1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NVIDIA Tegra XUSB device mode controller
4 *
5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved.
6 * Copyright (c) 2015, Google Inc.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/phy/phy.h>
20 #include <linux/phy/tegra/xusb.h>
21 #include <linux/pm_domain.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/reset.h>
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
28 #include <linux/usb/otg.h>
29 #include <linux/usb/role.h>
30 #include <linux/usb/phy.h>
31 #include <linux/workqueue.h>
32
33 /* XUSB_DEV registers */
34 #define DB 0x004
35 #define DB_TARGET_MASK GENMASK(15, 8)
36 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
37 #define DB_STREAMID_MASK GENMASK(31, 16)
38 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
39 #define ERSTSZ 0x008
40 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
41 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
42 #define ERSTXBALO(x) (0x010 + 8 * (x))
43 #define ERSTXBAHI(x) (0x014 + 8 * (x))
44 #define ERDPLO 0x020
45 #define ERDPLO_EHB BIT(3)
46 #define ERDPHI 0x024
47 #define EREPLO 0x028
48 #define EREPLO_ECS BIT(0)
49 #define EREPLO_SEGI BIT(1)
50 #define EREPHI 0x02c
51 #define CTRL 0x030
52 #define CTRL_RUN BIT(0)
53 #define CTRL_LSE BIT(1)
54 #define CTRL_IE BIT(4)
55 #define CTRL_SMI_EVT BIT(5)
56 #define CTRL_SMI_DSE BIT(6)
57 #define CTRL_EWE BIT(7)
58 #define CTRL_DEVADDR_MASK GENMASK(30, 24)
59 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
60 #define CTRL_ENABLE BIT(31)
61 #define ST 0x034
62 #define ST_RC BIT(0)
63 #define ST_IP BIT(4)
64 #define RT_IMOD 0x038
65 #define RT_IMOD_IMODI_MASK GENMASK(15, 0)
66 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
67 #define RT_IMOD_IMODC_MASK GENMASK(31, 16)
68 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
69 #define PORTSC 0x03c
70 #define PORTSC_CCS BIT(0)
71 #define PORTSC_PED BIT(1)
72 #define PORTSC_PR BIT(4)
73 #define PORTSC_PLS_SHIFT 5
74 #define PORTSC_PLS_MASK GENMASK(8, 5)
75 #define PORTSC_PLS_U0 0x0
76 #define PORTSC_PLS_U2 0x2
77 #define PORTSC_PLS_U3 0x3
78 #define PORTSC_PLS_DISABLED 0x4
79 #define PORTSC_PLS_RXDETECT 0x5
80 #define PORTSC_PLS_INACTIVE 0x6
81 #define PORTSC_PLS_RESUME 0xf
82 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
83 #define PORTSC_PS_SHIFT 10
84 #define PORTSC_PS_MASK GENMASK(13, 10)
85 #define PORTSC_PS_UNDEFINED 0x0
86 #define PORTSC_PS_FS 0x1
87 #define PORTSC_PS_LS 0x2
88 #define PORTSC_PS_HS 0x3
89 #define PORTSC_PS_SS 0x4
90 #define PORTSC_LWS BIT(16)
91 #define PORTSC_CSC BIT(17)
92 #define PORTSC_WRC BIT(19)
93 #define PORTSC_PRC BIT(21)
94 #define PORTSC_PLC BIT(22)
95 #define PORTSC_CEC BIT(23)
96 #define PORTSC_WPR BIT(30)
97 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
98 PORTSC_PLC | PORTSC_CEC)
99 #define ECPLO 0x040
100 #define ECPHI 0x044
101 #define MFINDEX 0x048
102 #define MFINDEX_FRAME_SHIFT 3
103 #define MFINDEX_FRAME_MASK GENMASK(13, 3)
104 #define PORTPM 0x04c
105 #define PORTPM_L1S_MASK GENMASK(1, 0)
106 #define PORTPM_L1S_DROP 0x0
107 #define PORTPM_L1S_ACCEPT 0x1
108 #define PORTPM_L1S_NYET 0x2
109 #define PORTPM_L1S_STALL 0x3
110 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
111 #define PORTPM_RWE BIT(3)
112 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
113 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
114 #define PORTPM_FLA BIT(24)
115 #define PORTPM_VBA BIT(25)
116 #define PORTPM_WOC BIT(26)
117 #define PORTPM_WOD BIT(27)
118 #define PORTPM_U1E BIT(28)
119 #define PORTPM_U2E BIT(29)
120 #define PORTPM_FRWE BIT(30)
121 #define PORTPM_PNG_CYA BIT(31)
122 #define EP_HALT 0x050
123 #define EP_PAUSE 0x054
124 #define EP_RELOAD 0x058
125 #define EP_STCHG 0x05c
126 #define DEVNOTIF_LO 0x064
127 #define DEVNOTIF_LO_TRIG BIT(0)
128 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
129 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK)
130 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
131 #define DEVNOTIF_HI 0x068
132 #define PORTHALT 0x06c
133 #define PORTHALT_HALT_LTSSM BIT(0)
134 #define PORTHALT_HALT_REJECT BIT(1)
135 #define PORTHALT_STCHG_REQ BIT(20)
136 #define PORTHALT_STCHG_INTR_EN BIT(24)
137 #define PORT_TM 0x070
138 #define EP_THREAD_ACTIVE 0x074
139 #define EP_STOPPED 0x078
140 #define HSFSPI_COUNT0 0x100
141 #define HSFSPI_COUNT13 0x134
142 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
144 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
145 #define BLCG 0x840
146 #define SSPX_CORE_CNT0 0x610
147 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
148 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
149 #define SSPX_CORE_CNT30 0x688
150 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
151 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
152 SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
153 #define SSPX_CORE_CNT32 0x690
154 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
156 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
157 #define SSPX_CORE_CNT56 0x6fc
158 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
160 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
161 #define SSPX_CORE_CNT57 0x700
162 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
164 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
165 #define SSPX_CORE_CNT65 0x720
166 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
168 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
169 #define SSPX_CORE_CNT66 0x724
170 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
172 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
173 #define SSPX_CORE_CNT67 0x728
174 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
176 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
177 #define SSPX_CORE_CNT72 0x73c
178 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
180 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
181 #define SSPX_CORE_PADCTL4 0x750
182 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
184 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
185 #define BLCG_DFPCI BIT(0)
186 #define BLCG_UFPCI BIT(1)
187 #define BLCG_FE BIT(2)
188 #define BLCG_COREPLL_PWRDN BIT(8)
189 #define BLCG_IOPLL_0_PWRDN BIT(9)
190 #define BLCG_IOPLL_1_PWRDN BIT(10)
191 #define BLCG_IOPLL_2_PWRDN BIT(11)
192 #define BLCG_ALL 0x1ff
193 #define CFG_DEV_SSPI_XFER 0x858
194 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
196 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
197 #define CFG_DEV_FE 0x85c
198 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
199 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1
200 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
201 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
202 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
203
204 /* FPCI registers */
205 #define XUSB_DEV_CFG_1 0x004
206 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
207 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
208 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
209 #define XUSB_DEV_CFG_4 0x010
210 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
211 #define XUSB_DEV_CFG_5 0x014
212
213 /* IPFS registers */
214 #define XUSB_DEV_CONFIGURATION_0 0x180
215 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
216 #define XUSB_DEV_INTR_MASK_0 0x188
217 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
218
219 struct tegra_xudc_ep_context {
220 __le32 info0;
221 __le32 info1;
222 __le32 deq_lo;
223 __le32 deq_hi;
224 __le32 tx_info;
225 __le32 rsvd[11];
226 };
227
228 #define EP_STATE_DISABLED 0
229 #define EP_STATE_RUNNING 1
230 #define EP_STATE_HALTED 2
231 #define EP_STATE_STOPPED 3
232 #define EP_STATE_ERROR 4
233
234 #define EP_TYPE_INVALID 0
235 #define EP_TYPE_ISOCH_OUT 1
236 #define EP_TYPE_BULK_OUT 2
237 #define EP_TYPE_INTERRUPT_OUT 3
238 #define EP_TYPE_CONTROL 4
239 #define EP_TYPE_ISCOH_IN 5
240 #define EP_TYPE_BULK_IN 6
241 #define EP_TYPE_INTERRUPT_IN 7
242
243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \
244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \
245 { \
246 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \
247 } \
248 static inline void \
249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \
250 { \
251 u32 tmp; \
252 \
253 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \
254 tmp |= (val & (mask)) << (shift); \
255 ctx->member = cpu_to_le32(tmp); \
256 }
257
258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
282
ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context * ctx)283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
284 {
285 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
286 (ep_ctx_read_deq_lo(ctx) << 4);
287 }
288
289 static inline void
ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context * ctx,u64 addr)290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
291 {
292 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
293 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
294 }
295
296 struct tegra_xudc_trb {
297 __le32 data_lo;
298 __le32 data_hi;
299 __le32 status;
300 __le32 control;
301 };
302
303 #define TRB_TYPE_RSVD 0
304 #define TRB_TYPE_NORMAL 1
305 #define TRB_TYPE_SETUP_STAGE 2
306 #define TRB_TYPE_DATA_STAGE 3
307 #define TRB_TYPE_STATUS_STAGE 4
308 #define TRB_TYPE_ISOCH 5
309 #define TRB_TYPE_LINK 6
310 #define TRB_TYPE_TRANSFER_EVENT 32
311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
312 #define TRB_TYPE_STREAM 48
313 #define TRB_TYPE_SETUP_PACKET_EVENT 63
314
315 #define TRB_CMPL_CODE_INVALID 0
316 #define TRB_CMPL_CODE_SUCCESS 1
317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
320 #define TRB_CMPL_CODE_TRB_ERR 5
321 #define TRB_CMPL_CODE_STALL 6
322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
323 #define TRB_CMPL_CODE_SHORT_PACKET 13
324 #define TRB_CMPL_CODE_RING_UNDERRUN 14
325 #define TRB_CMPL_CODE_RING_OVERRUN 15
326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
327 #define TRB_CMPL_CODE_STOPPED 26
328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
331 #define TRB_CMPL_CODE_HOST_REJECTED 221
332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
334
335 #define BUILD_TRB_RW(name, member, shift, mask) \
336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \
337 { \
338 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \
339 } \
340 static inline void \
341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \
342 { \
343 u32 tmp; \
344 \
345 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \
346 tmp |= (val & (mask)) << (shift); \
347 trb->member = cpu_to_le32(tmp); \
348 }
349
350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
352 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
354 BUILD_TRB_RW(td_size, status, 17, 0x1f)
355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
356 BUILD_TRB_RW(cycle, control, 0, 0x1)
357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
358 BUILD_TRB_RW(isp, control, 2, 0x1)
359 BUILD_TRB_RW(chain, control, 4, 0x1)
360 BUILD_TRB_RW(ioc, control, 5, 0x1)
361 BUILD_TRB_RW(type, control, 10, 0x3f)
362 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
364 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
367 BUILD_TRB_RW(sia, control, 31, 0x1)
368
trb_read_data_ptr(struct tegra_xudc_trb * trb)369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
370 {
371 return ((u64)trb_read_data_hi(trb) << 32) |
372 trb_read_data_lo(trb);
373 }
374
trb_write_data_ptr(struct tegra_xudc_trb * trb,u64 addr)375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
376 {
377 trb_write_data_lo(trb, lower_32_bits(addr));
378 trb_write_data_hi(trb, upper_32_bits(addr));
379 }
380
381 struct tegra_xudc_request {
382 struct usb_request usb_req;
383
384 size_t buf_queued;
385 unsigned int trbs_queued;
386 unsigned int trbs_needed;
387 bool need_zlp;
388
389 struct tegra_xudc_trb *first_trb;
390 struct tegra_xudc_trb *last_trb;
391
392 struct list_head list;
393 };
394
395 struct tegra_xudc_ep {
396 struct tegra_xudc *xudc;
397 struct usb_ep usb_ep;
398 unsigned int index;
399 char name[8];
400
401 struct tegra_xudc_ep_context *context;
402
403 #define XUDC_TRANSFER_RING_SIZE 64
404 struct tegra_xudc_trb *transfer_ring;
405 dma_addr_t transfer_ring_phys;
406
407 unsigned int enq_ptr;
408 unsigned int deq_ptr;
409 bool pcs;
410 bool ring_full;
411 bool stream_rejected;
412
413 struct list_head queue;
414 const struct usb_endpoint_descriptor *desc;
415 const struct usb_ss_ep_comp_descriptor *comp_desc;
416 };
417
418 struct tegra_xudc_sel_timing {
419 __u8 u1sel;
420 __u8 u1pel;
421 __le16 u2sel;
422 __le16 u2pel;
423 };
424
425 enum tegra_xudc_setup_state {
426 WAIT_FOR_SETUP,
427 DATA_STAGE_XFER,
428 DATA_STAGE_RECV,
429 STATUS_STAGE_XFER,
430 STATUS_STAGE_RECV,
431 };
432
433 struct tegra_xudc_setup_packet {
434 struct usb_ctrlrequest ctrl_req;
435 unsigned int seq_num;
436 };
437
438 struct tegra_xudc_save_regs {
439 u32 ctrl;
440 u32 portpm;
441 };
442
443 struct tegra_xudc {
444 struct device *dev;
445 const struct tegra_xudc_soc *soc;
446 struct tegra_xusb_padctl *padctl;
447
448 spinlock_t lock;
449
450 struct usb_gadget gadget;
451 struct usb_gadget_driver *driver;
452
453 #define XUDC_NR_EVENT_RINGS 2
454 #define XUDC_EVENT_RING_SIZE 4096
455 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
456 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
457 unsigned int event_ring_index;
458 unsigned int event_ring_deq_ptr;
459 bool ccs;
460
461 #define XUDC_NR_EPS 32
462 struct tegra_xudc_ep ep[XUDC_NR_EPS];
463 struct tegra_xudc_ep_context *ep_context;
464 dma_addr_t ep_context_phys;
465
466 struct device *genpd_dev_device;
467 struct device *genpd_dev_ss;
468 struct device_link *genpd_dl_device;
469 struct device_link *genpd_dl_ss;
470
471 struct dma_pool *transfer_ring_pool;
472
473 bool queued_setup_packet;
474 struct tegra_xudc_setup_packet setup_packet;
475 enum tegra_xudc_setup_state setup_state;
476 u16 setup_seq_num;
477
478 u16 dev_addr;
479 u16 isoch_delay;
480 struct tegra_xudc_sel_timing sel_timing;
481 u8 test_mode_pattern;
482 u16 status_buf;
483 struct tegra_xudc_request *ep0_req;
484
485 bool pullup;
486
487 unsigned int nr_enabled_eps;
488 unsigned int nr_isoch_eps;
489
490 unsigned int device_state;
491 unsigned int resume_state;
492
493 int irq;
494
495 void __iomem *base;
496 resource_size_t phys_base;
497 void __iomem *ipfs;
498 void __iomem *fpci;
499
500 struct regulator_bulk_data *supplies;
501
502 struct clk_bulk_data *clks;
503
504 bool device_mode;
505 bool current_device_mode;
506 struct work_struct usb_role_sw_work;
507
508 struct phy **usb3_phy;
509 struct phy *curr_usb3_phy;
510 struct phy **utmi_phy;
511 struct phy *curr_utmi_phy;
512
513 struct tegra_xudc_save_regs saved_regs;
514 bool suspended;
515 bool powergated;
516
517 struct usb_phy **usbphy;
518 struct usb_phy *curr_usbphy;
519 struct notifier_block vbus_nb;
520
521 struct completion disconnect_complete;
522
523 bool selfpowered;
524
525 #define TOGGLE_VBUS_WAIT_MS 100
526 struct delayed_work plc_reset_work;
527 bool wait_csc;
528
529 struct delayed_work port_reset_war_work;
530 bool wait_for_sec_prc;
531 };
532
533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
534 #define XUDC_MAX_ISOCH_EPS 4
535 #define XUDC_INTERRUPT_MODERATION_US 0
536
537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
538 .bLength = USB_DT_ENDPOINT_SIZE,
539 .bDescriptorType = USB_DT_ENDPOINT,
540 .bEndpointAddress = 0,
541 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
542 .wMaxPacketSize = cpu_to_le16(64),
543 };
544
545 struct tegra_xudc_soc {
546 const char * const *supply_names;
547 unsigned int num_supplies;
548 const char * const *clock_names;
549 unsigned int num_clks;
550 unsigned int num_phys;
551 bool u1_enable;
552 bool u2_enable;
553 bool lpm_enable;
554 bool invalid_seq_num;
555 bool pls_quirk;
556 bool port_reset_quirk;
557 bool port_speed_quirk;
558 bool has_ipfs;
559 };
560
fpci_readl(struct tegra_xudc * xudc,unsigned int offset)561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
562 {
563 return readl(xudc->fpci + offset);
564 }
565
fpci_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
567 unsigned int offset)
568 {
569 writel(val, xudc->fpci + offset);
570 }
571
ipfs_readl(struct tegra_xudc * xudc,unsigned int offset)572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
573 {
574 return readl(xudc->ipfs + offset);
575 }
576
ipfs_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
578 unsigned int offset)
579 {
580 writel(val, xudc->ipfs + offset);
581 }
582
xudc_readl(struct tegra_xudc * xudc,unsigned int offset)583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
584 {
585 return readl(xudc->base + offset);
586 }
587
xudc_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
589 unsigned int offset)
590 {
591 writel(val, xudc->base + offset);
592 }
593
xudc_readl_poll(struct tegra_xudc * xudc,unsigned int offset,u32 mask,u32 val)594 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
595 unsigned int offset, u32 mask, u32 val)
596 {
597 u32 regval;
598
599 return readl_poll_timeout_atomic(xudc->base + offset, regval,
600 (regval & mask) == val, 1, 100);
601 }
602
to_xudc(struct usb_gadget * gadget)603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
604 {
605 return container_of(gadget, struct tegra_xudc, gadget);
606 }
607
to_xudc_ep(struct usb_ep * ep)608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
609 {
610 return container_of(ep, struct tegra_xudc_ep, usb_ep);
611 }
612
to_xudc_req(struct usb_request * req)613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
614 {
615 return container_of(req, struct tegra_xudc_request, usb_req);
616 }
617
dump_trb(struct tegra_xudc * xudc,const char * type,struct tegra_xudc_trb * trb)618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
619 struct tegra_xudc_trb *trb)
620 {
621 dev_dbg(xudc->dev,
622 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
623 type, trb, trb->data_lo, trb->data_hi, trb->status,
624 trb->control);
625 }
626
tegra_xudc_limit_port_speed(struct tegra_xudc * xudc)627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
628 {
629 u32 val;
630
631 /* limit port speed to gen 1 */
632 val = xudc_readl(xudc, SSPX_CORE_CNT56);
633 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
634 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
635 xudc_writel(xudc, val, SSPX_CORE_CNT56);
636
637 val = xudc_readl(xudc, SSPX_CORE_CNT57);
638 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
639 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
640 xudc_writel(xudc, val, SSPX_CORE_CNT57);
641
642 val = xudc_readl(xudc, SSPX_CORE_CNT65);
643 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
644 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
645 xudc_writel(xudc, val, SSPX_CORE_CNT66);
646
647 val = xudc_readl(xudc, SSPX_CORE_CNT66);
648 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
649 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
650 xudc_writel(xudc, val, SSPX_CORE_CNT66);
651
652 val = xudc_readl(xudc, SSPX_CORE_CNT67);
653 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
654 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
655 xudc_writel(xudc, val, SSPX_CORE_CNT67);
656
657 val = xudc_readl(xudc, SSPX_CORE_CNT72);
658 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
659 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
660 xudc_writel(xudc, val, SSPX_CORE_CNT72);
661 }
662
tegra_xudc_restore_port_speed(struct tegra_xudc * xudc)663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
664 {
665 u32 val;
666
667 /* restore port speed to gen2 */
668 val = xudc_readl(xudc, SSPX_CORE_CNT56);
669 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
670 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
671 xudc_writel(xudc, val, SSPX_CORE_CNT56);
672
673 val = xudc_readl(xudc, SSPX_CORE_CNT57);
674 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
675 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
676 xudc_writel(xudc, val, SSPX_CORE_CNT57);
677
678 val = xudc_readl(xudc, SSPX_CORE_CNT65);
679 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
680 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
681 xudc_writel(xudc, val, SSPX_CORE_CNT66);
682
683 val = xudc_readl(xudc, SSPX_CORE_CNT66);
684 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
685 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
686 xudc_writel(xudc, val, SSPX_CORE_CNT66);
687
688 val = xudc_readl(xudc, SSPX_CORE_CNT67);
689 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
690 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
691 xudc_writel(xudc, val, SSPX_CORE_CNT67);
692
693 val = xudc_readl(xudc, SSPX_CORE_CNT72);
694 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
695 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
696 xudc_writel(xudc, val, SSPX_CORE_CNT72);
697 }
698
tegra_xudc_device_mode_on(struct tegra_xudc * xudc)699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
700 {
701 int err;
702
703 pm_runtime_get_sync(xudc->dev);
704
705 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy);
706
707 err = phy_power_on(xudc->curr_utmi_phy);
708 if (err < 0)
709 dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
710
711 err = phy_power_on(xudc->curr_usb3_phy);
712 if (err < 0)
713 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
714
715 dev_dbg(xudc->dev, "device mode on\n");
716
717 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
718 USB_ROLE_DEVICE);
719
720 xudc->current_device_mode = true;
721 }
722
tegra_xudc_device_mode_off(struct tegra_xudc * xudc)723 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
724 {
725 bool connected = false;
726 u32 pls, val;
727 int err;
728
729 dev_dbg(xudc->dev, "device mode off\n");
730
731 xudc->current_device_mode = false;
732
733 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
734
735 reinit_completion(&xudc->disconnect_complete);
736
737 if (xudc->soc->port_speed_quirk)
738 tegra_xudc_restore_port_speed(xudc);
739
740 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
741
742 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
743 PORTSC_PLS_SHIFT;
744
745 /* Direct link to U0 if disconnected in RESUME or U2. */
746 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
747 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
748 val = xudc_readl(xudc, PORTPM);
749 val |= PORTPM_FRWE;
750 xudc_writel(xudc, val, PORTPM);
751
752 val = xudc_readl(xudc, PORTSC);
753 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
754 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
755 xudc_writel(xudc, val, PORTSC);
756 }
757
758 /* Wait for disconnect event. */
759 if (connected)
760 wait_for_completion(&xudc->disconnect_complete);
761
762 /* Make sure interrupt handler has completed before powergating. */
763 synchronize_irq(xudc->irq);
764
765 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy);
766
767 err = phy_power_off(xudc->curr_utmi_phy);
768 if (err < 0)
769 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
770
771 err = phy_power_off(xudc->curr_usb3_phy);
772 if (err < 0)
773 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
774
775 pm_runtime_put(xudc->dev);
776 }
777
tegra_xudc_usb_role_sw_work(struct work_struct * work)778 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
779 {
780 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
781 usb_role_sw_work);
782
783 if (xudc->device_mode)
784 tegra_xudc_device_mode_on(xudc);
785 else
786 tegra_xudc_device_mode_off(xudc);
787 }
788
tegra_xudc_get_phy_index(struct tegra_xudc * xudc,struct usb_phy * usbphy)789 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
790 struct usb_phy *usbphy)
791 {
792 unsigned int i;
793
794 for (i = 0; i < xudc->soc->num_phys; i++) {
795 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
796 return i;
797 }
798
799 dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
800 return -1;
801 }
802
tegra_xudc_update_data_role(struct tegra_xudc * xudc,struct usb_phy * usbphy)803 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc,
804 struct usb_phy *usbphy)
805 {
806 int phy_index;
807
808 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
809 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
810 dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
811 xudc->device_mode);
812 return;
813 }
814
815 xudc->device_mode = usbphy->last_event == USB_EVENT_VBUS;
816
817 phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
818 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
819 phy_index);
820
821 if (!xudc->suspended && phy_index != -1) {
822 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
823 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
824 xudc->curr_usbphy = usbphy;
825 schedule_work(&xudc->usb_role_sw_work);
826 }
827 }
828
tegra_xudc_vbus_notify(struct notifier_block * nb,unsigned long action,void * data)829 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
830 unsigned long action, void *data)
831 {
832 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
833 vbus_nb);
834 struct usb_phy *usbphy = (struct usb_phy *)data;
835
836 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
837
838 tegra_xudc_update_data_role(xudc, usbphy);
839
840 return NOTIFY_OK;
841 }
842
tegra_xudc_plc_reset_work(struct work_struct * work)843 static void tegra_xudc_plc_reset_work(struct work_struct *work)
844 {
845 struct delayed_work *dwork = to_delayed_work(work);
846 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
847 plc_reset_work);
848 unsigned long flags;
849
850 spin_lock_irqsave(&xudc->lock, flags);
851
852 if (xudc->wait_csc) {
853 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
854 PORTSC_PLS_SHIFT;
855
856 if (pls == PORTSC_PLS_INACTIVE) {
857 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
858 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
859 USB_ROLE_NONE);
860 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
861 USB_ROLE_DEVICE);
862
863 xudc->wait_csc = false;
864 }
865 }
866
867 spin_unlock_irqrestore(&xudc->lock, flags);
868 }
869
tegra_xudc_port_reset_war_work(struct work_struct * work)870 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
871 {
872 struct delayed_work *dwork = to_delayed_work(work);
873 struct tegra_xudc *xudc =
874 container_of(dwork, struct tegra_xudc, port_reset_war_work);
875 unsigned long flags;
876 u32 pls;
877 int ret;
878
879 spin_lock_irqsave(&xudc->lock, flags);
880
881 if (xudc->device_mode && xudc->wait_for_sec_prc) {
882 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
883 PORTSC_PLS_SHIFT;
884 dev_dbg(xudc->dev, "pls = %x\n", pls);
885
886 if (pls == PORTSC_PLS_DISABLED) {
887 dev_dbg(xudc->dev, "toggle vbus\n");
888 /* PRC doesn't complete in 100ms, toggle the vbus */
889 ret = tegra_phy_xusb_utmi_port_reset(
890 xudc->curr_utmi_phy);
891 if (ret == 1)
892 xudc->wait_for_sec_prc = 0;
893 }
894 }
895
896 spin_unlock_irqrestore(&xudc->lock, flags);
897 }
898
trb_virt_to_phys(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)899 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
900 struct tegra_xudc_trb *trb)
901 {
902 unsigned int index;
903
904 index = trb - ep->transfer_ring;
905
906 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
907 return 0;
908
909 return (ep->transfer_ring_phys + index * sizeof(*trb));
910 }
911
trb_phys_to_virt(struct tegra_xudc_ep * ep,dma_addr_t addr)912 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
913 dma_addr_t addr)
914 {
915 struct tegra_xudc_trb *trb;
916 unsigned int index;
917
918 index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
919
920 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
921 return NULL;
922
923 trb = &ep->transfer_ring[index];
924
925 return trb;
926 }
927
ep_reload(struct tegra_xudc * xudc,unsigned int ep)928 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
929 {
930 xudc_writel(xudc, BIT(ep), EP_RELOAD);
931 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
932 }
933
ep_pause(struct tegra_xudc * xudc,unsigned int ep)934 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
935 {
936 u32 val;
937
938 val = xudc_readl(xudc, EP_PAUSE);
939 if (val & BIT(ep))
940 return;
941 val |= BIT(ep);
942
943 xudc_writel(xudc, val, EP_PAUSE);
944
945 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
946
947 xudc_writel(xudc, BIT(ep), EP_STCHG);
948 }
949
ep_unpause(struct tegra_xudc * xudc,unsigned int ep)950 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
951 {
952 u32 val;
953
954 val = xudc_readl(xudc, EP_PAUSE);
955 if (!(val & BIT(ep)))
956 return;
957 val &= ~BIT(ep);
958
959 xudc_writel(xudc, val, EP_PAUSE);
960
961 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
962
963 xudc_writel(xudc, BIT(ep), EP_STCHG);
964 }
965
ep_unpause_all(struct tegra_xudc * xudc)966 static void ep_unpause_all(struct tegra_xudc *xudc)
967 {
968 u32 val;
969
970 val = xudc_readl(xudc, EP_PAUSE);
971
972 xudc_writel(xudc, 0, EP_PAUSE);
973
974 xudc_readl_poll(xudc, EP_STCHG, val, val);
975
976 xudc_writel(xudc, val, EP_STCHG);
977 }
978
ep_halt(struct tegra_xudc * xudc,unsigned int ep)979 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
980 {
981 u32 val;
982
983 val = xudc_readl(xudc, EP_HALT);
984 if (val & BIT(ep))
985 return;
986 val |= BIT(ep);
987 xudc_writel(xudc, val, EP_HALT);
988
989 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
990
991 xudc_writel(xudc, BIT(ep), EP_STCHG);
992 }
993
ep_unhalt(struct tegra_xudc * xudc,unsigned int ep)994 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
995 {
996 u32 val;
997
998 val = xudc_readl(xudc, EP_HALT);
999 if (!(val & BIT(ep)))
1000 return;
1001 val &= ~BIT(ep);
1002 xudc_writel(xudc, val, EP_HALT);
1003
1004 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
1005
1006 xudc_writel(xudc, BIT(ep), EP_STCHG);
1007 }
1008
ep_unhalt_all(struct tegra_xudc * xudc)1009 static void ep_unhalt_all(struct tegra_xudc *xudc)
1010 {
1011 u32 val;
1012
1013 val = xudc_readl(xudc, EP_HALT);
1014 if (!val)
1015 return;
1016 xudc_writel(xudc, 0, EP_HALT);
1017
1018 xudc_readl_poll(xudc, EP_STCHG, val, val);
1019
1020 xudc_writel(xudc, val, EP_STCHG);
1021 }
1022
ep_wait_for_stopped(struct tegra_xudc * xudc,unsigned int ep)1023 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1024 {
1025 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1026 xudc_writel(xudc, BIT(ep), EP_STOPPED);
1027 }
1028
ep_wait_for_inactive(struct tegra_xudc * xudc,unsigned int ep)1029 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1030 {
1031 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1032 }
1033
tegra_xudc_req_done(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,int status)1034 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1035 struct tegra_xudc_request *req, int status)
1036 {
1037 struct tegra_xudc *xudc = ep->xudc;
1038
1039 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1040 req, ep->index, status);
1041
1042 if (likely(req->usb_req.status == -EINPROGRESS))
1043 req->usb_req.status = status;
1044
1045 list_del_init(&req->list);
1046
1047 if (usb_endpoint_xfer_control(ep->desc)) {
1048 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1049 (xudc->setup_state ==
1050 DATA_STAGE_XFER));
1051 } else {
1052 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1053 usb_endpoint_dir_in(ep->desc));
1054 }
1055
1056 spin_unlock(&xudc->lock);
1057 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1058 spin_lock(&xudc->lock);
1059 }
1060
tegra_xudc_ep_nuke(struct tegra_xudc_ep * ep,int status)1061 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1062 {
1063 struct tegra_xudc_request *req;
1064
1065 while (!list_empty(&ep->queue)) {
1066 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1067 list);
1068 tegra_xudc_req_done(ep, req, status);
1069 }
1070 }
1071
ep_available_trbs(struct tegra_xudc_ep * ep)1072 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1073 {
1074 if (ep->ring_full)
1075 return 0;
1076
1077 if (ep->deq_ptr > ep->enq_ptr)
1078 return ep->deq_ptr - ep->enq_ptr - 1;
1079
1080 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1081 }
1082
tegra_xudc_queue_one_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb,bool ioc)1083 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1084 struct tegra_xudc_request *req,
1085 struct tegra_xudc_trb *trb,
1086 bool ioc)
1087 {
1088 struct tegra_xudc *xudc = ep->xudc;
1089 dma_addr_t buf_addr;
1090 size_t len;
1091
1092 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1093 req->buf_queued);
1094 if (len > 0)
1095 buf_addr = req->usb_req.dma + req->buf_queued;
1096 else
1097 buf_addr = 0;
1098
1099 trb_write_data_ptr(trb, buf_addr);
1100
1101 trb_write_transfer_len(trb, len);
1102 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1103
1104 if (req->trbs_queued == req->trbs_needed - 1 ||
1105 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1106 trb_write_chain(trb, 0);
1107 else
1108 trb_write_chain(trb, 1);
1109
1110 trb_write_ioc(trb, ioc);
1111
1112 if (usb_endpoint_dir_out(ep->desc) ||
1113 (usb_endpoint_xfer_control(ep->desc) &&
1114 (xudc->setup_state == DATA_STAGE_RECV)))
1115 trb_write_isp(trb, 1);
1116 else
1117 trb_write_isp(trb, 0);
1118
1119 if (usb_endpoint_xfer_control(ep->desc)) {
1120 if (xudc->setup_state == DATA_STAGE_XFER ||
1121 xudc->setup_state == DATA_STAGE_RECV)
1122 trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1123 else
1124 trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1125
1126 if (xudc->setup_state == DATA_STAGE_XFER ||
1127 xudc->setup_state == STATUS_STAGE_XFER)
1128 trb_write_data_stage_dir(trb, 1);
1129 else
1130 trb_write_data_stage_dir(trb, 0);
1131 } else if (usb_endpoint_xfer_isoc(ep->desc)) {
1132 trb_write_type(trb, TRB_TYPE_ISOCH);
1133 trb_write_sia(trb, 1);
1134 trb_write_frame_id(trb, 0);
1135 trb_write_tlbpc(trb, 0);
1136 } else if (usb_ss_max_streams(ep->comp_desc)) {
1137 trb_write_type(trb, TRB_TYPE_STREAM);
1138 trb_write_stream_id(trb, req->usb_req.stream_id);
1139 } else {
1140 trb_write_type(trb, TRB_TYPE_NORMAL);
1141 trb_write_stream_id(trb, 0);
1142 }
1143
1144 trb_write_cycle(trb, ep->pcs);
1145
1146 req->trbs_queued++;
1147 req->buf_queued += len;
1148
1149 dump_trb(xudc, "TRANSFER", trb);
1150 }
1151
tegra_xudc_queue_trbs(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1152 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1153 struct tegra_xudc_request *req)
1154 {
1155 unsigned int i, count, available;
1156 bool wait_td = false;
1157
1158 available = ep_available_trbs(ep);
1159 count = req->trbs_needed - req->trbs_queued;
1160 if (available < count) {
1161 count = available;
1162 ep->ring_full = true;
1163 }
1164
1165 /*
1166 * To generate zero-length packet on USB bus, SW needs schedule a
1167 * standalone zero-length TD. According to HW's behavior, SW needs
1168 * to schedule TDs in different ways for different endpoint types.
1169 *
1170 * For control endpoint:
1171 * - Data stage TD (IOC = 1, CH = 0)
1172 * - Ring doorbell and wait transfer event
1173 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1174 * - Ring doorbell
1175 *
1176 * For bulk and interrupt endpoints:
1177 * - Normal transfer TD (IOC = 0, CH = 0)
1178 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1179 * - Ring doorbell
1180 */
1181
1182 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1183 wait_td = true;
1184
1185 if (!req->first_trb)
1186 req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1187
1188 for (i = 0; i < count; i++) {
1189 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1190 bool ioc = false;
1191
1192 if ((i == count - 1) || (wait_td && i == count - 2))
1193 ioc = true;
1194
1195 tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1196 req->last_trb = trb;
1197
1198 ep->enq_ptr++;
1199 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1200 trb = &ep->transfer_ring[ep->enq_ptr];
1201 trb_write_cycle(trb, ep->pcs);
1202 ep->pcs = !ep->pcs;
1203 ep->enq_ptr = 0;
1204 }
1205
1206 if (ioc)
1207 break;
1208 }
1209
1210 return count;
1211 }
1212
tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep * ep)1213 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1214 {
1215 struct tegra_xudc *xudc = ep->xudc;
1216 u32 val;
1217
1218 if (list_empty(&ep->queue))
1219 return;
1220
1221 val = DB_TARGET(ep->index);
1222 if (usb_endpoint_xfer_control(ep->desc)) {
1223 val |= DB_STREAMID(xudc->setup_seq_num);
1224 } else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1225 struct tegra_xudc_request *req;
1226
1227 /* Don't ring doorbell if the stream has been rejected. */
1228 if (ep->stream_rejected)
1229 return;
1230
1231 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1232 list);
1233 val |= DB_STREAMID(req->usb_req.stream_id);
1234 }
1235
1236 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1237 xudc_writel(xudc, val, DB);
1238 }
1239
tegra_xudc_ep_kick_queue(struct tegra_xudc_ep * ep)1240 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1241 {
1242 struct tegra_xudc_request *req;
1243 bool trbs_queued = false;
1244
1245 list_for_each_entry(req, &ep->queue, list) {
1246 if (ep->ring_full)
1247 break;
1248
1249 if (tegra_xudc_queue_trbs(ep, req) > 0)
1250 trbs_queued = true;
1251 }
1252
1253 if (trbs_queued)
1254 tegra_xudc_ep_ring_doorbell(ep);
1255 }
1256
1257 static int
__tegra_xudc_ep_queue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1258 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1259 {
1260 struct tegra_xudc *xudc = ep->xudc;
1261 int err;
1262
1263 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1264 dev_err(xudc->dev, "control EP has pending transfers\n");
1265 return -EINVAL;
1266 }
1267
1268 if (usb_endpoint_xfer_control(ep->desc)) {
1269 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1270 (xudc->setup_state ==
1271 DATA_STAGE_XFER));
1272 } else {
1273 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1274 usb_endpoint_dir_in(ep->desc));
1275 }
1276
1277 if (err < 0) {
1278 dev_err(xudc->dev, "failed to map request: %d\n", err);
1279 return err;
1280 }
1281
1282 req->first_trb = NULL;
1283 req->last_trb = NULL;
1284 req->buf_queued = 0;
1285 req->trbs_queued = 0;
1286 req->need_zlp = false;
1287 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1288 XUDC_TRB_MAX_BUFFER_SIZE);
1289 if (req->usb_req.length == 0)
1290 req->trbs_needed++;
1291
1292 if (!usb_endpoint_xfer_isoc(ep->desc) &&
1293 req->usb_req.zero && req->usb_req.length &&
1294 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1295 req->trbs_needed++;
1296 req->need_zlp = true;
1297 }
1298
1299 req->usb_req.status = -EINPROGRESS;
1300 req->usb_req.actual = 0;
1301
1302 list_add_tail(&req->list, &ep->queue);
1303
1304 tegra_xudc_ep_kick_queue(ep);
1305
1306 return 0;
1307 }
1308
1309 static int
tegra_xudc_ep_queue(struct usb_ep * usb_ep,struct usb_request * usb_req,gfp_t gfp)1310 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1311 gfp_t gfp)
1312 {
1313 struct tegra_xudc_request *req;
1314 struct tegra_xudc_ep *ep;
1315 struct tegra_xudc *xudc;
1316 unsigned long flags;
1317 int ret;
1318
1319 if (!usb_ep || !usb_req)
1320 return -EINVAL;
1321
1322 ep = to_xudc_ep(usb_ep);
1323 req = to_xudc_req(usb_req);
1324 xudc = ep->xudc;
1325
1326 spin_lock_irqsave(&xudc->lock, flags);
1327 if (xudc->powergated || !ep->desc) {
1328 ret = -ESHUTDOWN;
1329 goto unlock;
1330 }
1331
1332 ret = __tegra_xudc_ep_queue(ep, req);
1333 unlock:
1334 spin_unlock_irqrestore(&xudc->lock, flags);
1335
1336 return ret;
1337 }
1338
squeeze_transfer_ring(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1339 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1340 struct tegra_xudc_request *req)
1341 {
1342 struct tegra_xudc_trb *trb = req->first_trb;
1343 bool pcs_enq = trb_read_cycle(trb);
1344 bool pcs;
1345
1346 /*
1347 * Clear out all the TRBs part of or after the cancelled request,
1348 * and must correct trb cycle bit to the last un-enqueued state.
1349 */
1350 while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1351 pcs = trb_read_cycle(trb);
1352 memset(trb, 0, sizeof(*trb));
1353 trb_write_cycle(trb, !pcs);
1354 trb++;
1355
1356 if (trb_read_type(trb) == TRB_TYPE_LINK)
1357 trb = ep->transfer_ring;
1358 }
1359
1360 /* Requests will be re-queued at the start of the cancelled request. */
1361 ep->enq_ptr = req->first_trb - ep->transfer_ring;
1362 /*
1363 * Retrieve the correct cycle bit state from the first trb of
1364 * the cancelled request.
1365 */
1366 ep->pcs = pcs_enq;
1367 ep->ring_full = false;
1368 list_for_each_entry_continue(req, &ep->queue, list) {
1369 req->usb_req.status = -EINPROGRESS;
1370 req->usb_req.actual = 0;
1371
1372 req->first_trb = NULL;
1373 req->last_trb = NULL;
1374 req->buf_queued = 0;
1375 req->trbs_queued = 0;
1376 }
1377 }
1378
1379 /*
1380 * Determine if the given TRB is in the range [first trb, last trb] for the
1381 * given request.
1382 */
trb_in_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1383 static bool trb_in_request(struct tegra_xudc_ep *ep,
1384 struct tegra_xudc_request *req,
1385 struct tegra_xudc_trb *trb)
1386 {
1387 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1388 req->first_trb, req->last_trb, trb);
1389
1390 if (trb >= req->first_trb && (trb <= req->last_trb ||
1391 req->last_trb < req->first_trb))
1392 return true;
1393
1394 if (trb < req->first_trb && trb <= req->last_trb &&
1395 req->last_trb < req->first_trb)
1396 return true;
1397
1398 return false;
1399 }
1400
1401 /*
1402 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1403 * for the given endpoint and request.
1404 */
trb_before_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1405 static bool trb_before_request(struct tegra_xudc_ep *ep,
1406 struct tegra_xudc_request *req,
1407 struct tegra_xudc_trb *trb)
1408 {
1409 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1410
1411 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1412 __func__, req->first_trb, req->last_trb, enq_trb, trb);
1413
1414 if (trb < req->first_trb && (enq_trb <= trb ||
1415 req->first_trb < enq_trb))
1416 return true;
1417
1418 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1419 return true;
1420
1421 return false;
1422 }
1423
1424 static int
__tegra_xudc_ep_dequeue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1425 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1426 struct tegra_xudc_request *req)
1427 {
1428 struct tegra_xudc *xudc = ep->xudc;
1429 struct tegra_xudc_request *r = NULL, *iter;
1430 struct tegra_xudc_trb *deq_trb;
1431 bool busy, kick_queue = false;
1432 int ret = 0;
1433
1434 /* Make sure the request is actually queued to this endpoint. */
1435 list_for_each_entry(iter, &ep->queue, list) {
1436 if (iter != req)
1437 continue;
1438 r = iter;
1439 break;
1440 }
1441
1442 if (!r)
1443 return -EINVAL;
1444
1445 /* Request hasn't been queued in the transfer ring yet. */
1446 if (!req->trbs_queued) {
1447 tegra_xudc_req_done(ep, req, -ECONNRESET);
1448 return 0;
1449 }
1450
1451 /* Halt DMA for this endpoint. */
1452 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1453 ep_pause(xudc, ep->index);
1454 ep_wait_for_inactive(xudc, ep->index);
1455 }
1456
1457 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1458 /* Is the hardware processing the TRB at the dequeue pointer? */
1459 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1460
1461 if (trb_in_request(ep, req, deq_trb) && busy) {
1462 /*
1463 * Request has been partially completed or it hasn't
1464 * started processing yet.
1465 */
1466 dma_addr_t deq_ptr;
1467
1468 squeeze_transfer_ring(ep, req);
1469
1470 req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1471 tegra_xudc_req_done(ep, req, -ECONNRESET);
1472 kick_queue = true;
1473
1474 /* EDTLA is > 0: request has been partially completed */
1475 if (req->usb_req.actual > 0) {
1476 /*
1477 * Abort the pending transfer and update the dequeue
1478 * pointer
1479 */
1480 ep_ctx_write_edtla(ep->context, 0);
1481 ep_ctx_write_partial_td(ep->context, 0);
1482 ep_ctx_write_data_offset(ep->context, 0);
1483
1484 deq_ptr = trb_virt_to_phys(ep,
1485 &ep->transfer_ring[ep->enq_ptr]);
1486
1487 if (dma_mapping_error(xudc->dev, deq_ptr)) {
1488 ret = -EINVAL;
1489 } else {
1490 ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1491 ep_ctx_write_dcs(ep->context, ep->pcs);
1492 ep_reload(xudc, ep->index);
1493 }
1494 }
1495 } else if (trb_before_request(ep, req, deq_trb) && busy) {
1496 /* Request hasn't started processing yet. */
1497 squeeze_transfer_ring(ep, req);
1498
1499 tegra_xudc_req_done(ep, req, -ECONNRESET);
1500 kick_queue = true;
1501 } else {
1502 /*
1503 * Request has completed, but we haven't processed the
1504 * completion event yet.
1505 */
1506 tegra_xudc_req_done(ep, req, -ECONNRESET);
1507 ret = -EINVAL;
1508 }
1509
1510 /* Resume the endpoint. */
1511 ep_unpause(xudc, ep->index);
1512
1513 if (kick_queue)
1514 tegra_xudc_ep_kick_queue(ep);
1515
1516 return ret;
1517 }
1518
1519 static int
tegra_xudc_ep_dequeue(struct usb_ep * usb_ep,struct usb_request * usb_req)1520 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1521 {
1522 struct tegra_xudc_request *req;
1523 struct tegra_xudc_ep *ep;
1524 struct tegra_xudc *xudc;
1525 unsigned long flags;
1526 int ret;
1527
1528 if (!usb_ep || !usb_req)
1529 return -EINVAL;
1530
1531 ep = to_xudc_ep(usb_ep);
1532 req = to_xudc_req(usb_req);
1533 xudc = ep->xudc;
1534
1535 spin_lock_irqsave(&xudc->lock, flags);
1536
1537 if (xudc->powergated || !ep->desc) {
1538 ret = -ESHUTDOWN;
1539 goto unlock;
1540 }
1541
1542 ret = __tegra_xudc_ep_dequeue(ep, req);
1543 unlock:
1544 spin_unlock_irqrestore(&xudc->lock, flags);
1545
1546 return ret;
1547 }
1548
__tegra_xudc_ep_set_halt(struct tegra_xudc_ep * ep,bool halt)1549 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1550 {
1551 struct tegra_xudc *xudc = ep->xudc;
1552
1553 if (!ep->desc)
1554 return -EINVAL;
1555
1556 if (usb_endpoint_xfer_isoc(ep->desc)) {
1557 dev_err(xudc->dev, "can't halt isochronous EP\n");
1558 return -ENOTSUPP;
1559 }
1560
1561 if (halt) {
1562 ep_halt(xudc, ep->index);
1563 } else {
1564 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1565
1566 ep_reload(xudc, ep->index);
1567
1568 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1569 ep_ctx_write_rsvd(ep->context, 0);
1570 ep_ctx_write_partial_td(ep->context, 0);
1571 ep_ctx_write_splitxstate(ep->context, 0);
1572 ep_ctx_write_seq_num(ep->context, 0);
1573
1574 ep_reload(xudc, ep->index);
1575 ep_unpause(xudc, ep->index);
1576 ep_unhalt(xudc, ep->index);
1577
1578 tegra_xudc_ep_ring_doorbell(ep);
1579 }
1580
1581 return 0;
1582 }
1583
tegra_xudc_ep_set_halt(struct usb_ep * usb_ep,int value)1584 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1585 {
1586 struct tegra_xudc_ep *ep;
1587 struct tegra_xudc *xudc;
1588 unsigned long flags;
1589 int ret;
1590
1591 if (!usb_ep)
1592 return -EINVAL;
1593
1594 ep = to_xudc_ep(usb_ep);
1595 xudc = ep->xudc;
1596
1597 spin_lock_irqsave(&xudc->lock, flags);
1598 if (xudc->powergated) {
1599 ret = -ESHUTDOWN;
1600 goto unlock;
1601 }
1602
1603 if (value && usb_endpoint_dir_in(ep->desc) &&
1604 !list_empty(&ep->queue)) {
1605 dev_err(xudc->dev, "can't halt EP with requests pending\n");
1606 ret = -EAGAIN;
1607 goto unlock;
1608 }
1609
1610 ret = __tegra_xudc_ep_set_halt(ep, value);
1611 unlock:
1612 spin_unlock_irqrestore(&xudc->lock, flags);
1613
1614 return ret;
1615 }
1616
tegra_xudc_ep_context_setup(struct tegra_xudc_ep * ep)1617 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1618 {
1619 const struct usb_endpoint_descriptor *desc = ep->desc;
1620 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1621 struct tegra_xudc *xudc = ep->xudc;
1622 u16 maxpacket, maxburst = 0, esit = 0;
1623 u32 val;
1624
1625 maxpacket = usb_endpoint_maxp(desc);
1626 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1627 if (!usb_endpoint_xfer_control(desc))
1628 maxburst = comp_desc->bMaxBurst;
1629
1630 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1631 esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1632 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1633 (usb_endpoint_xfer_int(desc) ||
1634 usb_endpoint_xfer_isoc(desc))) {
1635 if (xudc->gadget.speed == USB_SPEED_HIGH) {
1636 maxburst = usb_endpoint_maxp_mult(desc) - 1;
1637 if (maxburst == 0x3) {
1638 dev_warn(xudc->dev,
1639 "invalid endpoint maxburst\n");
1640 maxburst = 0x2;
1641 }
1642 }
1643 esit = maxpacket * (maxburst + 1);
1644 }
1645
1646 memset(ep->context, 0, sizeof(*ep->context));
1647
1648 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1649 ep_ctx_write_interval(ep->context, desc->bInterval);
1650 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1651 if (usb_endpoint_xfer_isoc(desc)) {
1652 ep_ctx_write_mult(ep->context,
1653 comp_desc->bmAttributes & 0x3);
1654 }
1655
1656 if (usb_endpoint_xfer_bulk(desc)) {
1657 ep_ctx_write_max_pstreams(ep->context,
1658 comp_desc->bmAttributes &
1659 0x1f);
1660 ep_ctx_write_lsa(ep->context, 1);
1661 }
1662 }
1663
1664 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1665 val = usb_endpoint_type(desc);
1666 else
1667 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1668
1669 ep_ctx_write_type(ep->context, val);
1670 ep_ctx_write_cerr(ep->context, 0x3);
1671 ep_ctx_write_max_packet_size(ep->context, maxpacket);
1672 ep_ctx_write_max_burst_size(ep->context, maxburst);
1673
1674 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1675 ep_ctx_write_dcs(ep->context, ep->pcs);
1676
1677 /* Select a reasonable average TRB length based on endpoint type. */
1678 switch (usb_endpoint_type(desc)) {
1679 case USB_ENDPOINT_XFER_CONTROL:
1680 val = 8;
1681 break;
1682 case USB_ENDPOINT_XFER_INT:
1683 val = 1024;
1684 break;
1685 case USB_ENDPOINT_XFER_BULK:
1686 case USB_ENDPOINT_XFER_ISOC:
1687 default:
1688 val = 3072;
1689 break;
1690 }
1691
1692 ep_ctx_write_avg_trb_len(ep->context, val);
1693 ep_ctx_write_max_esit_payload(ep->context, esit);
1694
1695 ep_ctx_write_cerrcnt(ep->context, 0x3);
1696 }
1697
setup_link_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)1698 static void setup_link_trb(struct tegra_xudc_ep *ep,
1699 struct tegra_xudc_trb *trb)
1700 {
1701 trb_write_data_ptr(trb, ep->transfer_ring_phys);
1702 trb_write_type(trb, TRB_TYPE_LINK);
1703 trb_write_toggle_cycle(trb, 1);
1704 }
1705
__tegra_xudc_ep_disable(struct tegra_xudc_ep * ep)1706 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1707 {
1708 struct tegra_xudc *xudc = ep->xudc;
1709
1710 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1711 dev_err(xudc->dev, "endpoint %u already disabled\n",
1712 ep->index);
1713 return -EINVAL;
1714 }
1715
1716 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1717
1718 ep_reload(xudc, ep->index);
1719
1720 tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1721
1722 xudc->nr_enabled_eps--;
1723 if (usb_endpoint_xfer_isoc(ep->desc))
1724 xudc->nr_isoch_eps--;
1725
1726 ep->desc = NULL;
1727 ep->comp_desc = NULL;
1728
1729 memset(ep->context, 0, sizeof(*ep->context));
1730
1731 ep_unpause(xudc, ep->index);
1732 ep_unhalt(xudc, ep->index);
1733 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1734 xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1735
1736 /*
1737 * If this is the last endpoint disabled in a de-configure request,
1738 * switch back to address state.
1739 */
1740 if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1741 (xudc->nr_enabled_eps == 1)) {
1742 u32 val;
1743
1744 xudc->device_state = USB_STATE_ADDRESS;
1745 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1746
1747 val = xudc_readl(xudc, CTRL);
1748 val &= ~CTRL_RUN;
1749 xudc_writel(xudc, val, CTRL);
1750
1751 val = xudc_readl(xudc, ST);
1752 if (val & ST_RC)
1753 xudc_writel(xudc, ST_RC, ST);
1754 }
1755
1756 dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1757
1758 return 0;
1759 }
1760
tegra_xudc_ep_disable(struct usb_ep * usb_ep)1761 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1762 {
1763 struct tegra_xudc_ep *ep;
1764 struct tegra_xudc *xudc;
1765 unsigned long flags;
1766 int ret;
1767
1768 if (!usb_ep)
1769 return -EINVAL;
1770
1771 ep = to_xudc_ep(usb_ep);
1772 xudc = ep->xudc;
1773
1774 spin_lock_irqsave(&xudc->lock, flags);
1775 if (xudc->powergated) {
1776 ret = -ESHUTDOWN;
1777 goto unlock;
1778 }
1779
1780 ret = __tegra_xudc_ep_disable(ep);
1781 unlock:
1782 spin_unlock_irqrestore(&xudc->lock, flags);
1783
1784 return ret;
1785 }
1786
__tegra_xudc_ep_enable(struct tegra_xudc_ep * ep,const struct usb_endpoint_descriptor * desc)1787 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1788 const struct usb_endpoint_descriptor *desc)
1789 {
1790 struct tegra_xudc *xudc = ep->xudc;
1791 unsigned int i;
1792 u32 val;
1793
1794 if (xudc->gadget.speed == USB_SPEED_SUPER &&
1795 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1796 return -EINVAL;
1797
1798 /* Disable the EP if it is not disabled */
1799 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1800 __tegra_xudc_ep_disable(ep);
1801
1802 ep->desc = desc;
1803 ep->comp_desc = ep->usb_ep.comp_desc;
1804
1805 if (usb_endpoint_xfer_isoc(desc)) {
1806 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1807 dev_err(xudc->dev, "too many isochronous endpoints\n");
1808 return -EBUSY;
1809 }
1810 xudc->nr_isoch_eps++;
1811 }
1812
1813 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1814 sizeof(*ep->transfer_ring));
1815 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1816
1817 ep->enq_ptr = 0;
1818 ep->deq_ptr = 0;
1819 ep->pcs = true;
1820 ep->ring_full = false;
1821 xudc->nr_enabled_eps++;
1822
1823 tegra_xudc_ep_context_setup(ep);
1824
1825 /*
1826 * No need to reload and un-halt EP0. This will be done automatically
1827 * once a valid SETUP packet is received.
1828 */
1829 if (usb_endpoint_xfer_control(desc))
1830 goto out;
1831
1832 /*
1833 * Transition to configured state once the first non-control
1834 * endpoint is enabled.
1835 */
1836 if (xudc->device_state == USB_STATE_ADDRESS) {
1837 val = xudc_readl(xudc, CTRL);
1838 val |= CTRL_RUN;
1839 xudc_writel(xudc, val, CTRL);
1840
1841 xudc->device_state = USB_STATE_CONFIGURED;
1842 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1843 }
1844
1845 if (usb_endpoint_xfer_isoc(desc)) {
1846 /*
1847 * Pause all bulk endpoints when enabling an isoch endpoint
1848 * to ensure the isoch endpoint is allocated enough bandwidth.
1849 */
1850 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1851 if (xudc->ep[i].desc &&
1852 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1853 ep_pause(xudc, i);
1854 }
1855 }
1856
1857 ep_reload(xudc, ep->index);
1858 ep_unpause(xudc, ep->index);
1859 ep_unhalt(xudc, ep->index);
1860
1861 if (usb_endpoint_xfer_isoc(desc)) {
1862 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1863 if (xudc->ep[i].desc &&
1864 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1865 ep_unpause(xudc, i);
1866 }
1867 }
1868
1869 out:
1870 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1871 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1872 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1873
1874 return 0;
1875 }
1876
tegra_xudc_ep_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1877 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1878 const struct usb_endpoint_descriptor *desc)
1879 {
1880 struct tegra_xudc_ep *ep;
1881 struct tegra_xudc *xudc;
1882 unsigned long flags;
1883 int ret;
1884
1885 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1886 return -EINVAL;
1887
1888 ep = to_xudc_ep(usb_ep);
1889 xudc = ep->xudc;
1890
1891 spin_lock_irqsave(&xudc->lock, flags);
1892 if (xudc->powergated) {
1893 ret = -ESHUTDOWN;
1894 goto unlock;
1895 }
1896
1897 ret = __tegra_xudc_ep_enable(ep, desc);
1898 unlock:
1899 spin_unlock_irqrestore(&xudc->lock, flags);
1900
1901 return ret;
1902 }
1903
1904 static struct usb_request *
tegra_xudc_ep_alloc_request(struct usb_ep * usb_ep,gfp_t gfp)1905 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1906 {
1907 struct tegra_xudc_request *req;
1908
1909 req = kzalloc(sizeof(*req), gfp);
1910 if (!req)
1911 return NULL;
1912
1913 INIT_LIST_HEAD(&req->list);
1914
1915 return &req->usb_req;
1916 }
1917
tegra_xudc_ep_free_request(struct usb_ep * usb_ep,struct usb_request * usb_req)1918 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1919 struct usb_request *usb_req)
1920 {
1921 struct tegra_xudc_request *req = to_xudc_req(usb_req);
1922
1923 kfree(req);
1924 }
1925
1926 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1927 .enable = tegra_xudc_ep_enable,
1928 .disable = tegra_xudc_ep_disable,
1929 .alloc_request = tegra_xudc_ep_alloc_request,
1930 .free_request = tegra_xudc_ep_free_request,
1931 .queue = tegra_xudc_ep_queue,
1932 .dequeue = tegra_xudc_ep_dequeue,
1933 .set_halt = tegra_xudc_ep_set_halt,
1934 };
1935
tegra_xudc_ep0_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1936 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1937 const struct usb_endpoint_descriptor *desc)
1938 {
1939 return -EBUSY;
1940 }
1941
tegra_xudc_ep0_disable(struct usb_ep * usb_ep)1942 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1943 {
1944 return -EBUSY;
1945 }
1946
1947 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1948 .enable = tegra_xudc_ep0_enable,
1949 .disable = tegra_xudc_ep0_disable,
1950 .alloc_request = tegra_xudc_ep_alloc_request,
1951 .free_request = tegra_xudc_ep_free_request,
1952 .queue = tegra_xudc_ep_queue,
1953 .dequeue = tegra_xudc_ep_dequeue,
1954 .set_halt = tegra_xudc_ep_set_halt,
1955 };
1956
tegra_xudc_gadget_get_frame(struct usb_gadget * gadget)1957 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1958 {
1959 struct tegra_xudc *xudc = to_xudc(gadget);
1960 unsigned long flags;
1961 int ret;
1962
1963 spin_lock_irqsave(&xudc->lock, flags);
1964 if (xudc->powergated) {
1965 ret = -ESHUTDOWN;
1966 goto unlock;
1967 }
1968
1969 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1970 MFINDEX_FRAME_SHIFT;
1971 unlock:
1972 spin_unlock_irqrestore(&xudc->lock, flags);
1973
1974 return ret;
1975 }
1976
tegra_xudc_resume_device_state(struct tegra_xudc * xudc)1977 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1978 {
1979 unsigned int i;
1980 u32 val;
1981
1982 ep_unpause_all(xudc);
1983
1984 /* Direct link to U0. */
1985 val = xudc_readl(xudc, PORTSC);
1986 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1987 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1988 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1989 xudc_writel(xudc, val, PORTSC);
1990 }
1991
1992 if (xudc->device_state == USB_STATE_SUSPENDED) {
1993 xudc->device_state = xudc->resume_state;
1994 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1995 xudc->resume_state = 0;
1996 }
1997
1998 /*
1999 * Doorbells may be dropped if they are sent too soon (< ~200ns)
2000 * after unpausing the endpoint. Wait for 500ns just to be safe.
2001 */
2002 ndelay(500);
2003 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2004 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
2005 }
2006
tegra_xudc_gadget_wakeup(struct usb_gadget * gadget)2007 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
2008 {
2009 struct tegra_xudc *xudc = to_xudc(gadget);
2010 unsigned long flags;
2011 int ret = 0;
2012 u32 val;
2013
2014 spin_lock_irqsave(&xudc->lock, flags);
2015
2016 if (xudc->powergated) {
2017 ret = -ESHUTDOWN;
2018 goto unlock;
2019 }
2020 val = xudc_readl(xudc, PORTPM);
2021 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2022 val, gadget->speed);
2023
2024 if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2025 (val & PORTPM_RWE)) ||
2026 ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2027 (val & PORTPM_FRWE))) {
2028 tegra_xudc_resume_device_state(xudc);
2029
2030 /* Send Device Notification packet. */
2031 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2032 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2033 | DEVNOTIF_LO_TRIG;
2034 xudc_writel(xudc, 0, DEVNOTIF_HI);
2035 xudc_writel(xudc, val, DEVNOTIF_LO);
2036 }
2037 }
2038
2039 unlock:
2040 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2041 spin_unlock_irqrestore(&xudc->lock, flags);
2042
2043 return ret;
2044 }
2045
tegra_xudc_gadget_pullup(struct usb_gadget * gadget,int is_on)2046 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2047 {
2048 struct tegra_xudc *xudc = to_xudc(gadget);
2049 unsigned long flags;
2050 u32 val;
2051
2052 pm_runtime_get_sync(xudc->dev);
2053
2054 spin_lock_irqsave(&xudc->lock, flags);
2055
2056 if (is_on != xudc->pullup) {
2057 val = xudc_readl(xudc, CTRL);
2058 if (is_on)
2059 val |= CTRL_ENABLE;
2060 else
2061 val &= ~CTRL_ENABLE;
2062 xudc_writel(xudc, val, CTRL);
2063 }
2064
2065 xudc->pullup = is_on;
2066 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2067
2068 spin_unlock_irqrestore(&xudc->lock, flags);
2069
2070 pm_runtime_put(xudc->dev);
2071
2072 return 0;
2073 }
2074
tegra_xudc_gadget_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2075 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2076 struct usb_gadget_driver *driver)
2077 {
2078 struct tegra_xudc *xudc = to_xudc(gadget);
2079 unsigned long flags;
2080 u32 val;
2081 int ret;
2082 unsigned int i;
2083
2084 if (!driver)
2085 return -EINVAL;
2086
2087 pm_runtime_get_sync(xudc->dev);
2088
2089 spin_lock_irqsave(&xudc->lock, flags);
2090
2091 if (xudc->driver) {
2092 ret = -EBUSY;
2093 goto unlock;
2094 }
2095
2096 xudc->setup_state = WAIT_FOR_SETUP;
2097 xudc->device_state = USB_STATE_DEFAULT;
2098 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2099
2100 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2101 if (ret < 0)
2102 goto unlock;
2103
2104 val = xudc_readl(xudc, CTRL);
2105 val |= CTRL_IE | CTRL_LSE;
2106 xudc_writel(xudc, val, CTRL);
2107
2108 val = xudc_readl(xudc, PORTHALT);
2109 val |= PORTHALT_STCHG_INTR_EN;
2110 xudc_writel(xudc, val, PORTHALT);
2111
2112 if (xudc->pullup) {
2113 val = xudc_readl(xudc, CTRL);
2114 val |= CTRL_ENABLE;
2115 xudc_writel(xudc, val, CTRL);
2116 }
2117
2118 for (i = 0; i < xudc->soc->num_phys; i++)
2119 if (xudc->usbphy[i])
2120 otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2121
2122 xudc->driver = driver;
2123 unlock:
2124 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2125 spin_unlock_irqrestore(&xudc->lock, flags);
2126
2127 pm_runtime_put(xudc->dev);
2128
2129 return ret;
2130 }
2131
tegra_xudc_gadget_stop(struct usb_gadget * gadget)2132 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2133 {
2134 struct tegra_xudc *xudc = to_xudc(gadget);
2135 unsigned long flags;
2136 u32 val;
2137 unsigned int i;
2138
2139 pm_runtime_get_sync(xudc->dev);
2140
2141 spin_lock_irqsave(&xudc->lock, flags);
2142
2143 for (i = 0; i < xudc->soc->num_phys; i++)
2144 if (xudc->usbphy[i])
2145 otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2146
2147 val = xudc_readl(xudc, CTRL);
2148 val &= ~(CTRL_IE | CTRL_ENABLE);
2149 xudc_writel(xudc, val, CTRL);
2150
2151 __tegra_xudc_ep_disable(&xudc->ep[0]);
2152
2153 xudc->driver = NULL;
2154 dev_dbg(xudc->dev, "Gadget stopped");
2155
2156 spin_unlock_irqrestore(&xudc->lock, flags);
2157
2158 pm_runtime_put(xudc->dev);
2159
2160 return 0;
2161 }
2162
tegra_xudc_gadget_vbus_draw(struct usb_gadget * gadget,unsigned int m_a)2163 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2164 unsigned int m_a)
2165 {
2166 struct tegra_xudc *xudc = to_xudc(gadget);
2167
2168 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2169
2170 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE)
2171 return usb_phy_set_power(xudc->curr_usbphy, m_a);
2172
2173 return 0;
2174 }
2175
tegra_xudc_set_selfpowered(struct usb_gadget * gadget,int is_on)2176 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2177 {
2178 struct tegra_xudc *xudc = to_xudc(gadget);
2179
2180 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2181 xudc->selfpowered = !!is_on;
2182
2183 return 0;
2184 }
2185
2186 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2187 .get_frame = tegra_xudc_gadget_get_frame,
2188 .wakeup = tegra_xudc_gadget_wakeup,
2189 .pullup = tegra_xudc_gadget_pullup,
2190 .udc_start = tegra_xudc_gadget_start,
2191 .udc_stop = tegra_xudc_gadget_stop,
2192 .vbus_draw = tegra_xudc_gadget_vbus_draw,
2193 .set_selfpowered = tegra_xudc_set_selfpowered,
2194 };
2195
no_op_complete(struct usb_ep * ep,struct usb_request * req)2196 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2197 {
2198 }
2199
2200 static int
tegra_xudc_ep0_queue_status(struct tegra_xudc * xudc,void (* cmpl)(struct usb_ep *,struct usb_request *))2201 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2202 void (*cmpl)(struct usb_ep *, struct usb_request *))
2203 {
2204 xudc->ep0_req->usb_req.buf = NULL;
2205 xudc->ep0_req->usb_req.dma = 0;
2206 xudc->ep0_req->usb_req.length = 0;
2207 xudc->ep0_req->usb_req.complete = cmpl;
2208 xudc->ep0_req->usb_req.context = xudc;
2209
2210 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2211 }
2212
2213 static int
tegra_xudc_ep0_queue_data(struct tegra_xudc * xudc,void * buf,size_t len,void (* cmpl)(struct usb_ep *,struct usb_request *))2214 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2215 void (*cmpl)(struct usb_ep *, struct usb_request *))
2216 {
2217 xudc->ep0_req->usb_req.buf = buf;
2218 xudc->ep0_req->usb_req.length = len;
2219 xudc->ep0_req->usb_req.complete = cmpl;
2220 xudc->ep0_req->usb_req.context = xudc;
2221
2222 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2223 }
2224
tegra_xudc_ep0_req_done(struct tegra_xudc * xudc)2225 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2226 {
2227 switch (xudc->setup_state) {
2228 case DATA_STAGE_XFER:
2229 xudc->setup_state = STATUS_STAGE_RECV;
2230 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2231 break;
2232 case DATA_STAGE_RECV:
2233 xudc->setup_state = STATUS_STAGE_XFER;
2234 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2235 break;
2236 default:
2237 xudc->setup_state = WAIT_FOR_SETUP;
2238 break;
2239 }
2240 }
2241
tegra_xudc_ep0_delegate_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2242 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2243 struct usb_ctrlrequest *ctrl)
2244 {
2245 int ret;
2246
2247 spin_unlock(&xudc->lock);
2248 ret = xudc->driver->setup(&xudc->gadget, ctrl);
2249 spin_lock(&xudc->lock);
2250
2251 return ret;
2252 }
2253
set_feature_complete(struct usb_ep * ep,struct usb_request * req)2254 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2255 {
2256 struct tegra_xudc *xudc = req->context;
2257
2258 if (xudc->test_mode_pattern) {
2259 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2260 xudc->test_mode_pattern = 0;
2261 }
2262 }
2263
tegra_xudc_ep0_set_feature(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2264 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2265 struct usb_ctrlrequest *ctrl)
2266 {
2267 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2268 u32 feature = le16_to_cpu(ctrl->wValue);
2269 u32 index = le16_to_cpu(ctrl->wIndex);
2270 u32 val, ep;
2271 int ret;
2272
2273 if (le16_to_cpu(ctrl->wLength) != 0)
2274 return -EINVAL;
2275
2276 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2277 case USB_RECIP_DEVICE:
2278 switch (feature) {
2279 case USB_DEVICE_REMOTE_WAKEUP:
2280 if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2281 (xudc->device_state == USB_STATE_DEFAULT))
2282 return -EINVAL;
2283
2284 val = xudc_readl(xudc, PORTPM);
2285 if (set)
2286 val |= PORTPM_RWE;
2287 else
2288 val &= ~PORTPM_RWE;
2289
2290 xudc_writel(xudc, val, PORTPM);
2291 break;
2292 case USB_DEVICE_U1_ENABLE:
2293 case USB_DEVICE_U2_ENABLE:
2294 if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2295 (xudc->gadget.speed != USB_SPEED_SUPER))
2296 return -EINVAL;
2297
2298 val = xudc_readl(xudc, PORTPM);
2299 if ((feature == USB_DEVICE_U1_ENABLE) &&
2300 xudc->soc->u1_enable) {
2301 if (set)
2302 val |= PORTPM_U1E;
2303 else
2304 val &= ~PORTPM_U1E;
2305 }
2306
2307 if ((feature == USB_DEVICE_U2_ENABLE) &&
2308 xudc->soc->u2_enable) {
2309 if (set)
2310 val |= PORTPM_U2E;
2311 else
2312 val &= ~PORTPM_U2E;
2313 }
2314
2315 xudc_writel(xudc, val, PORTPM);
2316 break;
2317 case USB_DEVICE_TEST_MODE:
2318 if (xudc->gadget.speed != USB_SPEED_HIGH)
2319 return -EINVAL;
2320
2321 if (!set)
2322 return -EINVAL;
2323
2324 xudc->test_mode_pattern = index >> 8;
2325 break;
2326 default:
2327 return -EINVAL;
2328 }
2329
2330 break;
2331 case USB_RECIP_INTERFACE:
2332 if (xudc->device_state != USB_STATE_CONFIGURED)
2333 return -EINVAL;
2334
2335 switch (feature) {
2336 case USB_INTRF_FUNC_SUSPEND:
2337 if (set) {
2338 val = xudc_readl(xudc, PORTPM);
2339
2340 if (index & USB_INTRF_FUNC_SUSPEND_RW)
2341 val |= PORTPM_FRWE;
2342 else
2343 val &= ~PORTPM_FRWE;
2344
2345 xudc_writel(xudc, val, PORTPM);
2346 }
2347
2348 return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2349 default:
2350 return -EINVAL;
2351 }
2352
2353 break;
2354 case USB_RECIP_ENDPOINT:
2355 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2356 ((index & USB_DIR_IN) ? 1 : 0);
2357
2358 if ((xudc->device_state == USB_STATE_DEFAULT) ||
2359 ((xudc->device_state == USB_STATE_ADDRESS) &&
2360 (index != 0)))
2361 return -EINVAL;
2362
2363 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2364 if (ret < 0)
2365 return ret;
2366 break;
2367 default:
2368 return -EINVAL;
2369 }
2370
2371 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2372 }
2373
tegra_xudc_ep0_get_status(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2374 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2375 struct usb_ctrlrequest *ctrl)
2376 {
2377 struct tegra_xudc_ep_context *ep_ctx;
2378 u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2379 u16 status = 0;
2380
2381 if (!(ctrl->bRequestType & USB_DIR_IN))
2382 return -EINVAL;
2383
2384 if ((le16_to_cpu(ctrl->wValue) != 0) ||
2385 (le16_to_cpu(ctrl->wLength) != 2))
2386 return -EINVAL;
2387
2388 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2389 case USB_RECIP_DEVICE:
2390 val = xudc_readl(xudc, PORTPM);
2391
2392 if (xudc->selfpowered)
2393 status |= BIT(USB_DEVICE_SELF_POWERED);
2394
2395 if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2396 (val & PORTPM_RWE))
2397 status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2398
2399 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2400 if (val & PORTPM_U1E)
2401 status |= BIT(USB_DEV_STAT_U1_ENABLED);
2402 if (val & PORTPM_U2E)
2403 status |= BIT(USB_DEV_STAT_U2_ENABLED);
2404 }
2405 break;
2406 case USB_RECIP_INTERFACE:
2407 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2408 status |= USB_INTRF_STAT_FUNC_RW_CAP;
2409 val = xudc_readl(xudc, PORTPM);
2410 if (val & PORTPM_FRWE)
2411 status |= USB_INTRF_STAT_FUNC_RW;
2412 }
2413 break;
2414 case USB_RECIP_ENDPOINT:
2415 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2416 ((index & USB_DIR_IN) ? 1 : 0);
2417 ep_ctx = &xudc->ep_context[ep];
2418
2419 if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2420 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2421 return -EINVAL;
2422
2423 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2424 return -EINVAL;
2425
2426 if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2427 status |= BIT(USB_ENDPOINT_HALT);
2428 break;
2429 default:
2430 return -EINVAL;
2431 }
2432
2433 xudc->status_buf = cpu_to_le16(status);
2434 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2435 sizeof(xudc->status_buf),
2436 no_op_complete);
2437 }
2438
set_sel_complete(struct usb_ep * ep,struct usb_request * req)2439 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2440 {
2441 /* Nothing to do with SEL values */
2442 }
2443
tegra_xudc_ep0_set_sel(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2444 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2445 struct usb_ctrlrequest *ctrl)
2446 {
2447 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2448 USB_TYPE_STANDARD))
2449 return -EINVAL;
2450
2451 if (xudc->device_state == USB_STATE_DEFAULT)
2452 return -EINVAL;
2453
2454 if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2455 (le16_to_cpu(ctrl->wValue) != 0) ||
2456 (le16_to_cpu(ctrl->wLength) != 6))
2457 return -EINVAL;
2458
2459 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2460 sizeof(xudc->sel_timing),
2461 set_sel_complete);
2462 }
2463
set_isoch_delay_complete(struct usb_ep * ep,struct usb_request * req)2464 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2465 {
2466 /* Nothing to do with isoch delay */
2467 }
2468
tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2469 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2470 struct usb_ctrlrequest *ctrl)
2471 {
2472 u32 delay = le16_to_cpu(ctrl->wValue);
2473
2474 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2475 USB_TYPE_STANDARD))
2476 return -EINVAL;
2477
2478 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2479 (le16_to_cpu(ctrl->wLength) != 0))
2480 return -EINVAL;
2481
2482 xudc->isoch_delay = delay;
2483
2484 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2485 }
2486
set_address_complete(struct usb_ep * ep,struct usb_request * req)2487 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2488 {
2489 struct tegra_xudc *xudc = req->context;
2490
2491 if ((xudc->device_state == USB_STATE_DEFAULT) &&
2492 (xudc->dev_addr != 0)) {
2493 xudc->device_state = USB_STATE_ADDRESS;
2494 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2495 } else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2496 (xudc->dev_addr == 0)) {
2497 xudc->device_state = USB_STATE_DEFAULT;
2498 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2499 }
2500 }
2501
tegra_xudc_ep0_set_address(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2502 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2503 struct usb_ctrlrequest *ctrl)
2504 {
2505 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2506 u32 val, addr = le16_to_cpu(ctrl->wValue);
2507
2508 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2509 USB_TYPE_STANDARD))
2510 return -EINVAL;
2511
2512 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2513 (le16_to_cpu(ctrl->wLength) != 0))
2514 return -EINVAL;
2515
2516 if (xudc->device_state == USB_STATE_CONFIGURED)
2517 return -EINVAL;
2518
2519 dev_dbg(xudc->dev, "set address: %u\n", addr);
2520
2521 xudc->dev_addr = addr;
2522 val = xudc_readl(xudc, CTRL);
2523 val &= ~(CTRL_DEVADDR_MASK);
2524 val |= CTRL_DEVADDR(addr);
2525 xudc_writel(xudc, val, CTRL);
2526
2527 ep_ctx_write_devaddr(ep0->context, addr);
2528
2529 return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2530 }
2531
tegra_xudc_ep0_standard_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2532 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2533 struct usb_ctrlrequest *ctrl)
2534 {
2535 int ret;
2536
2537 switch (ctrl->bRequest) {
2538 case USB_REQ_GET_STATUS:
2539 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2540 ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2541 break;
2542 case USB_REQ_SET_ADDRESS:
2543 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2544 ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2545 break;
2546 case USB_REQ_SET_SEL:
2547 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2548 ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2549 break;
2550 case USB_REQ_SET_ISOCH_DELAY:
2551 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2552 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2553 break;
2554 case USB_REQ_CLEAR_FEATURE:
2555 case USB_REQ_SET_FEATURE:
2556 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2557 ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2558 break;
2559 case USB_REQ_SET_CONFIGURATION:
2560 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2561 /*
2562 * In theory we need to clear RUN bit before status stage of
2563 * deconfig request sent, but this seems to be causing problems.
2564 * Clear RUN once all endpoints are disabled instead.
2565 */
2566 fallthrough;
2567 default:
2568 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2569 break;
2570 }
2571
2572 return ret;
2573 }
2574
tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl,u16 seq_num)2575 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2576 struct usb_ctrlrequest *ctrl,
2577 u16 seq_num)
2578 {
2579 int ret;
2580
2581 xudc->setup_seq_num = seq_num;
2582
2583 /* Ensure EP0 is unhalted. */
2584 ep_unhalt(xudc, 0);
2585
2586 /*
2587 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2588 * are invalid. Halt EP0 until we get a valid packet.
2589 */
2590 if (xudc->soc->invalid_seq_num &&
2591 (seq_num == 0xfffe || seq_num == 0xffff)) {
2592 dev_warn(xudc->dev, "invalid sequence number detected\n");
2593 ep_halt(xudc, 0);
2594 return;
2595 }
2596
2597 if (ctrl->wLength)
2598 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2599 DATA_STAGE_XFER : DATA_STAGE_RECV;
2600 else
2601 xudc->setup_state = STATUS_STAGE_XFER;
2602
2603 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2604 ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2605 else
2606 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2607
2608 if (ret < 0) {
2609 dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2610 xudc->setup_state = WAIT_FOR_SETUP;
2611 ep_halt(xudc, 0);
2612 }
2613 }
2614
tegra_xudc_handle_ep0_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2615 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2616 struct tegra_xudc_trb *event)
2617 {
2618 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2619 u16 seq_num = trb_read_seq_num(event);
2620
2621 if (xudc->setup_state != WAIT_FOR_SETUP) {
2622 /*
2623 * The controller is in the process of handling another
2624 * setup request. Queue subsequent requests and handle
2625 * the last one once the controller reports a sequence
2626 * number error.
2627 */
2628 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2629 xudc->setup_packet.seq_num = seq_num;
2630 xudc->queued_setup_packet = true;
2631 } else {
2632 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2633 }
2634 }
2635
2636 static struct tegra_xudc_request *
trb_to_request(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)2637 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2638 {
2639 struct tegra_xudc_request *req;
2640
2641 list_for_each_entry(req, &ep->queue, list) {
2642 if (!req->trbs_queued)
2643 break;
2644
2645 if (trb_in_request(ep, req, trb))
2646 return req;
2647 }
2648
2649 return NULL;
2650 }
2651
tegra_xudc_handle_transfer_completion(struct tegra_xudc * xudc,struct tegra_xudc_ep * ep,struct tegra_xudc_trb * event)2652 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2653 struct tegra_xudc_ep *ep,
2654 struct tegra_xudc_trb *event)
2655 {
2656 struct tegra_xudc_request *req;
2657 struct tegra_xudc_trb *trb;
2658 bool short_packet;
2659
2660 short_packet = (trb_read_cmpl_code(event) ==
2661 TRB_CMPL_CODE_SHORT_PACKET);
2662
2663 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2664 req = trb_to_request(ep, trb);
2665
2666 /*
2667 * TDs are complete on short packet or when the completed TRB is the
2668 * last TRB in the TD (the CHAIN bit is unset).
2669 */
2670 if (req && (short_packet || (!trb_read_chain(trb) &&
2671 (req->trbs_needed == req->trbs_queued)))) {
2672 struct tegra_xudc_trb *last = req->last_trb;
2673 unsigned int residual;
2674
2675 residual = trb_read_transfer_len(event);
2676 req->usb_req.actual = req->usb_req.length - residual;
2677
2678 dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2679 req->usb_req.actual, req->usb_req.length);
2680
2681 tegra_xudc_req_done(ep, req, 0);
2682
2683 if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2684 tegra_xudc_ep0_req_done(xudc);
2685
2686 /*
2687 * Advance the dequeue pointer past the end of the current TD
2688 * on short packet completion.
2689 */
2690 if (short_packet) {
2691 ep->deq_ptr = (last - ep->transfer_ring) + 1;
2692 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2693 ep->deq_ptr = 0;
2694 }
2695 } else if (!req) {
2696 dev_warn(xudc->dev, "transfer event on dequeued request\n");
2697 }
2698
2699 if (ep->desc)
2700 tegra_xudc_ep_kick_queue(ep);
2701 }
2702
tegra_xudc_handle_transfer_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2703 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2704 struct tegra_xudc_trb *event)
2705 {
2706 unsigned int ep_index = trb_read_endpoint_id(event);
2707 struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2708 struct tegra_xudc_trb *trb;
2709 u16 comp_code;
2710
2711 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2712 dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2713 ep_index);
2714 return;
2715 }
2716
2717 /* Update transfer ring dequeue pointer. */
2718 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2719 comp_code = trb_read_cmpl_code(event);
2720 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2721 ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2722
2723 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2724 ep->deq_ptr = 0;
2725 ep->ring_full = false;
2726 }
2727
2728 switch (comp_code) {
2729 case TRB_CMPL_CODE_SUCCESS:
2730 case TRB_CMPL_CODE_SHORT_PACKET:
2731 tegra_xudc_handle_transfer_completion(xudc, ep, event);
2732 break;
2733 case TRB_CMPL_CODE_HOST_REJECTED:
2734 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2735
2736 ep->stream_rejected = true;
2737 break;
2738 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2739 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2740
2741 if (ep->stream_rejected) {
2742 ep->stream_rejected = false;
2743 /*
2744 * An EP is stopped when a stream is rejected. Wait
2745 * for the EP to report that it is stopped and then
2746 * un-stop it.
2747 */
2748 ep_wait_for_stopped(xudc, ep_index);
2749 }
2750 tegra_xudc_ep_ring_doorbell(ep);
2751 break;
2752 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2753 /*
2754 * Wait for the EP to be stopped so the controller stops
2755 * processing doorbells.
2756 */
2757 ep_wait_for_stopped(xudc, ep_index);
2758 ep->enq_ptr = ep->deq_ptr;
2759 tegra_xudc_ep_nuke(ep, -EIO);
2760 fallthrough;
2761 case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2762 case TRB_CMPL_CODE_CTRL_DIR_ERR:
2763 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2764 case TRB_CMPL_CODE_RING_UNDERRUN:
2765 case TRB_CMPL_CODE_RING_OVERRUN:
2766 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2767 case TRB_CMPL_CODE_USB_TRANS_ERR:
2768 case TRB_CMPL_CODE_TRB_ERR:
2769 dev_err(xudc->dev, "completion error %#x on EP %u\n",
2770 comp_code, ep_index);
2771
2772 ep_halt(xudc, ep_index);
2773 break;
2774 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2775 dev_info(xudc->dev, "sequence number error\n");
2776
2777 /*
2778 * Kill any queued control request and skip to the last
2779 * setup packet we received.
2780 */
2781 tegra_xudc_ep_nuke(ep, -EINVAL);
2782 xudc->setup_state = WAIT_FOR_SETUP;
2783 if (!xudc->queued_setup_packet)
2784 break;
2785
2786 tegra_xudc_handle_ep0_setup_packet(xudc,
2787 &xudc->setup_packet.ctrl_req,
2788 xudc->setup_packet.seq_num);
2789 xudc->queued_setup_packet = false;
2790 break;
2791 case TRB_CMPL_CODE_STOPPED:
2792 dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2793 ep_index);
2794
2795 /* Disconnected. */
2796 tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2797 break;
2798 default:
2799 dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2800 comp_code, ep_index);
2801 break;
2802 }
2803 }
2804
tegra_xudc_reset(struct tegra_xudc * xudc)2805 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2806 {
2807 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2808 dma_addr_t deq_ptr;
2809 unsigned int i;
2810
2811 xudc->setup_state = WAIT_FOR_SETUP;
2812 xudc->device_state = USB_STATE_DEFAULT;
2813 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2814
2815 ep_unpause_all(xudc);
2816
2817 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2818 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2819
2820 /*
2821 * Reset sequence number and dequeue pointer to flush the transfer
2822 * ring.
2823 */
2824 ep0->deq_ptr = ep0->enq_ptr;
2825 ep0->ring_full = false;
2826
2827 xudc->setup_seq_num = 0;
2828 xudc->queued_setup_packet = false;
2829
2830 ep_ctx_write_rsvd(ep0->context, 0);
2831 ep_ctx_write_partial_td(ep0->context, 0);
2832 ep_ctx_write_splitxstate(ep0->context, 0);
2833 ep_ctx_write_seq_num(ep0->context, 0);
2834
2835 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2836
2837 if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2838 ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2839 ep_ctx_write_dcs(ep0->context, ep0->pcs);
2840 }
2841
2842 ep_unhalt_all(xudc);
2843 ep_reload(xudc, 0);
2844 ep_unpause(xudc, 0);
2845 }
2846
tegra_xudc_port_connect(struct tegra_xudc * xudc)2847 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2848 {
2849 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2850 u16 maxpacket;
2851 u32 val;
2852
2853 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2854 switch (val) {
2855 case PORTSC_PS_LS:
2856 xudc->gadget.speed = USB_SPEED_LOW;
2857 break;
2858 case PORTSC_PS_FS:
2859 xudc->gadget.speed = USB_SPEED_FULL;
2860 break;
2861 case PORTSC_PS_HS:
2862 xudc->gadget.speed = USB_SPEED_HIGH;
2863 break;
2864 case PORTSC_PS_SS:
2865 xudc->gadget.speed = USB_SPEED_SUPER;
2866 break;
2867 default:
2868 xudc->gadget.speed = USB_SPEED_UNKNOWN;
2869 break;
2870 }
2871
2872 xudc->device_state = USB_STATE_DEFAULT;
2873 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2874
2875 xudc->setup_state = WAIT_FOR_SETUP;
2876
2877 if (xudc->gadget.speed == USB_SPEED_SUPER)
2878 maxpacket = 512;
2879 else
2880 maxpacket = 64;
2881
2882 ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2883 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2884 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2885
2886 if (!xudc->soc->u1_enable) {
2887 val = xudc_readl(xudc, PORTPM);
2888 val &= ~(PORTPM_U1TIMEOUT_MASK);
2889 xudc_writel(xudc, val, PORTPM);
2890 }
2891
2892 if (!xudc->soc->u2_enable) {
2893 val = xudc_readl(xudc, PORTPM);
2894 val &= ~(PORTPM_U2TIMEOUT_MASK);
2895 xudc_writel(xudc, val, PORTPM);
2896 }
2897
2898 if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2899 val = xudc_readl(xudc, PORTPM);
2900 val &= ~(PORTPM_L1S_MASK);
2901 if (xudc->soc->lpm_enable)
2902 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2903 else
2904 val |= PORTPM_L1S(PORTPM_L1S_NYET);
2905 xudc_writel(xudc, val, PORTPM);
2906 }
2907
2908 val = xudc_readl(xudc, ST);
2909 if (val & ST_RC)
2910 xudc_writel(xudc, ST_RC, ST);
2911 }
2912
tegra_xudc_port_disconnect(struct tegra_xudc * xudc)2913 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2914 {
2915 tegra_xudc_reset(xudc);
2916
2917 if (xudc->driver && xudc->driver->disconnect) {
2918 spin_unlock(&xudc->lock);
2919 xudc->driver->disconnect(&xudc->gadget);
2920 spin_lock(&xudc->lock);
2921 }
2922
2923 xudc->device_state = USB_STATE_NOTATTACHED;
2924 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2925
2926 complete(&xudc->disconnect_complete);
2927 }
2928
tegra_xudc_port_reset(struct tegra_xudc * xudc)2929 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2930 {
2931 tegra_xudc_reset(xudc);
2932
2933 if (xudc->driver) {
2934 spin_unlock(&xudc->lock);
2935 usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2936 spin_lock(&xudc->lock);
2937 }
2938
2939 tegra_xudc_port_connect(xudc);
2940 }
2941
tegra_xudc_port_suspend(struct tegra_xudc * xudc)2942 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2943 {
2944 dev_dbg(xudc->dev, "port suspend\n");
2945
2946 xudc->resume_state = xudc->device_state;
2947 xudc->device_state = USB_STATE_SUSPENDED;
2948 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2949
2950 if (xudc->driver->suspend) {
2951 spin_unlock(&xudc->lock);
2952 xudc->driver->suspend(&xudc->gadget);
2953 spin_lock(&xudc->lock);
2954 }
2955 }
2956
tegra_xudc_port_resume(struct tegra_xudc * xudc)2957 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2958 {
2959 dev_dbg(xudc->dev, "port resume\n");
2960
2961 tegra_xudc_resume_device_state(xudc);
2962
2963 if (xudc->driver->resume) {
2964 spin_unlock(&xudc->lock);
2965 xudc->driver->resume(&xudc->gadget);
2966 spin_lock(&xudc->lock);
2967 }
2968 }
2969
clear_port_change(struct tegra_xudc * xudc,u32 flag)2970 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2971 {
2972 u32 val;
2973
2974 val = xudc_readl(xudc, PORTSC);
2975 val &= ~PORTSC_CHANGE_MASK;
2976 val |= flag;
2977 xudc_writel(xudc, val, PORTSC);
2978 }
2979
__tegra_xudc_handle_port_status(struct tegra_xudc * xudc)2980 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2981 {
2982 u32 portsc, porthalt;
2983
2984 porthalt = xudc_readl(xudc, PORTHALT);
2985 if ((porthalt & PORTHALT_STCHG_REQ) &&
2986 (porthalt & PORTHALT_HALT_LTSSM)) {
2987 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2988 porthalt &= ~PORTHALT_HALT_LTSSM;
2989 xudc_writel(xudc, porthalt, PORTHALT);
2990 }
2991
2992 portsc = xudc_readl(xudc, PORTSC);
2993 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2994 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2995 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2996 #define TOGGLE_VBUS_WAIT_MS 100
2997 if (xudc->soc->port_reset_quirk) {
2998 schedule_delayed_work(&xudc->port_reset_war_work,
2999 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3000 xudc->wait_for_sec_prc = 1;
3001 }
3002 }
3003
3004 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
3005 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
3006 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3007 tegra_xudc_port_reset(xudc);
3008 cancel_delayed_work(&xudc->port_reset_war_work);
3009 xudc->wait_for_sec_prc = 0;
3010 }
3011
3012 portsc = xudc_readl(xudc, PORTSC);
3013 if (portsc & PORTSC_WRC) {
3014 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3015 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3016 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3017 tegra_xudc_port_reset(xudc);
3018 }
3019
3020 portsc = xudc_readl(xudc, PORTSC);
3021 if (portsc & PORTSC_CSC) {
3022 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3023 clear_port_change(xudc, PORTSC_CSC);
3024
3025 if (portsc & PORTSC_CCS)
3026 tegra_xudc_port_connect(xudc);
3027 else
3028 tegra_xudc_port_disconnect(xudc);
3029
3030 if (xudc->wait_csc) {
3031 cancel_delayed_work(&xudc->plc_reset_work);
3032 xudc->wait_csc = false;
3033 }
3034 }
3035
3036 portsc = xudc_readl(xudc, PORTSC);
3037 if (portsc & PORTSC_PLC) {
3038 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3039
3040 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3041 clear_port_change(xudc, PORTSC_PLC);
3042 switch (pls) {
3043 case PORTSC_PLS_U3:
3044 tegra_xudc_port_suspend(xudc);
3045 break;
3046 case PORTSC_PLS_U0:
3047 if (xudc->gadget.speed < USB_SPEED_SUPER)
3048 tegra_xudc_port_resume(xudc);
3049 break;
3050 case PORTSC_PLS_RESUME:
3051 if (xudc->gadget.speed == USB_SPEED_SUPER)
3052 tegra_xudc_port_resume(xudc);
3053 break;
3054 case PORTSC_PLS_INACTIVE:
3055 schedule_delayed_work(&xudc->plc_reset_work,
3056 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3057 xudc->wait_csc = true;
3058 break;
3059 default:
3060 break;
3061 }
3062 }
3063
3064 if (portsc & PORTSC_CEC) {
3065 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3066 clear_port_change(xudc, PORTSC_CEC);
3067 }
3068
3069 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3070 }
3071
tegra_xudc_handle_port_status(struct tegra_xudc * xudc)3072 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3073 {
3074 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3075 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3076 __tegra_xudc_handle_port_status(xudc);
3077 }
3078
tegra_xudc_handle_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)3079 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3080 struct tegra_xudc_trb *event)
3081 {
3082 u32 type = trb_read_type(event);
3083
3084 dump_trb(xudc, "EVENT", event);
3085
3086 switch (type) {
3087 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3088 tegra_xudc_handle_port_status(xudc);
3089 break;
3090 case TRB_TYPE_TRANSFER_EVENT:
3091 tegra_xudc_handle_transfer_event(xudc, event);
3092 break;
3093 case TRB_TYPE_SETUP_PACKET_EVENT:
3094 tegra_xudc_handle_ep0_event(xudc, event);
3095 break;
3096 default:
3097 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3098 break;
3099 }
3100 }
3101
tegra_xudc_process_event_ring(struct tegra_xudc * xudc)3102 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3103 {
3104 struct tegra_xudc_trb *event;
3105 dma_addr_t erdp;
3106
3107 while (true) {
3108 event = xudc->event_ring[xudc->event_ring_index] +
3109 xudc->event_ring_deq_ptr;
3110
3111 if (trb_read_cycle(event) != xudc->ccs)
3112 break;
3113
3114 tegra_xudc_handle_event(xudc, event);
3115
3116 xudc->event_ring_deq_ptr++;
3117 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3118 xudc->event_ring_deq_ptr = 0;
3119 xudc->event_ring_index++;
3120 }
3121
3122 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3123 xudc->event_ring_index = 0;
3124 xudc->ccs = !xudc->ccs;
3125 }
3126 }
3127
3128 erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3129 xudc->event_ring_deq_ptr * sizeof(*event);
3130
3131 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3132 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3133 }
3134
tegra_xudc_irq(int irq,void * data)3135 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3136 {
3137 struct tegra_xudc *xudc = data;
3138 unsigned long flags;
3139 u32 val;
3140
3141 val = xudc_readl(xudc, ST);
3142 if (!(val & ST_IP))
3143 return IRQ_NONE;
3144 xudc_writel(xudc, ST_IP, ST);
3145
3146 spin_lock_irqsave(&xudc->lock, flags);
3147 tegra_xudc_process_event_ring(xudc);
3148 spin_unlock_irqrestore(&xudc->lock, flags);
3149
3150 return IRQ_HANDLED;
3151 }
3152
tegra_xudc_alloc_ep(struct tegra_xudc * xudc,unsigned int index)3153 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3154 {
3155 struct tegra_xudc_ep *ep = &xudc->ep[index];
3156
3157 ep->xudc = xudc;
3158 ep->index = index;
3159 ep->context = &xudc->ep_context[index];
3160 INIT_LIST_HEAD(&ep->queue);
3161
3162 /*
3163 * EP1 would be the input endpoint corresponding to EP0, but since
3164 * EP0 is bi-directional, EP1 is unused.
3165 */
3166 if (index == 1)
3167 return 0;
3168
3169 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3170 GFP_KERNEL,
3171 &ep->transfer_ring_phys);
3172 if (!ep->transfer_ring)
3173 return -ENOMEM;
3174
3175 if (index) {
3176 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3177 (index % 2 == 0) ? "out" : "in");
3178 ep->usb_ep.name = ep->name;
3179 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3180 ep->usb_ep.max_streams = 16;
3181 ep->usb_ep.ops = &tegra_xudc_ep_ops;
3182 ep->usb_ep.caps.type_bulk = true;
3183 ep->usb_ep.caps.type_int = true;
3184 if (index & 1)
3185 ep->usb_ep.caps.dir_in = true;
3186 else
3187 ep->usb_ep.caps.dir_out = true;
3188 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3189 } else {
3190 strscpy(ep->name, "ep0", 3);
3191 ep->usb_ep.name = ep->name;
3192 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3193 ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3194 ep->usb_ep.caps.type_control = true;
3195 ep->usb_ep.caps.dir_in = true;
3196 ep->usb_ep.caps.dir_out = true;
3197 }
3198
3199 return 0;
3200 }
3201
tegra_xudc_free_ep(struct tegra_xudc * xudc,unsigned int index)3202 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3203 {
3204 struct tegra_xudc_ep *ep = &xudc->ep[index];
3205
3206 /*
3207 * EP1 would be the input endpoint corresponding to EP0, but since
3208 * EP0 is bi-directional, EP1 is unused.
3209 */
3210 if (index == 1)
3211 return;
3212
3213 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3214 ep->transfer_ring_phys);
3215 }
3216
tegra_xudc_alloc_eps(struct tegra_xudc * xudc)3217 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3218 {
3219 struct usb_request *req;
3220 unsigned int i;
3221 int err;
3222
3223 xudc->ep_context =
3224 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3225 sizeof(*xudc->ep_context),
3226 &xudc->ep_context_phys, GFP_KERNEL);
3227 if (!xudc->ep_context)
3228 return -ENOMEM;
3229
3230 xudc->transfer_ring_pool =
3231 dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3232 XUDC_TRANSFER_RING_SIZE *
3233 sizeof(struct tegra_xudc_trb),
3234 sizeof(struct tegra_xudc_trb), 0);
3235 if (!xudc->transfer_ring_pool) {
3236 err = -ENOMEM;
3237 goto free_ep_context;
3238 }
3239
3240 INIT_LIST_HEAD(&xudc->gadget.ep_list);
3241 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3242 err = tegra_xudc_alloc_ep(xudc, i);
3243 if (err < 0)
3244 goto free_eps;
3245 }
3246
3247 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3248 if (!req) {
3249 err = -ENOMEM;
3250 goto free_eps;
3251 }
3252 xudc->ep0_req = to_xudc_req(req);
3253
3254 return 0;
3255
3256 free_eps:
3257 for (; i > 0; i--)
3258 tegra_xudc_free_ep(xudc, i - 1);
3259 free_ep_context:
3260 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3261 xudc->ep_context, xudc->ep_context_phys);
3262 return err;
3263 }
3264
tegra_xudc_init_eps(struct tegra_xudc * xudc)3265 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3266 {
3267 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3268 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3269 }
3270
tegra_xudc_free_eps(struct tegra_xudc * xudc)3271 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3272 {
3273 unsigned int i;
3274
3275 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3276 &xudc->ep0_req->usb_req);
3277
3278 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3279 tegra_xudc_free_ep(xudc, i);
3280
3281 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3282 xudc->ep_context, xudc->ep_context_phys);
3283 }
3284
tegra_xudc_alloc_event_ring(struct tegra_xudc * xudc)3285 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3286 {
3287 unsigned int i;
3288
3289 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3290 xudc->event_ring[i] =
3291 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3292 sizeof(*xudc->event_ring[i]),
3293 &xudc->event_ring_phys[i],
3294 GFP_KERNEL);
3295 if (!xudc->event_ring[i])
3296 goto free_dma;
3297 }
3298
3299 return 0;
3300
3301 free_dma:
3302 for (; i > 0; i--) {
3303 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3304 sizeof(*xudc->event_ring[i - 1]),
3305 xudc->event_ring[i - 1],
3306 xudc->event_ring_phys[i - 1]);
3307 }
3308 return -ENOMEM;
3309 }
3310
tegra_xudc_init_event_ring(struct tegra_xudc * xudc)3311 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3312 {
3313 unsigned int i;
3314 u32 val;
3315
3316 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3317 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3318 sizeof(*xudc->event_ring[i]));
3319
3320 val = xudc_readl(xudc, ERSTSZ);
3321 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3322 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3323 xudc_writel(xudc, val, ERSTSZ);
3324
3325 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3326 ERSTXBALO(i));
3327 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3328 ERSTXBAHI(i));
3329 }
3330
3331 val = lower_32_bits(xudc->event_ring_phys[0]);
3332 xudc_writel(xudc, val, ERDPLO);
3333 val |= EREPLO_ECS;
3334 xudc_writel(xudc, val, EREPLO);
3335
3336 val = upper_32_bits(xudc->event_ring_phys[0]);
3337 xudc_writel(xudc, val, ERDPHI);
3338 xudc_writel(xudc, val, EREPHI);
3339
3340 xudc->ccs = true;
3341 xudc->event_ring_index = 0;
3342 xudc->event_ring_deq_ptr = 0;
3343 }
3344
tegra_xudc_free_event_ring(struct tegra_xudc * xudc)3345 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3346 {
3347 unsigned int i;
3348
3349 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3350 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3351 sizeof(*xudc->event_ring[i]),
3352 xudc->event_ring[i],
3353 xudc->event_ring_phys[i]);
3354 }
3355 }
3356
tegra_xudc_fpci_ipfs_init(struct tegra_xudc * xudc)3357 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3358 {
3359 u32 val;
3360
3361 if (xudc->soc->has_ipfs) {
3362 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3363 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3364 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3365 usleep_range(10, 15);
3366 }
3367
3368 /* Enable bus master */
3369 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3370 XUSB_DEV_CFG_1_BUS_MASTER_EN;
3371 fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3372
3373 /* Program BAR0 space */
3374 val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3375 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3376 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3377
3378 fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3379 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3380
3381 usleep_range(100, 200);
3382
3383 if (xudc->soc->has_ipfs) {
3384 /* Enable interrupt assertion */
3385 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3386 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3387 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3388 }
3389 }
3390
tegra_xudc_device_params_init(struct tegra_xudc * xudc)3391 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3392 {
3393 u32 val, imod;
3394
3395 if (xudc->soc->has_ipfs) {
3396 val = xudc_readl(xudc, BLCG);
3397 val |= BLCG_ALL;
3398 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3399 BLCG_COREPLL_PWRDN);
3400 val |= BLCG_IOPLL_0_PWRDN;
3401 val |= BLCG_IOPLL_1_PWRDN;
3402 val |= BLCG_IOPLL_2_PWRDN;
3403
3404 xudc_writel(xudc, val, BLCG);
3405 }
3406
3407 if (xudc->soc->port_speed_quirk)
3408 tegra_xudc_limit_port_speed(xudc);
3409
3410 /* Set a reasonable U3 exit timer value. */
3411 val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3412 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3413 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3414 xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3415
3416 /* Default ping LFPS tBurst is too large. */
3417 val = xudc_readl(xudc, SSPX_CORE_CNT0);
3418 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3419 val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3420 xudc_writel(xudc, val, SSPX_CORE_CNT0);
3421
3422 /* Default tPortConfiguration timeout is too small. */
3423 val = xudc_readl(xudc, SSPX_CORE_CNT30);
3424 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3425 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3426 xudc_writel(xudc, val, SSPX_CORE_CNT30);
3427
3428 if (xudc->soc->lpm_enable) {
3429 /* Set L1 resume duration to 95 us. */
3430 val = xudc_readl(xudc, HSFSPI_COUNT13);
3431 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3432 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3433 xudc_writel(xudc, val, HSFSPI_COUNT13);
3434 }
3435
3436 /*
3437 * Compliance suite appears to be violating polling LFPS tBurst max
3438 * of 1.4us. Send 1.45us instead.
3439 */
3440 val = xudc_readl(xudc, SSPX_CORE_CNT32);
3441 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3442 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3443 xudc_writel(xudc, val, SSPX_CORE_CNT32);
3444
3445 /* Direct HS/FS port instance to RxDetect. */
3446 val = xudc_readl(xudc, CFG_DEV_FE);
3447 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3448 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3449 xudc_writel(xudc, val, CFG_DEV_FE);
3450
3451 val = xudc_readl(xudc, PORTSC);
3452 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3453 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3454 xudc_writel(xudc, val, PORTSC);
3455
3456 /* Direct SS port instance to RxDetect. */
3457 val = xudc_readl(xudc, CFG_DEV_FE);
3458 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3459 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3460 xudc_writel(xudc, val, CFG_DEV_FE);
3461
3462 val = xudc_readl(xudc, PORTSC);
3463 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3464 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3465 xudc_writel(xudc, val, PORTSC);
3466
3467 /* Restore port instance. */
3468 val = xudc_readl(xudc, CFG_DEV_FE);
3469 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3470 xudc_writel(xudc, val, CFG_DEV_FE);
3471
3472 /*
3473 * Enable INFINITE_SS_RETRY to prevent device from entering
3474 * Disabled.Error when attached to buggy SuperSpeed hubs.
3475 */
3476 val = xudc_readl(xudc, CFG_DEV_FE);
3477 val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3478 xudc_writel(xudc, val, CFG_DEV_FE);
3479
3480 /* Set interrupt moderation. */
3481 imod = XUDC_INTERRUPT_MODERATION_US * 4;
3482 val = xudc_readl(xudc, RT_IMOD);
3483 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3484 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3485 xudc_writel(xudc, val, RT_IMOD);
3486
3487 /* increase SSPI transaction timeout from 32us to 512us */
3488 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3489 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3490 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3491 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3492 }
3493
tegra_xudc_phy_get(struct tegra_xudc * xudc)3494 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3495 {
3496 int err = 0, usb3_companion_port;
3497 unsigned int i, j;
3498
3499 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3500 sizeof(*xudc->utmi_phy), GFP_KERNEL);
3501 if (!xudc->utmi_phy)
3502 return -ENOMEM;
3503
3504 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3505 sizeof(*xudc->usb3_phy), GFP_KERNEL);
3506 if (!xudc->usb3_phy)
3507 return -ENOMEM;
3508
3509 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3510 sizeof(*xudc->usbphy), GFP_KERNEL);
3511 if (!xudc->usbphy)
3512 return -ENOMEM;
3513
3514 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3515
3516 for (i = 0; i < xudc->soc->num_phys; i++) {
3517 char phy_name[] = "usb.-.";
3518
3519 /* Get USB2 phy */
3520 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3521 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3522 if (IS_ERR(xudc->utmi_phy[i])) {
3523 err = PTR_ERR(xudc->utmi_phy[i]);
3524 dev_err_probe(xudc->dev, err,
3525 "failed to get PHY for phy-name usb2-%d\n", i);
3526 goto clean_up;
3527 } else if (xudc->utmi_phy[i]) {
3528 /* Get usb-phy, if utmi phy is available */
3529 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3530 xudc->utmi_phy[i]->dev.of_node,
3531 NULL);
3532 if (IS_ERR(xudc->usbphy[i])) {
3533 err = PTR_ERR(xudc->usbphy[i]);
3534 dev_err_probe(xudc->dev, err,
3535 "failed to get usbphy-%d\n", i);
3536 goto clean_up;
3537 }
3538 } else if (!xudc->utmi_phy[i]) {
3539 /* if utmi phy is not available, ignore USB3 phy get */
3540 continue;
3541 }
3542
3543 /* Get USB3 phy */
3544 usb3_companion_port = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3545 if (usb3_companion_port < 0)
3546 continue;
3547
3548 for (j = 0; j < xudc->soc->num_phys; j++) {
3549 snprintf(phy_name, sizeof(phy_name), "usb3-%d", j);
3550 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3551 if (IS_ERR(xudc->usb3_phy[i])) {
3552 err = PTR_ERR(xudc->usb3_phy[i]);
3553 dev_err_probe(xudc->dev, err,
3554 "failed to get PHY for phy-name usb3-%d\n", j);
3555 goto clean_up;
3556 } else if (xudc->usb3_phy[i]) {
3557 int usb2_port =
3558 tegra_xusb_padctl_get_port_number(xudc->utmi_phy[i]);
3559 int usb3_port =
3560 tegra_xusb_padctl_get_port_number(xudc->usb3_phy[i]);
3561 if (usb3_port == usb3_companion_port) {
3562 dev_dbg(xudc->dev, "USB2 port %d is paired with USB3 port %d for device mode port %d\n",
3563 usb2_port, usb3_port, i);
3564 break;
3565 }
3566 }
3567 }
3568 }
3569
3570 return err;
3571
3572 clean_up:
3573 for (i = 0; i < xudc->soc->num_phys; i++) {
3574 xudc->usb3_phy[i] = NULL;
3575 xudc->utmi_phy[i] = NULL;
3576 xudc->usbphy[i] = NULL;
3577 }
3578
3579 return err;
3580 }
3581
tegra_xudc_phy_exit(struct tegra_xudc * xudc)3582 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3583 {
3584 unsigned int i;
3585
3586 for (i = 0; i < xudc->soc->num_phys; i++) {
3587 phy_exit(xudc->usb3_phy[i]);
3588 phy_exit(xudc->utmi_phy[i]);
3589 }
3590 }
3591
tegra_xudc_phy_init(struct tegra_xudc * xudc)3592 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3593 {
3594 int err;
3595 unsigned int i;
3596
3597 for (i = 0; i < xudc->soc->num_phys; i++) {
3598 err = phy_init(xudc->utmi_phy[i]);
3599 if (err < 0) {
3600 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3601 goto exit_phy;
3602 }
3603
3604 err = phy_init(xudc->usb3_phy[i]);
3605 if (err < 0) {
3606 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3607 goto exit_phy;
3608 }
3609 }
3610 return 0;
3611
3612 exit_phy:
3613 tegra_xudc_phy_exit(xudc);
3614 return err;
3615 }
3616
3617 static const char * const tegra210_xudc_supply_names[] = {
3618 "hvdd-usb",
3619 "avddio-usb",
3620 };
3621
3622 static const char * const tegra210_xudc_clock_names[] = {
3623 "dev",
3624 "ss",
3625 "ss_src",
3626 "hs_src",
3627 "fs_src",
3628 };
3629
3630 static const char * const tegra186_xudc_clock_names[] = {
3631 "dev",
3632 "ss",
3633 "ss_src",
3634 "fs_src",
3635 };
3636
3637 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3638 .supply_names = tegra210_xudc_supply_names,
3639 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3640 .clock_names = tegra210_xudc_clock_names,
3641 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3642 .num_phys = 4,
3643 .u1_enable = false,
3644 .u2_enable = true,
3645 .lpm_enable = false,
3646 .invalid_seq_num = true,
3647 .pls_quirk = true,
3648 .port_reset_quirk = true,
3649 .port_speed_quirk = false,
3650 .has_ipfs = true,
3651 };
3652
3653 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3654 .clock_names = tegra186_xudc_clock_names,
3655 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3656 .num_phys = 4,
3657 .u1_enable = true,
3658 .u2_enable = true,
3659 .lpm_enable = false,
3660 .invalid_seq_num = false,
3661 .pls_quirk = false,
3662 .port_reset_quirk = false,
3663 .port_speed_quirk = false,
3664 .has_ipfs = false,
3665 };
3666
3667 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3668 .clock_names = tegra186_xudc_clock_names,
3669 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3670 .num_phys = 4,
3671 .u1_enable = true,
3672 .u2_enable = true,
3673 .lpm_enable = true,
3674 .invalid_seq_num = false,
3675 .pls_quirk = false,
3676 .port_reset_quirk = false,
3677 .port_speed_quirk = true,
3678 .has_ipfs = false,
3679 };
3680
3681 static struct tegra_xudc_soc tegra234_xudc_soc_data = {
3682 .clock_names = tegra186_xudc_clock_names,
3683 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3684 .num_phys = 4,
3685 .u1_enable = true,
3686 .u2_enable = true,
3687 .lpm_enable = true,
3688 .invalid_seq_num = false,
3689 .pls_quirk = false,
3690 .port_reset_quirk = false,
3691 .has_ipfs = false,
3692 };
3693
3694 static const struct of_device_id tegra_xudc_of_match[] = {
3695 {
3696 .compatible = "nvidia,tegra210-xudc",
3697 .data = &tegra210_xudc_soc_data
3698 },
3699 {
3700 .compatible = "nvidia,tegra186-xudc",
3701 .data = &tegra186_xudc_soc_data
3702 },
3703 {
3704 .compatible = "nvidia,tegra194-xudc",
3705 .data = &tegra194_xudc_soc_data
3706 },
3707 {
3708 .compatible = "nvidia,tegra234-xudc",
3709 .data = &tegra234_xudc_soc_data
3710 },
3711 { }
3712 };
3713 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3714
tegra_xudc_powerdomain_remove(struct tegra_xudc * xudc)3715 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3716 {
3717 if (xudc->genpd_dl_ss)
3718 device_link_del(xudc->genpd_dl_ss);
3719 if (xudc->genpd_dl_device)
3720 device_link_del(xudc->genpd_dl_device);
3721 if (xudc->genpd_dev_ss)
3722 dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3723 if (xudc->genpd_dev_device)
3724 dev_pm_domain_detach(xudc->genpd_dev_device, true);
3725 }
3726
tegra_xudc_powerdomain_init(struct tegra_xudc * xudc)3727 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3728 {
3729 struct device *dev = xudc->dev;
3730 int err;
3731
3732 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3733 if (IS_ERR(xudc->genpd_dev_device)) {
3734 err = PTR_ERR(xudc->genpd_dev_device);
3735 dev_err(dev, "failed to get device power domain: %d\n", err);
3736 return err;
3737 }
3738
3739 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3740 if (IS_ERR(xudc->genpd_dev_ss)) {
3741 err = PTR_ERR(xudc->genpd_dev_ss);
3742 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3743 return err;
3744 }
3745
3746 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3747 DL_FLAG_PM_RUNTIME |
3748 DL_FLAG_STATELESS);
3749 if (!xudc->genpd_dl_device) {
3750 dev_err(dev, "failed to add USB device link\n");
3751 return -ENODEV;
3752 }
3753
3754 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3755 DL_FLAG_PM_RUNTIME |
3756 DL_FLAG_STATELESS);
3757 if (!xudc->genpd_dl_ss) {
3758 dev_err(dev, "failed to add SuperSpeed device link\n");
3759 return -ENODEV;
3760 }
3761
3762 return 0;
3763 }
3764
tegra_xudc_probe(struct platform_device * pdev)3765 static int tegra_xudc_probe(struct platform_device *pdev)
3766 {
3767 struct tegra_xudc *xudc;
3768 struct resource *res;
3769 unsigned int i;
3770 int err;
3771
3772 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3773 if (!xudc)
3774 return -ENOMEM;
3775
3776 xudc->dev = &pdev->dev;
3777 platform_set_drvdata(pdev, xudc);
3778
3779 xudc->soc = of_device_get_match_data(&pdev->dev);
3780 if (!xudc->soc)
3781 return -ENODEV;
3782
3783 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3784 xudc->base = devm_ioremap_resource(&pdev->dev, res);
3785 if (IS_ERR(xudc->base))
3786 return PTR_ERR(xudc->base);
3787 xudc->phys_base = res->start;
3788
3789 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3790 if (IS_ERR(xudc->fpci))
3791 return PTR_ERR(xudc->fpci);
3792
3793 if (xudc->soc->has_ipfs) {
3794 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3795 if (IS_ERR(xudc->ipfs))
3796 return PTR_ERR(xudc->ipfs);
3797 }
3798
3799 xudc->irq = platform_get_irq(pdev, 0);
3800 if (xudc->irq < 0)
3801 return xudc->irq;
3802
3803 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3804 dev_name(&pdev->dev), xudc);
3805 if (err < 0) {
3806 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3807 err);
3808 return err;
3809 }
3810
3811 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3812 GFP_KERNEL);
3813 if (!xudc->clks)
3814 return -ENOMEM;
3815
3816 for (i = 0; i < xudc->soc->num_clks; i++)
3817 xudc->clks[i].id = xudc->soc->clock_names[i];
3818
3819 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3820 if (err) {
3821 dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3822 return err;
3823 }
3824
3825 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3826 sizeof(*xudc->supplies), GFP_KERNEL);
3827 if (!xudc->supplies)
3828 return -ENOMEM;
3829
3830 for (i = 0; i < xudc->soc->num_supplies; i++)
3831 xudc->supplies[i].supply = xudc->soc->supply_names[i];
3832
3833 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3834 xudc->supplies);
3835 if (err) {
3836 dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3837 return err;
3838 }
3839
3840 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3841 if (IS_ERR(xudc->padctl))
3842 return PTR_ERR(xudc->padctl);
3843
3844 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3845 if (err) {
3846 dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3847 goto put_padctl;
3848 }
3849
3850 err = tegra_xudc_phy_get(xudc);
3851 if (err)
3852 goto disable_regulator;
3853
3854 err = tegra_xudc_powerdomain_init(xudc);
3855 if (err)
3856 goto put_powerdomains;
3857
3858 err = tegra_xudc_phy_init(xudc);
3859 if (err)
3860 goto put_powerdomains;
3861
3862 err = tegra_xudc_alloc_event_ring(xudc);
3863 if (err)
3864 goto disable_phy;
3865
3866 err = tegra_xudc_alloc_eps(xudc);
3867 if (err)
3868 goto free_event_ring;
3869
3870 spin_lock_init(&xudc->lock);
3871
3872 init_completion(&xudc->disconnect_complete);
3873
3874 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3875
3876 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3877
3878 INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3879 tegra_xudc_port_reset_war_work);
3880
3881 pm_runtime_enable(&pdev->dev);
3882
3883 xudc->gadget.ops = &tegra_xudc_gadget_ops;
3884 xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3885 xudc->gadget.name = "tegra-xudc";
3886 xudc->gadget.max_speed = USB_SPEED_SUPER;
3887
3888 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3889 if (err) {
3890 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3891 goto free_eps;
3892 }
3893
3894 for (i = 0; i < xudc->soc->num_phys; i++) {
3895 if (!xudc->usbphy[i])
3896 continue;
3897
3898 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb);
3899 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]);
3900 }
3901
3902 return 0;
3903
3904 free_eps:
3905 pm_runtime_disable(&pdev->dev);
3906 tegra_xudc_free_eps(xudc);
3907 free_event_ring:
3908 tegra_xudc_free_event_ring(xudc);
3909 disable_phy:
3910 tegra_xudc_phy_exit(xudc);
3911 put_powerdomains:
3912 tegra_xudc_powerdomain_remove(xudc);
3913 disable_regulator:
3914 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3915 put_padctl:
3916 tegra_xusb_padctl_put(xudc->padctl);
3917
3918 return err;
3919 }
3920
tegra_xudc_remove(struct platform_device * pdev)3921 static void tegra_xudc_remove(struct platform_device *pdev)
3922 {
3923 struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3924 unsigned int i;
3925
3926 pm_runtime_get_sync(xudc->dev);
3927
3928 cancel_delayed_work_sync(&xudc->plc_reset_work);
3929 cancel_work_sync(&xudc->usb_role_sw_work);
3930
3931 usb_del_gadget_udc(&xudc->gadget);
3932
3933 tegra_xudc_free_eps(xudc);
3934 tegra_xudc_free_event_ring(xudc);
3935
3936 tegra_xudc_powerdomain_remove(xudc);
3937
3938 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3939
3940 for (i = 0; i < xudc->soc->num_phys; i++) {
3941 phy_power_off(xudc->utmi_phy[i]);
3942 phy_power_off(xudc->usb3_phy[i]);
3943 }
3944
3945 tegra_xudc_phy_exit(xudc);
3946
3947 pm_runtime_disable(xudc->dev);
3948 pm_runtime_put(xudc->dev);
3949
3950 tegra_xusb_padctl_put(xudc->padctl);
3951 }
3952
tegra_xudc_powergate(struct tegra_xudc * xudc)3953 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3954 {
3955 unsigned long flags;
3956
3957 dev_dbg(xudc->dev, "entering ELPG\n");
3958
3959 spin_lock_irqsave(&xudc->lock, flags);
3960
3961 xudc->powergated = true;
3962 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3963 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3964 xudc_writel(xudc, 0, CTRL);
3965
3966 spin_unlock_irqrestore(&xudc->lock, flags);
3967
3968 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3969
3970 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3971
3972 dev_dbg(xudc->dev, "entering ELPG done\n");
3973 return 0;
3974 }
3975
tegra_xudc_unpowergate(struct tegra_xudc * xudc)3976 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3977 {
3978 unsigned long flags;
3979 int err;
3980
3981 dev_dbg(xudc->dev, "exiting ELPG\n");
3982
3983 err = regulator_bulk_enable(xudc->soc->num_supplies,
3984 xudc->supplies);
3985 if (err < 0)
3986 return err;
3987
3988 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3989 if (err < 0)
3990 return err;
3991
3992 tegra_xudc_fpci_ipfs_init(xudc);
3993
3994 tegra_xudc_device_params_init(xudc);
3995
3996 tegra_xudc_init_event_ring(xudc);
3997
3998 tegra_xudc_init_eps(xudc);
3999
4000 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
4001 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
4002
4003 spin_lock_irqsave(&xudc->lock, flags);
4004 xudc->powergated = false;
4005 spin_unlock_irqrestore(&xudc->lock, flags);
4006
4007 dev_dbg(xudc->dev, "exiting ELPG done\n");
4008 return 0;
4009 }
4010
tegra_xudc_suspend(struct device * dev)4011 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
4012 {
4013 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4014 unsigned long flags;
4015
4016 spin_lock_irqsave(&xudc->lock, flags);
4017 xudc->suspended = true;
4018 spin_unlock_irqrestore(&xudc->lock, flags);
4019
4020 flush_work(&xudc->usb_role_sw_work);
4021
4022 if (!pm_runtime_status_suspended(dev)) {
4023 /* Forcibly disconnect before powergating. */
4024 tegra_xudc_device_mode_off(xudc);
4025 tegra_xudc_powergate(xudc);
4026 }
4027
4028 pm_runtime_disable(dev);
4029
4030 return 0;
4031 }
4032
tegra_xudc_resume(struct device * dev)4033 static int __maybe_unused tegra_xudc_resume(struct device *dev)
4034 {
4035 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4036 unsigned long flags;
4037 int err;
4038
4039 err = tegra_xudc_unpowergate(xudc);
4040 if (err < 0)
4041 return err;
4042
4043 spin_lock_irqsave(&xudc->lock, flags);
4044 xudc->suspended = false;
4045 if (xudc->device_mode != xudc->current_device_mode)
4046 schedule_work(&xudc->usb_role_sw_work);
4047 spin_unlock_irqrestore(&xudc->lock, flags);
4048
4049 pm_runtime_enable(dev);
4050
4051 return 0;
4052 }
4053
tegra_xudc_runtime_suspend(struct device * dev)4054 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4055 {
4056 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4057
4058 return tegra_xudc_powergate(xudc);
4059 }
4060
tegra_xudc_runtime_resume(struct device * dev)4061 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4062 {
4063 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4064
4065 return tegra_xudc_unpowergate(xudc);
4066 }
4067
4068 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4069 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4070 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4071 tegra_xudc_runtime_resume, NULL)
4072 };
4073
4074 static struct platform_driver tegra_xudc_driver = {
4075 .probe = tegra_xudc_probe,
4076 .remove = tegra_xudc_remove,
4077 .driver = {
4078 .name = "tegra-xudc",
4079 .pm = &tegra_xudc_pm_ops,
4080 .of_match_table = tegra_xudc_of_match,
4081 },
4082 };
4083 module_platform_driver(tegra_xudc_driver);
4084
4085 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4086 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4087 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4088 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4089 MODULE_LICENSE("GPL v2");
4090