1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135
136 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148
149 /*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154 static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
158 .poll = sock_poll,
159 .unlocked_ioctl = sock_ioctl,
160 #ifdef CONFIG_COMPAT
161 .compat_ioctl = compat_sock_ioctl,
162 #endif
163 .uring_cmd = io_uring_cmd_sock,
164 .mmap = sock_mmap,
165 .release = sock_close,
166 .fasync = sock_fasync,
167 .splice_write = splice_to_socket,
168 .splice_read = sock_splice_read,
169 .splice_eof = sock_splice_eof,
170 .show_fdinfo = sock_show_fdinfo,
171 };
172
173 static const char * const pf_family_names[] = {
174 [PF_UNSPEC] = "PF_UNSPEC",
175 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
176 [PF_INET] = "PF_INET",
177 [PF_AX25] = "PF_AX25",
178 [PF_IPX] = "PF_IPX",
179 [PF_APPLETALK] = "PF_APPLETALK",
180 [PF_NETROM] = "PF_NETROM",
181 [PF_BRIDGE] = "PF_BRIDGE",
182 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_X25] = "PF_X25",
184 [PF_INET6] = "PF_INET6",
185 [PF_ROSE] = "PF_ROSE",
186 [PF_DECnet] = "PF_DECnet",
187 [PF_NETBEUI] = "PF_NETBEUI",
188 [PF_SECURITY] = "PF_SECURITY",
189 [PF_KEY] = "PF_KEY",
190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET] = "PF_PACKET",
192 [PF_ASH] = "PF_ASH",
193 [PF_ECONET] = "PF_ECONET",
194 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_RDS] = "PF_RDS",
196 [PF_SNA] = "PF_SNA",
197 [PF_IRDA] = "PF_IRDA",
198 [PF_PPPOX] = "PF_PPPOX",
199 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_LLC] = "PF_LLC",
201 [PF_IB] = "PF_IB",
202 [PF_MPLS] = "PF_MPLS",
203 [PF_CAN] = "PF_CAN",
204 [PF_TIPC] = "PF_TIPC",
205 [PF_BLUETOOTH] = "PF_BLUETOOTH",
206 [PF_IUCV] = "PF_IUCV",
207 [PF_RXRPC] = "PF_RXRPC",
208 [PF_ISDN] = "PF_ISDN",
209 [PF_PHONET] = "PF_PHONET",
210 [PF_IEEE802154] = "PF_IEEE802154",
211 [PF_CAIF] = "PF_CAIF",
212 [PF_ALG] = "PF_ALG",
213 [PF_NFC] = "PF_NFC",
214 [PF_VSOCK] = "PF_VSOCK",
215 [PF_KCM] = "PF_KCM",
216 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_SMC] = "PF_SMC",
218 [PF_XDP] = "PF_XDP",
219 [PF_MCTP] = "PF_MCTP",
220 };
221
222 /*
223 * The protocol list. Each protocol is registered in here.
224 */
225
226 static DEFINE_SPINLOCK(net_family_lock);
227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228
229 /*
230 * Support routines.
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
233 */
234
235 /**
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
240 *
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
244 */
245
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247 {
248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 return -EINVAL;
250 if (ulen == 0)
251 return 0;
252 if (copy_from_user(kaddr, uaddr, ulen))
253 return -EFAULT;
254 return audit_sockaddr(ulen, kaddr);
255 }
256
257 /**
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
263 *
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
268 * accessible.
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
272 */
273
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 void __user *uaddr, int __user *ulen)
276 {
277 int err;
278 int len;
279
280 BUG_ON(klen > sizeof(struct sockaddr_storage));
281 err = get_user(len, ulen);
282 if (err)
283 return err;
284 if (len > klen)
285 len = klen;
286 if (len < 0)
287 return -EINVAL;
288 if (len) {
289 if (audit_sockaddr(klen, kaddr))
290 return -ENOMEM;
291 if (copy_to_user(uaddr, kaddr, len))
292 return -EFAULT;
293 }
294 /*
295 * "fromlen shall refer to the value before truncation.."
296 * 1003.1g
297 */
298 return __put_user(klen, ulen);
299 }
300
301 static struct kmem_cache *sock_inode_cachep __ro_after_init;
302
sock_alloc_inode(struct super_block * sb)303 static struct inode *sock_alloc_inode(struct super_block *sb)
304 {
305 struct socket_alloc *ei;
306
307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 if (!ei)
309 return NULL;
310 init_waitqueue_head(&ei->socket.wq.wait);
311 ei->socket.wq.fasync_list = NULL;
312 ei->socket.wq.flags = 0;
313
314 ei->socket.state = SS_UNCONNECTED;
315 ei->socket.flags = 0;
316 ei->socket.ops = NULL;
317 ei->socket.sk = NULL;
318 ei->socket.file = NULL;
319
320 return &ei->vfs_inode;
321 }
322
sock_free_inode(struct inode * inode)323 static void sock_free_inode(struct inode *inode)
324 {
325 struct socket_alloc *ei;
326
327 ei = container_of(inode, struct socket_alloc, vfs_inode);
328 kmem_cache_free(sock_inode_cachep, ei);
329 }
330
init_once(void * foo)331 static void init_once(void *foo)
332 {
333 struct socket_alloc *ei = (struct socket_alloc *)foo;
334
335 inode_init_once(&ei->vfs_inode);
336 }
337
init_inodecache(void)338 static void init_inodecache(void)
339 {
340 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc),
342 0,
343 (SLAB_HWCACHE_ALIGN |
344 SLAB_RECLAIM_ACCOUNT |
345 SLAB_ACCOUNT),
346 init_once);
347 BUG_ON(sock_inode_cachep == NULL);
348 }
349
350 static const struct super_operations sockfs_ops = {
351 .alloc_inode = sock_alloc_inode,
352 .free_inode = sock_free_inode,
353 .statfs = simple_statfs,
354 };
355
356 /*
357 * sockfs_dname() is called from d_path().
358 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360 {
361 return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 d_inode(dentry)->i_ino);
363 }
364
365 static const struct dentry_operations sockfs_dentry_operations = {
366 .d_dname = sockfs_dname,
367 };
368
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)369 static int sockfs_xattr_get(const struct xattr_handler *handler,
370 struct dentry *dentry, struct inode *inode,
371 const char *suffix, void *value, size_t size)
372 {
373 if (value) {
374 if (dentry->d_name.len + 1 > size)
375 return -ERANGE;
376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 }
378 return dentry->d_name.len + 1;
379 }
380
381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384
385 static const struct xattr_handler sockfs_xattr_handler = {
386 .name = XATTR_NAME_SOCKPROTONAME,
387 .get = sockfs_xattr_get,
388 };
389
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)390 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 struct mnt_idmap *idmap,
392 struct dentry *dentry, struct inode *inode,
393 const char *suffix, const void *value,
394 size_t size, int flags)
395 {
396 /* Handled by LSM. */
397 return -EAGAIN;
398 }
399
400 static const struct xattr_handler sockfs_security_xattr_handler = {
401 .prefix = XATTR_SECURITY_PREFIX,
402 .set = sockfs_security_xattr_set,
403 };
404
405 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 &sockfs_xattr_handler,
407 &sockfs_security_xattr_handler,
408 NULL
409 };
410
sockfs_init_fs_context(struct fs_context * fc)411 static int sockfs_init_fs_context(struct fs_context *fc)
412 {
413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 if (!ctx)
415 return -ENOMEM;
416 ctx->ops = &sockfs_ops;
417 ctx->dops = &sockfs_dentry_operations;
418 ctx->xattr = sockfs_xattr_handlers;
419 return 0;
420 }
421
422 static struct vfsmount *sock_mnt __read_mostly;
423
424 static struct file_system_type sock_fs_type = {
425 .name = "sockfs",
426 .init_fs_context = sockfs_init_fs_context,
427 .kill_sb = kill_anon_super,
428 };
429
430 /*
431 * Obtains the first available file descriptor and sets it up for use.
432 *
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
440 *
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
445 */
446
447 /**
448 * sock_alloc_file - Bind a &socket to a &file
449 * @sock: socket
450 * @flags: file status flags
451 * @dname: protocol name
452 *
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
455 *
456 * On failure @sock is released, and an ERR pointer is returned.
457 *
458 * This function uses GFP_KERNEL internally.
459 */
460
sock_alloc_file(struct socket * sock,int flags,const char * dname)461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462 {
463 struct file *file;
464
465 if (!dname)
466 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467
468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 O_RDWR | (flags & O_NONBLOCK),
470 &socket_file_ops);
471 if (IS_ERR(file)) {
472 sock_release(sock);
473 return file;
474 }
475
476 file->f_mode |= FMODE_NOWAIT;
477 sock->file = file;
478 file->private_data = sock;
479 stream_open(SOCK_INODE(sock), file);
480 return file;
481 }
482 EXPORT_SYMBOL(sock_alloc_file);
483
sock_map_fd(struct socket * sock,int flags)484 static int sock_map_fd(struct socket *sock, int flags)
485 {
486 struct file *newfile;
487 int fd = get_unused_fd_flags(flags);
488 if (unlikely(fd < 0)) {
489 sock_release(sock);
490 return fd;
491 }
492
493 newfile = sock_alloc_file(sock, flags, NULL);
494 if (!IS_ERR(newfile)) {
495 fd_install(fd, newfile);
496 return fd;
497 }
498
499 put_unused_fd(fd);
500 return PTR_ERR(newfile);
501 }
502
503 /**
504 * sock_from_file - Return the &socket bounded to @file.
505 * @file: file
506 *
507 * On failure returns %NULL.
508 */
509
sock_from_file(struct file * file)510 struct socket *sock_from_file(struct file *file)
511 {
512 if (file->f_op == &socket_file_ops)
513 return file->private_data; /* set in sock_alloc_file */
514
515 return NULL;
516 }
517 EXPORT_SYMBOL(sock_from_file);
518
519 /**
520 * sockfd_lookup - Go from a file number to its socket slot
521 * @fd: file handle
522 * @err: pointer to an error code return
523 *
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
528 *
529 * On a success the socket object pointer is returned.
530 */
531
sockfd_lookup(int fd,int * err)532 struct socket *sockfd_lookup(int fd, int *err)
533 {
534 struct file *file;
535 struct socket *sock;
536
537 file = fget(fd);
538 if (!file) {
539 *err = -EBADF;
540 return NULL;
541 }
542
543 sock = sock_from_file(file);
544 if (!sock) {
545 *err = -ENOTSOCK;
546 fput(file);
547 }
548 return sock;
549 }
550 EXPORT_SYMBOL(sockfd_lookup);
551
sockfd_lookup_light(int fd,int * err,int * fput_needed)552 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
553 {
554 struct fd f = fdget(fd);
555 struct socket *sock;
556
557 *err = -EBADF;
558 if (fd_file(f)) {
559 sock = sock_from_file(fd_file(f));
560 if (likely(sock)) {
561 *fput_needed = f.word & FDPUT_FPUT;
562 return sock;
563 }
564 *err = -ENOTSOCK;
565 fdput(f);
566 }
567 return NULL;
568 }
569
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)570 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
571 size_t size)
572 {
573 ssize_t len;
574 ssize_t used = 0;
575
576 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
577 if (len < 0)
578 return len;
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 buffer += len;
584 }
585
586 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
587 used += len;
588 if (buffer) {
589 if (size < used)
590 return -ERANGE;
591 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
592 buffer += len;
593 }
594
595 return used;
596 }
597
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)598 static int sockfs_setattr(struct mnt_idmap *idmap,
599 struct dentry *dentry, struct iattr *iattr)
600 {
601 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
602
603 if (!err && (iattr->ia_valid & ATTR_UID)) {
604 struct socket *sock = SOCKET_I(d_inode(dentry));
605
606 if (sock->sk)
607 sock->sk->sk_uid = iattr->ia_uid;
608 else
609 err = -ENOENT;
610 }
611
612 return err;
613 }
614
615 static const struct inode_operations sockfs_inode_ops = {
616 .listxattr = sockfs_listxattr,
617 .setattr = sockfs_setattr,
618 };
619
620 /**
621 * sock_alloc - allocate a socket
622 *
623 * Allocate a new inode and socket object. The two are bound together
624 * and initialised. The socket is then returned. If we are out of inodes
625 * NULL is returned. This functions uses GFP_KERNEL internally.
626 */
627
sock_alloc(void)628 struct socket *sock_alloc(void)
629 {
630 struct inode *inode;
631 struct socket *sock;
632
633 inode = new_inode_pseudo(sock_mnt->mnt_sb);
634 if (!inode)
635 return NULL;
636
637 sock = SOCKET_I(inode);
638
639 inode->i_ino = get_next_ino();
640 inode->i_mode = S_IFSOCK | S_IRWXUGO;
641 inode->i_uid = current_fsuid();
642 inode->i_gid = current_fsgid();
643 inode->i_op = &sockfs_inode_ops;
644
645 return sock;
646 }
647 EXPORT_SYMBOL(sock_alloc);
648
__sock_release(struct socket * sock,struct inode * inode)649 static void __sock_release(struct socket *sock, struct inode *inode)
650 {
651 const struct proto_ops *ops = READ_ONCE(sock->ops);
652
653 if (ops) {
654 struct module *owner = ops->owner;
655
656 if (inode)
657 inode_lock(inode);
658 ops->release(sock);
659 sock->sk = NULL;
660 if (inode)
661 inode_unlock(inode);
662 sock->ops = NULL;
663 module_put(owner);
664 }
665
666 if (sock->wq.fasync_list)
667 pr_err("%s: fasync list not empty!\n", __func__);
668
669 if (!sock->file) {
670 iput(SOCK_INODE(sock));
671 return;
672 }
673 sock->file = NULL;
674 }
675
676 /**
677 * sock_release - close a socket
678 * @sock: socket to close
679 *
680 * The socket is released from the protocol stack if it has a release
681 * callback, and the inode is then released if the socket is bound to
682 * an inode not a file.
683 */
sock_release(struct socket * sock)684 void sock_release(struct socket *sock)
685 {
686 __sock_release(sock, NULL);
687 }
688 EXPORT_SYMBOL(sock_release);
689
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)690 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
691 {
692 u8 flags = *tx_flags;
693
694 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
695 flags |= SKBTX_HW_TSTAMP;
696
697 /* PTP hardware clocks can provide a free running cycle counter
698 * as a time base for virtual clocks. Tell driver to use the
699 * free running cycle counter for timestamp if socket is bound
700 * to virtual clock.
701 */
702 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
703 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
704 }
705
706 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
707 flags |= SKBTX_SW_TSTAMP;
708
709 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
710 flags |= SKBTX_SCHED_TSTAMP;
711
712 *tx_flags = flags;
713 }
714 EXPORT_SYMBOL(__sock_tx_timestamp);
715
716 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
717 size_t));
718 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
719 size_t));
720
call_trace_sock_send_length(struct sock * sk,int ret,int flags)721 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
722 int flags)
723 {
724 trace_sock_send_length(sk, ret, 0);
725 }
726
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)727 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
728 {
729 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
730 inet_sendmsg, sock, msg,
731 msg_data_left(msg));
732 BUG_ON(ret == -EIOCBQUEUED);
733
734 if (trace_sock_send_length_enabled())
735 call_trace_sock_send_length(sock->sk, ret, 0);
736 return ret;
737 }
738
__sock_sendmsg(struct socket * sock,struct msghdr * msg)739 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
740 {
741 int err = security_socket_sendmsg(sock, msg,
742 msg_data_left(msg));
743
744 return err ?: sock_sendmsg_nosec(sock, msg);
745 }
746
747 /**
748 * sock_sendmsg - send a message through @sock
749 * @sock: socket
750 * @msg: message to send
751 *
752 * Sends @msg through @sock, passing through LSM.
753 * Returns the number of bytes sent, or an error code.
754 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)755 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
756 {
757 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
758 struct sockaddr_storage address;
759 int save_len = msg->msg_namelen;
760 int ret;
761
762 if (msg->msg_name) {
763 memcpy(&address, msg->msg_name, msg->msg_namelen);
764 msg->msg_name = &address;
765 }
766
767 ret = __sock_sendmsg(sock, msg);
768 msg->msg_name = save_addr;
769 msg->msg_namelen = save_len;
770
771 return ret;
772 }
773 EXPORT_SYMBOL(sock_sendmsg);
774
775 /**
776 * kernel_sendmsg - send a message through @sock (kernel-space)
777 * @sock: socket
778 * @msg: message header
779 * @vec: kernel vec
780 * @num: vec array length
781 * @size: total message data size
782 *
783 * Builds the message data with @vec and sends it through @sock.
784 * Returns the number of bytes sent, or an error code.
785 */
786
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)787 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
788 struct kvec *vec, size_t num, size_t size)
789 {
790 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
791 return sock_sendmsg(sock, msg);
792 }
793 EXPORT_SYMBOL(kernel_sendmsg);
794
795 /**
796 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
797 * @sk: sock
798 * @msg: message header
799 * @vec: output s/g array
800 * @num: output s/g array length
801 * @size: total message data size
802 *
803 * Builds the message data with @vec and sends it through @sock.
804 * Returns the number of bytes sent, or an error code.
805 * Caller must hold @sk.
806 */
807
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)808 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
809 struct kvec *vec, size_t num, size_t size)
810 {
811 struct socket *sock = sk->sk_socket;
812 const struct proto_ops *ops = READ_ONCE(sock->ops);
813
814 if (!ops->sendmsg_locked)
815 return sock_no_sendmsg_locked(sk, msg, size);
816
817 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
818
819 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
820 }
821 EXPORT_SYMBOL(kernel_sendmsg_locked);
822
skb_is_err_queue(const struct sk_buff * skb)823 static bool skb_is_err_queue(const struct sk_buff *skb)
824 {
825 /* pkt_type of skbs enqueued on the error queue are set to
826 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
827 * in recvmsg, since skbs received on a local socket will never
828 * have a pkt_type of PACKET_OUTGOING.
829 */
830 return skb->pkt_type == PACKET_OUTGOING;
831 }
832
833 /* On transmit, software and hardware timestamps are returned independently.
834 * As the two skb clones share the hardware timestamp, which may be updated
835 * before the software timestamp is received, a hardware TX timestamp may be
836 * returned only if there is no software TX timestamp. Ignore false software
837 * timestamps, which may be made in the __sock_recv_timestamp() call when the
838 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
839 * hardware timestamp.
840 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)841 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
842 {
843 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
844 }
845
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)846 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
847 {
848 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
849 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
850 struct net_device *orig_dev;
851 ktime_t hwtstamp;
852
853 rcu_read_lock();
854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 if (orig_dev) {
856 *if_index = orig_dev->ifindex;
857 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
858 } else {
859 hwtstamp = shhwtstamps->hwtstamp;
860 }
861 rcu_read_unlock();
862
863 return hwtstamp;
864 }
865
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)866 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
867 int if_index)
868 {
869 struct scm_ts_pktinfo ts_pktinfo;
870 struct net_device *orig_dev;
871
872 if (!skb_mac_header_was_set(skb))
873 return;
874
875 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
876
877 if (!if_index) {
878 rcu_read_lock();
879 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
880 if (orig_dev)
881 if_index = orig_dev->ifindex;
882 rcu_read_unlock();
883 }
884 ts_pktinfo.if_index = if_index;
885
886 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
887 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
888 sizeof(ts_pktinfo), &ts_pktinfo);
889 }
890
891 /*
892 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
893 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)894 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
895 struct sk_buff *skb)
896 {
897 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
898 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
899 struct scm_timestamping_internal tss;
900 int empty = 1, false_tstamp = 0;
901 struct skb_shared_hwtstamps *shhwtstamps =
902 skb_hwtstamps(skb);
903 int if_index;
904 ktime_t hwtstamp;
905 u32 tsflags;
906
907 /* Race occurred between timestamp enabling and packet
908 receiving. Fill in the current time for now. */
909 if (need_software_tstamp && skb->tstamp == 0) {
910 __net_timestamp(skb);
911 false_tstamp = 1;
912 }
913
914 if (need_software_tstamp) {
915 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
916 if (new_tstamp) {
917 struct __kernel_sock_timeval tv;
918
919 skb_get_new_timestamp(skb, &tv);
920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
921 sizeof(tv), &tv);
922 } else {
923 struct __kernel_old_timeval tv;
924
925 skb_get_timestamp(skb, &tv);
926 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
927 sizeof(tv), &tv);
928 }
929 } else {
930 if (new_tstamp) {
931 struct __kernel_timespec ts;
932
933 skb_get_new_timestampns(skb, &ts);
934 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
935 sizeof(ts), &ts);
936 } else {
937 struct __kernel_old_timespec ts;
938
939 skb_get_timestampns(skb, &ts);
940 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
941 sizeof(ts), &ts);
942 }
943 }
944 }
945
946 memset(&tss, 0, sizeof(tss));
947 tsflags = READ_ONCE(sk->sk_tsflags);
948 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
949 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
950 skb_is_err_queue(skb) ||
951 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
952 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
953 empty = 0;
954 if (shhwtstamps &&
955 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
956 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
957 skb_is_err_queue(skb) ||
958 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
959 !skb_is_swtx_tstamp(skb, false_tstamp)) {
960 if_index = 0;
961 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
962 hwtstamp = get_timestamp(sk, skb, &if_index);
963 else
964 hwtstamp = shhwtstamps->hwtstamp;
965
966 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
967 hwtstamp = ptp_convert_timestamp(&hwtstamp,
968 READ_ONCE(sk->sk_bind_phc));
969
970 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
971 empty = 0;
972
973 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
974 !skb_is_err_queue(skb))
975 put_ts_pktinfo(msg, skb, if_index);
976 }
977 }
978 if (!empty) {
979 if (sock_flag(sk, SOCK_TSTAMP_NEW))
980 put_cmsg_scm_timestamping64(msg, &tss);
981 else
982 put_cmsg_scm_timestamping(msg, &tss);
983
984 if (skb_is_err_queue(skb) && skb->len &&
985 SKB_EXT_ERR(skb)->opt_stats)
986 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
987 skb->len, skb->data);
988 }
989 }
990 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
991
992 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)993 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
994 struct sk_buff *skb)
995 {
996 int ack;
997
998 if (!sock_flag(sk, SOCK_WIFI_STATUS))
999 return;
1000 if (!skb->wifi_acked_valid)
1001 return;
1002
1003 ack = skb->wifi_acked;
1004
1005 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1006 }
1007 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1008 #endif
1009
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1010 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1011 struct sk_buff *skb)
1012 {
1013 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1014 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1015 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1016 }
1017
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1018 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1019 struct sk_buff *skb)
1020 {
1021 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1022 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1023 __u32 mark = skb->mark;
1024
1025 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1026 }
1027 }
1028
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1029 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1030 struct sk_buff *skb)
1031 {
1032 sock_recv_timestamp(msg, sk, skb);
1033 sock_recv_drops(msg, sk, skb);
1034 sock_recv_mark(msg, sk, skb);
1035 }
1036 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1037
1038 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1039 size_t, int));
1040 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1041 size_t, int));
1042
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1043 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1044 {
1045 trace_sock_recv_length(sk, ret, flags);
1046 }
1047
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1048 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1049 int flags)
1050 {
1051 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1052 inet6_recvmsg,
1053 inet_recvmsg, sock, msg,
1054 msg_data_left(msg), flags);
1055 if (trace_sock_recv_length_enabled())
1056 call_trace_sock_recv_length(sock->sk, ret, flags);
1057 return ret;
1058 }
1059
1060 /**
1061 * sock_recvmsg - receive a message from @sock
1062 * @sock: socket
1063 * @msg: message to receive
1064 * @flags: message flags
1065 *
1066 * Receives @msg from @sock, passing through LSM. Returns the total number
1067 * of bytes received, or an error.
1068 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1069 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1070 {
1071 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1072
1073 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1074 }
1075 EXPORT_SYMBOL(sock_recvmsg);
1076
1077 /**
1078 * kernel_recvmsg - Receive a message from a socket (kernel space)
1079 * @sock: The socket to receive the message from
1080 * @msg: Received message
1081 * @vec: Input s/g array for message data
1082 * @num: Size of input s/g array
1083 * @size: Number of bytes to read
1084 * @flags: Message flags (MSG_DONTWAIT, etc...)
1085 *
1086 * On return the msg structure contains the scatter/gather array passed in the
1087 * vec argument. The array is modified so that it consists of the unfilled
1088 * portion of the original array.
1089 *
1090 * The returned value is the total number of bytes received, or an error.
1091 */
1092
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1093 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1094 struct kvec *vec, size_t num, size_t size, int flags)
1095 {
1096 msg->msg_control_is_user = false;
1097 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1098 return sock_recvmsg(sock, msg, flags);
1099 }
1100 EXPORT_SYMBOL(kernel_recvmsg);
1101
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1102 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1103 struct pipe_inode_info *pipe, size_t len,
1104 unsigned int flags)
1105 {
1106 struct socket *sock = file->private_data;
1107 const struct proto_ops *ops;
1108
1109 ops = READ_ONCE(sock->ops);
1110 if (unlikely(!ops->splice_read))
1111 return copy_splice_read(file, ppos, pipe, len, flags);
1112
1113 return ops->splice_read(sock, ppos, pipe, len, flags);
1114 }
1115
sock_splice_eof(struct file * file)1116 static void sock_splice_eof(struct file *file)
1117 {
1118 struct socket *sock = file->private_data;
1119 const struct proto_ops *ops;
1120
1121 ops = READ_ONCE(sock->ops);
1122 if (ops->splice_eof)
1123 ops->splice_eof(sock);
1124 }
1125
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1126 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1127 {
1128 struct file *file = iocb->ki_filp;
1129 struct socket *sock = file->private_data;
1130 struct msghdr msg = {.msg_iter = *to,
1131 .msg_iocb = iocb};
1132 ssize_t res;
1133
1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1135 msg.msg_flags = MSG_DONTWAIT;
1136
1137 if (iocb->ki_pos != 0)
1138 return -ESPIPE;
1139
1140 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1141 return 0;
1142
1143 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1144 *to = msg.msg_iter;
1145 return res;
1146 }
1147
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1148 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1149 {
1150 struct file *file = iocb->ki_filp;
1151 struct socket *sock = file->private_data;
1152 struct msghdr msg = {.msg_iter = *from,
1153 .msg_iocb = iocb};
1154 ssize_t res;
1155
1156 if (iocb->ki_pos != 0)
1157 return -ESPIPE;
1158
1159 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1160 msg.msg_flags = MSG_DONTWAIT;
1161
1162 if (sock->type == SOCK_SEQPACKET)
1163 msg.msg_flags |= MSG_EOR;
1164
1165 res = __sock_sendmsg(sock, &msg);
1166 *from = msg.msg_iter;
1167 return res;
1168 }
1169
1170 /*
1171 * Atomic setting of ioctl hooks to avoid race
1172 * with module unload.
1173 */
1174
1175 static DEFINE_MUTEX(br_ioctl_mutex);
1176 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1177 unsigned int cmd, struct ifreq *ifr,
1178 void __user *uarg);
1179
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1180 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1181 unsigned int cmd, struct ifreq *ifr,
1182 void __user *uarg))
1183 {
1184 mutex_lock(&br_ioctl_mutex);
1185 br_ioctl_hook = hook;
1186 mutex_unlock(&br_ioctl_mutex);
1187 }
1188 EXPORT_SYMBOL(brioctl_set);
1189
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1190 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1191 struct ifreq *ifr, void __user *uarg)
1192 {
1193 int err = -ENOPKG;
1194
1195 if (!br_ioctl_hook)
1196 request_module("bridge");
1197
1198 mutex_lock(&br_ioctl_mutex);
1199 if (br_ioctl_hook)
1200 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1201 mutex_unlock(&br_ioctl_mutex);
1202
1203 return err;
1204 }
1205
1206 static DEFINE_MUTEX(vlan_ioctl_mutex);
1207 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1208
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1209 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1210 {
1211 mutex_lock(&vlan_ioctl_mutex);
1212 vlan_ioctl_hook = hook;
1213 mutex_unlock(&vlan_ioctl_mutex);
1214 }
1215 EXPORT_SYMBOL(vlan_ioctl_set);
1216
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1217 static long sock_do_ioctl(struct net *net, struct socket *sock,
1218 unsigned int cmd, unsigned long arg)
1219 {
1220 const struct proto_ops *ops = READ_ONCE(sock->ops);
1221 struct ifreq ifr;
1222 bool need_copyout;
1223 int err;
1224 void __user *argp = (void __user *)arg;
1225 void __user *data;
1226
1227 err = ops->ioctl(sock, cmd, arg);
1228
1229 /*
1230 * If this ioctl is unknown try to hand it down
1231 * to the NIC driver.
1232 */
1233 if (err != -ENOIOCTLCMD)
1234 return err;
1235
1236 if (!is_socket_ioctl_cmd(cmd))
1237 return -ENOTTY;
1238
1239 if (get_user_ifreq(&ifr, &data, argp))
1240 return -EFAULT;
1241 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1242 if (!err && need_copyout)
1243 if (put_user_ifreq(&ifr, argp))
1244 return -EFAULT;
1245
1246 return err;
1247 }
1248
1249 /*
1250 * With an ioctl, arg may well be a user mode pointer, but we don't know
1251 * what to do with it - that's up to the protocol still.
1252 */
1253
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1254 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1255 {
1256 const struct proto_ops *ops;
1257 struct socket *sock;
1258 struct sock *sk;
1259 void __user *argp = (void __user *)arg;
1260 int pid, err;
1261 struct net *net;
1262
1263 sock = file->private_data;
1264 ops = READ_ONCE(sock->ops);
1265 sk = sock->sk;
1266 net = sock_net(sk);
1267 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1268 struct ifreq ifr;
1269 void __user *data;
1270 bool need_copyout;
1271 if (get_user_ifreq(&ifr, &data, argp))
1272 return -EFAULT;
1273 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1274 if (!err && need_copyout)
1275 if (put_user_ifreq(&ifr, argp))
1276 return -EFAULT;
1277 } else
1278 #ifdef CONFIG_WEXT_CORE
1279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1280 err = wext_handle_ioctl(net, cmd, argp);
1281 } else
1282 #endif
1283 switch (cmd) {
1284 case FIOSETOWN:
1285 case SIOCSPGRP:
1286 err = -EFAULT;
1287 if (get_user(pid, (int __user *)argp))
1288 break;
1289 err = f_setown(sock->file, pid, 1);
1290 break;
1291 case FIOGETOWN:
1292 case SIOCGPGRP:
1293 err = put_user(f_getown(sock->file),
1294 (int __user *)argp);
1295 break;
1296 case SIOCGIFBR:
1297 case SIOCSIFBR:
1298 case SIOCBRADDBR:
1299 case SIOCBRDELBR:
1300 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1301 break;
1302 case SIOCGIFVLAN:
1303 case SIOCSIFVLAN:
1304 err = -ENOPKG;
1305 if (!vlan_ioctl_hook)
1306 request_module("8021q");
1307
1308 mutex_lock(&vlan_ioctl_mutex);
1309 if (vlan_ioctl_hook)
1310 err = vlan_ioctl_hook(net, argp);
1311 mutex_unlock(&vlan_ioctl_mutex);
1312 break;
1313 case SIOCGSKNS:
1314 err = -EPERM;
1315 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1316 break;
1317
1318 err = open_related_ns(&net->ns, get_net_ns);
1319 break;
1320 case SIOCGSTAMP_OLD:
1321 case SIOCGSTAMPNS_OLD:
1322 if (!ops->gettstamp) {
1323 err = -ENOIOCTLCMD;
1324 break;
1325 }
1326 err = ops->gettstamp(sock, argp,
1327 cmd == SIOCGSTAMP_OLD,
1328 !IS_ENABLED(CONFIG_64BIT));
1329 break;
1330 case SIOCGSTAMP_NEW:
1331 case SIOCGSTAMPNS_NEW:
1332 if (!ops->gettstamp) {
1333 err = -ENOIOCTLCMD;
1334 break;
1335 }
1336 err = ops->gettstamp(sock, argp,
1337 cmd == SIOCGSTAMP_NEW,
1338 false);
1339 break;
1340
1341 case SIOCGIFCONF:
1342 err = dev_ifconf(net, argp);
1343 break;
1344
1345 default:
1346 err = sock_do_ioctl(net, sock, cmd, arg);
1347 break;
1348 }
1349 return err;
1350 }
1351
1352 /**
1353 * sock_create_lite - creates a socket
1354 * @family: protocol family (AF_INET, ...)
1355 * @type: communication type (SOCK_STREAM, ...)
1356 * @protocol: protocol (0, ...)
1357 * @res: new socket
1358 *
1359 * Creates a new socket and assigns it to @res, passing through LSM.
1360 * The new socket initialization is not complete, see kernel_accept().
1361 * Returns 0 or an error. On failure @res is set to %NULL.
1362 * This function internally uses GFP_KERNEL.
1363 */
1364
sock_create_lite(int family,int type,int protocol,struct socket ** res)1365 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1366 {
1367 int err;
1368 struct socket *sock = NULL;
1369
1370 err = security_socket_create(family, type, protocol, 1);
1371 if (err)
1372 goto out;
1373
1374 sock = sock_alloc();
1375 if (!sock) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
1379
1380 sock->type = type;
1381 err = security_socket_post_create(sock, family, type, protocol, 1);
1382 if (err)
1383 goto out_release;
1384
1385 out:
1386 *res = sock;
1387 return err;
1388 out_release:
1389 sock_release(sock);
1390 sock = NULL;
1391 goto out;
1392 }
1393 EXPORT_SYMBOL(sock_create_lite);
1394
1395 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1396 static __poll_t sock_poll(struct file *file, poll_table *wait)
1397 {
1398 struct socket *sock = file->private_data;
1399 const struct proto_ops *ops = READ_ONCE(sock->ops);
1400 __poll_t events = poll_requested_events(wait), flag = 0;
1401
1402 if (!ops->poll)
1403 return 0;
1404
1405 if (sk_can_busy_loop(sock->sk)) {
1406 /* poll once if requested by the syscall */
1407 if (events & POLL_BUSY_LOOP)
1408 sk_busy_loop(sock->sk, 1);
1409
1410 /* if this socket can poll_ll, tell the system call */
1411 flag = POLL_BUSY_LOOP;
1412 }
1413
1414 return ops->poll(file, sock, wait) | flag;
1415 }
1416
sock_mmap(struct file * file,struct vm_area_struct * vma)1417 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1418 {
1419 struct socket *sock = file->private_data;
1420
1421 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1422 }
1423
sock_close(struct inode * inode,struct file * filp)1424 static int sock_close(struct inode *inode, struct file *filp)
1425 {
1426 __sock_release(SOCKET_I(inode), inode);
1427 return 0;
1428 }
1429
1430 /*
1431 * Update the socket async list
1432 *
1433 * Fasync_list locking strategy.
1434 *
1435 * 1. fasync_list is modified only under process context socket lock
1436 * i.e. under semaphore.
1437 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1438 * or under socket lock
1439 */
1440
sock_fasync(int fd,struct file * filp,int on)1441 static int sock_fasync(int fd, struct file *filp, int on)
1442 {
1443 struct socket *sock = filp->private_data;
1444 struct sock *sk = sock->sk;
1445 struct socket_wq *wq = &sock->wq;
1446
1447 if (sk == NULL)
1448 return -EINVAL;
1449
1450 lock_sock(sk);
1451 fasync_helper(fd, filp, on, &wq->fasync_list);
1452
1453 if (!wq->fasync_list)
1454 sock_reset_flag(sk, SOCK_FASYNC);
1455 else
1456 sock_set_flag(sk, SOCK_FASYNC);
1457
1458 release_sock(sk);
1459 return 0;
1460 }
1461
1462 /* This function may be called only under rcu_lock */
1463
sock_wake_async(struct socket_wq * wq,int how,int band)1464 int sock_wake_async(struct socket_wq *wq, int how, int band)
1465 {
1466 if (!wq || !wq->fasync_list)
1467 return -1;
1468
1469 switch (how) {
1470 case SOCK_WAKE_WAITD:
1471 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1472 break;
1473 goto call_kill;
1474 case SOCK_WAKE_SPACE:
1475 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1476 break;
1477 fallthrough;
1478 case SOCK_WAKE_IO:
1479 call_kill:
1480 kill_fasync(&wq->fasync_list, SIGIO, band);
1481 break;
1482 case SOCK_WAKE_URG:
1483 kill_fasync(&wq->fasync_list, SIGURG, band);
1484 }
1485
1486 return 0;
1487 }
1488 EXPORT_SYMBOL(sock_wake_async);
1489
1490 /**
1491 * __sock_create - creates a socket
1492 * @net: net namespace
1493 * @family: protocol family (AF_INET, ...)
1494 * @type: communication type (SOCK_STREAM, ...)
1495 * @protocol: protocol (0, ...)
1496 * @res: new socket
1497 * @kern: boolean for kernel space sockets
1498 *
1499 * Creates a new socket and assigns it to @res, passing through LSM.
1500 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1501 * be set to true if the socket resides in kernel space.
1502 * This function internally uses GFP_KERNEL.
1503 */
1504
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1505 int __sock_create(struct net *net, int family, int type, int protocol,
1506 struct socket **res, int kern)
1507 {
1508 int err;
1509 struct socket *sock;
1510 const struct net_proto_family *pf;
1511
1512 /*
1513 * Check protocol is in range
1514 */
1515 if (family < 0 || family >= NPROTO)
1516 return -EAFNOSUPPORT;
1517 if (type < 0 || type >= SOCK_MAX)
1518 return -EINVAL;
1519
1520 /* Compatibility.
1521
1522 This uglymoron is moved from INET layer to here to avoid
1523 deadlock in module load.
1524 */
1525 if (family == PF_INET && type == SOCK_PACKET) {
1526 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1527 current->comm);
1528 family = PF_PACKET;
1529 }
1530
1531 err = security_socket_create(family, type, protocol, kern);
1532 if (err)
1533 return err;
1534
1535 /*
1536 * Allocate the socket and allow the family to set things up. if
1537 * the protocol is 0, the family is instructed to select an appropriate
1538 * default.
1539 */
1540 sock = sock_alloc();
1541 if (!sock) {
1542 net_warn_ratelimited("socket: no more sockets\n");
1543 return -ENFILE; /* Not exactly a match, but its the
1544 closest posix thing */
1545 }
1546
1547 sock->type = type;
1548
1549 #ifdef CONFIG_MODULES
1550 /* Attempt to load a protocol module if the find failed.
1551 *
1552 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1553 * requested real, full-featured networking support upon configuration.
1554 * Otherwise module support will break!
1555 */
1556 if (rcu_access_pointer(net_families[family]) == NULL)
1557 request_module("net-pf-%d", family);
1558 #endif
1559
1560 rcu_read_lock();
1561 pf = rcu_dereference(net_families[family]);
1562 err = -EAFNOSUPPORT;
1563 if (!pf)
1564 goto out_release;
1565
1566 /*
1567 * We will call the ->create function, that possibly is in a loadable
1568 * module, so we have to bump that loadable module refcnt first.
1569 */
1570 if (!try_module_get(pf->owner))
1571 goto out_release;
1572
1573 /* Now protected by module ref count */
1574 rcu_read_unlock();
1575
1576 err = pf->create(net, sock, protocol, kern);
1577 if (err < 0) {
1578 /* ->create should release the allocated sock->sk object on error
1579 * but it may leave the dangling pointer
1580 */
1581 sock->sk = NULL;
1582 goto out_module_put;
1583 }
1584
1585 /*
1586 * Now to bump the refcnt of the [loadable] module that owns this
1587 * socket at sock_release time we decrement its refcnt.
1588 */
1589 if (!try_module_get(sock->ops->owner))
1590 goto out_module_busy;
1591
1592 /*
1593 * Now that we're done with the ->create function, the [loadable]
1594 * module can have its refcnt decremented
1595 */
1596 module_put(pf->owner);
1597 err = security_socket_post_create(sock, family, type, protocol, kern);
1598 if (err)
1599 goto out_sock_release;
1600 *res = sock;
1601
1602 return 0;
1603
1604 out_module_busy:
1605 err = -EAFNOSUPPORT;
1606 out_module_put:
1607 sock->ops = NULL;
1608 module_put(pf->owner);
1609 out_sock_release:
1610 sock_release(sock);
1611 return err;
1612
1613 out_release:
1614 rcu_read_unlock();
1615 goto out_sock_release;
1616 }
1617 EXPORT_SYMBOL(__sock_create);
1618
1619 /**
1620 * sock_create - creates a socket
1621 * @family: protocol family (AF_INET, ...)
1622 * @type: communication type (SOCK_STREAM, ...)
1623 * @protocol: protocol (0, ...)
1624 * @res: new socket
1625 *
1626 * A wrapper around __sock_create().
1627 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1628 */
1629
sock_create(int family,int type,int protocol,struct socket ** res)1630 int sock_create(int family, int type, int protocol, struct socket **res)
1631 {
1632 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1633 }
1634 EXPORT_SYMBOL(sock_create);
1635
1636 /**
1637 * sock_create_kern - creates a socket (kernel space)
1638 * @net: net namespace
1639 * @family: protocol family (AF_INET, ...)
1640 * @type: communication type (SOCK_STREAM, ...)
1641 * @protocol: protocol (0, ...)
1642 * @res: new socket
1643 *
1644 * A wrapper around __sock_create().
1645 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1646 */
1647
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1648 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1649 {
1650 return __sock_create(net, family, type, protocol, res, 1);
1651 }
1652 EXPORT_SYMBOL(sock_create_kern);
1653
__sys_socket_create(int family,int type,int protocol)1654 static struct socket *__sys_socket_create(int family, int type, int protocol)
1655 {
1656 struct socket *sock;
1657 int retval;
1658
1659 /* Check the SOCK_* constants for consistency. */
1660 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1661 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1662 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1663 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1664
1665 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1666 return ERR_PTR(-EINVAL);
1667 type &= SOCK_TYPE_MASK;
1668
1669 retval = sock_create(family, type, protocol, &sock);
1670 if (retval < 0)
1671 return ERR_PTR(retval);
1672
1673 return sock;
1674 }
1675
__sys_socket_file(int family,int type,int protocol)1676 struct file *__sys_socket_file(int family, int type, int protocol)
1677 {
1678 struct socket *sock;
1679 int flags;
1680
1681 sock = __sys_socket_create(family, type, protocol);
1682 if (IS_ERR(sock))
1683 return ERR_CAST(sock);
1684
1685 flags = type & ~SOCK_TYPE_MASK;
1686 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1687 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1688
1689 return sock_alloc_file(sock, flags, NULL);
1690 }
1691
1692 /* A hook for bpf progs to attach to and update socket protocol.
1693 *
1694 * A static noinline declaration here could cause the compiler to
1695 * optimize away the function. A global noinline declaration will
1696 * keep the definition, but may optimize away the callsite.
1697 * Therefore, __weak is needed to ensure that the call is still
1698 * emitted, by telling the compiler that we don't know what the
1699 * function might eventually be.
1700 */
1701
1702 __bpf_hook_start();
1703
update_socket_protocol(int family,int type,int protocol)1704 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1705 {
1706 return protocol;
1707 }
1708
1709 __bpf_hook_end();
1710
__sys_socket(int family,int type,int protocol)1711 int __sys_socket(int family, int type, int protocol)
1712 {
1713 struct socket *sock;
1714 int flags;
1715
1716 sock = __sys_socket_create(family, type,
1717 update_socket_protocol(family, type, protocol));
1718 if (IS_ERR(sock))
1719 return PTR_ERR(sock);
1720
1721 flags = type & ~SOCK_TYPE_MASK;
1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1724
1725 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1726 }
1727
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1728 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1729 {
1730 return __sys_socket(family, type, protocol);
1731 }
1732
1733 /*
1734 * Create a pair of connected sockets.
1735 */
1736
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1737 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1738 {
1739 struct socket *sock1, *sock2;
1740 int fd1, fd2, err;
1741 struct file *newfile1, *newfile2;
1742 int flags;
1743
1744 flags = type & ~SOCK_TYPE_MASK;
1745 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1746 return -EINVAL;
1747 type &= SOCK_TYPE_MASK;
1748
1749 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1750 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1751
1752 /*
1753 * reserve descriptors and make sure we won't fail
1754 * to return them to userland.
1755 */
1756 fd1 = get_unused_fd_flags(flags);
1757 if (unlikely(fd1 < 0))
1758 return fd1;
1759
1760 fd2 = get_unused_fd_flags(flags);
1761 if (unlikely(fd2 < 0)) {
1762 put_unused_fd(fd1);
1763 return fd2;
1764 }
1765
1766 err = put_user(fd1, &usockvec[0]);
1767 if (err)
1768 goto out;
1769
1770 err = put_user(fd2, &usockvec[1]);
1771 if (err)
1772 goto out;
1773
1774 /*
1775 * Obtain the first socket and check if the underlying protocol
1776 * supports the socketpair call.
1777 */
1778
1779 err = sock_create(family, type, protocol, &sock1);
1780 if (unlikely(err < 0))
1781 goto out;
1782
1783 err = sock_create(family, type, protocol, &sock2);
1784 if (unlikely(err < 0)) {
1785 sock_release(sock1);
1786 goto out;
1787 }
1788
1789 err = security_socket_socketpair(sock1, sock2);
1790 if (unlikely(err)) {
1791 sock_release(sock2);
1792 sock_release(sock1);
1793 goto out;
1794 }
1795
1796 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1797 if (unlikely(err < 0)) {
1798 sock_release(sock2);
1799 sock_release(sock1);
1800 goto out;
1801 }
1802
1803 newfile1 = sock_alloc_file(sock1, flags, NULL);
1804 if (IS_ERR(newfile1)) {
1805 err = PTR_ERR(newfile1);
1806 sock_release(sock2);
1807 goto out;
1808 }
1809
1810 newfile2 = sock_alloc_file(sock2, flags, NULL);
1811 if (IS_ERR(newfile2)) {
1812 err = PTR_ERR(newfile2);
1813 fput(newfile1);
1814 goto out;
1815 }
1816
1817 audit_fd_pair(fd1, fd2);
1818
1819 fd_install(fd1, newfile1);
1820 fd_install(fd2, newfile2);
1821 return 0;
1822
1823 out:
1824 put_unused_fd(fd2);
1825 put_unused_fd(fd1);
1826 return err;
1827 }
1828
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1829 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1830 int __user *, usockvec)
1831 {
1832 return __sys_socketpair(family, type, protocol, usockvec);
1833 }
1834
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1835 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1836 int addrlen)
1837 {
1838 int err;
1839
1840 err = security_socket_bind(sock, (struct sockaddr *)address,
1841 addrlen);
1842 if (!err)
1843 err = READ_ONCE(sock->ops)->bind(sock,
1844 (struct sockaddr *)address,
1845 addrlen);
1846 return err;
1847 }
1848
1849 /*
1850 * Bind a name to a socket. Nothing much to do here since it's
1851 * the protocol's responsibility to handle the local address.
1852 *
1853 * We move the socket address to kernel space before we call
1854 * the protocol layer (having also checked the address is ok).
1855 */
1856
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1857 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1858 {
1859 struct socket *sock;
1860 struct sockaddr_storage address;
1861 int err, fput_needed;
1862
1863 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1864 if (sock) {
1865 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1866 if (!err)
1867 err = __sys_bind_socket(sock, &address, addrlen);
1868 fput_light(sock->file, fput_needed);
1869 }
1870 return err;
1871 }
1872
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1873 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1874 {
1875 return __sys_bind(fd, umyaddr, addrlen);
1876 }
1877
1878 /*
1879 * Perform a listen. Basically, we allow the protocol to do anything
1880 * necessary for a listen, and if that works, we mark the socket as
1881 * ready for listening.
1882 */
__sys_listen_socket(struct socket * sock,int backlog)1883 int __sys_listen_socket(struct socket *sock, int backlog)
1884 {
1885 int somaxconn, err;
1886
1887 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1888 if ((unsigned int)backlog > somaxconn)
1889 backlog = somaxconn;
1890
1891 err = security_socket_listen(sock, backlog);
1892 if (!err)
1893 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1894 return err;
1895 }
1896
__sys_listen(int fd,int backlog)1897 int __sys_listen(int fd, int backlog)
1898 {
1899 struct socket *sock;
1900 int err, fput_needed;
1901
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 if (sock) {
1904 err = __sys_listen_socket(sock, backlog);
1905 fput_light(sock->file, fput_needed);
1906 }
1907 return err;
1908 }
1909
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1910 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1911 {
1912 return __sys_listen(fd, backlog);
1913 }
1914
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1915 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1916 struct sockaddr __user *upeer_sockaddr,
1917 int __user *upeer_addrlen, int flags)
1918 {
1919 struct socket *sock, *newsock;
1920 struct file *newfile;
1921 int err, len;
1922 struct sockaddr_storage address;
1923 const struct proto_ops *ops;
1924
1925 sock = sock_from_file(file);
1926 if (!sock)
1927 return ERR_PTR(-ENOTSOCK);
1928
1929 newsock = sock_alloc();
1930 if (!newsock)
1931 return ERR_PTR(-ENFILE);
1932 ops = READ_ONCE(sock->ops);
1933
1934 newsock->type = sock->type;
1935 newsock->ops = ops;
1936
1937 /*
1938 * We don't need try_module_get here, as the listening socket (sock)
1939 * has the protocol module (sock->ops->owner) held.
1940 */
1941 __module_get(ops->owner);
1942
1943 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1944 if (IS_ERR(newfile))
1945 return newfile;
1946
1947 err = security_socket_accept(sock, newsock);
1948 if (err)
1949 goto out_fd;
1950
1951 arg->flags |= sock->file->f_flags;
1952 err = ops->accept(sock, newsock, arg);
1953 if (err < 0)
1954 goto out_fd;
1955
1956 if (upeer_sockaddr) {
1957 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1958 if (len < 0) {
1959 err = -ECONNABORTED;
1960 goto out_fd;
1961 }
1962 err = move_addr_to_user(&address,
1963 len, upeer_sockaddr, upeer_addrlen);
1964 if (err < 0)
1965 goto out_fd;
1966 }
1967
1968 /* File flags are not inherited via accept() unlike another OSes. */
1969 return newfile;
1970 out_fd:
1971 fput(newfile);
1972 return ERR_PTR(err);
1973 }
1974
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1975 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1976 int __user *upeer_addrlen, int flags)
1977 {
1978 struct proto_accept_arg arg = { };
1979 struct file *newfile;
1980 int newfd;
1981
1982 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1983 return -EINVAL;
1984
1985 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1986 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1987
1988 newfd = get_unused_fd_flags(flags);
1989 if (unlikely(newfd < 0))
1990 return newfd;
1991
1992 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1993 flags);
1994 if (IS_ERR(newfile)) {
1995 put_unused_fd(newfd);
1996 return PTR_ERR(newfile);
1997 }
1998 fd_install(newfd, newfile);
1999 return newfd;
2000 }
2001
2002 /*
2003 * For accept, we attempt to create a new socket, set up the link
2004 * with the client, wake up the client, then return the new
2005 * connected fd. We collect the address of the connector in kernel
2006 * space and move it to user at the very end. This is unclean because
2007 * we open the socket then return an error.
2008 *
2009 * 1003.1g adds the ability to recvmsg() to query connection pending
2010 * status to recvmsg. We need to add that support in a way thats
2011 * clean when we restructure accept also.
2012 */
2013
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2014 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2015 int __user *upeer_addrlen, int flags)
2016 {
2017 int ret = -EBADF;
2018 struct fd f;
2019
2020 f = fdget(fd);
2021 if (fd_file(f)) {
2022 ret = __sys_accept4_file(fd_file(f), upeer_sockaddr,
2023 upeer_addrlen, flags);
2024 fdput(f);
2025 }
2026
2027 return ret;
2028 }
2029
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2030 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2031 int __user *, upeer_addrlen, int, flags)
2032 {
2033 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2034 }
2035
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2036 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2037 int __user *, upeer_addrlen)
2038 {
2039 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2040 }
2041
2042 /*
2043 * Attempt to connect to a socket with the server address. The address
2044 * is in user space so we verify it is OK and move it to kernel space.
2045 *
2046 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2047 * break bindings
2048 *
2049 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2050 * other SEQPACKET protocols that take time to connect() as it doesn't
2051 * include the -EINPROGRESS status for such sockets.
2052 */
2053
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2054 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2055 int addrlen, int file_flags)
2056 {
2057 struct socket *sock;
2058 int err;
2059
2060 sock = sock_from_file(file);
2061 if (!sock) {
2062 err = -ENOTSOCK;
2063 goto out;
2064 }
2065
2066 err =
2067 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2068 if (err)
2069 goto out;
2070
2071 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2072 addrlen, sock->file->f_flags | file_flags);
2073 out:
2074 return err;
2075 }
2076
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2077 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2078 {
2079 int ret = -EBADF;
2080 struct fd f;
2081
2082 f = fdget(fd);
2083 if (fd_file(f)) {
2084 struct sockaddr_storage address;
2085
2086 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2087 if (!ret)
2088 ret = __sys_connect_file(fd_file(f), &address, addrlen, 0);
2089 fdput(f);
2090 }
2091
2092 return ret;
2093 }
2094
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2095 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2096 int, addrlen)
2097 {
2098 return __sys_connect(fd, uservaddr, addrlen);
2099 }
2100
2101 /*
2102 * Get the local address ('name') of a socket object. Move the obtained
2103 * name to user space.
2104 */
2105
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2106 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2107 int __user *usockaddr_len)
2108 {
2109 struct socket *sock;
2110 struct sockaddr_storage address;
2111 int err, fput_needed;
2112
2113 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2114 if (!sock)
2115 goto out;
2116
2117 err = security_socket_getsockname(sock);
2118 if (err)
2119 goto out_put;
2120
2121 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2122 if (err < 0)
2123 goto out_put;
2124 /* "err" is actually length in this case */
2125 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2126
2127 out_put:
2128 fput_light(sock->file, fput_needed);
2129 out:
2130 return err;
2131 }
2132
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2133 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2134 int __user *, usockaddr_len)
2135 {
2136 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2137 }
2138
2139 /*
2140 * Get the remote address ('name') of a socket object. Move the obtained
2141 * name to user space.
2142 */
2143
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2144 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2145 int __user *usockaddr_len)
2146 {
2147 struct socket *sock;
2148 struct sockaddr_storage address;
2149 int err, fput_needed;
2150
2151 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 if (sock != NULL) {
2153 const struct proto_ops *ops = READ_ONCE(sock->ops);
2154
2155 err = security_socket_getpeername(sock);
2156 if (err) {
2157 fput_light(sock->file, fput_needed);
2158 return err;
2159 }
2160
2161 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2162 if (err >= 0)
2163 /* "err" is actually length in this case */
2164 err = move_addr_to_user(&address, err, usockaddr,
2165 usockaddr_len);
2166 fput_light(sock->file, fput_needed);
2167 }
2168 return err;
2169 }
2170
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2171 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2172 int __user *, usockaddr_len)
2173 {
2174 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2175 }
2176
2177 /*
2178 * Send a datagram to a given address. We move the address into kernel
2179 * space and check the user space data area is readable before invoking
2180 * the protocol.
2181 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2182 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2183 struct sockaddr __user *addr, int addr_len)
2184 {
2185 struct socket *sock;
2186 struct sockaddr_storage address;
2187 int err;
2188 struct msghdr msg;
2189 int fput_needed;
2190
2191 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2192 if (unlikely(err))
2193 return err;
2194 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195 if (!sock)
2196 goto out;
2197
2198 msg.msg_name = NULL;
2199 msg.msg_control = NULL;
2200 msg.msg_controllen = 0;
2201 msg.msg_namelen = 0;
2202 msg.msg_ubuf = NULL;
2203 if (addr) {
2204 err = move_addr_to_kernel(addr, addr_len, &address);
2205 if (err < 0)
2206 goto out_put;
2207 msg.msg_name = (struct sockaddr *)&address;
2208 msg.msg_namelen = addr_len;
2209 }
2210 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2211 if (sock->file->f_flags & O_NONBLOCK)
2212 flags |= MSG_DONTWAIT;
2213 msg.msg_flags = flags;
2214 err = __sock_sendmsg(sock, &msg);
2215
2216 out_put:
2217 fput_light(sock->file, fput_needed);
2218 out:
2219 return err;
2220 }
2221
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2222 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2223 unsigned int, flags, struct sockaddr __user *, addr,
2224 int, addr_len)
2225 {
2226 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2227 }
2228
2229 /*
2230 * Send a datagram down a socket.
2231 */
2232
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2233 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2234 unsigned int, flags)
2235 {
2236 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2237 }
2238
2239 /*
2240 * Receive a frame from the socket and optionally record the address of the
2241 * sender. We verify the buffers are writable and if needed move the
2242 * sender address from kernel to user space.
2243 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2244 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2245 struct sockaddr __user *addr, int __user *addr_len)
2246 {
2247 struct sockaddr_storage address;
2248 struct msghdr msg = {
2249 /* Save some cycles and don't copy the address if not needed */
2250 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2251 };
2252 struct socket *sock;
2253 int err, err2;
2254 int fput_needed;
2255
2256 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2257 if (unlikely(err))
2258 return err;
2259 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2260 if (!sock)
2261 goto out;
2262
2263 if (sock->file->f_flags & O_NONBLOCK)
2264 flags |= MSG_DONTWAIT;
2265 err = sock_recvmsg(sock, &msg, flags);
2266
2267 if (err >= 0 && addr != NULL) {
2268 err2 = move_addr_to_user(&address,
2269 msg.msg_namelen, addr, addr_len);
2270 if (err2 < 0)
2271 err = err2;
2272 }
2273
2274 fput_light(sock->file, fput_needed);
2275 out:
2276 return err;
2277 }
2278
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2279 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2280 unsigned int, flags, struct sockaddr __user *, addr,
2281 int __user *, addr_len)
2282 {
2283 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2284 }
2285
2286 /*
2287 * Receive a datagram from a socket.
2288 */
2289
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2290 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2291 unsigned int, flags)
2292 {
2293 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2294 }
2295
sock_use_custom_sol_socket(const struct socket * sock)2296 static bool sock_use_custom_sol_socket(const struct socket *sock)
2297 {
2298 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2299 }
2300
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2301 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2302 int optname, sockptr_t optval, int optlen)
2303 {
2304 const struct proto_ops *ops;
2305 char *kernel_optval = NULL;
2306 int err;
2307
2308 if (optlen < 0)
2309 return -EINVAL;
2310
2311 err = security_socket_setsockopt(sock, level, optname);
2312 if (err)
2313 goto out_put;
2314
2315 if (!compat)
2316 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2317 optval, &optlen,
2318 &kernel_optval);
2319 if (err < 0)
2320 goto out_put;
2321 if (err > 0) {
2322 err = 0;
2323 goto out_put;
2324 }
2325
2326 if (kernel_optval)
2327 optval = KERNEL_SOCKPTR(kernel_optval);
2328 ops = READ_ONCE(sock->ops);
2329 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2330 err = sock_setsockopt(sock, level, optname, optval, optlen);
2331 else if (unlikely(!ops->setsockopt))
2332 err = -EOPNOTSUPP;
2333 else
2334 err = ops->setsockopt(sock, level, optname, optval,
2335 optlen);
2336 kfree(kernel_optval);
2337 out_put:
2338 return err;
2339 }
2340 EXPORT_SYMBOL(do_sock_setsockopt);
2341
2342 /* Set a socket option. Because we don't know the option lengths we have
2343 * to pass the user mode parameter for the protocols to sort out.
2344 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2345 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2346 int optlen)
2347 {
2348 sockptr_t optval = USER_SOCKPTR(user_optval);
2349 bool compat = in_compat_syscall();
2350 int err, fput_needed;
2351 struct socket *sock;
2352
2353 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2354 if (!sock)
2355 return err;
2356
2357 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2358
2359 fput_light(sock->file, fput_needed);
2360 return err;
2361 }
2362
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2363 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2364 char __user *, optval, int, optlen)
2365 {
2366 return __sys_setsockopt(fd, level, optname, optval, optlen);
2367 }
2368
2369 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2370 int optname));
2371
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2372 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2373 int optname, sockptr_t optval, sockptr_t optlen)
2374 {
2375 int max_optlen __maybe_unused = 0;
2376 const struct proto_ops *ops;
2377 int err;
2378
2379 err = security_socket_getsockopt(sock, level, optname);
2380 if (err)
2381 return err;
2382
2383 if (!compat)
2384 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2385
2386 ops = READ_ONCE(sock->ops);
2387 if (level == SOL_SOCKET) {
2388 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2389 } else if (unlikely(!ops->getsockopt)) {
2390 err = -EOPNOTSUPP;
2391 } else {
2392 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2393 "Invalid argument type"))
2394 return -EOPNOTSUPP;
2395
2396 err = ops->getsockopt(sock, level, optname, optval.user,
2397 optlen.user);
2398 }
2399
2400 if (!compat)
2401 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2402 optval, optlen, max_optlen,
2403 err);
2404
2405 return err;
2406 }
2407 EXPORT_SYMBOL(do_sock_getsockopt);
2408
2409 /*
2410 * Get a socket option. Because we don't know the option lengths we have
2411 * to pass a user mode parameter for the protocols to sort out.
2412 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2413 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2414 int __user *optlen)
2415 {
2416 int err, fput_needed;
2417 struct socket *sock;
2418 bool compat;
2419
2420 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2421 if (!sock)
2422 return err;
2423
2424 compat = in_compat_syscall();
2425 err = do_sock_getsockopt(sock, compat, level, optname,
2426 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2427
2428 fput_light(sock->file, fput_needed);
2429 return err;
2430 }
2431
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2432 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2433 char __user *, optval, int __user *, optlen)
2434 {
2435 return __sys_getsockopt(fd, level, optname, optval, optlen);
2436 }
2437
2438 /*
2439 * Shutdown a socket.
2440 */
2441
__sys_shutdown_sock(struct socket * sock,int how)2442 int __sys_shutdown_sock(struct socket *sock, int how)
2443 {
2444 int err;
2445
2446 err = security_socket_shutdown(sock, how);
2447 if (!err)
2448 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2449
2450 return err;
2451 }
2452
__sys_shutdown(int fd,int how)2453 int __sys_shutdown(int fd, int how)
2454 {
2455 int err, fput_needed;
2456 struct socket *sock;
2457
2458 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2459 if (sock != NULL) {
2460 err = __sys_shutdown_sock(sock, how);
2461 fput_light(sock->file, fput_needed);
2462 }
2463 return err;
2464 }
2465
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2466 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2467 {
2468 return __sys_shutdown(fd, how);
2469 }
2470
2471 /* A couple of helpful macros for getting the address of the 32/64 bit
2472 * fields which are the same type (int / unsigned) on our platforms.
2473 */
2474 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2475 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2476 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2477
2478 struct used_address {
2479 struct sockaddr_storage name;
2480 unsigned int name_len;
2481 };
2482
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2483 int __copy_msghdr(struct msghdr *kmsg,
2484 struct user_msghdr *msg,
2485 struct sockaddr __user **save_addr)
2486 {
2487 ssize_t err;
2488
2489 kmsg->msg_control_is_user = true;
2490 kmsg->msg_get_inq = 0;
2491 kmsg->msg_control_user = msg->msg_control;
2492 kmsg->msg_controllen = msg->msg_controllen;
2493 kmsg->msg_flags = msg->msg_flags;
2494
2495 kmsg->msg_namelen = msg->msg_namelen;
2496 if (!msg->msg_name)
2497 kmsg->msg_namelen = 0;
2498
2499 if (kmsg->msg_namelen < 0)
2500 return -EINVAL;
2501
2502 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2503 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2504
2505 if (save_addr)
2506 *save_addr = msg->msg_name;
2507
2508 if (msg->msg_name && kmsg->msg_namelen) {
2509 if (!save_addr) {
2510 err = move_addr_to_kernel(msg->msg_name,
2511 kmsg->msg_namelen,
2512 kmsg->msg_name);
2513 if (err < 0)
2514 return err;
2515 }
2516 } else {
2517 kmsg->msg_name = NULL;
2518 kmsg->msg_namelen = 0;
2519 }
2520
2521 if (msg->msg_iovlen > UIO_MAXIOV)
2522 return -EMSGSIZE;
2523
2524 kmsg->msg_iocb = NULL;
2525 kmsg->msg_ubuf = NULL;
2526 return 0;
2527 }
2528
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2529 static int copy_msghdr_from_user(struct msghdr *kmsg,
2530 struct user_msghdr __user *umsg,
2531 struct sockaddr __user **save_addr,
2532 struct iovec **iov)
2533 {
2534 struct user_msghdr msg;
2535 ssize_t err;
2536
2537 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2538 return -EFAULT;
2539
2540 err = __copy_msghdr(kmsg, &msg, save_addr);
2541 if (err)
2542 return err;
2543
2544 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2545 msg.msg_iov, msg.msg_iovlen,
2546 UIO_FASTIOV, iov, &kmsg->msg_iter);
2547 return err < 0 ? err : 0;
2548 }
2549
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2550 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2551 unsigned int flags, struct used_address *used_address,
2552 unsigned int allowed_msghdr_flags)
2553 {
2554 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2555 __aligned(sizeof(__kernel_size_t));
2556 /* 20 is size of ipv6_pktinfo */
2557 unsigned char *ctl_buf = ctl;
2558 int ctl_len;
2559 ssize_t err;
2560
2561 err = -ENOBUFS;
2562
2563 if (msg_sys->msg_controllen > INT_MAX)
2564 goto out;
2565 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2566 ctl_len = msg_sys->msg_controllen;
2567 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2568 err =
2569 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2570 sizeof(ctl));
2571 if (err)
2572 goto out;
2573 ctl_buf = msg_sys->msg_control;
2574 ctl_len = msg_sys->msg_controllen;
2575 } else if (ctl_len) {
2576 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2577 CMSG_ALIGN(sizeof(struct cmsghdr)));
2578 if (ctl_len > sizeof(ctl)) {
2579 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2580 if (ctl_buf == NULL)
2581 goto out;
2582 }
2583 err = -EFAULT;
2584 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2585 goto out_freectl;
2586 msg_sys->msg_control = ctl_buf;
2587 msg_sys->msg_control_is_user = false;
2588 }
2589 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2590 msg_sys->msg_flags = flags;
2591
2592 if (sock->file->f_flags & O_NONBLOCK)
2593 msg_sys->msg_flags |= MSG_DONTWAIT;
2594 /*
2595 * If this is sendmmsg() and current destination address is same as
2596 * previously succeeded address, omit asking LSM's decision.
2597 * used_address->name_len is initialized to UINT_MAX so that the first
2598 * destination address never matches.
2599 */
2600 if (used_address && msg_sys->msg_name &&
2601 used_address->name_len == msg_sys->msg_namelen &&
2602 !memcmp(&used_address->name, msg_sys->msg_name,
2603 used_address->name_len)) {
2604 err = sock_sendmsg_nosec(sock, msg_sys);
2605 goto out_freectl;
2606 }
2607 err = __sock_sendmsg(sock, msg_sys);
2608 /*
2609 * If this is sendmmsg() and sending to current destination address was
2610 * successful, remember it.
2611 */
2612 if (used_address && err >= 0) {
2613 used_address->name_len = msg_sys->msg_namelen;
2614 if (msg_sys->msg_name)
2615 memcpy(&used_address->name, msg_sys->msg_name,
2616 used_address->name_len);
2617 }
2618
2619 out_freectl:
2620 if (ctl_buf != ctl)
2621 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2622 out:
2623 return err;
2624 }
2625
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2626 static int sendmsg_copy_msghdr(struct msghdr *msg,
2627 struct user_msghdr __user *umsg, unsigned flags,
2628 struct iovec **iov)
2629 {
2630 int err;
2631
2632 if (flags & MSG_CMSG_COMPAT) {
2633 struct compat_msghdr __user *msg_compat;
2634
2635 msg_compat = (struct compat_msghdr __user *) umsg;
2636 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2637 } else {
2638 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2639 }
2640 if (err < 0)
2641 return err;
2642
2643 return 0;
2644 }
2645
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2646 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2647 struct msghdr *msg_sys, unsigned int flags,
2648 struct used_address *used_address,
2649 unsigned int allowed_msghdr_flags)
2650 {
2651 struct sockaddr_storage address;
2652 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2653 ssize_t err;
2654
2655 msg_sys->msg_name = &address;
2656
2657 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2658 if (err < 0)
2659 return err;
2660
2661 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2662 allowed_msghdr_flags);
2663 kfree(iov);
2664 return err;
2665 }
2666
2667 /*
2668 * BSD sendmsg interface
2669 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2670 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2671 unsigned int flags)
2672 {
2673 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2674 }
2675
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2676 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2677 bool forbid_cmsg_compat)
2678 {
2679 int fput_needed, err;
2680 struct msghdr msg_sys;
2681 struct socket *sock;
2682
2683 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2684 return -EINVAL;
2685
2686 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2687 if (!sock)
2688 goto out;
2689
2690 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2691
2692 fput_light(sock->file, fput_needed);
2693 out:
2694 return err;
2695 }
2696
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2697 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2698 {
2699 return __sys_sendmsg(fd, msg, flags, true);
2700 }
2701
2702 /*
2703 * Linux sendmmsg interface
2704 */
2705
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2706 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2707 unsigned int flags, bool forbid_cmsg_compat)
2708 {
2709 int fput_needed, err, datagrams;
2710 struct socket *sock;
2711 struct mmsghdr __user *entry;
2712 struct compat_mmsghdr __user *compat_entry;
2713 struct msghdr msg_sys;
2714 struct used_address used_address;
2715 unsigned int oflags = flags;
2716
2717 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2718 return -EINVAL;
2719
2720 if (vlen > UIO_MAXIOV)
2721 vlen = UIO_MAXIOV;
2722
2723 datagrams = 0;
2724
2725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2726 if (!sock)
2727 return err;
2728
2729 used_address.name_len = UINT_MAX;
2730 entry = mmsg;
2731 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2732 err = 0;
2733 flags |= MSG_BATCH;
2734
2735 while (datagrams < vlen) {
2736 if (datagrams == vlen - 1)
2737 flags = oflags;
2738
2739 if (MSG_CMSG_COMPAT & flags) {
2740 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2741 &msg_sys, flags, &used_address, MSG_EOR);
2742 if (err < 0)
2743 break;
2744 err = __put_user(err, &compat_entry->msg_len);
2745 ++compat_entry;
2746 } else {
2747 err = ___sys_sendmsg(sock,
2748 (struct user_msghdr __user *)entry,
2749 &msg_sys, flags, &used_address, MSG_EOR);
2750 if (err < 0)
2751 break;
2752 err = put_user(err, &entry->msg_len);
2753 ++entry;
2754 }
2755
2756 if (err)
2757 break;
2758 ++datagrams;
2759 if (msg_data_left(&msg_sys))
2760 break;
2761 cond_resched();
2762 }
2763
2764 fput_light(sock->file, fput_needed);
2765
2766 /* We only return an error if no datagrams were able to be sent */
2767 if (datagrams != 0)
2768 return datagrams;
2769
2770 return err;
2771 }
2772
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2773 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2774 unsigned int, vlen, unsigned int, flags)
2775 {
2776 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2777 }
2778
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2779 static int recvmsg_copy_msghdr(struct msghdr *msg,
2780 struct user_msghdr __user *umsg, unsigned flags,
2781 struct sockaddr __user **uaddr,
2782 struct iovec **iov)
2783 {
2784 ssize_t err;
2785
2786 if (MSG_CMSG_COMPAT & flags) {
2787 struct compat_msghdr __user *msg_compat;
2788
2789 msg_compat = (struct compat_msghdr __user *) umsg;
2790 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2791 } else {
2792 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2793 }
2794 if (err < 0)
2795 return err;
2796
2797 return 0;
2798 }
2799
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2800 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2801 struct user_msghdr __user *msg,
2802 struct sockaddr __user *uaddr,
2803 unsigned int flags, int nosec)
2804 {
2805 struct compat_msghdr __user *msg_compat =
2806 (struct compat_msghdr __user *) msg;
2807 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2808 struct sockaddr_storage addr;
2809 unsigned long cmsg_ptr;
2810 int len;
2811 ssize_t err;
2812
2813 msg_sys->msg_name = &addr;
2814 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2815 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2816
2817 /* We assume all kernel code knows the size of sockaddr_storage */
2818 msg_sys->msg_namelen = 0;
2819
2820 if (sock->file->f_flags & O_NONBLOCK)
2821 flags |= MSG_DONTWAIT;
2822
2823 if (unlikely(nosec))
2824 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2825 else
2826 err = sock_recvmsg(sock, msg_sys, flags);
2827
2828 if (err < 0)
2829 goto out;
2830 len = err;
2831
2832 if (uaddr != NULL) {
2833 err = move_addr_to_user(&addr,
2834 msg_sys->msg_namelen, uaddr,
2835 uaddr_len);
2836 if (err < 0)
2837 goto out;
2838 }
2839 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2840 COMPAT_FLAGS(msg));
2841 if (err)
2842 goto out;
2843 if (MSG_CMSG_COMPAT & flags)
2844 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2845 &msg_compat->msg_controllen);
2846 else
2847 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2848 &msg->msg_controllen);
2849 if (err)
2850 goto out;
2851 err = len;
2852 out:
2853 return err;
2854 }
2855
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2856 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2857 struct msghdr *msg_sys, unsigned int flags, int nosec)
2858 {
2859 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2860 /* user mode address pointers */
2861 struct sockaddr __user *uaddr;
2862 ssize_t err;
2863
2864 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2865 if (err < 0)
2866 return err;
2867
2868 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2869 kfree(iov);
2870 return err;
2871 }
2872
2873 /*
2874 * BSD recvmsg interface
2875 */
2876
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2877 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2878 struct user_msghdr __user *umsg,
2879 struct sockaddr __user *uaddr, unsigned int flags)
2880 {
2881 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2882 }
2883
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2884 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2885 bool forbid_cmsg_compat)
2886 {
2887 int fput_needed, err;
2888 struct msghdr msg_sys;
2889 struct socket *sock;
2890
2891 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2892 return -EINVAL;
2893
2894 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2895 if (!sock)
2896 goto out;
2897
2898 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2899
2900 fput_light(sock->file, fput_needed);
2901 out:
2902 return err;
2903 }
2904
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2905 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2906 unsigned int, flags)
2907 {
2908 return __sys_recvmsg(fd, msg, flags, true);
2909 }
2910
2911 /*
2912 * Linux recvmmsg interface
2913 */
2914
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2915 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2916 unsigned int vlen, unsigned int flags,
2917 struct timespec64 *timeout)
2918 {
2919 int fput_needed, err, datagrams;
2920 struct socket *sock;
2921 struct mmsghdr __user *entry;
2922 struct compat_mmsghdr __user *compat_entry;
2923 struct msghdr msg_sys;
2924 struct timespec64 end_time;
2925 struct timespec64 timeout64;
2926
2927 if (timeout &&
2928 poll_select_set_timeout(&end_time, timeout->tv_sec,
2929 timeout->tv_nsec))
2930 return -EINVAL;
2931
2932 datagrams = 0;
2933
2934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2935 if (!sock)
2936 return err;
2937
2938 if (likely(!(flags & MSG_ERRQUEUE))) {
2939 err = sock_error(sock->sk);
2940 if (err) {
2941 datagrams = err;
2942 goto out_put;
2943 }
2944 }
2945
2946 entry = mmsg;
2947 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2948
2949 while (datagrams < vlen) {
2950 /*
2951 * No need to ask LSM for more than the first datagram.
2952 */
2953 if (MSG_CMSG_COMPAT & flags) {
2954 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2955 &msg_sys, flags & ~MSG_WAITFORONE,
2956 datagrams);
2957 if (err < 0)
2958 break;
2959 err = __put_user(err, &compat_entry->msg_len);
2960 ++compat_entry;
2961 } else {
2962 err = ___sys_recvmsg(sock,
2963 (struct user_msghdr __user *)entry,
2964 &msg_sys, flags & ~MSG_WAITFORONE,
2965 datagrams);
2966 if (err < 0)
2967 break;
2968 err = put_user(err, &entry->msg_len);
2969 ++entry;
2970 }
2971
2972 if (err)
2973 break;
2974 ++datagrams;
2975
2976 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2977 if (flags & MSG_WAITFORONE)
2978 flags |= MSG_DONTWAIT;
2979
2980 if (timeout) {
2981 ktime_get_ts64(&timeout64);
2982 *timeout = timespec64_sub(end_time, timeout64);
2983 if (timeout->tv_sec < 0) {
2984 timeout->tv_sec = timeout->tv_nsec = 0;
2985 break;
2986 }
2987
2988 /* Timeout, return less than vlen datagrams */
2989 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2990 break;
2991 }
2992
2993 /* Out of band data, return right away */
2994 if (msg_sys.msg_flags & MSG_OOB)
2995 break;
2996 cond_resched();
2997 }
2998
2999 if (err == 0)
3000 goto out_put;
3001
3002 if (datagrams == 0) {
3003 datagrams = err;
3004 goto out_put;
3005 }
3006
3007 /*
3008 * We may return less entries than requested (vlen) if the
3009 * sock is non block and there aren't enough datagrams...
3010 */
3011 if (err != -EAGAIN) {
3012 /*
3013 * ... or if recvmsg returns an error after we
3014 * received some datagrams, where we record the
3015 * error to return on the next call or if the
3016 * app asks about it using getsockopt(SO_ERROR).
3017 */
3018 WRITE_ONCE(sock->sk->sk_err, -err);
3019 }
3020 out_put:
3021 fput_light(sock->file, fput_needed);
3022
3023 return datagrams;
3024 }
3025
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3026 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3027 unsigned int vlen, unsigned int flags,
3028 struct __kernel_timespec __user *timeout,
3029 struct old_timespec32 __user *timeout32)
3030 {
3031 int datagrams;
3032 struct timespec64 timeout_sys;
3033
3034 if (timeout && get_timespec64(&timeout_sys, timeout))
3035 return -EFAULT;
3036
3037 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3038 return -EFAULT;
3039
3040 if (!timeout && !timeout32)
3041 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3042
3043 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3044
3045 if (datagrams <= 0)
3046 return datagrams;
3047
3048 if (timeout && put_timespec64(&timeout_sys, timeout))
3049 datagrams = -EFAULT;
3050
3051 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3052 datagrams = -EFAULT;
3053
3054 return datagrams;
3055 }
3056
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3057 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3058 unsigned int, vlen, unsigned int, flags,
3059 struct __kernel_timespec __user *, timeout)
3060 {
3061 if (flags & MSG_CMSG_COMPAT)
3062 return -EINVAL;
3063
3064 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3065 }
3066
3067 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3068 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3069 unsigned int, vlen, unsigned int, flags,
3070 struct old_timespec32 __user *, timeout)
3071 {
3072 if (flags & MSG_CMSG_COMPAT)
3073 return -EINVAL;
3074
3075 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3076 }
3077 #endif
3078
3079 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3080 /* Argument list sizes for sys_socketcall */
3081 #define AL(x) ((x) * sizeof(unsigned long))
3082 static const unsigned char nargs[21] = {
3083 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3084 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3085 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3086 AL(4), AL(5), AL(4)
3087 };
3088
3089 #undef AL
3090
3091 /*
3092 * System call vectors.
3093 *
3094 * Argument checking cleaned up. Saved 20% in size.
3095 * This function doesn't need to set the kernel lock because
3096 * it is set by the callees.
3097 */
3098
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3099 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3100 {
3101 unsigned long a[AUDITSC_ARGS];
3102 unsigned long a0, a1;
3103 int err;
3104 unsigned int len;
3105
3106 if (call < 1 || call > SYS_SENDMMSG)
3107 return -EINVAL;
3108 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3109
3110 len = nargs[call];
3111 if (len > sizeof(a))
3112 return -EINVAL;
3113
3114 /* copy_from_user should be SMP safe. */
3115 if (copy_from_user(a, args, len))
3116 return -EFAULT;
3117
3118 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3119 if (err)
3120 return err;
3121
3122 a0 = a[0];
3123 a1 = a[1];
3124
3125 switch (call) {
3126 case SYS_SOCKET:
3127 err = __sys_socket(a0, a1, a[2]);
3128 break;
3129 case SYS_BIND:
3130 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3131 break;
3132 case SYS_CONNECT:
3133 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3134 break;
3135 case SYS_LISTEN:
3136 err = __sys_listen(a0, a1);
3137 break;
3138 case SYS_ACCEPT:
3139 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3140 (int __user *)a[2], 0);
3141 break;
3142 case SYS_GETSOCKNAME:
3143 err =
3144 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3145 (int __user *)a[2]);
3146 break;
3147 case SYS_GETPEERNAME:
3148 err =
3149 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3150 (int __user *)a[2]);
3151 break;
3152 case SYS_SOCKETPAIR:
3153 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3154 break;
3155 case SYS_SEND:
3156 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3157 NULL, 0);
3158 break;
3159 case SYS_SENDTO:
3160 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3161 (struct sockaddr __user *)a[4], a[5]);
3162 break;
3163 case SYS_RECV:
3164 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3165 NULL, NULL);
3166 break;
3167 case SYS_RECVFROM:
3168 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3169 (struct sockaddr __user *)a[4],
3170 (int __user *)a[5]);
3171 break;
3172 case SYS_SHUTDOWN:
3173 err = __sys_shutdown(a0, a1);
3174 break;
3175 case SYS_SETSOCKOPT:
3176 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3177 a[4]);
3178 break;
3179 case SYS_GETSOCKOPT:
3180 err =
3181 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3182 (int __user *)a[4]);
3183 break;
3184 case SYS_SENDMSG:
3185 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3186 a[2], true);
3187 break;
3188 case SYS_SENDMMSG:
3189 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3190 a[3], true);
3191 break;
3192 case SYS_RECVMSG:
3193 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3194 a[2], true);
3195 break;
3196 case SYS_RECVMMSG:
3197 if (IS_ENABLED(CONFIG_64BIT))
3198 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3199 a[2], a[3],
3200 (struct __kernel_timespec __user *)a[4],
3201 NULL);
3202 else
3203 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3204 a[2], a[3], NULL,
3205 (struct old_timespec32 __user *)a[4]);
3206 break;
3207 case SYS_ACCEPT4:
3208 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3209 (int __user *)a[2], a[3]);
3210 break;
3211 default:
3212 err = -EINVAL;
3213 break;
3214 }
3215 return err;
3216 }
3217
3218 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3219
3220 /**
3221 * sock_register - add a socket protocol handler
3222 * @ops: description of protocol
3223 *
3224 * This function is called by a protocol handler that wants to
3225 * advertise its address family, and have it linked into the
3226 * socket interface. The value ops->family corresponds to the
3227 * socket system call protocol family.
3228 */
sock_register(const struct net_proto_family * ops)3229 int sock_register(const struct net_proto_family *ops)
3230 {
3231 int err;
3232
3233 if (ops->family >= NPROTO) {
3234 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3235 return -ENOBUFS;
3236 }
3237
3238 spin_lock(&net_family_lock);
3239 if (rcu_dereference_protected(net_families[ops->family],
3240 lockdep_is_held(&net_family_lock)))
3241 err = -EEXIST;
3242 else {
3243 rcu_assign_pointer(net_families[ops->family], ops);
3244 err = 0;
3245 }
3246 spin_unlock(&net_family_lock);
3247
3248 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3249 return err;
3250 }
3251 EXPORT_SYMBOL(sock_register);
3252
3253 /**
3254 * sock_unregister - remove a protocol handler
3255 * @family: protocol family to remove
3256 *
3257 * This function is called by a protocol handler that wants to
3258 * remove its address family, and have it unlinked from the
3259 * new socket creation.
3260 *
3261 * If protocol handler is a module, then it can use module reference
3262 * counts to protect against new references. If protocol handler is not
3263 * a module then it needs to provide its own protection in
3264 * the ops->create routine.
3265 */
sock_unregister(int family)3266 void sock_unregister(int family)
3267 {
3268 BUG_ON(family < 0 || family >= NPROTO);
3269
3270 spin_lock(&net_family_lock);
3271 RCU_INIT_POINTER(net_families[family], NULL);
3272 spin_unlock(&net_family_lock);
3273
3274 synchronize_rcu();
3275
3276 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3277 }
3278 EXPORT_SYMBOL(sock_unregister);
3279
sock_is_registered(int family)3280 bool sock_is_registered(int family)
3281 {
3282 return family < NPROTO && rcu_access_pointer(net_families[family]);
3283 }
3284
sock_init(void)3285 static int __init sock_init(void)
3286 {
3287 int err;
3288 /*
3289 * Initialize the network sysctl infrastructure.
3290 */
3291 err = net_sysctl_init();
3292 if (err)
3293 goto out;
3294
3295 /*
3296 * Initialize skbuff SLAB cache
3297 */
3298 skb_init();
3299
3300 /*
3301 * Initialize the protocols module.
3302 */
3303
3304 init_inodecache();
3305
3306 err = register_filesystem(&sock_fs_type);
3307 if (err)
3308 goto out;
3309 sock_mnt = kern_mount(&sock_fs_type);
3310 if (IS_ERR(sock_mnt)) {
3311 err = PTR_ERR(sock_mnt);
3312 goto out_mount;
3313 }
3314
3315 /* The real protocol initialization is performed in later initcalls.
3316 */
3317
3318 #ifdef CONFIG_NETFILTER
3319 err = netfilter_init();
3320 if (err)
3321 goto out;
3322 #endif
3323
3324 ptp_classifier_init();
3325
3326 out:
3327 return err;
3328
3329 out_mount:
3330 unregister_filesystem(&sock_fs_type);
3331 goto out;
3332 }
3333
3334 core_initcall(sock_init); /* early initcall */
3335
3336 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3337 void socket_seq_show(struct seq_file *seq)
3338 {
3339 seq_printf(seq, "sockets: used %d\n",
3340 sock_inuse_get(seq->private));
3341 }
3342 #endif /* CONFIG_PROC_FS */
3343
3344 /* Handle the fact that while struct ifreq has the same *layout* on
3345 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3346 * which are handled elsewhere, it still has different *size* due to
3347 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3348 * resulting in struct ifreq being 32 and 40 bytes respectively).
3349 * As a result, if the struct happens to be at the end of a page and
3350 * the next page isn't readable/writable, we get a fault. To prevent
3351 * that, copy back and forth to the full size.
3352 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3353 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3354 {
3355 if (in_compat_syscall()) {
3356 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3357
3358 memset(ifr, 0, sizeof(*ifr));
3359 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3360 return -EFAULT;
3361
3362 if (ifrdata)
3363 *ifrdata = compat_ptr(ifr32->ifr_data);
3364
3365 return 0;
3366 }
3367
3368 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3369 return -EFAULT;
3370
3371 if (ifrdata)
3372 *ifrdata = ifr->ifr_data;
3373
3374 return 0;
3375 }
3376 EXPORT_SYMBOL(get_user_ifreq);
3377
put_user_ifreq(struct ifreq * ifr,void __user * arg)3378 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3379 {
3380 size_t size = sizeof(*ifr);
3381
3382 if (in_compat_syscall())
3383 size = sizeof(struct compat_ifreq);
3384
3385 if (copy_to_user(arg, ifr, size))
3386 return -EFAULT;
3387
3388 return 0;
3389 }
3390 EXPORT_SYMBOL(put_user_ifreq);
3391
3392 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3393 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3394 {
3395 compat_uptr_t uptr32;
3396 struct ifreq ifr;
3397 void __user *saved;
3398 int err;
3399
3400 if (get_user_ifreq(&ifr, NULL, uifr32))
3401 return -EFAULT;
3402
3403 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3404 return -EFAULT;
3405
3406 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3407 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3408
3409 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3410 if (!err) {
3411 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3412 if (put_user_ifreq(&ifr, uifr32))
3413 err = -EFAULT;
3414 }
3415 return err;
3416 }
3417
3418 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3419 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3420 struct compat_ifreq __user *u_ifreq32)
3421 {
3422 struct ifreq ifreq;
3423 void __user *data;
3424
3425 if (!is_socket_ioctl_cmd(cmd))
3426 return -ENOTTY;
3427 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3428 return -EFAULT;
3429 ifreq.ifr_data = data;
3430
3431 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3432 }
3433
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3434 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3435 unsigned int cmd, unsigned long arg)
3436 {
3437 void __user *argp = compat_ptr(arg);
3438 struct sock *sk = sock->sk;
3439 struct net *net = sock_net(sk);
3440 const struct proto_ops *ops;
3441
3442 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3443 return sock_ioctl(file, cmd, (unsigned long)argp);
3444
3445 switch (cmd) {
3446 case SIOCWANDEV:
3447 return compat_siocwandev(net, argp);
3448 case SIOCGSTAMP_OLD:
3449 case SIOCGSTAMPNS_OLD:
3450 ops = READ_ONCE(sock->ops);
3451 if (!ops->gettstamp)
3452 return -ENOIOCTLCMD;
3453 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3454 !COMPAT_USE_64BIT_TIME);
3455
3456 case SIOCETHTOOL:
3457 case SIOCBONDSLAVEINFOQUERY:
3458 case SIOCBONDINFOQUERY:
3459 case SIOCSHWTSTAMP:
3460 case SIOCGHWTSTAMP:
3461 return compat_ifr_data_ioctl(net, cmd, argp);
3462
3463 case FIOSETOWN:
3464 case SIOCSPGRP:
3465 case FIOGETOWN:
3466 case SIOCGPGRP:
3467 case SIOCBRADDBR:
3468 case SIOCBRDELBR:
3469 case SIOCGIFVLAN:
3470 case SIOCSIFVLAN:
3471 case SIOCGSKNS:
3472 case SIOCGSTAMP_NEW:
3473 case SIOCGSTAMPNS_NEW:
3474 case SIOCGIFCONF:
3475 case SIOCSIFBR:
3476 case SIOCGIFBR:
3477 return sock_ioctl(file, cmd, arg);
3478
3479 case SIOCGIFFLAGS:
3480 case SIOCSIFFLAGS:
3481 case SIOCGIFMAP:
3482 case SIOCSIFMAP:
3483 case SIOCGIFMETRIC:
3484 case SIOCSIFMETRIC:
3485 case SIOCGIFMTU:
3486 case SIOCSIFMTU:
3487 case SIOCGIFMEM:
3488 case SIOCSIFMEM:
3489 case SIOCGIFHWADDR:
3490 case SIOCSIFHWADDR:
3491 case SIOCADDMULTI:
3492 case SIOCDELMULTI:
3493 case SIOCGIFINDEX:
3494 case SIOCGIFADDR:
3495 case SIOCSIFADDR:
3496 case SIOCSIFHWBROADCAST:
3497 case SIOCDIFADDR:
3498 case SIOCGIFBRDADDR:
3499 case SIOCSIFBRDADDR:
3500 case SIOCGIFDSTADDR:
3501 case SIOCSIFDSTADDR:
3502 case SIOCGIFNETMASK:
3503 case SIOCSIFNETMASK:
3504 case SIOCSIFPFLAGS:
3505 case SIOCGIFPFLAGS:
3506 case SIOCGIFTXQLEN:
3507 case SIOCSIFTXQLEN:
3508 case SIOCBRADDIF:
3509 case SIOCBRDELIF:
3510 case SIOCGIFNAME:
3511 case SIOCSIFNAME:
3512 case SIOCGMIIPHY:
3513 case SIOCGMIIREG:
3514 case SIOCSMIIREG:
3515 case SIOCBONDENSLAVE:
3516 case SIOCBONDRELEASE:
3517 case SIOCBONDSETHWADDR:
3518 case SIOCBONDCHANGEACTIVE:
3519 case SIOCSARP:
3520 case SIOCGARP:
3521 case SIOCDARP:
3522 case SIOCOUTQ:
3523 case SIOCOUTQNSD:
3524 case SIOCATMARK:
3525 return sock_do_ioctl(net, sock, cmd, arg);
3526 }
3527
3528 return -ENOIOCTLCMD;
3529 }
3530
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3531 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3532 unsigned long arg)
3533 {
3534 struct socket *sock = file->private_data;
3535 const struct proto_ops *ops = READ_ONCE(sock->ops);
3536 int ret = -ENOIOCTLCMD;
3537 struct sock *sk;
3538 struct net *net;
3539
3540 sk = sock->sk;
3541 net = sock_net(sk);
3542
3543 if (ops->compat_ioctl)
3544 ret = ops->compat_ioctl(sock, cmd, arg);
3545
3546 if (ret == -ENOIOCTLCMD &&
3547 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3548 ret = compat_wext_handle_ioctl(net, cmd, arg);
3549
3550 if (ret == -ENOIOCTLCMD)
3551 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3552
3553 return ret;
3554 }
3555 #endif
3556
3557 /**
3558 * kernel_bind - bind an address to a socket (kernel space)
3559 * @sock: socket
3560 * @addr: address
3561 * @addrlen: length of address
3562 *
3563 * Returns 0 or an error.
3564 */
3565
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3566 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3567 {
3568 struct sockaddr_storage address;
3569
3570 memcpy(&address, addr, addrlen);
3571
3572 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3573 addrlen);
3574 }
3575 EXPORT_SYMBOL(kernel_bind);
3576
3577 /**
3578 * kernel_listen - move socket to listening state (kernel space)
3579 * @sock: socket
3580 * @backlog: pending connections queue size
3581 *
3582 * Returns 0 or an error.
3583 */
3584
kernel_listen(struct socket * sock,int backlog)3585 int kernel_listen(struct socket *sock, int backlog)
3586 {
3587 return READ_ONCE(sock->ops)->listen(sock, backlog);
3588 }
3589 EXPORT_SYMBOL(kernel_listen);
3590
3591 /**
3592 * kernel_accept - accept a connection (kernel space)
3593 * @sock: listening socket
3594 * @newsock: new connected socket
3595 * @flags: flags
3596 *
3597 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3598 * If it fails, @newsock is guaranteed to be %NULL.
3599 * Returns 0 or an error.
3600 */
3601
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3602 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3603 {
3604 struct sock *sk = sock->sk;
3605 const struct proto_ops *ops = READ_ONCE(sock->ops);
3606 struct proto_accept_arg arg = {
3607 .flags = flags,
3608 .kern = true,
3609 };
3610 int err;
3611
3612 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3613 newsock);
3614 if (err < 0)
3615 goto done;
3616
3617 err = ops->accept(sock, *newsock, &arg);
3618 if (err < 0) {
3619 sock_release(*newsock);
3620 *newsock = NULL;
3621 goto done;
3622 }
3623
3624 (*newsock)->ops = ops;
3625 __module_get(ops->owner);
3626
3627 done:
3628 return err;
3629 }
3630 EXPORT_SYMBOL(kernel_accept);
3631
3632 /**
3633 * kernel_connect - connect a socket (kernel space)
3634 * @sock: socket
3635 * @addr: address
3636 * @addrlen: address length
3637 * @flags: flags (O_NONBLOCK, ...)
3638 *
3639 * For datagram sockets, @addr is the address to which datagrams are sent
3640 * by default, and the only address from which datagrams are received.
3641 * For stream sockets, attempts to connect to @addr.
3642 * Returns 0 or an error code.
3643 */
3644
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3645 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3646 int flags)
3647 {
3648 struct sockaddr_storage address;
3649
3650 memcpy(&address, addr, addrlen);
3651
3652 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3653 addrlen, flags);
3654 }
3655 EXPORT_SYMBOL(kernel_connect);
3656
3657 /**
3658 * kernel_getsockname - get the address which the socket is bound (kernel space)
3659 * @sock: socket
3660 * @addr: address holder
3661 *
3662 * Fills the @addr pointer with the address which the socket is bound.
3663 * Returns the length of the address in bytes or an error code.
3664 */
3665
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3666 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3667 {
3668 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3669 }
3670 EXPORT_SYMBOL(kernel_getsockname);
3671
3672 /**
3673 * kernel_getpeername - get the address which the socket is connected (kernel space)
3674 * @sock: socket
3675 * @addr: address holder
3676 *
3677 * Fills the @addr pointer with the address which the socket is connected.
3678 * Returns the length of the address in bytes or an error code.
3679 */
3680
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3681 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3682 {
3683 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3684 }
3685 EXPORT_SYMBOL(kernel_getpeername);
3686
3687 /**
3688 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3689 * @sock: socket
3690 * @how: connection part
3691 *
3692 * Returns 0 or an error.
3693 */
3694
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3695 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3696 {
3697 return READ_ONCE(sock->ops)->shutdown(sock, how);
3698 }
3699 EXPORT_SYMBOL(kernel_sock_shutdown);
3700
3701 /**
3702 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3703 * @sk: socket
3704 *
3705 * This routine returns the IP overhead imposed by a socket i.e.
3706 * the length of the underlying IP header, depending on whether
3707 * this is an IPv4 or IPv6 socket and the length from IP options turned
3708 * on at the socket. Assumes that the caller has a lock on the socket.
3709 */
3710
kernel_sock_ip_overhead(struct sock * sk)3711 u32 kernel_sock_ip_overhead(struct sock *sk)
3712 {
3713 struct inet_sock *inet;
3714 struct ip_options_rcu *opt;
3715 u32 overhead = 0;
3716 #if IS_ENABLED(CONFIG_IPV6)
3717 struct ipv6_pinfo *np;
3718 struct ipv6_txoptions *optv6 = NULL;
3719 #endif /* IS_ENABLED(CONFIG_IPV6) */
3720
3721 if (!sk)
3722 return overhead;
3723
3724 switch (sk->sk_family) {
3725 case AF_INET:
3726 inet = inet_sk(sk);
3727 overhead += sizeof(struct iphdr);
3728 opt = rcu_dereference_protected(inet->inet_opt,
3729 sock_owned_by_user(sk));
3730 if (opt)
3731 overhead += opt->opt.optlen;
3732 return overhead;
3733 #if IS_ENABLED(CONFIG_IPV6)
3734 case AF_INET6:
3735 np = inet6_sk(sk);
3736 overhead += sizeof(struct ipv6hdr);
3737 if (np)
3738 optv6 = rcu_dereference_protected(np->opt,
3739 sock_owned_by_user(sk));
3740 if (optv6)
3741 overhead += (optv6->opt_flen + optv6->opt_nflen);
3742 return overhead;
3743 #endif /* IS_ENABLED(CONFIG_IPV6) */
3744 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3745 return overhead;
3746 }
3747 }
3748 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3749