1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47
48 #include <trace/events/ipi.h>
49
50 #include "trace.h"
51
52 #include "svm.h"
53 #include "svm_ops.h"
54
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 {}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72
73 static bool erratum_383_found __read_mostly;
74
75 /*
76 * Set osvw_len to higher value when updated Revision Guides
77 * are published and we know what the new status bits are
78 */
79 static uint64_t osvw_len = 4, osvw_status;
80
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82
83 /*
84 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85 * pause_filter_count: On processors that support Pause filtering(indicated
86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87 * count value. On VMRUN this value is loaded into an internal counter.
88 * Each time a pause instruction is executed, this counter is decremented
89 * until it reaches zero at which time a #VMEXIT is generated if pause
90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
91 * Intercept Filtering for more details.
92 * This also indicate if ple logic enabled.
93 *
94 * pause_filter_thresh: In addition, some processor families support advanced
95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96 * the amount of time a guest is allowed to execute in a pause loop.
97 * In this mode, a 16-bit pause filter threshold field is added in the
98 * VMCB. The threshold value is a cycle count that is used to reset the
99 * pause counter. As with simple pause filtering, VMRUN loads the pause
100 * count value from VMCB into an internal counter. Then, on each pause
101 * instruction the hardware checks the elapsed number of cycles since
102 * the most recent pause instruction against the pause filter threshold.
103 * If the elapsed cycle count is greater than the pause filter threshold,
104 * then the internal pause count is reloaded from the VMCB and execution
105 * continues. If the elapsed cycle count is less than the pause filter
106 * threshold, then the internal pause count is decremented. If the count
107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108 * triggered. If advanced pause filtering is supported and pause filter
109 * threshold field is set to zero, the filter will operate in the simpler,
110 * count only mode.
111 */
112
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130
131 /*
132 * Use nested page tables by default. Note, NPT may get forced off by
133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134 */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160
161 module_param(enable_device_posted_irqs, bool, 0444);
162
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165
166
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172
173 static bool svm_gp_erratum_intercept = true;
174
175 static u8 rsm_ins_bytes[] = "\x0f\xaa";
176
177 static unsigned long iopm_base;
178
179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180
181 static DEFINE_MUTEX(vmcb_dump_mutex);
182
183 /*
184 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
185 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186 *
187 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188 * defer the restoration of TSC_AUX until the CPU returns to userspace.
189 */
190 int tsc_aux_uret_slot __ro_after_init = -1;
191
get_npt_level(void)192 static int get_npt_level(void)
193 {
194 #ifdef CONFIG_X86_64
195 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196 #else
197 return PT32E_ROOT_LEVEL;
198 #endif
199 }
200
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202 {
203 struct vcpu_svm *svm = to_svm(vcpu);
204 u64 old_efer = vcpu->arch.efer;
205 vcpu->arch.efer = efer;
206
207 if (!npt_enabled) {
208 /* Shadow paging assumes NX to be available. */
209 efer |= EFER_NX;
210
211 if (!(efer & EFER_LMA))
212 efer &= ~EFER_LME;
213 }
214
215 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216 if (!(efer & EFER_SVME)) {
217 svm_leave_nested(vcpu);
218 svm_set_gif(svm, true);
219 /* #GP intercept is still needed for vmware backdoor */
220 if (!enable_vmware_backdoor)
221 clr_exception_intercept(svm, GP_VECTOR);
222
223 /*
224 * Free the nested guest state, unless we are in SMM.
225 * In this case we will return to the nested guest
226 * as soon as we leave SMM.
227 */
228 if (!is_smm(vcpu))
229 svm_free_nested(svm);
230
231 } else {
232 int ret = svm_allocate_nested(svm);
233
234 if (ret) {
235 vcpu->arch.efer = old_efer;
236 return ret;
237 }
238
239 /*
240 * Never intercept #GP for SEV guests, KVM can't
241 * decrypt guest memory to workaround the erratum.
242 */
243 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244 set_exception_intercept(svm, GP_VECTOR);
245 }
246 }
247
248 svm->vmcb->save.efer = efer | EFER_SVME;
249 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250 return 0;
251 }
252
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254 {
255 struct vcpu_svm *svm = to_svm(vcpu);
256 u32 ret = 0;
257
258 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260 return ret;
261 }
262
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265 struct vcpu_svm *svm = to_svm(vcpu);
266
267 if (mask == 0)
268 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269 else
270 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271
272 }
273
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275 bool commit_side_effects)
276 {
277 struct vcpu_svm *svm = to_svm(vcpu);
278 unsigned long old_rflags;
279
280 /*
281 * SEV-ES does not expose the next RIP. The RIP update is controlled by
282 * the type of exit and the #VC handler in the guest.
283 */
284 if (sev_es_guest(vcpu->kvm))
285 goto done;
286
287 if (nrips && svm->vmcb->control.next_rip != 0) {
288 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
289 svm->next_rip = svm->vmcb->control.next_rip;
290 }
291
292 if (!svm->next_rip) {
293 if (unlikely(!commit_side_effects))
294 old_rflags = svm->vmcb->save.rflags;
295
296 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
297 return 0;
298
299 if (unlikely(!commit_side_effects))
300 svm->vmcb->save.rflags = old_rflags;
301 } else {
302 kvm_rip_write(vcpu, svm->next_rip);
303 }
304
305 done:
306 if (likely(commit_side_effects))
307 svm_set_interrupt_shadow(vcpu, 0);
308
309 return 1;
310 }
311
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)312 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
313 {
314 return __svm_skip_emulated_instruction(vcpu, true);
315 }
316
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)317 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
318 {
319 unsigned long rip, old_rip = kvm_rip_read(vcpu);
320 struct vcpu_svm *svm = to_svm(vcpu);
321
322 /*
323 * Due to architectural shortcomings, the CPU doesn't always provide
324 * NextRIP, e.g. if KVM intercepted an exception that occurred while
325 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
326 * the instruction even if NextRIP is supported to acquire the next
327 * RIP so that it can be shoved into the NextRIP field, otherwise
328 * hardware will fail to advance guest RIP during event injection.
329 * Drop the exception/interrupt if emulation fails and effectively
330 * retry the instruction, it's the least awful option. If NRIPS is
331 * in use, the skip must not commit any side effects such as clearing
332 * the interrupt shadow or RFLAGS.RF.
333 */
334 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
335 return -EIO;
336
337 rip = kvm_rip_read(vcpu);
338
339 /*
340 * Save the injection information, even when using next_rip, as the
341 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
342 * doesn't complete due to a VM-Exit occurring while the CPU is
343 * vectoring the event. Decoding the instruction isn't guaranteed to
344 * work as there may be no backing instruction, e.g. if the event is
345 * being injected by L1 for L2, or if the guest is patching INT3 into
346 * a different instruction.
347 */
348 svm->soft_int_injected = true;
349 svm->soft_int_csbase = svm->vmcb->save.cs.base;
350 svm->soft_int_old_rip = old_rip;
351 svm->soft_int_next_rip = rip;
352
353 if (nrips)
354 kvm_rip_write(vcpu, old_rip);
355
356 if (static_cpu_has(X86_FEATURE_NRIPS))
357 svm->vmcb->control.next_rip = rip;
358
359 return 0;
360 }
361
svm_inject_exception(struct kvm_vcpu * vcpu)362 static void svm_inject_exception(struct kvm_vcpu *vcpu)
363 {
364 struct kvm_queued_exception *ex = &vcpu->arch.exception;
365 struct vcpu_svm *svm = to_svm(vcpu);
366
367 kvm_deliver_exception_payload(vcpu, ex);
368
369 if (kvm_exception_is_soft(ex->vector) &&
370 svm_update_soft_interrupt_rip(vcpu))
371 return;
372
373 svm->vmcb->control.event_inj = ex->vector
374 | SVM_EVTINJ_VALID
375 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
376 | SVM_EVTINJ_TYPE_EXEPT;
377 svm->vmcb->control.event_inj_err = ex->error_code;
378 }
379
svm_init_erratum_383(void)380 static void svm_init_erratum_383(void)
381 {
382 u64 val;
383
384 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
385 return;
386
387 /* Use _safe variants to not break nested virtualization */
388 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
389 return;
390
391 val |= (1ULL << 47);
392
393 native_write_msr_safe(MSR_AMD64_DC_CFG, val);
394
395 erratum_383_found = true;
396 }
397
svm_init_osvw(struct kvm_vcpu * vcpu)398 static void svm_init_osvw(struct kvm_vcpu *vcpu)
399 {
400 /*
401 * Guests should see errata 400 and 415 as fixed (assuming that
402 * HLT and IO instructions are intercepted).
403 */
404 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
405 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
406
407 /*
408 * By increasing VCPU's osvw.length to 3 we are telling the guest that
409 * all osvw.status bits inside that length, including bit 0 (which is
410 * reserved for erratum 298), are valid. However, if host processor's
411 * osvw_len is 0 then osvw_status[0] carries no information. We need to
412 * be conservative here and therefore we tell the guest that erratum 298
413 * is present (because we really don't know).
414 */
415 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
416 vcpu->arch.osvw.status |= 1;
417 }
418
__kvm_is_svm_supported(void)419 static bool __kvm_is_svm_supported(void)
420 {
421 int cpu = smp_processor_id();
422 struct cpuinfo_x86 *c = &cpu_data(cpu);
423
424 if (c->x86_vendor != X86_VENDOR_AMD &&
425 c->x86_vendor != X86_VENDOR_HYGON) {
426 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
427 return false;
428 }
429
430 if (!cpu_has(c, X86_FEATURE_SVM)) {
431 pr_err("SVM not supported by CPU %d\n", cpu);
432 return false;
433 }
434
435 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
436 pr_info("KVM is unsupported when running as an SEV guest\n");
437 return false;
438 }
439
440 return true;
441 }
442
kvm_is_svm_supported(void)443 static bool kvm_is_svm_supported(void)
444 {
445 bool supported;
446
447 migrate_disable();
448 supported = __kvm_is_svm_supported();
449 migrate_enable();
450
451 return supported;
452 }
453
svm_check_processor_compat(void)454 static int svm_check_processor_compat(void)
455 {
456 if (!__kvm_is_svm_supported())
457 return -EIO;
458
459 return 0;
460 }
461
__svm_write_tsc_multiplier(u64 multiplier)462 static void __svm_write_tsc_multiplier(u64 multiplier)
463 {
464 if (multiplier == __this_cpu_read(current_tsc_ratio))
465 return;
466
467 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
468 __this_cpu_write(current_tsc_ratio, multiplier);
469 }
470
sev_es_host_save_area(struct svm_cpu_data * sd)471 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
472 {
473 return &sd->save_area->host_sev_es_save;
474 }
475
kvm_cpu_svm_disable(void)476 static inline void kvm_cpu_svm_disable(void)
477 {
478 uint64_t efer;
479
480 wrmsrq(MSR_VM_HSAVE_PA, 0);
481 rdmsrq(MSR_EFER, efer);
482 if (efer & EFER_SVME) {
483 /*
484 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
485 * NMI aren't blocked.
486 */
487 stgi();
488 wrmsrq(MSR_EFER, efer & ~EFER_SVME);
489 }
490 }
491
svm_emergency_disable_virtualization_cpu(void)492 static void svm_emergency_disable_virtualization_cpu(void)
493 {
494 kvm_rebooting = true;
495
496 kvm_cpu_svm_disable();
497 }
498
svm_disable_virtualization_cpu(void)499 static void svm_disable_virtualization_cpu(void)
500 {
501 /* Make sure we clean up behind us */
502 if (tsc_scaling)
503 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
504
505 kvm_cpu_svm_disable();
506
507 amd_pmu_disable_virt();
508 }
509
svm_enable_virtualization_cpu(void)510 static int svm_enable_virtualization_cpu(void)
511 {
512
513 struct svm_cpu_data *sd;
514 uint64_t efer;
515 int me = raw_smp_processor_id();
516
517 rdmsrq(MSR_EFER, efer);
518 if (efer & EFER_SVME)
519 return -EBUSY;
520
521 sd = per_cpu_ptr(&svm_data, me);
522 sd->asid_generation = 1;
523 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
524 sd->next_asid = sd->max_asid + 1;
525 sd->min_asid = max_sev_asid + 1;
526
527 wrmsrq(MSR_EFER, efer | EFER_SVME);
528
529 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
530
531 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
532 /*
533 * Set the default value, even if we don't use TSC scaling
534 * to avoid having stale value in the msr
535 */
536 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
537 }
538
539
540 /*
541 * Get OSVW bits.
542 *
543 * Note that it is possible to have a system with mixed processor
544 * revisions and therefore different OSVW bits. If bits are not the same
545 * on different processors then choose the worst case (i.e. if erratum
546 * is present on one processor and not on another then assume that the
547 * erratum is present everywhere).
548 */
549 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
550 u64 len, status = 0;
551 int err;
552
553 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
554 if (!err)
555 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
556
557 if (err)
558 osvw_status = osvw_len = 0;
559 else {
560 if (len < osvw_len)
561 osvw_len = len;
562 osvw_status |= status;
563 osvw_status &= (1ULL << osvw_len) - 1;
564 }
565 } else
566 osvw_status = osvw_len = 0;
567
568 svm_init_erratum_383();
569
570 amd_pmu_enable_virt();
571
572 return 0;
573 }
574
svm_cpu_uninit(int cpu)575 static void svm_cpu_uninit(int cpu)
576 {
577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
578
579 if (!sd->save_area)
580 return;
581
582 kfree(sd->sev_vmcbs);
583 __free_page(__sme_pa_to_page(sd->save_area_pa));
584 sd->save_area_pa = 0;
585 sd->save_area = NULL;
586 }
587
svm_cpu_init(int cpu)588 static int svm_cpu_init(int cpu)
589 {
590 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
591 struct page *save_area_page;
592 int ret = -ENOMEM;
593
594 memset(sd, 0, sizeof(struct svm_cpu_data));
595 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
596 if (!save_area_page)
597 return ret;
598
599 ret = sev_cpu_init(sd);
600 if (ret)
601 goto free_save_area;
602
603 sd->save_area = page_address(save_area_page);
604 sd->save_area_pa = __sme_page_pa(save_area_page);
605 return 0;
606
607 free_save_area:
608 __free_page(save_area_page);
609 return ret;
610
611 }
612
set_dr_intercepts(struct vcpu_svm * svm)613 static void set_dr_intercepts(struct vcpu_svm *svm)
614 {
615 struct vmcb *vmcb = svm->vmcb01.ptr;
616
617 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
618 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
619 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
620 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
621 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
622 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
623 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
624 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
625 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
626 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
627 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
628 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
629 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
630 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
631 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
632 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
633
634 recalc_intercepts(svm);
635 }
636
clr_dr_intercepts(struct vcpu_svm * svm)637 static void clr_dr_intercepts(struct vcpu_svm *svm)
638 {
639 struct vmcb *vmcb = svm->vmcb01.ptr;
640
641 vmcb->control.intercepts[INTERCEPT_DR] = 0;
642
643 recalc_intercepts(svm);
644 }
645
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)646 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
647 {
648 /*
649 * For non-nested case:
650 * If the L01 MSR bitmap does not intercept the MSR, then we need to
651 * save it.
652 *
653 * For nested case:
654 * If the L02 MSR bitmap does not intercept the MSR, then we need to
655 * save it.
656 */
657 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
658 to_svm(vcpu)->msrpm;
659
660 return svm_test_msr_bitmap_write(msrpm, msr);
661 }
662
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)663 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
664 {
665 struct vcpu_svm *svm = to_svm(vcpu);
666 void *msrpm = svm->msrpm;
667
668 /* Don't disable interception for MSRs userspace wants to handle. */
669 if (type & MSR_TYPE_R) {
670 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
671 svm_clear_msr_bitmap_read(msrpm, msr);
672 else
673 svm_set_msr_bitmap_read(msrpm, msr);
674 }
675
676 if (type & MSR_TYPE_W) {
677 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
678 svm_clear_msr_bitmap_write(msrpm, msr);
679 else
680 svm_set_msr_bitmap_write(msrpm, msr);
681 }
682
683 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
684 svm->nested.force_msr_bitmap_recalc = true;
685 }
686
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)687 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
688 {
689 unsigned int order = get_order(size);
690 struct page *pages = alloc_pages(gfp_mask, order);
691 void *pm;
692
693 if (!pages)
694 return NULL;
695
696 /*
697 * Set all bits in the permissions map so that all MSR and I/O accesses
698 * are intercepted by default.
699 */
700 pm = page_address(pages);
701 memset(pm, 0xff, PAGE_SIZE * (1 << order));
702
703 return pm;
704 }
705
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)706 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
707 {
708 struct vcpu_svm *svm = to_svm(vcpu);
709 bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
710
711 if (intercept == svm->lbr_msrs_intercepted)
712 return;
713
714 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
715 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
716 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
717 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
718
719 if (sev_es_guest(vcpu->kvm))
720 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
721
722 svm->lbr_msrs_intercepted = intercept;
723 }
724
svm_vcpu_free_msrpm(void * msrpm)725 void svm_vcpu_free_msrpm(void *msrpm)
726 {
727 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
728 }
729
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)730 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
731 {
732 struct vcpu_svm *svm = to_svm(vcpu);
733
734 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
735 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
736
737 #ifdef CONFIG_X86_64
738 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
739 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
740 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
741 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
742 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
743 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
744 #endif
745
746 if (lbrv)
747 svm_recalc_lbr_msr_intercepts(vcpu);
748
749 if (cpu_feature_enabled(X86_FEATURE_IBPB))
750 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
751 !guest_has_pred_cmd_msr(vcpu));
752
753 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
754 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
755 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
756
757 /*
758 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
759 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
760 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
761 * using SPEC_CTRL.
762 */
763 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
764 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
765 !guest_has_spec_ctrl_msr(vcpu));
766 else
767 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
768 !svm->spec_ctrl);
769
770 /*
771 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
772 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
773 */
774 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
775 guest_cpuid_is_intel_compatible(vcpu));
776 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
777 guest_cpuid_is_intel_compatible(vcpu));
778
779 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
780 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
781 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
782 }
783
784 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
785 bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
786
787 svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
788 svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
789 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
790 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
791 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
792 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
793 }
794
795 if (sev_es_guest(vcpu->kvm))
796 sev_es_recalc_msr_intercepts(vcpu);
797
798 /*
799 * x2APIC intercepts are modified on-demand and cannot be filtered by
800 * userspace.
801 */
802 }
803
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)804 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
805 {
806 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
807 to_vmcb->save.br_from = from_vmcb->save.br_from;
808 to_vmcb->save.br_to = from_vmcb->save.br_to;
809 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
810 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
811
812 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
813 }
814
__svm_enable_lbrv(struct kvm_vcpu * vcpu)815 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
816 {
817 to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
818 }
819
svm_enable_lbrv(struct kvm_vcpu * vcpu)820 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
821 {
822 __svm_enable_lbrv(vcpu);
823 svm_recalc_lbr_msr_intercepts(vcpu);
824 }
825
__svm_disable_lbrv(struct kvm_vcpu * vcpu)826 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
827 {
828 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
829 to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
830 }
831
svm_update_lbrv(struct kvm_vcpu * vcpu)832 void svm_update_lbrv(struct kvm_vcpu *vcpu)
833 {
834 struct vcpu_svm *svm = to_svm(vcpu);
835 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
836 bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
837 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
838 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
839
840 if (enable_lbrv && !current_enable_lbrv)
841 __svm_enable_lbrv(vcpu);
842 else if (!enable_lbrv && current_enable_lbrv)
843 __svm_disable_lbrv(vcpu);
844
845 /*
846 * During nested transitions, it is possible that the current VMCB has
847 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
848 * In this case, even though LBR_CTL does not need an update, intercepts
849 * do, so always recalculate the intercepts here.
850 */
851 svm_recalc_lbr_msr_intercepts(vcpu);
852 }
853
disable_nmi_singlestep(struct vcpu_svm * svm)854 void disable_nmi_singlestep(struct vcpu_svm *svm)
855 {
856 svm->nmi_singlestep = false;
857
858 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
859 /* Clear our flags if they were not set by the guest */
860 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
861 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
862 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
863 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
864 }
865 }
866
grow_ple_window(struct kvm_vcpu * vcpu)867 static void grow_ple_window(struct kvm_vcpu *vcpu)
868 {
869 struct vcpu_svm *svm = to_svm(vcpu);
870 struct vmcb_control_area *control = &svm->vmcb->control;
871 int old = control->pause_filter_count;
872
873 if (kvm_pause_in_guest(vcpu->kvm))
874 return;
875
876 control->pause_filter_count = __grow_ple_window(old,
877 pause_filter_count,
878 pause_filter_count_grow,
879 pause_filter_count_max);
880
881 if (control->pause_filter_count != old) {
882 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
883 trace_kvm_ple_window_update(vcpu->vcpu_id,
884 control->pause_filter_count, old);
885 }
886 }
887
shrink_ple_window(struct kvm_vcpu * vcpu)888 static void shrink_ple_window(struct kvm_vcpu *vcpu)
889 {
890 struct vcpu_svm *svm = to_svm(vcpu);
891 struct vmcb_control_area *control = &svm->vmcb->control;
892 int old = control->pause_filter_count;
893
894 if (kvm_pause_in_guest(vcpu->kvm))
895 return;
896
897 control->pause_filter_count =
898 __shrink_ple_window(old,
899 pause_filter_count,
900 pause_filter_count_shrink,
901 pause_filter_count);
902 if (control->pause_filter_count != old) {
903 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
904 trace_kvm_ple_window_update(vcpu->vcpu_id,
905 control->pause_filter_count, old);
906 }
907 }
908
svm_hardware_unsetup(void)909 static void svm_hardware_unsetup(void)
910 {
911 int cpu;
912
913 avic_hardware_unsetup();
914
915 sev_hardware_unsetup();
916
917 for_each_possible_cpu(cpu)
918 svm_cpu_uninit(cpu);
919
920 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
921 iopm_base = 0;
922 }
923
init_seg(struct vmcb_seg * seg)924 static void init_seg(struct vmcb_seg *seg)
925 {
926 seg->selector = 0;
927 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
928 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
929 seg->limit = 0xffff;
930 seg->base = 0;
931 }
932
init_sys_seg(struct vmcb_seg * seg,uint32_t type)933 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
934 {
935 seg->selector = 0;
936 seg->attrib = SVM_SELECTOR_P_MASK | type;
937 seg->limit = 0xffff;
938 seg->base = 0;
939 }
940
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)941 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
942 {
943 struct vcpu_svm *svm = to_svm(vcpu);
944
945 return svm->nested.ctl.tsc_offset;
946 }
947
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)948 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
949 {
950 struct vcpu_svm *svm = to_svm(vcpu);
951
952 return svm->tsc_ratio_msr;
953 }
954
svm_write_tsc_offset(struct kvm_vcpu * vcpu)955 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
956 {
957 struct vcpu_svm *svm = to_svm(vcpu);
958
959 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
960 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
961 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
962 }
963
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)964 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
965 {
966 preempt_disable();
967 if (to_svm(vcpu)->guest_state_loaded)
968 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
969 preempt_enable();
970 }
971
972 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)973 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
974 {
975 struct vcpu_svm *svm = to_svm(vcpu);
976
977 /*
978 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
979 * roots, or if INVPCID is disabled in the guest to inject #UD.
980 */
981 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
982 if (!npt_enabled ||
983 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
984 svm_set_intercept(svm, INTERCEPT_INVPCID);
985 else
986 svm_clr_intercept(svm, INTERCEPT_INVPCID);
987 }
988
989 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
990 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
991 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
992 else
993 svm_set_intercept(svm, INTERCEPT_RDTSCP);
994 }
995
996 if (guest_cpuid_is_intel_compatible(vcpu)) {
997 svm_set_intercept(svm, INTERCEPT_VMLOAD);
998 svm_set_intercept(svm, INTERCEPT_VMSAVE);
999 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1000 } else {
1001 /*
1002 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1003 * in VMCB and clear intercepts to avoid #VMEXIT.
1004 */
1005 if (vls) {
1006 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1007 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1008 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1009 }
1010 }
1011 }
1012
svm_recalc_intercepts(struct kvm_vcpu * vcpu)1013 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1014 {
1015 svm_recalc_instruction_intercepts(vcpu);
1016 svm_recalc_msr_intercepts(vcpu);
1017 }
1018
init_vmcb(struct kvm_vcpu * vcpu,bool init_event)1019 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1020 {
1021 struct vcpu_svm *svm = to_svm(vcpu);
1022 struct vmcb *vmcb = svm->vmcb01.ptr;
1023 struct vmcb_control_area *control = &vmcb->control;
1024 struct vmcb_save_area *save = &vmcb->save;
1025
1026 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1027 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1028 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1029 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1030 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1031 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1032 if (!kvm_vcpu_apicv_active(vcpu))
1033 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1034
1035 set_dr_intercepts(svm);
1036
1037 set_exception_intercept(svm, PF_VECTOR);
1038 set_exception_intercept(svm, UD_VECTOR);
1039 set_exception_intercept(svm, MC_VECTOR);
1040 set_exception_intercept(svm, AC_VECTOR);
1041 set_exception_intercept(svm, DB_VECTOR);
1042 /*
1043 * Guest access to VMware backdoor ports could legitimately
1044 * trigger #GP because of TSS I/O permission bitmap.
1045 * We intercept those #GP and allow access to them anyway
1046 * as VMware does.
1047 */
1048 if (enable_vmware_backdoor)
1049 set_exception_intercept(svm, GP_VECTOR);
1050
1051 svm_set_intercept(svm, INTERCEPT_INTR);
1052 svm_set_intercept(svm, INTERCEPT_NMI);
1053
1054 if (intercept_smi)
1055 svm_set_intercept(svm, INTERCEPT_SMI);
1056
1057 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1058 svm_set_intercept(svm, INTERCEPT_RDPMC);
1059 svm_set_intercept(svm, INTERCEPT_CPUID);
1060 svm_set_intercept(svm, INTERCEPT_INVD);
1061 svm_set_intercept(svm, INTERCEPT_INVLPG);
1062 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1063 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1064 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1065 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1066 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1067 svm_set_intercept(svm, INTERCEPT_VMRUN);
1068 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1069 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1070 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1071 svm_set_intercept(svm, INTERCEPT_STGI);
1072 svm_set_intercept(svm, INTERCEPT_CLGI);
1073 svm_set_intercept(svm, INTERCEPT_SKINIT);
1074 svm_set_intercept(svm, INTERCEPT_WBINVD);
1075 svm_set_intercept(svm, INTERCEPT_XSETBV);
1076 svm_set_intercept(svm, INTERCEPT_RDPRU);
1077 svm_set_intercept(svm, INTERCEPT_RSM);
1078
1079 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1080 svm_set_intercept(svm, INTERCEPT_MONITOR);
1081 svm_set_intercept(svm, INTERCEPT_MWAIT);
1082 }
1083
1084 if (!kvm_hlt_in_guest(vcpu->kvm)) {
1085 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1086 svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1087 else
1088 svm_set_intercept(svm, INTERCEPT_HLT);
1089 }
1090
1091 control->iopm_base_pa = iopm_base;
1092 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1093 control->int_ctl = V_INTR_MASKING_MASK;
1094
1095 init_seg(&save->es);
1096 init_seg(&save->ss);
1097 init_seg(&save->ds);
1098 init_seg(&save->fs);
1099 init_seg(&save->gs);
1100
1101 save->cs.selector = 0xf000;
1102 save->cs.base = 0xffff0000;
1103 /* Executable/Readable Code Segment */
1104 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1105 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1106 save->cs.limit = 0xffff;
1107
1108 save->gdtr.base = 0;
1109 save->gdtr.limit = 0xffff;
1110 save->idtr.base = 0;
1111 save->idtr.limit = 0xffff;
1112
1113 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1114 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1115
1116 if (npt_enabled) {
1117 /* Setup VMCB for Nested Paging */
1118 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1119 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1120 clr_exception_intercept(svm, PF_VECTOR);
1121 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1122 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1123 save->g_pat = vcpu->arch.pat;
1124 save->cr3 = 0;
1125 }
1126 svm->current_vmcb->asid_generation = 0;
1127 svm->asid = 0;
1128
1129 svm->nested.vmcb12_gpa = INVALID_GPA;
1130 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1131
1132 if (!kvm_pause_in_guest(vcpu->kvm)) {
1133 control->pause_filter_count = pause_filter_count;
1134 if (pause_filter_thresh)
1135 control->pause_filter_thresh = pause_filter_thresh;
1136 svm_set_intercept(svm, INTERCEPT_PAUSE);
1137 } else {
1138 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1139 }
1140
1141 if (kvm_vcpu_apicv_active(vcpu))
1142 avic_init_vmcb(svm, vmcb);
1143
1144 if (vnmi)
1145 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1146
1147 if (vgif) {
1148 svm_clr_intercept(svm, INTERCEPT_STGI);
1149 svm_clr_intercept(svm, INTERCEPT_CLGI);
1150 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1151 }
1152
1153 if (vcpu->kvm->arch.bus_lock_detection_enabled)
1154 svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1155
1156 if (sev_guest(vcpu->kvm))
1157 sev_init_vmcb(svm, init_event);
1158
1159 svm_hv_init_vmcb(vmcb);
1160
1161 kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1162
1163 vmcb_mark_all_dirty(vmcb);
1164
1165 enable_gif(svm);
1166 }
1167
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1168 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1169 {
1170 struct vcpu_svm *svm = to_svm(vcpu);
1171
1172 svm_init_osvw(vcpu);
1173
1174 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1175 vcpu->arch.microcode_version = 0x01000065;
1176 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1177
1178 svm->nmi_masked = false;
1179 svm->awaiting_iret_completion = false;
1180 }
1181
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1182 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1183 {
1184 struct vcpu_svm *svm = to_svm(vcpu);
1185
1186 svm->spec_ctrl = 0;
1187 svm->virt_spec_ctrl = 0;
1188
1189 init_vmcb(vcpu, init_event);
1190
1191 if (!init_event)
1192 __svm_vcpu_reset(vcpu);
1193 }
1194
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1195 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1196 {
1197 svm->current_vmcb = target_vmcb;
1198 svm->vmcb = target_vmcb->ptr;
1199 }
1200
svm_vcpu_create(struct kvm_vcpu * vcpu)1201 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1202 {
1203 struct vcpu_svm *svm;
1204 struct page *vmcb01_page;
1205 int err;
1206
1207 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1208 svm = to_svm(vcpu);
1209
1210 err = -ENOMEM;
1211 vmcb01_page = snp_safe_alloc_page();
1212 if (!vmcb01_page)
1213 goto out;
1214
1215 err = sev_vcpu_create(vcpu);
1216 if (err)
1217 goto error_free_vmcb_page;
1218
1219 err = avic_init_vcpu(svm);
1220 if (err)
1221 goto error_free_sev;
1222
1223 svm->msrpm = svm_vcpu_alloc_msrpm();
1224 if (!svm->msrpm) {
1225 err = -ENOMEM;
1226 goto error_free_sev;
1227 }
1228
1229 svm->x2avic_msrs_intercepted = true;
1230 svm->lbr_msrs_intercepted = true;
1231
1232 svm->vmcb01.ptr = page_address(vmcb01_page);
1233 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1234 svm_switch_vmcb(svm, &svm->vmcb01);
1235
1236 svm->guest_state_loaded = false;
1237
1238 return 0;
1239
1240 error_free_sev:
1241 sev_free_vcpu(vcpu);
1242 error_free_vmcb_page:
1243 __free_page(vmcb01_page);
1244 out:
1245 return err;
1246 }
1247
svm_vcpu_free(struct kvm_vcpu * vcpu)1248 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1249 {
1250 struct vcpu_svm *svm = to_svm(vcpu);
1251
1252 WARN_ON_ONCE(!list_empty(&svm->ir_list));
1253
1254 svm_leave_nested(vcpu);
1255 svm_free_nested(svm);
1256
1257 sev_free_vcpu(vcpu);
1258
1259 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1260 svm_vcpu_free_msrpm(svm->msrpm);
1261 }
1262
1263 #ifdef CONFIG_CPU_MITIGATIONS
1264 static DEFINE_SPINLOCK(srso_lock);
1265 static atomic_t srso_nr_vms;
1266
svm_srso_clear_bp_spec_reduce(void * ign)1267 static void svm_srso_clear_bp_spec_reduce(void *ign)
1268 {
1269 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1270
1271 if (!sd->bp_spec_reduce_set)
1272 return;
1273
1274 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1275 sd->bp_spec_reduce_set = false;
1276 }
1277
svm_srso_vm_destroy(void)1278 static void svm_srso_vm_destroy(void)
1279 {
1280 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1281 return;
1282
1283 if (atomic_dec_return(&srso_nr_vms))
1284 return;
1285
1286 guard(spinlock)(&srso_lock);
1287
1288 /*
1289 * Verify a new VM didn't come along, acquire the lock, and increment
1290 * the count before this task acquired the lock.
1291 */
1292 if (atomic_read(&srso_nr_vms))
1293 return;
1294
1295 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1296 }
1297
svm_srso_vm_init(void)1298 static void svm_srso_vm_init(void)
1299 {
1300 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1301 return;
1302
1303 /*
1304 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1305 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1306 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1307 */
1308 if (atomic_inc_not_zero(&srso_nr_vms))
1309 return;
1310
1311 guard(spinlock)(&srso_lock);
1312
1313 atomic_inc(&srso_nr_vms);
1314 }
1315 #else
svm_srso_vm_init(void)1316 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1317 static void svm_srso_vm_destroy(void) { }
1318 #endif
1319
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1320 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1321 {
1322 struct vcpu_svm *svm = to_svm(vcpu);
1323 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1324
1325 if (sev_es_guest(vcpu->kvm))
1326 sev_es_unmap_ghcb(svm);
1327
1328 if (svm->guest_state_loaded)
1329 return;
1330
1331 /*
1332 * Save additional host state that will be restored on VMEXIT (sev-es)
1333 * or subsequent vmload of host save area.
1334 */
1335 vmsave(sd->save_area_pa);
1336 if (sev_es_guest(vcpu->kvm))
1337 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1338
1339 if (tsc_scaling)
1340 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1341
1342 /*
1343 * TSC_AUX is always virtualized (context switched by hardware) for
1344 * SEV-ES guests when the feature is available. For non-SEV-ES guests,
1345 * context switch TSC_AUX via the user_return MSR infrastructure (not
1346 * all CPUs support TSC_AUX virtualization).
1347 */
1348 if (likely(tsc_aux_uret_slot >= 0) &&
1349 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1350 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1351
1352 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1353 !sd->bp_spec_reduce_set) {
1354 sd->bp_spec_reduce_set = true;
1355 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1356 }
1357 svm->guest_state_loaded = true;
1358 }
1359
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1360 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1361 {
1362 to_svm(vcpu)->guest_state_loaded = false;
1363 }
1364
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1365 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1366 {
1367 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1368 shrink_ple_window(vcpu);
1369
1370 if (kvm_vcpu_apicv_active(vcpu))
1371 avic_vcpu_load(vcpu, cpu);
1372 }
1373
svm_vcpu_put(struct kvm_vcpu * vcpu)1374 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1375 {
1376 if (kvm_vcpu_apicv_active(vcpu))
1377 avic_vcpu_put(vcpu);
1378
1379 svm_prepare_host_switch(vcpu);
1380
1381 ++vcpu->stat.host_state_reload;
1382 }
1383
svm_get_rflags(struct kvm_vcpu * vcpu)1384 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1385 {
1386 struct vcpu_svm *svm = to_svm(vcpu);
1387 unsigned long rflags = svm->vmcb->save.rflags;
1388
1389 if (svm->nmi_singlestep) {
1390 /* Hide our flags if they were not set by the guest */
1391 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1392 rflags &= ~X86_EFLAGS_TF;
1393 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1394 rflags &= ~X86_EFLAGS_RF;
1395 }
1396 return rflags;
1397 }
1398
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1399 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1400 {
1401 if (to_svm(vcpu)->nmi_singlestep)
1402 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1403
1404 /*
1405 * Any change of EFLAGS.VM is accompanied by a reload of SS
1406 * (caused by either a task switch or an inter-privilege IRET),
1407 * so we do not need to update the CPL here.
1408 */
1409 to_svm(vcpu)->vmcb->save.rflags = rflags;
1410 }
1411
svm_get_if_flag(struct kvm_vcpu * vcpu)1412 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1413 {
1414 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1415
1416 return sev_es_guest(vcpu->kvm)
1417 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1418 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1419 }
1420
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1421 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1422 {
1423 kvm_register_mark_available(vcpu, reg);
1424
1425 switch (reg) {
1426 case VCPU_EXREG_PDPTR:
1427 /*
1428 * When !npt_enabled, mmu->pdptrs[] is already available since
1429 * it is always updated per SDM when moving to CRs.
1430 */
1431 if (npt_enabled)
1432 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1433 break;
1434 default:
1435 KVM_BUG_ON(1, vcpu->kvm);
1436 }
1437 }
1438
svm_set_vintr(struct vcpu_svm * svm)1439 static void svm_set_vintr(struct vcpu_svm *svm)
1440 {
1441 struct vmcb_control_area *control;
1442
1443 /*
1444 * The following fields are ignored when AVIC is enabled
1445 */
1446 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1447
1448 svm_set_intercept(svm, INTERCEPT_VINTR);
1449
1450 /*
1451 * Recalculating intercepts may have cleared the VINTR intercept. If
1452 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1453 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1454 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1455 * interrupts will never be unblocked while L2 is running.
1456 */
1457 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1458 return;
1459
1460 /*
1461 * This is just a dummy VINTR to actually cause a vmexit to happen.
1462 * Actual injection of virtual interrupts happens through EVENTINJ.
1463 */
1464 control = &svm->vmcb->control;
1465 control->int_vector = 0x0;
1466 control->int_ctl &= ~V_INTR_PRIO_MASK;
1467 control->int_ctl |= V_IRQ_MASK |
1468 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1469 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1470 }
1471
svm_clear_vintr(struct vcpu_svm * svm)1472 static void svm_clear_vintr(struct vcpu_svm *svm)
1473 {
1474 svm_clr_intercept(svm, INTERCEPT_VINTR);
1475
1476 /* Drop int_ctl fields related to VINTR injection. */
1477 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1478 if (is_guest_mode(&svm->vcpu)) {
1479 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1480
1481 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1482 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1483
1484 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1485 V_IRQ_INJECTION_BITS_MASK;
1486
1487 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1488 }
1489
1490 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1491 }
1492
svm_seg(struct kvm_vcpu * vcpu,int seg)1493 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1494 {
1495 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1496 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1497
1498 switch (seg) {
1499 case VCPU_SREG_CS: return &save->cs;
1500 case VCPU_SREG_DS: return &save->ds;
1501 case VCPU_SREG_ES: return &save->es;
1502 case VCPU_SREG_FS: return &save01->fs;
1503 case VCPU_SREG_GS: return &save01->gs;
1504 case VCPU_SREG_SS: return &save->ss;
1505 case VCPU_SREG_TR: return &save01->tr;
1506 case VCPU_SREG_LDTR: return &save01->ldtr;
1507 }
1508 BUG();
1509 return NULL;
1510 }
1511
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1512 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1513 {
1514 struct vmcb_seg *s = svm_seg(vcpu, seg);
1515
1516 return s->base;
1517 }
1518
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1519 static void svm_get_segment(struct kvm_vcpu *vcpu,
1520 struct kvm_segment *var, int seg)
1521 {
1522 struct vmcb_seg *s = svm_seg(vcpu, seg);
1523
1524 var->base = s->base;
1525 var->limit = s->limit;
1526 var->selector = s->selector;
1527 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1528 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1529 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1530 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1531 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1532 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1533 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1534
1535 /*
1536 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1537 * However, the SVM spec states that the G bit is not observed by the
1538 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1539 * So let's synthesize a legal G bit for all segments, this helps
1540 * running KVM nested. It also helps cross-vendor migration, because
1541 * Intel's vmentry has a check on the 'G' bit.
1542 */
1543 var->g = s->limit > 0xfffff;
1544
1545 /*
1546 * AMD's VMCB does not have an explicit unusable field, so emulate it
1547 * for cross vendor migration purposes by "not present"
1548 */
1549 var->unusable = !var->present;
1550
1551 switch (seg) {
1552 case VCPU_SREG_TR:
1553 /*
1554 * Work around a bug where the busy flag in the tr selector
1555 * isn't exposed
1556 */
1557 var->type |= 0x2;
1558 break;
1559 case VCPU_SREG_DS:
1560 case VCPU_SREG_ES:
1561 case VCPU_SREG_FS:
1562 case VCPU_SREG_GS:
1563 /*
1564 * The accessed bit must always be set in the segment
1565 * descriptor cache, although it can be cleared in the
1566 * descriptor, the cached bit always remains at 1. Since
1567 * Intel has a check on this, set it here to support
1568 * cross-vendor migration.
1569 */
1570 if (!var->unusable)
1571 var->type |= 0x1;
1572 break;
1573 case VCPU_SREG_SS:
1574 /*
1575 * On AMD CPUs sometimes the DB bit in the segment
1576 * descriptor is left as 1, although the whole segment has
1577 * been made unusable. Clear it here to pass an Intel VMX
1578 * entry check when cross vendor migrating.
1579 */
1580 if (var->unusable)
1581 var->db = 0;
1582 /* This is symmetric with svm_set_segment() */
1583 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1584 break;
1585 }
1586 }
1587
svm_get_cpl(struct kvm_vcpu * vcpu)1588 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1589 {
1590 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1591
1592 return save->cpl;
1593 }
1594
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1595 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1596 {
1597 struct kvm_segment cs;
1598
1599 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1600 *db = cs.db;
1601 *l = cs.l;
1602 }
1603
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1604 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1605 {
1606 struct vcpu_svm *svm = to_svm(vcpu);
1607
1608 dt->size = svm->vmcb->save.idtr.limit;
1609 dt->address = svm->vmcb->save.idtr.base;
1610 }
1611
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1612 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613 {
1614 struct vcpu_svm *svm = to_svm(vcpu);
1615
1616 svm->vmcb->save.idtr.limit = dt->size;
1617 svm->vmcb->save.idtr.base = dt->address ;
1618 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1619 }
1620
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1621 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1622 {
1623 struct vcpu_svm *svm = to_svm(vcpu);
1624
1625 dt->size = svm->vmcb->save.gdtr.limit;
1626 dt->address = svm->vmcb->save.gdtr.base;
1627 }
1628
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1629 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1630 {
1631 struct vcpu_svm *svm = to_svm(vcpu);
1632
1633 svm->vmcb->save.gdtr.limit = dt->size;
1634 svm->vmcb->save.gdtr.base = dt->address ;
1635 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1636 }
1637
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1638 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1639 {
1640 struct vcpu_svm *svm = to_svm(vcpu);
1641
1642 /*
1643 * For guests that don't set guest_state_protected, the cr3 update is
1644 * handled via kvm_mmu_load() while entering the guest. For guests
1645 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1646 * VMCB save area now, since the save area will become the initial
1647 * contents of the VMSA, and future VMCB save area updates won't be
1648 * seen.
1649 */
1650 if (sev_es_guest(vcpu->kvm)) {
1651 svm->vmcb->save.cr3 = cr3;
1652 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1653 }
1654 }
1655
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1656 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1657 {
1658 return true;
1659 }
1660
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1661 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1662 {
1663 struct vcpu_svm *svm = to_svm(vcpu);
1664 u64 hcr0 = cr0;
1665 bool old_paging = is_paging(vcpu);
1666
1667 #ifdef CONFIG_X86_64
1668 if (vcpu->arch.efer & EFER_LME) {
1669 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1670 vcpu->arch.efer |= EFER_LMA;
1671 if (!vcpu->arch.guest_state_protected)
1672 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1673 }
1674
1675 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1676 vcpu->arch.efer &= ~EFER_LMA;
1677 if (!vcpu->arch.guest_state_protected)
1678 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1679 }
1680 }
1681 #endif
1682 vcpu->arch.cr0 = cr0;
1683
1684 if (!npt_enabled) {
1685 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1686 if (old_paging != is_paging(vcpu))
1687 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1688 }
1689
1690 /*
1691 * re-enable caching here because the QEMU bios
1692 * does not do it - this results in some delay at
1693 * reboot
1694 */
1695 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1696 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1697
1698 svm->vmcb->save.cr0 = hcr0;
1699 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1700
1701 /*
1702 * SEV-ES guests must always keep the CR intercepts cleared. CR
1703 * tracking is done using the CR write traps.
1704 */
1705 if (sev_es_guest(vcpu->kvm))
1706 return;
1707
1708 if (hcr0 == cr0) {
1709 /* Selective CR0 write remains on. */
1710 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1711 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1712 } else {
1713 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1714 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1715 }
1716 }
1717
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1718 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1719 {
1720 return true;
1721 }
1722
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1723 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1724 {
1725 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1726 unsigned long old_cr4 = vcpu->arch.cr4;
1727
1728 vcpu->arch.cr4 = cr4;
1729 if (!npt_enabled) {
1730 cr4 |= X86_CR4_PAE;
1731
1732 if (!is_paging(vcpu))
1733 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1734 }
1735 cr4 |= host_cr4_mce;
1736 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1737 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1738
1739 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1740 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1741 }
1742
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1743 static void svm_set_segment(struct kvm_vcpu *vcpu,
1744 struct kvm_segment *var, int seg)
1745 {
1746 struct vcpu_svm *svm = to_svm(vcpu);
1747 struct vmcb_seg *s = svm_seg(vcpu, seg);
1748
1749 s->base = var->base;
1750 s->limit = var->limit;
1751 s->selector = var->selector;
1752 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1753 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1754 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1755 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1756 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1757 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1758 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1759 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1760
1761 /*
1762 * This is always accurate, except if SYSRET returned to a segment
1763 * with SS.DPL != 3. Intel does not have this quirk, and always
1764 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1765 * would entail passing the CPL to userspace and back.
1766 */
1767 if (seg == VCPU_SREG_SS)
1768 /* This is symmetric with svm_get_segment() */
1769 svm->vmcb->save.cpl = (var->dpl & 3);
1770
1771 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1772 }
1773
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1774 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1775 {
1776 struct vcpu_svm *svm = to_svm(vcpu);
1777
1778 clr_exception_intercept(svm, BP_VECTOR);
1779
1780 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1781 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1782 set_exception_intercept(svm, BP_VECTOR);
1783 }
1784 }
1785
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1786 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1787 {
1788 if (sd->next_asid > sd->max_asid) {
1789 ++sd->asid_generation;
1790 sd->next_asid = sd->min_asid;
1791 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1792 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1793 }
1794
1795 svm->current_vmcb->asid_generation = sd->asid_generation;
1796 svm->asid = sd->next_asid++;
1797 }
1798
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1799 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1800 {
1801 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1802
1803 if (vcpu->arch.guest_state_protected)
1804 return;
1805
1806 if (unlikely(value != vmcb->save.dr6)) {
1807 vmcb->save.dr6 = value;
1808 vmcb_mark_dirty(vmcb, VMCB_DR);
1809 }
1810 }
1811
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1812 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1813 {
1814 struct vcpu_svm *svm = to_svm(vcpu);
1815
1816 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1817 return;
1818
1819 get_debugreg(vcpu->arch.db[0], 0);
1820 get_debugreg(vcpu->arch.db[1], 1);
1821 get_debugreg(vcpu->arch.db[2], 2);
1822 get_debugreg(vcpu->arch.db[3], 3);
1823 /*
1824 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1825 * because db_interception might need it. We can do it before vmentry.
1826 */
1827 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1828 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1829 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1830 set_dr_intercepts(svm);
1831 }
1832
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1833 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1834 {
1835 struct vcpu_svm *svm = to_svm(vcpu);
1836
1837 if (vcpu->arch.guest_state_protected)
1838 return;
1839
1840 svm->vmcb->save.dr7 = value;
1841 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1842 }
1843
pf_interception(struct kvm_vcpu * vcpu)1844 static int pf_interception(struct kvm_vcpu *vcpu)
1845 {
1846 struct vcpu_svm *svm = to_svm(vcpu);
1847
1848 u64 fault_address = svm->vmcb->control.exit_info_2;
1849 u64 error_code = svm->vmcb->control.exit_info_1;
1850
1851 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1852 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1853 svm->vmcb->control.insn_bytes : NULL,
1854 svm->vmcb->control.insn_len);
1855 }
1856
npf_interception(struct kvm_vcpu * vcpu)1857 static int npf_interception(struct kvm_vcpu *vcpu)
1858 {
1859 struct vcpu_svm *svm = to_svm(vcpu);
1860 int rc;
1861
1862 u64 fault_address = svm->vmcb->control.exit_info_2;
1863 u64 error_code = svm->vmcb->control.exit_info_1;
1864
1865 /*
1866 * WARN if hardware generates a fault with an error code that collides
1867 * with KVM-defined sythentic flags. Clear the flags and continue on,
1868 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1869 * flag that KVM doesn't know about.
1870 */
1871 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1872 error_code &= ~PFERR_SYNTHETIC_MASK;
1873
1874 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1875 error_code |= PFERR_PRIVATE_ACCESS;
1876
1877 trace_kvm_page_fault(vcpu, fault_address, error_code);
1878 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1879 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1880 svm->vmcb->control.insn_bytes : NULL,
1881 svm->vmcb->control.insn_len);
1882
1883 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1884 sev_handle_rmp_fault(vcpu, fault_address, error_code);
1885
1886 return rc;
1887 }
1888
db_interception(struct kvm_vcpu * vcpu)1889 static int db_interception(struct kvm_vcpu *vcpu)
1890 {
1891 struct kvm_run *kvm_run = vcpu->run;
1892 struct vcpu_svm *svm = to_svm(vcpu);
1893
1894 if (!(vcpu->guest_debug &
1895 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1896 !svm->nmi_singlestep) {
1897 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1898 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1899 return 1;
1900 }
1901
1902 if (svm->nmi_singlestep) {
1903 disable_nmi_singlestep(svm);
1904 /* Make sure we check for pending NMIs upon entry */
1905 kvm_make_request(KVM_REQ_EVENT, vcpu);
1906 }
1907
1908 if (vcpu->guest_debug &
1909 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1910 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1911 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1912 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1913 kvm_run->debug.arch.pc =
1914 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1915 kvm_run->debug.arch.exception = DB_VECTOR;
1916 return 0;
1917 }
1918
1919 return 1;
1920 }
1921
bp_interception(struct kvm_vcpu * vcpu)1922 static int bp_interception(struct kvm_vcpu *vcpu)
1923 {
1924 struct vcpu_svm *svm = to_svm(vcpu);
1925 struct kvm_run *kvm_run = vcpu->run;
1926
1927 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1928 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1929 kvm_run->debug.arch.exception = BP_VECTOR;
1930 return 0;
1931 }
1932
ud_interception(struct kvm_vcpu * vcpu)1933 static int ud_interception(struct kvm_vcpu *vcpu)
1934 {
1935 return handle_ud(vcpu);
1936 }
1937
ac_interception(struct kvm_vcpu * vcpu)1938 static int ac_interception(struct kvm_vcpu *vcpu)
1939 {
1940 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1941 return 1;
1942 }
1943
is_erratum_383(void)1944 static bool is_erratum_383(void)
1945 {
1946 int i;
1947 u64 value;
1948
1949 if (!erratum_383_found)
1950 return false;
1951
1952 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1953 return false;
1954
1955 /* Bit 62 may or may not be set for this mce */
1956 value &= ~(1ULL << 62);
1957
1958 if (value != 0xb600000000010015ULL)
1959 return false;
1960
1961 /* Clear MCi_STATUS registers */
1962 for (i = 0; i < 6; ++i)
1963 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1964
1965 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1966 value &= ~(1ULL << 2);
1967 native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1968 }
1969
1970 /* Flush tlb to evict multi-match entries */
1971 __flush_tlb_all();
1972
1973 return true;
1974 }
1975
svm_handle_mce(struct kvm_vcpu * vcpu)1976 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1977 {
1978 if (is_erratum_383()) {
1979 /*
1980 * Erratum 383 triggered. Guest state is corrupt so kill the
1981 * guest.
1982 */
1983 pr_err("Guest triggered AMD Erratum 383\n");
1984
1985 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1986
1987 return;
1988 }
1989
1990 /*
1991 * On an #MC intercept the MCE handler is not called automatically in
1992 * the host. So do it by hand here.
1993 */
1994 kvm_machine_check();
1995 }
1996
mc_interception(struct kvm_vcpu * vcpu)1997 static int mc_interception(struct kvm_vcpu *vcpu)
1998 {
1999 return 1;
2000 }
2001
shutdown_interception(struct kvm_vcpu * vcpu)2002 static int shutdown_interception(struct kvm_vcpu *vcpu)
2003 {
2004 struct kvm_run *kvm_run = vcpu->run;
2005 struct vcpu_svm *svm = to_svm(vcpu);
2006
2007
2008 /*
2009 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2010 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2011 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2012 * userspace. At a platform view, INIT is acceptable behavior as
2013 * there exist bare metal platforms that automatically INIT the CPU
2014 * in response to shutdown.
2015 *
2016 * The VM save area for SEV-ES guests has already been encrypted so it
2017 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2018 */
2019 if (!sev_es_guest(vcpu->kvm)) {
2020 clear_page(svm->vmcb);
2021 #ifdef CONFIG_KVM_SMM
2022 if (is_smm(vcpu))
2023 kvm_smm_changed(vcpu, false);
2024 #endif
2025 kvm_vcpu_reset(vcpu, true);
2026 }
2027
2028 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2029 return 0;
2030 }
2031
io_interception(struct kvm_vcpu * vcpu)2032 static int io_interception(struct kvm_vcpu *vcpu)
2033 {
2034 struct vcpu_svm *svm = to_svm(vcpu);
2035 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2036 int size, in, string;
2037 unsigned port;
2038
2039 ++vcpu->stat.io_exits;
2040 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2041 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2042 port = io_info >> 16;
2043 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2044
2045 if (string) {
2046 if (sev_es_guest(vcpu->kvm))
2047 return sev_es_string_io(svm, size, port, in);
2048 else
2049 return kvm_emulate_instruction(vcpu, 0);
2050 }
2051
2052 svm->next_rip = svm->vmcb->control.exit_info_2;
2053
2054 return kvm_fast_pio(vcpu, size, port, in);
2055 }
2056
nmi_interception(struct kvm_vcpu * vcpu)2057 static int nmi_interception(struct kvm_vcpu *vcpu)
2058 {
2059 return 1;
2060 }
2061
smi_interception(struct kvm_vcpu * vcpu)2062 static int smi_interception(struct kvm_vcpu *vcpu)
2063 {
2064 return 1;
2065 }
2066
intr_interception(struct kvm_vcpu * vcpu)2067 static int intr_interception(struct kvm_vcpu *vcpu)
2068 {
2069 ++vcpu->stat.irq_exits;
2070 return 1;
2071 }
2072
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2073 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2074 {
2075 struct vcpu_svm *svm = to_svm(vcpu);
2076 struct vmcb *vmcb12;
2077 struct kvm_host_map map;
2078 int ret;
2079
2080 if (nested_svm_check_permissions(vcpu))
2081 return 1;
2082
2083 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2084 if (ret) {
2085 if (ret == -EINVAL)
2086 kvm_inject_gp(vcpu, 0);
2087 return 1;
2088 }
2089
2090 vmcb12 = map.hva;
2091
2092 ret = kvm_skip_emulated_instruction(vcpu);
2093
2094 if (vmload) {
2095 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2096 svm->sysenter_eip_hi = 0;
2097 svm->sysenter_esp_hi = 0;
2098 } else {
2099 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2100 }
2101
2102 kvm_vcpu_unmap(vcpu, &map);
2103
2104 return ret;
2105 }
2106
vmload_interception(struct kvm_vcpu * vcpu)2107 static int vmload_interception(struct kvm_vcpu *vcpu)
2108 {
2109 return vmload_vmsave_interception(vcpu, true);
2110 }
2111
vmsave_interception(struct kvm_vcpu * vcpu)2112 static int vmsave_interception(struct kvm_vcpu *vcpu)
2113 {
2114 return vmload_vmsave_interception(vcpu, false);
2115 }
2116
vmrun_interception(struct kvm_vcpu * vcpu)2117 static int vmrun_interception(struct kvm_vcpu *vcpu)
2118 {
2119 if (nested_svm_check_permissions(vcpu))
2120 return 1;
2121
2122 return nested_svm_vmrun(vcpu);
2123 }
2124
2125 enum {
2126 NONE_SVM_INSTR,
2127 SVM_INSTR_VMRUN,
2128 SVM_INSTR_VMLOAD,
2129 SVM_INSTR_VMSAVE,
2130 };
2131
2132 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2133 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2134 {
2135 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2136
2137 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2138 return NONE_SVM_INSTR;
2139
2140 switch (ctxt->modrm) {
2141 case 0xd8: /* VMRUN */
2142 return SVM_INSTR_VMRUN;
2143 case 0xda: /* VMLOAD */
2144 return SVM_INSTR_VMLOAD;
2145 case 0xdb: /* VMSAVE */
2146 return SVM_INSTR_VMSAVE;
2147 default:
2148 break;
2149 }
2150
2151 return NONE_SVM_INSTR;
2152 }
2153
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2154 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2155 {
2156 const int guest_mode_exit_codes[] = {
2157 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2158 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2159 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2160 };
2161 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2162 [SVM_INSTR_VMRUN] = vmrun_interception,
2163 [SVM_INSTR_VMLOAD] = vmload_interception,
2164 [SVM_INSTR_VMSAVE] = vmsave_interception,
2165 };
2166 struct vcpu_svm *svm = to_svm(vcpu);
2167 int ret;
2168
2169 if (is_guest_mode(vcpu)) {
2170 /* Returns '1' or -errno on failure, '0' on success. */
2171 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2172 if (ret)
2173 return ret;
2174 return 1;
2175 }
2176 return svm_instr_handlers[opcode](vcpu);
2177 }
2178
2179 /*
2180 * #GP handling code. Note that #GP can be triggered under the following two
2181 * cases:
2182 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2183 * some AMD CPUs when EAX of these instructions are in the reserved memory
2184 * regions (e.g. SMM memory on host).
2185 * 2) VMware backdoor
2186 */
gp_interception(struct kvm_vcpu * vcpu)2187 static int gp_interception(struct kvm_vcpu *vcpu)
2188 {
2189 struct vcpu_svm *svm = to_svm(vcpu);
2190 u32 error_code = svm->vmcb->control.exit_info_1;
2191 int opcode;
2192
2193 /* Both #GP cases have zero error_code */
2194 if (error_code)
2195 goto reinject;
2196
2197 /* Decode the instruction for usage later */
2198 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2199 goto reinject;
2200
2201 opcode = svm_instr_opcode(vcpu);
2202
2203 if (opcode == NONE_SVM_INSTR) {
2204 if (!enable_vmware_backdoor)
2205 goto reinject;
2206
2207 /*
2208 * VMware backdoor emulation on #GP interception only handles
2209 * IN{S}, OUT{S}, and RDPMC.
2210 */
2211 if (!is_guest_mode(vcpu))
2212 return kvm_emulate_instruction(vcpu,
2213 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2214 } else {
2215 /* All SVM instructions expect page aligned RAX */
2216 if (svm->vmcb->save.rax & ~PAGE_MASK)
2217 goto reinject;
2218
2219 return emulate_svm_instr(vcpu, opcode);
2220 }
2221
2222 reinject:
2223 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2224 return 1;
2225 }
2226
svm_set_gif(struct vcpu_svm * svm,bool value)2227 void svm_set_gif(struct vcpu_svm *svm, bool value)
2228 {
2229 if (value) {
2230 /*
2231 * If VGIF is enabled, the STGI intercept is only added to
2232 * detect the opening of the SMI/NMI window; remove it now.
2233 * Likewise, clear the VINTR intercept, we will set it
2234 * again while processing KVM_REQ_EVENT if needed.
2235 */
2236 if (vgif)
2237 svm_clr_intercept(svm, INTERCEPT_STGI);
2238 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2239 svm_clear_vintr(svm);
2240
2241 enable_gif(svm);
2242 if (svm->vcpu.arch.smi_pending ||
2243 svm->vcpu.arch.nmi_pending ||
2244 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2245 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2246 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2247 } else {
2248 disable_gif(svm);
2249
2250 /*
2251 * After a CLGI no interrupts should come. But if vGIF is
2252 * in use, we still rely on the VINTR intercept (rather than
2253 * STGI) to detect an open interrupt window.
2254 */
2255 if (!vgif)
2256 svm_clear_vintr(svm);
2257 }
2258 }
2259
stgi_interception(struct kvm_vcpu * vcpu)2260 static int stgi_interception(struct kvm_vcpu *vcpu)
2261 {
2262 int ret;
2263
2264 if (nested_svm_check_permissions(vcpu))
2265 return 1;
2266
2267 ret = kvm_skip_emulated_instruction(vcpu);
2268 svm_set_gif(to_svm(vcpu), true);
2269 return ret;
2270 }
2271
clgi_interception(struct kvm_vcpu * vcpu)2272 static int clgi_interception(struct kvm_vcpu *vcpu)
2273 {
2274 int ret;
2275
2276 if (nested_svm_check_permissions(vcpu))
2277 return 1;
2278
2279 ret = kvm_skip_emulated_instruction(vcpu);
2280 svm_set_gif(to_svm(vcpu), false);
2281 return ret;
2282 }
2283
invlpga_interception(struct kvm_vcpu * vcpu)2284 static int invlpga_interception(struct kvm_vcpu *vcpu)
2285 {
2286 gva_t gva = kvm_rax_read(vcpu);
2287 u32 asid = kvm_rcx_read(vcpu);
2288
2289 /* FIXME: Handle an address size prefix. */
2290 if (!is_long_mode(vcpu))
2291 gva = (u32)gva;
2292
2293 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2294
2295 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2296 kvm_mmu_invlpg(vcpu, gva);
2297
2298 return kvm_skip_emulated_instruction(vcpu);
2299 }
2300
skinit_interception(struct kvm_vcpu * vcpu)2301 static int skinit_interception(struct kvm_vcpu *vcpu)
2302 {
2303 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2304
2305 kvm_queue_exception(vcpu, UD_VECTOR);
2306 return 1;
2307 }
2308
task_switch_interception(struct kvm_vcpu * vcpu)2309 static int task_switch_interception(struct kvm_vcpu *vcpu)
2310 {
2311 struct vcpu_svm *svm = to_svm(vcpu);
2312 u16 tss_selector;
2313 int reason;
2314 int int_type = svm->vmcb->control.exit_int_info &
2315 SVM_EXITINTINFO_TYPE_MASK;
2316 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2317 uint32_t type =
2318 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2319 uint32_t idt_v =
2320 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2321 bool has_error_code = false;
2322 u32 error_code = 0;
2323
2324 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2325
2326 if (svm->vmcb->control.exit_info_2 &
2327 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2328 reason = TASK_SWITCH_IRET;
2329 else if (svm->vmcb->control.exit_info_2 &
2330 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2331 reason = TASK_SWITCH_JMP;
2332 else if (idt_v)
2333 reason = TASK_SWITCH_GATE;
2334 else
2335 reason = TASK_SWITCH_CALL;
2336
2337 if (reason == TASK_SWITCH_GATE) {
2338 switch (type) {
2339 case SVM_EXITINTINFO_TYPE_NMI:
2340 vcpu->arch.nmi_injected = false;
2341 break;
2342 case SVM_EXITINTINFO_TYPE_EXEPT:
2343 if (svm->vmcb->control.exit_info_2 &
2344 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2345 has_error_code = true;
2346 error_code =
2347 (u32)svm->vmcb->control.exit_info_2;
2348 }
2349 kvm_clear_exception_queue(vcpu);
2350 break;
2351 case SVM_EXITINTINFO_TYPE_INTR:
2352 case SVM_EXITINTINFO_TYPE_SOFT:
2353 kvm_clear_interrupt_queue(vcpu);
2354 break;
2355 default:
2356 break;
2357 }
2358 }
2359
2360 if (reason != TASK_SWITCH_GATE ||
2361 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2362 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2363 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2364 if (!svm_skip_emulated_instruction(vcpu))
2365 return 0;
2366 }
2367
2368 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2369 int_vec = -1;
2370
2371 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2372 has_error_code, error_code);
2373 }
2374
svm_clr_iret_intercept(struct vcpu_svm * svm)2375 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2376 {
2377 if (!sev_es_guest(svm->vcpu.kvm))
2378 svm_clr_intercept(svm, INTERCEPT_IRET);
2379 }
2380
svm_set_iret_intercept(struct vcpu_svm * svm)2381 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2382 {
2383 if (!sev_es_guest(svm->vcpu.kvm))
2384 svm_set_intercept(svm, INTERCEPT_IRET);
2385 }
2386
iret_interception(struct kvm_vcpu * vcpu)2387 static int iret_interception(struct kvm_vcpu *vcpu)
2388 {
2389 struct vcpu_svm *svm = to_svm(vcpu);
2390
2391 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2392
2393 ++vcpu->stat.nmi_window_exits;
2394 svm->awaiting_iret_completion = true;
2395
2396 svm_clr_iret_intercept(svm);
2397 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2398
2399 kvm_make_request(KVM_REQ_EVENT, vcpu);
2400 return 1;
2401 }
2402
invlpg_interception(struct kvm_vcpu * vcpu)2403 static int invlpg_interception(struct kvm_vcpu *vcpu)
2404 {
2405 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2406 return kvm_emulate_instruction(vcpu, 0);
2407
2408 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2409 return kvm_skip_emulated_instruction(vcpu);
2410 }
2411
emulate_on_interception(struct kvm_vcpu * vcpu)2412 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2413 {
2414 return kvm_emulate_instruction(vcpu, 0);
2415 }
2416
rsm_interception(struct kvm_vcpu * vcpu)2417 static int rsm_interception(struct kvm_vcpu *vcpu)
2418 {
2419 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2420 }
2421
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2422 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2423 unsigned long val)
2424 {
2425 struct vcpu_svm *svm = to_svm(vcpu);
2426 unsigned long cr0 = vcpu->arch.cr0;
2427 bool ret = false;
2428
2429 if (!is_guest_mode(vcpu) ||
2430 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2431 return false;
2432
2433 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2434 val &= ~SVM_CR0_SELECTIVE_MASK;
2435
2436 if (cr0 ^ val) {
2437 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2438 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2439 }
2440
2441 return ret;
2442 }
2443
2444 #define CR_VALID (1ULL << 63)
2445
cr_interception(struct kvm_vcpu * vcpu)2446 static int cr_interception(struct kvm_vcpu *vcpu)
2447 {
2448 struct vcpu_svm *svm = to_svm(vcpu);
2449 int reg, cr;
2450 unsigned long val;
2451 int err;
2452
2453 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2454 return emulate_on_interception(vcpu);
2455
2456 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2457 return emulate_on_interception(vcpu);
2458
2459 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2460 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2461 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2462 else
2463 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2464
2465 err = 0;
2466 if (cr >= 16) { /* mov to cr */
2467 cr -= 16;
2468 val = kvm_register_read(vcpu, reg);
2469 trace_kvm_cr_write(cr, val);
2470 switch (cr) {
2471 case 0:
2472 if (!check_selective_cr0_intercepted(vcpu, val))
2473 err = kvm_set_cr0(vcpu, val);
2474 else
2475 return 1;
2476
2477 break;
2478 case 3:
2479 err = kvm_set_cr3(vcpu, val);
2480 break;
2481 case 4:
2482 err = kvm_set_cr4(vcpu, val);
2483 break;
2484 case 8:
2485 err = kvm_set_cr8(vcpu, val);
2486 break;
2487 default:
2488 WARN(1, "unhandled write to CR%d", cr);
2489 kvm_queue_exception(vcpu, UD_VECTOR);
2490 return 1;
2491 }
2492 } else { /* mov from cr */
2493 switch (cr) {
2494 case 0:
2495 val = kvm_read_cr0(vcpu);
2496 break;
2497 case 2:
2498 val = vcpu->arch.cr2;
2499 break;
2500 case 3:
2501 val = kvm_read_cr3(vcpu);
2502 break;
2503 case 4:
2504 val = kvm_read_cr4(vcpu);
2505 break;
2506 case 8:
2507 val = kvm_get_cr8(vcpu);
2508 break;
2509 default:
2510 WARN(1, "unhandled read from CR%d", cr);
2511 kvm_queue_exception(vcpu, UD_VECTOR);
2512 return 1;
2513 }
2514 kvm_register_write(vcpu, reg, val);
2515 trace_kvm_cr_read(cr, val);
2516 }
2517 return kvm_complete_insn_gp(vcpu, err);
2518 }
2519
cr_trap(struct kvm_vcpu * vcpu)2520 static int cr_trap(struct kvm_vcpu *vcpu)
2521 {
2522 struct vcpu_svm *svm = to_svm(vcpu);
2523 unsigned long old_value, new_value;
2524 unsigned int cr;
2525 int ret = 0;
2526
2527 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2528
2529 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2530 switch (cr) {
2531 case 0:
2532 old_value = kvm_read_cr0(vcpu);
2533 svm_set_cr0(vcpu, new_value);
2534
2535 kvm_post_set_cr0(vcpu, old_value, new_value);
2536 break;
2537 case 4:
2538 old_value = kvm_read_cr4(vcpu);
2539 svm_set_cr4(vcpu, new_value);
2540
2541 kvm_post_set_cr4(vcpu, old_value, new_value);
2542 break;
2543 case 8:
2544 ret = kvm_set_cr8(vcpu, new_value);
2545 break;
2546 default:
2547 WARN(1, "unhandled CR%d write trap", cr);
2548 kvm_queue_exception(vcpu, UD_VECTOR);
2549 return 1;
2550 }
2551
2552 return kvm_complete_insn_gp(vcpu, ret);
2553 }
2554
dr_interception(struct kvm_vcpu * vcpu)2555 static int dr_interception(struct kvm_vcpu *vcpu)
2556 {
2557 struct vcpu_svm *svm = to_svm(vcpu);
2558 int reg, dr;
2559 int err = 0;
2560
2561 /*
2562 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2563 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2564 */
2565 if (sev_es_guest(vcpu->kvm))
2566 return 1;
2567
2568 if (vcpu->guest_debug == 0) {
2569 /*
2570 * No more DR vmexits; force a reload of the debug registers
2571 * and reenter on this instruction. The next vmexit will
2572 * retrieve the full state of the debug registers.
2573 */
2574 clr_dr_intercepts(svm);
2575 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2576 return 1;
2577 }
2578
2579 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2580 return emulate_on_interception(vcpu);
2581
2582 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2583 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2584 if (dr >= 16) { /* mov to DRn */
2585 dr -= 16;
2586 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2587 } else {
2588 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2589 }
2590
2591 return kvm_complete_insn_gp(vcpu, err);
2592 }
2593
cr8_write_interception(struct kvm_vcpu * vcpu)2594 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2595 {
2596 int r;
2597
2598 u8 cr8_prev = kvm_get_cr8(vcpu);
2599 /* instruction emulation calls kvm_set_cr8() */
2600 r = cr_interception(vcpu);
2601 if (lapic_in_kernel(vcpu))
2602 return r;
2603 if (cr8_prev <= kvm_get_cr8(vcpu))
2604 return r;
2605 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2606 return 0;
2607 }
2608
efer_trap(struct kvm_vcpu * vcpu)2609 static int efer_trap(struct kvm_vcpu *vcpu)
2610 {
2611 struct msr_data msr_info;
2612 int ret;
2613
2614 /*
2615 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2616 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2617 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2618 * the guest doesn't have X86_FEATURE_SVM.
2619 */
2620 msr_info.host_initiated = false;
2621 msr_info.index = MSR_EFER;
2622 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2623 ret = kvm_set_msr_common(vcpu, &msr_info);
2624
2625 return kvm_complete_insn_gp(vcpu, ret);
2626 }
2627
svm_get_feature_msr(u32 msr,u64 * data)2628 static int svm_get_feature_msr(u32 msr, u64 *data)
2629 {
2630 *data = 0;
2631
2632 switch (msr) {
2633 case MSR_AMD64_DE_CFG:
2634 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2635 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2636 break;
2637 default:
2638 return KVM_MSR_RET_UNSUPPORTED;
2639 }
2640
2641 return 0;
2642 }
2643
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2644 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2645 struct msr_data *msr_info)
2646 {
2647 return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2648 msr_info->index != MSR_IA32_XSS &&
2649 !msr_write_intercepted(vcpu, msr_info->index);
2650 }
2651
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2652 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2653 {
2654 struct vcpu_svm *svm = to_svm(vcpu);
2655
2656 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2657 msr_info->data = 0;
2658 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2659 }
2660
2661 switch (msr_info->index) {
2662 case MSR_AMD64_TSC_RATIO:
2663 if (!msr_info->host_initiated &&
2664 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2665 return 1;
2666 msr_info->data = svm->tsc_ratio_msr;
2667 break;
2668 case MSR_STAR:
2669 msr_info->data = svm->vmcb01.ptr->save.star;
2670 break;
2671 #ifdef CONFIG_X86_64
2672 case MSR_LSTAR:
2673 msr_info->data = svm->vmcb01.ptr->save.lstar;
2674 break;
2675 case MSR_CSTAR:
2676 msr_info->data = svm->vmcb01.ptr->save.cstar;
2677 break;
2678 case MSR_GS_BASE:
2679 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2680 break;
2681 case MSR_FS_BASE:
2682 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2683 break;
2684 case MSR_KERNEL_GS_BASE:
2685 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2686 break;
2687 case MSR_SYSCALL_MASK:
2688 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2689 break;
2690 #endif
2691 case MSR_IA32_SYSENTER_CS:
2692 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2693 break;
2694 case MSR_IA32_SYSENTER_EIP:
2695 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2696 if (guest_cpuid_is_intel_compatible(vcpu))
2697 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2698 break;
2699 case MSR_IA32_SYSENTER_ESP:
2700 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2701 if (guest_cpuid_is_intel_compatible(vcpu))
2702 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2703 break;
2704 case MSR_IA32_S_CET:
2705 msr_info->data = svm->vmcb->save.s_cet;
2706 break;
2707 case MSR_IA32_INT_SSP_TAB:
2708 msr_info->data = svm->vmcb->save.isst_addr;
2709 break;
2710 case MSR_KVM_INTERNAL_GUEST_SSP:
2711 msr_info->data = svm->vmcb->save.ssp;
2712 break;
2713 case MSR_TSC_AUX:
2714 msr_info->data = svm->tsc_aux;
2715 break;
2716 case MSR_IA32_DEBUGCTLMSR:
2717 msr_info->data = svm->vmcb->save.dbgctl;
2718 break;
2719 case MSR_IA32_LASTBRANCHFROMIP:
2720 msr_info->data = svm->vmcb->save.br_from;
2721 break;
2722 case MSR_IA32_LASTBRANCHTOIP:
2723 msr_info->data = svm->vmcb->save.br_to;
2724 break;
2725 case MSR_IA32_LASTINTFROMIP:
2726 msr_info->data = svm->vmcb->save.last_excp_from;
2727 break;
2728 case MSR_IA32_LASTINTTOIP:
2729 msr_info->data = svm->vmcb->save.last_excp_to;
2730 break;
2731 case MSR_VM_HSAVE_PA:
2732 msr_info->data = svm->nested.hsave_msr;
2733 break;
2734 case MSR_VM_CR:
2735 msr_info->data = svm->nested.vm_cr_msr;
2736 break;
2737 case MSR_IA32_SPEC_CTRL:
2738 if (!msr_info->host_initiated &&
2739 !guest_has_spec_ctrl_msr(vcpu))
2740 return 1;
2741
2742 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2743 msr_info->data = svm->vmcb->save.spec_ctrl;
2744 else
2745 msr_info->data = svm->spec_ctrl;
2746 break;
2747 case MSR_AMD64_VIRT_SPEC_CTRL:
2748 if (!msr_info->host_initiated &&
2749 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2750 return 1;
2751
2752 msr_info->data = svm->virt_spec_ctrl;
2753 break;
2754 case MSR_F15H_IC_CFG: {
2755
2756 int family, model;
2757
2758 family = guest_cpuid_family(vcpu);
2759 model = guest_cpuid_model(vcpu);
2760
2761 if (family < 0 || model < 0)
2762 return kvm_get_msr_common(vcpu, msr_info);
2763
2764 msr_info->data = 0;
2765
2766 if (family == 0x15 &&
2767 (model >= 0x2 && model < 0x20))
2768 msr_info->data = 0x1E;
2769 }
2770 break;
2771 case MSR_AMD64_DE_CFG:
2772 msr_info->data = svm->msr_decfg;
2773 break;
2774 default:
2775 return kvm_get_msr_common(vcpu, msr_info);
2776 }
2777 return 0;
2778 }
2779
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2780 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2781 {
2782 struct vcpu_svm *svm = to_svm(vcpu);
2783 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2784 return kvm_complete_insn_gp(vcpu, err);
2785
2786 svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2787 return 1;
2788 }
2789
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2790 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2791 {
2792 struct vcpu_svm *svm = to_svm(vcpu);
2793 int svm_dis, chg_mask;
2794
2795 if (data & ~SVM_VM_CR_VALID_MASK)
2796 return 1;
2797
2798 chg_mask = SVM_VM_CR_VALID_MASK;
2799
2800 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2801 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2802
2803 svm->nested.vm_cr_msr &= ~chg_mask;
2804 svm->nested.vm_cr_msr |= (data & chg_mask);
2805
2806 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2807
2808 /* check for svm_disable while efer.svme is set */
2809 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2810 return 1;
2811
2812 return 0;
2813 }
2814
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2815 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2816 {
2817 struct vcpu_svm *svm = to_svm(vcpu);
2818 int ret = 0;
2819
2820 u32 ecx = msr->index;
2821 u64 data = msr->data;
2822
2823 if (sev_es_prevent_msr_access(vcpu, msr))
2824 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2825
2826 switch (ecx) {
2827 case MSR_AMD64_TSC_RATIO:
2828
2829 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2830
2831 if (!msr->host_initiated)
2832 return 1;
2833 /*
2834 * In case TSC scaling is not enabled, always
2835 * leave this MSR at the default value.
2836 *
2837 * Due to bug in qemu 6.2.0, it would try to set
2838 * this msr to 0 if tsc scaling is not enabled.
2839 * Ignore this value as well.
2840 */
2841 if (data != 0 && data != svm->tsc_ratio_msr)
2842 return 1;
2843 break;
2844 }
2845
2846 if (data & SVM_TSC_RATIO_RSVD)
2847 return 1;
2848
2849 svm->tsc_ratio_msr = data;
2850
2851 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2852 is_guest_mode(vcpu))
2853 nested_svm_update_tsc_ratio_msr(vcpu);
2854
2855 break;
2856 case MSR_IA32_CR_PAT:
2857 ret = kvm_set_msr_common(vcpu, msr);
2858 if (ret)
2859 break;
2860
2861 svm->vmcb01.ptr->save.g_pat = data;
2862 if (is_guest_mode(vcpu))
2863 nested_vmcb02_compute_g_pat(svm);
2864 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2865 break;
2866 case MSR_IA32_SPEC_CTRL:
2867 if (!msr->host_initiated &&
2868 !guest_has_spec_ctrl_msr(vcpu))
2869 return 1;
2870
2871 if (kvm_spec_ctrl_test_value(data))
2872 return 1;
2873
2874 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2875 svm->vmcb->save.spec_ctrl = data;
2876 else
2877 svm->spec_ctrl = data;
2878 if (!data)
2879 break;
2880
2881 /*
2882 * For non-nested:
2883 * When it's written (to non-zero) for the first time, pass
2884 * it through.
2885 *
2886 * For nested:
2887 * The handling of the MSR bitmap for L2 guests is done in
2888 * nested_svm_merge_msrpm().
2889 * We update the L1 MSR bit as well since it will end up
2890 * touching the MSR anyway now.
2891 */
2892 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2893 break;
2894 case MSR_AMD64_VIRT_SPEC_CTRL:
2895 if (!msr->host_initiated &&
2896 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2897 return 1;
2898
2899 if (data & ~SPEC_CTRL_SSBD)
2900 return 1;
2901
2902 svm->virt_spec_ctrl = data;
2903 break;
2904 case MSR_STAR:
2905 svm->vmcb01.ptr->save.star = data;
2906 break;
2907 #ifdef CONFIG_X86_64
2908 case MSR_LSTAR:
2909 svm->vmcb01.ptr->save.lstar = data;
2910 break;
2911 case MSR_CSTAR:
2912 svm->vmcb01.ptr->save.cstar = data;
2913 break;
2914 case MSR_GS_BASE:
2915 svm->vmcb01.ptr->save.gs.base = data;
2916 break;
2917 case MSR_FS_BASE:
2918 svm->vmcb01.ptr->save.fs.base = data;
2919 break;
2920 case MSR_KERNEL_GS_BASE:
2921 svm->vmcb01.ptr->save.kernel_gs_base = data;
2922 break;
2923 case MSR_SYSCALL_MASK:
2924 svm->vmcb01.ptr->save.sfmask = data;
2925 break;
2926 #endif
2927 case MSR_IA32_SYSENTER_CS:
2928 svm->vmcb01.ptr->save.sysenter_cs = data;
2929 break;
2930 case MSR_IA32_SYSENTER_EIP:
2931 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2932 /*
2933 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2934 * when we spoof an Intel vendor ID (for cross vendor migration).
2935 * In this case we use this intercept to track the high
2936 * 32 bit part of these msrs to support Intel's
2937 * implementation of SYSENTER/SYSEXIT.
2938 */
2939 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2940 break;
2941 case MSR_IA32_SYSENTER_ESP:
2942 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2943 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2944 break;
2945 case MSR_IA32_S_CET:
2946 svm->vmcb->save.s_cet = data;
2947 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2948 break;
2949 case MSR_IA32_INT_SSP_TAB:
2950 svm->vmcb->save.isst_addr = data;
2951 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2952 break;
2953 case MSR_KVM_INTERNAL_GUEST_SSP:
2954 svm->vmcb->save.ssp = data;
2955 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2956 break;
2957 case MSR_TSC_AUX:
2958 /*
2959 * TSC_AUX is always virtualized for SEV-ES guests when the
2960 * feature is available. The user return MSR support is not
2961 * required in this case because TSC_AUX is restored on #VMEXIT
2962 * from the host save area.
2963 */
2964 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2965 break;
2966
2967 /*
2968 * TSC_AUX is usually changed only during boot and never read
2969 * directly. Intercept TSC_AUX and switch it via user return.
2970 */
2971 preempt_disable();
2972 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2973 preempt_enable();
2974 if (ret)
2975 break;
2976
2977 svm->tsc_aux = data;
2978 break;
2979 case MSR_IA32_DEBUGCTLMSR:
2980 if (!lbrv) {
2981 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2982 break;
2983 }
2984
2985 /*
2986 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
2987 * way to communicate lack of support to the guest.
2988 */
2989 if (data & DEBUGCTLMSR_BTF) {
2990 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2991 data &= ~DEBUGCTLMSR_BTF;
2992 }
2993
2994 if (data & DEBUGCTL_RESERVED_BITS)
2995 return 1;
2996
2997 if (svm->vmcb->save.dbgctl == data)
2998 break;
2999
3000 svm->vmcb->save.dbgctl = data;
3001 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3002 svm_update_lbrv(vcpu);
3003 break;
3004 case MSR_VM_HSAVE_PA:
3005 /*
3006 * Old kernels did not validate the value written to
3007 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3008 * value to allow live migrating buggy or malicious guests
3009 * originating from those kernels.
3010 */
3011 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3012 return 1;
3013
3014 svm->nested.hsave_msr = data & PAGE_MASK;
3015 break;
3016 case MSR_VM_CR:
3017 return svm_set_vm_cr(vcpu, data);
3018 case MSR_VM_IGNNE:
3019 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3020 break;
3021 case MSR_AMD64_DE_CFG: {
3022 u64 supported_de_cfg;
3023
3024 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3025 return 1;
3026
3027 if (data & ~supported_de_cfg)
3028 return 1;
3029
3030 svm->msr_decfg = data;
3031 break;
3032 }
3033 default:
3034 return kvm_set_msr_common(vcpu, msr);
3035 }
3036 return ret;
3037 }
3038
msr_interception(struct kvm_vcpu * vcpu)3039 static int msr_interception(struct kvm_vcpu *vcpu)
3040 {
3041 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3042 return kvm_emulate_wrmsr(vcpu);
3043 else
3044 return kvm_emulate_rdmsr(vcpu);
3045 }
3046
interrupt_window_interception(struct kvm_vcpu * vcpu)3047 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3048 {
3049 kvm_make_request(KVM_REQ_EVENT, vcpu);
3050 svm_clear_vintr(to_svm(vcpu));
3051
3052 /*
3053 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3054 * In this case AVIC was temporarily disabled for
3055 * requesting the IRQ window and we have to re-enable it.
3056 *
3057 * If running nested, still remove the VM wide AVIC inhibit to
3058 * support case in which the interrupt window was requested when the
3059 * vCPU was not running nested.
3060
3061 * All vCPUs which run still run nested, will remain to have their
3062 * AVIC still inhibited due to per-cpu AVIC inhibition.
3063 */
3064 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3065
3066 ++vcpu->stat.irq_window_exits;
3067 return 1;
3068 }
3069
pause_interception(struct kvm_vcpu * vcpu)3070 static int pause_interception(struct kvm_vcpu *vcpu)
3071 {
3072 bool in_kernel;
3073 /*
3074 * CPL is not made available for an SEV-ES guest, therefore
3075 * vcpu->arch.preempted_in_kernel can never be true. Just
3076 * set in_kernel to false as well.
3077 */
3078 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3079
3080 grow_ple_window(vcpu);
3081
3082 kvm_vcpu_on_spin(vcpu, in_kernel);
3083 return kvm_skip_emulated_instruction(vcpu);
3084 }
3085
invpcid_interception(struct kvm_vcpu * vcpu)3086 static int invpcid_interception(struct kvm_vcpu *vcpu)
3087 {
3088 struct vcpu_svm *svm = to_svm(vcpu);
3089 unsigned long type;
3090 gva_t gva;
3091
3092 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3093 kvm_queue_exception(vcpu, UD_VECTOR);
3094 return 1;
3095 }
3096
3097 /*
3098 * For an INVPCID intercept:
3099 * EXITINFO1 provides the linear address of the memory operand.
3100 * EXITINFO2 provides the contents of the register operand.
3101 */
3102 type = svm->vmcb->control.exit_info_2;
3103 gva = svm->vmcb->control.exit_info_1;
3104
3105 /*
3106 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3107 * stack segment is used. The intercept takes priority over all
3108 * #GP checks except CPL>0, but somehow still generates a linear
3109 * address? The APM is sorely lacking.
3110 */
3111 if (is_noncanonical_address(gva, vcpu, 0)) {
3112 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3113 return 1;
3114 }
3115
3116 return kvm_handle_invpcid(vcpu, type, gva);
3117 }
3118
complete_userspace_buslock(struct kvm_vcpu * vcpu)3119 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3120 {
3121 struct vcpu_svm *svm = to_svm(vcpu);
3122
3123 /*
3124 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3125 * execute the bus-locking instruction. Set the bus lock counter to '1'
3126 * to effectively step past the bus lock.
3127 */
3128 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3129 svm->vmcb->control.bus_lock_counter = 1;
3130
3131 return 1;
3132 }
3133
bus_lock_exit(struct kvm_vcpu * vcpu)3134 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3135 {
3136 struct vcpu_svm *svm = to_svm(vcpu);
3137
3138 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3139 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3140
3141 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3142 vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3143
3144 if (is_guest_mode(vcpu))
3145 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3146
3147 return 0;
3148 }
3149
3150 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3151 [SVM_EXIT_READ_CR0] = cr_interception,
3152 [SVM_EXIT_READ_CR3] = cr_interception,
3153 [SVM_EXIT_READ_CR4] = cr_interception,
3154 [SVM_EXIT_READ_CR8] = cr_interception,
3155 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3156 [SVM_EXIT_WRITE_CR0] = cr_interception,
3157 [SVM_EXIT_WRITE_CR3] = cr_interception,
3158 [SVM_EXIT_WRITE_CR4] = cr_interception,
3159 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3160 [SVM_EXIT_READ_DR0] = dr_interception,
3161 [SVM_EXIT_READ_DR1] = dr_interception,
3162 [SVM_EXIT_READ_DR2] = dr_interception,
3163 [SVM_EXIT_READ_DR3] = dr_interception,
3164 [SVM_EXIT_READ_DR4] = dr_interception,
3165 [SVM_EXIT_READ_DR5] = dr_interception,
3166 [SVM_EXIT_READ_DR6] = dr_interception,
3167 [SVM_EXIT_READ_DR7] = dr_interception,
3168 [SVM_EXIT_WRITE_DR0] = dr_interception,
3169 [SVM_EXIT_WRITE_DR1] = dr_interception,
3170 [SVM_EXIT_WRITE_DR2] = dr_interception,
3171 [SVM_EXIT_WRITE_DR3] = dr_interception,
3172 [SVM_EXIT_WRITE_DR4] = dr_interception,
3173 [SVM_EXIT_WRITE_DR5] = dr_interception,
3174 [SVM_EXIT_WRITE_DR6] = dr_interception,
3175 [SVM_EXIT_WRITE_DR7] = dr_interception,
3176 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3177 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3178 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3179 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3180 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3181 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3182 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3183 [SVM_EXIT_INTR] = intr_interception,
3184 [SVM_EXIT_NMI] = nmi_interception,
3185 [SVM_EXIT_SMI] = smi_interception,
3186 [SVM_EXIT_VINTR] = interrupt_window_interception,
3187 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3188 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3189 [SVM_EXIT_IRET] = iret_interception,
3190 [SVM_EXIT_INVD] = kvm_emulate_invd,
3191 [SVM_EXIT_PAUSE] = pause_interception,
3192 [SVM_EXIT_HLT] = kvm_emulate_halt,
3193 [SVM_EXIT_INVLPG] = invlpg_interception,
3194 [SVM_EXIT_INVLPGA] = invlpga_interception,
3195 [SVM_EXIT_IOIO] = io_interception,
3196 [SVM_EXIT_MSR] = msr_interception,
3197 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3198 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3199 [SVM_EXIT_VMRUN] = vmrun_interception,
3200 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3201 [SVM_EXIT_VMLOAD] = vmload_interception,
3202 [SVM_EXIT_VMSAVE] = vmsave_interception,
3203 [SVM_EXIT_STGI] = stgi_interception,
3204 [SVM_EXIT_CLGI] = clgi_interception,
3205 [SVM_EXIT_SKINIT] = skinit_interception,
3206 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3207 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3208 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3209 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3210 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3211 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3212 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3213 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3214 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3215 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3216 [SVM_EXIT_INVPCID] = invpcid_interception,
3217 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
3218 [SVM_EXIT_NPF] = npf_interception,
3219 [SVM_EXIT_BUS_LOCK] = bus_lock_exit,
3220 [SVM_EXIT_RSM] = rsm_interception,
3221 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3222 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3223 #ifdef CONFIG_KVM_AMD_SEV
3224 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3225 #endif
3226 };
3227
dump_vmcb(struct kvm_vcpu * vcpu)3228 static void dump_vmcb(struct kvm_vcpu *vcpu)
3229 {
3230 struct vcpu_svm *svm = to_svm(vcpu);
3231 struct vmcb_control_area *control = &svm->vmcb->control;
3232 struct vmcb_save_area *save = &svm->vmcb->save;
3233 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3234 char *vm_type;
3235
3236 if (!dump_invalid_vmcb) {
3237 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3238 return;
3239 }
3240
3241 guard(mutex)(&vmcb_dump_mutex);
3242
3243 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3244 sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3245 sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3246
3247 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3248 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3249 pr_err("VMCB Control Area:\n");
3250 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3251 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3252 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3253 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3254 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3255 pr_err("%-20s%08x %08x\n", "intercepts:",
3256 control->intercepts[INTERCEPT_WORD3],
3257 control->intercepts[INTERCEPT_WORD4]);
3258 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3259 pr_err("%-20s%d\n", "pause filter threshold:",
3260 control->pause_filter_thresh);
3261 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3262 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3263 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3264 pr_err("%-20s%d\n", "asid:", control->asid);
3265 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3266 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3267 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3268 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3269 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3270 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3271 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3272 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3273 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3274 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3275 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3276 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3277 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3278 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3279 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3280 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3281 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3282 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3283 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3284 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3285 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3286 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3287 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3288
3289 if (sev_es_guest(vcpu->kvm)) {
3290 save = sev_decrypt_vmsa(vcpu);
3291 if (!save)
3292 goto no_vmsa;
3293
3294 save01 = save;
3295 }
3296
3297 pr_err("VMCB State Save Area:\n");
3298 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3299 "es:",
3300 save->es.selector, save->es.attrib,
3301 save->es.limit, save->es.base);
3302 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3303 "cs:",
3304 save->cs.selector, save->cs.attrib,
3305 save->cs.limit, save->cs.base);
3306 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3307 "ss:",
3308 save->ss.selector, save->ss.attrib,
3309 save->ss.limit, save->ss.base);
3310 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3311 "ds:",
3312 save->ds.selector, save->ds.attrib,
3313 save->ds.limit, save->ds.base);
3314 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3315 "fs:",
3316 save01->fs.selector, save01->fs.attrib,
3317 save01->fs.limit, save01->fs.base);
3318 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3319 "gs:",
3320 save01->gs.selector, save01->gs.attrib,
3321 save01->gs.limit, save01->gs.base);
3322 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3323 "gdtr:",
3324 save->gdtr.selector, save->gdtr.attrib,
3325 save->gdtr.limit, save->gdtr.base);
3326 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327 "ldtr:",
3328 save01->ldtr.selector, save01->ldtr.attrib,
3329 save01->ldtr.limit, save01->ldtr.base);
3330 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331 "idtr:",
3332 save->idtr.selector, save->idtr.attrib,
3333 save->idtr.limit, save->idtr.base);
3334 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335 "tr:",
3336 save01->tr.selector, save01->tr.attrib,
3337 save01->tr.limit, save01->tr.base);
3338 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3339 save->vmpl, save->cpl, save->efer);
3340 pr_err("%-15s %016llx %-13s %016llx\n",
3341 "cr0:", save->cr0, "cr2:", save->cr2);
3342 pr_err("%-15s %016llx %-13s %016llx\n",
3343 "cr3:", save->cr3, "cr4:", save->cr4);
3344 pr_err("%-15s %016llx %-13s %016llx\n",
3345 "dr6:", save->dr6, "dr7:", save->dr7);
3346 pr_err("%-15s %016llx %-13s %016llx\n",
3347 "rip:", save->rip, "rflags:", save->rflags);
3348 pr_err("%-15s %016llx %-13s %016llx\n",
3349 "rsp:", save->rsp, "rax:", save->rax);
3350 pr_err("%-15s %016llx %-13s %016llx\n",
3351 "s_cet:", save->s_cet, "ssp:", save->ssp);
3352 pr_err("%-15s %016llx\n",
3353 "isst_addr:", save->isst_addr);
3354 pr_err("%-15s %016llx %-13s %016llx\n",
3355 "star:", save01->star, "lstar:", save01->lstar);
3356 pr_err("%-15s %016llx %-13s %016llx\n",
3357 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3358 pr_err("%-15s %016llx %-13s %016llx\n",
3359 "kernel_gs_base:", save01->kernel_gs_base,
3360 "sysenter_cs:", save01->sysenter_cs);
3361 pr_err("%-15s %016llx %-13s %016llx\n",
3362 "sysenter_esp:", save01->sysenter_esp,
3363 "sysenter_eip:", save01->sysenter_eip);
3364 pr_err("%-15s %016llx %-13s %016llx\n",
3365 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3366 pr_err("%-15s %016llx %-13s %016llx\n",
3367 "br_from:", save->br_from, "br_to:", save->br_to);
3368 pr_err("%-15s %016llx %-13s %016llx\n",
3369 "excp_from:", save->last_excp_from,
3370 "excp_to:", save->last_excp_to);
3371
3372 if (sev_es_guest(vcpu->kvm)) {
3373 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3374
3375 pr_err("%-15s %016llx\n",
3376 "sev_features", vmsa->sev_features);
3377
3378 pr_err("%-15s %016llx %-13s %016llx\n",
3379 "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3380 pr_err("%-15s %016llx %-13s %016llx\n",
3381 "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3382 pr_err("%-15s %016llx\n",
3383 "u_cet:", vmsa->u_cet);
3384
3385 pr_err("%-15s %016llx %-13s %016llx\n",
3386 "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3387 pr_err("%-15s %016llx %-13s %016llx\n",
3388 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3389 pr_err("%-15s %016llx %-13s %016llx\n",
3390 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3391 pr_err("%-15s %016llx %-13s %016llx\n",
3392 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3393 pr_err("%-15s %016llx %-13s %016llx\n",
3394 "r8:", vmsa->r8, "r9:", vmsa->r9);
3395 pr_err("%-15s %016llx %-13s %016llx\n",
3396 "r10:", vmsa->r10, "r11:", vmsa->r11);
3397 pr_err("%-15s %016llx %-13s %016llx\n",
3398 "r12:", vmsa->r12, "r13:", vmsa->r13);
3399 pr_err("%-15s %016llx %-13s %016llx\n",
3400 "r14:", vmsa->r14, "r15:", vmsa->r15);
3401 pr_err("%-15s %016llx %-13s %016llx\n",
3402 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3403 } else {
3404 pr_err("%-15s %016llx %-13s %016lx\n",
3405 "rax:", save->rax, "rbx:",
3406 vcpu->arch.regs[VCPU_REGS_RBX]);
3407 pr_err("%-15s %016lx %-13s %016lx\n",
3408 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3409 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3410 pr_err("%-15s %016lx %-13s %016lx\n",
3411 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3412 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3413 pr_err("%-15s %016lx %-13s %016llx\n",
3414 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3415 "rsp:", save->rsp);
3416 #ifdef CONFIG_X86_64
3417 pr_err("%-15s %016lx %-13s %016lx\n",
3418 "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3419 "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3420 pr_err("%-15s %016lx %-13s %016lx\n",
3421 "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3422 "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3423 pr_err("%-15s %016lx %-13s %016lx\n",
3424 "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3425 "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3426 pr_err("%-15s %016lx %-13s %016lx\n",
3427 "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3428 "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3429 #endif
3430 }
3431
3432 no_vmsa:
3433 if (sev_es_guest(vcpu->kvm))
3434 sev_free_decrypted_vmsa(vcpu, save);
3435 }
3436
svm_check_exit_valid(u64 exit_code)3437 static bool svm_check_exit_valid(u64 exit_code)
3438 {
3439 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3440 svm_exit_handlers[exit_code]);
3441 }
3442
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3443 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3444 {
3445 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3446 dump_vmcb(vcpu);
3447 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3448 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3449 vcpu->run->internal.ndata = 2;
3450 vcpu->run->internal.data[0] = exit_code;
3451 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3452 return 0;
3453 }
3454
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3455 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3456 {
3457 if (!svm_check_exit_valid(exit_code))
3458 return svm_handle_invalid_exit(vcpu, exit_code);
3459
3460 #ifdef CONFIG_MITIGATION_RETPOLINE
3461 if (exit_code == SVM_EXIT_MSR)
3462 return msr_interception(vcpu);
3463 else if (exit_code == SVM_EXIT_VINTR)
3464 return interrupt_window_interception(vcpu);
3465 else if (exit_code == SVM_EXIT_INTR)
3466 return intr_interception(vcpu);
3467 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3468 return kvm_emulate_halt(vcpu);
3469 else if (exit_code == SVM_EXIT_NPF)
3470 return npf_interception(vcpu);
3471 #ifdef CONFIG_KVM_AMD_SEV
3472 else if (exit_code == SVM_EXIT_VMGEXIT)
3473 return sev_handle_vmgexit(vcpu);
3474 #endif
3475 #endif
3476 return svm_exit_handlers[exit_code](vcpu);
3477 }
3478
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3479 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3480 u64 *info1, u64 *info2,
3481 u32 *intr_info, u32 *error_code)
3482 {
3483 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3484
3485 *reason = control->exit_code;
3486 *info1 = control->exit_info_1;
3487 *info2 = control->exit_info_2;
3488 *intr_info = control->exit_int_info;
3489 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3490 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3491 *error_code = control->exit_int_info_err;
3492 else
3493 *error_code = 0;
3494 }
3495
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3496 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3497 u32 *error_code)
3498 {
3499 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3500
3501 *intr_info = control->event_inj;
3502
3503 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3504 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3505 *error_code = control->event_inj_err;
3506 else
3507 *error_code = 0;
3508
3509 }
3510
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3511 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3512 {
3513 struct vcpu_svm *svm = to_svm(vcpu);
3514 struct kvm_run *kvm_run = vcpu->run;
3515 u32 exit_code = svm->vmcb->control.exit_code;
3516
3517 /* SEV-ES guests must use the CR write traps to track CR registers. */
3518 if (!sev_es_guest(vcpu->kvm)) {
3519 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3520 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3521 if (npt_enabled)
3522 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3523 }
3524
3525 if (is_guest_mode(vcpu)) {
3526 int vmexit;
3527
3528 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3529
3530 vmexit = nested_svm_exit_special(svm);
3531
3532 if (vmexit == NESTED_EXIT_CONTINUE)
3533 vmexit = nested_svm_exit_handled(svm);
3534
3535 if (vmexit == NESTED_EXIT_DONE)
3536 return 1;
3537 }
3538
3539 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3540 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3541 kvm_run->fail_entry.hardware_entry_failure_reason
3542 = svm->vmcb->control.exit_code;
3543 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3544 dump_vmcb(vcpu);
3545 return 0;
3546 }
3547
3548 if (exit_fastpath != EXIT_FASTPATH_NONE)
3549 return 1;
3550
3551 return svm_invoke_exit_handler(vcpu, exit_code);
3552 }
3553
pre_svm_run(struct kvm_vcpu * vcpu)3554 static int pre_svm_run(struct kvm_vcpu *vcpu)
3555 {
3556 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3557 struct vcpu_svm *svm = to_svm(vcpu);
3558
3559 /*
3560 * If the previous vmrun of the vmcb occurred on a different physical
3561 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3562 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3563 */
3564 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3565 svm->current_vmcb->asid_generation = 0;
3566 vmcb_mark_all_dirty(svm->vmcb);
3567 svm->current_vmcb->cpu = vcpu->cpu;
3568 }
3569
3570 if (sev_guest(vcpu->kvm))
3571 return pre_sev_run(svm, vcpu->cpu);
3572
3573 /* FIXME: handle wraparound of asid_generation */
3574 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3575 new_asid(svm, sd);
3576
3577 return 0;
3578 }
3579
svm_inject_nmi(struct kvm_vcpu * vcpu)3580 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3581 {
3582 struct vcpu_svm *svm = to_svm(vcpu);
3583
3584 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3585
3586 if (svm->nmi_l1_to_l2)
3587 return;
3588
3589 /*
3590 * No need to manually track NMI masking when vNMI is enabled, hardware
3591 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3592 * case where software directly injects an NMI.
3593 */
3594 if (!is_vnmi_enabled(svm)) {
3595 svm->nmi_masked = true;
3596 svm_set_iret_intercept(svm);
3597 }
3598 ++vcpu->stat.nmi_injections;
3599 }
3600
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3601 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3602 {
3603 struct vcpu_svm *svm = to_svm(vcpu);
3604
3605 if (!is_vnmi_enabled(svm))
3606 return false;
3607
3608 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3609 }
3610
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3611 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3612 {
3613 struct vcpu_svm *svm = to_svm(vcpu);
3614
3615 if (!is_vnmi_enabled(svm))
3616 return false;
3617
3618 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3619 return false;
3620
3621 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3622 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3623
3624 /*
3625 * Because the pending NMI is serviced by hardware, KVM can't know when
3626 * the NMI is "injected", but for all intents and purposes, passing the
3627 * NMI off to hardware counts as injection.
3628 */
3629 ++vcpu->stat.nmi_injections;
3630
3631 return true;
3632 }
3633
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3634 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3635 {
3636 struct vcpu_svm *svm = to_svm(vcpu);
3637 u32 type;
3638
3639 if (vcpu->arch.interrupt.soft) {
3640 if (svm_update_soft_interrupt_rip(vcpu))
3641 return;
3642
3643 type = SVM_EVTINJ_TYPE_SOFT;
3644 } else {
3645 type = SVM_EVTINJ_TYPE_INTR;
3646 }
3647
3648 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3649 vcpu->arch.interrupt.soft, reinjected);
3650 ++vcpu->stat.irq_injections;
3651
3652 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3653 SVM_EVTINJ_VALID | type;
3654 }
3655
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3656 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3657 int trig_mode, int vector)
3658 {
3659 /*
3660 * apic->apicv_active must be read after vcpu->mode.
3661 * Pairs with smp_store_release in vcpu_enter_guest.
3662 */
3663 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3664
3665 /* Note, this is called iff the local APIC is in-kernel. */
3666 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3667 /* Process the interrupt via kvm_check_and_inject_events(). */
3668 kvm_make_request(KVM_REQ_EVENT, vcpu);
3669 kvm_vcpu_kick(vcpu);
3670 return;
3671 }
3672
3673 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3674 if (in_guest_mode) {
3675 /*
3676 * Signal the doorbell to tell hardware to inject the IRQ. If
3677 * the vCPU exits the guest before the doorbell chimes, hardware
3678 * will automatically process AVIC interrupts at the next VMRUN.
3679 */
3680 avic_ring_doorbell(vcpu);
3681 } else {
3682 /*
3683 * Wake the vCPU if it was blocking. KVM will then detect the
3684 * pending IRQ when checking if the vCPU has a wake event.
3685 */
3686 kvm_vcpu_wake_up(vcpu);
3687 }
3688 }
3689
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3690 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3691 int trig_mode, int vector)
3692 {
3693 kvm_lapic_set_irr(vector, apic);
3694
3695 /*
3696 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3697 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3698 * the read of guest_mode. This guarantees that either VMRUN will see
3699 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3700 * will signal the doorbell if the CPU has already entered the guest.
3701 */
3702 smp_mb__after_atomic();
3703 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3704 }
3705
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3706 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3707 {
3708 struct vcpu_svm *svm = to_svm(vcpu);
3709
3710 /*
3711 * SEV-ES guests must always keep the CR intercepts cleared. CR
3712 * tracking is done using the CR write traps.
3713 */
3714 if (sev_es_guest(vcpu->kvm))
3715 return;
3716
3717 if (nested_svm_virtualize_tpr(vcpu))
3718 return;
3719
3720 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3721
3722 if (irr == -1)
3723 return;
3724
3725 if (tpr >= irr)
3726 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3727 }
3728
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3729 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3730 {
3731 struct vcpu_svm *svm = to_svm(vcpu);
3732
3733 if (is_vnmi_enabled(svm))
3734 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3735 else
3736 return svm->nmi_masked;
3737 }
3738
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3739 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3740 {
3741 struct vcpu_svm *svm = to_svm(vcpu);
3742
3743 if (is_vnmi_enabled(svm)) {
3744 if (masked)
3745 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3746 else
3747 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3748
3749 } else {
3750 svm->nmi_masked = masked;
3751 if (masked)
3752 svm_set_iret_intercept(svm);
3753 else
3754 svm_clr_iret_intercept(svm);
3755 }
3756 }
3757
svm_nmi_blocked(struct kvm_vcpu * vcpu)3758 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3759 {
3760 struct vcpu_svm *svm = to_svm(vcpu);
3761 struct vmcb *vmcb = svm->vmcb;
3762
3763 if (!gif_set(svm))
3764 return true;
3765
3766 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3767 return false;
3768
3769 if (svm_get_nmi_mask(vcpu))
3770 return true;
3771
3772 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3773 }
3774
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3775 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3776 {
3777 struct vcpu_svm *svm = to_svm(vcpu);
3778 if (svm->nested.nested_run_pending)
3779 return -EBUSY;
3780
3781 if (svm_nmi_blocked(vcpu))
3782 return 0;
3783
3784 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3785 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3786 return -EBUSY;
3787 return 1;
3788 }
3789
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3790 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3791 {
3792 struct vcpu_svm *svm = to_svm(vcpu);
3793 struct vmcb *vmcb = svm->vmcb;
3794
3795 if (!gif_set(svm))
3796 return true;
3797
3798 if (is_guest_mode(vcpu)) {
3799 /* As long as interrupts are being delivered... */
3800 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3801 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3802 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3803 return true;
3804
3805 /* ... vmexits aren't blocked by the interrupt shadow */
3806 if (nested_exit_on_intr(svm))
3807 return false;
3808 } else {
3809 if (!svm_get_if_flag(vcpu))
3810 return true;
3811 }
3812
3813 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3814 }
3815
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3816 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3817 {
3818 struct vcpu_svm *svm = to_svm(vcpu);
3819
3820 if (svm->nested.nested_run_pending)
3821 return -EBUSY;
3822
3823 if (svm_interrupt_blocked(vcpu))
3824 return 0;
3825
3826 /*
3827 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3828 * e.g. if the IRQ arrived asynchronously after checking nested events.
3829 */
3830 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3831 return -EBUSY;
3832
3833 return 1;
3834 }
3835
svm_enable_irq_window(struct kvm_vcpu * vcpu)3836 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3837 {
3838 struct vcpu_svm *svm = to_svm(vcpu);
3839
3840 /*
3841 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3842 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3843 * get that intercept, this function will be called again though and
3844 * we'll get the vintr intercept. However, if the vGIF feature is
3845 * enabled, the STGI interception will not occur. Enable the irq
3846 * window under the assumption that the hardware will set the GIF.
3847 */
3848 if (vgif || gif_set(svm)) {
3849 /*
3850 * IRQ window is not needed when AVIC is enabled,
3851 * unless we have pending ExtINT since it cannot be injected
3852 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3853 * and fallback to injecting IRQ via V_IRQ.
3854 *
3855 * If running nested, AVIC is already locally inhibited
3856 * on this vCPU, therefore there is no need to request
3857 * the VM wide AVIC inhibition.
3858 */
3859 if (!is_guest_mode(vcpu))
3860 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3861
3862 svm_set_vintr(svm);
3863 }
3864 }
3865
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3866 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3867 {
3868 struct vcpu_svm *svm = to_svm(vcpu);
3869
3870 /*
3871 * If NMIs are outright masked, i.e. the vCPU is already handling an
3872 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3873 * more to do at this time as KVM has already enabled IRET intercepts.
3874 * If KVM has already intercepted IRET, then single-step over the IRET,
3875 * as NMIs aren't architecturally unmasked until the IRET completes.
3876 *
3877 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3878 * are masked, as KVM allows at most one to-be-injected NMI and one
3879 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3880 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3881 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3882 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3883 * inject the NMI. In those situations, KVM needs to single-step over
3884 * the STI shadow or intercept STGI.
3885 */
3886 if (svm_get_nmi_mask(vcpu)) {
3887 WARN_ON_ONCE(is_vnmi_enabled(svm));
3888
3889 if (!svm->awaiting_iret_completion)
3890 return; /* IRET will cause a vm exit */
3891 }
3892
3893 /*
3894 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3895 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3896 * KVM can't intercept and single-step IRET to detect when NMIs are
3897 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3898 *
3899 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3900 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3901 * supported NAEs in the GHCB protocol.
3902 */
3903 if (sev_es_guest(vcpu->kvm))
3904 return;
3905
3906 if (!gif_set(svm)) {
3907 if (vgif)
3908 svm_set_intercept(svm, INTERCEPT_STGI);
3909 return; /* STGI will cause a vm exit */
3910 }
3911
3912 /*
3913 * Something prevents NMI from been injected. Single step over possible
3914 * problem (IRET or exception injection or interrupt shadow)
3915 */
3916 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3917 svm->nmi_singlestep = true;
3918 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3919 }
3920
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3921 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3922 {
3923 struct vcpu_svm *svm = to_svm(vcpu);
3924
3925 /*
3926 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3927 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3928 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3929 */
3930 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3931
3932 /*
3933 * Flush only the current ASID even if the TLB flush was invoked via
3934 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3935 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3936 * unconditionally does a TLB flush on both nested VM-Enter and nested
3937 * VM-Exit (via kvm_mmu_reset_context()).
3938 */
3939 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3940 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3941 else
3942 svm->current_vmcb->asid_generation--;
3943 }
3944
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3945 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3946 {
3947 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3948
3949 /*
3950 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3951 * flush the NPT mappings via hypercall as flushing the ASID only
3952 * affects virtual to physical mappings, it does not invalidate guest
3953 * physical to host physical mappings.
3954 */
3955 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3956 hyperv_flush_guest_mapping(root_tdp);
3957
3958 svm_flush_tlb_asid(vcpu);
3959 }
3960
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3961 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3962 {
3963 /*
3964 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3965 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3966 * a "regular" remote flush. Reaching this point means either there's
3967 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3968 * which might be fatal to the guest. Yell, but try to recover.
3969 */
3970 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3971 hv_flush_remote_tlbs(vcpu->kvm);
3972
3973 svm_flush_tlb_asid(vcpu);
3974 }
3975
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3976 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3977 {
3978 struct vcpu_svm *svm = to_svm(vcpu);
3979
3980 invlpga(gva, svm->vmcb->control.asid);
3981 }
3982
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3983 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3984 {
3985 struct vcpu_svm *svm = to_svm(vcpu);
3986
3987 if (nested_svm_virtualize_tpr(vcpu))
3988 return;
3989
3990 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3991 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3992 kvm_set_cr8(vcpu, cr8);
3993 }
3994 }
3995
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3996 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3997 {
3998 struct vcpu_svm *svm = to_svm(vcpu);
3999 u64 cr8;
4000
4001 if (nested_svm_virtualize_tpr(vcpu))
4002 return;
4003
4004 cr8 = kvm_get_cr8(vcpu);
4005 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4006 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4007 }
4008
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4009 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4010 int type)
4011 {
4012 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4013 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4014 struct vcpu_svm *svm = to_svm(vcpu);
4015
4016 /*
4017 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4018 * associated with the original soft exception/interrupt. next_rip is
4019 * cleared on all exits that can occur while vectoring an event, so KVM
4020 * needs to manually set next_rip for re-injection. Unlike the !nrips
4021 * case below, this needs to be done if and only if KVM is re-injecting
4022 * the same event, i.e. if the event is a soft exception/interrupt,
4023 * otherwise next_rip is unused on VMRUN.
4024 */
4025 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4026 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4027 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4028 /*
4029 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4030 * injecting the soft exception/interrupt. That advancement needs to
4031 * be unwound if vectoring didn't complete. Note, the new event may
4032 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4033 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4034 * be the reported vectored event, but RIP still needs to be unwound.
4035 */
4036 else if (!nrips && (is_soft || is_exception) &&
4037 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4038 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4039 }
4040
svm_complete_interrupts(struct kvm_vcpu * vcpu)4041 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4042 {
4043 struct vcpu_svm *svm = to_svm(vcpu);
4044 u8 vector;
4045 int type;
4046 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4047 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4048 bool soft_int_injected = svm->soft_int_injected;
4049
4050 svm->nmi_l1_to_l2 = false;
4051 svm->soft_int_injected = false;
4052
4053 /*
4054 * If we've made progress since setting awaiting_iret_completion, we've
4055 * executed an IRET and can allow NMI injection.
4056 */
4057 if (svm->awaiting_iret_completion &&
4058 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4059 svm->awaiting_iret_completion = false;
4060 svm->nmi_masked = false;
4061 kvm_make_request(KVM_REQ_EVENT, vcpu);
4062 }
4063
4064 vcpu->arch.nmi_injected = false;
4065 kvm_clear_exception_queue(vcpu);
4066 kvm_clear_interrupt_queue(vcpu);
4067
4068 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4069 return;
4070
4071 kvm_make_request(KVM_REQ_EVENT, vcpu);
4072
4073 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4074 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4075
4076 if (soft_int_injected)
4077 svm_complete_soft_interrupt(vcpu, vector, type);
4078
4079 switch (type) {
4080 case SVM_EXITINTINFO_TYPE_NMI:
4081 vcpu->arch.nmi_injected = true;
4082 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4083 break;
4084 case SVM_EXITINTINFO_TYPE_EXEPT: {
4085 u32 error_code = 0;
4086
4087 /*
4088 * Never re-inject a #VC exception.
4089 */
4090 if (vector == X86_TRAP_VC)
4091 break;
4092
4093 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4094 error_code = svm->vmcb->control.exit_int_info_err;
4095
4096 kvm_requeue_exception(vcpu, vector,
4097 exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4098 error_code);
4099 break;
4100 }
4101 case SVM_EXITINTINFO_TYPE_INTR:
4102 kvm_queue_interrupt(vcpu, vector, false);
4103 break;
4104 case SVM_EXITINTINFO_TYPE_SOFT:
4105 kvm_queue_interrupt(vcpu, vector, true);
4106 break;
4107 default:
4108 break;
4109 }
4110
4111 }
4112
svm_cancel_injection(struct kvm_vcpu * vcpu)4113 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4114 {
4115 struct vcpu_svm *svm = to_svm(vcpu);
4116 struct vmcb_control_area *control = &svm->vmcb->control;
4117
4118 control->exit_int_info = control->event_inj;
4119 control->exit_int_info_err = control->event_inj_err;
4120 control->event_inj = 0;
4121 svm_complete_interrupts(vcpu);
4122 }
4123
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4124 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4125 {
4126 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4127 return -EINVAL;
4128
4129 return 1;
4130 }
4131
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4132 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4133 {
4134 struct vcpu_svm *svm = to_svm(vcpu);
4135 struct vmcb_control_area *control = &svm->vmcb->control;
4136
4137 /*
4138 * Next RIP must be provided as IRQs are disabled, and accessing guest
4139 * memory to decode the instruction might fault, i.e. might sleep.
4140 */
4141 if (!nrips || !control->next_rip)
4142 return EXIT_FASTPATH_NONE;
4143
4144 if (is_guest_mode(vcpu))
4145 return EXIT_FASTPATH_NONE;
4146
4147 switch (control->exit_code) {
4148 case SVM_EXIT_MSR:
4149 if (!control->exit_info_1)
4150 break;
4151 return handle_fastpath_wrmsr(vcpu);
4152 case SVM_EXIT_HLT:
4153 return handle_fastpath_hlt(vcpu);
4154 case SVM_EXIT_INVD:
4155 return handle_fastpath_invd(vcpu);
4156 default:
4157 break;
4158 }
4159
4160 return EXIT_FASTPATH_NONE;
4161 }
4162
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4163 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4164 {
4165 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4166 struct vcpu_svm *svm = to_svm(vcpu);
4167
4168 guest_state_enter_irqoff();
4169
4170 /*
4171 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4172 * VMRUN controls whether or not physical IRQs are masked (KVM always
4173 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4174 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4175 * into guest state if delivery of an event during VMRUN triggers a
4176 * #VMEXIT, and the guest_state transitions already tell lockdep that
4177 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4178 * this path, so IRQs aren't actually unmasked while running host code.
4179 */
4180 raw_local_irq_enable();
4181
4182 amd_clear_divider();
4183
4184 if (sev_es_guest(vcpu->kvm))
4185 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4186 sev_es_host_save_area(sd));
4187 else
4188 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4189
4190 raw_local_irq_disable();
4191
4192 guest_state_exit_irqoff();
4193 }
4194
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4195 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4196 {
4197 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4198 struct vcpu_svm *svm = to_svm(vcpu);
4199 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4200
4201 trace_kvm_entry(vcpu, force_immediate_exit);
4202
4203 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4204 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4205 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4206
4207 /*
4208 * Disable singlestep if we're injecting an interrupt/exception.
4209 * We don't want our modified rflags to be pushed on the stack where
4210 * we might not be able to easily reset them if we disabled NMI
4211 * singlestep later.
4212 */
4213 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4214 /*
4215 * Event injection happens before external interrupts cause a
4216 * vmexit and interrupts are disabled here, so smp_send_reschedule
4217 * is enough to force an immediate vmexit.
4218 */
4219 disable_nmi_singlestep(svm);
4220 force_immediate_exit = true;
4221 }
4222
4223 if (force_immediate_exit)
4224 smp_send_reschedule(vcpu->cpu);
4225
4226 if (pre_svm_run(vcpu)) {
4227 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4228 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4229 vcpu->run->fail_entry.cpu = vcpu->cpu;
4230 return EXIT_FASTPATH_EXIT_USERSPACE;
4231 }
4232
4233 sync_lapic_to_cr8(vcpu);
4234
4235 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4236 svm->vmcb->control.asid = svm->asid;
4237 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4238 }
4239 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4240
4241 svm_hv_update_vp_id(svm->vmcb, vcpu);
4242
4243 /*
4244 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4245 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from
4246 * KVM's snapshot is only necessary when DR accesses won't exit.
4247 */
4248 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4249 svm_set_dr6(vcpu, vcpu->arch.dr6);
4250 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4251 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4252
4253 clgi();
4254 kvm_load_guest_xsave_state(vcpu);
4255
4256 /*
4257 * Hardware only context switches DEBUGCTL if LBR virtualization is
4258 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4259 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4260 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4261 */
4262 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4263 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4264 update_debugctlmsr(svm->vmcb->save.dbgctl);
4265
4266 kvm_wait_lapic_expire(vcpu);
4267
4268 /*
4269 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4270 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4271 * is no need to worry about the conditional branch over the wrmsr
4272 * being speculatively taken.
4273 */
4274 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4275 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4276
4277 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4278
4279 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4280 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4281
4282 if (!sev_es_guest(vcpu->kvm)) {
4283 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4284 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4285 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4286 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4287 }
4288 vcpu->arch.regs_dirty = 0;
4289
4290 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4291 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4292
4293 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4294 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4295 update_debugctlmsr(vcpu->arch.host_debugctl);
4296
4297 kvm_load_host_xsave_state(vcpu);
4298 stgi();
4299
4300 /* Any pending NMI will happen here */
4301
4302 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4303 kvm_after_interrupt(vcpu);
4304
4305 sync_cr8_to_lapic(vcpu);
4306
4307 svm->next_rip = 0;
4308 if (is_guest_mode(vcpu)) {
4309 nested_sync_control_from_vmcb02(svm);
4310
4311 /* Track VMRUNs that have made past consistency checking */
4312 if (svm->nested.nested_run_pending &&
4313 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4314 ++vcpu->stat.nested_run;
4315
4316 svm->nested.nested_run_pending = 0;
4317 }
4318
4319 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4320 vmcb_mark_all_clean(svm->vmcb);
4321
4322 /* if exit due to PF check for async PF */
4323 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4324 vcpu->arch.apf.host_apf_flags =
4325 kvm_read_and_reset_apf_flags();
4326
4327 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4328
4329 /*
4330 * We need to handle MC intercepts here before the vcpu has a chance to
4331 * change the physical cpu
4332 */
4333 if (unlikely(svm->vmcb->control.exit_code ==
4334 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4335 svm_handle_mce(vcpu);
4336
4337 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4338
4339 svm_complete_interrupts(vcpu);
4340
4341 return svm_exit_handlers_fastpath(vcpu);
4342 }
4343
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4344 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4345 int root_level)
4346 {
4347 struct vcpu_svm *svm = to_svm(vcpu);
4348 unsigned long cr3;
4349
4350 if (npt_enabled) {
4351 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4352 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4353
4354 hv_track_root_tdp(vcpu, root_hpa);
4355
4356 cr3 = vcpu->arch.cr3;
4357 } else if (root_level >= PT64_ROOT_4LEVEL) {
4358 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4359 } else {
4360 /* PCID in the guest should be impossible with a 32-bit MMU. */
4361 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4362 cr3 = root_hpa;
4363 }
4364
4365 svm->vmcb->save.cr3 = cr3;
4366 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4367 }
4368
4369 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4370 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4371 {
4372 /*
4373 * Patch in the VMMCALL instruction:
4374 */
4375 hypercall[0] = 0x0f;
4376 hypercall[1] = 0x01;
4377 hypercall[2] = 0xd9;
4378 }
4379
4380 /*
4381 * The kvm parameter can be NULL (module initialization, or invocation before
4382 * VM creation). Be sure to check the kvm parameter before using it.
4383 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4384 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4385 {
4386 switch (index) {
4387 case MSR_IA32_MCG_EXT_CTL:
4388 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4389 return false;
4390 case MSR_IA32_SMBASE:
4391 if (!IS_ENABLED(CONFIG_KVM_SMM))
4392 return false;
4393 /* SEV-ES guests do not support SMM, so report false */
4394 if (kvm && sev_es_guest(kvm))
4395 return false;
4396 break;
4397 default:
4398 break;
4399 }
4400
4401 return true;
4402 }
4403
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4404 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4405 {
4406 struct vcpu_svm *svm = to_svm(vcpu);
4407
4408 /*
4409 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4410 * can only disable all variants of by disallowing CR4.OSXSAVE from
4411 * being set. As a result, if the host has XSAVE and XSAVES, and the
4412 * guest has XSAVE enabled, the guest can execute XSAVES without
4413 * faulting. Treat XSAVES as enabled in this case regardless of
4414 * whether it's advertised to the guest so that KVM context switches
4415 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4416 * the guest read/write access to the host's XSS.
4417 */
4418 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4419 boot_cpu_has(X86_FEATURE_XSAVES) &&
4420 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4421
4422 /*
4423 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4424 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4425 * SVM on Intel is bonkers and extremely unlikely to work).
4426 */
4427 if (guest_cpuid_is_intel_compatible(vcpu))
4428 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4429
4430 if (sev_guest(vcpu->kvm))
4431 sev_vcpu_after_set_cpuid(svm);
4432 }
4433
svm_has_wbinvd_exit(void)4434 static bool svm_has_wbinvd_exit(void)
4435 {
4436 return true;
4437 }
4438
4439 #define PRE_EX(exit) { .exit_code = (exit), \
4440 .stage = X86_ICPT_PRE_EXCEPT, }
4441 #define POST_EX(exit) { .exit_code = (exit), \
4442 .stage = X86_ICPT_POST_EXCEPT, }
4443 #define POST_MEM(exit) { .exit_code = (exit), \
4444 .stage = X86_ICPT_POST_MEMACCESS, }
4445
4446 static const struct __x86_intercept {
4447 u32 exit_code;
4448 enum x86_intercept_stage stage;
4449 } x86_intercept_map[] = {
4450 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4451 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4452 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4453 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4454 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4455 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4456 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4457 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4458 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4459 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4460 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4461 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4462 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4463 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4464 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4465 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4466 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4467 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4468 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4469 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4470 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4471 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4472 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4473 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4474 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4475 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4476 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4477 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4478 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4479 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4480 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4481 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4482 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4483 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4484 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4485 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4486 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4487 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4488 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4489 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4490 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4491 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4492 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4493 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4494 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4495 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4496 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4497 };
4498
4499 #undef PRE_EX
4500 #undef POST_EX
4501 #undef POST_MEM
4502
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4503 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4504 struct x86_instruction_info *info,
4505 enum x86_intercept_stage stage,
4506 struct x86_exception *exception)
4507 {
4508 struct vcpu_svm *svm = to_svm(vcpu);
4509 int vmexit, ret = X86EMUL_CONTINUE;
4510 struct __x86_intercept icpt_info;
4511 struct vmcb *vmcb = svm->vmcb;
4512
4513 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4514 goto out;
4515
4516 icpt_info = x86_intercept_map[info->intercept];
4517
4518 if (stage != icpt_info.stage)
4519 goto out;
4520
4521 switch (icpt_info.exit_code) {
4522 case SVM_EXIT_READ_CR0:
4523 if (info->intercept == x86_intercept_cr_read)
4524 icpt_info.exit_code += info->modrm_reg;
4525 break;
4526 case SVM_EXIT_WRITE_CR0: {
4527 unsigned long cr0, val;
4528
4529 if (info->intercept == x86_intercept_cr_write)
4530 icpt_info.exit_code += info->modrm_reg;
4531
4532 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4533 info->intercept == x86_intercept_clts)
4534 break;
4535
4536 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4537 INTERCEPT_SELECTIVE_CR0)))
4538 break;
4539
4540 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4541 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4542
4543 if (info->intercept == x86_intercept_lmsw) {
4544 cr0 &= 0xfUL;
4545 val &= 0xfUL;
4546 /* lmsw can't clear PE - catch this here */
4547 if (cr0 & X86_CR0_PE)
4548 val |= X86_CR0_PE;
4549 }
4550
4551 if (cr0 ^ val)
4552 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4553
4554 break;
4555 }
4556 case SVM_EXIT_READ_DR0:
4557 case SVM_EXIT_WRITE_DR0:
4558 icpt_info.exit_code += info->modrm_reg;
4559 break;
4560 case SVM_EXIT_MSR:
4561 if (info->intercept == x86_intercept_wrmsr)
4562 vmcb->control.exit_info_1 = 1;
4563 else
4564 vmcb->control.exit_info_1 = 0;
4565 break;
4566 case SVM_EXIT_PAUSE:
4567 /*
4568 * We get this for NOP only, but pause
4569 * is rep not, check this here
4570 */
4571 if (info->rep_prefix != REPE_PREFIX)
4572 goto out;
4573 break;
4574 case SVM_EXIT_IOIO: {
4575 u64 exit_info;
4576 u32 bytes;
4577
4578 if (info->intercept == x86_intercept_in ||
4579 info->intercept == x86_intercept_ins) {
4580 exit_info = ((info->src_val & 0xffff) << 16) |
4581 SVM_IOIO_TYPE_MASK;
4582 bytes = info->dst_bytes;
4583 } else {
4584 exit_info = (info->dst_val & 0xffff) << 16;
4585 bytes = info->src_bytes;
4586 }
4587
4588 if (info->intercept == x86_intercept_outs ||
4589 info->intercept == x86_intercept_ins)
4590 exit_info |= SVM_IOIO_STR_MASK;
4591
4592 if (info->rep_prefix)
4593 exit_info |= SVM_IOIO_REP_MASK;
4594
4595 bytes = min(bytes, 4u);
4596
4597 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4598
4599 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4600
4601 vmcb->control.exit_info_1 = exit_info;
4602 vmcb->control.exit_info_2 = info->next_rip;
4603
4604 break;
4605 }
4606 default:
4607 break;
4608 }
4609
4610 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4611 if (static_cpu_has(X86_FEATURE_NRIPS))
4612 vmcb->control.next_rip = info->next_rip;
4613 vmcb->control.exit_code = icpt_info.exit_code;
4614 vmexit = nested_svm_exit_handled(svm);
4615
4616 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4617 : X86EMUL_CONTINUE;
4618
4619 out:
4620 return ret;
4621 }
4622
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4623 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4624 {
4625 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4626 vcpu->arch.at_instruction_boundary = true;
4627 }
4628
svm_setup_mce(struct kvm_vcpu * vcpu)4629 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4630 {
4631 /* [63:9] are reserved. */
4632 vcpu->arch.mcg_cap &= 0x1ff;
4633 }
4634
4635 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4636 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4637 {
4638 struct vcpu_svm *svm = to_svm(vcpu);
4639
4640 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4641 if (!gif_set(svm))
4642 return true;
4643
4644 return is_smm(vcpu);
4645 }
4646
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4647 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4648 {
4649 struct vcpu_svm *svm = to_svm(vcpu);
4650 if (svm->nested.nested_run_pending)
4651 return -EBUSY;
4652
4653 if (svm_smi_blocked(vcpu))
4654 return 0;
4655
4656 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4657 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4658 return -EBUSY;
4659
4660 return 1;
4661 }
4662
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4663 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4664 {
4665 struct vcpu_svm *svm = to_svm(vcpu);
4666 struct kvm_host_map map_save;
4667 int ret;
4668
4669 if (!is_guest_mode(vcpu))
4670 return 0;
4671
4672 /*
4673 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4674 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4675 */
4676
4677 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4678 return 1;
4679
4680 smram->smram64.svm_guest_flag = 1;
4681 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4682
4683 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4684 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4685 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4686
4687 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4688 if (ret)
4689 return ret;
4690
4691 /*
4692 * KVM uses VMCB01 to store L1 host state while L2 runs but
4693 * VMCB01 is going to be used during SMM and thus the state will
4694 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4695 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4696 * format of the area is identical to guest save area offsetted
4697 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4698 * within 'struct vmcb'). Note: HSAVE area may also be used by
4699 * L1 hypervisor to save additional host context (e.g. KVM does
4700 * that, see svm_prepare_switch_to_guest()) which must be
4701 * preserved.
4702 */
4703 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4704 return 1;
4705
4706 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4707
4708 svm_copy_vmrun_state(map_save.hva + 0x400,
4709 &svm->vmcb01.ptr->save);
4710
4711 kvm_vcpu_unmap(vcpu, &map_save);
4712 return 0;
4713 }
4714
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4715 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4716 {
4717 struct vcpu_svm *svm = to_svm(vcpu);
4718 struct kvm_host_map map, map_save;
4719 struct vmcb *vmcb12;
4720 int ret;
4721
4722 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4723
4724 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4725 return 0;
4726
4727 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4728 if (!smram64->svm_guest_flag)
4729 return 0;
4730
4731 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4732 return 1;
4733
4734 if (!(smram64->efer & EFER_SVME))
4735 return 1;
4736
4737 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4738 return 1;
4739
4740 ret = 1;
4741 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4742 goto unmap_map;
4743
4744 if (svm_allocate_nested(svm))
4745 goto unmap_save;
4746
4747 /*
4748 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4749 * used during SMM (see svm_enter_smm())
4750 */
4751
4752 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4753
4754 /*
4755 * Enter the nested guest now
4756 */
4757
4758 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4759
4760 vmcb12 = map.hva;
4761 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4762 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4763 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4764
4765 if (ret)
4766 goto unmap_save;
4767
4768 svm->nested.nested_run_pending = 1;
4769
4770 unmap_save:
4771 kvm_vcpu_unmap(vcpu, &map_save);
4772 unmap_map:
4773 kvm_vcpu_unmap(vcpu, &map);
4774 return ret;
4775 }
4776
svm_enable_smi_window(struct kvm_vcpu * vcpu)4777 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4778 {
4779 struct vcpu_svm *svm = to_svm(vcpu);
4780
4781 if (!gif_set(svm)) {
4782 if (vgif)
4783 svm_set_intercept(svm, INTERCEPT_STGI);
4784 /* STGI will cause a vm exit */
4785 } else {
4786 /* We must be in SMM; RSM will cause a vmexit anyway. */
4787 }
4788 }
4789 #endif
4790
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4791 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4792 void *insn, int insn_len)
4793 {
4794 struct vcpu_svm *svm = to_svm(vcpu);
4795 bool smep, smap, is_user;
4796 u64 error_code;
4797
4798 /* Check that emulation is possible during event vectoring */
4799 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4800 !kvm_can_emulate_event_vectoring(emul_type))
4801 return X86EMUL_UNHANDLEABLE_VECTORING;
4802
4803 /* Emulation is always possible when KVM has access to all guest state. */
4804 if (!sev_guest(vcpu->kvm))
4805 return X86EMUL_CONTINUE;
4806
4807 /* #UD and #GP should never be intercepted for SEV guests. */
4808 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4809 EMULTYPE_TRAP_UD_FORCED |
4810 EMULTYPE_VMWARE_GP));
4811
4812 /*
4813 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4814 * to guest register state.
4815 */
4816 if (sev_es_guest(vcpu->kvm))
4817 return X86EMUL_RETRY_INSTR;
4818
4819 /*
4820 * Emulation is possible if the instruction is already decoded, e.g.
4821 * when completing I/O after returning from userspace.
4822 */
4823 if (emul_type & EMULTYPE_NO_DECODE)
4824 return X86EMUL_CONTINUE;
4825
4826 /*
4827 * Emulation is possible for SEV guests if and only if a prefilled
4828 * buffer containing the bytes of the intercepted instruction is
4829 * available. SEV guest memory is encrypted with a guest specific key
4830 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4831 * decode garbage.
4832 *
4833 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4834 * KVM reached this point without an instruction buffer. In practice,
4835 * this path should never be hit by a well-behaved guest, e.g. KVM
4836 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4837 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4838 * access, and needs to be handled by KVM to avoid putting the guest
4839 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4840 * its the least awful option given lack of insight into the guest.
4841 *
4842 * If KVM is trying to skip an instruction, simply resume the guest.
4843 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4844 * will attempt to re-inject the INT3/INTO and skip the instruction.
4845 * In that scenario, retrying the INT3/INTO and hoping the guest will
4846 * make forward progress is the only option that has a chance of
4847 * success (and in practice it will work the vast majority of the time).
4848 */
4849 if (unlikely(!insn)) {
4850 if (emul_type & EMULTYPE_SKIP)
4851 return X86EMUL_UNHANDLEABLE;
4852
4853 kvm_queue_exception(vcpu, UD_VECTOR);
4854 return X86EMUL_PROPAGATE_FAULT;
4855 }
4856
4857 /*
4858 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4859 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4860 * the faulting instruction because the code fetch itself faulted, e.g.
4861 * the guest attempted to fetch from emulated MMIO or a guest page
4862 * table used to translate CS:RIP resides in emulated MMIO.
4863 */
4864 if (likely(insn_len))
4865 return X86EMUL_CONTINUE;
4866
4867 /*
4868 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4869 *
4870 * Errata:
4871 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4872 * possible that CPU microcode implementing DecodeAssist will fail to
4873 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4874 * be '0'. This happens because microcode reads CS:RIP using a _data_
4875 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4876 * gives up and does not fill the instruction bytes buffer.
4877 *
4878 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4879 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4880 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4881 * GuestIntrBytes field of the VMCB.
4882 *
4883 * This does _not_ mean that the erratum has been encountered, as the
4884 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4885 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4886 * encountered a reserved/not-present #PF.
4887 *
4888 * To hit the erratum, the following conditions must be true:
4889 * 1. CR4.SMAP=1 (obviously).
4890 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4891 * have been hit as the guest would have encountered a SMEP
4892 * violation #PF, not a #NPF.
4893 * 3. The #NPF is not due to a code fetch, in which case failure to
4894 * retrieve the instruction bytes is legitimate (see abvoe).
4895 *
4896 * In addition, don't apply the erratum workaround if the #NPF occurred
4897 * while translating guest page tables (see below).
4898 */
4899 error_code = svm->vmcb->control.exit_info_1;
4900 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4901 goto resume_guest;
4902
4903 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4904 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4905 is_user = svm_get_cpl(vcpu) == 3;
4906 if (smap && (!smep || is_user)) {
4907 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4908
4909 /*
4910 * If the fault occurred in userspace, arbitrarily inject #GP
4911 * to avoid killing the guest and to hopefully avoid confusing
4912 * the guest kernel too much, e.g. injecting #PF would not be
4913 * coherent with respect to the guest's page tables. Request
4914 * triple fault if the fault occurred in the kernel as there's
4915 * no fault that KVM can inject without confusing the guest.
4916 * In practice, the triple fault is moot as no sane SEV kernel
4917 * will execute from user memory while also running with SMAP=1.
4918 */
4919 if (is_user)
4920 kvm_inject_gp(vcpu, 0);
4921 else
4922 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4923 return X86EMUL_PROPAGATE_FAULT;
4924 }
4925
4926 resume_guest:
4927 /*
4928 * If the erratum was not hit, simply resume the guest and let it fault
4929 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4930 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4931 * userspace will kill the guest, and letting the emulator read garbage
4932 * will yield random behavior and potentially corrupt the guest.
4933 *
4934 * Simply resuming the guest is technically not a violation of the SEV
4935 * architecture. AMD's APM states that all code fetches and page table
4936 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4937 * APM also states that encrypted accesses to MMIO are "ignored", but
4938 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4939 * the guest spin is technically "ignoring" the access.
4940 */
4941 return X86EMUL_RETRY_INSTR;
4942 }
4943
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4944 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4945 {
4946 struct vcpu_svm *svm = to_svm(vcpu);
4947
4948 return !gif_set(svm);
4949 }
4950
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4951 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4952 {
4953 if (!sev_es_guest(vcpu->kvm))
4954 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4955
4956 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4957 }
4958
svm_vm_destroy(struct kvm * kvm)4959 static void svm_vm_destroy(struct kvm *kvm)
4960 {
4961 avic_vm_destroy(kvm);
4962 sev_vm_destroy(kvm);
4963
4964 svm_srso_vm_destroy();
4965 }
4966
svm_vm_init(struct kvm * kvm)4967 static int svm_vm_init(struct kvm *kvm)
4968 {
4969 int type = kvm->arch.vm_type;
4970
4971 if (type != KVM_X86_DEFAULT_VM &&
4972 type != KVM_X86_SW_PROTECTED_VM) {
4973 kvm->arch.has_protected_state =
4974 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4975 to_kvm_sev_info(kvm)->need_init = true;
4976
4977 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4978 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4979 }
4980
4981 if (!pause_filter_count || !pause_filter_thresh)
4982 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4983
4984 if (enable_apicv) {
4985 int ret = avic_vm_init(kvm);
4986 if (ret)
4987 return ret;
4988 }
4989
4990 svm_srso_vm_init();
4991 return 0;
4992 }
4993
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)4994 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4995 {
4996 struct page *page = snp_safe_alloc_page();
4997
4998 if (!page)
4999 return NULL;
5000
5001 return page_address(page);
5002 }
5003
5004 struct kvm_x86_ops svm_x86_ops __initdata = {
5005 .name = KBUILD_MODNAME,
5006
5007 .check_processor_compatibility = svm_check_processor_compat,
5008
5009 .hardware_unsetup = svm_hardware_unsetup,
5010 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5011 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5012 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5013 .has_emulated_msr = svm_has_emulated_msr,
5014
5015 .vcpu_create = svm_vcpu_create,
5016 .vcpu_free = svm_vcpu_free,
5017 .vcpu_reset = svm_vcpu_reset,
5018
5019 .vm_size = sizeof(struct kvm_svm),
5020 .vm_init = svm_vm_init,
5021 .vm_destroy = svm_vm_destroy,
5022
5023 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5024 .vcpu_load = svm_vcpu_load,
5025 .vcpu_put = svm_vcpu_put,
5026 .vcpu_blocking = avic_vcpu_blocking,
5027 .vcpu_unblocking = avic_vcpu_unblocking,
5028
5029 .update_exception_bitmap = svm_update_exception_bitmap,
5030 .get_feature_msr = svm_get_feature_msr,
5031 .get_msr = svm_get_msr,
5032 .set_msr = svm_set_msr,
5033 .get_segment_base = svm_get_segment_base,
5034 .get_segment = svm_get_segment,
5035 .set_segment = svm_set_segment,
5036 .get_cpl = svm_get_cpl,
5037 .get_cpl_no_cache = svm_get_cpl,
5038 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5039 .is_valid_cr0 = svm_is_valid_cr0,
5040 .set_cr0 = svm_set_cr0,
5041 .post_set_cr3 = sev_post_set_cr3,
5042 .is_valid_cr4 = svm_is_valid_cr4,
5043 .set_cr4 = svm_set_cr4,
5044 .set_efer = svm_set_efer,
5045 .get_idt = svm_get_idt,
5046 .set_idt = svm_set_idt,
5047 .get_gdt = svm_get_gdt,
5048 .set_gdt = svm_set_gdt,
5049 .set_dr7 = svm_set_dr7,
5050 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5051 .cache_reg = svm_cache_reg,
5052 .get_rflags = svm_get_rflags,
5053 .set_rflags = svm_set_rflags,
5054 .get_if_flag = svm_get_if_flag,
5055
5056 .flush_tlb_all = svm_flush_tlb_all,
5057 .flush_tlb_current = svm_flush_tlb_current,
5058 .flush_tlb_gva = svm_flush_tlb_gva,
5059 .flush_tlb_guest = svm_flush_tlb_asid,
5060
5061 .vcpu_pre_run = svm_vcpu_pre_run,
5062 .vcpu_run = svm_vcpu_run,
5063 .handle_exit = svm_handle_exit,
5064 .skip_emulated_instruction = svm_skip_emulated_instruction,
5065 .update_emulated_instruction = NULL,
5066 .set_interrupt_shadow = svm_set_interrupt_shadow,
5067 .get_interrupt_shadow = svm_get_interrupt_shadow,
5068 .patch_hypercall = svm_patch_hypercall,
5069 .inject_irq = svm_inject_irq,
5070 .inject_nmi = svm_inject_nmi,
5071 .is_vnmi_pending = svm_is_vnmi_pending,
5072 .set_vnmi_pending = svm_set_vnmi_pending,
5073 .inject_exception = svm_inject_exception,
5074 .cancel_injection = svm_cancel_injection,
5075 .interrupt_allowed = svm_interrupt_allowed,
5076 .nmi_allowed = svm_nmi_allowed,
5077 .get_nmi_mask = svm_get_nmi_mask,
5078 .set_nmi_mask = svm_set_nmi_mask,
5079 .enable_nmi_window = svm_enable_nmi_window,
5080 .enable_irq_window = svm_enable_irq_window,
5081 .update_cr8_intercept = svm_update_cr8_intercept,
5082
5083 .x2apic_icr_is_split = true,
5084 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5085 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5086 .apicv_post_state_restore = avic_apicv_post_state_restore,
5087 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5088
5089 .get_exit_info = svm_get_exit_info,
5090 .get_entry_info = svm_get_entry_info,
5091
5092 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5093
5094 .has_wbinvd_exit = svm_has_wbinvd_exit,
5095
5096 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5097 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5098 .write_tsc_offset = svm_write_tsc_offset,
5099 .write_tsc_multiplier = svm_write_tsc_multiplier,
5100
5101 .load_mmu_pgd = svm_load_mmu_pgd,
5102
5103 .check_intercept = svm_check_intercept,
5104 .handle_exit_irqoff = svm_handle_exit_irqoff,
5105
5106 .nested_ops = &svm_nested_ops,
5107
5108 .deliver_interrupt = svm_deliver_interrupt,
5109 .pi_update_irte = avic_pi_update_irte,
5110 .setup_mce = svm_setup_mce,
5111
5112 #ifdef CONFIG_KVM_SMM
5113 .smi_allowed = svm_smi_allowed,
5114 .enter_smm = svm_enter_smm,
5115 .leave_smm = svm_leave_smm,
5116 .enable_smi_window = svm_enable_smi_window,
5117 #endif
5118
5119 #ifdef CONFIG_KVM_AMD_SEV
5120 .dev_get_attr = sev_dev_get_attr,
5121 .mem_enc_ioctl = sev_mem_enc_ioctl,
5122 .mem_enc_register_region = sev_mem_enc_register_region,
5123 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5124 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5125
5126 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5127 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5128 #endif
5129 .check_emulate_instruction = svm_check_emulate_instruction,
5130
5131 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5132
5133 .recalc_intercepts = svm_recalc_intercepts,
5134 .complete_emulated_msr = svm_complete_emulated_msr,
5135
5136 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5137 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5138 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5139
5140 .gmem_prepare = sev_gmem_prepare,
5141 .gmem_invalidate = sev_gmem_invalidate,
5142 .gmem_max_mapping_level = sev_gmem_max_mapping_level,
5143 };
5144
5145 /*
5146 * The default MMIO mask is a single bit (excluding the present bit),
5147 * which could conflict with the memory encryption bit. Check for
5148 * memory encryption support and override the default MMIO mask if
5149 * memory encryption is enabled.
5150 */
svm_adjust_mmio_mask(void)5151 static __init void svm_adjust_mmio_mask(void)
5152 {
5153 unsigned int enc_bit, mask_bit;
5154 u64 msr, mask;
5155
5156 /* If there is no memory encryption support, use existing mask */
5157 if (cpuid_eax(0x80000000) < 0x8000001f)
5158 return;
5159
5160 /* If memory encryption is not enabled, use existing mask */
5161 rdmsrq(MSR_AMD64_SYSCFG, msr);
5162 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5163 return;
5164
5165 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5166 mask_bit = boot_cpu_data.x86_phys_bits;
5167
5168 /* Increment the mask bit if it is the same as the encryption bit */
5169 if (enc_bit == mask_bit)
5170 mask_bit++;
5171
5172 /*
5173 * If the mask bit location is below 52, then some bits above the
5174 * physical addressing limit will always be reserved, so use the
5175 * rsvd_bits() function to generate the mask. This mask, along with
5176 * the present bit, will be used to generate a page fault with
5177 * PFER.RSV = 1.
5178 *
5179 * If the mask bit location is 52 (or above), then clear the mask.
5180 */
5181 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5182
5183 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5184 }
5185
svm_set_cpu_caps(void)5186 static __init void svm_set_cpu_caps(void)
5187 {
5188 kvm_set_cpu_caps();
5189
5190 kvm_caps.supported_perf_cap = 0;
5191
5192 kvm_cpu_cap_clear(X86_FEATURE_IBT);
5193
5194 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5195 if (nested) {
5196 kvm_cpu_cap_set(X86_FEATURE_SVM);
5197 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5198
5199 /*
5200 * KVM currently flushes TLBs on *every* nested SVM transition,
5201 * and so for all intents and purposes KVM supports flushing by
5202 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5203 */
5204 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5205
5206 if (nrips)
5207 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5208
5209 if (npt_enabled)
5210 kvm_cpu_cap_set(X86_FEATURE_NPT);
5211
5212 if (tsc_scaling)
5213 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5214
5215 if (vls)
5216 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5217 if (lbrv)
5218 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5219
5220 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5221 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5222
5223 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5224 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5225
5226 if (vgif)
5227 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5228
5229 if (vnmi)
5230 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5231
5232 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5233 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5234 }
5235
5236 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5237 kvm_caps.has_bus_lock_exit = true;
5238
5239 /* CPUID 0x80000008 */
5240 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5241 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5242 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5243
5244 if (enable_pmu) {
5245 /*
5246 * Enumerate support for PERFCTR_CORE if and only if KVM has
5247 * access to enough counters to virtualize "core" support,
5248 * otherwise limit vPMU support to the legacy number of counters.
5249 */
5250 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5251 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5252 kvm_pmu_cap.num_counters_gp);
5253 else
5254 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5255
5256 if (kvm_pmu_cap.version != 2 ||
5257 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5258 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5259 }
5260
5261 /* CPUID 0x8000001F (SME/SEV features) */
5262 sev_set_cpu_caps();
5263
5264 /*
5265 * Clear capabilities that are automatically configured by common code,
5266 * but that require explicit SVM support (that isn't yet implemented).
5267 */
5268 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5269 kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5270 }
5271
svm_hardware_setup(void)5272 static __init int svm_hardware_setup(void)
5273 {
5274 void *iopm_va;
5275 int cpu, r;
5276
5277 /*
5278 * NX is required for shadow paging and for NPT if the NX huge pages
5279 * mitigation is enabled.
5280 */
5281 if (!boot_cpu_has(X86_FEATURE_NX)) {
5282 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5283 return -EOPNOTSUPP;
5284 }
5285 kvm_enable_efer_bits(EFER_NX);
5286
5287 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5288 XFEATURE_MASK_BNDCSR);
5289
5290 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5291 kvm_enable_efer_bits(EFER_FFXSR);
5292
5293 if (tsc_scaling) {
5294 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5295 tsc_scaling = false;
5296 } else {
5297 pr_info("TSC scaling supported\n");
5298 kvm_caps.has_tsc_control = true;
5299 }
5300 }
5301 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5302 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5303
5304 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5305
5306 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5307 kvm_enable_efer_bits(EFER_AUTOIBRS);
5308
5309 /* Check for pause filtering support */
5310 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5311 pause_filter_count = 0;
5312 pause_filter_thresh = 0;
5313 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5314 pause_filter_thresh = 0;
5315 }
5316
5317 if (nested) {
5318 pr_info("Nested Virtualization enabled\n");
5319 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5320
5321 r = nested_svm_init_msrpm_merge_offsets();
5322 if (r)
5323 return r;
5324 }
5325
5326 /*
5327 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5328 * NPT isn't supported if the host is using 2-level paging since host
5329 * CR4 is unchanged on VMRUN.
5330 */
5331 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5332 npt_enabled = false;
5333
5334 if (!boot_cpu_has(X86_FEATURE_NPT))
5335 npt_enabled = false;
5336
5337 /* Force VM NPT level equal to the host's paging level */
5338 kvm_configure_mmu(npt_enabled, get_npt_level(),
5339 get_npt_level(), PG_LEVEL_1G);
5340 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5341
5342 /*
5343 * It seems that on AMD processors PTE's accessed bit is
5344 * being set by the CPU hardware before the NPF vmexit.
5345 * This is not expected behaviour and our tests fail because
5346 * of it.
5347 * A workaround here is to disable support for
5348 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5349 * In this case userspace can know if there is support using
5350 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5351 * it
5352 * If future AMD CPU models change the behaviour described above,
5353 * this variable can be changed accordingly
5354 */
5355 allow_smaller_maxphyaddr = !npt_enabled;
5356
5357 /* Setup shadow_me_value and shadow_me_mask */
5358 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5359
5360 svm_adjust_mmio_mask();
5361
5362 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5363
5364 if (lbrv) {
5365 if (!boot_cpu_has(X86_FEATURE_LBRV))
5366 lbrv = false;
5367 else
5368 pr_info("LBR virtualization supported\n");
5369 }
5370
5371 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5372 if (!iopm_va)
5373 return -ENOMEM;
5374
5375 iopm_base = __sme_set(__pa(iopm_va));
5376
5377 /*
5378 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5379 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5380 */
5381 sev_hardware_setup();
5382
5383 svm_hv_hardware_setup();
5384
5385 enable_apicv = avic_hardware_setup();
5386 if (!enable_apicv) {
5387 enable_ipiv = false;
5388 svm_x86_ops.vcpu_blocking = NULL;
5389 svm_x86_ops.vcpu_unblocking = NULL;
5390 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5391 }
5392
5393 if (vls) {
5394 if (!npt_enabled ||
5395 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5396 !IS_ENABLED(CONFIG_X86_64)) {
5397 vls = false;
5398 } else {
5399 pr_info("Virtual VMLOAD VMSAVE supported\n");
5400 }
5401 }
5402
5403 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5404 svm_gp_erratum_intercept = false;
5405
5406 if (vgif) {
5407 if (!boot_cpu_has(X86_FEATURE_VGIF))
5408 vgif = false;
5409 else
5410 pr_info("Virtual GIF supported\n");
5411 }
5412
5413 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5414 if (vnmi)
5415 pr_info("Virtual NMI enabled\n");
5416
5417 if (!vnmi) {
5418 svm_x86_ops.is_vnmi_pending = NULL;
5419 svm_x86_ops.set_vnmi_pending = NULL;
5420 }
5421
5422 if (!enable_pmu)
5423 pr_info("PMU virtualization is disabled\n");
5424
5425 svm_set_cpu_caps();
5426
5427 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5428
5429 for_each_possible_cpu(cpu) {
5430 r = svm_cpu_init(cpu);
5431 if (r)
5432 goto err;
5433 }
5434
5435 return 0;
5436
5437 err:
5438 svm_hardware_unsetup();
5439 return r;
5440 }
5441
5442
5443 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5444 .hardware_setup = svm_hardware_setup,
5445
5446 .runtime_ops = &svm_x86_ops,
5447 .pmu_ops = &amd_pmu_ops,
5448 };
5449
__svm_exit(void)5450 static void __svm_exit(void)
5451 {
5452 kvm_x86_vendor_exit();
5453 }
5454
svm_init(void)5455 static int __init svm_init(void)
5456 {
5457 int r;
5458
5459 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5460
5461 __unused_size_checks();
5462
5463 if (!kvm_is_svm_supported())
5464 return -EOPNOTSUPP;
5465
5466 r = kvm_x86_vendor_init(&svm_init_ops);
5467 if (r)
5468 return r;
5469
5470 /*
5471 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5472 * exposed to userspace!
5473 */
5474 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5475 THIS_MODULE);
5476 if (r)
5477 goto err_kvm_init;
5478
5479 return 0;
5480
5481 err_kvm_init:
5482 __svm_exit();
5483 return r;
5484 }
5485
svm_exit(void)5486 static void __exit svm_exit(void)
5487 {
5488 kvm_exit();
5489 __svm_exit();
5490 }
5491
5492 module_init(svm_init)
5493 module_exit(svm_exit)
5494