xref: /linux/kernel/sys.c (revision e406d57be7bd2a4e73ea512c1ae36a40a44e499e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 #include <linux/futex.h>
56 
57 #include <linux/sched.h>
58 #include <linux/sched/autogroup.h>
59 #include <linux/sched/loadavg.h>
60 #include <linux/sched/stat.h>
61 #include <linux/sched/mm.h>
62 #include <linux/sched/coredump.h>
63 #include <linux/sched/task.h>
64 #include <linux/sched/cputime.h>
65 #include <linux/rcupdate.h>
66 #include <linux/uidgid.h>
67 #include <linux/cred.h>
68 
69 #include <linux/nospec.h>
70 
71 #include <linux/kmsg_dump.h>
72 /* Move somewhere else to avoid recompiling? */
73 #include <generated/utsrelease.h>
74 
75 #include <linux/uaccess.h>
76 #include <asm/io.h>
77 #include <asm/unistd.h>
78 
79 #include <trace/events/task.h>
80 
81 #include "uid16.h"
82 
83 #ifndef SET_UNALIGN_CTL
84 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_UNALIGN_CTL
87 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEMU_CTL
90 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEMU_CTL
93 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef SET_FPEXC_CTL
96 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_FPEXC_CTL
99 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_ENDIAN
102 # define GET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef SET_ENDIAN
105 # define SET_ENDIAN(a, b)	(-EINVAL)
106 #endif
107 #ifndef GET_TSC_CTL
108 # define GET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef SET_TSC_CTL
111 # define SET_TSC_CTL(a)		(-EINVAL)
112 #endif
113 #ifndef GET_FP_MODE
114 # define GET_FP_MODE(a)		(-EINVAL)
115 #endif
116 #ifndef SET_FP_MODE
117 # define SET_FP_MODE(a,b)	(-EINVAL)
118 #endif
119 #ifndef SVE_SET_VL
120 # define SVE_SET_VL(a)		(-EINVAL)
121 #endif
122 #ifndef SVE_GET_VL
123 # define SVE_GET_VL()		(-EINVAL)
124 #endif
125 #ifndef SME_SET_VL
126 # define SME_SET_VL(a)		(-EINVAL)
127 #endif
128 #ifndef SME_GET_VL
129 # define SME_GET_VL()		(-EINVAL)
130 #endif
131 #ifndef PAC_RESET_KEYS
132 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
133 #endif
134 #ifndef PAC_SET_ENABLED_KEYS
135 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
136 #endif
137 #ifndef PAC_GET_ENABLED_KEYS
138 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
139 #endif
140 #ifndef SET_TAGGED_ADDR_CTRL
141 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
142 #endif
143 #ifndef GET_TAGGED_ADDR_CTRL
144 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_SET_CONTROL
147 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
148 #endif
149 #ifndef RISCV_V_GET_CONTROL
150 # define RISCV_V_GET_CONTROL()		(-EINVAL)
151 #endif
152 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
153 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
154 #endif
155 #ifndef PPC_GET_DEXCR_ASPECT
156 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
157 #endif
158 #ifndef PPC_SET_DEXCR_ASPECT
159 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
160 #endif
161 
162 /*
163  * this is where the system-wide overflow UID and GID are defined, for
164  * architectures that now have 32-bit UID/GID but didn't in the past
165  */
166 
167 int overflowuid = DEFAULT_OVERFLOWUID;
168 int overflowgid = DEFAULT_OVERFLOWGID;
169 
170 EXPORT_SYMBOL(overflowuid);
171 EXPORT_SYMBOL(overflowgid);
172 
173 /*
174  * the same as above, but for filesystems which can only store a 16-bit
175  * UID and GID. as such, this is needed on all architectures
176  */
177 
178 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
179 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
180 
181 EXPORT_SYMBOL(fs_overflowuid);
182 EXPORT_SYMBOL(fs_overflowgid);
183 
184 static const struct ctl_table overflow_sysctl_table[] = {
185 	{
186 		.procname	= "overflowuid",
187 		.data		= &overflowuid,
188 		.maxlen		= sizeof(int),
189 		.mode		= 0644,
190 		.proc_handler	= proc_dointvec_minmax,
191 		.extra1		= SYSCTL_ZERO,
192 		.extra2		= SYSCTL_MAXOLDUID,
193 	},
194 	{
195 		.procname	= "overflowgid",
196 		.data		= &overflowgid,
197 		.maxlen		= sizeof(int),
198 		.mode		= 0644,
199 		.proc_handler	= proc_dointvec_minmax,
200 		.extra1		= SYSCTL_ZERO,
201 		.extra2		= SYSCTL_MAXOLDUID,
202 	},
203 };
204 
init_overflow_sysctl(void)205 static int __init init_overflow_sysctl(void)
206 {
207 	register_sysctl_init("kernel", overflow_sysctl_table);
208 	return 0;
209 }
210 
211 postcore_initcall(init_overflow_sysctl);
212 
213 /*
214  * Returns true if current's euid is same as p's uid or euid,
215  * or has CAP_SYS_NICE to p's user_ns.
216  *
217  * Called with rcu_read_lock, creds are safe
218  */
set_one_prio_perm(struct task_struct * p)219 static bool set_one_prio_perm(struct task_struct *p)
220 {
221 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
222 
223 	if (uid_eq(pcred->uid,  cred->euid) ||
224 	    uid_eq(pcred->euid, cred->euid))
225 		return true;
226 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
227 		return true;
228 	return false;
229 }
230 
231 /*
232  * set the priority of a task
233  * - the caller must hold the RCU read lock
234  */
set_one_prio(struct task_struct * p,int niceval,int error)235 static int set_one_prio(struct task_struct *p, int niceval, int error)
236 {
237 	int no_nice;
238 
239 	if (!set_one_prio_perm(p)) {
240 		error = -EPERM;
241 		goto out;
242 	}
243 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
244 		error = -EACCES;
245 		goto out;
246 	}
247 	no_nice = security_task_setnice(p, niceval);
248 	if (no_nice) {
249 		error = no_nice;
250 		goto out;
251 	}
252 	if (error == -ESRCH)
253 		error = 0;
254 	set_user_nice(p, niceval);
255 out:
256 	return error;
257 }
258 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)259 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
260 {
261 	struct task_struct *g, *p;
262 	struct user_struct *user;
263 	const struct cred *cred = current_cred();
264 	int error = -EINVAL;
265 	struct pid *pgrp;
266 	kuid_t uid;
267 
268 	if (which > PRIO_USER || which < PRIO_PROCESS)
269 		goto out;
270 
271 	/* normalize: avoid signed division (rounding problems) */
272 	error = -ESRCH;
273 	if (niceval < MIN_NICE)
274 		niceval = MIN_NICE;
275 	if (niceval > MAX_NICE)
276 		niceval = MAX_NICE;
277 
278 	rcu_read_lock();
279 	switch (which) {
280 	case PRIO_PROCESS:
281 		if (who)
282 			p = find_task_by_vpid(who);
283 		else
284 			p = current;
285 		if (p)
286 			error = set_one_prio(p, niceval, error);
287 		break;
288 	case PRIO_PGRP:
289 		if (who)
290 			pgrp = find_vpid(who);
291 		else
292 			pgrp = task_pgrp(current);
293 		read_lock(&tasklist_lock);
294 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
295 			error = set_one_prio(p, niceval, error);
296 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
297 		read_unlock(&tasklist_lock);
298 		break;
299 	case PRIO_USER:
300 		uid = make_kuid(cred->user_ns, who);
301 		user = cred->user;
302 		if (!who)
303 			uid = cred->uid;
304 		else if (!uid_eq(uid, cred->uid)) {
305 			user = find_user(uid);
306 			if (!user)
307 				goto out_unlock;	/* No processes for this user */
308 		}
309 		for_each_process_thread(g, p) {
310 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
311 				error = set_one_prio(p, niceval, error);
312 		}
313 		if (!uid_eq(uid, cred->uid))
314 			free_uid(user);		/* For find_user() */
315 		break;
316 	}
317 out_unlock:
318 	rcu_read_unlock();
319 out:
320 	return error;
321 }
322 
323 /*
324  * Ugh. To avoid negative return values, "getpriority()" will
325  * not return the normal nice-value, but a negated value that
326  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
327  * to stay compatible.
328  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)329 SYSCALL_DEFINE2(getpriority, int, which, int, who)
330 {
331 	struct task_struct *g, *p;
332 	struct user_struct *user;
333 	const struct cred *cred = current_cred();
334 	long niceval, retval = -ESRCH;
335 	struct pid *pgrp;
336 	kuid_t uid;
337 
338 	if (which > PRIO_USER || which < PRIO_PROCESS)
339 		return -EINVAL;
340 
341 	rcu_read_lock();
342 	switch (which) {
343 	case PRIO_PROCESS:
344 		if (who)
345 			p = find_task_by_vpid(who);
346 		else
347 			p = current;
348 		if (p) {
349 			niceval = nice_to_rlimit(task_nice(p));
350 			if (niceval > retval)
351 				retval = niceval;
352 		}
353 		break;
354 	case PRIO_PGRP:
355 		if (who)
356 			pgrp = find_vpid(who);
357 		else
358 			pgrp = task_pgrp(current);
359 		read_lock(&tasklist_lock);
360 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
361 			niceval = nice_to_rlimit(task_nice(p));
362 			if (niceval > retval)
363 				retval = niceval;
364 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
365 		read_unlock(&tasklist_lock);
366 		break;
367 	case PRIO_USER:
368 		uid = make_kuid(cred->user_ns, who);
369 		user = cred->user;
370 		if (!who)
371 			uid = cred->uid;
372 		else if (!uid_eq(uid, cred->uid)) {
373 			user = find_user(uid);
374 			if (!user)
375 				goto out_unlock;	/* No processes for this user */
376 		}
377 		for_each_process_thread(g, p) {
378 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
379 				niceval = nice_to_rlimit(task_nice(p));
380 				if (niceval > retval)
381 					retval = niceval;
382 			}
383 		}
384 		if (!uid_eq(uid, cred->uid))
385 			free_uid(user);		/* for find_user() */
386 		break;
387 	}
388 out_unlock:
389 	rcu_read_unlock();
390 
391 	return retval;
392 }
393 
394 /*
395  * Unprivileged users may change the real gid to the effective gid
396  * or vice versa.  (BSD-style)
397  *
398  * If you set the real gid at all, or set the effective gid to a value not
399  * equal to the real gid, then the saved gid is set to the new effective gid.
400  *
401  * This makes it possible for a setgid program to completely drop its
402  * privileges, which is often a useful assertion to make when you are doing
403  * a security audit over a program.
404  *
405  * The general idea is that a program which uses just setregid() will be
406  * 100% compatible with BSD.  A program which uses just setgid() will be
407  * 100% compatible with POSIX with saved IDs.
408  *
409  * SMP: There are not races, the GIDs are checked only by filesystem
410  *      operations (as far as semantic preservation is concerned).
411  */
412 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)413 long __sys_setregid(gid_t rgid, gid_t egid)
414 {
415 	struct user_namespace *ns = current_user_ns();
416 	const struct cred *old;
417 	struct cred *new;
418 	int retval;
419 	kgid_t krgid, kegid;
420 
421 	krgid = make_kgid(ns, rgid);
422 	kegid = make_kgid(ns, egid);
423 
424 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
425 		return -EINVAL;
426 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
427 		return -EINVAL;
428 
429 	new = prepare_creds();
430 	if (!new)
431 		return -ENOMEM;
432 	old = current_cred();
433 
434 	retval = -EPERM;
435 	if (rgid != (gid_t) -1) {
436 		if (gid_eq(old->gid, krgid) ||
437 		    gid_eq(old->egid, krgid) ||
438 		    ns_capable_setid(old->user_ns, CAP_SETGID))
439 			new->gid = krgid;
440 		else
441 			goto error;
442 	}
443 	if (egid != (gid_t) -1) {
444 		if (gid_eq(old->gid, kegid) ||
445 		    gid_eq(old->egid, kegid) ||
446 		    gid_eq(old->sgid, kegid) ||
447 		    ns_capable_setid(old->user_ns, CAP_SETGID))
448 			new->egid = kegid;
449 		else
450 			goto error;
451 	}
452 
453 	if (rgid != (gid_t) -1 ||
454 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
455 		new->sgid = new->egid;
456 	new->fsgid = new->egid;
457 
458 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
459 	if (retval < 0)
460 		goto error;
461 
462 	return commit_creds(new);
463 
464 error:
465 	abort_creds(new);
466 	return retval;
467 }
468 
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)469 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
470 {
471 	return __sys_setregid(rgid, egid);
472 }
473 
474 /*
475  * setgid() is implemented like SysV w/ SAVED_IDS
476  *
477  * SMP: Same implicit races as above.
478  */
__sys_setgid(gid_t gid)479 long __sys_setgid(gid_t gid)
480 {
481 	struct user_namespace *ns = current_user_ns();
482 	const struct cred *old;
483 	struct cred *new;
484 	int retval;
485 	kgid_t kgid;
486 
487 	kgid = make_kgid(ns, gid);
488 	if (!gid_valid(kgid))
489 		return -EINVAL;
490 
491 	new = prepare_creds();
492 	if (!new)
493 		return -ENOMEM;
494 	old = current_cred();
495 
496 	retval = -EPERM;
497 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
498 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
499 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
500 		new->egid = new->fsgid = kgid;
501 	else
502 		goto error;
503 
504 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
505 	if (retval < 0)
506 		goto error;
507 
508 	return commit_creds(new);
509 
510 error:
511 	abort_creds(new);
512 	return retval;
513 }
514 
SYSCALL_DEFINE1(setgid,gid_t,gid)515 SYSCALL_DEFINE1(setgid, gid_t, gid)
516 {
517 	return __sys_setgid(gid);
518 }
519 
520 /*
521  * change the user struct in a credentials set to match the new UID
522  */
set_user(struct cred * new)523 static int set_user(struct cred *new)
524 {
525 	struct user_struct *new_user;
526 
527 	new_user = alloc_uid(new->uid);
528 	if (!new_user)
529 		return -EAGAIN;
530 
531 	free_uid(new->user);
532 	new->user = new_user;
533 	return 0;
534 }
535 
flag_nproc_exceeded(struct cred * new)536 static void flag_nproc_exceeded(struct cred *new)
537 {
538 	if (new->ucounts == current_ucounts())
539 		return;
540 
541 	/*
542 	 * We don't fail in case of NPROC limit excess here because too many
543 	 * poorly written programs don't check set*uid() return code, assuming
544 	 * it never fails if called by root.  We may still enforce NPROC limit
545 	 * for programs doing set*uid()+execve() by harmlessly deferring the
546 	 * failure to the execve() stage.
547 	 */
548 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
549 			new->user != INIT_USER)
550 		current->flags |= PF_NPROC_EXCEEDED;
551 	else
552 		current->flags &= ~PF_NPROC_EXCEEDED;
553 }
554 
555 /*
556  * Unprivileged users may change the real uid to the effective uid
557  * or vice versa.  (BSD-style)
558  *
559  * If you set the real uid at all, or set the effective uid to a value not
560  * equal to the real uid, then the saved uid is set to the new effective uid.
561  *
562  * This makes it possible for a setuid program to completely drop its
563  * privileges, which is often a useful assertion to make when you are doing
564  * a security audit over a program.
565  *
566  * The general idea is that a program which uses just setreuid() will be
567  * 100% compatible with BSD.  A program which uses just setuid() will be
568  * 100% compatible with POSIX with saved IDs.
569  */
__sys_setreuid(uid_t ruid,uid_t euid)570 long __sys_setreuid(uid_t ruid, uid_t euid)
571 {
572 	struct user_namespace *ns = current_user_ns();
573 	const struct cred *old;
574 	struct cred *new;
575 	int retval;
576 	kuid_t kruid, keuid;
577 
578 	kruid = make_kuid(ns, ruid);
579 	keuid = make_kuid(ns, euid);
580 
581 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
582 		return -EINVAL;
583 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
584 		return -EINVAL;
585 
586 	new = prepare_creds();
587 	if (!new)
588 		return -ENOMEM;
589 	old = current_cred();
590 
591 	retval = -EPERM;
592 	if (ruid != (uid_t) -1) {
593 		new->uid = kruid;
594 		if (!uid_eq(old->uid, kruid) &&
595 		    !uid_eq(old->euid, kruid) &&
596 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
597 			goto error;
598 	}
599 
600 	if (euid != (uid_t) -1) {
601 		new->euid = keuid;
602 		if (!uid_eq(old->uid, keuid) &&
603 		    !uid_eq(old->euid, keuid) &&
604 		    !uid_eq(old->suid, keuid) &&
605 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
606 			goto error;
607 	}
608 
609 	if (!uid_eq(new->uid, old->uid)) {
610 		retval = set_user(new);
611 		if (retval < 0)
612 			goto error;
613 	}
614 	if (ruid != (uid_t) -1 ||
615 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
616 		new->suid = new->euid;
617 	new->fsuid = new->euid;
618 
619 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
620 	if (retval < 0)
621 		goto error;
622 
623 	retval = set_cred_ucounts(new);
624 	if (retval < 0)
625 		goto error;
626 
627 	flag_nproc_exceeded(new);
628 	return commit_creds(new);
629 
630 error:
631 	abort_creds(new);
632 	return retval;
633 }
634 
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)635 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
636 {
637 	return __sys_setreuid(ruid, euid);
638 }
639 
640 /*
641  * setuid() is implemented like SysV with SAVED_IDS
642  *
643  * Note that SAVED_ID's is deficient in that a setuid root program
644  * like sendmail, for example, cannot set its uid to be a normal
645  * user and then switch back, because if you're root, setuid() sets
646  * the saved uid too.  If you don't like this, blame the bright people
647  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
648  * will allow a root program to temporarily drop privileges and be able to
649  * regain them by swapping the real and effective uid.
650  */
__sys_setuid(uid_t uid)651 long __sys_setuid(uid_t uid)
652 {
653 	struct user_namespace *ns = current_user_ns();
654 	const struct cred *old;
655 	struct cred *new;
656 	int retval;
657 	kuid_t kuid;
658 
659 	kuid = make_kuid(ns, uid);
660 	if (!uid_valid(kuid))
661 		return -EINVAL;
662 
663 	new = prepare_creds();
664 	if (!new)
665 		return -ENOMEM;
666 	old = current_cred();
667 
668 	retval = -EPERM;
669 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
670 		new->suid = new->uid = kuid;
671 		if (!uid_eq(kuid, old->uid)) {
672 			retval = set_user(new);
673 			if (retval < 0)
674 				goto error;
675 		}
676 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
677 		goto error;
678 	}
679 
680 	new->fsuid = new->euid = kuid;
681 
682 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
683 	if (retval < 0)
684 		goto error;
685 
686 	retval = set_cred_ucounts(new);
687 	if (retval < 0)
688 		goto error;
689 
690 	flag_nproc_exceeded(new);
691 	return commit_creds(new);
692 
693 error:
694 	abort_creds(new);
695 	return retval;
696 }
697 
SYSCALL_DEFINE1(setuid,uid_t,uid)698 SYSCALL_DEFINE1(setuid, uid_t, uid)
699 {
700 	return __sys_setuid(uid);
701 }
702 
703 
704 /*
705  * This function implements a generic ability to update ruid, euid,
706  * and suid.  This allows you to implement the 4.4 compatible seteuid().
707  */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)708 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709 {
710 	struct user_namespace *ns = current_user_ns();
711 	const struct cred *old;
712 	struct cred *new;
713 	int retval;
714 	kuid_t kruid, keuid, ksuid;
715 	bool ruid_new, euid_new, suid_new;
716 
717 	kruid = make_kuid(ns, ruid);
718 	keuid = make_kuid(ns, euid);
719 	ksuid = make_kuid(ns, suid);
720 
721 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
722 		return -EINVAL;
723 
724 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
725 		return -EINVAL;
726 
727 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
728 		return -EINVAL;
729 
730 	old = current_cred();
731 
732 	/* check for no-op */
733 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
734 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
735 				    uid_eq(keuid, old->fsuid))) &&
736 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
737 		return 0;
738 
739 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
740 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
741 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
742 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
743 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
744 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
745 	if ((ruid_new || euid_new || suid_new) &&
746 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
747 		return -EPERM;
748 
749 	new = prepare_creds();
750 	if (!new)
751 		return -ENOMEM;
752 
753 	if (ruid != (uid_t) -1) {
754 		new->uid = kruid;
755 		if (!uid_eq(kruid, old->uid)) {
756 			retval = set_user(new);
757 			if (retval < 0)
758 				goto error;
759 		}
760 	}
761 	if (euid != (uid_t) -1)
762 		new->euid = keuid;
763 	if (suid != (uid_t) -1)
764 		new->suid = ksuid;
765 	new->fsuid = new->euid;
766 
767 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
768 	if (retval < 0)
769 		goto error;
770 
771 	retval = set_cred_ucounts(new);
772 	if (retval < 0)
773 		goto error;
774 
775 	flag_nproc_exceeded(new);
776 	return commit_creds(new);
777 
778 error:
779 	abort_creds(new);
780 	return retval;
781 }
782 
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)783 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
784 {
785 	return __sys_setresuid(ruid, euid, suid);
786 }
787 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)788 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
789 {
790 	const struct cred *cred = current_cred();
791 	int retval;
792 	uid_t ruid, euid, suid;
793 
794 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
795 	euid = from_kuid_munged(cred->user_ns, cred->euid);
796 	suid = from_kuid_munged(cred->user_ns, cred->suid);
797 
798 	retval = put_user(ruid, ruidp);
799 	if (!retval) {
800 		retval = put_user(euid, euidp);
801 		if (!retval)
802 			return put_user(suid, suidp);
803 	}
804 	return retval;
805 }
806 
807 /*
808  * Same as above, but for rgid, egid, sgid.
809  */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)810 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
811 {
812 	struct user_namespace *ns = current_user_ns();
813 	const struct cred *old;
814 	struct cred *new;
815 	int retval;
816 	kgid_t krgid, kegid, ksgid;
817 	bool rgid_new, egid_new, sgid_new;
818 
819 	krgid = make_kgid(ns, rgid);
820 	kegid = make_kgid(ns, egid);
821 	ksgid = make_kgid(ns, sgid);
822 
823 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
824 		return -EINVAL;
825 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
826 		return -EINVAL;
827 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
828 		return -EINVAL;
829 
830 	old = current_cred();
831 
832 	/* check for no-op */
833 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
834 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
835 				    gid_eq(kegid, old->fsgid))) &&
836 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
837 		return 0;
838 
839 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
840 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
841 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
842 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
843 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
844 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
845 	if ((rgid_new || egid_new || sgid_new) &&
846 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
847 		return -EPERM;
848 
849 	new = prepare_creds();
850 	if (!new)
851 		return -ENOMEM;
852 
853 	if (rgid != (gid_t) -1)
854 		new->gid = krgid;
855 	if (egid != (gid_t) -1)
856 		new->egid = kegid;
857 	if (sgid != (gid_t) -1)
858 		new->sgid = ksgid;
859 	new->fsgid = new->egid;
860 
861 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
862 	if (retval < 0)
863 		goto error;
864 
865 	return commit_creds(new);
866 
867 error:
868 	abort_creds(new);
869 	return retval;
870 }
871 
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)872 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
873 {
874 	return __sys_setresgid(rgid, egid, sgid);
875 }
876 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)877 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
878 {
879 	const struct cred *cred = current_cred();
880 	int retval;
881 	gid_t rgid, egid, sgid;
882 
883 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
884 	egid = from_kgid_munged(cred->user_ns, cred->egid);
885 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
886 
887 	retval = put_user(rgid, rgidp);
888 	if (!retval) {
889 		retval = put_user(egid, egidp);
890 		if (!retval)
891 			retval = put_user(sgid, sgidp);
892 	}
893 
894 	return retval;
895 }
896 
897 
898 /*
899  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
900  * is used for "access()" and for the NFS daemon (letting nfsd stay at
901  * whatever uid it wants to). It normally shadows "euid", except when
902  * explicitly set by setfsuid() or for access..
903  */
__sys_setfsuid(uid_t uid)904 long __sys_setfsuid(uid_t uid)
905 {
906 	const struct cred *old;
907 	struct cred *new;
908 	uid_t old_fsuid;
909 	kuid_t kuid;
910 
911 	old = current_cred();
912 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
913 
914 	kuid = make_kuid(old->user_ns, uid);
915 	if (!uid_valid(kuid))
916 		return old_fsuid;
917 
918 	new = prepare_creds();
919 	if (!new)
920 		return old_fsuid;
921 
922 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
923 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
924 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
925 		if (!uid_eq(kuid, old->fsuid)) {
926 			new->fsuid = kuid;
927 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
928 				goto change_okay;
929 		}
930 	}
931 
932 	abort_creds(new);
933 	return old_fsuid;
934 
935 change_okay:
936 	commit_creds(new);
937 	return old_fsuid;
938 }
939 
SYSCALL_DEFINE1(setfsuid,uid_t,uid)940 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
941 {
942 	return __sys_setfsuid(uid);
943 }
944 
945 /*
946  * Samma på svenska..
947  */
__sys_setfsgid(gid_t gid)948 long __sys_setfsgid(gid_t gid)
949 {
950 	const struct cred *old;
951 	struct cred *new;
952 	gid_t old_fsgid;
953 	kgid_t kgid;
954 
955 	old = current_cred();
956 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
957 
958 	kgid = make_kgid(old->user_ns, gid);
959 	if (!gid_valid(kgid))
960 		return old_fsgid;
961 
962 	new = prepare_creds();
963 	if (!new)
964 		return old_fsgid;
965 
966 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
967 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
968 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
969 		if (!gid_eq(kgid, old->fsgid)) {
970 			new->fsgid = kgid;
971 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
972 				goto change_okay;
973 		}
974 	}
975 
976 	abort_creds(new);
977 	return old_fsgid;
978 
979 change_okay:
980 	commit_creds(new);
981 	return old_fsgid;
982 }
983 
SYSCALL_DEFINE1(setfsgid,gid_t,gid)984 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
985 {
986 	return __sys_setfsgid(gid);
987 }
988 #endif /* CONFIG_MULTIUSER */
989 
990 /**
991  * sys_getpid - return the thread group id of the current process
992  *
993  * Note, despite the name, this returns the tgid not the pid.  The tgid and
994  * the pid are identical unless CLONE_THREAD was specified on clone() in
995  * which case the tgid is the same in all threads of the same group.
996  *
997  * This is SMP safe as current->tgid does not change.
998  */
SYSCALL_DEFINE0(getpid)999 SYSCALL_DEFINE0(getpid)
1000 {
1001 	return task_tgid_vnr(current);
1002 }
1003 
1004 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)1005 SYSCALL_DEFINE0(gettid)
1006 {
1007 	return task_pid_vnr(current);
1008 }
1009 
1010 /*
1011  * Accessing ->real_parent is not SMP-safe, it could
1012  * change from under us. However, we can use a stale
1013  * value of ->real_parent under rcu_read_lock(), see
1014  * release_task()->call_rcu(delayed_put_task_struct).
1015  */
SYSCALL_DEFINE0(getppid)1016 SYSCALL_DEFINE0(getppid)
1017 {
1018 	int pid;
1019 
1020 	rcu_read_lock();
1021 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1022 	rcu_read_unlock();
1023 
1024 	return pid;
1025 }
1026 
SYSCALL_DEFINE0(getuid)1027 SYSCALL_DEFINE0(getuid)
1028 {
1029 	/* Only we change this so SMP safe */
1030 	return from_kuid_munged(current_user_ns(), current_uid());
1031 }
1032 
SYSCALL_DEFINE0(geteuid)1033 SYSCALL_DEFINE0(geteuid)
1034 {
1035 	/* Only we change this so SMP safe */
1036 	return from_kuid_munged(current_user_ns(), current_euid());
1037 }
1038 
SYSCALL_DEFINE0(getgid)1039 SYSCALL_DEFINE0(getgid)
1040 {
1041 	/* Only we change this so SMP safe */
1042 	return from_kgid_munged(current_user_ns(), current_gid());
1043 }
1044 
SYSCALL_DEFINE0(getegid)1045 SYSCALL_DEFINE0(getegid)
1046 {
1047 	/* Only we change this so SMP safe */
1048 	return from_kgid_munged(current_user_ns(), current_egid());
1049 }
1050 
do_sys_times(struct tms * tms)1051 static void do_sys_times(struct tms *tms)
1052 {
1053 	u64 tgutime, tgstime, cutime, cstime;
1054 
1055 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1056 	cutime = current->signal->cutime;
1057 	cstime = current->signal->cstime;
1058 	tms->tms_utime = nsec_to_clock_t(tgutime);
1059 	tms->tms_stime = nsec_to_clock_t(tgstime);
1060 	tms->tms_cutime = nsec_to_clock_t(cutime);
1061 	tms->tms_cstime = nsec_to_clock_t(cstime);
1062 }
1063 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1064 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1065 {
1066 	if (tbuf) {
1067 		struct tms tmp;
1068 
1069 		do_sys_times(&tmp);
1070 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1071 			return -EFAULT;
1072 	}
1073 	force_successful_syscall_return();
1074 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1075 }
1076 
1077 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1078 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1079 {
1080 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1081 }
1082 
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1083 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1084 {
1085 	if (tbuf) {
1086 		struct tms tms;
1087 		struct compat_tms tmp;
1088 
1089 		do_sys_times(&tms);
1090 		/* Convert our struct tms to the compat version. */
1091 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1092 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1093 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1094 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1095 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1096 			return -EFAULT;
1097 	}
1098 	force_successful_syscall_return();
1099 	return compat_jiffies_to_clock_t(jiffies);
1100 }
1101 #endif
1102 
1103 /*
1104  * This needs some heavy checking ...
1105  * I just haven't the stomach for it. I also don't fully
1106  * understand sessions/pgrp etc. Let somebody who does explain it.
1107  *
1108  * OK, I think I have the protection semantics right.... this is really
1109  * only important on a multi-user system anyway, to make sure one user
1110  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1111  *
1112  * !PF_FORKNOEXEC check to conform completely to POSIX.
1113  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1114 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1115 {
1116 	struct task_struct *p;
1117 	struct task_struct *group_leader = current->group_leader;
1118 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1119 	struct pid *pgrp;
1120 	int err;
1121 
1122 	if (!pid)
1123 		pid = task_pid_vnr(group_leader);
1124 	if (!pgid)
1125 		pgid = pid;
1126 	if (pgid < 0)
1127 		return -EINVAL;
1128 	rcu_read_lock();
1129 
1130 	/* From this point forward we keep holding onto the tasklist lock
1131 	 * so that our parent does not change from under us. -DaveM
1132 	 */
1133 	write_lock_irq(&tasklist_lock);
1134 
1135 	err = -ESRCH;
1136 	p = find_task_by_vpid(pid);
1137 	if (!p)
1138 		goto out;
1139 
1140 	err = -EINVAL;
1141 	if (!thread_group_leader(p))
1142 		goto out;
1143 
1144 	if (same_thread_group(p->real_parent, group_leader)) {
1145 		err = -EPERM;
1146 		if (task_session(p) != task_session(group_leader))
1147 			goto out;
1148 		err = -EACCES;
1149 		if (!(p->flags & PF_FORKNOEXEC))
1150 			goto out;
1151 	} else {
1152 		err = -ESRCH;
1153 		if (p != group_leader)
1154 			goto out;
1155 	}
1156 
1157 	err = -EPERM;
1158 	if (p->signal->leader)
1159 		goto out;
1160 
1161 	pgrp = task_pid(p);
1162 	if (pgid != pid) {
1163 		struct task_struct *g;
1164 
1165 		pgrp = find_vpid(pgid);
1166 		g = pid_task(pgrp, PIDTYPE_PGID);
1167 		if (!g || task_session(g) != task_session(group_leader))
1168 			goto out;
1169 	}
1170 
1171 	err = security_task_setpgid(p, pgid);
1172 	if (err)
1173 		goto out;
1174 
1175 	if (task_pgrp(p) != pgrp)
1176 		change_pid(pids, p, PIDTYPE_PGID, pgrp);
1177 
1178 	err = 0;
1179 out:
1180 	/* All paths lead to here, thus we are safe. -DaveM */
1181 	write_unlock_irq(&tasklist_lock);
1182 	rcu_read_unlock();
1183 	free_pids(pids);
1184 	return err;
1185 }
1186 
do_getpgid(pid_t pid)1187 static int do_getpgid(pid_t pid)
1188 {
1189 	struct task_struct *p;
1190 	struct pid *grp;
1191 	int retval;
1192 
1193 	rcu_read_lock();
1194 	if (!pid)
1195 		grp = task_pgrp(current);
1196 	else {
1197 		retval = -ESRCH;
1198 		p = find_task_by_vpid(pid);
1199 		if (!p)
1200 			goto out;
1201 		grp = task_pgrp(p);
1202 		if (!grp)
1203 			goto out;
1204 
1205 		retval = security_task_getpgid(p);
1206 		if (retval)
1207 			goto out;
1208 	}
1209 	retval = pid_vnr(grp);
1210 out:
1211 	rcu_read_unlock();
1212 	return retval;
1213 }
1214 
SYSCALL_DEFINE1(getpgid,pid_t,pid)1215 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1216 {
1217 	return do_getpgid(pid);
1218 }
1219 
1220 #ifdef __ARCH_WANT_SYS_GETPGRP
1221 
SYSCALL_DEFINE0(getpgrp)1222 SYSCALL_DEFINE0(getpgrp)
1223 {
1224 	return do_getpgid(0);
1225 }
1226 
1227 #endif
1228 
SYSCALL_DEFINE1(getsid,pid_t,pid)1229 SYSCALL_DEFINE1(getsid, pid_t, pid)
1230 {
1231 	struct task_struct *p;
1232 	struct pid *sid;
1233 	int retval;
1234 
1235 	rcu_read_lock();
1236 	if (!pid)
1237 		sid = task_session(current);
1238 	else {
1239 		retval = -ESRCH;
1240 		p = find_task_by_vpid(pid);
1241 		if (!p)
1242 			goto out;
1243 		sid = task_session(p);
1244 		if (!sid)
1245 			goto out;
1246 
1247 		retval = security_task_getsid(p);
1248 		if (retval)
1249 			goto out;
1250 	}
1251 	retval = pid_vnr(sid);
1252 out:
1253 	rcu_read_unlock();
1254 	return retval;
1255 }
1256 
set_special_pids(struct pid ** pids,struct pid * pid)1257 static void set_special_pids(struct pid **pids, struct pid *pid)
1258 {
1259 	struct task_struct *curr = current->group_leader;
1260 
1261 	if (task_session(curr) != pid)
1262 		change_pid(pids, curr, PIDTYPE_SID, pid);
1263 
1264 	if (task_pgrp(curr) != pid)
1265 		change_pid(pids, curr, PIDTYPE_PGID, pid);
1266 }
1267 
ksys_setsid(void)1268 int ksys_setsid(void)
1269 {
1270 	struct task_struct *group_leader = current->group_leader;
1271 	struct pid *sid = task_pid(group_leader);
1272 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1273 	pid_t session = pid_vnr(sid);
1274 	int err = -EPERM;
1275 
1276 	write_lock_irq(&tasklist_lock);
1277 	/* Fail if I am already a session leader */
1278 	if (group_leader->signal->leader)
1279 		goto out;
1280 
1281 	/* Fail if a process group id already exists that equals the
1282 	 * proposed session id.
1283 	 */
1284 	if (pid_task(sid, PIDTYPE_PGID))
1285 		goto out;
1286 
1287 	group_leader->signal->leader = 1;
1288 	set_special_pids(pids, sid);
1289 
1290 	proc_clear_tty(group_leader);
1291 
1292 	err = session;
1293 out:
1294 	write_unlock_irq(&tasklist_lock);
1295 	free_pids(pids);
1296 	if (err > 0) {
1297 		proc_sid_connector(group_leader);
1298 		sched_autogroup_create_attach(group_leader);
1299 	}
1300 	return err;
1301 }
1302 
SYSCALL_DEFINE0(setsid)1303 SYSCALL_DEFINE0(setsid)
1304 {
1305 	return ksys_setsid();
1306 }
1307 
1308 DECLARE_RWSEM(uts_sem);
1309 
1310 #ifdef COMPAT_UTS_MACHINE
1311 #define override_architecture(name) \
1312 	(personality(current->personality) == PER_LINUX32 && \
1313 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1314 		      sizeof(COMPAT_UTS_MACHINE)))
1315 #else
1316 #define override_architecture(name)	0
1317 #endif
1318 
1319 /*
1320  * Work around broken programs that cannot handle "Linux 3.0".
1321  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1322  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1323  * 2.6.60.
1324  */
override_release(char __user * release,size_t len)1325 static int override_release(char __user *release, size_t len)
1326 {
1327 	int ret = 0;
1328 
1329 	if (current->personality & UNAME26) {
1330 		const char *rest = UTS_RELEASE;
1331 		char buf[65] = { 0 };
1332 		int ndots = 0;
1333 		unsigned v;
1334 		size_t copy;
1335 
1336 		while (*rest) {
1337 			if (*rest == '.' && ++ndots >= 3)
1338 				break;
1339 			if (!isdigit(*rest) && *rest != '.')
1340 				break;
1341 			rest++;
1342 		}
1343 		v = LINUX_VERSION_PATCHLEVEL + 60;
1344 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1345 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1346 		ret = copy_to_user(release, buf, copy + 1);
1347 	}
1348 	return ret;
1349 }
1350 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1351 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1352 {
1353 	struct new_utsname tmp;
1354 
1355 	down_read(&uts_sem);
1356 	memcpy(&tmp, utsname(), sizeof(tmp));
1357 	up_read(&uts_sem);
1358 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1359 		return -EFAULT;
1360 
1361 	if (override_release(name->release, sizeof(name->release)))
1362 		return -EFAULT;
1363 	if (override_architecture(name))
1364 		return -EFAULT;
1365 	return 0;
1366 }
1367 
1368 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1369 /*
1370  * Old cruft
1371  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1372 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1373 {
1374 	struct old_utsname tmp;
1375 
1376 	if (!name)
1377 		return -EFAULT;
1378 
1379 	down_read(&uts_sem);
1380 	memcpy(&tmp, utsname(), sizeof(tmp));
1381 	up_read(&uts_sem);
1382 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1383 		return -EFAULT;
1384 
1385 	if (override_release(name->release, sizeof(name->release)))
1386 		return -EFAULT;
1387 	if (override_architecture(name))
1388 		return -EFAULT;
1389 	return 0;
1390 }
1391 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1392 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1393 {
1394 	struct oldold_utsname tmp;
1395 
1396 	if (!name)
1397 		return -EFAULT;
1398 
1399 	memset(&tmp, 0, sizeof(tmp));
1400 
1401 	down_read(&uts_sem);
1402 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1403 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1404 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1405 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1406 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1407 	up_read(&uts_sem);
1408 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1409 		return -EFAULT;
1410 
1411 	if (override_architecture(name))
1412 		return -EFAULT;
1413 	if (override_release(name->release, sizeof(name->release)))
1414 		return -EFAULT;
1415 	return 0;
1416 }
1417 #endif
1418 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1419 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1420 {
1421 	int errno;
1422 	char tmp[__NEW_UTS_LEN];
1423 
1424 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1425 		return -EPERM;
1426 
1427 	if (len < 0 || len > __NEW_UTS_LEN)
1428 		return -EINVAL;
1429 	errno = -EFAULT;
1430 	if (!copy_from_user(tmp, name, len)) {
1431 		struct new_utsname *u;
1432 
1433 		add_device_randomness(tmp, len);
1434 		down_write(&uts_sem);
1435 		u = utsname();
1436 		memcpy(u->nodename, tmp, len);
1437 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1438 		errno = 0;
1439 		uts_proc_notify(UTS_PROC_HOSTNAME);
1440 		up_write(&uts_sem);
1441 	}
1442 	return errno;
1443 }
1444 
1445 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1446 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1447 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1448 {
1449 	int i;
1450 	struct new_utsname *u;
1451 	char tmp[__NEW_UTS_LEN + 1];
1452 
1453 	if (len < 0)
1454 		return -EINVAL;
1455 	down_read(&uts_sem);
1456 	u = utsname();
1457 	i = 1 + strlen(u->nodename);
1458 	if (i > len)
1459 		i = len;
1460 	memcpy(tmp, u->nodename, i);
1461 	up_read(&uts_sem);
1462 	if (copy_to_user(name, tmp, i))
1463 		return -EFAULT;
1464 	return 0;
1465 }
1466 
1467 #endif
1468 
1469 /*
1470  * Only setdomainname; getdomainname can be implemented by calling
1471  * uname()
1472  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1473 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1474 {
1475 	int errno;
1476 	char tmp[__NEW_UTS_LEN];
1477 
1478 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1479 		return -EPERM;
1480 	if (len < 0 || len > __NEW_UTS_LEN)
1481 		return -EINVAL;
1482 
1483 	errno = -EFAULT;
1484 	if (!copy_from_user(tmp, name, len)) {
1485 		struct new_utsname *u;
1486 
1487 		add_device_randomness(tmp, len);
1488 		down_write(&uts_sem);
1489 		u = utsname();
1490 		memcpy(u->domainname, tmp, len);
1491 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1492 		errno = 0;
1493 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1494 		up_write(&uts_sem);
1495 	}
1496 	return errno;
1497 }
1498 
1499 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1500 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1501 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1502 {
1503 	struct rlimit *rlim;
1504 	int retval = 0;
1505 
1506 	if (resource >= RLIM_NLIMITS)
1507 		return -EINVAL;
1508 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1509 
1510 	if (new_rlim) {
1511 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1512 			return -EINVAL;
1513 		if (resource == RLIMIT_NOFILE &&
1514 				new_rlim->rlim_max > sysctl_nr_open)
1515 			return -EPERM;
1516 	}
1517 
1518 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1519 	rlim = tsk->signal->rlim + resource;
1520 	task_lock(tsk->group_leader);
1521 	if (new_rlim) {
1522 		/*
1523 		 * Keep the capable check against init_user_ns until cgroups can
1524 		 * contain all limits.
1525 		 */
1526 		if (new_rlim->rlim_max > rlim->rlim_max &&
1527 				!capable(CAP_SYS_RESOURCE))
1528 			retval = -EPERM;
1529 		if (!retval)
1530 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1531 	}
1532 	if (!retval) {
1533 		if (old_rlim)
1534 			*old_rlim = *rlim;
1535 		if (new_rlim)
1536 			*rlim = *new_rlim;
1537 	}
1538 	task_unlock(tsk->group_leader);
1539 
1540 	/*
1541 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1542 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1543 	 * ignores the rlimit.
1544 	 */
1545 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1546 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1547 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1548 		/*
1549 		 * update_rlimit_cpu can fail if the task is exiting, but there
1550 		 * may be other tasks in the thread group that are not exiting,
1551 		 * and they need their cpu timers adjusted.
1552 		 *
1553 		 * The group_leader is the last task to be released, so if we
1554 		 * cannot update_rlimit_cpu on it, then the entire process is
1555 		 * exiting and we do not need to update at all.
1556 		 */
1557 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1558 	}
1559 
1560 	return retval;
1561 }
1562 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1563 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1564 {
1565 	struct rlimit value;
1566 	int ret;
1567 
1568 	ret = do_prlimit(current, resource, NULL, &value);
1569 	if (!ret)
1570 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1571 
1572 	return ret;
1573 }
1574 
1575 #ifdef CONFIG_COMPAT
1576 
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1577 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1578 		       struct compat_rlimit __user *, rlim)
1579 {
1580 	struct rlimit r;
1581 	struct compat_rlimit r32;
1582 
1583 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1584 		return -EFAULT;
1585 
1586 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1587 		r.rlim_cur = RLIM_INFINITY;
1588 	else
1589 		r.rlim_cur = r32.rlim_cur;
1590 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1591 		r.rlim_max = RLIM_INFINITY;
1592 	else
1593 		r.rlim_max = r32.rlim_max;
1594 	return do_prlimit(current, resource, &r, NULL);
1595 }
1596 
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1597 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1598 		       struct compat_rlimit __user *, rlim)
1599 {
1600 	struct rlimit r;
1601 	int ret;
1602 
1603 	ret = do_prlimit(current, resource, NULL, &r);
1604 	if (!ret) {
1605 		struct compat_rlimit r32;
1606 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1607 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1608 		else
1609 			r32.rlim_cur = r.rlim_cur;
1610 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1611 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1612 		else
1613 			r32.rlim_max = r.rlim_max;
1614 
1615 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1616 			return -EFAULT;
1617 	}
1618 	return ret;
1619 }
1620 
1621 #endif
1622 
1623 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1624 
1625 /*
1626  *	Back compatibility for getrlimit. Needed for some apps.
1627  */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1628 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1629 		struct rlimit __user *, rlim)
1630 {
1631 	struct rlimit x;
1632 	if (resource >= RLIM_NLIMITS)
1633 		return -EINVAL;
1634 
1635 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1636 	task_lock(current->group_leader);
1637 	x = current->signal->rlim[resource];
1638 	task_unlock(current->group_leader);
1639 	if (x.rlim_cur > 0x7FFFFFFF)
1640 		x.rlim_cur = 0x7FFFFFFF;
1641 	if (x.rlim_max > 0x7FFFFFFF)
1642 		x.rlim_max = 0x7FFFFFFF;
1643 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1644 }
1645 
1646 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1647 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1648 		       struct compat_rlimit __user *, rlim)
1649 {
1650 	struct rlimit r;
1651 
1652 	if (resource >= RLIM_NLIMITS)
1653 		return -EINVAL;
1654 
1655 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1656 	task_lock(current->group_leader);
1657 	r = current->signal->rlim[resource];
1658 	task_unlock(current->group_leader);
1659 	if (r.rlim_cur > 0x7FFFFFFF)
1660 		r.rlim_cur = 0x7FFFFFFF;
1661 	if (r.rlim_max > 0x7FFFFFFF)
1662 		r.rlim_max = 0x7FFFFFFF;
1663 
1664 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1665 	    put_user(r.rlim_max, &rlim->rlim_max))
1666 		return -EFAULT;
1667 	return 0;
1668 }
1669 #endif
1670 
1671 #endif
1672 
rlim64_is_infinity(__u64 rlim64)1673 static inline bool rlim64_is_infinity(__u64 rlim64)
1674 {
1675 #if BITS_PER_LONG < 64
1676 	return rlim64 >= ULONG_MAX;
1677 #else
1678 	return rlim64 == RLIM64_INFINITY;
1679 #endif
1680 }
1681 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1682 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1683 {
1684 	if (rlim->rlim_cur == RLIM_INFINITY)
1685 		rlim64->rlim_cur = RLIM64_INFINITY;
1686 	else
1687 		rlim64->rlim_cur = rlim->rlim_cur;
1688 	if (rlim->rlim_max == RLIM_INFINITY)
1689 		rlim64->rlim_max = RLIM64_INFINITY;
1690 	else
1691 		rlim64->rlim_max = rlim->rlim_max;
1692 }
1693 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1694 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1695 {
1696 	if (rlim64_is_infinity(rlim64->rlim_cur))
1697 		rlim->rlim_cur = RLIM_INFINITY;
1698 	else
1699 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1700 	if (rlim64_is_infinity(rlim64->rlim_max))
1701 		rlim->rlim_max = RLIM_INFINITY;
1702 	else
1703 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1704 }
1705 
1706 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1707 static int check_prlimit_permission(struct task_struct *task,
1708 				    unsigned int flags)
1709 {
1710 	const struct cred *cred = current_cred(), *tcred;
1711 	bool id_match;
1712 
1713 	if (current == task)
1714 		return 0;
1715 
1716 	tcred = __task_cred(task);
1717 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1718 		    uid_eq(cred->uid, tcred->suid) &&
1719 		    uid_eq(cred->uid, tcred->uid)  &&
1720 		    gid_eq(cred->gid, tcred->egid) &&
1721 		    gid_eq(cred->gid, tcred->sgid) &&
1722 		    gid_eq(cred->gid, tcred->gid));
1723 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1724 		return -EPERM;
1725 
1726 	return security_task_prlimit(cred, tcred, flags);
1727 }
1728 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1729 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1730 		const struct rlimit64 __user *, new_rlim,
1731 		struct rlimit64 __user *, old_rlim)
1732 {
1733 	struct rlimit64 old64, new64;
1734 	struct rlimit old, new;
1735 	struct task_struct *tsk;
1736 	unsigned int checkflags = 0;
1737 	bool need_tasklist;
1738 	int ret;
1739 
1740 	if (old_rlim)
1741 		checkflags |= LSM_PRLIMIT_READ;
1742 
1743 	if (new_rlim) {
1744 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1745 			return -EFAULT;
1746 		rlim64_to_rlim(&new64, &new);
1747 		checkflags |= LSM_PRLIMIT_WRITE;
1748 	}
1749 
1750 	rcu_read_lock();
1751 	tsk = pid ? find_task_by_vpid(pid) : current;
1752 	if (!tsk) {
1753 		rcu_read_unlock();
1754 		return -ESRCH;
1755 	}
1756 	ret = check_prlimit_permission(tsk, checkflags);
1757 	if (ret) {
1758 		rcu_read_unlock();
1759 		return ret;
1760 	}
1761 	get_task_struct(tsk);
1762 	rcu_read_unlock();
1763 
1764 	need_tasklist = !same_thread_group(tsk, current);
1765 	if (need_tasklist) {
1766 		/*
1767 		 * Ensure we can't race with group exit or de_thread(),
1768 		 * so tsk->group_leader can't be freed or changed until
1769 		 * read_unlock(tasklist_lock) below.
1770 		 */
1771 		read_lock(&tasklist_lock);
1772 		if (!pid_alive(tsk))
1773 			ret = -ESRCH;
1774 	}
1775 
1776 	if (!ret) {
1777 		ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1778 				old_rlim ? &old : NULL);
1779 	}
1780 
1781 	if (need_tasklist)
1782 		read_unlock(&tasklist_lock);
1783 
1784 	if (!ret && old_rlim) {
1785 		rlim_to_rlim64(&old, &old64);
1786 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1787 			ret = -EFAULT;
1788 	}
1789 
1790 	put_task_struct(tsk);
1791 	return ret;
1792 }
1793 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1794 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1795 {
1796 	struct rlimit new_rlim;
1797 
1798 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1799 		return -EFAULT;
1800 	return do_prlimit(current, resource, &new_rlim, NULL);
1801 }
1802 
1803 /*
1804  * It would make sense to put struct rusage in the task_struct,
1805  * except that would make the task_struct be *really big*.  After
1806  * task_struct gets moved into malloc'ed memory, it would
1807  * make sense to do this.  It will make moving the rest of the information
1808  * a lot simpler!  (Which we're not doing right now because we're not
1809  * measuring them yet).
1810  *
1811  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1812  * races with threads incrementing their own counters.  But since word
1813  * reads are atomic, we either get new values or old values and we don't
1814  * care which for the sums.  We always take the siglock to protect reading
1815  * the c* fields from p->signal from races with exit.c updating those
1816  * fields when reaping, so a sample either gets all the additions of a
1817  * given child after it's reaped, or none so this sample is before reaping.
1818  *
1819  * Locking:
1820  * We need to take the siglock for CHILDEREN, SELF and BOTH
1821  * for  the cases current multithreaded, non-current single threaded
1822  * non-current multithreaded.  Thread traversal is now safe with
1823  * the siglock held.
1824  * Strictly speaking, we donot need to take the siglock if we are current and
1825  * single threaded,  as no one else can take our signal_struct away, no one
1826  * else can  reap the  children to update signal->c* counters, and no one else
1827  * can race with the signal-> fields. If we do not take any lock, the
1828  * signal-> fields could be read out of order while another thread was just
1829  * exiting. So we should  place a read memory barrier when we avoid the lock.
1830  * On the writer side,  write memory barrier is implied in  __exit_signal
1831  * as __exit_signal releases  the siglock spinlock after updating the signal->
1832  * fields. But we don't do this yet to keep things simple.
1833  *
1834  */
1835 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1836 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1837 {
1838 	r->ru_nvcsw += t->nvcsw;
1839 	r->ru_nivcsw += t->nivcsw;
1840 	r->ru_minflt += t->min_flt;
1841 	r->ru_majflt += t->maj_flt;
1842 	r->ru_inblock += task_io_get_inblock(t);
1843 	r->ru_oublock += task_io_get_oublock(t);
1844 }
1845 
getrusage(struct task_struct * p,int who,struct rusage * r)1846 void getrusage(struct task_struct *p, int who, struct rusage *r)
1847 {
1848 	struct task_struct *t;
1849 	unsigned long flags;
1850 	u64 tgutime, tgstime, utime, stime;
1851 	unsigned long maxrss;
1852 	struct mm_struct *mm;
1853 	struct signal_struct *sig = p->signal;
1854 	unsigned int seq = 0;
1855 
1856 retry:
1857 	memset(r, 0, sizeof(*r));
1858 	utime = stime = 0;
1859 	maxrss = 0;
1860 
1861 	if (who == RUSAGE_THREAD) {
1862 		task_cputime_adjusted(current, &utime, &stime);
1863 		accumulate_thread_rusage(p, r);
1864 		maxrss = sig->maxrss;
1865 		goto out_thread;
1866 	}
1867 
1868 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1869 
1870 	switch (who) {
1871 	case RUSAGE_BOTH:
1872 	case RUSAGE_CHILDREN:
1873 		utime = sig->cutime;
1874 		stime = sig->cstime;
1875 		r->ru_nvcsw = sig->cnvcsw;
1876 		r->ru_nivcsw = sig->cnivcsw;
1877 		r->ru_minflt = sig->cmin_flt;
1878 		r->ru_majflt = sig->cmaj_flt;
1879 		r->ru_inblock = sig->cinblock;
1880 		r->ru_oublock = sig->coublock;
1881 		maxrss = sig->cmaxrss;
1882 
1883 		if (who == RUSAGE_CHILDREN)
1884 			break;
1885 		fallthrough;
1886 
1887 	case RUSAGE_SELF:
1888 		r->ru_nvcsw += sig->nvcsw;
1889 		r->ru_nivcsw += sig->nivcsw;
1890 		r->ru_minflt += sig->min_flt;
1891 		r->ru_majflt += sig->maj_flt;
1892 		r->ru_inblock += sig->inblock;
1893 		r->ru_oublock += sig->oublock;
1894 		if (maxrss < sig->maxrss)
1895 			maxrss = sig->maxrss;
1896 
1897 		rcu_read_lock();
1898 		__for_each_thread(sig, t)
1899 			accumulate_thread_rusage(t, r);
1900 		rcu_read_unlock();
1901 
1902 		break;
1903 
1904 	default:
1905 		BUG();
1906 	}
1907 
1908 	if (need_seqretry(&sig->stats_lock, seq)) {
1909 		seq = 1;
1910 		goto retry;
1911 	}
1912 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1913 
1914 	if (who == RUSAGE_CHILDREN)
1915 		goto out_children;
1916 
1917 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1918 	utime += tgutime;
1919 	stime += tgstime;
1920 
1921 out_thread:
1922 	mm = get_task_mm(p);
1923 	if (mm) {
1924 		setmax_mm_hiwater_rss(&maxrss, mm);
1925 		mmput(mm);
1926 	}
1927 
1928 out_children:
1929 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1930 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1931 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1932 }
1933 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1934 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1935 {
1936 	struct rusage r;
1937 
1938 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1939 	    who != RUSAGE_THREAD)
1940 		return -EINVAL;
1941 
1942 	getrusage(current, who, &r);
1943 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1944 }
1945 
1946 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1947 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1948 {
1949 	struct rusage r;
1950 
1951 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1952 	    who != RUSAGE_THREAD)
1953 		return -EINVAL;
1954 
1955 	getrusage(current, who, &r);
1956 	return put_compat_rusage(&r, ru);
1957 }
1958 #endif
1959 
SYSCALL_DEFINE1(umask,int,mask)1960 SYSCALL_DEFINE1(umask, int, mask)
1961 {
1962 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1963 	return mask;
1964 }
1965 
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1966 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1967 {
1968 	CLASS(fd, exe)(fd);
1969 	struct inode *inode;
1970 	int err;
1971 
1972 	if (fd_empty(exe))
1973 		return -EBADF;
1974 
1975 	inode = file_inode(fd_file(exe));
1976 
1977 	/*
1978 	 * Because the original mm->exe_file points to executable file, make
1979 	 * sure that this one is executable as well, to avoid breaking an
1980 	 * overall picture.
1981 	 */
1982 	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1983 		return -EACCES;
1984 
1985 	err = file_permission(fd_file(exe), MAY_EXEC);
1986 	if (err)
1987 		return err;
1988 
1989 	return replace_mm_exe_file(mm, fd_file(exe));
1990 }
1991 
1992 /*
1993  * Check arithmetic relations of passed addresses.
1994  *
1995  * WARNING: we don't require any capability here so be very careful
1996  * in what is allowed for modification from userspace.
1997  */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1998 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1999 {
2000 	unsigned long mmap_max_addr = TASK_SIZE;
2001 	int error = -EINVAL, i;
2002 
2003 	static const unsigned char offsets[] = {
2004 		offsetof(struct prctl_mm_map, start_code),
2005 		offsetof(struct prctl_mm_map, end_code),
2006 		offsetof(struct prctl_mm_map, start_data),
2007 		offsetof(struct prctl_mm_map, end_data),
2008 		offsetof(struct prctl_mm_map, start_brk),
2009 		offsetof(struct prctl_mm_map, brk),
2010 		offsetof(struct prctl_mm_map, start_stack),
2011 		offsetof(struct prctl_mm_map, arg_start),
2012 		offsetof(struct prctl_mm_map, arg_end),
2013 		offsetof(struct prctl_mm_map, env_start),
2014 		offsetof(struct prctl_mm_map, env_end),
2015 	};
2016 
2017 	/*
2018 	 * Make sure the members are not somewhere outside
2019 	 * of allowed address space.
2020 	 */
2021 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
2022 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
2023 
2024 		if ((unsigned long)val >= mmap_max_addr ||
2025 		    (unsigned long)val < mmap_min_addr)
2026 			goto out;
2027 	}
2028 
2029 	/*
2030 	 * Make sure the pairs are ordered.
2031 	 */
2032 #define __prctl_check_order(__m1, __op, __m2)				\
2033 	((unsigned long)prctl_map->__m1 __op				\
2034 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
2035 	error  = __prctl_check_order(start_code, <, end_code);
2036 	error |= __prctl_check_order(start_data,<=, end_data);
2037 	error |= __prctl_check_order(start_brk, <=, brk);
2038 	error |= __prctl_check_order(arg_start, <=, arg_end);
2039 	error |= __prctl_check_order(env_start, <=, env_end);
2040 	if (error)
2041 		goto out;
2042 #undef __prctl_check_order
2043 
2044 	error = -EINVAL;
2045 
2046 	/*
2047 	 * Neither we should allow to override limits if they set.
2048 	 */
2049 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2050 			      prctl_map->start_brk, prctl_map->end_data,
2051 			      prctl_map->start_data))
2052 			goto out;
2053 
2054 	error = 0;
2055 out:
2056 	return error;
2057 }
2058 
2059 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)2060 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2061 {
2062 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2063 	unsigned long user_auxv[AT_VECTOR_SIZE];
2064 	struct mm_struct *mm = current->mm;
2065 	int error;
2066 
2067 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2068 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2069 
2070 	if (opt == PR_SET_MM_MAP_SIZE)
2071 		return put_user((unsigned int)sizeof(prctl_map),
2072 				(unsigned int __user *)addr);
2073 
2074 	if (data_size != sizeof(prctl_map))
2075 		return -EINVAL;
2076 
2077 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2078 		return -EFAULT;
2079 
2080 	error = validate_prctl_map_addr(&prctl_map);
2081 	if (error)
2082 		return error;
2083 
2084 	if (prctl_map.auxv_size) {
2085 		/*
2086 		 * Someone is trying to cheat the auxv vector.
2087 		 */
2088 		if (!prctl_map.auxv ||
2089 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2090 			return -EINVAL;
2091 
2092 		memset(user_auxv, 0, sizeof(user_auxv));
2093 		if (copy_from_user(user_auxv,
2094 				   (const void __user *)prctl_map.auxv,
2095 				   prctl_map.auxv_size))
2096 			return -EFAULT;
2097 
2098 		/* Last entry must be AT_NULL as specification requires */
2099 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2100 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2101 	}
2102 
2103 	if (prctl_map.exe_fd != (u32)-1) {
2104 		/*
2105 		 * Check if the current user is checkpoint/restore capable.
2106 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2107 		 * or CAP_CHECKPOINT_RESTORE.
2108 		 * Note that a user with access to ptrace can masquerade an
2109 		 * arbitrary program as any executable, even setuid ones.
2110 		 * This may have implications in the tomoyo subsystem.
2111 		 */
2112 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2113 			return -EPERM;
2114 
2115 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2116 		if (error)
2117 			return error;
2118 	}
2119 
2120 	/*
2121 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2122 	 * read to exclude races with sys_brk.
2123 	 */
2124 	mmap_read_lock(mm);
2125 
2126 	/*
2127 	 * We don't validate if these members are pointing to
2128 	 * real present VMAs because application may have correspond
2129 	 * VMAs already unmapped and kernel uses these members for statistics
2130 	 * output in procfs mostly, except
2131 	 *
2132 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2133 	 *    for VMAs when updating these members so anything wrong written
2134 	 *    here cause kernel to swear at userspace program but won't lead
2135 	 *    to any problem in kernel itself
2136 	 */
2137 
2138 	spin_lock(&mm->arg_lock);
2139 	mm->start_code	= prctl_map.start_code;
2140 	mm->end_code	= prctl_map.end_code;
2141 	mm->start_data	= prctl_map.start_data;
2142 	mm->end_data	= prctl_map.end_data;
2143 	mm->start_brk	= prctl_map.start_brk;
2144 	mm->brk		= prctl_map.brk;
2145 	mm->start_stack	= prctl_map.start_stack;
2146 	mm->arg_start	= prctl_map.arg_start;
2147 	mm->arg_end	= prctl_map.arg_end;
2148 	mm->env_start	= prctl_map.env_start;
2149 	mm->env_end	= prctl_map.env_end;
2150 	spin_unlock(&mm->arg_lock);
2151 
2152 	/*
2153 	 * Note this update of @saved_auxv is lockless thus
2154 	 * if someone reads this member in procfs while we're
2155 	 * updating -- it may get partly updated results. It's
2156 	 * known and acceptable trade off: we leave it as is to
2157 	 * not introduce additional locks here making the kernel
2158 	 * more complex.
2159 	 */
2160 	if (prctl_map.auxv_size)
2161 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2162 
2163 	mmap_read_unlock(mm);
2164 	return 0;
2165 }
2166 #endif /* CONFIG_CHECKPOINT_RESTORE */
2167 
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2168 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2169 			  unsigned long len)
2170 {
2171 	/*
2172 	 * This doesn't move the auxiliary vector itself since it's pinned to
2173 	 * mm_struct, but it permits filling the vector with new values.  It's
2174 	 * up to the caller to provide sane values here, otherwise userspace
2175 	 * tools which use this vector might be unhappy.
2176 	 */
2177 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2178 
2179 	if (len > sizeof(user_auxv))
2180 		return -EINVAL;
2181 
2182 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2183 		return -EFAULT;
2184 
2185 	/* Make sure the last entry is always AT_NULL */
2186 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2187 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2188 
2189 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2190 
2191 	task_lock(current);
2192 	memcpy(mm->saved_auxv, user_auxv, len);
2193 	task_unlock(current);
2194 
2195 	return 0;
2196 }
2197 
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2198 static int prctl_set_mm(int opt, unsigned long addr,
2199 			unsigned long arg4, unsigned long arg5)
2200 {
2201 	struct mm_struct *mm = current->mm;
2202 	struct prctl_mm_map prctl_map = {
2203 		.auxv = NULL,
2204 		.auxv_size = 0,
2205 		.exe_fd = -1,
2206 	};
2207 	struct vm_area_struct *vma;
2208 	int error;
2209 
2210 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2211 			      opt != PR_SET_MM_MAP &&
2212 			      opt != PR_SET_MM_MAP_SIZE)))
2213 		return -EINVAL;
2214 
2215 #ifdef CONFIG_CHECKPOINT_RESTORE
2216 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2217 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2218 #endif
2219 
2220 	if (!capable(CAP_SYS_RESOURCE))
2221 		return -EPERM;
2222 
2223 	if (opt == PR_SET_MM_EXE_FILE)
2224 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2225 
2226 	if (opt == PR_SET_MM_AUXV)
2227 		return prctl_set_auxv(mm, addr, arg4);
2228 
2229 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2230 		return -EINVAL;
2231 
2232 	error = -EINVAL;
2233 
2234 	/*
2235 	 * arg_lock protects concurrent updates of arg boundaries, we need
2236 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2237 	 * validation.
2238 	 */
2239 	mmap_read_lock(mm);
2240 	vma = find_vma(mm, addr);
2241 
2242 	spin_lock(&mm->arg_lock);
2243 	prctl_map.start_code	= mm->start_code;
2244 	prctl_map.end_code	= mm->end_code;
2245 	prctl_map.start_data	= mm->start_data;
2246 	prctl_map.end_data	= mm->end_data;
2247 	prctl_map.start_brk	= mm->start_brk;
2248 	prctl_map.brk		= mm->brk;
2249 	prctl_map.start_stack	= mm->start_stack;
2250 	prctl_map.arg_start	= mm->arg_start;
2251 	prctl_map.arg_end	= mm->arg_end;
2252 	prctl_map.env_start	= mm->env_start;
2253 	prctl_map.env_end	= mm->env_end;
2254 
2255 	switch (opt) {
2256 	case PR_SET_MM_START_CODE:
2257 		prctl_map.start_code = addr;
2258 		break;
2259 	case PR_SET_MM_END_CODE:
2260 		prctl_map.end_code = addr;
2261 		break;
2262 	case PR_SET_MM_START_DATA:
2263 		prctl_map.start_data = addr;
2264 		break;
2265 	case PR_SET_MM_END_DATA:
2266 		prctl_map.end_data = addr;
2267 		break;
2268 	case PR_SET_MM_START_STACK:
2269 		prctl_map.start_stack = addr;
2270 		break;
2271 	case PR_SET_MM_START_BRK:
2272 		prctl_map.start_brk = addr;
2273 		break;
2274 	case PR_SET_MM_BRK:
2275 		prctl_map.brk = addr;
2276 		break;
2277 	case PR_SET_MM_ARG_START:
2278 		prctl_map.arg_start = addr;
2279 		break;
2280 	case PR_SET_MM_ARG_END:
2281 		prctl_map.arg_end = addr;
2282 		break;
2283 	case PR_SET_MM_ENV_START:
2284 		prctl_map.env_start = addr;
2285 		break;
2286 	case PR_SET_MM_ENV_END:
2287 		prctl_map.env_end = addr;
2288 		break;
2289 	default:
2290 		goto out;
2291 	}
2292 
2293 	error = validate_prctl_map_addr(&prctl_map);
2294 	if (error)
2295 		goto out;
2296 
2297 	switch (opt) {
2298 	/*
2299 	 * If command line arguments and environment
2300 	 * are placed somewhere else on stack, we can
2301 	 * set them up here, ARG_START/END to setup
2302 	 * command line arguments and ENV_START/END
2303 	 * for environment.
2304 	 */
2305 	case PR_SET_MM_START_STACK:
2306 	case PR_SET_MM_ARG_START:
2307 	case PR_SET_MM_ARG_END:
2308 	case PR_SET_MM_ENV_START:
2309 	case PR_SET_MM_ENV_END:
2310 		if (!vma) {
2311 			error = -EFAULT;
2312 			goto out;
2313 		}
2314 	}
2315 
2316 	mm->start_code	= prctl_map.start_code;
2317 	mm->end_code	= prctl_map.end_code;
2318 	mm->start_data	= prctl_map.start_data;
2319 	mm->end_data	= prctl_map.end_data;
2320 	mm->start_brk	= prctl_map.start_brk;
2321 	mm->brk		= prctl_map.brk;
2322 	mm->start_stack	= prctl_map.start_stack;
2323 	mm->arg_start	= prctl_map.arg_start;
2324 	mm->arg_end	= prctl_map.arg_end;
2325 	mm->env_start	= prctl_map.env_start;
2326 	mm->env_end	= prctl_map.env_end;
2327 
2328 	error = 0;
2329 out:
2330 	spin_unlock(&mm->arg_lock);
2331 	mmap_read_unlock(mm);
2332 	return error;
2333 }
2334 
2335 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2336 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2337 {
2338 	return put_user(me->clear_child_tid, tid_addr);
2339 }
2340 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2341 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2342 {
2343 	return -EINVAL;
2344 }
2345 #endif
2346 
propagate_has_child_subreaper(struct task_struct * p,void * data)2347 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2348 {
2349 	/*
2350 	 * If task has has_child_subreaper - all its descendants
2351 	 * already have these flag too and new descendants will
2352 	 * inherit it on fork, skip them.
2353 	 *
2354 	 * If we've found child_reaper - skip descendants in
2355 	 * it's subtree as they will never get out pidns.
2356 	 */
2357 	if (p->signal->has_child_subreaper ||
2358 	    is_child_reaper(task_pid(p)))
2359 		return 0;
2360 
2361 	p->signal->has_child_subreaper = 1;
2362 	return 1;
2363 }
2364 
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2365 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2366 {
2367 	return -EINVAL;
2368 }
2369 
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2370 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2371 				    unsigned long ctrl)
2372 {
2373 	return -EINVAL;
2374 }
2375 
arch_get_shadow_stack_status(struct task_struct * t,unsigned long __user * status)2376 int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2377 {
2378 	return -EINVAL;
2379 }
2380 
arch_set_shadow_stack_status(struct task_struct * t,unsigned long status)2381 int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2382 {
2383 	return -EINVAL;
2384 }
2385 
arch_lock_shadow_stack_status(struct task_struct * t,unsigned long status)2386 int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2387 {
2388 	return -EINVAL;
2389 }
2390 
2391 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2392 
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2393 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2394 			 unsigned long size, unsigned long arg)
2395 {
2396 	int error;
2397 
2398 	switch (opt) {
2399 	case PR_SET_VMA_ANON_NAME:
2400 		error = set_anon_vma_name(addr, size, (const char __user *)arg);
2401 		break;
2402 	default:
2403 		error = -EINVAL;
2404 	}
2405 
2406 	return error;
2407 }
2408 
get_current_mdwe(void)2409 static inline unsigned long get_current_mdwe(void)
2410 {
2411 	unsigned long ret = 0;
2412 
2413 	if (mm_flags_test(MMF_HAS_MDWE, current->mm))
2414 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2415 	if (mm_flags_test(MMF_HAS_MDWE_NO_INHERIT, current->mm))
2416 		ret |= PR_MDWE_NO_INHERIT;
2417 
2418 	return ret;
2419 }
2420 
prctl_set_mdwe(unsigned long bits,unsigned long arg3,unsigned long arg4,unsigned long arg5)2421 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2422 				 unsigned long arg4, unsigned long arg5)
2423 {
2424 	unsigned long current_bits;
2425 
2426 	if (arg3 || arg4 || arg5)
2427 		return -EINVAL;
2428 
2429 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2430 		return -EINVAL;
2431 
2432 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2433 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2434 		return -EINVAL;
2435 
2436 	/*
2437 	 * EOPNOTSUPP might be more appropriate here in principle, but
2438 	 * existing userspace depends on EINVAL specifically.
2439 	 */
2440 	if (!arch_memory_deny_write_exec_supported())
2441 		return -EINVAL;
2442 
2443 	current_bits = get_current_mdwe();
2444 	if (current_bits && current_bits != bits)
2445 		return -EPERM; /* Cannot unset the flags */
2446 
2447 	if (bits & PR_MDWE_NO_INHERIT)
2448 		mm_flags_set(MMF_HAS_MDWE_NO_INHERIT, current->mm);
2449 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2450 		mm_flags_set(MMF_HAS_MDWE, current->mm);
2451 
2452 	return 0;
2453 }
2454 
prctl_get_mdwe(unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)2455 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2456 				 unsigned long arg4, unsigned long arg5)
2457 {
2458 	if (arg2 || arg3 || arg4 || arg5)
2459 		return -EINVAL;
2460 	return get_current_mdwe();
2461 }
2462 
prctl_get_auxv(void __user * addr,unsigned long len)2463 static int prctl_get_auxv(void __user *addr, unsigned long len)
2464 {
2465 	struct mm_struct *mm = current->mm;
2466 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2467 
2468 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2469 		return -EFAULT;
2470 	return sizeof(mm->saved_auxv);
2471 }
2472 
prctl_get_thp_disable(unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)2473 static int prctl_get_thp_disable(unsigned long arg2, unsigned long arg3,
2474 				 unsigned long arg4, unsigned long arg5)
2475 {
2476 	struct mm_struct *mm = current->mm;
2477 
2478 	if (arg2 || arg3 || arg4 || arg5)
2479 		return -EINVAL;
2480 
2481 	/* If disabled, we return "1 | flags", otherwise 0. */
2482 	if (mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm))
2483 		return 1;
2484 	else if (mm_flags_test(MMF_DISABLE_THP_EXCEPT_ADVISED, mm))
2485 		return 1 | PR_THP_DISABLE_EXCEPT_ADVISED;
2486 	return 0;
2487 }
2488 
prctl_set_thp_disable(bool thp_disable,unsigned long flags,unsigned long arg4,unsigned long arg5)2489 static int prctl_set_thp_disable(bool thp_disable, unsigned long flags,
2490 				 unsigned long arg4, unsigned long arg5)
2491 {
2492 	struct mm_struct *mm = current->mm;
2493 
2494 	if (arg4 || arg5)
2495 		return -EINVAL;
2496 
2497 	/* Flags are only allowed when disabling. */
2498 	if ((!thp_disable && flags) || (flags & ~PR_THP_DISABLE_EXCEPT_ADVISED))
2499 		return -EINVAL;
2500 	if (mmap_write_lock_killable(current->mm))
2501 		return -EINTR;
2502 	if (thp_disable) {
2503 		if (flags & PR_THP_DISABLE_EXCEPT_ADVISED) {
2504 			mm_flags_clear(MMF_DISABLE_THP_COMPLETELY, mm);
2505 			mm_flags_set(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2506 		} else {
2507 			mm_flags_set(MMF_DISABLE_THP_COMPLETELY, mm);
2508 			mm_flags_clear(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2509 		}
2510 	} else {
2511 		mm_flags_clear(MMF_DISABLE_THP_COMPLETELY, mm);
2512 		mm_flags_clear(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2513 	}
2514 	mmap_write_unlock(current->mm);
2515 	return 0;
2516 }
2517 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2518 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2519 		unsigned long, arg4, unsigned long, arg5)
2520 {
2521 	struct task_struct *me = current;
2522 	unsigned char comm[sizeof(me->comm)];
2523 	long error;
2524 
2525 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2526 	if (error != -ENOSYS)
2527 		return error;
2528 
2529 	error = 0;
2530 	switch (option) {
2531 	case PR_SET_PDEATHSIG:
2532 		if (!valid_signal(arg2)) {
2533 			error = -EINVAL;
2534 			break;
2535 		}
2536 		/*
2537 		 * Ensure that either:
2538 		 *
2539 		 * 1. Subsequent getppid() calls reflect the parent process having died.
2540 		 * 2. forget_original_parent() will send the new me->pdeath_signal.
2541 		 *
2542 		 * Also prevent the read of me->pdeath_signal from being a data race.
2543 		 */
2544 		read_lock(&tasklist_lock);
2545 		me->pdeath_signal = arg2;
2546 		read_unlock(&tasklist_lock);
2547 		break;
2548 	case PR_GET_PDEATHSIG:
2549 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2550 		break;
2551 	case PR_GET_DUMPABLE:
2552 		error = get_dumpable(me->mm);
2553 		break;
2554 	case PR_SET_DUMPABLE:
2555 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2556 			error = -EINVAL;
2557 			break;
2558 		}
2559 		set_dumpable(me->mm, arg2);
2560 		break;
2561 
2562 	case PR_SET_UNALIGN:
2563 		error = SET_UNALIGN_CTL(me, arg2);
2564 		break;
2565 	case PR_GET_UNALIGN:
2566 		error = GET_UNALIGN_CTL(me, arg2);
2567 		break;
2568 	case PR_SET_FPEMU:
2569 		error = SET_FPEMU_CTL(me, arg2);
2570 		break;
2571 	case PR_GET_FPEMU:
2572 		error = GET_FPEMU_CTL(me, arg2);
2573 		break;
2574 	case PR_SET_FPEXC:
2575 		error = SET_FPEXC_CTL(me, arg2);
2576 		break;
2577 	case PR_GET_FPEXC:
2578 		error = GET_FPEXC_CTL(me, arg2);
2579 		break;
2580 	case PR_GET_TIMING:
2581 		error = PR_TIMING_STATISTICAL;
2582 		break;
2583 	case PR_SET_TIMING:
2584 		if (arg2 != PR_TIMING_STATISTICAL)
2585 			error = -EINVAL;
2586 		break;
2587 	case PR_SET_NAME:
2588 		comm[sizeof(me->comm) - 1] = 0;
2589 		if (strncpy_from_user(comm, (char __user *)arg2,
2590 				      sizeof(me->comm) - 1) < 0)
2591 			return -EFAULT;
2592 		set_task_comm(me, comm);
2593 		proc_comm_connector(me);
2594 		break;
2595 	case PR_GET_NAME:
2596 		get_task_comm(comm, me);
2597 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2598 			return -EFAULT;
2599 		break;
2600 	case PR_GET_ENDIAN:
2601 		error = GET_ENDIAN(me, arg2);
2602 		break;
2603 	case PR_SET_ENDIAN:
2604 		error = SET_ENDIAN(me, arg2);
2605 		break;
2606 	case PR_GET_SECCOMP:
2607 		error = prctl_get_seccomp();
2608 		break;
2609 	case PR_SET_SECCOMP:
2610 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2611 		break;
2612 	case PR_GET_TSC:
2613 		error = GET_TSC_CTL(arg2);
2614 		break;
2615 	case PR_SET_TSC:
2616 		error = SET_TSC_CTL(arg2);
2617 		break;
2618 	case PR_TASK_PERF_EVENTS_DISABLE:
2619 		error = perf_event_task_disable();
2620 		break;
2621 	case PR_TASK_PERF_EVENTS_ENABLE:
2622 		error = perf_event_task_enable();
2623 		break;
2624 	case PR_GET_TIMERSLACK:
2625 		if (current->timer_slack_ns > ULONG_MAX)
2626 			error = ULONG_MAX;
2627 		else
2628 			error = current->timer_slack_ns;
2629 		break;
2630 	case PR_SET_TIMERSLACK:
2631 		if (rt_or_dl_task_policy(current))
2632 			break;
2633 		if (arg2 <= 0)
2634 			current->timer_slack_ns =
2635 					current->default_timer_slack_ns;
2636 		else
2637 			current->timer_slack_ns = arg2;
2638 		break;
2639 	case PR_MCE_KILL:
2640 		if (arg4 | arg5)
2641 			return -EINVAL;
2642 		switch (arg2) {
2643 		case PR_MCE_KILL_CLEAR:
2644 			if (arg3 != 0)
2645 				return -EINVAL;
2646 			current->flags &= ~PF_MCE_PROCESS;
2647 			break;
2648 		case PR_MCE_KILL_SET:
2649 			current->flags |= PF_MCE_PROCESS;
2650 			if (arg3 == PR_MCE_KILL_EARLY)
2651 				current->flags |= PF_MCE_EARLY;
2652 			else if (arg3 == PR_MCE_KILL_LATE)
2653 				current->flags &= ~PF_MCE_EARLY;
2654 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2655 				current->flags &=
2656 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2657 			else
2658 				return -EINVAL;
2659 			break;
2660 		default:
2661 			return -EINVAL;
2662 		}
2663 		break;
2664 	case PR_MCE_KILL_GET:
2665 		if (arg2 | arg3 | arg4 | arg5)
2666 			return -EINVAL;
2667 		if (current->flags & PF_MCE_PROCESS)
2668 			error = (current->flags & PF_MCE_EARLY) ?
2669 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2670 		else
2671 			error = PR_MCE_KILL_DEFAULT;
2672 		break;
2673 	case PR_SET_MM:
2674 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2675 		break;
2676 	case PR_GET_TID_ADDRESS:
2677 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2678 		break;
2679 	case PR_SET_CHILD_SUBREAPER:
2680 		me->signal->is_child_subreaper = !!arg2;
2681 		if (!arg2)
2682 			break;
2683 
2684 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2685 		break;
2686 	case PR_GET_CHILD_SUBREAPER:
2687 		error = put_user(me->signal->is_child_subreaper,
2688 				 (int __user *)arg2);
2689 		break;
2690 	case PR_SET_NO_NEW_PRIVS:
2691 		if (arg2 != 1 || arg3 || arg4 || arg5)
2692 			return -EINVAL;
2693 
2694 		task_set_no_new_privs(current);
2695 		break;
2696 	case PR_GET_NO_NEW_PRIVS:
2697 		if (arg2 || arg3 || arg4 || arg5)
2698 			return -EINVAL;
2699 		return task_no_new_privs(current) ? 1 : 0;
2700 	case PR_GET_THP_DISABLE:
2701 		error = prctl_get_thp_disable(arg2, arg3, arg4, arg5);
2702 		break;
2703 	case PR_SET_THP_DISABLE:
2704 		error = prctl_set_thp_disable(arg2, arg3, arg4, arg5);
2705 		break;
2706 	case PR_MPX_ENABLE_MANAGEMENT:
2707 	case PR_MPX_DISABLE_MANAGEMENT:
2708 		/* No longer implemented: */
2709 		return -EINVAL;
2710 	case PR_SET_FP_MODE:
2711 		error = SET_FP_MODE(me, arg2);
2712 		break;
2713 	case PR_GET_FP_MODE:
2714 		error = GET_FP_MODE(me);
2715 		break;
2716 	case PR_SVE_SET_VL:
2717 		error = SVE_SET_VL(arg2);
2718 		break;
2719 	case PR_SVE_GET_VL:
2720 		error = SVE_GET_VL();
2721 		break;
2722 	case PR_SME_SET_VL:
2723 		error = SME_SET_VL(arg2);
2724 		break;
2725 	case PR_SME_GET_VL:
2726 		error = SME_GET_VL();
2727 		break;
2728 	case PR_GET_SPECULATION_CTRL:
2729 		if (arg3 || arg4 || arg5)
2730 			return -EINVAL;
2731 		error = arch_prctl_spec_ctrl_get(me, arg2);
2732 		break;
2733 	case PR_SET_SPECULATION_CTRL:
2734 		if (arg4 || arg5)
2735 			return -EINVAL;
2736 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2737 		break;
2738 	case PR_PAC_RESET_KEYS:
2739 		if (arg3 || arg4 || arg5)
2740 			return -EINVAL;
2741 		error = PAC_RESET_KEYS(me, arg2);
2742 		break;
2743 	case PR_PAC_SET_ENABLED_KEYS:
2744 		if (arg4 || arg5)
2745 			return -EINVAL;
2746 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2747 		break;
2748 	case PR_PAC_GET_ENABLED_KEYS:
2749 		if (arg2 || arg3 || arg4 || arg5)
2750 			return -EINVAL;
2751 		error = PAC_GET_ENABLED_KEYS(me);
2752 		break;
2753 	case PR_SET_TAGGED_ADDR_CTRL:
2754 		if (arg3 || arg4 || arg5)
2755 			return -EINVAL;
2756 		error = SET_TAGGED_ADDR_CTRL(arg2);
2757 		break;
2758 	case PR_GET_TAGGED_ADDR_CTRL:
2759 		if (arg2 || arg3 || arg4 || arg5)
2760 			return -EINVAL;
2761 		error = GET_TAGGED_ADDR_CTRL();
2762 		break;
2763 	case PR_SET_IO_FLUSHER:
2764 		if (!capable(CAP_SYS_RESOURCE))
2765 			return -EPERM;
2766 
2767 		if (arg3 || arg4 || arg5)
2768 			return -EINVAL;
2769 
2770 		if (arg2 == 1)
2771 			current->flags |= PR_IO_FLUSHER;
2772 		else if (!arg2)
2773 			current->flags &= ~PR_IO_FLUSHER;
2774 		else
2775 			return -EINVAL;
2776 		break;
2777 	case PR_GET_IO_FLUSHER:
2778 		if (!capable(CAP_SYS_RESOURCE))
2779 			return -EPERM;
2780 
2781 		if (arg2 || arg3 || arg4 || arg5)
2782 			return -EINVAL;
2783 
2784 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2785 		break;
2786 	case PR_SET_SYSCALL_USER_DISPATCH:
2787 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2788 						  (char __user *) arg5);
2789 		break;
2790 #ifdef CONFIG_SCHED_CORE
2791 	case PR_SCHED_CORE:
2792 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2793 		break;
2794 #endif
2795 	case PR_SET_MDWE:
2796 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2797 		break;
2798 	case PR_GET_MDWE:
2799 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2800 		break;
2801 	case PR_PPC_GET_DEXCR:
2802 		if (arg3 || arg4 || arg5)
2803 			return -EINVAL;
2804 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2805 		break;
2806 	case PR_PPC_SET_DEXCR:
2807 		if (arg4 || arg5)
2808 			return -EINVAL;
2809 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2810 		break;
2811 	case PR_SET_VMA:
2812 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2813 		break;
2814 	case PR_GET_AUXV:
2815 		if (arg4 || arg5)
2816 			return -EINVAL;
2817 		error = prctl_get_auxv((void __user *)arg2, arg3);
2818 		break;
2819 #ifdef CONFIG_KSM
2820 	case PR_SET_MEMORY_MERGE:
2821 		if (arg3 || arg4 || arg5)
2822 			return -EINVAL;
2823 		if (mmap_write_lock_killable(me->mm))
2824 			return -EINTR;
2825 
2826 		if (arg2)
2827 			error = ksm_enable_merge_any(me->mm);
2828 		else
2829 			error = ksm_disable_merge_any(me->mm);
2830 		mmap_write_unlock(me->mm);
2831 		break;
2832 	case PR_GET_MEMORY_MERGE:
2833 		if (arg2 || arg3 || arg4 || arg5)
2834 			return -EINVAL;
2835 
2836 		error = !!mm_flags_test(MMF_VM_MERGE_ANY, me->mm);
2837 		break;
2838 #endif
2839 	case PR_RISCV_V_SET_CONTROL:
2840 		error = RISCV_V_SET_CONTROL(arg2);
2841 		break;
2842 	case PR_RISCV_V_GET_CONTROL:
2843 		error = RISCV_V_GET_CONTROL();
2844 		break;
2845 	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2846 		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2847 		break;
2848 	case PR_GET_SHADOW_STACK_STATUS:
2849 		if (arg3 || arg4 || arg5)
2850 			return -EINVAL;
2851 		error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
2852 		break;
2853 	case PR_SET_SHADOW_STACK_STATUS:
2854 		if (arg3 || arg4 || arg5)
2855 			return -EINVAL;
2856 		error = arch_set_shadow_stack_status(me, arg2);
2857 		break;
2858 	case PR_LOCK_SHADOW_STACK_STATUS:
2859 		if (arg3 || arg4 || arg5)
2860 			return -EINVAL;
2861 		error = arch_lock_shadow_stack_status(me, arg2);
2862 		break;
2863 	case PR_TIMER_CREATE_RESTORE_IDS:
2864 		if (arg3 || arg4 || arg5)
2865 			return -EINVAL;
2866 		error = posixtimer_create_prctl(arg2);
2867 		break;
2868 	case PR_FUTEX_HASH:
2869 		error = futex_hash_prctl(arg2, arg3, arg4);
2870 		break;
2871 	default:
2872 		trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5);
2873 		error = -EINVAL;
2874 		break;
2875 	}
2876 	return error;
2877 }
2878 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2879 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2880 		struct getcpu_cache __user *, unused)
2881 {
2882 	int err = 0;
2883 	int cpu = raw_smp_processor_id();
2884 
2885 	if (cpup)
2886 		err |= put_user(cpu, cpup);
2887 	if (nodep)
2888 		err |= put_user(cpu_to_node(cpu), nodep);
2889 	return err ? -EFAULT : 0;
2890 }
2891 
2892 /**
2893  * do_sysinfo - fill in sysinfo struct
2894  * @info: pointer to buffer to fill
2895  */
do_sysinfo(struct sysinfo * info)2896 static int do_sysinfo(struct sysinfo *info)
2897 {
2898 	unsigned long mem_total, sav_total;
2899 	unsigned int mem_unit, bitcount;
2900 	struct timespec64 tp;
2901 
2902 	memset(info, 0, sizeof(struct sysinfo));
2903 
2904 	ktime_get_boottime_ts64(&tp);
2905 	timens_add_boottime(&tp);
2906 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2907 
2908 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2909 
2910 	info->procs = nr_threads;
2911 
2912 	si_meminfo(info);
2913 	si_swapinfo(info);
2914 
2915 	/*
2916 	 * If the sum of all the available memory (i.e. ram + swap)
2917 	 * is less than can be stored in a 32 bit unsigned long then
2918 	 * we can be binary compatible with 2.2.x kernels.  If not,
2919 	 * well, in that case 2.2.x was broken anyways...
2920 	 *
2921 	 *  -Erik Andersen <andersee@debian.org>
2922 	 */
2923 
2924 	mem_total = info->totalram + info->totalswap;
2925 	if (mem_total < info->totalram || mem_total < info->totalswap)
2926 		goto out;
2927 	bitcount = 0;
2928 	mem_unit = info->mem_unit;
2929 	while (mem_unit > 1) {
2930 		bitcount++;
2931 		mem_unit >>= 1;
2932 		sav_total = mem_total;
2933 		mem_total <<= 1;
2934 		if (mem_total < sav_total)
2935 			goto out;
2936 	}
2937 
2938 	/*
2939 	 * If mem_total did not overflow, multiply all memory values by
2940 	 * info->mem_unit and set it to 1.  This leaves things compatible
2941 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2942 	 * kernels...
2943 	 */
2944 
2945 	info->mem_unit = 1;
2946 	info->totalram <<= bitcount;
2947 	info->freeram <<= bitcount;
2948 	info->sharedram <<= bitcount;
2949 	info->bufferram <<= bitcount;
2950 	info->totalswap <<= bitcount;
2951 	info->freeswap <<= bitcount;
2952 	info->totalhigh <<= bitcount;
2953 	info->freehigh <<= bitcount;
2954 
2955 out:
2956 	return 0;
2957 }
2958 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2959 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2960 {
2961 	struct sysinfo val;
2962 
2963 	do_sysinfo(&val);
2964 
2965 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2966 		return -EFAULT;
2967 
2968 	return 0;
2969 }
2970 
2971 #ifdef CONFIG_COMPAT
2972 struct compat_sysinfo {
2973 	s32 uptime;
2974 	u32 loads[3];
2975 	u32 totalram;
2976 	u32 freeram;
2977 	u32 sharedram;
2978 	u32 bufferram;
2979 	u32 totalswap;
2980 	u32 freeswap;
2981 	u16 procs;
2982 	u16 pad;
2983 	u32 totalhigh;
2984 	u32 freehigh;
2985 	u32 mem_unit;
2986 	char _f[20-2*sizeof(u32)-sizeof(int)];
2987 };
2988 
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2989 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2990 {
2991 	struct sysinfo s;
2992 	struct compat_sysinfo s_32;
2993 
2994 	do_sysinfo(&s);
2995 
2996 	/* Check to see if any memory value is too large for 32-bit and scale
2997 	 *  down if needed
2998 	 */
2999 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
3000 		int bitcount = 0;
3001 
3002 		while (s.mem_unit < PAGE_SIZE) {
3003 			s.mem_unit <<= 1;
3004 			bitcount++;
3005 		}
3006 
3007 		s.totalram >>= bitcount;
3008 		s.freeram >>= bitcount;
3009 		s.sharedram >>= bitcount;
3010 		s.bufferram >>= bitcount;
3011 		s.totalswap >>= bitcount;
3012 		s.freeswap >>= bitcount;
3013 		s.totalhigh >>= bitcount;
3014 		s.freehigh >>= bitcount;
3015 	}
3016 
3017 	memset(&s_32, 0, sizeof(s_32));
3018 	s_32.uptime = s.uptime;
3019 	s_32.loads[0] = s.loads[0];
3020 	s_32.loads[1] = s.loads[1];
3021 	s_32.loads[2] = s.loads[2];
3022 	s_32.totalram = s.totalram;
3023 	s_32.freeram = s.freeram;
3024 	s_32.sharedram = s.sharedram;
3025 	s_32.bufferram = s.bufferram;
3026 	s_32.totalswap = s.totalswap;
3027 	s_32.freeswap = s.freeswap;
3028 	s_32.procs = s.procs;
3029 	s_32.totalhigh = s.totalhigh;
3030 	s_32.freehigh = s.freehigh;
3031 	s_32.mem_unit = s.mem_unit;
3032 	if (copy_to_user(info, &s_32, sizeof(s_32)))
3033 		return -EFAULT;
3034 	return 0;
3035 }
3036 #endif /* CONFIG_COMPAT */
3037