 !can_split_folio(folio, 0, NULL))
4034 goto next;
4035
4036 if (!folio_trylock(folio))
4037 goto next;
4038 folio_get(folio);
4039 folio_walk_end(&fw, vma);
4040
4041 if (!folio_test_anon(folio) && folio->mapping != mapping)
4042 goto unlock;
4043
4044 if (!split_folio_to_order(folio, target_order))
4045 split++;
4046
4047 unlock:
4048
4049 folio_unlock(folio);
4050 folio_put(folio);
4051
4052 cond_resched();
4053 continue;
4054 next:
4055 folio_walk_end(&fw, vma);
4056 cond_resched();
4057 }
4058 mmap_read_unlock(mm);
4059 mmput(mm);
4060
4061 pr_debug("%lu of %lu THP split\n", split, total);
4062
4063 out:
4064 return ret;
4065 }
4066
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order)4067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4068 pgoff_t off_end, unsigned int new_order)
4069 {
4070 struct filename *file;
4071 struct file *candidate;
4072 struct address_space *mapping;
4073 int ret = -EINVAL;
4074 pgoff_t index;
4075 int nr_pages = 1;
4076 unsigned long total = 0, split = 0;
4077 unsigned int min_order;
4078 unsigned int target_order;
4079
4080 file = getname_kernel(file_path);
4081 if (IS_ERR(file))
4082 return ret;
4083
4084 candidate = file_open_name(file, O_RDONLY, 0);
4085 if (IS_ERR(candidate))
4086 goto out;
4087
4088 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4089 file_path, off_start, off_end);
4090
4091 mapping = candidate->f_mapping;
4092 min_order = mapping_min_folio_order(mapping);
4093 target_order = max(new_order, min_order);
4094
4095 for (index = off_start; index < off_end; index += nr_pages) {
4096 struct folio *folio = filemap_get_folio(mapping, index);
4097
4098 nr_pages = 1;
4099 if (IS_ERR(folio))
4100 continue;
4101
4102 if (!folio_test_large(folio))
4103 goto next;
4104
4105 total++;
4106 nr_pages = folio_nr_pages(folio);
4107
4108 if (target_order >= folio_order(folio))
4109 goto next;
4110
4111 if (!folio_trylock(folio))
4112 goto next;
4113
4114 if (folio->mapping != mapping)
4115 goto unlock;
4116
4117 if (!split_folio_to_order(folio, target_order))
4118 split++;
4119
4120 unlock:
4121 folio_unlock(folio);
4122 next:
4123 folio_put(folio);
4124 cond_resched();
4125 }
4126
4127 filp_close(candidate, NULL);
4128 ret = 0;
4129
4130 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4131 out:
4132 putname(file);
4133 return ret;
4134 }
4135
4136 #define MAX_INPUT_BUF_SZ 255
4137
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4138 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4139 size_t count, loff_t *ppops)
4140 {
4141 static DEFINE_MUTEX(split_debug_mutex);
4142 ssize_t ret;
4143 /*
4144 * hold pid, start_vaddr, end_vaddr, new_order or
4145 * file_path, off_start, off_end, new_order
4146 */
4147 char input_buf[MAX_INPUT_BUF_SZ];
4148 int pid;
4149 unsigned long vaddr_start, vaddr_end;
4150 unsigned int new_order = 0;
4151
4152 ret = mutex_lock_interruptible(&split_debug_mutex);
4153 if (ret)
4154 return ret;
4155
4156 ret = -EFAULT;
4157
4158 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4159 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4160 goto out;
4161
4162 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4163
4164 if (input_buf[0] == '/') {
4165 char *tok;
4166 char *buf = input_buf;
4167 char file_path[MAX_INPUT_BUF_SZ];
4168 pgoff_t off_start = 0, off_end = 0;
4169 size_t input_len = strlen(input_buf);
4170
4171 tok = strsep(&buf, ",");
4172 if (tok && buf) {
4173 strscpy(file_path, tok);
4174 } else {
4175 ret = -EINVAL;
4176 goto out;
4177 }
4178
4179 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4180 if (ret != 2 && ret != 3) {
4181 ret = -EINVAL;
4182 goto out;
4183 }
4184 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4185 if (!ret)
4186 ret = input_len;
4187
4188 goto out;
4189 }
4190
4191 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4192 if (ret == 1 && pid == 1) {
4193 split_huge_pages_all();
4194 ret = strlen(input_buf);
4195 goto out;
4196 } else if (ret != 3 && ret != 4) {
4197 ret = -EINVAL;
4198 goto out;
4199 }
4200
4201 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4202 if (!ret)
4203 ret = strlen(input_buf);
4204 out:
4205 mutex_unlock(&split_debug_mutex);
4206 return ret;
4207
4208 }
4209
4210 static const struct file_operations split_huge_pages_fops = {
4211 .owner = THIS_MODULE,
4212 .write = split_huge_pages_write,
4213 };
4214
split_huge_pages_debugfs(void)4215 static int __init split_huge_pages_debugfs(void)
4216 {
4217 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4218 &split_huge_pages_fops);
4219 return 0;
4220 }
4221 late_initcall(split_huge_pages_debugfs);
4222 #endif
4223
4224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4225 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4226 struct page *page)
4227 {
4228 struct folio *folio = page_folio(page);
4229 struct vm_area_struct *vma = pvmw->vma;
4230 struct mm_struct *mm = vma->vm_mm;
4231 unsigned long address = pvmw->address;
4232 bool anon_exclusive;
4233 pmd_t pmdval;
4234 swp_entry_t entry;
4235 pmd_t pmdswp;
4236
4237 if (!(pvmw->pmd && !pvmw->pte))
4238 return 0;
4239
4240 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4241 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4242
4243 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4244 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4245 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4246 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4247 return -EBUSY;
4248 }
4249
4250 if (pmd_dirty(pmdval))
4251 folio_mark_dirty(folio);
4252 if (pmd_write(pmdval))
4253 entry = make_writable_migration_entry(page_to_pfn(page));
4254 else if (anon_exclusive)
4255 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4256 else
4257 entry = make_readable_migration_entry(page_to_pfn(page));
4258 if (pmd_young(pmdval))
4259 entry = make_migration_entry_young(entry);
4260 if (pmd_dirty(pmdval))
4261 entry = make_migration_entry_dirty(entry);
4262 pmdswp = swp_entry_to_pmd(entry);
4263 if (pmd_soft_dirty(pmdval))
4264 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4265 if (pmd_uffd_wp(pmdval))
4266 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4267 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4268 folio_remove_rmap_pmd(folio, page, vma);
4269 folio_put(folio);
4270 trace_set_migration_pmd(address, pmd_val(pmdswp));
4271
4272 return 0;
4273 }
4274
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4275 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4276 {
4277 struct folio *folio = page_folio(new);
4278 struct vm_area_struct *vma = pvmw->vma;
4279 struct mm_struct *mm = vma->vm_mm;
4280 unsigned long address = pvmw->address;
4281 unsigned long haddr = address & HPAGE_PMD_MASK;
4282 pmd_t pmde;
4283 swp_entry_t entry;
4284
4285 if (!(pvmw->pmd && !pvmw->pte))
4286 return;
4287
4288 entry = pmd_to_swp_entry(*pvmw->pmd);
4289 folio_get(folio);
4290 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4291 if (pmd_swp_soft_dirty(*pvmw->pmd))
4292 pmde = pmd_mksoft_dirty(pmde);
4293 if (is_writable_migration_entry(entry))
4294 pmde = pmd_mkwrite(pmde, vma);
4295 if (pmd_swp_uffd_wp(*pvmw->pmd))
4296 pmde = pmd_mkuffd_wp(pmde);
4297 if (!is_migration_entry_young(entry))
4298 pmde = pmd_mkold(pmde);
4299 /* NOTE: this may contain setting soft-dirty on some archs */
4300 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4301 pmde = pmd_mkdirty(pmde);
4302
4303 if (folio_test_anon(folio)) {
4304 rmap_t rmap_flags = RMAP_NONE;
4305
4306 if (!is_readable_migration_entry(entry))
4307 rmap_flags |= RMAP_EXCLUSIVE;
4308
4309 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4310 } else {
4311 folio_add_file_rmap_pmd(folio, new, vma);
4312 }
4313 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4314 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4315
4316 /* No need to invalidate - it was non-present before */
4317 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4318 trace_remove_migration_pmd(address, pmd_val(pmde));
4319 }
4320 #endif
4321