1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/tcp_ecn.h>
42 #include <net/mptcp.h>
43 #include <net/smc.h>
44 #include <net/proto_memory.h>
45 #include <net/psp.h>
46
47 #include <linux/compiler.h>
48 #include <linux/gfp.h>
49 #include <linux/module.h>
50 #include <linux/static_key.h>
51 #include <linux/skbuff_ref.h>
52
53 #include <trace/events/tcp.h>
54
55 /* Refresh clocks of a TCP socket,
56 * ensuring monotically increasing values.
57 */
tcp_mstamp_refresh(struct tcp_sock * tp)58 void tcp_mstamp_refresh(struct tcp_sock *tp)
59 {
60 u64 val = tcp_clock_ns();
61
62 tp->tcp_clock_cache = val;
63 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
64 }
65
66 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
67 int push_one, gfp_t gfp);
68
69 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)70 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
71 {
72 struct inet_connection_sock *icsk = inet_csk(sk);
73 struct tcp_sock *tp = tcp_sk(sk);
74 unsigned int prior_packets = tp->packets_out;
75
76 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
77
78 __skb_unlink(skb, &sk->sk_write_queue);
79 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
80
81 if (tp->highest_sack == NULL)
82 tp->highest_sack = skb;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
86 tcp_rearm_rto(sk);
87
88 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
89 tcp_skb_pcount(skb));
90 tcp_check_space(sk);
91 }
92
93 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
94 * window scaling factor due to loss of precision.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
tcp_acceptable_seq(const struct sock * sk)100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
105 (tp->rx_opt.wscale_ok &&
106 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
107 return tp->snd_nxt;
108 else
109 return tcp_wnd_end(tp);
110 }
111
112 /* Calculate mss to advertise in SYN segment.
113 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
114 *
115 * 1. It is independent of path mtu.
116 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
117 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
118 * attached devices, because some buggy hosts are confused by
119 * large MSS.
120 * 4. We do not make 3, we advertise MSS, calculated from first
121 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
122 * This may be overridden via information stored in routing table.
123 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
124 * probably even Jumbo".
125 */
tcp_advertise_mss(struct sock * sk)126 static __u16 tcp_advertise_mss(struct sock *sk)
127 {
128 struct tcp_sock *tp = tcp_sk(sk);
129 const struct dst_entry *dst = __sk_dst_get(sk);
130 int mss = tp->advmss;
131
132 if (dst) {
133 unsigned int metric = dst_metric_advmss(dst);
134
135 if (metric < mss) {
136 mss = metric;
137 tp->advmss = mss;
138 }
139 }
140
141 return (__u16)mss;
142 }
143
144 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
145 * This is the first part of cwnd validation mechanism.
146 */
tcp_cwnd_restart(struct sock * sk,s32 delta)147 void tcp_cwnd_restart(struct sock *sk, s32 delta)
148 {
149 struct tcp_sock *tp = tcp_sk(sk);
150 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
151 u32 cwnd = tcp_snd_cwnd(tp);
152
153 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
154
155 tp->snd_ssthresh = tcp_current_ssthresh(sk);
156 restart_cwnd = min(restart_cwnd, cwnd);
157
158 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
159 cwnd >>= 1;
160 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
161 tp->snd_cwnd_stamp = tcp_jiffies32;
162 tp->snd_cwnd_used = 0;
163 }
164
165 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)166 static void tcp_event_data_sent(struct tcp_sock *tp,
167 struct sock *sk)
168 {
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 const u32 now = tcp_jiffies32;
171
172 if (tcp_packets_in_flight(tp) == 0)
173 tcp_ca_event(sk, CA_EVENT_TX_START);
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, increase pingpong count.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
181 inet_csk_inc_pingpong_cnt(sk);
182 }
183
184 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)185 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
186 {
187 struct tcp_sock *tp = tcp_sk(sk);
188
189 if (unlikely(tp->compressed_ack)) {
190 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
191 tp->compressed_ack);
192 tp->compressed_ack = 0;
193 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
194 __sock_put(sk);
195 }
196
197 if (unlikely(rcv_nxt != tp->rcv_nxt))
198 return; /* Special ACK sent by DCTCP to reflect ECN */
199 tcp_dec_quickack_mode(sk);
200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
201 }
202
203 /* Determine a window scaling and initial window to offer.
204 * Based on the assumption that the given amount of space
205 * will be offered. Store the results in the tp structure.
206 * NOTE: for smooth operation initial space offering should
207 * be a multiple of mss if possible. We assume here that mss >= 1.
208 * This MUST be enforced by all callers.
209 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)210 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
211 __u32 *rcv_wnd, __u32 *__window_clamp,
212 int wscale_ok, __u8 *rcv_wscale,
213 __u32 init_rcv_wnd)
214 {
215 unsigned int space = (__space < 0 ? 0 : __space);
216 u32 window_clamp = READ_ONCE(*__window_clamp);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (window_clamp == 0)
220 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
221 space = min(window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = rounddown(space, mss);
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 if (init_rcv_wnd)
241 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
242
243 *rcv_wscale = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window */
246 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
247 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
248 space = min_t(u32, space, window_clamp);
249 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
250 0, TCP_MAX_WSCALE);
251 }
252 /* Set the clamp no higher than max representable value */
253 WRITE_ONCE(*__window_clamp,
254 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
255 }
256 EXPORT_IPV6_MOD(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
tcp_select_window(struct sock * sk)263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 struct net *net = sock_net(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win, new_win;
269
270 /* Make the window 0 if we failed to queue the data because we
271 * are out of memory.
272 */
273 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
274 tp->pred_flags = 0;
275 tp->rcv_wnd = 0;
276 tp->rcv_wup = tp->rcv_nxt;
277 return 0;
278 }
279
280 cur_win = tcp_receive_window(tp);
281 new_win = __tcp_select_window(sk);
282 if (new_win < cur_win) {
283 /* Danger Will Robinson!
284 * Don't update rcv_wup/rcv_wnd here or else
285 * we will not be able to advertise a zero
286 * window in time. --DaveM
287 *
288 * Relax Will Robinson.
289 */
290 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
291 /* Never shrink the offered window */
292 if (new_win == 0)
293 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
294 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
295 }
296 }
297
298 tp->rcv_wnd = new_win;
299 tp->rcv_wup = tp->rcv_nxt;
300
301 /* Make sure we do not exceed the maximum possible
302 * scaled window.
303 */
304 if (!tp->rx_opt.rcv_wscale &&
305 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
306 new_win = min(new_win, MAX_TCP_WINDOW);
307 else
308 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
309
310 /* RFC1323 scaling applied */
311 new_win >>= tp->rx_opt.rcv_wscale;
312
313 /* If we advertise zero window, disable fast path. */
314 if (new_win == 0) {
315 tp->pred_flags = 0;
316 if (old_win)
317 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
318 } else if (old_win == 0) {
319 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
320 }
321
322 return new_win;
323 }
324
325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
326 * be sent.
327 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)328 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
329 struct tcphdr *th, int tcp_header_len)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 if (!tcp_ecn_mode_any(tp))
334 return;
335
336 if (tcp_ecn_mode_accecn(tp)) {
337 if (!tcp_accecn_ace_fail_recv(tp))
338 INET_ECN_xmit(sk);
339 tcp_accecn_set_ace(tp, skb, th);
340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN;
341 } else {
342 /* Not-retransmitted data segment: set ECT and inject CWR. */
343 if (skb->len != tcp_header_len &&
344 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
345 INET_ECN_xmit(sk);
346 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
347 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
348 th->cwr = 1;
349 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
350 }
351 } else if (!tcp_ca_needs_ecn(sk)) {
352 /* ACK or retransmitted segment: clear ECT|CE */
353 INET_ECN_dontxmit(sk);
354 }
355 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
356 th->ece = 1;
357 }
358 }
359
360 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
361 * auto increment end seqno.
362 */
tcp_init_nondata_skb(struct sk_buff * skb,struct sock * sk,u32 seq,u16 flags)363 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk,
364 u32 seq, u16 flags)
365 {
366 skb->ip_summed = CHECKSUM_PARTIAL;
367
368 TCP_SKB_CB(skb)->tcp_flags = flags;
369
370 tcp_skb_pcount_set(skb, 1);
371 psp_enqueue_set_decrypted(sk, skb);
372
373 TCP_SKB_CB(skb)->seq = seq;
374 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
375 seq++;
376 TCP_SKB_CB(skb)->end_seq = seq;
377 }
378
tcp_urg_mode(const struct tcp_sock * tp)379 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
380 {
381 return tp->snd_una != tp->snd_up;
382 }
383
384 #define OPTION_SACK_ADVERTISE BIT(0)
385 #define OPTION_TS BIT(1)
386 #define OPTION_MD5 BIT(2)
387 #define OPTION_WSCALE BIT(3)
388 #define OPTION_FAST_OPEN_COOKIE BIT(8)
389 #define OPTION_SMC BIT(9)
390 #define OPTION_MPTCP BIT(10)
391 #define OPTION_AO BIT(11)
392 #define OPTION_ACCECN BIT(12)
393
smc_options_write(__be32 * ptr,u16 * options)394 static void smc_options_write(__be32 *ptr, u16 *options)
395 {
396 #if IS_ENABLED(CONFIG_SMC)
397 if (static_branch_unlikely(&tcp_have_smc)) {
398 if (unlikely(OPTION_SMC & *options)) {
399 *ptr++ = htonl((TCPOPT_NOP << 24) |
400 (TCPOPT_NOP << 16) |
401 (TCPOPT_EXP << 8) |
402 (TCPOLEN_EXP_SMC_BASE));
403 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
404 }
405 }
406 #endif
407 }
408
409 struct tcp_out_options {
410 u16 options; /* bit field of OPTION_* */
411 u16 mss; /* 0 to disable */
412 u8 ws; /* window scale, 0 to disable */
413 u8 num_sack_blocks; /* number of SACK blocks to include */
414 u8 num_accecn_fields:7, /* number of AccECN fields needed */
415 use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */
416 u8 hash_size; /* bytes in hash_location */
417 u8 bpf_opt_len; /* length of BPF hdr option */
418 __u8 *hash_location; /* temporary pointer, overloaded */
419 __u32 tsval, tsecr; /* need to include OPTION_TS */
420 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
421 struct mptcp_out_options mptcp;
422 };
423
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)424 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
425 struct tcp_sock *tp,
426 struct tcp_out_options *opts)
427 {
428 #if IS_ENABLED(CONFIG_MPTCP)
429 if (unlikely(OPTION_MPTCP & opts->options))
430 mptcp_write_options(th, ptr, tp, &opts->mptcp);
431 #endif
432 }
433
434 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)435 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
436 enum tcp_synack_type synack_type)
437 {
438 if (unlikely(!skb))
439 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
440
441 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
442 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
443
444 return 0;
445 }
446
447 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)448 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
449 struct request_sock *req,
450 struct sk_buff *syn_skb,
451 enum tcp_synack_type synack_type,
452 struct tcp_out_options *opts,
453 unsigned int *remaining)
454 {
455 struct bpf_sock_ops_kern sock_ops;
456 int err;
457
458 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
459 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
460 !*remaining)
461 return;
462
463 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
464
465 /* init sock_ops */
466 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
467
468 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
469
470 if (req) {
471 /* The listen "sk" cannot be passed here because
472 * it is not locked. It would not make too much
473 * sense to do bpf_setsockopt(listen_sk) based
474 * on individual connection request also.
475 *
476 * Thus, "req" is passed here and the cgroup-bpf-progs
477 * of the listen "sk" will be run.
478 *
479 * "req" is also used here for fastopen even the "sk" here is
480 * a fullsock "child" sk. It is to keep the behavior
481 * consistent between fastopen and non-fastopen on
482 * the bpf programming side.
483 */
484 sock_ops.sk = (struct sock *)req;
485 sock_ops.syn_skb = syn_skb;
486 } else {
487 sock_owned_by_me(sk);
488
489 sock_ops.is_fullsock = 1;
490 sock_ops.is_locked_tcp_sock = 1;
491 sock_ops.sk = sk;
492 }
493
494 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
495 sock_ops.remaining_opt_len = *remaining;
496 /* tcp_current_mss() does not pass a skb */
497 if (skb)
498 bpf_skops_init_skb(&sock_ops, skb, 0);
499
500 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
501
502 if (err || sock_ops.remaining_opt_len == *remaining)
503 return;
504
505 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
506 /* round up to 4 bytes */
507 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
508
509 *remaining -= opts->bpf_opt_len;
510 }
511
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)512 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
513 struct request_sock *req,
514 struct sk_buff *syn_skb,
515 enum tcp_synack_type synack_type,
516 struct tcp_out_options *opts)
517 {
518 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
519 struct bpf_sock_ops_kern sock_ops;
520 int err;
521
522 if (likely(!max_opt_len))
523 return;
524
525 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
526
527 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
528
529 if (req) {
530 sock_ops.sk = (struct sock *)req;
531 sock_ops.syn_skb = syn_skb;
532 } else {
533 sock_owned_by_me(sk);
534
535 sock_ops.is_fullsock = 1;
536 sock_ops.is_locked_tcp_sock = 1;
537 sock_ops.sk = sk;
538 }
539
540 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
541 sock_ops.remaining_opt_len = max_opt_len;
542 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
543 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
544
545 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
546
547 if (err)
548 nr_written = 0;
549 else
550 nr_written = max_opt_len - sock_ops.remaining_opt_len;
551
552 if (nr_written < max_opt_len)
553 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
554 max_opt_len - nr_written);
555 }
556 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)557 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
558 struct request_sock *req,
559 struct sk_buff *syn_skb,
560 enum tcp_synack_type synack_type,
561 struct tcp_out_options *opts,
562 unsigned int *remaining)
563 {
564 }
565
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)566 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
567 struct request_sock *req,
568 struct sk_buff *syn_skb,
569 enum tcp_synack_type synack_type,
570 struct tcp_out_options *opts)
571 {
572 }
573 #endif
574
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)575 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
576 const struct tcp_request_sock *tcprsk,
577 struct tcp_out_options *opts,
578 struct tcp_key *key, __be32 *ptr)
579 {
580 #ifdef CONFIG_TCP_AO
581 u8 maclen = tcp_ao_maclen(key->ao_key);
582
583 if (tcprsk) {
584 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
585
586 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
587 (tcprsk->ao_keyid << 8) |
588 (tcprsk->ao_rcv_next));
589 } else {
590 struct tcp_ao_key *rnext_key;
591 struct tcp_ao_info *ao_info;
592
593 ao_info = rcu_dereference_check(tp->ao_info,
594 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
595 rnext_key = READ_ONCE(ao_info->rnext_key);
596 if (WARN_ON_ONCE(!rnext_key))
597 return ptr;
598 *ptr++ = htonl((TCPOPT_AO << 24) |
599 (tcp_ao_len(key->ao_key) << 16) |
600 (key->ao_key->sndid << 8) |
601 (rnext_key->rcvid));
602 }
603 opts->hash_location = (__u8 *)ptr;
604 ptr += maclen / sizeof(*ptr);
605 if (unlikely(maclen % sizeof(*ptr))) {
606 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
607 ptr++;
608 }
609 #endif
610 return ptr;
611 }
612
613 /* Initial values for AccECN option, ordered is based on ECN field bits
614 * similar to received_ecn_bytes. Used for SYN/ACK AccECN option.
615 */
616 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 };
617
618 /* Write previously computed TCP options to the packet.
619 *
620 * Beware: Something in the Internet is very sensitive to the ordering of
621 * TCP options, we learned this through the hard way, so be careful here.
622 * Luckily we can at least blame others for their non-compliance but from
623 * inter-operability perspective it seems that we're somewhat stuck with
624 * the ordering which we have been using if we want to keep working with
625 * those broken things (not that it currently hurts anybody as there isn't
626 * particular reason why the ordering would need to be changed).
627 *
628 * At least SACK_PERM as the first option is known to lead to a disaster
629 * (but it may well be that other scenarios fail similarly).
630 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)631 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
632 const struct tcp_request_sock *tcprsk,
633 struct tcp_out_options *opts,
634 struct tcp_key *key)
635 {
636 u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */
637 u8 leftover_lowbyte = TCPOPT_NOP; /* replace 2nd NOP in succession */
638 __be32 *ptr = (__be32 *)(th + 1);
639 u16 options = opts->options; /* mungable copy */
640
641 if (tcp_key_is_md5(key)) {
642 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
643 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
644 /* overload cookie hash location */
645 opts->hash_location = (__u8 *)ptr;
646 ptr += 4;
647 } else if (tcp_key_is_ao(key)) {
648 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
649 }
650 if (unlikely(opts->mss)) {
651 *ptr++ = htonl((TCPOPT_MSS << 24) |
652 (TCPOLEN_MSS << 16) |
653 opts->mss);
654 }
655
656 if (likely(OPTION_TS & options)) {
657 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
658 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
659 (TCPOLEN_SACK_PERM << 16) |
660 (TCPOPT_TIMESTAMP << 8) |
661 TCPOLEN_TIMESTAMP);
662 options &= ~OPTION_SACK_ADVERTISE;
663 } else {
664 *ptr++ = htonl((TCPOPT_NOP << 24) |
665 (TCPOPT_NOP << 16) |
666 (TCPOPT_TIMESTAMP << 8) |
667 TCPOLEN_TIMESTAMP);
668 }
669 *ptr++ = htonl(opts->tsval);
670 *ptr++ = htonl(opts->tsecr);
671 }
672
673 if (OPTION_ACCECN & options) {
674 const u32 *ecn_bytes = opts->use_synack_ecn_bytes ?
675 synack_ecn_bytes :
676 tp->received_ecn_bytes;
677 const u8 ect0_idx = INET_ECN_ECT_0 - 1;
678 const u8 ect1_idx = INET_ECN_ECT_1 - 1;
679 const u8 ce_idx = INET_ECN_CE - 1;
680 u32 e0b;
681 u32 e1b;
682 u32 ceb;
683 u8 len;
684
685 e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET;
686 e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET;
687 ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET;
688 len = TCPOLEN_ACCECN_BASE +
689 opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD;
690
691 if (opts->num_accecn_fields == 2) {
692 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
693 ((e1b >> 8) & 0xffff));
694 *ptr++ = htonl(((e1b & 0xff) << 24) |
695 (ceb & 0xffffff));
696 } else if (opts->num_accecn_fields == 1) {
697 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
698 ((e1b >> 8) & 0xffff));
699 leftover_highbyte = e1b & 0xff;
700 leftover_lowbyte = TCPOPT_NOP;
701 } else if (opts->num_accecn_fields == 0) {
702 leftover_highbyte = TCPOPT_ACCECN1;
703 leftover_lowbyte = len;
704 } else if (opts->num_accecn_fields == 3) {
705 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
706 ((e1b >> 8) & 0xffff));
707 *ptr++ = htonl(((e1b & 0xff) << 24) |
708 (ceb & 0xffffff));
709 *ptr++ = htonl(((e0b & 0xffffff) << 8) |
710 TCPOPT_NOP);
711 }
712 if (tp) {
713 tp->accecn_minlen = 0;
714 tp->accecn_opt_tstamp = tp->tcp_mstamp;
715 if (tp->accecn_opt_demand)
716 tp->accecn_opt_demand--;
717 }
718 }
719
720 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
721 *ptr++ = htonl((leftover_highbyte << 24) |
722 (leftover_lowbyte << 16) |
723 (TCPOPT_SACK_PERM << 8) |
724 TCPOLEN_SACK_PERM);
725 leftover_highbyte = TCPOPT_NOP;
726 leftover_lowbyte = TCPOPT_NOP;
727 }
728
729 if (unlikely(OPTION_WSCALE & options)) {
730 u8 highbyte = TCPOPT_NOP;
731
732 /* Do not split the leftover 2-byte to fit into a single
733 * NOP, i.e., replace this NOP only when 1 byte is leftover
734 * within leftover_highbyte.
735 */
736 if (unlikely(leftover_highbyte != TCPOPT_NOP &&
737 leftover_lowbyte == TCPOPT_NOP)) {
738 highbyte = leftover_highbyte;
739 leftover_highbyte = TCPOPT_NOP;
740 }
741 *ptr++ = htonl((highbyte << 24) |
742 (TCPOPT_WINDOW << 16) |
743 (TCPOLEN_WINDOW << 8) |
744 opts->ws);
745 }
746
747 if (unlikely(opts->num_sack_blocks)) {
748 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
749 tp->duplicate_sack : tp->selective_acks;
750 int this_sack;
751
752 *ptr++ = htonl((leftover_highbyte << 24) |
753 (leftover_lowbyte << 16) |
754 (TCPOPT_SACK << 8) |
755 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
756 TCPOLEN_SACK_PERBLOCK)));
757 leftover_highbyte = TCPOPT_NOP;
758 leftover_lowbyte = TCPOPT_NOP;
759
760 for (this_sack = 0; this_sack < opts->num_sack_blocks;
761 ++this_sack) {
762 *ptr++ = htonl(sp[this_sack].start_seq);
763 *ptr++ = htonl(sp[this_sack].end_seq);
764 }
765
766 tp->rx_opt.dsack = 0;
767 } else if (unlikely(leftover_highbyte != TCPOPT_NOP ||
768 leftover_lowbyte != TCPOPT_NOP)) {
769 *ptr++ = htonl((leftover_highbyte << 24) |
770 (leftover_lowbyte << 16) |
771 (TCPOPT_NOP << 8) |
772 TCPOPT_NOP);
773 leftover_highbyte = TCPOPT_NOP;
774 leftover_lowbyte = TCPOPT_NOP;
775 }
776
777 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
778 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
779 u8 *p = (u8 *)ptr;
780 u32 len; /* Fast Open option length */
781
782 if (foc->exp) {
783 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
784 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
785 TCPOPT_FASTOPEN_MAGIC);
786 p += TCPOLEN_EXP_FASTOPEN_BASE;
787 } else {
788 len = TCPOLEN_FASTOPEN_BASE + foc->len;
789 *p++ = TCPOPT_FASTOPEN;
790 *p++ = len;
791 }
792
793 memcpy(p, foc->val, foc->len);
794 if ((len & 3) == 2) {
795 p[foc->len] = TCPOPT_NOP;
796 p[foc->len + 1] = TCPOPT_NOP;
797 }
798 ptr += (len + 3) >> 2;
799 }
800
801 smc_options_write(ptr, &options);
802
803 mptcp_options_write(th, ptr, tp, opts);
804 }
805
smc_set_option(struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)806 static void smc_set_option(struct tcp_sock *tp,
807 struct tcp_out_options *opts,
808 unsigned int *remaining)
809 {
810 #if IS_ENABLED(CONFIG_SMC)
811 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc) {
812 tp->syn_smc = !!smc_call_hsbpf(1, tp, syn_option);
813 /* re-check syn_smc */
814 if (tp->syn_smc &&
815 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
816 opts->options |= OPTION_SMC;
817 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
818 }
819 }
820 #endif
821 }
822
smc_set_option_cond(const struct tcp_sock * tp,struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)823 static void smc_set_option_cond(const struct tcp_sock *tp,
824 struct inet_request_sock *ireq,
825 struct tcp_out_options *opts,
826 unsigned int *remaining)
827 {
828 #if IS_ENABLED(CONFIG_SMC)
829 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc && ireq->smc_ok) {
830 ireq->smc_ok = !!smc_call_hsbpf(1, tp, synack_option, ireq);
831 /* re-check smc_ok */
832 if (ireq->smc_ok &&
833 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
834 opts->options |= OPTION_SMC;
835 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
836 }
837 }
838 #endif
839 }
840
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)841 static void mptcp_set_option_cond(const struct request_sock *req,
842 struct tcp_out_options *opts,
843 unsigned int *remaining)
844 {
845 if (rsk_is_mptcp(req)) {
846 unsigned int size;
847
848 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
849 if (*remaining >= size) {
850 opts->options |= OPTION_MPTCP;
851 *remaining -= size;
852 }
853 }
854 }
855 }
856
tcp_synack_options_combine_saving(struct tcp_out_options * opts)857 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts)
858 {
859 /* How much there's room for combining with the alignment padding? */
860 if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) ==
861 OPTION_SACK_ADVERTISE)
862 return 2;
863 else if (opts->options & OPTION_WSCALE)
864 return 1;
865 return 0;
866 }
867
868 /* Calculates how long AccECN option will fit to @remaining option space.
869 *
870 * AccECN option can sometimes replace NOPs used for alignment of other
871 * TCP options (up to @max_combine_saving available).
872 *
873 * Only solutions with at least @required AccECN fields are accepted.
874 *
875 * Returns: The size of the AccECN option excluding space repurposed from
876 * the alignment of the other options.
877 */
tcp_options_fit_accecn(struct tcp_out_options * opts,int required,int remaining)878 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required,
879 int remaining)
880 {
881 int size = TCP_ACCECN_MAXSIZE;
882 int sack_blocks_reduce = 0;
883 int max_combine_saving;
884 int rem = remaining;
885 int align_size;
886
887 if (opts->use_synack_ecn_bytes)
888 max_combine_saving = tcp_synack_options_combine_saving(opts);
889 else
890 max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0;
891 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
892 while (opts->num_accecn_fields >= required) {
893 /* Pad to dword if cannot combine */
894 if ((size & 0x3) > max_combine_saving)
895 align_size = ALIGN(size, 4);
896 else
897 align_size = ALIGN_DOWN(size, 4);
898
899 if (rem >= align_size) {
900 size = align_size;
901 break;
902 } else if (opts->num_accecn_fields == required &&
903 opts->num_sack_blocks > 2 &&
904 required > 0) {
905 /* Try to fit the option by removing one SACK block */
906 opts->num_sack_blocks--;
907 sack_blocks_reduce++;
908 rem = rem + TCPOLEN_SACK_PERBLOCK;
909
910 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
911 size = TCP_ACCECN_MAXSIZE;
912 continue;
913 }
914
915 opts->num_accecn_fields--;
916 size -= TCPOLEN_ACCECN_PERFIELD;
917 }
918 if (sack_blocks_reduce > 0) {
919 if (opts->num_accecn_fields >= required)
920 size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK;
921 else
922 opts->num_sack_blocks += sack_blocks_reduce;
923 }
924 if (opts->num_accecn_fields < required)
925 return 0;
926
927 opts->options |= OPTION_ACCECN;
928 return size;
929 }
930
931 /* Compute TCP options for SYN packets. This is not the final
932 * network wire format yet.
933 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)934 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
935 struct tcp_out_options *opts,
936 struct tcp_key *key)
937 {
938 struct tcp_sock *tp = tcp_sk(sk);
939 unsigned int remaining = MAX_TCP_OPTION_SPACE;
940 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
941 bool timestamps;
942
943 /* Better than switch (key.type) as it has static branches */
944 if (tcp_key_is_md5(key)) {
945 timestamps = false;
946 opts->options |= OPTION_MD5;
947 remaining -= TCPOLEN_MD5SIG_ALIGNED;
948 } else {
949 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
950 if (tcp_key_is_ao(key)) {
951 opts->options |= OPTION_AO;
952 remaining -= tcp_ao_len_aligned(key->ao_key);
953 }
954 }
955
956 /* We always get an MSS option. The option bytes which will be seen in
957 * normal data packets should timestamps be used, must be in the MSS
958 * advertised. But we subtract them from tp->mss_cache so that
959 * calculations in tcp_sendmsg are simpler etc. So account for this
960 * fact here if necessary. If we don't do this correctly, as a
961 * receiver we won't recognize data packets as being full sized when we
962 * should, and thus we won't abide by the delayed ACK rules correctly.
963 * SACKs don't matter, we never delay an ACK when we have any of those
964 * going out. */
965 opts->mss = tcp_advertise_mss(sk);
966 remaining -= TCPOLEN_MSS_ALIGNED;
967
968 if (likely(timestamps)) {
969 opts->options |= OPTION_TS;
970 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
971 opts->tsecr = tp->rx_opt.ts_recent;
972 remaining -= TCPOLEN_TSTAMP_ALIGNED;
973 }
974 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
975 opts->ws = tp->rx_opt.rcv_wscale;
976 opts->options |= OPTION_WSCALE;
977 remaining -= TCPOLEN_WSCALE_ALIGNED;
978 }
979 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
980 opts->options |= OPTION_SACK_ADVERTISE;
981 if (unlikely(!(OPTION_TS & opts->options)))
982 remaining -= TCPOLEN_SACKPERM_ALIGNED;
983 }
984
985 if (fastopen && fastopen->cookie.len >= 0) {
986 u32 need = fastopen->cookie.len;
987
988 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
989 TCPOLEN_FASTOPEN_BASE;
990 need = (need + 3) & ~3U; /* Align to 32 bits */
991 if (remaining >= need) {
992 opts->options |= OPTION_FAST_OPEN_COOKIE;
993 opts->fastopen_cookie = &fastopen->cookie;
994 remaining -= need;
995 tp->syn_fastopen = 1;
996 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
997 }
998 }
999
1000 smc_set_option(tp, opts, &remaining);
1001
1002 if (sk_is_mptcp(sk)) {
1003 unsigned int size;
1004
1005 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
1006 if (remaining >= size) {
1007 opts->options |= OPTION_MPTCP;
1008 remaining -= size;
1009 }
1010 }
1011 }
1012
1013 /* Simultaneous open SYN/ACK needs AccECN option but not SYN.
1014 * It is attempted to negotiate the use of AccECN also on the first
1015 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs"
1016 * of AccECN draft.
1017 */
1018 if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) &&
1019 tcp_ecn_mode_accecn(tp) &&
1020 inet_csk(sk)->icsk_retransmits < 2 &&
1021 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1022 remaining >= TCPOLEN_ACCECN_BASE)) {
1023 opts->use_synack_ecn_bytes = 1;
1024 remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1025 }
1026
1027 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1028
1029 return MAX_TCP_OPTION_SPACE - remaining;
1030 }
1031
1032 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)1033 static unsigned int tcp_synack_options(const struct sock *sk,
1034 struct request_sock *req,
1035 unsigned int mss, struct sk_buff *skb,
1036 struct tcp_out_options *opts,
1037 const struct tcp_key *key,
1038 struct tcp_fastopen_cookie *foc,
1039 enum tcp_synack_type synack_type,
1040 struct sk_buff *syn_skb)
1041 {
1042 struct inet_request_sock *ireq = inet_rsk(req);
1043 unsigned int remaining = MAX_TCP_OPTION_SPACE;
1044 struct tcp_request_sock *treq = tcp_rsk(req);
1045
1046 if (tcp_key_is_md5(key)) {
1047 opts->options |= OPTION_MD5;
1048 remaining -= TCPOLEN_MD5SIG_ALIGNED;
1049
1050 /* We can't fit any SACK blocks in a packet with MD5 + TS
1051 * options. There was discussion about disabling SACK
1052 * rather than TS in order to fit in better with old,
1053 * buggy kernels, but that was deemed to be unnecessary.
1054 */
1055 if (synack_type != TCP_SYNACK_COOKIE)
1056 ireq->tstamp_ok &= !ireq->sack_ok;
1057 } else if (tcp_key_is_ao(key)) {
1058 opts->options |= OPTION_AO;
1059 remaining -= tcp_ao_len_aligned(key->ao_key);
1060 ireq->tstamp_ok &= !ireq->sack_ok;
1061 }
1062
1063 /* We always send an MSS option. */
1064 opts->mss = mss;
1065 remaining -= TCPOLEN_MSS_ALIGNED;
1066
1067 if (likely(ireq->wscale_ok)) {
1068 opts->ws = ireq->rcv_wscale;
1069 opts->options |= OPTION_WSCALE;
1070 remaining -= TCPOLEN_WSCALE_ALIGNED;
1071 }
1072 if (likely(ireq->tstamp_ok)) {
1073 opts->options |= OPTION_TS;
1074 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
1075 tcp_rsk(req)->ts_off;
1076 if (!tcp_rsk(req)->snt_tsval_first) {
1077 if (!opts->tsval)
1078 opts->tsval = ~0U;
1079 tcp_rsk(req)->snt_tsval_first = opts->tsval;
1080 }
1081 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
1082 opts->tsecr = req->ts_recent;
1083 remaining -= TCPOLEN_TSTAMP_ALIGNED;
1084 }
1085 if (likely(ireq->sack_ok)) {
1086 opts->options |= OPTION_SACK_ADVERTISE;
1087 if (unlikely(!ireq->tstamp_ok))
1088 remaining -= TCPOLEN_SACKPERM_ALIGNED;
1089 }
1090 if (foc != NULL && foc->len >= 0) {
1091 u32 need = foc->len;
1092
1093 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
1094 TCPOLEN_FASTOPEN_BASE;
1095 need = (need + 3) & ~3U; /* Align to 32 bits */
1096 if (remaining >= need) {
1097 opts->options |= OPTION_FAST_OPEN_COOKIE;
1098 opts->fastopen_cookie = foc;
1099 remaining -= need;
1100 }
1101 }
1102
1103 mptcp_set_option_cond(req, opts, &remaining);
1104
1105 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
1106
1107 if (treq->accecn_ok &&
1108 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1109 req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) {
1110 opts->use_synack_ecn_bytes = 1;
1111 remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1112 }
1113
1114 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
1115 synack_type, opts, &remaining);
1116
1117 return MAX_TCP_OPTION_SPACE - remaining;
1118 }
1119
1120 /* Compute TCP options for ESTABLISHED sockets. This is not the
1121 * final wire format yet.
1122 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)1123 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
1124 struct tcp_out_options *opts,
1125 struct tcp_key *key)
1126 {
1127 struct tcp_sock *tp = tcp_sk(sk);
1128 unsigned int size = 0;
1129 unsigned int eff_sacks;
1130
1131 opts->options = 0;
1132
1133 /* Better than switch (key.type) as it has static branches */
1134 if (tcp_key_is_md5(key)) {
1135 opts->options |= OPTION_MD5;
1136 size += TCPOLEN_MD5SIG_ALIGNED;
1137 } else if (tcp_key_is_ao(key)) {
1138 opts->options |= OPTION_AO;
1139 size += tcp_ao_len_aligned(key->ao_key);
1140 }
1141
1142 if (likely(tp->rx_opt.tstamp_ok)) {
1143 opts->options |= OPTION_TS;
1144 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1145 tp->tsoffset : 0;
1146 opts->tsecr = tp->rx_opt.ts_recent;
1147 size += TCPOLEN_TSTAMP_ALIGNED;
1148 }
1149
1150 /* MPTCP options have precedence over SACK for the limited TCP
1151 * option space because a MPTCP connection would be forced to
1152 * fall back to regular TCP if a required multipath option is
1153 * missing. SACK still gets a chance to use whatever space is
1154 * left.
1155 */
1156 if (sk_is_mptcp(sk)) {
1157 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1158 unsigned int opt_size = 0;
1159
1160 if (mptcp_established_options(sk, skb, &opt_size, remaining,
1161 &opts->mptcp)) {
1162 opts->options |= OPTION_MPTCP;
1163 size += opt_size;
1164 }
1165 }
1166
1167 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1168 if (unlikely(eff_sacks)) {
1169 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1170 if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED +
1171 TCPOLEN_SACK_PERBLOCK)) {
1172 opts->num_sack_blocks =
1173 min_t(unsigned int, eff_sacks,
1174 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1175 TCPOLEN_SACK_PERBLOCK);
1176
1177 size += TCPOLEN_SACK_BASE_ALIGNED +
1178 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1179 } else {
1180 opts->num_sack_blocks = 0;
1181 }
1182 } else {
1183 opts->num_sack_blocks = 0;
1184 }
1185
1186 if (tcp_ecn_mode_accecn(tp)) {
1187 int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option);
1188
1189 if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) &&
1190 (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand ||
1191 tcp_accecn_option_beacon_check(sk))) {
1192 opts->use_synack_ecn_bytes = 0;
1193 size += tcp_options_fit_accecn(opts, tp->accecn_minlen,
1194 MAX_TCP_OPTION_SPACE - size);
1195 }
1196 }
1197
1198 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1199 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1200 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1201
1202 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1203
1204 size = MAX_TCP_OPTION_SPACE - remaining;
1205 }
1206
1207 return size;
1208 }
1209
1210
1211 /* TCP SMALL QUEUES (TSQ)
1212 *
1213 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1214 * to reduce RTT and bufferbloat.
1215 * We do this using a special skb destructor (tcp_wfree).
1216 *
1217 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1218 * needs to be reallocated in a driver.
1219 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1220 *
1221 * Since transmit from skb destructor is forbidden, we use a BH work item
1222 * to process all sockets that eventually need to send more skbs.
1223 * We use one work item per cpu, with its own queue of sockets.
1224 */
1225 struct tsq_work {
1226 struct work_struct work;
1227 struct list_head head; /* queue of tcp sockets */
1228 };
1229 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1230
tcp_tsq_write(struct sock * sk)1231 static void tcp_tsq_write(struct sock *sk)
1232 {
1233 if ((1 << sk->sk_state) &
1234 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1235 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1236 struct tcp_sock *tp = tcp_sk(sk);
1237
1238 if (tp->lost_out > tp->retrans_out &&
1239 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1240 tcp_mstamp_refresh(tp);
1241 tcp_xmit_retransmit_queue(sk);
1242 }
1243
1244 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1245 0, GFP_ATOMIC);
1246 }
1247 }
1248
tcp_tsq_handler(struct sock * sk)1249 static void tcp_tsq_handler(struct sock *sk)
1250 {
1251 bh_lock_sock(sk);
1252 if (!sock_owned_by_user(sk))
1253 tcp_tsq_write(sk);
1254 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1255 sock_hold(sk);
1256 bh_unlock_sock(sk);
1257 }
1258 /*
1259 * One work item per cpu tries to send more skbs.
1260 * We run in BH context but need to disable irqs when
1261 * transferring tsq->head because tcp_wfree() might
1262 * interrupt us (non NAPI drivers)
1263 */
tcp_tsq_workfn(struct work_struct * work)1264 static void tcp_tsq_workfn(struct work_struct *work)
1265 {
1266 struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1267 LIST_HEAD(list);
1268 unsigned long flags;
1269 struct list_head *q, *n;
1270 struct tcp_sock *tp;
1271 struct sock *sk;
1272
1273 local_irq_save(flags);
1274 list_splice_init(&tsq->head, &list);
1275 local_irq_restore(flags);
1276
1277 list_for_each_safe(q, n, &list) {
1278 tp = list_entry(q, struct tcp_sock, tsq_node);
1279 list_del(&tp->tsq_node);
1280
1281 sk = (struct sock *)tp;
1282 smp_mb__before_atomic();
1283 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1284
1285 tcp_tsq_handler(sk);
1286 sk_free(sk);
1287 }
1288 }
1289
1290 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1291 TCPF_WRITE_TIMER_DEFERRED | \
1292 TCPF_DELACK_TIMER_DEFERRED | \
1293 TCPF_MTU_REDUCED_DEFERRED | \
1294 TCPF_ACK_DEFERRED)
1295 /**
1296 * tcp_release_cb - tcp release_sock() callback
1297 * @sk: socket
1298 *
1299 * called from release_sock() to perform protocol dependent
1300 * actions before socket release.
1301 */
tcp_release_cb(struct sock * sk)1302 void tcp_release_cb(struct sock *sk)
1303 {
1304 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1305 unsigned long nflags;
1306
1307 /* perform an atomic operation only if at least one flag is set */
1308 do {
1309 if (!(flags & TCP_DEFERRED_ALL))
1310 return;
1311 nflags = flags & ~TCP_DEFERRED_ALL;
1312 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1313
1314 if (flags & TCPF_TSQ_DEFERRED) {
1315 tcp_tsq_write(sk);
1316 __sock_put(sk);
1317 }
1318
1319 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1320 tcp_write_timer_handler(sk);
1321 __sock_put(sk);
1322 }
1323 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1324 tcp_delack_timer_handler(sk);
1325 __sock_put(sk);
1326 }
1327 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1328 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1329 __sock_put(sk);
1330 }
1331 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1332 tcp_send_ack(sk);
1333 }
1334 EXPORT_IPV6_MOD(tcp_release_cb);
1335
tcp_tsq_work_init(void)1336 void __init tcp_tsq_work_init(void)
1337 {
1338 int i;
1339
1340 for_each_possible_cpu(i) {
1341 struct tsq_work *tsq = &per_cpu(tsq_work, i);
1342
1343 INIT_LIST_HEAD(&tsq->head);
1344 INIT_WORK(&tsq->work, tcp_tsq_workfn);
1345 }
1346 }
1347
1348 /*
1349 * Write buffer destructor automatically called from kfree_skb.
1350 * We can't xmit new skbs from this context, as we might already
1351 * hold qdisc lock.
1352 */
tcp_wfree(struct sk_buff * skb)1353 void tcp_wfree(struct sk_buff *skb)
1354 {
1355 struct sock *sk = skb->sk;
1356 struct tcp_sock *tp = tcp_sk(sk);
1357 unsigned long flags, nval, oval;
1358 struct tsq_work *tsq;
1359 bool empty;
1360
1361 /* Keep one reference on sk_wmem_alloc.
1362 * Will be released by sk_free() from here or tcp_tsq_workfn()
1363 */
1364 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1365
1366 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1367 * Wait until our queues (qdisc + devices) are drained.
1368 * This gives :
1369 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1370 * - chance for incoming ACK (processed by another cpu maybe)
1371 * to migrate this flow (skb->ooo_okay will be eventually set)
1372 */
1373 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1374 goto out;
1375
1376 oval = smp_load_acquire(&sk->sk_tsq_flags);
1377 do {
1378 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1379 goto out;
1380
1381 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1382 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1383
1384 /* queue this socket to BH workqueue */
1385 local_irq_save(flags);
1386 tsq = this_cpu_ptr(&tsq_work);
1387 empty = list_empty(&tsq->head);
1388 list_add(&tp->tsq_node, &tsq->head);
1389 if (empty)
1390 queue_work(system_bh_wq, &tsq->work);
1391 local_irq_restore(flags);
1392 return;
1393 out:
1394 sk_free(sk);
1395 }
1396
1397 /* Note: Called under soft irq.
1398 * We can call TCP stack right away, unless socket is owned by user.
1399 */
tcp_pace_kick(struct hrtimer * timer)1400 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1401 {
1402 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1403 struct sock *sk = (struct sock *)tp;
1404
1405 tcp_tsq_handler(sk);
1406 sock_put(sk);
1407
1408 return HRTIMER_NORESTART;
1409 }
1410
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1411 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1412 u64 prior_wstamp)
1413 {
1414 struct tcp_sock *tp = tcp_sk(sk);
1415
1416 if (sk->sk_pacing_status != SK_PACING_NONE) {
1417 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1418
1419 /* Original sch_fq does not pace first 10 MSS
1420 * Note that tp->data_segs_out overflows after 2^32 packets,
1421 * this is a minor annoyance.
1422 */
1423 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1424 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1425 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1426
1427 /* take into account OS jitter */
1428 len_ns -= min_t(u64, len_ns / 2, credit);
1429 tp->tcp_wstamp_ns += len_ns;
1430 }
1431 }
1432 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1433 }
1434
1435 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1436 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1437 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1438
1439 /* This routine actually transmits TCP packets queued in by
1440 * tcp_do_sendmsg(). This is used by both the initial
1441 * transmission and possible later retransmissions.
1442 * All SKB's seen here are completely headerless. It is our
1443 * job to build the TCP header, and pass the packet down to
1444 * IP so it can do the same plus pass the packet off to the
1445 * device.
1446 *
1447 * We are working here with either a clone of the original
1448 * SKB, or a fresh unique copy made by the retransmit engine.
1449 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1450 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1451 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1452 {
1453 const struct inet_connection_sock *icsk = inet_csk(sk);
1454 struct inet_sock *inet;
1455 struct tcp_sock *tp;
1456 struct tcp_skb_cb *tcb;
1457 struct tcp_out_options opts;
1458 unsigned int tcp_options_size, tcp_header_size;
1459 struct sk_buff *oskb = NULL;
1460 struct tcp_key key;
1461 struct tcphdr *th;
1462 u64 prior_wstamp;
1463 int err;
1464
1465 BUG_ON(!skb || !tcp_skb_pcount(skb));
1466 tp = tcp_sk(sk);
1467 prior_wstamp = tp->tcp_wstamp_ns;
1468 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1469 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1470 if (clone_it) {
1471 oskb = skb;
1472
1473 tcp_skb_tsorted_save(oskb) {
1474 if (unlikely(skb_cloned(oskb)))
1475 skb = pskb_copy(oskb, gfp_mask);
1476 else
1477 skb = skb_clone(oskb, gfp_mask);
1478 } tcp_skb_tsorted_restore(oskb);
1479
1480 if (unlikely(!skb))
1481 return -ENOBUFS;
1482 /* retransmit skbs might have a non zero value in skb->dev
1483 * because skb->dev is aliased with skb->rbnode.rb_left
1484 */
1485 skb->dev = NULL;
1486 }
1487
1488 inet = inet_sk(sk);
1489 tcb = TCP_SKB_CB(skb);
1490 memset(&opts, 0, sizeof(opts));
1491
1492 tcp_get_current_key(sk, &key);
1493 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1494 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1495 } else {
1496 tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1497 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1498 * at receiver : This slightly improve GRO performance.
1499 * Note that we do not force the PSH flag for non GSO packets,
1500 * because they might be sent under high congestion events,
1501 * and in this case it is better to delay the delivery of 1-MSS
1502 * packets and thus the corresponding ACK packet that would
1503 * release the following packet.
1504 */
1505 if (tcp_skb_pcount(skb) > 1)
1506 tcb->tcp_flags |= TCPHDR_PSH;
1507 }
1508 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1509
1510 /* We set skb->ooo_okay to one if this packet can select
1511 * a different TX queue than prior packets of this flow,
1512 * to avoid self inflicted reorders.
1513 * The 'other' queue decision is based on current cpu number
1514 * if XPS is enabled, or sk->sk_txhash otherwise.
1515 * We can switch to another (and better) queue if:
1516 * 1) No packet with payload is in qdisc/device queues.
1517 * Delays in TX completion can defeat the test
1518 * even if packets were already sent.
1519 * 2) Or rtx queue is empty.
1520 * This mitigates above case if ACK packets for
1521 * all prior packets were already processed.
1522 */
1523 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1524 tcp_rtx_queue_empty(sk);
1525
1526 /* If we had to use memory reserve to allocate this skb,
1527 * this might cause drops if packet is looped back :
1528 * Other socket might not have SOCK_MEMALLOC.
1529 * Packets not looped back do not care about pfmemalloc.
1530 */
1531 skb->pfmemalloc = 0;
1532
1533 skb_push(skb, tcp_header_size);
1534 skb_reset_transport_header(skb);
1535
1536 skb_orphan(skb);
1537 skb->sk = sk;
1538 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1539 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1540
1541 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1542
1543 /* Build TCP header and checksum it. */
1544 th = (struct tcphdr *)skb->data;
1545 th->source = inet->inet_sport;
1546 th->dest = inet->inet_dport;
1547 th->seq = htonl(tcb->seq);
1548 th->ack_seq = htonl(rcv_nxt);
1549 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1550 (tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1551
1552 th->check = 0;
1553 th->urg_ptr = 0;
1554
1555 /* The urg_mode check is necessary during a below snd_una win probe */
1556 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1557 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1558 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1559 th->urg = 1;
1560 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1561 th->urg_ptr = htons(0xFFFF);
1562 th->urg = 1;
1563 }
1564 }
1565
1566 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1567 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1568 th->window = htons(tcp_select_window(sk));
1569 tcp_ecn_send(sk, skb, th, tcp_header_size);
1570 } else {
1571 /* RFC1323: The window in SYN & SYN/ACK segments
1572 * is never scaled.
1573 */
1574 th->window = htons(min(tp->rcv_wnd, 65535U));
1575 }
1576
1577 tcp_options_write(th, tp, NULL, &opts, &key);
1578
1579 if (tcp_key_is_md5(&key)) {
1580 #ifdef CONFIG_TCP_MD5SIG
1581 /* Calculate the MD5 hash, as we have all we need now */
1582 sk_gso_disable(sk);
1583 tp->af_specific->calc_md5_hash(opts.hash_location,
1584 key.md5_key, sk, skb);
1585 #endif
1586 } else if (tcp_key_is_ao(&key)) {
1587 int err;
1588
1589 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1590 opts.hash_location);
1591 if (err) {
1592 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED);
1593 return -ENOMEM;
1594 }
1595 }
1596
1597 /* BPF prog is the last one writing header option */
1598 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1599
1600 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1601 tcp_v6_send_check, tcp_v4_send_check,
1602 sk, skb);
1603
1604 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1605 tcp_event_ack_sent(sk, rcv_nxt);
1606
1607 if (skb->len != tcp_header_size) {
1608 tcp_event_data_sent(tp, sk);
1609 tp->data_segs_out += tcp_skb_pcount(skb);
1610 tp->bytes_sent += skb->len - tcp_header_size;
1611 }
1612
1613 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1614 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1615 tcp_skb_pcount(skb));
1616
1617 tp->segs_out += tcp_skb_pcount(skb);
1618 skb_set_hash_from_sk(skb, sk);
1619 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1620 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1621 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1622
1623 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1624
1625 /* Cleanup our debris for IP stacks */
1626 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1627 sizeof(struct inet6_skb_parm)));
1628
1629 tcp_add_tx_delay(skb, tp);
1630
1631 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1632 inet6_csk_xmit, ip_queue_xmit,
1633 sk, skb, &inet->cork.fl);
1634
1635 if (unlikely(err > 0)) {
1636 tcp_enter_cwr(sk);
1637 err = net_xmit_eval(err);
1638 }
1639 if (!err && oskb) {
1640 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1641 tcp_rate_skb_sent(sk, oskb);
1642 }
1643 return err;
1644 }
1645
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1646 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1647 gfp_t gfp_mask)
1648 {
1649 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1650 tcp_sk(sk)->rcv_nxt);
1651 }
1652
1653 /* This routine just queues the buffer for sending.
1654 *
1655 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1656 * otherwise socket can stall.
1657 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1658 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1659 {
1660 struct tcp_sock *tp = tcp_sk(sk);
1661
1662 /* Advance write_seq and place onto the write_queue. */
1663 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1664 __skb_header_release(skb);
1665 psp_enqueue_set_decrypted(sk, skb);
1666 tcp_add_write_queue_tail(sk, skb);
1667 sk_wmem_queued_add(sk, skb->truesize);
1668 sk_mem_charge(sk, skb->truesize);
1669 }
1670
1671 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1672 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1673 {
1674 int tso_segs;
1675
1676 if (skb->len <= mss_now) {
1677 /* Avoid the costly divide in the normal
1678 * non-TSO case.
1679 */
1680 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1681 tcp_skb_pcount_set(skb, 1);
1682 return 1;
1683 }
1684 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1685 tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1686 tcp_skb_pcount_set(skb, tso_segs);
1687 return tso_segs;
1688 }
1689
1690 /* Pcount in the middle of the write queue got changed, we need to do various
1691 * tweaks to fix counters
1692 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1693 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1694 {
1695 struct tcp_sock *tp = tcp_sk(sk);
1696
1697 tp->packets_out -= decr;
1698
1699 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1700 tp->sacked_out -= decr;
1701 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1702 tp->retrans_out -= decr;
1703 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1704 tp->lost_out -= decr;
1705
1706 /* Reno case is special. Sigh... */
1707 if (tcp_is_reno(tp) && decr > 0)
1708 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1709
1710 tcp_verify_left_out(tp);
1711 }
1712
tcp_has_tx_tstamp(const struct sk_buff * skb)1713 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1714 {
1715 return TCP_SKB_CB(skb)->txstamp_ack ||
1716 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1717 }
1718
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1719 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1720 {
1721 struct skb_shared_info *shinfo = skb_shinfo(skb);
1722
1723 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1724 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1725 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1726 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1727
1728 shinfo->tx_flags &= ~tsflags;
1729 shinfo2->tx_flags |= tsflags;
1730 swap(shinfo->tskey, shinfo2->tskey);
1731 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1732 TCP_SKB_CB(skb)->txstamp_ack = 0;
1733 }
1734 }
1735
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1736 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1737 {
1738 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1739 TCP_SKB_CB(skb)->eor = 0;
1740 }
1741
1742 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1743 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1744 struct sk_buff *buff,
1745 struct sock *sk,
1746 enum tcp_queue tcp_queue)
1747 {
1748 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1749 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1750 else
1751 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1752 }
1753
1754 /* Function to create two new TCP segments. Shrinks the given segment
1755 * to the specified size and appends a new segment with the rest of the
1756 * packet to the list. This won't be called frequently, I hope.
1757 * Remember, these are still headerless SKBs at this point.
1758 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1759 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1760 struct sk_buff *skb, u32 len,
1761 unsigned int mss_now, gfp_t gfp)
1762 {
1763 struct tcp_sock *tp = tcp_sk(sk);
1764 struct sk_buff *buff;
1765 int old_factor;
1766 long limit;
1767 u16 flags;
1768 int nlen;
1769
1770 if (WARN_ON(len > skb->len))
1771 return -EINVAL;
1772
1773 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1774
1775 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1776 * We need some allowance to not penalize applications setting small
1777 * SO_SNDBUF values.
1778 * Also allow first and last skb in retransmit queue to be split.
1779 */
1780 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1781 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1782 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1783 skb != tcp_rtx_queue_head(sk) &&
1784 skb != tcp_rtx_queue_tail(sk))) {
1785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1786 return -ENOMEM;
1787 }
1788
1789 if (skb_unclone_keeptruesize(skb, gfp))
1790 return -ENOMEM;
1791
1792 /* Get a new skb... force flag on. */
1793 buff = tcp_stream_alloc_skb(sk, gfp, true);
1794 if (!buff)
1795 return -ENOMEM; /* We'll just try again later. */
1796 skb_copy_decrypted(buff, skb);
1797 mptcp_skb_ext_copy(buff, skb);
1798
1799 sk_wmem_queued_add(sk, buff->truesize);
1800 sk_mem_charge(sk, buff->truesize);
1801 nlen = skb->len - len;
1802 buff->truesize += nlen;
1803 skb->truesize -= nlen;
1804
1805 /* Correct the sequence numbers. */
1806 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1807 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1808 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1809
1810 /* PSH and FIN should only be set in the second packet. */
1811 flags = TCP_SKB_CB(skb)->tcp_flags;
1812 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1813 TCP_SKB_CB(buff)->tcp_flags = flags;
1814 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1815 tcp_skb_fragment_eor(skb, buff);
1816
1817 skb_split(skb, buff, len);
1818
1819 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1820 tcp_fragment_tstamp(skb, buff);
1821
1822 old_factor = tcp_skb_pcount(skb);
1823
1824 /* Fix up tso_factor for both original and new SKB. */
1825 tcp_set_skb_tso_segs(skb, mss_now);
1826 tcp_set_skb_tso_segs(buff, mss_now);
1827
1828 /* Update delivered info for the new segment */
1829 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1830
1831 /* If this packet has been sent out already, we must
1832 * adjust the various packet counters.
1833 */
1834 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1835 int diff = old_factor - tcp_skb_pcount(skb) -
1836 tcp_skb_pcount(buff);
1837
1838 if (diff)
1839 tcp_adjust_pcount(sk, skb, diff);
1840 }
1841
1842 /* Link BUFF into the send queue. */
1843 __skb_header_release(buff);
1844 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1845 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1846 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1847
1848 return 0;
1849 }
1850
1851 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1852 * data is not copied, but immediately discarded.
1853 */
__pskb_trim_head(struct sk_buff * skb,int len)1854 static int __pskb_trim_head(struct sk_buff *skb, int len)
1855 {
1856 struct skb_shared_info *shinfo;
1857 int i, k, eat;
1858
1859 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1860 eat = len;
1861 k = 0;
1862 shinfo = skb_shinfo(skb);
1863 for (i = 0; i < shinfo->nr_frags; i++) {
1864 int size = skb_frag_size(&shinfo->frags[i]);
1865
1866 if (size <= eat) {
1867 skb_frag_unref(skb, i);
1868 eat -= size;
1869 } else {
1870 shinfo->frags[k] = shinfo->frags[i];
1871 if (eat) {
1872 skb_frag_off_add(&shinfo->frags[k], eat);
1873 skb_frag_size_sub(&shinfo->frags[k], eat);
1874 eat = 0;
1875 }
1876 k++;
1877 }
1878 }
1879 shinfo->nr_frags = k;
1880
1881 skb->data_len -= len;
1882 skb->len = skb->data_len;
1883 return len;
1884 }
1885
1886 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1887 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1888 {
1889 u32 delta_truesize;
1890
1891 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1892 return -ENOMEM;
1893
1894 delta_truesize = __pskb_trim_head(skb, len);
1895
1896 TCP_SKB_CB(skb)->seq += len;
1897
1898 skb->truesize -= delta_truesize;
1899 sk_wmem_queued_add(sk, -delta_truesize);
1900 if (!skb_zcopy_pure(skb))
1901 sk_mem_uncharge(sk, delta_truesize);
1902
1903 /* Any change of skb->len requires recalculation of tso factor. */
1904 if (tcp_skb_pcount(skb) > 1)
1905 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1906
1907 return 0;
1908 }
1909
1910 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1911 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1912 {
1913 const struct tcp_sock *tp = tcp_sk(sk);
1914 const struct inet_connection_sock *icsk = inet_csk(sk);
1915 int mss_now;
1916
1917 /* Calculate base mss without TCP options:
1918 It is MMS_S - sizeof(tcphdr) of rfc1122
1919 */
1920 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1921
1922 /* Clamp it (mss_clamp does not include tcp options) */
1923 if (mss_now > tp->rx_opt.mss_clamp)
1924 mss_now = tp->rx_opt.mss_clamp;
1925
1926 /* Now subtract optional transport overhead */
1927 mss_now -= icsk->icsk_ext_hdr_len;
1928
1929 /* Then reserve room for full set of TCP options and 8 bytes of data */
1930 mss_now = max(mss_now,
1931 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1932 return mss_now;
1933 }
1934
1935 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1936 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1937 {
1938 /* Subtract TCP options size, not including SACKs */
1939 return __tcp_mtu_to_mss(sk, pmtu) -
1940 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1941 }
1942 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1943
1944 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1945 int tcp_mss_to_mtu(struct sock *sk, int mss)
1946 {
1947 const struct tcp_sock *tp = tcp_sk(sk);
1948 const struct inet_connection_sock *icsk = inet_csk(sk);
1949
1950 return mss +
1951 tp->tcp_header_len +
1952 icsk->icsk_ext_hdr_len +
1953 icsk->icsk_af_ops->net_header_len;
1954 }
1955 EXPORT_SYMBOL(tcp_mss_to_mtu);
1956
1957 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1958 void tcp_mtup_init(struct sock *sk)
1959 {
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 struct inet_connection_sock *icsk = inet_csk(sk);
1962 struct net *net = sock_net(sk);
1963
1964 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1965 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1966 icsk->icsk_af_ops->net_header_len;
1967 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1968 icsk->icsk_mtup.probe_size = 0;
1969 if (icsk->icsk_mtup.enabled)
1970 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1971 }
1972
1973 /* This function synchronize snd mss to current pmtu/exthdr set.
1974
1975 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1976 for TCP options, but includes only bare TCP header.
1977
1978 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1979 It is minimum of user_mss and mss received with SYN.
1980 It also does not include TCP options.
1981
1982 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1983
1984 tp->mss_cache is current effective sending mss, including
1985 all tcp options except for SACKs. It is evaluated,
1986 taking into account current pmtu, but never exceeds
1987 tp->rx_opt.mss_clamp.
1988
1989 NOTE1. rfc1122 clearly states that advertised MSS
1990 DOES NOT include either tcp or ip options.
1991
1992 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1993 are READ ONLY outside this function. --ANK (980731)
1994 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1995 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1996 {
1997 struct tcp_sock *tp = tcp_sk(sk);
1998 struct inet_connection_sock *icsk = inet_csk(sk);
1999 int mss_now;
2000
2001 if (icsk->icsk_mtup.search_high > pmtu)
2002 icsk->icsk_mtup.search_high = pmtu;
2003
2004 mss_now = tcp_mtu_to_mss(sk, pmtu);
2005 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
2006
2007 /* And store cached results */
2008 icsk->icsk_pmtu_cookie = pmtu;
2009 if (icsk->icsk_mtup.enabled)
2010 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
2011 tp->mss_cache = mss_now;
2012
2013 return mss_now;
2014 }
2015 EXPORT_IPV6_MOD(tcp_sync_mss);
2016
2017 /* Compute the current effective MSS, taking SACKs and IP options,
2018 * and even PMTU discovery events into account.
2019 */
tcp_current_mss(struct sock * sk)2020 unsigned int tcp_current_mss(struct sock *sk)
2021 {
2022 const struct tcp_sock *tp = tcp_sk(sk);
2023 const struct dst_entry *dst = __sk_dst_get(sk);
2024 u32 mss_now;
2025 unsigned int header_len;
2026 struct tcp_out_options opts;
2027 struct tcp_key key;
2028
2029 mss_now = tp->mss_cache;
2030
2031 if (dst) {
2032 u32 mtu = dst_mtu(dst);
2033 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
2034 mss_now = tcp_sync_mss(sk, mtu);
2035 }
2036 tcp_get_current_key(sk, &key);
2037 header_len = tcp_established_options(sk, NULL, &opts, &key) +
2038 sizeof(struct tcphdr);
2039 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
2040 * some common options. If this is an odd packet (because we have SACK
2041 * blocks etc) then our calculated header_len will be different, and
2042 * we have to adjust mss_now correspondingly */
2043 if (header_len != tp->tcp_header_len) {
2044 int delta = (int) header_len - tp->tcp_header_len;
2045 mss_now -= delta;
2046 }
2047
2048 return mss_now;
2049 }
2050
2051 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
2052 * As additional protections, we do not touch cwnd in retransmission phases,
2053 * and if application hit its sndbuf limit recently.
2054 */
tcp_cwnd_application_limited(struct sock * sk)2055 static void tcp_cwnd_application_limited(struct sock *sk)
2056 {
2057 struct tcp_sock *tp = tcp_sk(sk);
2058
2059 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
2060 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
2061 /* Limited by application or receiver window. */
2062 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
2063 u32 win_used = max(tp->snd_cwnd_used, init_win);
2064 if (win_used < tcp_snd_cwnd(tp)) {
2065 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2066 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
2067 }
2068 tp->snd_cwnd_used = 0;
2069 }
2070 tp->snd_cwnd_stamp = tcp_jiffies32;
2071 }
2072
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)2073 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
2074 {
2075 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2076 struct tcp_sock *tp = tcp_sk(sk);
2077
2078 /* Track the strongest available signal of the degree to which the cwnd
2079 * is fully utilized. If cwnd-limited then remember that fact for the
2080 * current window. If not cwnd-limited then track the maximum number of
2081 * outstanding packets in the current window. (If cwnd-limited then we
2082 * chose to not update tp->max_packets_out to avoid an extra else
2083 * clause with no functional impact.)
2084 */
2085 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
2086 is_cwnd_limited ||
2087 (!tp->is_cwnd_limited &&
2088 tp->packets_out > tp->max_packets_out)) {
2089 tp->is_cwnd_limited = is_cwnd_limited;
2090 tp->max_packets_out = tp->packets_out;
2091 tp->cwnd_usage_seq = tp->snd_nxt;
2092 }
2093
2094 if (tcp_is_cwnd_limited(sk)) {
2095 /* Network is feed fully. */
2096 tp->snd_cwnd_used = 0;
2097 tp->snd_cwnd_stamp = tcp_jiffies32;
2098 } else {
2099 /* Network starves. */
2100 if (tp->packets_out > tp->snd_cwnd_used)
2101 tp->snd_cwnd_used = tp->packets_out;
2102
2103 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
2104 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
2105 !ca_ops->cong_control)
2106 tcp_cwnd_application_limited(sk);
2107
2108 /* The following conditions together indicate the starvation
2109 * is caused by insufficient sender buffer:
2110 * 1) just sent some data (see tcp_write_xmit)
2111 * 2) not cwnd limited (this else condition)
2112 * 3) no more data to send (tcp_write_queue_empty())
2113 * 4) application is hitting buffer limit (SOCK_NOSPACE)
2114 */
2115 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
2116 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
2117 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
2118 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
2119 }
2120 }
2121
2122 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)2123 static bool tcp_minshall_check(const struct tcp_sock *tp)
2124 {
2125 return after(tp->snd_sml, tp->snd_una) &&
2126 !after(tp->snd_sml, tp->snd_nxt);
2127 }
2128
2129 /* Update snd_sml if this skb is under mss
2130 * Note that a TSO packet might end with a sub-mss segment
2131 * The test is really :
2132 * if ((skb->len % mss) != 0)
2133 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2134 * But we can avoid doing the divide again given we already have
2135 * skb_pcount = skb->len / mss_now
2136 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)2137 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
2138 const struct sk_buff *skb)
2139 {
2140 if (skb->len < tcp_skb_pcount(skb) * mss_now)
2141 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2142 }
2143
2144 /* Return false, if packet can be sent now without violation Nagle's rules:
2145 * 1. It is full sized. (provided by caller in %partial bool)
2146 * 2. Or it contains FIN. (already checked by caller)
2147 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
2148 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2149 * With Minshall's modification: all sent small packets are ACKed.
2150 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)2151 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2152 int nonagle)
2153 {
2154 return partial &&
2155 ((nonagle & TCP_NAGLE_CORK) ||
2156 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2157 }
2158
2159 /* Return how many segs we'd like on a TSO packet,
2160 * depending on current pacing rate, and how close the peer is.
2161 *
2162 * Rationale is:
2163 * - For close peers, we rather send bigger packets to reduce
2164 * cpu costs, because occasional losses will be repaired fast.
2165 * - For long distance/rtt flows, we would like to get ACK clocking
2166 * with 1 ACK per ms.
2167 *
2168 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2169 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2170 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2171 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2172 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2173 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2174 int min_tso_segs)
2175 {
2176 unsigned long bytes;
2177 u32 r;
2178
2179 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2180
2181 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2182 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2183 bytes += sk->sk_gso_max_size >> r;
2184
2185 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2186
2187 return max_t(u32, bytes / mss_now, min_tso_segs);
2188 }
2189
2190 /* Return the number of segments we want in the skb we are transmitting.
2191 * See if congestion control module wants to decide; otherwise, autosize.
2192 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2193 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2194 {
2195 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2196 u32 min_tso, tso_segs;
2197
2198 min_tso = ca_ops->min_tso_segs ?
2199 ca_ops->min_tso_segs(sk) :
2200 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2201
2202 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2203 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2204 }
2205
2206 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2207 static unsigned int tcp_mss_split_point(const struct sock *sk,
2208 const struct sk_buff *skb,
2209 unsigned int mss_now,
2210 unsigned int max_segs,
2211 int nonagle)
2212 {
2213 const struct tcp_sock *tp = tcp_sk(sk);
2214 u32 partial, needed, window, max_len;
2215
2216 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2217 max_len = mss_now * max_segs;
2218
2219 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2220 return max_len;
2221
2222 needed = min(skb->len, window);
2223
2224 if (max_len <= needed)
2225 return max_len;
2226
2227 partial = needed % mss_now;
2228 /* If last segment is not a full MSS, check if Nagle rules allow us
2229 * to include this last segment in this skb.
2230 * Otherwise, we'll split the skb at last MSS boundary
2231 */
2232 if (tcp_nagle_check(partial != 0, tp, nonagle))
2233 return needed - partial;
2234
2235 return needed;
2236 }
2237
2238 /* Can at least one segment of SKB be sent right now, according to the
2239 * congestion window rules? If so, return how many segments are allowed.
2240 */
tcp_cwnd_test(const struct tcp_sock * tp)2241 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2242 {
2243 u32 in_flight, cwnd, halfcwnd;
2244
2245 in_flight = tcp_packets_in_flight(tp);
2246 cwnd = tcp_snd_cwnd(tp);
2247 if (in_flight >= cwnd)
2248 return 0;
2249
2250 /* For better scheduling, ensure we have at least
2251 * 2 GSO packets in flight.
2252 */
2253 halfcwnd = max(cwnd >> 1, 1U);
2254 return min(halfcwnd, cwnd - in_flight);
2255 }
2256
2257 /* Initialize TSO state of a skb.
2258 * This must be invoked the first time we consider transmitting
2259 * SKB onto the wire.
2260 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2261 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2262 {
2263 int tso_segs = tcp_skb_pcount(skb);
2264
2265 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2266 return tcp_set_skb_tso_segs(skb, mss_now);
2267
2268 return tso_segs;
2269 }
2270
2271
2272 /* Return true if the Nagle test allows this packet to be
2273 * sent now.
2274 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2275 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2276 unsigned int cur_mss, int nonagle)
2277 {
2278 /* Nagle rule does not apply to frames, which sit in the middle of the
2279 * write_queue (they have no chances to get new data).
2280 *
2281 * This is implemented in the callers, where they modify the 'nonagle'
2282 * argument based upon the location of SKB in the send queue.
2283 */
2284 if (nonagle & TCP_NAGLE_PUSH)
2285 return true;
2286
2287 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2288 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2289 return true;
2290
2291 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2292 return true;
2293
2294 return false;
2295 }
2296
2297 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2298 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2299 const struct sk_buff *skb,
2300 unsigned int cur_mss)
2301 {
2302 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2303
2304 if (skb->len > cur_mss)
2305 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2306
2307 return !after(end_seq, tcp_wnd_end(tp));
2308 }
2309
2310 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2311 * which is put after SKB on the list. It is very much like
2312 * tcp_fragment() except that it may make several kinds of assumptions
2313 * in order to speed up the splitting operation. In particular, we
2314 * know that all the data is in scatter-gather pages, and that the
2315 * packet has never been sent out before (and thus is not cloned).
2316 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2317 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2318 unsigned int mss_now, gfp_t gfp)
2319 {
2320 int nlen = skb->len - len;
2321 struct sk_buff *buff;
2322 u16 flags;
2323
2324 /* All of a TSO frame must be composed of paged data. */
2325 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2326
2327 buff = tcp_stream_alloc_skb(sk, gfp, true);
2328 if (unlikely(!buff))
2329 return -ENOMEM;
2330 skb_copy_decrypted(buff, skb);
2331 mptcp_skb_ext_copy(buff, skb);
2332
2333 sk_wmem_queued_add(sk, buff->truesize);
2334 sk_mem_charge(sk, buff->truesize);
2335 buff->truesize += nlen;
2336 skb->truesize -= nlen;
2337
2338 /* Correct the sequence numbers. */
2339 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2340 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2341 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2342
2343 /* PSH and FIN should only be set in the second packet. */
2344 flags = TCP_SKB_CB(skb)->tcp_flags;
2345 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2346 TCP_SKB_CB(buff)->tcp_flags = flags;
2347
2348 tcp_skb_fragment_eor(skb, buff);
2349
2350 skb_split(skb, buff, len);
2351 tcp_fragment_tstamp(skb, buff);
2352
2353 /* Fix up tso_factor for both original and new SKB. */
2354 tcp_set_skb_tso_segs(skb, mss_now);
2355 tcp_set_skb_tso_segs(buff, mss_now);
2356
2357 /* Link BUFF into the send queue. */
2358 __skb_header_release(buff);
2359 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2360
2361 return 0;
2362 }
2363
2364 /* Try to defer sending, if possible, in order to minimize the amount
2365 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2366 *
2367 * This algorithm is from John Heffner.
2368 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2369 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2370 bool *is_cwnd_limited,
2371 bool *is_rwnd_limited,
2372 u32 max_segs)
2373 {
2374 const struct inet_connection_sock *icsk = inet_csk(sk);
2375 u32 send_win, cong_win, limit, in_flight, threshold;
2376 u64 srtt_in_ns, expected_ack, how_far_is_the_ack;
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 struct sk_buff *head;
2379 int win_divisor;
2380 s64 delta;
2381
2382 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2383 goto send_now;
2384
2385 /* Avoid bursty behavior by allowing defer
2386 * only if the last write was recent (1 ms).
2387 * Note that tp->tcp_wstamp_ns can be in the future if we have
2388 * packets waiting in a qdisc or device for EDT delivery.
2389 */
2390 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2391 if (delta > 0)
2392 goto send_now;
2393
2394 in_flight = tcp_packets_in_flight(tp);
2395
2396 BUG_ON(tcp_skb_pcount(skb) <= 1);
2397 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2398
2399 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2400
2401 /* From in_flight test above, we know that cwnd > in_flight. */
2402 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2403
2404 limit = min(send_win, cong_win);
2405
2406 /* If a full-sized TSO skb can be sent, do it. */
2407 if (limit >= max_segs * tp->mss_cache)
2408 goto send_now;
2409
2410 /* Middle in queue won't get any more data, full sendable already? */
2411 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2412 goto send_now;
2413
2414 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2415 if (win_divisor) {
2416 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2417
2418 /* If at least some fraction of a window is available,
2419 * just use it.
2420 */
2421 chunk /= win_divisor;
2422 if (limit >= chunk)
2423 goto send_now;
2424 } else {
2425 /* Different approach, try not to defer past a single
2426 * ACK. Receiver should ACK every other full sized
2427 * frame, so if we have space for more than 3 frames
2428 * then send now.
2429 */
2430 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2431 goto send_now;
2432 }
2433
2434 /* TODO : use tsorted_sent_queue ? */
2435 head = tcp_rtx_queue_head(sk);
2436 if (!head)
2437 goto send_now;
2438
2439 srtt_in_ns = (u64)(NSEC_PER_USEC >> 3) * tp->srtt_us;
2440 /* When is the ACK expected ? */
2441 expected_ack = head->tstamp + srtt_in_ns;
2442 /* How far from now is the ACK expected ? */
2443 how_far_is_the_ack = expected_ack - tp->tcp_clock_cache;
2444
2445 /* If next ACK is likely to come too late,
2446 * ie in more than min(1ms, half srtt), do not defer.
2447 */
2448 threshold = min(srtt_in_ns >> 1, NSEC_PER_MSEC);
2449
2450 if ((s64)(how_far_is_the_ack - threshold) > 0)
2451 goto send_now;
2452
2453 /* Ok, it looks like it is advisable to defer.
2454 * Three cases are tracked :
2455 * 1) We are cwnd-limited
2456 * 2) We are rwnd-limited
2457 * 3) We are application limited.
2458 */
2459 if (cong_win < send_win) {
2460 if (cong_win <= skb->len) {
2461 *is_cwnd_limited = true;
2462 return true;
2463 }
2464 } else {
2465 if (send_win <= skb->len) {
2466 *is_rwnd_limited = true;
2467 return true;
2468 }
2469 }
2470
2471 /* If this packet won't get more data, do not wait. */
2472 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2473 TCP_SKB_CB(skb)->eor)
2474 goto send_now;
2475
2476 return true;
2477
2478 send_now:
2479 return false;
2480 }
2481
tcp_mtu_check_reprobe(struct sock * sk)2482 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2483 {
2484 struct inet_connection_sock *icsk = inet_csk(sk);
2485 struct tcp_sock *tp = tcp_sk(sk);
2486 struct net *net = sock_net(sk);
2487 u32 interval;
2488 s32 delta;
2489
2490 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2491 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2492 if (unlikely(delta >= interval * HZ)) {
2493 int mss = tcp_current_mss(sk);
2494
2495 /* Update current search range */
2496 icsk->icsk_mtup.probe_size = 0;
2497 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2498 sizeof(struct tcphdr) +
2499 icsk->icsk_af_ops->net_header_len;
2500 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2501
2502 /* Update probe time stamp */
2503 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2504 }
2505 }
2506
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2507 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2508 {
2509 struct sk_buff *skb, *next;
2510
2511 skb = tcp_send_head(sk);
2512 tcp_for_write_queue_from_safe(skb, next, sk) {
2513 if (len <= skb->len)
2514 break;
2515
2516 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2517 return false;
2518
2519 len -= skb->len;
2520 }
2521
2522 return true;
2523 }
2524
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2525 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2526 int probe_size)
2527 {
2528 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2529 int i, todo, len = 0, nr_frags = 0;
2530 const struct sk_buff *skb;
2531
2532 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2533 return -ENOMEM;
2534
2535 skb_queue_walk(&sk->sk_write_queue, skb) {
2536 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2537
2538 if (skb_headlen(skb))
2539 return -EINVAL;
2540
2541 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2542 if (len >= probe_size)
2543 goto commit;
2544 todo = min_t(int, skb_frag_size(fragfrom),
2545 probe_size - len);
2546 len += todo;
2547 if (lastfrag &&
2548 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2549 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2550 skb_frag_size(lastfrag)) {
2551 skb_frag_size_add(lastfrag, todo);
2552 continue;
2553 }
2554 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2555 return -E2BIG;
2556 skb_frag_page_copy(fragto, fragfrom);
2557 skb_frag_off_copy(fragto, fragfrom);
2558 skb_frag_size_set(fragto, todo);
2559 nr_frags++;
2560 lastfrag = fragto++;
2561 }
2562 }
2563 commit:
2564 WARN_ON_ONCE(len != probe_size);
2565 for (i = 0; i < nr_frags; i++)
2566 skb_frag_ref(to, i);
2567
2568 skb_shinfo(to)->nr_frags = nr_frags;
2569 to->truesize += probe_size;
2570 to->len += probe_size;
2571 to->data_len += probe_size;
2572 __skb_header_release(to);
2573 return 0;
2574 }
2575
2576 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2577 * all its payload was moved to another one (dst).
2578 * Make sure to transfer tcp_flags, eor, and tstamp.
2579 */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2580 static void tcp_eat_one_skb(struct sock *sk,
2581 struct sk_buff *dst,
2582 struct sk_buff *src)
2583 {
2584 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2585 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2586 tcp_skb_collapse_tstamp(dst, src);
2587 tcp_unlink_write_queue(src, sk);
2588 tcp_wmem_free_skb(sk, src);
2589 }
2590
2591 /* Create a new MTU probe if we are ready.
2592 * MTU probe is regularly attempting to increase the path MTU by
2593 * deliberately sending larger packets. This discovers routing
2594 * changes resulting in larger path MTUs.
2595 *
2596 * Returns 0 if we should wait to probe (no cwnd available),
2597 * 1 if a probe was sent,
2598 * -1 otherwise
2599 */
tcp_mtu_probe(struct sock * sk)2600 static int tcp_mtu_probe(struct sock *sk)
2601 {
2602 struct inet_connection_sock *icsk = inet_csk(sk);
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 struct sk_buff *skb, *nskb, *next;
2605 struct net *net = sock_net(sk);
2606 int probe_size;
2607 int size_needed;
2608 int copy, len;
2609 int mss_now;
2610 int interval;
2611
2612 /* Not currently probing/verifying,
2613 * not in recovery,
2614 * have enough cwnd, and
2615 * not SACKing (the variable headers throw things off)
2616 */
2617 if (likely(!icsk->icsk_mtup.enabled ||
2618 icsk->icsk_mtup.probe_size ||
2619 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2620 tcp_snd_cwnd(tp) < 11 ||
2621 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2622 return -1;
2623
2624 /* Use binary search for probe_size between tcp_mss_base,
2625 * and current mss_clamp. if (search_high - search_low)
2626 * smaller than a threshold, backoff from probing.
2627 */
2628 mss_now = tcp_current_mss(sk);
2629 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2630 icsk->icsk_mtup.search_low) >> 1);
2631 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2632 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2633 /* When misfortune happens, we are reprobing actively,
2634 * and then reprobe timer has expired. We stick with current
2635 * probing process by not resetting search range to its orignal.
2636 */
2637 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2638 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2639 /* Check whether enough time has elaplased for
2640 * another round of probing.
2641 */
2642 tcp_mtu_check_reprobe(sk);
2643 return -1;
2644 }
2645
2646 /* Have enough data in the send queue to probe? */
2647 if (tp->write_seq - tp->snd_nxt < size_needed)
2648 return -1;
2649
2650 if (tp->snd_wnd < size_needed)
2651 return -1;
2652 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2653 return 0;
2654
2655 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2656 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2657 if (!tcp_packets_in_flight(tp))
2658 return -1;
2659 else
2660 return 0;
2661 }
2662
2663 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2664 return -1;
2665
2666 /* We're allowed to probe. Build it now. */
2667 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2668 if (!nskb)
2669 return -1;
2670
2671 /* build the payload, and be prepared to abort if this fails. */
2672 if (tcp_clone_payload(sk, nskb, probe_size)) {
2673 tcp_skb_tsorted_anchor_cleanup(nskb);
2674 consume_skb(nskb);
2675 return -1;
2676 }
2677 sk_wmem_queued_add(sk, nskb->truesize);
2678 sk_mem_charge(sk, nskb->truesize);
2679
2680 skb = tcp_send_head(sk);
2681 skb_copy_decrypted(nskb, skb);
2682 mptcp_skb_ext_copy(nskb, skb);
2683
2684 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2685 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2686 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2687
2688 tcp_insert_write_queue_before(nskb, skb, sk);
2689 tcp_highest_sack_replace(sk, skb, nskb);
2690
2691 len = 0;
2692 tcp_for_write_queue_from_safe(skb, next, sk) {
2693 copy = min_t(int, skb->len, probe_size - len);
2694
2695 if (skb->len <= copy) {
2696 tcp_eat_one_skb(sk, nskb, skb);
2697 } else {
2698 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2699 ~(TCPHDR_FIN|TCPHDR_PSH);
2700 __pskb_trim_head(skb, copy);
2701 tcp_set_skb_tso_segs(skb, mss_now);
2702 TCP_SKB_CB(skb)->seq += copy;
2703 }
2704
2705 len += copy;
2706
2707 if (len >= probe_size)
2708 break;
2709 }
2710 tcp_init_tso_segs(nskb, nskb->len);
2711
2712 /* We're ready to send. If this fails, the probe will
2713 * be resegmented into mss-sized pieces by tcp_write_xmit().
2714 */
2715 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2716 /* Decrement cwnd here because we are sending
2717 * effectively two packets. */
2718 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2719 tcp_event_new_data_sent(sk, nskb);
2720
2721 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2722 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2723 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2724
2725 return 1;
2726 }
2727
2728 return -1;
2729 }
2730
tcp_pacing_check(struct sock * sk)2731 static bool tcp_pacing_check(struct sock *sk)
2732 {
2733 struct tcp_sock *tp = tcp_sk(sk);
2734
2735 if (!tcp_needs_internal_pacing(sk))
2736 return false;
2737
2738 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2739 return false;
2740
2741 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2742 hrtimer_start(&tp->pacing_timer,
2743 ns_to_ktime(tp->tcp_wstamp_ns),
2744 HRTIMER_MODE_ABS_PINNED_SOFT);
2745 sock_hold(sk);
2746 }
2747 return true;
2748 }
2749
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2750 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2751 {
2752 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2753
2754 /* No skb in the rtx queue. */
2755 if (!node)
2756 return true;
2757
2758 /* Only one skb in rtx queue. */
2759 return !node->rb_left && !node->rb_right;
2760 }
2761
2762 /* TCP Small Queues :
2763 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2764 * (These limits are doubled for retransmits)
2765 * This allows for :
2766 * - better RTT estimation and ACK scheduling
2767 * - faster recovery
2768 * - high rates
2769 * Alas, some drivers / subsystems require a fair amount
2770 * of queued bytes to ensure line rate.
2771 * One example is wifi aggregation (802.11 AMPDU)
2772 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2773 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2774 unsigned int factor)
2775 {
2776 unsigned long limit;
2777
2778 limit = max_t(unsigned long,
2779 2 * skb->truesize,
2780 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2781 limit = min_t(unsigned long, limit,
2782 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2783 limit <<= factor;
2784
2785 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2786 tcp_sk(sk)->tcp_tx_delay) {
2787 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2788 tcp_sk(sk)->tcp_tx_delay;
2789
2790 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2791 * approximate our needs assuming an ~100% skb->truesize overhead.
2792 * USEC_PER_SEC is approximated by 2^20.
2793 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2794 */
2795 extra_bytes >>= (20 - 1);
2796 limit += extra_bytes;
2797 }
2798 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2799 /* Always send skb if rtx queue is empty or has one skb.
2800 * No need to wait for TX completion to call us back,
2801 * after softirq schedule.
2802 * This helps when TX completions are delayed too much.
2803 */
2804 if (tcp_rtx_queue_empty_or_single_skb(sk))
2805 return false;
2806
2807 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2808 /* It is possible TX completion already happened
2809 * before we set TSQ_THROTTLED, so we must
2810 * test again the condition.
2811 */
2812 smp_mb__after_atomic();
2813 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2814 return true;
2815 }
2816 return false;
2817 }
2818
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2819 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2820 {
2821 const u32 now = tcp_jiffies32;
2822 enum tcp_chrono old = tp->chrono_type;
2823
2824 if (old > TCP_CHRONO_UNSPEC)
2825 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2826 tp->chrono_start = now;
2827 tp->chrono_type = new;
2828 }
2829
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2830 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2831 {
2832 struct tcp_sock *tp = tcp_sk(sk);
2833
2834 /* If there are multiple conditions worthy of tracking in a
2835 * chronograph then the highest priority enum takes precedence
2836 * over the other conditions. So that if something "more interesting"
2837 * starts happening, stop the previous chrono and start a new one.
2838 */
2839 if (type > tp->chrono_type)
2840 tcp_chrono_set(tp, type);
2841 }
2842
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2843 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2844 {
2845 struct tcp_sock *tp = tcp_sk(sk);
2846
2847
2848 /* There are multiple conditions worthy of tracking in a
2849 * chronograph, so that the highest priority enum takes
2850 * precedence over the other conditions (see tcp_chrono_start).
2851 * If a condition stops, we only stop chrono tracking if
2852 * it's the "most interesting" or current chrono we are
2853 * tracking and starts busy chrono if we have pending data.
2854 */
2855 if (tcp_rtx_and_write_queues_empty(sk))
2856 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2857 else if (type == tp->chrono_type)
2858 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2859 }
2860
2861 /* First skb in the write queue is smaller than ideal packet size.
2862 * Check if we can move payload from the second skb in the queue.
2863 */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2864 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2865 {
2866 struct sk_buff *next_skb = skb->next;
2867 unsigned int nlen;
2868
2869 if (tcp_skb_is_last(sk, skb))
2870 return;
2871
2872 if (!tcp_skb_can_collapse(skb, next_skb))
2873 return;
2874
2875 nlen = min_t(u32, amount, next_skb->len);
2876 if (!nlen || !skb_shift(skb, next_skb, nlen))
2877 return;
2878
2879 TCP_SKB_CB(skb)->end_seq += nlen;
2880 TCP_SKB_CB(next_skb)->seq += nlen;
2881
2882 if (!next_skb->len) {
2883 /* In case FIN is set, we need to update end_seq */
2884 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2885
2886 tcp_eat_one_skb(sk, skb, next_skb);
2887 }
2888 }
2889
2890 /* This routine writes packets to the network. It advances the
2891 * send_head. This happens as incoming acks open up the remote
2892 * window for us.
2893 *
2894 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2895 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2896 * account rare use of URG, this is not a big flaw.
2897 *
2898 * Send at most one packet when push_one > 0. Temporarily ignore
2899 * cwnd limit to force at most one packet out when push_one == 2.
2900
2901 * Returns true, if no segments are in flight and we have queued segments,
2902 * but cannot send anything now because of SWS or another problem.
2903 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2904 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2905 int push_one, gfp_t gfp)
2906 {
2907 struct tcp_sock *tp = tcp_sk(sk);
2908 struct sk_buff *skb;
2909 unsigned int tso_segs, sent_pkts;
2910 u32 cwnd_quota, max_segs;
2911 int result;
2912 bool is_cwnd_limited = false, is_rwnd_limited = false;
2913
2914 sent_pkts = 0;
2915
2916 tcp_mstamp_refresh(tp);
2917
2918 /* AccECN option beacon depends on mstamp, it may change mss */
2919 if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk))
2920 mss_now = tcp_current_mss(sk);
2921
2922 if (!push_one) {
2923 /* Do MTU probing. */
2924 result = tcp_mtu_probe(sk);
2925 if (!result) {
2926 return false;
2927 } else if (result > 0) {
2928 sent_pkts = 1;
2929 }
2930 }
2931
2932 max_segs = tcp_tso_segs(sk, mss_now);
2933 while ((skb = tcp_send_head(sk))) {
2934 unsigned int limit;
2935 int missing_bytes;
2936
2937 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2938 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2939 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2940 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2941 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2942 tcp_init_tso_segs(skb, mss_now);
2943 goto repair; /* Skip network transmission */
2944 }
2945
2946 if (tcp_pacing_check(sk))
2947 break;
2948
2949 cwnd_quota = tcp_cwnd_test(tp);
2950 if (!cwnd_quota) {
2951 if (push_one == 2)
2952 /* Force out a loss probe pkt. */
2953 cwnd_quota = 1;
2954 else
2955 break;
2956 }
2957 cwnd_quota = min(cwnd_quota, max_segs);
2958 missing_bytes = cwnd_quota * mss_now - skb->len;
2959 if (missing_bytes > 0)
2960 tcp_grow_skb(sk, skb, missing_bytes);
2961
2962 tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2963
2964 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2965 is_rwnd_limited = true;
2966 break;
2967 }
2968
2969 if (tso_segs == 1) {
2970 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2971 (tcp_skb_is_last(sk, skb) ?
2972 nonagle : TCP_NAGLE_PUSH))))
2973 break;
2974 } else {
2975 if (!push_one &&
2976 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2977 &is_rwnd_limited, max_segs))
2978 break;
2979 }
2980
2981 limit = mss_now;
2982 if (tso_segs > 1 && !tcp_urg_mode(tp))
2983 limit = tcp_mss_split_point(sk, skb, mss_now,
2984 cwnd_quota,
2985 nonagle);
2986
2987 if (skb->len > limit &&
2988 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2989 break;
2990
2991 if (tcp_small_queue_check(sk, skb, 0))
2992 break;
2993
2994 /* Argh, we hit an empty skb(), presumably a thread
2995 * is sleeping in sendmsg()/sk_stream_wait_memory().
2996 * We do not want to send a pure-ack packet and have
2997 * a strange looking rtx queue with empty packet(s).
2998 */
2999 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
3000 break;
3001
3002 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
3003 break;
3004
3005 repair:
3006 /* Advance the send_head. This one is sent out.
3007 * This call will increment packets_out.
3008 */
3009 tcp_event_new_data_sent(sk, skb);
3010
3011 tcp_minshall_update(tp, mss_now, skb);
3012 sent_pkts += tcp_skb_pcount(skb);
3013
3014 if (push_one)
3015 break;
3016 }
3017
3018 if (is_rwnd_limited)
3019 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
3020 else
3021 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
3022
3023 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
3024 if (likely(sent_pkts || is_cwnd_limited))
3025 tcp_cwnd_validate(sk, is_cwnd_limited);
3026
3027 if (likely(sent_pkts)) {
3028 if (tcp_in_cwnd_reduction(sk))
3029 tp->prr_out += sent_pkts;
3030
3031 /* Send one loss probe per tail loss episode. */
3032 if (push_one != 2)
3033 tcp_schedule_loss_probe(sk, false);
3034 return false;
3035 }
3036 return !tp->packets_out && !tcp_write_queue_empty(sk);
3037 }
3038
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)3039 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
3040 {
3041 struct inet_connection_sock *icsk = inet_csk(sk);
3042 struct tcp_sock *tp = tcp_sk(sk);
3043 u32 timeout, timeout_us, rto_delta_us;
3044 int early_retrans;
3045
3046 /* Don't do any loss probe on a Fast Open connection before 3WHS
3047 * finishes.
3048 */
3049 if (rcu_access_pointer(tp->fastopen_rsk))
3050 return false;
3051
3052 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
3053 /* Schedule a loss probe in 2*RTT for SACK capable connections
3054 * not in loss recovery, that are either limited by cwnd or application.
3055 */
3056 if ((early_retrans != 3 && early_retrans != 4) ||
3057 !tp->packets_out || !tcp_is_sack(tp) ||
3058 (icsk->icsk_ca_state != TCP_CA_Open &&
3059 icsk->icsk_ca_state != TCP_CA_CWR))
3060 return false;
3061
3062 /* Probe timeout is 2*rtt. Add minimum RTO to account
3063 * for delayed ack when there's one outstanding packet. If no RTT
3064 * sample is available then probe after TCP_TIMEOUT_INIT.
3065 */
3066 if (tp->srtt_us) {
3067 timeout_us = tp->srtt_us >> 2;
3068 if (tp->packets_out == 1)
3069 timeout_us += tcp_rto_min_us(sk);
3070 else
3071 timeout_us += TCP_TIMEOUT_MIN_US;
3072 timeout = usecs_to_jiffies(timeout_us);
3073 } else {
3074 timeout = TCP_TIMEOUT_INIT;
3075 }
3076
3077 /* If the RTO formula yields an earlier time, then use that time. */
3078 rto_delta_us = advancing_rto ?
3079 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
3080 tcp_rto_delta_us(sk); /* How far in future is RTO? */
3081 if (rto_delta_us > 0)
3082 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
3083
3084 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
3085 return true;
3086 }
3087
3088 /* Thanks to skb fast clones, we can detect if a prior transmit of
3089 * a packet is still in a qdisc or driver queue.
3090 * In this case, there is very little point doing a retransmit !
3091 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)3092 static bool skb_still_in_host_queue(struct sock *sk,
3093 const struct sk_buff *skb)
3094 {
3095 if (unlikely(skb_fclone_busy(sk, skb))) {
3096 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
3097 smp_mb__after_atomic();
3098 if (skb_fclone_busy(sk, skb)) {
3099 NET_INC_STATS(sock_net(sk),
3100 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
3101 return true;
3102 }
3103 }
3104 return false;
3105 }
3106
3107 /* When probe timeout (PTO) fires, try send a new segment if possible, else
3108 * retransmit the last segment.
3109 */
tcp_send_loss_probe(struct sock * sk)3110 void tcp_send_loss_probe(struct sock *sk)
3111 {
3112 struct tcp_sock *tp = tcp_sk(sk);
3113 struct sk_buff *skb;
3114 int pcount;
3115 int mss = tcp_current_mss(sk);
3116
3117 /* At most one outstanding TLP */
3118 if (tp->tlp_high_seq)
3119 goto rearm_timer;
3120
3121 tp->tlp_retrans = 0;
3122 skb = tcp_send_head(sk);
3123 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
3124 pcount = tp->packets_out;
3125 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
3126 if (tp->packets_out > pcount)
3127 goto probe_sent;
3128 goto rearm_timer;
3129 }
3130 skb = skb_rb_last(&sk->tcp_rtx_queue);
3131 if (unlikely(!skb)) {
3132 tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
3133 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3134 return;
3135 }
3136
3137 if (skb_still_in_host_queue(sk, skb))
3138 goto rearm_timer;
3139
3140 pcount = tcp_skb_pcount(skb);
3141 if (WARN_ON(!pcount))
3142 goto rearm_timer;
3143
3144 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
3145 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
3146 (pcount - 1) * mss, mss,
3147 GFP_ATOMIC)))
3148 goto rearm_timer;
3149 skb = skb_rb_next(skb);
3150 }
3151
3152 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
3153 goto rearm_timer;
3154
3155 if (__tcp_retransmit_skb(sk, skb, 1))
3156 goto rearm_timer;
3157
3158 tp->tlp_retrans = 1;
3159
3160 probe_sent:
3161 /* Record snd_nxt for loss detection. */
3162 tp->tlp_high_seq = tp->snd_nxt;
3163
3164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3165 /* Reset s.t. tcp_rearm_rto will restart timer from now */
3166 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3167 rearm_timer:
3168 tcp_rearm_rto(sk);
3169 }
3170
3171 /* Push out any pending frames which were held back due to
3172 * TCP_CORK or attempt at coalescing tiny packets.
3173 * The socket must be locked by the caller.
3174 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3175 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3176 int nonagle)
3177 {
3178 /* If we are closed, the bytes will have to remain here.
3179 * In time closedown will finish, we empty the write queue and
3180 * all will be happy.
3181 */
3182 if (unlikely(sk->sk_state == TCP_CLOSE))
3183 return;
3184
3185 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3186 sk_gfp_mask(sk, GFP_ATOMIC)))
3187 tcp_check_probe_timer(sk);
3188 }
3189
3190 /* Send _single_ skb sitting at the send head. This function requires
3191 * true push pending frames to setup probe timer etc.
3192 */
tcp_push_one(struct sock * sk,unsigned int mss_now)3193 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3194 {
3195 struct sk_buff *skb = tcp_send_head(sk);
3196
3197 BUG_ON(!skb || skb->len < mss_now);
3198
3199 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3200 }
3201
3202 /* This function returns the amount that we can raise the
3203 * usable window based on the following constraints
3204 *
3205 * 1. The window can never be shrunk once it is offered (RFC 793)
3206 * 2. We limit memory per socket
3207 *
3208 * RFC 1122:
3209 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3210 * RECV.NEXT + RCV.WIN fixed until:
3211 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3212 *
3213 * i.e. don't raise the right edge of the window until you can raise
3214 * it at least MSS bytes.
3215 *
3216 * Unfortunately, the recommended algorithm breaks header prediction,
3217 * since header prediction assumes th->window stays fixed.
3218 *
3219 * Strictly speaking, keeping th->window fixed violates the receiver
3220 * side SWS prevention criteria. The problem is that under this rule
3221 * a stream of single byte packets will cause the right side of the
3222 * window to always advance by a single byte.
3223 *
3224 * Of course, if the sender implements sender side SWS prevention
3225 * then this will not be a problem.
3226 *
3227 * BSD seems to make the following compromise:
3228 *
3229 * If the free space is less than the 1/4 of the maximum
3230 * space available and the free space is less than 1/2 mss,
3231 * then set the window to 0.
3232 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3233 * Otherwise, just prevent the window from shrinking
3234 * and from being larger than the largest representable value.
3235 *
3236 * This prevents incremental opening of the window in the regime
3237 * where TCP is limited by the speed of the reader side taking
3238 * data out of the TCP receive queue. It does nothing about
3239 * those cases where the window is constrained on the sender side
3240 * because the pipeline is full.
3241 *
3242 * BSD also seems to "accidentally" limit itself to windows that are a
3243 * multiple of MSS, at least until the free space gets quite small.
3244 * This would appear to be a side effect of the mbuf implementation.
3245 * Combining these two algorithms results in the observed behavior
3246 * of having a fixed window size at almost all times.
3247 *
3248 * Below we obtain similar behavior by forcing the offered window to
3249 * a multiple of the mss when it is feasible to do so.
3250 *
3251 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3252 * Regular options like TIMESTAMP are taken into account.
3253 */
__tcp_select_window(struct sock * sk)3254 u32 __tcp_select_window(struct sock *sk)
3255 {
3256 struct inet_connection_sock *icsk = inet_csk(sk);
3257 struct tcp_sock *tp = tcp_sk(sk);
3258 struct net *net = sock_net(sk);
3259 /* MSS for the peer's data. Previous versions used mss_clamp
3260 * here. I don't know if the value based on our guesses
3261 * of peer's MSS is better for the performance. It's more correct
3262 * but may be worse for the performance because of rcv_mss
3263 * fluctuations. --SAW 1998/11/1
3264 */
3265 int mss = icsk->icsk_ack.rcv_mss;
3266 int free_space = tcp_space(sk);
3267 int allowed_space = tcp_full_space(sk);
3268 int full_space, window;
3269
3270 if (sk_is_mptcp(sk))
3271 mptcp_space(sk, &free_space, &allowed_space);
3272
3273 full_space = min_t(int, tp->window_clamp, allowed_space);
3274
3275 if (unlikely(mss > full_space)) {
3276 mss = full_space;
3277 if (mss <= 0)
3278 return 0;
3279 }
3280
3281 /* Only allow window shrink if the sysctl is enabled and we have
3282 * a non-zero scaling factor in effect.
3283 */
3284 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3285 goto shrink_window_allowed;
3286
3287 /* do not allow window to shrink */
3288
3289 if (free_space < (full_space >> 1)) {
3290 icsk->icsk_ack.quick = 0;
3291
3292 if (tcp_under_memory_pressure(sk))
3293 tcp_adjust_rcv_ssthresh(sk);
3294
3295 /* free_space might become our new window, make sure we don't
3296 * increase it due to wscale.
3297 */
3298 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3299
3300 /* if free space is less than mss estimate, or is below 1/16th
3301 * of the maximum allowed, try to move to zero-window, else
3302 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3303 * new incoming data is dropped due to memory limits.
3304 * With large window, mss test triggers way too late in order
3305 * to announce zero window in time before rmem limit kicks in.
3306 */
3307 if (free_space < (allowed_space >> 4) || free_space < mss)
3308 return 0;
3309 }
3310
3311 if (free_space > tp->rcv_ssthresh)
3312 free_space = tp->rcv_ssthresh;
3313
3314 /* Don't do rounding if we are using window scaling, since the
3315 * scaled window will not line up with the MSS boundary anyway.
3316 */
3317 if (tp->rx_opt.rcv_wscale) {
3318 window = free_space;
3319
3320 /* Advertise enough space so that it won't get scaled away.
3321 * Import case: prevent zero window announcement if
3322 * 1<<rcv_wscale > mss.
3323 */
3324 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3325 } else {
3326 window = tp->rcv_wnd;
3327 /* Get the largest window that is a nice multiple of mss.
3328 * Window clamp already applied above.
3329 * If our current window offering is within 1 mss of the
3330 * free space we just keep it. This prevents the divide
3331 * and multiply from happening most of the time.
3332 * We also don't do any window rounding when the free space
3333 * is too small.
3334 */
3335 if (window <= free_space - mss || window > free_space)
3336 window = rounddown(free_space, mss);
3337 else if (mss == full_space &&
3338 free_space > window + (full_space >> 1))
3339 window = free_space;
3340 }
3341
3342 return window;
3343
3344 shrink_window_allowed:
3345 /* new window should always be an exact multiple of scaling factor */
3346 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3347
3348 if (free_space < (full_space >> 1)) {
3349 icsk->icsk_ack.quick = 0;
3350
3351 if (tcp_under_memory_pressure(sk))
3352 tcp_adjust_rcv_ssthresh(sk);
3353
3354 /* if free space is too low, return a zero window */
3355 if (free_space < (allowed_space >> 4) || free_space < mss ||
3356 free_space < (1 << tp->rx_opt.rcv_wscale))
3357 return 0;
3358 }
3359
3360 if (free_space > tp->rcv_ssthresh) {
3361 free_space = tp->rcv_ssthresh;
3362 /* new window should always be an exact multiple of scaling factor
3363 *
3364 * For this case, we ALIGN "up" (increase free_space) because
3365 * we know free_space is not zero here, it has been reduced from
3366 * the memory-based limit, and rcv_ssthresh is not a hard limit
3367 * (unlike sk_rcvbuf).
3368 */
3369 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3370 }
3371
3372 return free_space;
3373 }
3374
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3375 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3376 const struct sk_buff *next_skb)
3377 {
3378 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3379 const struct skb_shared_info *next_shinfo =
3380 skb_shinfo(next_skb);
3381 struct skb_shared_info *shinfo = skb_shinfo(skb);
3382
3383 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3384 shinfo->tskey = next_shinfo->tskey;
3385 TCP_SKB_CB(skb)->txstamp_ack |=
3386 TCP_SKB_CB(next_skb)->txstamp_ack;
3387 }
3388 }
3389
3390 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3391 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3392 {
3393 struct tcp_sock *tp = tcp_sk(sk);
3394 struct sk_buff *next_skb = skb_rb_next(skb);
3395 int next_skb_size;
3396
3397 next_skb_size = next_skb->len;
3398
3399 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3400
3401 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3402 return false;
3403
3404 tcp_highest_sack_replace(sk, next_skb, skb);
3405
3406 /* Update sequence range on original skb. */
3407 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3408
3409 /* Merge over control information. This moves PSH/FIN etc. over */
3410 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3411
3412 /* All done, get rid of second SKB and account for it so
3413 * packet counting does not break.
3414 */
3415 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3416 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3417
3418 /* changed transmit queue under us so clear hints */
3419 if (next_skb == tp->retransmit_skb_hint)
3420 tp->retransmit_skb_hint = skb;
3421
3422 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3423
3424 tcp_skb_collapse_tstamp(skb, next_skb);
3425
3426 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3427 return true;
3428 }
3429
3430 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3431 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3432 {
3433 if (tcp_skb_pcount(skb) > 1)
3434 return false;
3435 if (skb_cloned(skb))
3436 return false;
3437 if (!skb_frags_readable(skb))
3438 return false;
3439 /* Some heuristics for collapsing over SACK'd could be invented */
3440 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3441 return false;
3442
3443 return true;
3444 }
3445
3446 /* Collapse packets in the retransmit queue to make to create
3447 * less packets on the wire. This is only done on retransmission.
3448 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3449 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3450 int space)
3451 {
3452 struct tcp_sock *tp = tcp_sk(sk);
3453 struct sk_buff *skb = to, *tmp;
3454 bool first = true;
3455
3456 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3457 return;
3458 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3459 return;
3460
3461 skb_rbtree_walk_from_safe(skb, tmp) {
3462 if (!tcp_can_collapse(sk, skb))
3463 break;
3464
3465 if (!tcp_skb_can_collapse(to, skb))
3466 break;
3467
3468 space -= skb->len;
3469
3470 if (first) {
3471 first = false;
3472 continue;
3473 }
3474
3475 if (space < 0)
3476 break;
3477
3478 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3479 break;
3480
3481 if (!tcp_collapse_retrans(sk, to))
3482 break;
3483 }
3484 }
3485
3486 /* This retransmits one SKB. Policy decisions and retransmit queue
3487 * state updates are done by the caller. Returns non-zero if an
3488 * error occurred which prevented the send.
3489 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3490 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3491 {
3492 struct inet_connection_sock *icsk = inet_csk(sk);
3493 struct tcp_sock *tp = tcp_sk(sk);
3494 unsigned int cur_mss;
3495 int diff, len, err;
3496 int avail_wnd;
3497
3498 /* Inconclusive MTU probe */
3499 if (icsk->icsk_mtup.probe_size)
3500 icsk->icsk_mtup.probe_size = 0;
3501
3502 if (skb_still_in_host_queue(sk, skb)) {
3503 err = -EBUSY;
3504 goto out;
3505 }
3506
3507 start:
3508 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3509 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3510 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3511 TCP_SKB_CB(skb)->seq++;
3512 goto start;
3513 }
3514 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3515 WARN_ON_ONCE(1);
3516 err = -EINVAL;
3517 goto out;
3518 }
3519 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3520 err = -ENOMEM;
3521 goto out;
3522 }
3523 }
3524
3525 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3526 err = -EHOSTUNREACH; /* Routing failure or similar. */
3527 goto out;
3528 }
3529
3530 cur_mss = tcp_current_mss(sk);
3531 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3532
3533 /* If receiver has shrunk his window, and skb is out of
3534 * new window, do not retransmit it. The exception is the
3535 * case, when window is shrunk to zero. In this case
3536 * our retransmit of one segment serves as a zero window probe.
3537 */
3538 if (avail_wnd <= 0) {
3539 if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3540 err = -EAGAIN;
3541 goto out;
3542 }
3543 avail_wnd = cur_mss;
3544 }
3545
3546 len = cur_mss * segs;
3547 if (len > avail_wnd) {
3548 len = rounddown(avail_wnd, cur_mss);
3549 if (!len)
3550 len = avail_wnd;
3551 }
3552 if (skb->len > len) {
3553 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3554 cur_mss, GFP_ATOMIC)) {
3555 err = -ENOMEM; /* We'll try again later. */
3556 goto out;
3557 }
3558 } else {
3559 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3560 err = -ENOMEM;
3561 goto out;
3562 }
3563
3564 diff = tcp_skb_pcount(skb);
3565 tcp_set_skb_tso_segs(skb, cur_mss);
3566 diff -= tcp_skb_pcount(skb);
3567 if (diff)
3568 tcp_adjust_pcount(sk, skb, diff);
3569 avail_wnd = min_t(int, avail_wnd, cur_mss);
3570 if (skb->len < avail_wnd)
3571 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3572 }
3573
3574 /* RFC3168, section 6.1.1.1. ECN fallback
3575 * As AccECN uses the same SYN flags (+ AE), this check covers both
3576 * cases.
3577 */
3578 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3579 tcp_ecn_clear_syn(sk, skb);
3580
3581 /* Update global and local TCP statistics. */
3582 segs = tcp_skb_pcount(skb);
3583 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3584 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3585 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3586 tp->total_retrans += segs;
3587 tp->bytes_retrans += skb->len;
3588
3589 /* make sure skb->data is aligned on arches that require it
3590 * and check if ack-trimming & collapsing extended the headroom
3591 * beyond what csum_start can cover.
3592 */
3593 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3594 skb_headroom(skb) >= 0xFFFF)) {
3595 struct sk_buff *nskb;
3596
3597 tcp_skb_tsorted_save(skb) {
3598 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3599 if (nskb) {
3600 nskb->dev = NULL;
3601 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3602 } else {
3603 err = -ENOBUFS;
3604 }
3605 } tcp_skb_tsorted_restore(skb);
3606
3607 if (!err) {
3608 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3609 tcp_rate_skb_sent(sk, skb);
3610 }
3611 } else {
3612 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3613 }
3614
3615 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3616 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3617 TCP_SKB_CB(skb)->seq, segs, err);
3618
3619 if (unlikely(err) && err != -EBUSY)
3620 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3621
3622 /* To avoid taking spuriously low RTT samples based on a timestamp
3623 * for a transmit that never happened, always mark EVER_RETRANS
3624 */
3625 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3626
3627 out:
3628 trace_tcp_retransmit_skb(sk, skb, err);
3629 return err;
3630 }
3631
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3632 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3633 {
3634 struct tcp_sock *tp = tcp_sk(sk);
3635 int err = __tcp_retransmit_skb(sk, skb, segs);
3636
3637 if (err == 0) {
3638 #if FASTRETRANS_DEBUG > 0
3639 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3640 net_dbg_ratelimited("retrans_out leaked\n");
3641 }
3642 #endif
3643 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3644 tp->retrans_out += tcp_skb_pcount(skb);
3645 }
3646
3647 /* Save stamp of the first (attempted) retransmit. */
3648 if (!tp->retrans_stamp)
3649 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3650
3651 if (tp->undo_retrans < 0)
3652 tp->undo_retrans = 0;
3653 tp->undo_retrans += tcp_skb_pcount(skb);
3654 return err;
3655 }
3656
3657 /* This gets called after a retransmit timeout, and the initially
3658 * retransmitted data is acknowledged. It tries to continue
3659 * resending the rest of the retransmit queue, until either
3660 * we've sent it all or the congestion window limit is reached.
3661 */
tcp_xmit_retransmit_queue(struct sock * sk)3662 void tcp_xmit_retransmit_queue(struct sock *sk)
3663 {
3664 const struct inet_connection_sock *icsk = inet_csk(sk);
3665 struct sk_buff *skb, *rtx_head, *hole = NULL;
3666 struct tcp_sock *tp = tcp_sk(sk);
3667 bool rearm_timer = false;
3668 u32 max_segs;
3669 int mib_idx;
3670
3671 if (!tp->packets_out)
3672 return;
3673
3674 rtx_head = tcp_rtx_queue_head(sk);
3675 skb = tp->retransmit_skb_hint ?: rtx_head;
3676 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3677 skb_rbtree_walk_from(skb) {
3678 __u8 sacked;
3679 int segs;
3680
3681 if (tcp_pacing_check(sk))
3682 break;
3683
3684 /* we could do better than to assign each time */
3685 if (!hole)
3686 tp->retransmit_skb_hint = skb;
3687
3688 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3689 if (segs <= 0)
3690 break;
3691 sacked = TCP_SKB_CB(skb)->sacked;
3692 /* In case tcp_shift_skb_data() have aggregated large skbs,
3693 * we need to make sure not sending too bigs TSO packets
3694 */
3695 segs = min_t(int, segs, max_segs);
3696
3697 if (tp->retrans_out >= tp->lost_out) {
3698 break;
3699 } else if (!(sacked & TCPCB_LOST)) {
3700 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3701 hole = skb;
3702 continue;
3703
3704 } else {
3705 if (icsk->icsk_ca_state != TCP_CA_Loss)
3706 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3707 else
3708 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3709 }
3710
3711 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3712 continue;
3713
3714 if (tcp_small_queue_check(sk, skb, 1))
3715 break;
3716
3717 if (tcp_retransmit_skb(sk, skb, segs))
3718 break;
3719
3720 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3721
3722 if (tcp_in_cwnd_reduction(sk))
3723 tp->prr_out += tcp_skb_pcount(skb);
3724
3725 if (skb == rtx_head &&
3726 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3727 rearm_timer = true;
3728
3729 }
3730 if (rearm_timer)
3731 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3732 inet_csk(sk)->icsk_rto, true);
3733 }
3734
3735 /* We allow to exceed memory limits for FIN packets to expedite
3736 * connection tear down and (memory) recovery.
3737 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3738 * or even be forced to close flow without any FIN.
3739 * In general, we want to allow one skb per socket to avoid hangs
3740 * with edge trigger epoll()
3741 */
sk_forced_mem_schedule(struct sock * sk,int size)3742 void sk_forced_mem_schedule(struct sock *sk, int size)
3743 {
3744 int delta, amt;
3745
3746 delta = size - sk->sk_forward_alloc;
3747 if (delta <= 0)
3748 return;
3749
3750 amt = sk_mem_pages(delta);
3751 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3752
3753 if (mem_cgroup_sk_enabled(sk))
3754 mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL);
3755
3756 if (sk->sk_bypass_prot_mem)
3757 return;
3758
3759 sk_memory_allocated_add(sk, amt);
3760 }
3761
3762 /* Send a FIN. The caller locks the socket for us.
3763 * We should try to send a FIN packet really hard, but eventually give up.
3764 */
tcp_send_fin(struct sock * sk)3765 void tcp_send_fin(struct sock *sk)
3766 {
3767 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3768 struct tcp_sock *tp = tcp_sk(sk);
3769
3770 /* Optimization, tack on the FIN if we have one skb in write queue and
3771 * this skb was not yet sent, or we are under memory pressure.
3772 * Note: in the latter case, FIN packet will be sent after a timeout,
3773 * as TCP stack thinks it has already been transmitted.
3774 */
3775 tskb = tail;
3776 if (!tskb && tcp_under_memory_pressure(sk))
3777 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3778
3779 if (tskb) {
3780 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3781 TCP_SKB_CB(tskb)->end_seq++;
3782 tp->write_seq++;
3783 if (!tail) {
3784 /* This means tskb was already sent.
3785 * Pretend we included the FIN on previous transmit.
3786 * We need to set tp->snd_nxt to the value it would have
3787 * if FIN had been sent. This is because retransmit path
3788 * does not change tp->snd_nxt.
3789 */
3790 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3791 return;
3792 }
3793 } else {
3794 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3795 sk_gfp_mask(sk, GFP_ATOMIC |
3796 __GFP_NOWARN));
3797 if (unlikely(!skb))
3798 return;
3799
3800 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3801 skb_reserve(skb, MAX_TCP_HEADER);
3802 sk_forced_mem_schedule(sk, skb->truesize);
3803 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3804 tcp_init_nondata_skb(skb, sk, tp->write_seq,
3805 TCPHDR_ACK | TCPHDR_FIN);
3806 tcp_queue_skb(sk, skb);
3807 }
3808 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3809 }
3810
3811 /* We get here when a process closes a file descriptor (either due to
3812 * an explicit close() or as a byproduct of exit()'ing) and there
3813 * was unread data in the receive queue. This behavior is recommended
3814 * by RFC 2525, section 2.17. -DaveM
3815 */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3816 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3817 enum sk_rst_reason reason)
3818 {
3819 struct sk_buff *skb;
3820
3821 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3822
3823 /* NOTE: No TCP options attached and we never retransmit this. */
3824 skb = alloc_skb(MAX_TCP_HEADER, priority);
3825 if (!skb) {
3826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3827 return;
3828 }
3829
3830 /* Reserve space for headers and prepare control bits. */
3831 skb_reserve(skb, MAX_TCP_HEADER);
3832 tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk),
3833 TCPHDR_ACK | TCPHDR_RST);
3834 tcp_mstamp_refresh(tcp_sk(sk));
3835 /* Send it off. */
3836 if (tcp_transmit_skb(sk, skb, 0, priority))
3837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3838
3839 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3840 * skb here is different to the troublesome skb, so use NULL
3841 */
3842 trace_tcp_send_reset(sk, NULL, reason);
3843 }
3844
3845 /* Send a crossed SYN-ACK during socket establishment.
3846 * WARNING: This routine must only be called when we have already sent
3847 * a SYN packet that crossed the incoming SYN that caused this routine
3848 * to get called. If this assumption fails then the initial rcv_wnd
3849 * and rcv_wscale values will not be correct.
3850 */
tcp_send_synack(struct sock * sk)3851 int tcp_send_synack(struct sock *sk)
3852 {
3853 struct sk_buff *skb;
3854
3855 skb = tcp_rtx_queue_head(sk);
3856 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3857 pr_err("%s: wrong queue state\n", __func__);
3858 return -EFAULT;
3859 }
3860 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3861 if (skb_cloned(skb)) {
3862 struct sk_buff *nskb;
3863
3864 tcp_skb_tsorted_save(skb) {
3865 nskb = skb_copy(skb, GFP_ATOMIC);
3866 } tcp_skb_tsorted_restore(skb);
3867 if (!nskb)
3868 return -ENOMEM;
3869 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3870 tcp_highest_sack_replace(sk, skb, nskb);
3871 tcp_rtx_queue_unlink_and_free(skb, sk);
3872 __skb_header_release(nskb);
3873 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3874 sk_wmem_queued_add(sk, nskb->truesize);
3875 sk_mem_charge(sk, nskb->truesize);
3876 skb = nskb;
3877 }
3878
3879 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3880 tcp_ecn_send_synack(sk, skb);
3881 }
3882 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3883 }
3884
3885 /**
3886 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3887 * @sk: listener socket
3888 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3889 * should not use it again.
3890 * @req: request_sock pointer
3891 * @foc: cookie for tcp fast open
3892 * @synack_type: Type of synack to prepare
3893 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3894 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3895 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3896 struct request_sock *req,
3897 struct tcp_fastopen_cookie *foc,
3898 enum tcp_synack_type synack_type,
3899 struct sk_buff *syn_skb)
3900 {
3901 struct inet_request_sock *ireq = inet_rsk(req);
3902 const struct tcp_sock *tp = tcp_sk(sk);
3903 struct tcp_out_options opts;
3904 struct tcp_key key = {};
3905 struct sk_buff *skb;
3906 int tcp_header_size;
3907 struct tcphdr *th;
3908 int mss;
3909 u64 now;
3910
3911 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3912 if (unlikely(!skb)) {
3913 dst_release(dst);
3914 return NULL;
3915 }
3916 /* Reserve space for headers. */
3917 skb_reserve(skb, MAX_TCP_HEADER);
3918
3919 switch (synack_type) {
3920 case TCP_SYNACK_NORMAL:
3921 skb_set_owner_edemux(skb, req_to_sk(req));
3922 break;
3923 case TCP_SYNACK_COOKIE:
3924 /* Under synflood, we do not attach skb to a socket,
3925 * to avoid false sharing.
3926 */
3927 break;
3928 case TCP_SYNACK_FASTOPEN:
3929 /* sk is a const pointer, because we want to express multiple
3930 * cpu might call us concurrently.
3931 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3932 */
3933 skb_set_owner_w(skb, (struct sock *)sk);
3934 break;
3935 }
3936 skb_dst_set(skb, dst);
3937
3938 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3939
3940 memset(&opts, 0, sizeof(opts));
3941 now = tcp_clock_ns();
3942 #ifdef CONFIG_SYN_COOKIES
3943 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3944 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3945 SKB_CLOCK_MONOTONIC);
3946 else
3947 #endif
3948 {
3949 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3950 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3951 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3952 }
3953
3954 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3955 rcu_read_lock();
3956 #endif
3957 if (tcp_rsk_used_ao(req)) {
3958 #ifdef CONFIG_TCP_AO
3959 struct tcp_ao_key *ao_key = NULL;
3960 u8 keyid = tcp_rsk(req)->ao_keyid;
3961 u8 rnext = tcp_rsk(req)->ao_rcv_next;
3962
3963 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3964 keyid, -1);
3965 /* If there is no matching key - avoid sending anything,
3966 * especially usigned segments. It could try harder and lookup
3967 * for another peer-matching key, but the peer has requested
3968 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3969 */
3970 if (unlikely(!ao_key)) {
3971 trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3972 rcu_read_unlock();
3973 kfree_skb(skb);
3974 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3975 keyid);
3976 return NULL;
3977 }
3978 key.ao_key = ao_key;
3979 key.type = TCP_KEY_AO;
3980 #endif
3981 } else {
3982 #ifdef CONFIG_TCP_MD5SIG
3983 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3984 req_to_sk(req));
3985 if (key.md5_key)
3986 key.type = TCP_KEY_MD5;
3987 #endif
3988 }
3989 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3990 /* bpf program will be interested in the tcp_flags */
3991 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3992 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3993 &key, foc, synack_type, syn_skb)
3994 + sizeof(*th);
3995
3996 skb_push(skb, tcp_header_size);
3997 skb_reset_transport_header(skb);
3998
3999 th = (struct tcphdr *)skb->data;
4000 memset(th, 0, sizeof(struct tcphdr));
4001 th->syn = 1;
4002 th->ack = 1;
4003 tcp_ecn_make_synack(req, th);
4004 th->source = htons(ireq->ir_num);
4005 th->dest = ireq->ir_rmt_port;
4006 skb->mark = ireq->ir_mark;
4007 skb->ip_summed = CHECKSUM_PARTIAL;
4008 th->seq = htonl(tcp_rsk(req)->snt_isn);
4009 /* XXX data is queued and acked as is. No buffer/window check */
4010 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
4011
4012 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
4013 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
4014 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
4015 th->doff = (tcp_header_size >> 2);
4016 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
4017
4018 /* Okay, we have all we need - do the md5 hash if needed */
4019 if (tcp_key_is_md5(&key)) {
4020 #ifdef CONFIG_TCP_MD5SIG
4021 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
4022 key.md5_key, req_to_sk(req), skb);
4023 #endif
4024 } else if (tcp_key_is_ao(&key)) {
4025 #ifdef CONFIG_TCP_AO
4026 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
4027 key.ao_key, req, skb,
4028 opts.hash_location - (u8 *)th, 0);
4029 #endif
4030 }
4031 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4032 rcu_read_unlock();
4033 #endif
4034
4035 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
4036 synack_type, &opts);
4037
4038 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
4039 tcp_add_tx_delay(skb, tp);
4040
4041 return skb;
4042 }
4043 EXPORT_IPV6_MOD(tcp_make_synack);
4044
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)4045 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
4046 {
4047 struct inet_connection_sock *icsk = inet_csk(sk);
4048 const struct tcp_congestion_ops *ca;
4049 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
4050
4051 if (ca_key == TCP_CA_UNSPEC)
4052 return;
4053
4054 rcu_read_lock();
4055 ca = tcp_ca_find_key(ca_key);
4056 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
4057 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
4058 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
4059 icsk->icsk_ca_ops = ca;
4060 }
4061 rcu_read_unlock();
4062 }
4063
4064 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)4065 static void tcp_connect_init(struct sock *sk)
4066 {
4067 const struct dst_entry *dst = __sk_dst_get(sk);
4068 struct tcp_sock *tp = tcp_sk(sk);
4069 __u8 rcv_wscale;
4070 u16 user_mss;
4071 u32 rcv_wnd;
4072
4073 /* We'll fix this up when we get a response from the other end.
4074 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
4075 */
4076 tp->tcp_header_len = sizeof(struct tcphdr);
4077 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
4078 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
4079
4080 tcp_ao_connect_init(sk);
4081
4082 /* If user gave his TCP_MAXSEG, record it to clamp */
4083 user_mss = READ_ONCE(tp->rx_opt.user_mss);
4084 if (user_mss)
4085 tp->rx_opt.mss_clamp = user_mss;
4086 tp->max_window = 0;
4087 tcp_mtup_init(sk);
4088 tcp_sync_mss(sk, dst_mtu(dst));
4089
4090 tcp_ca_dst_init(sk, dst);
4091
4092 if (!tp->window_clamp)
4093 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
4094 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
4095
4096 tcp_initialize_rcv_mss(sk);
4097
4098 /* limit the window selection if the user enforce a smaller rx buffer */
4099 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
4100 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
4101 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
4102
4103 rcv_wnd = tcp_rwnd_init_bpf(sk);
4104 if (rcv_wnd == 0)
4105 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
4106
4107 tcp_select_initial_window(sk, tcp_full_space(sk),
4108 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
4109 &tp->rcv_wnd,
4110 &tp->window_clamp,
4111 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
4112 &rcv_wscale,
4113 rcv_wnd);
4114
4115 tp->rx_opt.rcv_wscale = rcv_wscale;
4116 tp->rcv_ssthresh = tp->rcv_wnd;
4117
4118 WRITE_ONCE(sk->sk_err, 0);
4119 sock_reset_flag(sk, SOCK_DONE);
4120 tp->snd_wnd = 0;
4121 tcp_init_wl(tp, 0);
4122 tcp_write_queue_purge(sk);
4123 tp->snd_una = tp->write_seq;
4124 tp->snd_sml = tp->write_seq;
4125 tp->snd_up = tp->write_seq;
4126 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4127
4128 if (likely(!tp->repair))
4129 tp->rcv_nxt = 0;
4130 else
4131 tp->rcv_tstamp = tcp_jiffies32;
4132 tp->rcv_wup = tp->rcv_nxt;
4133 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
4134
4135 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
4136 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
4137 tcp_clear_retrans(tp);
4138 }
4139
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)4140 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
4141 {
4142 struct tcp_sock *tp = tcp_sk(sk);
4143 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
4144
4145 tcb->end_seq += skb->len;
4146 __skb_header_release(skb);
4147 sk_wmem_queued_add(sk, skb->truesize);
4148 sk_mem_charge(sk, skb->truesize);
4149 WRITE_ONCE(tp->write_seq, tcb->end_seq);
4150 tp->packets_out += tcp_skb_pcount(skb);
4151 }
4152
4153 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
4154 * queue a data-only packet after the regular SYN, such that regular SYNs
4155 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
4156 * only the SYN sequence, the data are retransmitted in the first ACK.
4157 * If cookie is not cached or other error occurs, falls back to send a
4158 * regular SYN with Fast Open cookie request option.
4159 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)4160 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
4161 {
4162 struct inet_connection_sock *icsk = inet_csk(sk);
4163 struct tcp_sock *tp = tcp_sk(sk);
4164 struct tcp_fastopen_request *fo = tp->fastopen_req;
4165 struct page_frag *pfrag = sk_page_frag(sk);
4166 struct sk_buff *syn_data;
4167 int space, err = 0;
4168
4169 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
4170 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
4171 goto fallback;
4172
4173 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
4174 * user-MSS. Reserve maximum option space for middleboxes that add
4175 * private TCP options. The cost is reduced data space in SYN :(
4176 */
4177 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
4178 /* Sync mss_cache after updating the mss_clamp */
4179 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4180
4181 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4182 MAX_TCP_OPTION_SPACE;
4183
4184 space = min_t(size_t, space, fo->size);
4185
4186 if (space &&
4187 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4188 pfrag, sk->sk_allocation))
4189 goto fallback;
4190 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4191 if (!syn_data)
4192 goto fallback;
4193 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4194 if (space) {
4195 space = min_t(size_t, space, pfrag->size - pfrag->offset);
4196 space = tcp_wmem_schedule(sk, space);
4197 }
4198 if (space) {
4199 space = copy_page_from_iter(pfrag->page, pfrag->offset,
4200 space, &fo->data->msg_iter);
4201 if (unlikely(!space)) {
4202 tcp_skb_tsorted_anchor_cleanup(syn_data);
4203 kfree_skb(syn_data);
4204 goto fallback;
4205 }
4206 skb_fill_page_desc(syn_data, 0, pfrag->page,
4207 pfrag->offset, space);
4208 page_ref_inc(pfrag->page);
4209 pfrag->offset += space;
4210 skb_len_add(syn_data, space);
4211 skb_zcopy_set(syn_data, fo->uarg, NULL);
4212 }
4213 /* No more data pending in inet_wait_for_connect() */
4214 if (space == fo->size)
4215 fo->data = NULL;
4216 fo->copied = space;
4217
4218 tcp_connect_queue_skb(sk, syn_data);
4219 if (syn_data->len)
4220 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4221
4222 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4223
4224 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4225
4226 /* Now full SYN+DATA was cloned and sent (or not),
4227 * remove the SYN from the original skb (syn_data)
4228 * we keep in write queue in case of a retransmit, as we
4229 * also have the SYN packet (with no data) in the same queue.
4230 */
4231 TCP_SKB_CB(syn_data)->seq++;
4232 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4233 if (!err) {
4234 tp->syn_data = (fo->copied > 0);
4235 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4236 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4237 goto done;
4238 }
4239
4240 /* data was not sent, put it in write_queue */
4241 __skb_queue_tail(&sk->sk_write_queue, syn_data);
4242 tp->packets_out -= tcp_skb_pcount(syn_data);
4243
4244 fallback:
4245 /* Send a regular SYN with Fast Open cookie request option */
4246 if (fo->cookie.len > 0)
4247 fo->cookie.len = 0;
4248 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4249 if (err)
4250 tp->syn_fastopen = 0;
4251 done:
4252 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
4253 return err;
4254 }
4255
4256 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4257 int tcp_connect(struct sock *sk)
4258 {
4259 struct tcp_sock *tp = tcp_sk(sk);
4260 struct sk_buff *buff;
4261 int err;
4262
4263 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4264
4265 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4266 /* Has to be checked late, after setting daddr/saddr/ops.
4267 * Return error if the peer has both a md5 and a tcp-ao key
4268 * configured as this is ambiguous.
4269 */
4270 if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4271 lockdep_sock_is_held(sk)))) {
4272 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4273 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4274 struct tcp_ao_info *ao_info;
4275
4276 ao_info = rcu_dereference_check(tp->ao_info,
4277 lockdep_sock_is_held(sk));
4278 if (ao_info) {
4279 /* This is an extra check: tcp_ao_required() in
4280 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4281 * md5 keys on ao_required socket.
4282 */
4283 needs_ao |= ao_info->ao_required;
4284 WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4285 }
4286 if (needs_md5 && needs_ao)
4287 return -EKEYREJECTED;
4288
4289 /* If we have a matching md5 key and no matching tcp-ao key
4290 * then free up ao_info if allocated.
4291 */
4292 if (needs_md5) {
4293 tcp_ao_destroy_sock(sk, false);
4294 } else if (needs_ao) {
4295 tcp_clear_md5_list(sk);
4296 kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4297 lockdep_sock_is_held(sk)));
4298 }
4299 }
4300 #endif
4301 #ifdef CONFIG_TCP_AO
4302 if (unlikely(rcu_dereference_protected(tp->ao_info,
4303 lockdep_sock_is_held(sk)))) {
4304 /* Don't allow connecting if ao is configured but no
4305 * matching key is found.
4306 */
4307 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4308 return -EKEYREJECTED;
4309 }
4310 #endif
4311
4312 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4313 return -EHOSTUNREACH; /* Routing failure or similar. */
4314
4315 tcp_connect_init(sk);
4316
4317 if (unlikely(tp->repair)) {
4318 tcp_finish_connect(sk, NULL);
4319 return 0;
4320 }
4321
4322 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4323 if (unlikely(!buff))
4324 return -ENOBUFS;
4325
4326 /* SYN eats a sequence byte, write_seq updated by
4327 * tcp_connect_queue_skb().
4328 */
4329 tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN);
4330 tcp_mstamp_refresh(tp);
4331 tp->retrans_stamp = tcp_time_stamp_ts(tp);
4332 tcp_connect_queue_skb(sk, buff);
4333 tcp_ecn_send_syn(sk, buff);
4334 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4335
4336 /* Send off SYN; include data in Fast Open. */
4337 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4338 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4339 if (err == -ECONNREFUSED)
4340 return err;
4341
4342 /* We change tp->snd_nxt after the tcp_transmit_skb() call
4343 * in order to make this packet get counted in tcpOutSegs.
4344 */
4345 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4346 tp->pushed_seq = tp->write_seq;
4347 buff = tcp_send_head(sk);
4348 if (unlikely(buff)) {
4349 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4350 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
4351 }
4352 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4353
4354 /* Timer for repeating the SYN until an answer. */
4355 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4356 inet_csk(sk)->icsk_rto, false);
4357 return 0;
4358 }
4359 EXPORT_SYMBOL(tcp_connect);
4360
tcp_delack_max(const struct sock * sk)4361 u32 tcp_delack_max(const struct sock *sk)
4362 {
4363 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4364
4365 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4366 }
4367
4368 /* Send out a delayed ack, the caller does the policy checking
4369 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4370 * for details.
4371 */
tcp_send_delayed_ack(struct sock * sk)4372 void tcp_send_delayed_ack(struct sock *sk)
4373 {
4374 struct inet_connection_sock *icsk = inet_csk(sk);
4375 int ato = icsk->icsk_ack.ato;
4376 unsigned long timeout;
4377
4378 if (ato > TCP_DELACK_MIN) {
4379 const struct tcp_sock *tp = tcp_sk(sk);
4380 int max_ato = HZ / 2;
4381
4382 if (inet_csk_in_pingpong_mode(sk) ||
4383 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4384 max_ato = TCP_DELACK_MAX;
4385
4386 /* Slow path, intersegment interval is "high". */
4387
4388 /* If some rtt estimate is known, use it to bound delayed ack.
4389 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4390 * directly.
4391 */
4392 if (tp->srtt_us) {
4393 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4394 TCP_DELACK_MIN);
4395
4396 if (rtt < max_ato)
4397 max_ato = rtt;
4398 }
4399
4400 ato = min(ato, max_ato);
4401 }
4402
4403 ato = min_t(u32, ato, tcp_delack_max(sk));
4404
4405 /* Stay within the limit we were given */
4406 timeout = jiffies + ato;
4407
4408 /* Use new timeout only if there wasn't a older one earlier. */
4409 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4410 /* If delack timer is about to expire, send ACK now. */
4411 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4412 tcp_send_ack(sk);
4413 return;
4414 }
4415
4416 if (!time_before(timeout, icsk_delack_timeout(icsk)))
4417 timeout = icsk_delack_timeout(icsk);
4418 }
4419 smp_store_release(&icsk->icsk_ack.pending,
4420 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4421 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4422 }
4423
4424 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt,u16 flags)4425 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4426 {
4427 struct sk_buff *buff;
4428
4429 /* If we have been reset, we may not send again. */
4430 if (sk->sk_state == TCP_CLOSE)
4431 return;
4432
4433 /* We are not putting this on the write queue, so
4434 * tcp_transmit_skb() will set the ownership to this
4435 * sock.
4436 */
4437 buff = alloc_skb(MAX_TCP_HEADER,
4438 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4439 if (unlikely(!buff)) {
4440 struct inet_connection_sock *icsk = inet_csk(sk);
4441 unsigned long delay;
4442
4443 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4444 if (delay < tcp_rto_max(sk))
4445 icsk->icsk_ack.retry++;
4446 inet_csk_schedule_ack(sk);
4447 icsk->icsk_ack.ato = TCP_ATO_MIN;
4448 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4449 return;
4450 }
4451
4452 /* Reserve space for headers and prepare control bits. */
4453 skb_reserve(buff, MAX_TCP_HEADER);
4454 tcp_init_nondata_skb(buff, sk,
4455 tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4456
4457 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4458 * too much.
4459 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4460 */
4461 skb_set_tcp_pure_ack(buff);
4462
4463 /* Send it off, this clears delayed acks for us. */
4464 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4465 }
4466 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4467
tcp_send_ack(struct sock * sk)4468 void tcp_send_ack(struct sock *sk)
4469 {
4470 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4471 }
4472
4473 /* This routine sends a packet with an out of date sequence
4474 * number. It assumes the other end will try to ack it.
4475 *
4476 * Question: what should we make while urgent mode?
4477 * 4.4BSD forces sending single byte of data. We cannot send
4478 * out of window data, because we have SND.NXT==SND.MAX...
4479 *
4480 * Current solution: to send TWO zero-length segments in urgent mode:
4481 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4482 * out-of-date with SND.UNA-1 to probe window.
4483 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4484 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4485 {
4486 struct tcp_sock *tp = tcp_sk(sk);
4487 struct sk_buff *skb;
4488
4489 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4490 skb = alloc_skb(MAX_TCP_HEADER,
4491 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4492 if (!skb)
4493 return -1;
4494
4495 /* Reserve space for headers and set control bits. */
4496 skb_reserve(skb, MAX_TCP_HEADER);
4497 /* Use a previous sequence. This should cause the other
4498 * end to send an ack. Don't queue or clone SKB, just
4499 * send it.
4500 */
4501 tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK);
4502 NET_INC_STATS(sock_net(sk), mib);
4503 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4504 }
4505
4506 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4507 void tcp_send_window_probe(struct sock *sk)
4508 {
4509 if (sk->sk_state == TCP_ESTABLISHED) {
4510 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4511 tcp_mstamp_refresh(tcp_sk(sk));
4512 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4513 }
4514 }
4515
4516 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4517 int tcp_write_wakeup(struct sock *sk, int mib)
4518 {
4519 struct tcp_sock *tp = tcp_sk(sk);
4520 struct sk_buff *skb;
4521
4522 if (sk->sk_state == TCP_CLOSE)
4523 return -1;
4524
4525 skb = tcp_send_head(sk);
4526 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4527 int err;
4528 unsigned int mss = tcp_current_mss(sk);
4529 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4530
4531 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4532 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4533
4534 /* We are probing the opening of a window
4535 * but the window size is != 0
4536 * must have been a result SWS avoidance ( sender )
4537 */
4538 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4539 skb->len > mss) {
4540 seg_size = min(seg_size, mss);
4541 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4542 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4543 skb, seg_size, mss, GFP_ATOMIC))
4544 return -1;
4545 } else if (!tcp_skb_pcount(skb))
4546 tcp_set_skb_tso_segs(skb, mss);
4547
4548 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4549 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4550 if (!err)
4551 tcp_event_new_data_sent(sk, skb);
4552 return err;
4553 } else {
4554 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4555 tcp_xmit_probe_skb(sk, 1, mib);
4556 return tcp_xmit_probe_skb(sk, 0, mib);
4557 }
4558 }
4559
4560 /* A window probe timeout has occurred. If window is not closed send
4561 * a partial packet else a zero probe.
4562 */
tcp_send_probe0(struct sock * sk)4563 void tcp_send_probe0(struct sock *sk)
4564 {
4565 struct inet_connection_sock *icsk = inet_csk(sk);
4566 struct tcp_sock *tp = tcp_sk(sk);
4567 struct net *net = sock_net(sk);
4568 unsigned long timeout;
4569 int err;
4570
4571 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4572
4573 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4574 /* Cancel probe timer, if it is not required. */
4575 WRITE_ONCE(icsk->icsk_probes_out, 0);
4576 icsk->icsk_backoff = 0;
4577 icsk->icsk_probes_tstamp = 0;
4578 return;
4579 }
4580
4581 WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1);
4582 if (err <= 0) {
4583 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4584 icsk->icsk_backoff++;
4585 timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4586 } else {
4587 /* If packet was not sent due to local congestion,
4588 * Let senders fight for local resources conservatively.
4589 */
4590 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4591 }
4592
4593 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4594 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4595 }
4596
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4597 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4598 {
4599 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4600 struct flowi fl;
4601 int res;
4602
4603 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4604 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4605 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4606 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4607 NULL);
4608 if (!res) {
4609 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4611 if (unlikely(tcp_passive_fastopen(sk))) {
4612 /* sk has const attribute because listeners are lockless.
4613 * However in this case, we are dealing with a passive fastopen
4614 * socket thus we can change total_retrans value.
4615 */
4616 tcp_sk_rw(sk)->total_retrans++;
4617 }
4618 trace_tcp_retransmit_synack(sk, req);
4619 WRITE_ONCE(req->num_retrans, req->num_retrans + 1);
4620 }
4621 return res;
4622 }
4623 EXPORT_IPV6_MOD(tcp_rtx_synack);
4624