1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38
39 #define GHCB_VERSION_MAX 2ULL
40 #define GHCB_VERSION_DEFAULT 2ULL
41 #define GHCB_VERSION_MIN 1ULL
42
43 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
44
45 /* enable/disable SEV support */
46 static bool sev_enabled = true;
47 module_param_named(sev, sev_enabled, bool, 0444);
48
49 /* enable/disable SEV-ES support */
50 static bool sev_es_enabled = true;
51 module_param_named(sev_es, sev_es_enabled, bool, 0444);
52
53 /* enable/disable SEV-SNP support */
54 static bool sev_snp_enabled = true;
55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
56
57 /* enable/disable SEV-ES DebugSwap support */
58 static bool sev_es_debug_swap_enabled = true;
59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
60 static u64 sev_supported_vmsa_features;
61
62 #define AP_RESET_HOLD_NONE 0
63 #define AP_RESET_HOLD_NAE_EVENT 1
64 #define AP_RESET_HOLD_MSR_PROTO 2
65
66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
67 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0)
68 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8)
69 #define SNP_POLICY_MASK_SMT BIT_ULL(16)
70 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17)
71 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19)
72 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20)
73
74 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \
75 SNP_POLICY_MASK_API_MAJOR | \
76 SNP_POLICY_MASK_SMT | \
77 SNP_POLICY_MASK_RSVD_MBO | \
78 SNP_POLICY_MASK_DEBUG | \
79 SNP_POLICY_MASK_SINGLE_SOCKET)
80
81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
82
83 static u8 sev_enc_bit;
84 static DECLARE_RWSEM(sev_deactivate_lock);
85 static DEFINE_MUTEX(sev_bitmap_lock);
86 unsigned int max_sev_asid;
87 static unsigned int min_sev_asid;
88 static unsigned long sev_me_mask;
89 static unsigned int nr_asids;
90 static unsigned long *sev_asid_bitmap;
91 static unsigned long *sev_reclaim_asid_bitmap;
92
93 static int snp_decommission_context(struct kvm *kvm);
94
95 struct enc_region {
96 struct list_head list;
97 unsigned long npages;
98 struct page **pages;
99 unsigned long uaddr;
100 unsigned long size;
101 };
102
103 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
105 {
106 int ret, error = 0;
107 unsigned int asid;
108
109 /* Check if there are any ASIDs to reclaim before performing a flush */
110 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
111 if (asid > max_asid)
112 return -EBUSY;
113
114 /*
115 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
116 * so it must be guarded.
117 */
118 down_write(&sev_deactivate_lock);
119
120 /* SNP firmware requires use of WBINVD for ASID recycling. */
121 wbinvd_on_all_cpus();
122
123 if (sev_snp_enabled)
124 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
125 else
126 ret = sev_guest_df_flush(&error);
127
128 up_write(&sev_deactivate_lock);
129
130 if (ret)
131 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
132 sev_snp_enabled ? "-SNP" : "", ret, error);
133
134 return ret;
135 }
136
is_mirroring_enc_context(struct kvm * kvm)137 static inline bool is_mirroring_enc_context(struct kvm *kvm)
138 {
139 return !!to_kvm_sev_info(kvm)->enc_context_owner;
140 }
141
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)142 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
143 {
144 struct kvm_vcpu *vcpu = &svm->vcpu;
145 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
146
147 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
148 }
149
150 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)151 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
152 {
153 if (sev_flush_asids(min_asid, max_asid))
154 return false;
155
156 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
157 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
158 nr_asids);
159 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
160
161 return true;
162 }
163
sev_misc_cg_try_charge(struct kvm_sev_info * sev)164 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
165 {
166 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
167 return misc_cg_try_charge(type, sev->misc_cg, 1);
168 }
169
sev_misc_cg_uncharge(struct kvm_sev_info * sev)170 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
171 {
172 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
173 misc_cg_uncharge(type, sev->misc_cg, 1);
174 }
175
sev_asid_new(struct kvm_sev_info * sev)176 static int sev_asid_new(struct kvm_sev_info *sev)
177 {
178 /*
179 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
180 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
181 * Note: min ASID can end up larger than the max if basic SEV support is
182 * effectively disabled by disallowing use of ASIDs for SEV guests.
183 */
184 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
185 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
186 unsigned int asid;
187 bool retry = true;
188 int ret;
189
190 if (min_asid > max_asid)
191 return -ENOTTY;
192
193 WARN_ON(sev->misc_cg);
194 sev->misc_cg = get_current_misc_cg();
195 ret = sev_misc_cg_try_charge(sev);
196 if (ret) {
197 put_misc_cg(sev->misc_cg);
198 sev->misc_cg = NULL;
199 return ret;
200 }
201
202 mutex_lock(&sev_bitmap_lock);
203
204 again:
205 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
206 if (asid > max_asid) {
207 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
208 retry = false;
209 goto again;
210 }
211 mutex_unlock(&sev_bitmap_lock);
212 ret = -EBUSY;
213 goto e_uncharge;
214 }
215
216 __set_bit(asid, sev_asid_bitmap);
217
218 mutex_unlock(&sev_bitmap_lock);
219
220 sev->asid = asid;
221 return 0;
222 e_uncharge:
223 sev_misc_cg_uncharge(sev);
224 put_misc_cg(sev->misc_cg);
225 sev->misc_cg = NULL;
226 return ret;
227 }
228
sev_get_asid(struct kvm * kvm)229 static unsigned int sev_get_asid(struct kvm *kvm)
230 {
231 return to_kvm_sev_info(kvm)->asid;
232 }
233
sev_asid_free(struct kvm_sev_info * sev)234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236 struct svm_cpu_data *sd;
237 int cpu;
238
239 mutex_lock(&sev_bitmap_lock);
240
241 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
242
243 for_each_possible_cpu(cpu) {
244 sd = per_cpu_ptr(&svm_data, cpu);
245 sd->sev_vmcbs[sev->asid] = NULL;
246 }
247
248 mutex_unlock(&sev_bitmap_lock);
249
250 sev_misc_cg_uncharge(sev);
251 put_misc_cg(sev->misc_cg);
252 sev->misc_cg = NULL;
253 }
254
sev_decommission(unsigned int handle)255 static void sev_decommission(unsigned int handle)
256 {
257 struct sev_data_decommission decommission;
258
259 if (!handle)
260 return;
261
262 decommission.handle = handle;
263 sev_guest_decommission(&decommission, NULL);
264 }
265
266 /*
267 * Transition a page to hypervisor-owned/shared state in the RMP table. This
268 * should not fail under normal conditions, but leak the page should that
269 * happen since it will no longer be usable by the host due to RMP protections.
270 */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 return -EIO;
276 }
277
278 return 0;
279 }
280
281 /*
282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285 * unless they are reclaimed first.
286 *
287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288 * might not be usable by the host due to being set as immutable or still
289 * being associated with a guest ASID.
290 *
291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292 * converted back to shared, as the page is no longer usable due to RMP
293 * protections, and it's infeasible for the guest to continue on.
294 */
snp_page_reclaim(struct kvm * kvm,u64 pfn)295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297 struct sev_data_snp_page_reclaim data = {0};
298 int fw_err, rc;
299
300 data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 snp_leak_pages(pfn, 1);
304 return -EIO;
305 }
306
307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 return -EIO;
309
310 return rc;
311 }
312
sev_unbind_asid(struct kvm * kvm,unsigned int handle)313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315 struct sev_data_deactivate deactivate;
316
317 if (!handle)
318 return;
319
320 deactivate.handle = handle;
321
322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 down_read(&sev_deactivate_lock);
324 sev_guest_deactivate(&deactivate, NULL);
325 up_read(&sev_deactivate_lock);
326
327 sev_decommission(handle);
328 }
329
330 /*
331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333 * 2.0 specification for more details.
334 *
335 * Technically, when an SNP Guest Request is issued, the guest will provide its
336 * own request/response pages, which could in theory be passed along directly
337 * to firmware rather than using bounce pages. However, these pages would need
338 * special care:
339 *
340 * - Both pages are from shared guest memory, so they need to be protected
341 * from migration/etc. occurring while firmware reads/writes to them. At a
342 * minimum, this requires elevating the ref counts and potentially needing
343 * an explicit pinning of the memory. This places additional restrictions
344 * on what type of memory backends userspace can use for shared guest
345 * memory since there is some reliance on using refcounted pages.
346 *
347 * - The response page needs to be switched to Firmware-owned[1] state
348 * before the firmware can write to it, which can lead to potential
349 * host RMP #PFs if the guest is misbehaved and hands the host a
350 * guest page that KVM might write to for other reasons (e.g. virtio
351 * buffers/etc.).
352 *
353 * Both of these issues can be avoided completely by using separately-allocated
354 * bounce pages for both the request/response pages and passing those to
355 * firmware instead. So that's what is being set up here.
356 *
357 * Guest requests rely on message sequence numbers to ensure requests are
358 * issued to firmware in the order the guest issues them, so concurrent guest
359 * requests generally shouldn't happen. But a misbehaved guest could issue
360 * concurrent guest requests in theory, so a mutex is used to serialize
361 * access to the bounce buffers.
362 *
363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365 * in the APM for details on the related RMP restrictions.
366 */
snp_guest_req_init(struct kvm * kvm)367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 struct page *req_page;
371
372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 if (!req_page)
374 return -ENOMEM;
375
376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 if (!sev->guest_resp_buf) {
378 __free_page(req_page);
379 return -EIO;
380 }
381
382 sev->guest_req_buf = page_address(req_page);
383 mutex_init(&sev->guest_req_mutex);
384
385 return 0;
386 }
387
snp_guest_req_cleanup(struct kvm * kvm)388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391
392 if (sev->guest_resp_buf)
393 snp_free_firmware_page(sev->guest_resp_buf);
394
395 if (sev->guest_req_buf)
396 __free_page(virt_to_page(sev->guest_req_buf));
397
398 sev->guest_req_buf = NULL;
399 sev->guest_resp_buf = NULL;
400 }
401
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 struct kvm_sev_init *data,
404 unsigned long vm_type)
405 {
406 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
407 struct sev_platform_init_args init_args = {0};
408 bool es_active = vm_type != KVM_X86_SEV_VM;
409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 int ret;
411
412 if (kvm->created_vcpus)
413 return -EINVAL;
414
415 if (data->flags)
416 return -EINVAL;
417
418 if (data->vmsa_features & ~valid_vmsa_features)
419 return -EINVAL;
420
421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 return -EINVAL;
423
424 if (unlikely(sev->active))
425 return -EINVAL;
426
427 sev->active = true;
428 sev->es_active = es_active;
429 sev->vmsa_features = data->vmsa_features;
430 sev->ghcb_version = data->ghcb_version;
431
432 /*
433 * Currently KVM supports the full range of mandatory features defined
434 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 * guests created via KVM_SEV_INIT2.
436 */
437 if (sev->es_active && !sev->ghcb_version)
438 sev->ghcb_version = GHCB_VERSION_DEFAULT;
439
440 if (vm_type == KVM_X86_SNP_VM)
441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442
443 ret = sev_asid_new(sev);
444 if (ret)
445 goto e_no_asid;
446
447 init_args.probe = false;
448 ret = sev_platform_init(&init_args);
449 if (ret)
450 goto e_free_asid;
451
452 if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
453 ret = -ENOMEM;
454 goto e_free_asid;
455 }
456
457 /* This needs to happen after SEV/SNP firmware initialization. */
458 if (vm_type == KVM_X86_SNP_VM) {
459 ret = snp_guest_req_init(kvm);
460 if (ret)
461 goto e_free;
462 }
463
464 INIT_LIST_HEAD(&sev->regions_list);
465 INIT_LIST_HEAD(&sev->mirror_vms);
466 sev->need_init = false;
467
468 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
469
470 return 0;
471
472 e_free:
473 free_cpumask_var(sev->have_run_cpus);
474 e_free_asid:
475 argp->error = init_args.error;
476 sev_asid_free(sev);
477 sev->asid = 0;
478 e_no_asid:
479 sev->vmsa_features = 0;
480 sev->es_active = false;
481 sev->active = false;
482 return ret;
483 }
484
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)485 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
486 {
487 struct kvm_sev_init data = {
488 .vmsa_features = 0,
489 .ghcb_version = 0,
490 };
491 unsigned long vm_type;
492
493 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
494 return -EINVAL;
495
496 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
497
498 /*
499 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
500 * continue to only ever support the minimal GHCB protocol version.
501 */
502 if (vm_type == KVM_X86_SEV_ES_VM)
503 data.ghcb_version = GHCB_VERSION_MIN;
504
505 return __sev_guest_init(kvm, argp, &data, vm_type);
506 }
507
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)508 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
509 {
510 struct kvm_sev_init data;
511
512 if (!to_kvm_sev_info(kvm)->need_init)
513 return -EINVAL;
514
515 if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
516 kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
517 kvm->arch.vm_type != KVM_X86_SNP_VM)
518 return -EINVAL;
519
520 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
521 return -EFAULT;
522
523 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
524 }
525
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)526 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
527 {
528 unsigned int asid = sev_get_asid(kvm);
529 struct sev_data_activate activate;
530 int ret;
531
532 /* activate ASID on the given handle */
533 activate.handle = handle;
534 activate.asid = asid;
535 ret = sev_guest_activate(&activate, error);
536
537 return ret;
538 }
539
__sev_issue_cmd(int fd,int id,void * data,int * error)540 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
541 {
542 CLASS(fd, f)(fd);
543
544 if (fd_empty(f))
545 return -EBADF;
546
547 return sev_issue_cmd_external_user(fd_file(f), id, data, error);
548 }
549
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)550 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
551 {
552 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
553
554 return __sev_issue_cmd(sev->fd, id, data, error);
555 }
556
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)557 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
558 {
559 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
560 struct sev_data_launch_start start;
561 struct kvm_sev_launch_start params;
562 void *dh_blob, *session_blob;
563 int *error = &argp->error;
564 int ret;
565
566 if (!sev_guest(kvm))
567 return -ENOTTY;
568
569 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
570 return -EFAULT;
571
572 sev->policy = params.policy;
573
574 memset(&start, 0, sizeof(start));
575
576 dh_blob = NULL;
577 if (params.dh_uaddr) {
578 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
579 if (IS_ERR(dh_blob))
580 return PTR_ERR(dh_blob);
581
582 start.dh_cert_address = __sme_set(__pa(dh_blob));
583 start.dh_cert_len = params.dh_len;
584 }
585
586 session_blob = NULL;
587 if (params.session_uaddr) {
588 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
589 if (IS_ERR(session_blob)) {
590 ret = PTR_ERR(session_blob);
591 goto e_free_dh;
592 }
593
594 start.session_address = __sme_set(__pa(session_blob));
595 start.session_len = params.session_len;
596 }
597
598 start.handle = params.handle;
599 start.policy = params.policy;
600
601 /* create memory encryption context */
602 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
603 if (ret)
604 goto e_free_session;
605
606 /* Bind ASID to this guest */
607 ret = sev_bind_asid(kvm, start.handle, error);
608 if (ret) {
609 sev_decommission(start.handle);
610 goto e_free_session;
611 }
612
613 /* return handle to userspace */
614 params.handle = start.handle;
615 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) {
616 sev_unbind_asid(kvm, start.handle);
617 ret = -EFAULT;
618 goto e_free_session;
619 }
620
621 sev->handle = start.handle;
622 sev->fd = argp->sev_fd;
623
624 e_free_session:
625 kfree(session_blob);
626 e_free_dh:
627 kfree(dh_blob);
628 return ret;
629 }
630
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)631 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
632 unsigned long ulen, unsigned long *n,
633 unsigned int flags)
634 {
635 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
636 unsigned long npages, size;
637 int npinned;
638 unsigned long locked, lock_limit;
639 struct page **pages;
640 unsigned long first, last;
641 int ret;
642
643 lockdep_assert_held(&kvm->lock);
644
645 if (ulen == 0 || uaddr + ulen < uaddr)
646 return ERR_PTR(-EINVAL);
647
648 /* Calculate number of pages. */
649 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
650 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
651 npages = (last - first + 1);
652
653 locked = sev->pages_locked + npages;
654 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
655 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
656 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
657 return ERR_PTR(-ENOMEM);
658 }
659
660 if (WARN_ON_ONCE(npages > INT_MAX))
661 return ERR_PTR(-EINVAL);
662
663 /* Avoid using vmalloc for smaller buffers. */
664 size = npages * sizeof(struct page *);
665 if (size > PAGE_SIZE)
666 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
667 else
668 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
669
670 if (!pages)
671 return ERR_PTR(-ENOMEM);
672
673 /* Pin the user virtual address. */
674 npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
675 if (npinned != npages) {
676 pr_err("SEV: Failure locking %lu pages.\n", npages);
677 ret = -ENOMEM;
678 goto err;
679 }
680
681 *n = npages;
682 sev->pages_locked = locked;
683
684 return pages;
685
686 err:
687 if (npinned > 0)
688 unpin_user_pages(pages, npinned);
689
690 kvfree(pages);
691 return ERR_PTR(ret);
692 }
693
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)694 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
695 unsigned long npages)
696 {
697 unpin_user_pages(pages, npages);
698 kvfree(pages);
699 to_kvm_sev_info(kvm)->pages_locked -= npages;
700 }
701
sev_clflush_pages(struct page * pages[],unsigned long npages)702 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
703 {
704 uint8_t *page_virtual;
705 unsigned long i;
706
707 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
708 pages == NULL)
709 return;
710
711 for (i = 0; i < npages; i++) {
712 page_virtual = kmap_local_page(pages[i]);
713 clflush_cache_range(page_virtual, PAGE_SIZE);
714 kunmap_local(page_virtual);
715 cond_resched();
716 }
717 }
718
sev_writeback_caches(struct kvm * kvm)719 static void sev_writeback_caches(struct kvm *kvm)
720 {
721 /*
722 * Note, the caller is responsible for ensuring correctness if the mask
723 * can be modified, e.g. if a CPU could be doing VMRUN.
724 */
725 if (cpumask_empty(to_kvm_sev_info(kvm)->have_run_cpus))
726 return;
727
728 /*
729 * Ensure that all dirty guest tagged cache entries are written back
730 * before releasing the pages back to the system for use. CLFLUSH will
731 * not do this without SME_COHERENT, and flushing many cache lines
732 * individually is slower than blasting WBINVD for large VMs, so issue
733 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
734 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
735 * VM's ASID.
736 *
737 * For simplicity, never remove CPUs from the bitmap. Ideally, KVM
738 * would clear the mask when flushing caches, but doing so requires
739 * serializing multiple calls and having responding CPUs (to the IPI)
740 * mark themselves as still running if they are running (or about to
741 * run) a vCPU for the VM.
742 */
743 wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
744 }
745
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)746 static unsigned long get_num_contig_pages(unsigned long idx,
747 struct page **inpages, unsigned long npages)
748 {
749 unsigned long paddr, next_paddr;
750 unsigned long i = idx + 1, pages = 1;
751
752 /* find the number of contiguous pages starting from idx */
753 paddr = __sme_page_pa(inpages[idx]);
754 while (i < npages) {
755 next_paddr = __sme_page_pa(inpages[i++]);
756 if ((paddr + PAGE_SIZE) == next_paddr) {
757 pages++;
758 paddr = next_paddr;
759 continue;
760 }
761 break;
762 }
763
764 return pages;
765 }
766
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)767 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
768 {
769 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
770 struct kvm_sev_launch_update_data params;
771 struct sev_data_launch_update_data data;
772 struct page **inpages;
773 int ret;
774
775 if (!sev_guest(kvm))
776 return -ENOTTY;
777
778 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
779 return -EFAULT;
780
781 vaddr = params.uaddr;
782 size = params.len;
783 vaddr_end = vaddr + size;
784
785 /* Lock the user memory. */
786 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
787 if (IS_ERR(inpages))
788 return PTR_ERR(inpages);
789
790 /*
791 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
792 * place; the cache may contain the data that was written unencrypted.
793 */
794 sev_clflush_pages(inpages, npages);
795
796 data.reserved = 0;
797 data.handle = to_kvm_sev_info(kvm)->handle;
798
799 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
800 int offset, len;
801
802 /*
803 * If the user buffer is not page-aligned, calculate the offset
804 * within the page.
805 */
806 offset = vaddr & (PAGE_SIZE - 1);
807
808 /* Calculate the number of pages that can be encrypted in one go. */
809 pages = get_num_contig_pages(i, inpages, npages);
810
811 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
812
813 data.len = len;
814 data.address = __sme_page_pa(inpages[i]) + offset;
815 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
816 if (ret)
817 goto e_unpin;
818
819 size -= len;
820 next_vaddr = vaddr + len;
821 }
822
823 e_unpin:
824 /* content of memory is updated, mark pages dirty */
825 for (i = 0; i < npages; i++) {
826 set_page_dirty_lock(inpages[i]);
827 mark_page_accessed(inpages[i]);
828 }
829 /* unlock the user pages */
830 sev_unpin_memory(kvm, inpages, npages);
831 return ret;
832 }
833
sev_es_sync_vmsa(struct vcpu_svm * svm)834 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
835 {
836 struct kvm_vcpu *vcpu = &svm->vcpu;
837 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
838 struct sev_es_save_area *save = svm->sev_es.vmsa;
839 struct xregs_state *xsave;
840 const u8 *s;
841 u8 *d;
842 int i;
843
844 /* Check some debug related fields before encrypting the VMSA */
845 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
846 return -EINVAL;
847
848 /*
849 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
850 * the traditional VMSA that is part of the VMCB. Copy the
851 * traditional VMSA as it has been built so far (in prep
852 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
853 */
854 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
855
856 /* Sync registgers */
857 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
858 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
859 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
860 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
861 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
862 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
863 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
864 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
865 #ifdef CONFIG_X86_64
866 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
867 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
868 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
869 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
870 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
871 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
872 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
873 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
874 #endif
875 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
876
877 /* Sync some non-GPR registers before encrypting */
878 save->xcr0 = svm->vcpu.arch.xcr0;
879 save->pkru = svm->vcpu.arch.pkru;
880 save->xss = svm->vcpu.arch.ia32_xss;
881 save->dr6 = svm->vcpu.arch.dr6;
882
883 save->sev_features = sev->vmsa_features;
884
885 /*
886 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
887 * breaking older measurements.
888 */
889 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
890 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
891 save->x87_dp = xsave->i387.rdp;
892 save->mxcsr = xsave->i387.mxcsr;
893 save->x87_ftw = xsave->i387.twd;
894 save->x87_fsw = xsave->i387.swd;
895 save->x87_fcw = xsave->i387.cwd;
896 save->x87_fop = xsave->i387.fop;
897 save->x87_ds = 0;
898 save->x87_cs = 0;
899 save->x87_rip = xsave->i387.rip;
900
901 for (i = 0; i < 8; i++) {
902 /*
903 * The format of the x87 save area is undocumented and
904 * definitely not what you would expect. It consists of
905 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
906 * area with bytes 8-9 of each register.
907 */
908 d = save->fpreg_x87 + i * 8;
909 s = ((u8 *)xsave->i387.st_space) + i * 16;
910 memcpy(d, s, 8);
911 save->fpreg_x87[64 + i * 2] = s[8];
912 save->fpreg_x87[64 + i * 2 + 1] = s[9];
913 }
914 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
915
916 s = get_xsave_addr(xsave, XFEATURE_YMM);
917 if (s)
918 memcpy(save->fpreg_ymm, s, 256);
919 else
920 memset(save->fpreg_ymm, 0, 256);
921 }
922
923 pr_debug("Virtual Machine Save Area (VMSA):\n");
924 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
925
926 return 0;
927 }
928
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)929 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
930 int *error)
931 {
932 struct sev_data_launch_update_vmsa vmsa;
933 struct vcpu_svm *svm = to_svm(vcpu);
934 int ret;
935
936 if (vcpu->guest_debug) {
937 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
938 return -EINVAL;
939 }
940
941 /* Perform some pre-encryption checks against the VMSA */
942 ret = sev_es_sync_vmsa(svm);
943 if (ret)
944 return ret;
945
946 /*
947 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
948 * the VMSA memory content (i.e it will write the same memory region
949 * with the guest's key), so invalidate it first.
950 */
951 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
952
953 vmsa.reserved = 0;
954 vmsa.handle = to_kvm_sev_info(kvm)->handle;
955 vmsa.address = __sme_pa(svm->sev_es.vmsa);
956 vmsa.len = PAGE_SIZE;
957 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
958 if (ret)
959 return ret;
960
961 /*
962 * SEV-ES guests maintain an encrypted version of their FPU
963 * state which is restored and saved on VMRUN and VMEXIT.
964 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
965 * do xsave/xrstor on it.
966 */
967 fpstate_set_confidential(&vcpu->arch.guest_fpu);
968 vcpu->arch.guest_state_protected = true;
969
970 /*
971 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
972 * only after setting guest_state_protected because KVM_SET_MSRS allows
973 * dynamic toggling of LBRV (for performance reason) on write access to
974 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
975 */
976 svm_enable_lbrv(vcpu);
977 return 0;
978 }
979
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)980 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
981 {
982 struct kvm_vcpu *vcpu;
983 unsigned long i;
984 int ret;
985
986 if (!sev_es_guest(kvm))
987 return -ENOTTY;
988
989 kvm_for_each_vcpu(i, vcpu, kvm) {
990 ret = mutex_lock_killable(&vcpu->mutex);
991 if (ret)
992 return ret;
993
994 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
995
996 mutex_unlock(&vcpu->mutex);
997 if (ret)
998 return ret;
999 }
1000
1001 return 0;
1002 }
1003
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1004 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1005 {
1006 void __user *measure = u64_to_user_ptr(argp->data);
1007 struct sev_data_launch_measure data;
1008 struct kvm_sev_launch_measure params;
1009 void __user *p = NULL;
1010 void *blob = NULL;
1011 int ret;
1012
1013 if (!sev_guest(kvm))
1014 return -ENOTTY;
1015
1016 if (copy_from_user(¶ms, measure, sizeof(params)))
1017 return -EFAULT;
1018
1019 memset(&data, 0, sizeof(data));
1020
1021 /* User wants to query the blob length */
1022 if (!params.len)
1023 goto cmd;
1024
1025 p = u64_to_user_ptr(params.uaddr);
1026 if (p) {
1027 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1028 return -EINVAL;
1029
1030 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1031 if (!blob)
1032 return -ENOMEM;
1033
1034 data.address = __psp_pa(blob);
1035 data.len = params.len;
1036 }
1037
1038 cmd:
1039 data.handle = to_kvm_sev_info(kvm)->handle;
1040 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1041
1042 /*
1043 * If we query the session length, FW responded with expected data.
1044 */
1045 if (!params.len)
1046 goto done;
1047
1048 if (ret)
1049 goto e_free_blob;
1050
1051 if (blob) {
1052 if (copy_to_user(p, blob, params.len))
1053 ret = -EFAULT;
1054 }
1055
1056 done:
1057 params.len = data.len;
1058 if (copy_to_user(measure, ¶ms, sizeof(params)))
1059 ret = -EFAULT;
1060 e_free_blob:
1061 kfree(blob);
1062 return ret;
1063 }
1064
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1065 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1066 {
1067 struct sev_data_launch_finish data;
1068
1069 if (!sev_guest(kvm))
1070 return -ENOTTY;
1071
1072 data.handle = to_kvm_sev_info(kvm)->handle;
1073 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1074 }
1075
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1076 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1077 {
1078 struct kvm_sev_guest_status params;
1079 struct sev_data_guest_status data;
1080 int ret;
1081
1082 if (!sev_guest(kvm))
1083 return -ENOTTY;
1084
1085 memset(&data, 0, sizeof(data));
1086
1087 data.handle = to_kvm_sev_info(kvm)->handle;
1088 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1089 if (ret)
1090 return ret;
1091
1092 params.policy = data.policy;
1093 params.state = data.state;
1094 params.handle = data.handle;
1095
1096 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
1097 ret = -EFAULT;
1098
1099 return ret;
1100 }
1101
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1102 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1103 unsigned long dst, int size,
1104 int *error, bool enc)
1105 {
1106 struct sev_data_dbg data;
1107
1108 data.reserved = 0;
1109 data.handle = to_kvm_sev_info(kvm)->handle;
1110 data.dst_addr = dst;
1111 data.src_addr = src;
1112 data.len = size;
1113
1114 return sev_issue_cmd(kvm,
1115 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1116 &data, error);
1117 }
1118
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1119 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1120 unsigned long dst_paddr, int sz, int *err)
1121 {
1122 int offset;
1123
1124 /*
1125 * Its safe to read more than we are asked, caller should ensure that
1126 * destination has enough space.
1127 */
1128 offset = src_paddr & 15;
1129 src_paddr = round_down(src_paddr, 16);
1130 sz = round_up(sz + offset, 16);
1131
1132 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1133 }
1134
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1135 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1136 void __user *dst_uaddr,
1137 unsigned long dst_paddr,
1138 int size, int *err)
1139 {
1140 struct page *tpage = NULL;
1141 int ret, offset;
1142
1143 /* if inputs are not 16-byte then use intermediate buffer */
1144 if (!IS_ALIGNED(dst_paddr, 16) ||
1145 !IS_ALIGNED(paddr, 16) ||
1146 !IS_ALIGNED(size, 16)) {
1147 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1148 if (!tpage)
1149 return -ENOMEM;
1150
1151 dst_paddr = __sme_page_pa(tpage);
1152 }
1153
1154 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1155 if (ret)
1156 goto e_free;
1157
1158 if (tpage) {
1159 offset = paddr & 15;
1160 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1161 ret = -EFAULT;
1162 }
1163
1164 e_free:
1165 if (tpage)
1166 __free_page(tpage);
1167
1168 return ret;
1169 }
1170
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1171 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1172 void __user *vaddr,
1173 unsigned long dst_paddr,
1174 void __user *dst_vaddr,
1175 int size, int *error)
1176 {
1177 struct page *src_tpage = NULL;
1178 struct page *dst_tpage = NULL;
1179 int ret, len = size;
1180
1181 /* If source buffer is not aligned then use an intermediate buffer */
1182 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1183 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1184 if (!src_tpage)
1185 return -ENOMEM;
1186
1187 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1188 __free_page(src_tpage);
1189 return -EFAULT;
1190 }
1191
1192 paddr = __sme_page_pa(src_tpage);
1193 }
1194
1195 /*
1196 * If destination buffer or length is not aligned then do read-modify-write:
1197 * - decrypt destination in an intermediate buffer
1198 * - copy the source buffer in an intermediate buffer
1199 * - use the intermediate buffer as source buffer
1200 */
1201 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1202 int dst_offset;
1203
1204 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1205 if (!dst_tpage) {
1206 ret = -ENOMEM;
1207 goto e_free;
1208 }
1209
1210 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1211 __sme_page_pa(dst_tpage), size, error);
1212 if (ret)
1213 goto e_free;
1214
1215 /*
1216 * If source is kernel buffer then use memcpy() otherwise
1217 * copy_from_user().
1218 */
1219 dst_offset = dst_paddr & 15;
1220
1221 if (src_tpage)
1222 memcpy(page_address(dst_tpage) + dst_offset,
1223 page_address(src_tpage), size);
1224 else {
1225 if (copy_from_user(page_address(dst_tpage) + dst_offset,
1226 vaddr, size)) {
1227 ret = -EFAULT;
1228 goto e_free;
1229 }
1230 }
1231
1232 paddr = __sme_page_pa(dst_tpage);
1233 dst_paddr = round_down(dst_paddr, 16);
1234 len = round_up(size, 16);
1235 }
1236
1237 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1238
1239 e_free:
1240 if (src_tpage)
1241 __free_page(src_tpage);
1242 if (dst_tpage)
1243 __free_page(dst_tpage);
1244 return ret;
1245 }
1246
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1247 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1248 {
1249 unsigned long vaddr, vaddr_end, next_vaddr;
1250 unsigned long dst_vaddr;
1251 struct page **src_p, **dst_p;
1252 struct kvm_sev_dbg debug;
1253 unsigned long n;
1254 unsigned int size;
1255 int ret;
1256
1257 if (!sev_guest(kvm))
1258 return -ENOTTY;
1259
1260 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1261 return -EFAULT;
1262
1263 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1264 return -EINVAL;
1265 if (!debug.dst_uaddr)
1266 return -EINVAL;
1267
1268 vaddr = debug.src_uaddr;
1269 size = debug.len;
1270 vaddr_end = vaddr + size;
1271 dst_vaddr = debug.dst_uaddr;
1272
1273 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1274 int len, s_off, d_off;
1275
1276 /* lock userspace source and destination page */
1277 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1278 if (IS_ERR(src_p))
1279 return PTR_ERR(src_p);
1280
1281 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1282 if (IS_ERR(dst_p)) {
1283 sev_unpin_memory(kvm, src_p, n);
1284 return PTR_ERR(dst_p);
1285 }
1286
1287 /*
1288 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1289 * the pages; flush the destination too so that future accesses do not
1290 * see stale data.
1291 */
1292 sev_clflush_pages(src_p, 1);
1293 sev_clflush_pages(dst_p, 1);
1294
1295 /*
1296 * Since user buffer may not be page aligned, calculate the
1297 * offset within the page.
1298 */
1299 s_off = vaddr & ~PAGE_MASK;
1300 d_off = dst_vaddr & ~PAGE_MASK;
1301 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1302
1303 if (dec)
1304 ret = __sev_dbg_decrypt_user(kvm,
1305 __sme_page_pa(src_p[0]) + s_off,
1306 (void __user *)dst_vaddr,
1307 __sme_page_pa(dst_p[0]) + d_off,
1308 len, &argp->error);
1309 else
1310 ret = __sev_dbg_encrypt_user(kvm,
1311 __sme_page_pa(src_p[0]) + s_off,
1312 (void __user *)vaddr,
1313 __sme_page_pa(dst_p[0]) + d_off,
1314 (void __user *)dst_vaddr,
1315 len, &argp->error);
1316
1317 sev_unpin_memory(kvm, src_p, n);
1318 sev_unpin_memory(kvm, dst_p, n);
1319
1320 if (ret)
1321 goto err;
1322
1323 next_vaddr = vaddr + len;
1324 dst_vaddr = dst_vaddr + len;
1325 size -= len;
1326 }
1327 err:
1328 return ret;
1329 }
1330
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1331 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1332 {
1333 struct sev_data_launch_secret data;
1334 struct kvm_sev_launch_secret params;
1335 struct page **pages;
1336 void *blob, *hdr;
1337 unsigned long n, i;
1338 int ret, offset;
1339
1340 if (!sev_guest(kvm))
1341 return -ENOTTY;
1342
1343 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1344 return -EFAULT;
1345
1346 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1347 if (IS_ERR(pages))
1348 return PTR_ERR(pages);
1349
1350 /*
1351 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1352 * place; the cache may contain the data that was written unencrypted.
1353 */
1354 sev_clflush_pages(pages, n);
1355
1356 /*
1357 * The secret must be copied into contiguous memory region, lets verify
1358 * that userspace memory pages are contiguous before we issue command.
1359 */
1360 if (get_num_contig_pages(0, pages, n) != n) {
1361 ret = -EINVAL;
1362 goto e_unpin_memory;
1363 }
1364
1365 memset(&data, 0, sizeof(data));
1366
1367 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1368 data.guest_address = __sme_page_pa(pages[0]) + offset;
1369 data.guest_len = params.guest_len;
1370
1371 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1372 if (IS_ERR(blob)) {
1373 ret = PTR_ERR(blob);
1374 goto e_unpin_memory;
1375 }
1376
1377 data.trans_address = __psp_pa(blob);
1378 data.trans_len = params.trans_len;
1379
1380 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1381 if (IS_ERR(hdr)) {
1382 ret = PTR_ERR(hdr);
1383 goto e_free_blob;
1384 }
1385 data.hdr_address = __psp_pa(hdr);
1386 data.hdr_len = params.hdr_len;
1387
1388 data.handle = to_kvm_sev_info(kvm)->handle;
1389 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1390
1391 kfree(hdr);
1392
1393 e_free_blob:
1394 kfree(blob);
1395 e_unpin_memory:
1396 /* content of memory is updated, mark pages dirty */
1397 for (i = 0; i < n; i++) {
1398 set_page_dirty_lock(pages[i]);
1399 mark_page_accessed(pages[i]);
1400 }
1401 sev_unpin_memory(kvm, pages, n);
1402 return ret;
1403 }
1404
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1405 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1406 {
1407 void __user *report = u64_to_user_ptr(argp->data);
1408 struct sev_data_attestation_report data;
1409 struct kvm_sev_attestation_report params;
1410 void __user *p;
1411 void *blob = NULL;
1412 int ret;
1413
1414 if (!sev_guest(kvm))
1415 return -ENOTTY;
1416
1417 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1418 return -EFAULT;
1419
1420 memset(&data, 0, sizeof(data));
1421
1422 /* User wants to query the blob length */
1423 if (!params.len)
1424 goto cmd;
1425
1426 p = u64_to_user_ptr(params.uaddr);
1427 if (p) {
1428 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1429 return -EINVAL;
1430
1431 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1432 if (!blob)
1433 return -ENOMEM;
1434
1435 data.address = __psp_pa(blob);
1436 data.len = params.len;
1437 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1438 }
1439 cmd:
1440 data.handle = to_kvm_sev_info(kvm)->handle;
1441 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1442 /*
1443 * If we query the session length, FW responded with expected data.
1444 */
1445 if (!params.len)
1446 goto done;
1447
1448 if (ret)
1449 goto e_free_blob;
1450
1451 if (blob) {
1452 if (copy_to_user(p, blob, params.len))
1453 ret = -EFAULT;
1454 }
1455
1456 done:
1457 params.len = data.len;
1458 if (copy_to_user(report, ¶ms, sizeof(params)))
1459 ret = -EFAULT;
1460 e_free_blob:
1461 kfree(blob);
1462 return ret;
1463 }
1464
1465 /* Userspace wants to query session length. */
1466 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1467 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1468 struct kvm_sev_send_start *params)
1469 {
1470 struct sev_data_send_start data;
1471 int ret;
1472
1473 memset(&data, 0, sizeof(data));
1474 data.handle = to_kvm_sev_info(kvm)->handle;
1475 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1476
1477 params->session_len = data.session_len;
1478 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1479 sizeof(struct kvm_sev_send_start)))
1480 ret = -EFAULT;
1481
1482 return ret;
1483 }
1484
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1485 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1486 {
1487 struct sev_data_send_start data;
1488 struct kvm_sev_send_start params;
1489 void *amd_certs, *session_data;
1490 void *pdh_cert, *plat_certs;
1491 int ret;
1492
1493 if (!sev_guest(kvm))
1494 return -ENOTTY;
1495
1496 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1497 sizeof(struct kvm_sev_send_start)))
1498 return -EFAULT;
1499
1500 /* if session_len is zero, userspace wants to query the session length */
1501 if (!params.session_len)
1502 return __sev_send_start_query_session_length(kvm, argp,
1503 ¶ms);
1504
1505 /* some sanity checks */
1506 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1507 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1508 return -EINVAL;
1509
1510 /* allocate the memory to hold the session data blob */
1511 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1512 if (!session_data)
1513 return -ENOMEM;
1514
1515 /* copy the certificate blobs from userspace */
1516 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1517 params.pdh_cert_len);
1518 if (IS_ERR(pdh_cert)) {
1519 ret = PTR_ERR(pdh_cert);
1520 goto e_free_session;
1521 }
1522
1523 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1524 params.plat_certs_len);
1525 if (IS_ERR(plat_certs)) {
1526 ret = PTR_ERR(plat_certs);
1527 goto e_free_pdh;
1528 }
1529
1530 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1531 params.amd_certs_len);
1532 if (IS_ERR(amd_certs)) {
1533 ret = PTR_ERR(amd_certs);
1534 goto e_free_plat_cert;
1535 }
1536
1537 /* populate the FW SEND_START field with system physical address */
1538 memset(&data, 0, sizeof(data));
1539 data.pdh_cert_address = __psp_pa(pdh_cert);
1540 data.pdh_cert_len = params.pdh_cert_len;
1541 data.plat_certs_address = __psp_pa(plat_certs);
1542 data.plat_certs_len = params.plat_certs_len;
1543 data.amd_certs_address = __psp_pa(amd_certs);
1544 data.amd_certs_len = params.amd_certs_len;
1545 data.session_address = __psp_pa(session_data);
1546 data.session_len = params.session_len;
1547 data.handle = to_kvm_sev_info(kvm)->handle;
1548
1549 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1550
1551 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1552 session_data, params.session_len)) {
1553 ret = -EFAULT;
1554 goto e_free_amd_cert;
1555 }
1556
1557 params.policy = data.policy;
1558 params.session_len = data.session_len;
1559 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms,
1560 sizeof(struct kvm_sev_send_start)))
1561 ret = -EFAULT;
1562
1563 e_free_amd_cert:
1564 kfree(amd_certs);
1565 e_free_plat_cert:
1566 kfree(plat_certs);
1567 e_free_pdh:
1568 kfree(pdh_cert);
1569 e_free_session:
1570 kfree(session_data);
1571 return ret;
1572 }
1573
1574 /* Userspace wants to query either header or trans length. */
1575 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1576 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1577 struct kvm_sev_send_update_data *params)
1578 {
1579 struct sev_data_send_update_data data;
1580 int ret;
1581
1582 memset(&data, 0, sizeof(data));
1583 data.handle = to_kvm_sev_info(kvm)->handle;
1584 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1585
1586 params->hdr_len = data.hdr_len;
1587 params->trans_len = data.trans_len;
1588
1589 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1590 sizeof(struct kvm_sev_send_update_data)))
1591 ret = -EFAULT;
1592
1593 return ret;
1594 }
1595
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1596 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1597 {
1598 struct sev_data_send_update_data data;
1599 struct kvm_sev_send_update_data params;
1600 void *hdr, *trans_data;
1601 struct page **guest_page;
1602 unsigned long n;
1603 int ret, offset;
1604
1605 if (!sev_guest(kvm))
1606 return -ENOTTY;
1607
1608 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1609 sizeof(struct kvm_sev_send_update_data)))
1610 return -EFAULT;
1611
1612 /* userspace wants to query either header or trans length */
1613 if (!params.trans_len || !params.hdr_len)
1614 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1615
1616 if (!params.trans_uaddr || !params.guest_uaddr ||
1617 !params.guest_len || !params.hdr_uaddr)
1618 return -EINVAL;
1619
1620 /* Check if we are crossing the page boundary */
1621 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1622 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1623 return -EINVAL;
1624
1625 /* Pin guest memory */
1626 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1627 PAGE_SIZE, &n, 0);
1628 if (IS_ERR(guest_page))
1629 return PTR_ERR(guest_page);
1630
1631 /* allocate memory for header and transport buffer */
1632 ret = -ENOMEM;
1633 hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1634 if (!hdr)
1635 goto e_unpin;
1636
1637 trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1638 if (!trans_data)
1639 goto e_free_hdr;
1640
1641 memset(&data, 0, sizeof(data));
1642 data.hdr_address = __psp_pa(hdr);
1643 data.hdr_len = params.hdr_len;
1644 data.trans_address = __psp_pa(trans_data);
1645 data.trans_len = params.trans_len;
1646
1647 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1648 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1649 data.guest_address |= sev_me_mask;
1650 data.guest_len = params.guest_len;
1651 data.handle = to_kvm_sev_info(kvm)->handle;
1652
1653 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1654
1655 if (ret)
1656 goto e_free_trans_data;
1657
1658 /* copy transport buffer to user space */
1659 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1660 trans_data, params.trans_len)) {
1661 ret = -EFAULT;
1662 goto e_free_trans_data;
1663 }
1664
1665 /* Copy packet header to userspace. */
1666 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1667 params.hdr_len))
1668 ret = -EFAULT;
1669
1670 e_free_trans_data:
1671 kfree(trans_data);
1672 e_free_hdr:
1673 kfree(hdr);
1674 e_unpin:
1675 sev_unpin_memory(kvm, guest_page, n);
1676
1677 return ret;
1678 }
1679
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1680 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1681 {
1682 struct sev_data_send_finish data;
1683
1684 if (!sev_guest(kvm))
1685 return -ENOTTY;
1686
1687 data.handle = to_kvm_sev_info(kvm)->handle;
1688 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1689 }
1690
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1691 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1692 {
1693 struct sev_data_send_cancel data;
1694
1695 if (!sev_guest(kvm))
1696 return -ENOTTY;
1697
1698 data.handle = to_kvm_sev_info(kvm)->handle;
1699 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1700 }
1701
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1702 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1703 {
1704 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1705 struct sev_data_receive_start start;
1706 struct kvm_sev_receive_start params;
1707 int *error = &argp->error;
1708 void *session_data;
1709 void *pdh_data;
1710 int ret;
1711
1712 if (!sev_guest(kvm))
1713 return -ENOTTY;
1714
1715 /* Get parameter from the userspace */
1716 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1717 sizeof(struct kvm_sev_receive_start)))
1718 return -EFAULT;
1719
1720 /* some sanity checks */
1721 if (!params.pdh_uaddr || !params.pdh_len ||
1722 !params.session_uaddr || !params.session_len)
1723 return -EINVAL;
1724
1725 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1726 if (IS_ERR(pdh_data))
1727 return PTR_ERR(pdh_data);
1728
1729 session_data = psp_copy_user_blob(params.session_uaddr,
1730 params.session_len);
1731 if (IS_ERR(session_data)) {
1732 ret = PTR_ERR(session_data);
1733 goto e_free_pdh;
1734 }
1735
1736 memset(&start, 0, sizeof(start));
1737 start.handle = params.handle;
1738 start.policy = params.policy;
1739 start.pdh_cert_address = __psp_pa(pdh_data);
1740 start.pdh_cert_len = params.pdh_len;
1741 start.session_address = __psp_pa(session_data);
1742 start.session_len = params.session_len;
1743
1744 /* create memory encryption context */
1745 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1746 error);
1747 if (ret)
1748 goto e_free_session;
1749
1750 /* Bind ASID to this guest */
1751 ret = sev_bind_asid(kvm, start.handle, error);
1752 if (ret) {
1753 sev_decommission(start.handle);
1754 goto e_free_session;
1755 }
1756
1757 params.handle = start.handle;
1758 if (copy_to_user(u64_to_user_ptr(argp->data),
1759 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1760 ret = -EFAULT;
1761 sev_unbind_asid(kvm, start.handle);
1762 goto e_free_session;
1763 }
1764
1765 sev->handle = start.handle;
1766 sev->fd = argp->sev_fd;
1767
1768 e_free_session:
1769 kfree(session_data);
1770 e_free_pdh:
1771 kfree(pdh_data);
1772
1773 return ret;
1774 }
1775
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1776 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1777 {
1778 struct kvm_sev_receive_update_data params;
1779 struct sev_data_receive_update_data data;
1780 void *hdr = NULL, *trans = NULL;
1781 struct page **guest_page;
1782 unsigned long n;
1783 int ret, offset;
1784
1785 if (!sev_guest(kvm))
1786 return -EINVAL;
1787
1788 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1789 sizeof(struct kvm_sev_receive_update_data)))
1790 return -EFAULT;
1791
1792 if (!params.hdr_uaddr || !params.hdr_len ||
1793 !params.guest_uaddr || !params.guest_len ||
1794 !params.trans_uaddr || !params.trans_len)
1795 return -EINVAL;
1796
1797 /* Check if we are crossing the page boundary */
1798 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1799 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1800 return -EINVAL;
1801
1802 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1803 if (IS_ERR(hdr))
1804 return PTR_ERR(hdr);
1805
1806 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1807 if (IS_ERR(trans)) {
1808 ret = PTR_ERR(trans);
1809 goto e_free_hdr;
1810 }
1811
1812 memset(&data, 0, sizeof(data));
1813 data.hdr_address = __psp_pa(hdr);
1814 data.hdr_len = params.hdr_len;
1815 data.trans_address = __psp_pa(trans);
1816 data.trans_len = params.trans_len;
1817
1818 /* Pin guest memory */
1819 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1820 PAGE_SIZE, &n, FOLL_WRITE);
1821 if (IS_ERR(guest_page)) {
1822 ret = PTR_ERR(guest_page);
1823 goto e_free_trans;
1824 }
1825
1826 /*
1827 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1828 * encrypts the written data with the guest's key, and the cache may
1829 * contain dirty, unencrypted data.
1830 */
1831 sev_clflush_pages(guest_page, n);
1832
1833 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1834 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1835 data.guest_address |= sev_me_mask;
1836 data.guest_len = params.guest_len;
1837 data.handle = to_kvm_sev_info(kvm)->handle;
1838
1839 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1840 &argp->error);
1841
1842 sev_unpin_memory(kvm, guest_page, n);
1843
1844 e_free_trans:
1845 kfree(trans);
1846 e_free_hdr:
1847 kfree(hdr);
1848
1849 return ret;
1850 }
1851
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1852 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1853 {
1854 struct sev_data_receive_finish data;
1855
1856 if (!sev_guest(kvm))
1857 return -ENOTTY;
1858
1859 data.handle = to_kvm_sev_info(kvm)->handle;
1860 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1861 }
1862
is_cmd_allowed_from_mirror(u32 cmd_id)1863 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1864 {
1865 /*
1866 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1867 * active mirror VMs. Also allow the debugging and status commands.
1868 */
1869 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1870 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1871 cmd_id == KVM_SEV_DBG_ENCRYPT)
1872 return true;
1873
1874 return false;
1875 }
1876
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1877 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1878 {
1879 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1880 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1881 int r = -EBUSY;
1882
1883 if (dst_kvm == src_kvm)
1884 return -EINVAL;
1885
1886 /*
1887 * Bail if these VMs are already involved in a migration to avoid
1888 * deadlock between two VMs trying to migrate to/from each other.
1889 */
1890 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1891 return -EBUSY;
1892
1893 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1894 goto release_dst;
1895
1896 r = -EINTR;
1897 if (mutex_lock_killable(&dst_kvm->lock))
1898 goto release_src;
1899 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1900 goto unlock_dst;
1901 return 0;
1902
1903 unlock_dst:
1904 mutex_unlock(&dst_kvm->lock);
1905 release_src:
1906 atomic_set_release(&src_sev->migration_in_progress, 0);
1907 release_dst:
1908 atomic_set_release(&dst_sev->migration_in_progress, 0);
1909 return r;
1910 }
1911
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1912 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1913 {
1914 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1915 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1916
1917 mutex_unlock(&dst_kvm->lock);
1918 mutex_unlock(&src_kvm->lock);
1919 atomic_set_release(&dst_sev->migration_in_progress, 0);
1920 atomic_set_release(&src_sev->migration_in_progress, 0);
1921 }
1922
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1923 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1924 {
1925 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1926 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1927 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1928 struct vcpu_svm *dst_svm, *src_svm;
1929 struct kvm_sev_info *mirror;
1930 unsigned long i;
1931
1932 dst->active = true;
1933 dst->asid = src->asid;
1934 dst->handle = src->handle;
1935 dst->pages_locked = src->pages_locked;
1936 dst->enc_context_owner = src->enc_context_owner;
1937 dst->es_active = src->es_active;
1938 dst->vmsa_features = src->vmsa_features;
1939
1940 src->asid = 0;
1941 src->active = false;
1942 src->handle = 0;
1943 src->pages_locked = 0;
1944 src->enc_context_owner = NULL;
1945 src->es_active = false;
1946
1947 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1948
1949 /*
1950 * If this VM has mirrors, "transfer" each mirror's refcount of the
1951 * source to the destination (this KVM). The caller holds a reference
1952 * to the source, so there's no danger of use-after-free.
1953 */
1954 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1955 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1956 kvm_get_kvm(dst_kvm);
1957 kvm_put_kvm(src_kvm);
1958 mirror->enc_context_owner = dst_kvm;
1959 }
1960
1961 /*
1962 * If this VM is a mirror, remove the old mirror from the owners list
1963 * and add the new mirror to the list.
1964 */
1965 if (is_mirroring_enc_context(dst_kvm)) {
1966 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1967
1968 list_del(&src->mirror_entry);
1969 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1970 }
1971
1972 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1973 dst_svm = to_svm(dst_vcpu);
1974
1975 sev_init_vmcb(dst_svm);
1976
1977 if (!dst->es_active)
1978 continue;
1979
1980 /*
1981 * Note, the source is not required to have the same number of
1982 * vCPUs as the destination when migrating a vanilla SEV VM.
1983 */
1984 src_vcpu = kvm_get_vcpu(src_kvm, i);
1985 src_svm = to_svm(src_vcpu);
1986
1987 /*
1988 * Transfer VMSA and GHCB state to the destination. Nullify and
1989 * clear source fields as appropriate, the state now belongs to
1990 * the destination.
1991 */
1992 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1993 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1994 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1995 dst_vcpu->arch.guest_state_protected = true;
1996
1997 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1998 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1999 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2000 src_vcpu->arch.guest_state_protected = false;
2001 }
2002 }
2003
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2004 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2005 {
2006 struct kvm_vcpu *src_vcpu;
2007 unsigned long i;
2008
2009 if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2010 dst->created_vcpus != atomic_read(&dst->online_vcpus))
2011 return -EBUSY;
2012
2013 if (!sev_es_guest(src))
2014 return 0;
2015
2016 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2017 return -EINVAL;
2018
2019 kvm_for_each_vcpu(i, src_vcpu, src) {
2020 if (!src_vcpu->arch.guest_state_protected)
2021 return -EINVAL;
2022 }
2023
2024 return 0;
2025 }
2026
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2027 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2028 {
2029 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2030 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2031 CLASS(fd, f)(source_fd);
2032 struct kvm *source_kvm;
2033 bool charged = false;
2034 int ret;
2035
2036 if (fd_empty(f))
2037 return -EBADF;
2038
2039 if (!file_is_kvm(fd_file(f)))
2040 return -EBADF;
2041
2042 source_kvm = fd_file(f)->private_data;
2043 ret = sev_lock_two_vms(kvm, source_kvm);
2044 if (ret)
2045 return ret;
2046
2047 if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2048 sev_guest(kvm) || !sev_guest(source_kvm)) {
2049 ret = -EINVAL;
2050 goto out_unlock;
2051 }
2052
2053 src_sev = to_kvm_sev_info(source_kvm);
2054
2055 dst_sev->misc_cg = get_current_misc_cg();
2056 cg_cleanup_sev = dst_sev;
2057 if (dst_sev->misc_cg != src_sev->misc_cg) {
2058 ret = sev_misc_cg_try_charge(dst_sev);
2059 if (ret)
2060 goto out_dst_cgroup;
2061 charged = true;
2062 }
2063
2064 ret = kvm_lock_all_vcpus(kvm);
2065 if (ret)
2066 goto out_dst_cgroup;
2067 ret = kvm_lock_all_vcpus(source_kvm);
2068 if (ret)
2069 goto out_dst_vcpu;
2070
2071 ret = sev_check_source_vcpus(kvm, source_kvm);
2072 if (ret)
2073 goto out_source_vcpu;
2074
2075 /*
2076 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2077 * the set of CPUs from the source. If a CPU was used to run a vCPU in
2078 * the source VM but is never used for the destination VM, then the CPU
2079 * can only have cached memory that was accessible to the source VM.
2080 */
2081 if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2082 ret = -ENOMEM;
2083 goto out_source_vcpu;
2084 }
2085
2086 sev_migrate_from(kvm, source_kvm);
2087 kvm_vm_dead(source_kvm);
2088 cg_cleanup_sev = src_sev;
2089 ret = 0;
2090
2091 out_source_vcpu:
2092 kvm_unlock_all_vcpus(source_kvm);
2093 out_dst_vcpu:
2094 kvm_unlock_all_vcpus(kvm);
2095 out_dst_cgroup:
2096 /* Operates on the source on success, on the destination on failure. */
2097 if (charged)
2098 sev_misc_cg_uncharge(cg_cleanup_sev);
2099 put_misc_cg(cg_cleanup_sev->misc_cg);
2100 cg_cleanup_sev->misc_cg = NULL;
2101 out_unlock:
2102 sev_unlock_two_vms(kvm, source_kvm);
2103 return ret;
2104 }
2105
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2106 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2107 {
2108 if (group != KVM_X86_GRP_SEV)
2109 return -ENXIO;
2110
2111 switch (attr) {
2112 case KVM_X86_SEV_VMSA_FEATURES:
2113 *val = sev_supported_vmsa_features;
2114 return 0;
2115
2116 default:
2117 return -ENXIO;
2118 }
2119 }
2120
2121 /*
2122 * The guest context contains all the information, keys and metadata
2123 * associated with the guest that the firmware tracks to implement SEV
2124 * and SNP features. The firmware stores the guest context in hypervisor
2125 * provide page via the SNP_GCTX_CREATE command.
2126 */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2127 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2128 {
2129 struct sev_data_snp_addr data = {};
2130 void *context;
2131 int rc;
2132
2133 /* Allocate memory for context page */
2134 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2135 if (!context)
2136 return NULL;
2137
2138 data.address = __psp_pa(context);
2139 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2140 if (rc) {
2141 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2142 rc, argp->error);
2143 snp_free_firmware_page(context);
2144 return NULL;
2145 }
2146
2147 return context;
2148 }
2149
snp_bind_asid(struct kvm * kvm,int * error)2150 static int snp_bind_asid(struct kvm *kvm, int *error)
2151 {
2152 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2153 struct sev_data_snp_activate data = {0};
2154
2155 data.gctx_paddr = __psp_pa(sev->snp_context);
2156 data.asid = sev_get_asid(kvm);
2157 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2158 }
2159
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2160 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2161 {
2162 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2163 struct sev_data_snp_launch_start start = {0};
2164 struct kvm_sev_snp_launch_start params;
2165 int rc;
2166
2167 if (!sev_snp_guest(kvm))
2168 return -ENOTTY;
2169
2170 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2171 return -EFAULT;
2172
2173 /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2174 if (sev->snp_context)
2175 return -EINVAL;
2176
2177 if (params.flags)
2178 return -EINVAL;
2179
2180 if (params.policy & ~SNP_POLICY_MASK_VALID)
2181 return -EINVAL;
2182
2183 /* Check for policy bits that must be set */
2184 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2185 return -EINVAL;
2186
2187 sev->policy = params.policy;
2188
2189 sev->snp_context = snp_context_create(kvm, argp);
2190 if (!sev->snp_context)
2191 return -ENOTTY;
2192
2193 start.gctx_paddr = __psp_pa(sev->snp_context);
2194 start.policy = params.policy;
2195 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2196 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2197 if (rc) {
2198 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2199 __func__, rc);
2200 goto e_free_context;
2201 }
2202
2203 sev->fd = argp->sev_fd;
2204 rc = snp_bind_asid(kvm, &argp->error);
2205 if (rc) {
2206 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2207 __func__, rc);
2208 goto e_free_context;
2209 }
2210
2211 return 0;
2212
2213 e_free_context:
2214 snp_decommission_context(kvm);
2215
2216 return rc;
2217 }
2218
2219 struct sev_gmem_populate_args {
2220 __u8 type;
2221 int sev_fd;
2222 int fw_error;
2223 };
2224
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2225 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2226 void __user *src, int order, void *opaque)
2227 {
2228 struct sev_gmem_populate_args *sev_populate_args = opaque;
2229 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2230 int n_private = 0, ret, i;
2231 int npages = (1 << order);
2232 gfn_t gfn;
2233
2234 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2235 return -EINVAL;
2236
2237 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2238 struct sev_data_snp_launch_update fw_args = {0};
2239 bool assigned = false;
2240 int level;
2241
2242 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2243 if (ret || assigned) {
2244 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2245 __func__, gfn, ret, assigned);
2246 ret = ret ? -EINVAL : -EEXIST;
2247 goto err;
2248 }
2249
2250 if (src) {
2251 void *vaddr = kmap_local_pfn(pfn + i);
2252
2253 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2254 ret = -EFAULT;
2255 goto err;
2256 }
2257 kunmap_local(vaddr);
2258 }
2259
2260 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2261 sev_get_asid(kvm), true);
2262 if (ret)
2263 goto err;
2264
2265 n_private++;
2266
2267 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2268 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2269 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2270 fw_args.page_type = sev_populate_args->type;
2271
2272 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2273 &fw_args, &sev_populate_args->fw_error);
2274 if (ret)
2275 goto fw_err;
2276 }
2277
2278 return 0;
2279
2280 fw_err:
2281 /*
2282 * If the firmware command failed handle the reclaim and cleanup of that
2283 * PFN specially vs. prior pages which can be cleaned up below without
2284 * needing to reclaim in advance.
2285 *
2286 * Additionally, when invalid CPUID function entries are detected,
2287 * firmware writes the expected values into the page and leaves it
2288 * unencrypted so it can be used for debugging and error-reporting.
2289 *
2290 * Copy this page back into the source buffer so userspace can use this
2291 * information to provide information on which CPUID leaves/fields
2292 * failed CPUID validation.
2293 */
2294 if (!snp_page_reclaim(kvm, pfn + i) &&
2295 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2296 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2297 void *vaddr = kmap_local_pfn(pfn + i);
2298
2299 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2300 pr_debug("Failed to write CPUID page back to userspace\n");
2301
2302 kunmap_local(vaddr);
2303 }
2304
2305 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2306 n_private--;
2307
2308 err:
2309 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2310 __func__, ret, sev_populate_args->fw_error, n_private);
2311 for (i = 0; i < n_private; i++)
2312 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2313
2314 return ret;
2315 }
2316
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2317 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2318 {
2319 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2320 struct sev_gmem_populate_args sev_populate_args = {0};
2321 struct kvm_sev_snp_launch_update params;
2322 struct kvm_memory_slot *memslot;
2323 long npages, count;
2324 void __user *src;
2325 int ret = 0;
2326
2327 if (!sev_snp_guest(kvm) || !sev->snp_context)
2328 return -EINVAL;
2329
2330 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2331 return -EFAULT;
2332
2333 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2334 params.gfn_start, params.len, params.type, params.flags);
2335
2336 if (!PAGE_ALIGNED(params.len) || params.flags ||
2337 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2338 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2339 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2340 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2341 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2342 return -EINVAL;
2343
2344 npages = params.len / PAGE_SIZE;
2345
2346 /*
2347 * For each GFN that's being prepared as part of the initial guest
2348 * state, the following pre-conditions are verified:
2349 *
2350 * 1) The backing memslot is a valid private memslot.
2351 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2352 * beforehand.
2353 * 3) The PFN of the guest_memfd has not already been set to private
2354 * in the RMP table.
2355 *
2356 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2357 * faults if there's a race between a fault and an attribute update via
2358 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2359 * here. However, kvm->slots_lock guards against both this as well as
2360 * concurrent memslot updates occurring while these checks are being
2361 * performed, so use that here to make it easier to reason about the
2362 * initial expected state and better guard against unexpected
2363 * situations.
2364 */
2365 mutex_lock(&kvm->slots_lock);
2366
2367 memslot = gfn_to_memslot(kvm, params.gfn_start);
2368 if (!kvm_slot_can_be_private(memslot)) {
2369 ret = -EINVAL;
2370 goto out;
2371 }
2372
2373 sev_populate_args.sev_fd = argp->sev_fd;
2374 sev_populate_args.type = params.type;
2375 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2376
2377 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2378 sev_gmem_post_populate, &sev_populate_args);
2379 if (count < 0) {
2380 argp->error = sev_populate_args.fw_error;
2381 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2382 __func__, count, argp->error);
2383 ret = -EIO;
2384 } else {
2385 params.gfn_start += count;
2386 params.len -= count * PAGE_SIZE;
2387 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2388 params.uaddr += count * PAGE_SIZE;
2389
2390 ret = 0;
2391 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
2392 ret = -EFAULT;
2393 }
2394
2395 out:
2396 mutex_unlock(&kvm->slots_lock);
2397
2398 return ret;
2399 }
2400
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2401 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2402 {
2403 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2404 struct sev_data_snp_launch_update data = {};
2405 struct kvm_vcpu *vcpu;
2406 unsigned long i;
2407 int ret;
2408
2409 data.gctx_paddr = __psp_pa(sev->snp_context);
2410 data.page_type = SNP_PAGE_TYPE_VMSA;
2411
2412 kvm_for_each_vcpu(i, vcpu, kvm) {
2413 struct vcpu_svm *svm = to_svm(vcpu);
2414 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2415
2416 ret = sev_es_sync_vmsa(svm);
2417 if (ret)
2418 return ret;
2419
2420 /* Transition the VMSA page to a firmware state. */
2421 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2422 if (ret)
2423 return ret;
2424
2425 /* Issue the SNP command to encrypt the VMSA */
2426 data.address = __sme_pa(svm->sev_es.vmsa);
2427 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2428 &data, &argp->error);
2429 if (ret) {
2430 snp_page_reclaim(kvm, pfn);
2431
2432 return ret;
2433 }
2434
2435 svm->vcpu.arch.guest_state_protected = true;
2436 /*
2437 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2438 * be _always_ ON. Enable it only after setting
2439 * guest_state_protected because KVM_SET_MSRS allows dynamic
2440 * toggling of LBRV (for performance reason) on write access to
2441 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2442 */
2443 svm_enable_lbrv(vcpu);
2444 }
2445
2446 return 0;
2447 }
2448
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2449 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2450 {
2451 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2452 struct kvm_sev_snp_launch_finish params;
2453 struct sev_data_snp_launch_finish *data;
2454 void *id_block = NULL, *id_auth = NULL;
2455 int ret;
2456
2457 if (!sev_snp_guest(kvm))
2458 return -ENOTTY;
2459
2460 if (!sev->snp_context)
2461 return -EINVAL;
2462
2463 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2464 return -EFAULT;
2465
2466 if (params.flags)
2467 return -EINVAL;
2468
2469 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2470 ret = snp_launch_update_vmsa(kvm, argp);
2471 if (ret)
2472 return ret;
2473
2474 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2475 if (!data)
2476 return -ENOMEM;
2477
2478 if (params.id_block_en) {
2479 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2480 if (IS_ERR(id_block)) {
2481 ret = PTR_ERR(id_block);
2482 goto e_free;
2483 }
2484
2485 data->id_block_en = 1;
2486 data->id_block_paddr = __sme_pa(id_block);
2487
2488 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2489 if (IS_ERR(id_auth)) {
2490 ret = PTR_ERR(id_auth);
2491 goto e_free_id_block;
2492 }
2493
2494 data->id_auth_paddr = __sme_pa(id_auth);
2495
2496 if (params.auth_key_en)
2497 data->auth_key_en = 1;
2498 }
2499
2500 data->vcek_disabled = params.vcek_disabled;
2501
2502 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2503 data->gctx_paddr = __psp_pa(sev->snp_context);
2504 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2505
2506 /*
2507 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2508 * can be given to the guest simply by marking the RMP entry as private.
2509 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2510 */
2511 if (!ret)
2512 kvm->arch.pre_fault_allowed = true;
2513
2514 kfree(id_auth);
2515
2516 e_free_id_block:
2517 kfree(id_block);
2518
2519 e_free:
2520 kfree(data);
2521
2522 return ret;
2523 }
2524
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2525 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2526 {
2527 struct kvm_sev_cmd sev_cmd;
2528 int r;
2529
2530 if (!sev_enabled)
2531 return -ENOTTY;
2532
2533 if (!argp)
2534 return 0;
2535
2536 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2537 return -EFAULT;
2538
2539 mutex_lock(&kvm->lock);
2540
2541 /* Only the enc_context_owner handles some memory enc operations. */
2542 if (is_mirroring_enc_context(kvm) &&
2543 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2544 r = -EINVAL;
2545 goto out;
2546 }
2547
2548 /*
2549 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2550 * allow the use of SNP-specific commands.
2551 */
2552 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2553 r = -EPERM;
2554 goto out;
2555 }
2556
2557 switch (sev_cmd.id) {
2558 case KVM_SEV_ES_INIT:
2559 if (!sev_es_enabled) {
2560 r = -ENOTTY;
2561 goto out;
2562 }
2563 fallthrough;
2564 case KVM_SEV_INIT:
2565 r = sev_guest_init(kvm, &sev_cmd);
2566 break;
2567 case KVM_SEV_INIT2:
2568 r = sev_guest_init2(kvm, &sev_cmd);
2569 break;
2570 case KVM_SEV_LAUNCH_START:
2571 r = sev_launch_start(kvm, &sev_cmd);
2572 break;
2573 case KVM_SEV_LAUNCH_UPDATE_DATA:
2574 r = sev_launch_update_data(kvm, &sev_cmd);
2575 break;
2576 case KVM_SEV_LAUNCH_UPDATE_VMSA:
2577 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2578 break;
2579 case KVM_SEV_LAUNCH_MEASURE:
2580 r = sev_launch_measure(kvm, &sev_cmd);
2581 break;
2582 case KVM_SEV_LAUNCH_FINISH:
2583 r = sev_launch_finish(kvm, &sev_cmd);
2584 break;
2585 case KVM_SEV_GUEST_STATUS:
2586 r = sev_guest_status(kvm, &sev_cmd);
2587 break;
2588 case KVM_SEV_DBG_DECRYPT:
2589 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2590 break;
2591 case KVM_SEV_DBG_ENCRYPT:
2592 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2593 break;
2594 case KVM_SEV_LAUNCH_SECRET:
2595 r = sev_launch_secret(kvm, &sev_cmd);
2596 break;
2597 case KVM_SEV_GET_ATTESTATION_REPORT:
2598 r = sev_get_attestation_report(kvm, &sev_cmd);
2599 break;
2600 case KVM_SEV_SEND_START:
2601 r = sev_send_start(kvm, &sev_cmd);
2602 break;
2603 case KVM_SEV_SEND_UPDATE_DATA:
2604 r = sev_send_update_data(kvm, &sev_cmd);
2605 break;
2606 case KVM_SEV_SEND_FINISH:
2607 r = sev_send_finish(kvm, &sev_cmd);
2608 break;
2609 case KVM_SEV_SEND_CANCEL:
2610 r = sev_send_cancel(kvm, &sev_cmd);
2611 break;
2612 case KVM_SEV_RECEIVE_START:
2613 r = sev_receive_start(kvm, &sev_cmd);
2614 break;
2615 case KVM_SEV_RECEIVE_UPDATE_DATA:
2616 r = sev_receive_update_data(kvm, &sev_cmd);
2617 break;
2618 case KVM_SEV_RECEIVE_FINISH:
2619 r = sev_receive_finish(kvm, &sev_cmd);
2620 break;
2621 case KVM_SEV_SNP_LAUNCH_START:
2622 r = snp_launch_start(kvm, &sev_cmd);
2623 break;
2624 case KVM_SEV_SNP_LAUNCH_UPDATE:
2625 r = snp_launch_update(kvm, &sev_cmd);
2626 break;
2627 case KVM_SEV_SNP_LAUNCH_FINISH:
2628 r = snp_launch_finish(kvm, &sev_cmd);
2629 break;
2630 default:
2631 r = -EINVAL;
2632 goto out;
2633 }
2634
2635 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2636 r = -EFAULT;
2637
2638 out:
2639 mutex_unlock(&kvm->lock);
2640 return r;
2641 }
2642
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2643 int sev_mem_enc_register_region(struct kvm *kvm,
2644 struct kvm_enc_region *range)
2645 {
2646 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2647 struct enc_region *region;
2648 int ret = 0;
2649
2650 if (!sev_guest(kvm))
2651 return -ENOTTY;
2652
2653 /* If kvm is mirroring encryption context it isn't responsible for it */
2654 if (is_mirroring_enc_context(kvm))
2655 return -EINVAL;
2656
2657 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2658 return -EINVAL;
2659
2660 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2661 if (!region)
2662 return -ENOMEM;
2663
2664 mutex_lock(&kvm->lock);
2665 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages,
2666 FOLL_WRITE | FOLL_LONGTERM);
2667 if (IS_ERR(region->pages)) {
2668 ret = PTR_ERR(region->pages);
2669 mutex_unlock(&kvm->lock);
2670 goto e_free;
2671 }
2672
2673 /*
2674 * The guest may change the memory encryption attribute from C=0 -> C=1
2675 * or vice versa for this memory range. Lets make sure caches are
2676 * flushed to ensure that guest data gets written into memory with
2677 * correct C-bit. Note, this must be done before dropping kvm->lock,
2678 * as region and its array of pages can be freed by a different task
2679 * once kvm->lock is released.
2680 */
2681 sev_clflush_pages(region->pages, region->npages);
2682
2683 region->uaddr = range->addr;
2684 region->size = range->size;
2685
2686 list_add_tail(®ion->list, &sev->regions_list);
2687 mutex_unlock(&kvm->lock);
2688
2689 return ret;
2690
2691 e_free:
2692 kfree(region);
2693 return ret;
2694 }
2695
2696 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2697 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2698 {
2699 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2700 struct list_head *head = &sev->regions_list;
2701 struct enc_region *i;
2702
2703 list_for_each_entry(i, head, list) {
2704 if (i->uaddr == range->addr &&
2705 i->size == range->size)
2706 return i;
2707 }
2708
2709 return NULL;
2710 }
2711
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2712 static void __unregister_enc_region_locked(struct kvm *kvm,
2713 struct enc_region *region)
2714 {
2715 sev_unpin_memory(kvm, region->pages, region->npages);
2716 list_del(®ion->list);
2717 kfree(region);
2718 }
2719
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2720 int sev_mem_enc_unregister_region(struct kvm *kvm,
2721 struct kvm_enc_region *range)
2722 {
2723 struct enc_region *region;
2724 int ret;
2725
2726 /* If kvm is mirroring encryption context it isn't responsible for it */
2727 if (is_mirroring_enc_context(kvm))
2728 return -EINVAL;
2729
2730 mutex_lock(&kvm->lock);
2731
2732 if (!sev_guest(kvm)) {
2733 ret = -ENOTTY;
2734 goto failed;
2735 }
2736
2737 region = find_enc_region(kvm, range);
2738 if (!region) {
2739 ret = -EINVAL;
2740 goto failed;
2741 }
2742
2743 sev_writeback_caches(kvm);
2744
2745 __unregister_enc_region_locked(kvm, region);
2746
2747 mutex_unlock(&kvm->lock);
2748 return 0;
2749
2750 failed:
2751 mutex_unlock(&kvm->lock);
2752 return ret;
2753 }
2754
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2755 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2756 {
2757 CLASS(fd, f)(source_fd);
2758 struct kvm *source_kvm;
2759 struct kvm_sev_info *source_sev, *mirror_sev;
2760 int ret;
2761
2762 if (fd_empty(f))
2763 return -EBADF;
2764
2765 if (!file_is_kvm(fd_file(f)))
2766 return -EBADF;
2767
2768 source_kvm = fd_file(f)->private_data;
2769 ret = sev_lock_two_vms(kvm, source_kvm);
2770 if (ret)
2771 return ret;
2772
2773 /*
2774 * Mirrors of mirrors should work, but let's not get silly. Also
2775 * disallow out-of-band SEV/SEV-ES init if the target is already an
2776 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2777 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2778 */
2779 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2780 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2781 ret = -EINVAL;
2782 goto e_unlock;
2783 }
2784
2785 mirror_sev = to_kvm_sev_info(kvm);
2786 if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2787 ret = -ENOMEM;
2788 goto e_unlock;
2789 }
2790
2791 /*
2792 * The mirror kvm holds an enc_context_owner ref so its asid can't
2793 * disappear until we're done with it
2794 */
2795 source_sev = to_kvm_sev_info(source_kvm);
2796 kvm_get_kvm(source_kvm);
2797 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2798
2799 /* Set enc_context_owner and copy its encryption context over */
2800 mirror_sev->enc_context_owner = source_kvm;
2801 mirror_sev->active = true;
2802 mirror_sev->asid = source_sev->asid;
2803 mirror_sev->fd = source_sev->fd;
2804 mirror_sev->es_active = source_sev->es_active;
2805 mirror_sev->need_init = false;
2806 mirror_sev->handle = source_sev->handle;
2807 INIT_LIST_HEAD(&mirror_sev->regions_list);
2808 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2809 ret = 0;
2810
2811 /*
2812 * Do not copy ap_jump_table. Since the mirror does not share the same
2813 * KVM contexts as the original, and they may have different
2814 * memory-views.
2815 */
2816
2817 e_unlock:
2818 sev_unlock_two_vms(kvm, source_kvm);
2819 return ret;
2820 }
2821
snp_decommission_context(struct kvm * kvm)2822 static int snp_decommission_context(struct kvm *kvm)
2823 {
2824 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2825 struct sev_data_snp_addr data = {};
2826 int ret;
2827
2828 /* If context is not created then do nothing */
2829 if (!sev->snp_context)
2830 return 0;
2831
2832 /* Do the decommision, which will unbind the ASID from the SNP context */
2833 data.address = __sme_pa(sev->snp_context);
2834 down_write(&sev_deactivate_lock);
2835 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2836 up_write(&sev_deactivate_lock);
2837
2838 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2839 return ret;
2840
2841 snp_free_firmware_page(sev->snp_context);
2842 sev->snp_context = NULL;
2843
2844 return 0;
2845 }
2846
sev_vm_destroy(struct kvm * kvm)2847 void sev_vm_destroy(struct kvm *kvm)
2848 {
2849 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2850 struct list_head *head = &sev->regions_list;
2851 struct list_head *pos, *q;
2852
2853 if (!sev_guest(kvm))
2854 return;
2855
2856 WARN_ON(!list_empty(&sev->mirror_vms));
2857
2858 free_cpumask_var(sev->have_run_cpus);
2859
2860 /*
2861 * If this is a mirror VM, remove it from the owner's list of a mirrors
2862 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2863 * Note, mirror VMs don't support registering encrypted regions.
2864 */
2865 if (is_mirroring_enc_context(kvm)) {
2866 struct kvm *owner_kvm = sev->enc_context_owner;
2867
2868 mutex_lock(&owner_kvm->lock);
2869 list_del(&sev->mirror_entry);
2870 mutex_unlock(&owner_kvm->lock);
2871 kvm_put_kvm(owner_kvm);
2872 return;
2873 }
2874
2875
2876 /*
2877 * if userspace was terminated before unregistering the memory regions
2878 * then lets unpin all the registered memory.
2879 */
2880 if (!list_empty(head)) {
2881 list_for_each_safe(pos, q, head) {
2882 __unregister_enc_region_locked(kvm,
2883 list_entry(pos, struct enc_region, list));
2884 cond_resched();
2885 }
2886 }
2887
2888 if (sev_snp_guest(kvm)) {
2889 snp_guest_req_cleanup(kvm);
2890
2891 /*
2892 * Decomission handles unbinding of the ASID. If it fails for
2893 * some unexpected reason, just leak the ASID.
2894 */
2895 if (snp_decommission_context(kvm))
2896 return;
2897 } else {
2898 sev_unbind_asid(kvm, sev->handle);
2899 }
2900
2901 sev_asid_free(sev);
2902 }
2903
sev_set_cpu_caps(void)2904 void __init sev_set_cpu_caps(void)
2905 {
2906 if (sev_enabled) {
2907 kvm_cpu_cap_set(X86_FEATURE_SEV);
2908 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2909 }
2910 if (sev_es_enabled) {
2911 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2912 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2913 }
2914 if (sev_snp_enabled) {
2915 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2916 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2917 }
2918 }
2919
is_sev_snp_initialized(void)2920 static bool is_sev_snp_initialized(void)
2921 {
2922 struct sev_user_data_snp_status *status;
2923 struct sev_data_snp_addr buf;
2924 bool initialized = false;
2925 int ret, error = 0;
2926
2927 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2928 if (!status)
2929 return false;
2930
2931 buf.address = __psp_pa(status);
2932 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2933 if (ret) {
2934 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2935 ret, error, error);
2936 goto out;
2937 }
2938
2939 initialized = !!status->state;
2940
2941 out:
2942 snp_free_firmware_page(status);
2943
2944 return initialized;
2945 }
2946
sev_hardware_setup(void)2947 void __init sev_hardware_setup(void)
2948 {
2949 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2950 struct sev_platform_init_args init_args = {0};
2951 bool sev_snp_supported = false;
2952 bool sev_es_supported = false;
2953 bool sev_supported = false;
2954
2955 if (!sev_enabled || !npt_enabled || !nrips)
2956 goto out;
2957
2958 /*
2959 * SEV must obviously be supported in hardware. Sanity check that the
2960 * CPU supports decode assists, which is mandatory for SEV guests to
2961 * support instruction emulation. Ditto for flushing by ASID, as SEV
2962 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2963 * ASID to effect a TLB flush.
2964 */
2965 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2966 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2967 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2968 goto out;
2969
2970 /*
2971 * The kernel's initcall infrastructure lacks the ability to express
2972 * dependencies between initcalls, whereas the modules infrastructure
2973 * automatically handles dependencies via symbol loading. Ensure the
2974 * PSP SEV driver is initialized before proceeding if KVM is built-in,
2975 * as the dependency isn't handled by the initcall infrastructure.
2976 */
2977 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
2978 goto out;
2979
2980 /* Retrieve SEV CPUID information */
2981 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2982
2983 /* Set encryption bit location for SEV-ES guests */
2984 sev_enc_bit = ebx & 0x3f;
2985
2986 /* Maximum number of encrypted guests supported simultaneously */
2987 max_sev_asid = ecx;
2988 if (!max_sev_asid)
2989 goto out;
2990
2991 /* Minimum ASID value that should be used for SEV guest */
2992 min_sev_asid = edx;
2993 sev_me_mask = 1UL << (ebx & 0x3f);
2994
2995 /*
2996 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2997 * even though it's never used, so that the bitmap is indexed by the
2998 * actual ASID.
2999 */
3000 nr_asids = max_sev_asid + 1;
3001 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3002 if (!sev_asid_bitmap)
3003 goto out;
3004
3005 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3006 if (!sev_reclaim_asid_bitmap) {
3007 bitmap_free(sev_asid_bitmap);
3008 sev_asid_bitmap = NULL;
3009 goto out;
3010 }
3011
3012 if (min_sev_asid <= max_sev_asid) {
3013 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3014 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3015 }
3016 sev_supported = true;
3017
3018 /* SEV-ES support requested? */
3019 if (!sev_es_enabled)
3020 goto out;
3021
3022 /*
3023 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3024 * instruction stream, i.e. can't emulate in response to a #NPF and
3025 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3026 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3027 */
3028 if (!enable_mmio_caching)
3029 goto out;
3030
3031 /* Does the CPU support SEV-ES? */
3032 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3033 goto out;
3034
3035 if (!lbrv) {
3036 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3037 "LBRV must be present for SEV-ES support");
3038 goto out;
3039 }
3040
3041 /* Has the system been allocated ASIDs for SEV-ES? */
3042 if (min_sev_asid == 1)
3043 goto out;
3044
3045 sev_es_asid_count = min_sev_asid - 1;
3046 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3047 sev_es_supported = true;
3048 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3049
3050 out:
3051 if (sev_enabled) {
3052 init_args.probe = true;
3053 if (sev_platform_init(&init_args))
3054 sev_supported = sev_es_supported = sev_snp_supported = false;
3055 else if (sev_snp_supported)
3056 sev_snp_supported = is_sev_snp_initialized();
3057 }
3058
3059 if (boot_cpu_has(X86_FEATURE_SEV))
3060 pr_info("SEV %s (ASIDs %u - %u)\n",
3061 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3062 "unusable" :
3063 "disabled",
3064 min_sev_asid, max_sev_asid);
3065 if (boot_cpu_has(X86_FEATURE_SEV_ES))
3066 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3067 str_enabled_disabled(sev_es_supported),
3068 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3069 if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3070 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3071 str_enabled_disabled(sev_snp_supported),
3072 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3073
3074 sev_enabled = sev_supported;
3075 sev_es_enabled = sev_es_supported;
3076 sev_snp_enabled = sev_snp_supported;
3077
3078 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3079 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3080 sev_es_debug_swap_enabled = false;
3081
3082 sev_supported_vmsa_features = 0;
3083 if (sev_es_debug_swap_enabled)
3084 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3085 }
3086
sev_hardware_unsetup(void)3087 void sev_hardware_unsetup(void)
3088 {
3089 if (!sev_enabled)
3090 return;
3091
3092 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3093 sev_flush_asids(1, max_sev_asid);
3094
3095 bitmap_free(sev_asid_bitmap);
3096 bitmap_free(sev_reclaim_asid_bitmap);
3097
3098 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3099 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3100
3101 sev_platform_shutdown();
3102 }
3103
sev_cpu_init(struct svm_cpu_data * sd)3104 int sev_cpu_init(struct svm_cpu_data *sd)
3105 {
3106 if (!sev_enabled)
3107 return 0;
3108
3109 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3110 if (!sd->sev_vmcbs)
3111 return -ENOMEM;
3112
3113 return 0;
3114 }
3115
3116 /*
3117 * Pages used by hardware to hold guest encrypted state must be flushed before
3118 * returning them to the system.
3119 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3120 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3121 {
3122 unsigned int asid = sev_get_asid(vcpu->kvm);
3123
3124 /*
3125 * Note! The address must be a kernel address, as regular page walk
3126 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3127 * address is non-deterministic and unsafe. This function deliberately
3128 * takes a pointer to deter passing in a user address.
3129 */
3130 unsigned long addr = (unsigned long)va;
3131
3132 /*
3133 * If CPU enforced cache coherency for encrypted mappings of the
3134 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3135 * flush is still needed in order to work properly with DMA devices.
3136 */
3137 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3138 clflush_cache_range(va, PAGE_SIZE);
3139 return;
3140 }
3141
3142 /*
3143 * VM Page Flush takes a host virtual address and a guest ASID. Fall
3144 * back to full writeback of caches if this faults so as not to make
3145 * any problems worse by leaving stale encrypted data in the cache.
3146 */
3147 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3148 goto do_sev_writeback_caches;
3149
3150 return;
3151
3152 do_sev_writeback_caches:
3153 sev_writeback_caches(vcpu->kvm);
3154 }
3155
sev_guest_memory_reclaimed(struct kvm * kvm)3156 void sev_guest_memory_reclaimed(struct kvm *kvm)
3157 {
3158 /*
3159 * With SNP+gmem, private/encrypted memory is unreachable via the
3160 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3161 * shared pages, where there's no need to flush caches.
3162 */
3163 if (!sev_guest(kvm) || sev_snp_guest(kvm))
3164 return;
3165
3166 sev_writeback_caches(kvm);
3167 }
3168
sev_free_vcpu(struct kvm_vcpu * vcpu)3169 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3170 {
3171 struct vcpu_svm *svm;
3172
3173 if (!sev_es_guest(vcpu->kvm))
3174 return;
3175
3176 svm = to_svm(vcpu);
3177
3178 /*
3179 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3180 * a guest-owned page. Transition the page to hypervisor state before
3181 * releasing it back to the system.
3182 */
3183 if (sev_snp_guest(vcpu->kvm)) {
3184 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3185
3186 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3187 goto skip_vmsa_free;
3188 }
3189
3190 if (vcpu->arch.guest_state_protected)
3191 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3192
3193 __free_page(virt_to_page(svm->sev_es.vmsa));
3194
3195 skip_vmsa_free:
3196 if (svm->sev_es.ghcb_sa_free)
3197 kvfree(svm->sev_es.ghcb_sa);
3198 }
3199
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3200 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3201 {
3202 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3203 }
3204
dump_ghcb(struct vcpu_svm * svm)3205 static void dump_ghcb(struct vcpu_svm *svm)
3206 {
3207 struct vmcb_control_area *control = &svm->vmcb->control;
3208 unsigned int nbits;
3209
3210 /* Re-use the dump_invalid_vmcb module parameter */
3211 if (!dump_invalid_vmcb) {
3212 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3213 return;
3214 }
3215
3216 nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3217
3218 /*
3219 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3220 * used to handle the exit. If the guest has since modified the GHCB
3221 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3222 * handle the VMGEXIT that KVM observed.
3223 */
3224 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3225 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3226 kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3227 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3228 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3229 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3230 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3231 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3232 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3233 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3234 }
3235
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3236 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3237 {
3238 struct kvm_vcpu *vcpu = &svm->vcpu;
3239 struct ghcb *ghcb = svm->sev_es.ghcb;
3240
3241 /*
3242 * The GHCB protocol so far allows for the following data
3243 * to be returned:
3244 * GPRs RAX, RBX, RCX, RDX
3245 *
3246 * Copy their values, even if they may not have been written during the
3247 * VM-Exit. It's the guest's responsibility to not consume random data.
3248 */
3249 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3250 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3251 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3252 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3253 }
3254
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3255 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3256 {
3257 struct vmcb_control_area *control = &svm->vmcb->control;
3258 struct kvm_vcpu *vcpu = &svm->vcpu;
3259 struct ghcb *ghcb = svm->sev_es.ghcb;
3260 u64 exit_code;
3261
3262 /*
3263 * The GHCB protocol so far allows for the following data
3264 * to be supplied:
3265 * GPRs RAX, RBX, RCX, RDX
3266 * XCR0
3267 * CPL
3268 *
3269 * VMMCALL allows the guest to provide extra registers. KVM also
3270 * expects RSI for hypercalls, so include that, too.
3271 *
3272 * Copy their values to the appropriate location if supplied.
3273 */
3274 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3275
3276 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3277 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3278
3279 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3280 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3281 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3282 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3283 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3284
3285 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3286
3287 if (kvm_ghcb_xcr0_is_valid(svm)) {
3288 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3289 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3290 }
3291
3292 /* Copy the GHCB exit information into the VMCB fields */
3293 exit_code = ghcb_get_sw_exit_code(ghcb);
3294 control->exit_code = lower_32_bits(exit_code);
3295 control->exit_code_hi = upper_32_bits(exit_code);
3296 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3297 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3298 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3299
3300 /* Clear the valid entries fields */
3301 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3302 }
3303
sev_es_validate_vmgexit(struct vcpu_svm * svm)3304 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3305 {
3306 struct vmcb_control_area *control = &svm->vmcb->control;
3307 struct kvm_vcpu *vcpu = &svm->vcpu;
3308 u64 exit_code;
3309 u64 reason;
3310
3311 /*
3312 * Retrieve the exit code now even though it may not be marked valid
3313 * as it could help with debugging.
3314 */
3315 exit_code = kvm_ghcb_get_sw_exit_code(control);
3316
3317 /* Only GHCB Usage code 0 is supported */
3318 if (svm->sev_es.ghcb->ghcb_usage) {
3319 reason = GHCB_ERR_INVALID_USAGE;
3320 goto vmgexit_err;
3321 }
3322
3323 reason = GHCB_ERR_MISSING_INPUT;
3324
3325 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3326 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3327 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3328 goto vmgexit_err;
3329
3330 switch (exit_code) {
3331 case SVM_EXIT_READ_DR7:
3332 break;
3333 case SVM_EXIT_WRITE_DR7:
3334 if (!kvm_ghcb_rax_is_valid(svm))
3335 goto vmgexit_err;
3336 break;
3337 case SVM_EXIT_RDTSC:
3338 break;
3339 case SVM_EXIT_RDPMC:
3340 if (!kvm_ghcb_rcx_is_valid(svm))
3341 goto vmgexit_err;
3342 break;
3343 case SVM_EXIT_CPUID:
3344 if (!kvm_ghcb_rax_is_valid(svm) ||
3345 !kvm_ghcb_rcx_is_valid(svm))
3346 goto vmgexit_err;
3347 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3348 if (!kvm_ghcb_xcr0_is_valid(svm))
3349 goto vmgexit_err;
3350 break;
3351 case SVM_EXIT_INVD:
3352 break;
3353 case SVM_EXIT_IOIO:
3354 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3355 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3356 goto vmgexit_err;
3357 } else {
3358 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3359 if (!kvm_ghcb_rax_is_valid(svm))
3360 goto vmgexit_err;
3361 }
3362 break;
3363 case SVM_EXIT_MSR:
3364 if (!kvm_ghcb_rcx_is_valid(svm))
3365 goto vmgexit_err;
3366 if (control->exit_info_1) {
3367 if (!kvm_ghcb_rax_is_valid(svm) ||
3368 !kvm_ghcb_rdx_is_valid(svm))
3369 goto vmgexit_err;
3370 }
3371 break;
3372 case SVM_EXIT_VMMCALL:
3373 if (!kvm_ghcb_rax_is_valid(svm) ||
3374 !kvm_ghcb_cpl_is_valid(svm))
3375 goto vmgexit_err;
3376 break;
3377 case SVM_EXIT_RDTSCP:
3378 break;
3379 case SVM_EXIT_WBINVD:
3380 break;
3381 case SVM_EXIT_MONITOR:
3382 if (!kvm_ghcb_rax_is_valid(svm) ||
3383 !kvm_ghcb_rcx_is_valid(svm) ||
3384 !kvm_ghcb_rdx_is_valid(svm))
3385 goto vmgexit_err;
3386 break;
3387 case SVM_EXIT_MWAIT:
3388 if (!kvm_ghcb_rax_is_valid(svm) ||
3389 !kvm_ghcb_rcx_is_valid(svm))
3390 goto vmgexit_err;
3391 break;
3392 case SVM_VMGEXIT_MMIO_READ:
3393 case SVM_VMGEXIT_MMIO_WRITE:
3394 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3395 goto vmgexit_err;
3396 break;
3397 case SVM_VMGEXIT_AP_CREATION:
3398 if (!sev_snp_guest(vcpu->kvm))
3399 goto vmgexit_err;
3400 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3401 if (!kvm_ghcb_rax_is_valid(svm))
3402 goto vmgexit_err;
3403 break;
3404 case SVM_VMGEXIT_NMI_COMPLETE:
3405 case SVM_VMGEXIT_AP_HLT_LOOP:
3406 case SVM_VMGEXIT_AP_JUMP_TABLE:
3407 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3408 case SVM_VMGEXIT_HV_FEATURES:
3409 case SVM_VMGEXIT_TERM_REQUEST:
3410 break;
3411 case SVM_VMGEXIT_PSC:
3412 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3413 goto vmgexit_err;
3414 break;
3415 case SVM_VMGEXIT_GUEST_REQUEST:
3416 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3417 if (!sev_snp_guest(vcpu->kvm) ||
3418 !PAGE_ALIGNED(control->exit_info_1) ||
3419 !PAGE_ALIGNED(control->exit_info_2) ||
3420 control->exit_info_1 == control->exit_info_2)
3421 goto vmgexit_err;
3422 break;
3423 default:
3424 reason = GHCB_ERR_INVALID_EVENT;
3425 goto vmgexit_err;
3426 }
3427
3428 return 0;
3429
3430 vmgexit_err:
3431 if (reason == GHCB_ERR_INVALID_USAGE) {
3432 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3433 svm->sev_es.ghcb->ghcb_usage);
3434 } else if (reason == GHCB_ERR_INVALID_EVENT) {
3435 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3436 exit_code);
3437 } else {
3438 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3439 exit_code);
3440 dump_ghcb(svm);
3441 }
3442
3443 svm_vmgexit_bad_input(svm, reason);
3444
3445 /* Resume the guest to "return" the error code. */
3446 return 1;
3447 }
3448
sev_es_unmap_ghcb(struct vcpu_svm * svm)3449 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3450 {
3451 /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3452 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3453
3454 if (!svm->sev_es.ghcb)
3455 return;
3456
3457 if (svm->sev_es.ghcb_sa_free) {
3458 /*
3459 * The scratch area lives outside the GHCB, so there is a
3460 * buffer that, depending on the operation performed, may
3461 * need to be synced, then freed.
3462 */
3463 if (svm->sev_es.ghcb_sa_sync) {
3464 kvm_write_guest(svm->vcpu.kvm,
3465 svm->sev_es.sw_scratch,
3466 svm->sev_es.ghcb_sa,
3467 svm->sev_es.ghcb_sa_len);
3468 svm->sev_es.ghcb_sa_sync = false;
3469 }
3470
3471 kvfree(svm->sev_es.ghcb_sa);
3472 svm->sev_es.ghcb_sa = NULL;
3473 svm->sev_es.ghcb_sa_free = false;
3474 }
3475
3476 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3477
3478 sev_es_sync_to_ghcb(svm);
3479
3480 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3481 svm->sev_es.ghcb = NULL;
3482 }
3483
pre_sev_run(struct vcpu_svm * svm,int cpu)3484 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3485 {
3486 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3487 struct kvm *kvm = svm->vcpu.kvm;
3488 unsigned int asid = sev_get_asid(kvm);
3489
3490 /*
3491 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3492 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3493 * AP Destroy event.
3494 */
3495 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3496 return -EINVAL;
3497
3498 /*
3499 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3500 * track physical CPUs that enter the guest for SEV VMs and thus can
3501 * have encrypted, dirty data in the cache, and flush caches only for
3502 * CPUs that have entered the guest.
3503 */
3504 if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3505 cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3506
3507 /* Assign the asid allocated with this SEV guest */
3508 svm->asid = asid;
3509
3510 /*
3511 * Flush guest TLB:
3512 *
3513 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3514 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3515 */
3516 if (sd->sev_vmcbs[asid] == svm->vmcb &&
3517 svm->vcpu.arch.last_vmentry_cpu == cpu)
3518 return 0;
3519
3520 sd->sev_vmcbs[asid] = svm->vmcb;
3521 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3522 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3523 return 0;
3524 }
3525
3526 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3527 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3528 {
3529 struct vmcb_control_area *control = &svm->vmcb->control;
3530 u64 ghcb_scratch_beg, ghcb_scratch_end;
3531 u64 scratch_gpa_beg, scratch_gpa_end;
3532 void *scratch_va;
3533
3534 scratch_gpa_beg = svm->sev_es.sw_scratch;
3535 if (!scratch_gpa_beg) {
3536 pr_err("vmgexit: scratch gpa not provided\n");
3537 goto e_scratch;
3538 }
3539
3540 scratch_gpa_end = scratch_gpa_beg + len;
3541 if (scratch_gpa_end < scratch_gpa_beg) {
3542 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3543 len, scratch_gpa_beg);
3544 goto e_scratch;
3545 }
3546
3547 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3548 /* Scratch area begins within GHCB */
3549 ghcb_scratch_beg = control->ghcb_gpa +
3550 offsetof(struct ghcb, shared_buffer);
3551 ghcb_scratch_end = control->ghcb_gpa +
3552 offsetof(struct ghcb, reserved_0xff0);
3553
3554 /*
3555 * If the scratch area begins within the GHCB, it must be
3556 * completely contained in the GHCB shared buffer area.
3557 */
3558 if (scratch_gpa_beg < ghcb_scratch_beg ||
3559 scratch_gpa_end > ghcb_scratch_end) {
3560 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3561 scratch_gpa_beg, scratch_gpa_end);
3562 goto e_scratch;
3563 }
3564
3565 scratch_va = (void *)svm->sev_es.ghcb;
3566 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3567 } else {
3568 /*
3569 * The guest memory must be read into a kernel buffer, so
3570 * limit the size
3571 */
3572 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3573 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3574 len, GHCB_SCRATCH_AREA_LIMIT);
3575 goto e_scratch;
3576 }
3577 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3578 if (!scratch_va)
3579 return -ENOMEM;
3580
3581 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3582 /* Unable to copy scratch area from guest */
3583 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3584
3585 kvfree(scratch_va);
3586 return -EFAULT;
3587 }
3588
3589 /*
3590 * The scratch area is outside the GHCB. The operation will
3591 * dictate whether the buffer needs to be synced before running
3592 * the vCPU next time (i.e. a read was requested so the data
3593 * must be written back to the guest memory).
3594 */
3595 svm->sev_es.ghcb_sa_sync = sync;
3596 svm->sev_es.ghcb_sa_free = true;
3597 }
3598
3599 svm->sev_es.ghcb_sa = scratch_va;
3600 svm->sev_es.ghcb_sa_len = len;
3601
3602 return 0;
3603
3604 e_scratch:
3605 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3606
3607 return 1;
3608 }
3609
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3610 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3611 unsigned int pos)
3612 {
3613 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3614 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3615 }
3616
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3617 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3618 {
3619 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3620 }
3621
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3622 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3623 {
3624 svm->vmcb->control.ghcb_gpa = value;
3625 }
3626
snp_rmptable_psmash(kvm_pfn_t pfn)3627 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3628 {
3629 int ret;
3630
3631 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3632
3633 /*
3634 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3635 * entry, so retry until that's no longer the case.
3636 */
3637 do {
3638 ret = psmash(pfn);
3639 } while (ret == PSMASH_FAIL_INUSE);
3640
3641 return ret;
3642 }
3643
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3644 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3645 {
3646 struct vcpu_svm *svm = to_svm(vcpu);
3647
3648 if (vcpu->run->hypercall.ret)
3649 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3650 else
3651 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3652
3653 return 1; /* resume guest */
3654 }
3655
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3656 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3657 {
3658 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3659 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3660 struct kvm_vcpu *vcpu = &svm->vcpu;
3661
3662 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3663 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3664 return 1; /* resume guest */
3665 }
3666
3667 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3668 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3669 return 1; /* resume guest */
3670 }
3671
3672 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3673 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3674 /*
3675 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3676 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3677 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3678 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3679 */
3680 vcpu->run->hypercall.ret = 0;
3681 vcpu->run->hypercall.args[0] = gpa;
3682 vcpu->run->hypercall.args[1] = 1;
3683 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3684 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3685 : KVM_MAP_GPA_RANGE_DECRYPTED;
3686 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3687
3688 vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3689
3690 return 0; /* forward request to userspace */
3691 }
3692
3693 struct psc_buffer {
3694 struct psc_hdr hdr;
3695 struct psc_entry entries[];
3696 } __packed;
3697
3698 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3699
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3700 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3701 {
3702 svm->sev_es.psc_inflight = 0;
3703 svm->sev_es.psc_idx = 0;
3704 svm->sev_es.psc_2m = false;
3705
3706 /*
3707 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3708 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3709 * return code. E.g. if the PSC request was interrupted, the need to
3710 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3711 */
3712 svm_vmgexit_no_action(svm, psc_ret);
3713 }
3714
__snp_complete_one_psc(struct vcpu_svm * svm)3715 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3716 {
3717 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3718 struct psc_entry *entries = psc->entries;
3719 struct psc_hdr *hdr = &psc->hdr;
3720 __u16 idx;
3721
3722 /*
3723 * Everything in-flight has been processed successfully. Update the
3724 * corresponding entries in the guest's PSC buffer and zero out the
3725 * count of in-flight PSC entries.
3726 */
3727 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3728 svm->sev_es.psc_inflight--, idx++) {
3729 struct psc_entry *entry = &entries[idx];
3730
3731 entry->cur_page = entry->pagesize ? 512 : 1;
3732 }
3733
3734 hdr->cur_entry = idx;
3735 }
3736
snp_complete_one_psc(struct kvm_vcpu * vcpu)3737 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3738 {
3739 struct vcpu_svm *svm = to_svm(vcpu);
3740 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3741
3742 if (vcpu->run->hypercall.ret) {
3743 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3744 return 1; /* resume guest */
3745 }
3746
3747 __snp_complete_one_psc(svm);
3748
3749 /* Handle the next range (if any). */
3750 return snp_begin_psc(svm, psc);
3751 }
3752
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3753 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3754 {
3755 struct psc_entry *entries = psc->entries;
3756 struct kvm_vcpu *vcpu = &svm->vcpu;
3757 struct psc_hdr *hdr = &psc->hdr;
3758 struct psc_entry entry_start;
3759 u16 idx, idx_start, idx_end;
3760 int npages;
3761 bool huge;
3762 u64 gfn;
3763
3764 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3765 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3766 return 1;
3767 }
3768
3769 next_range:
3770 /* There should be no other PSCs in-flight at this point. */
3771 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3772 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3773 return 1;
3774 }
3775
3776 /*
3777 * The PSC descriptor buffer can be modified by a misbehaved guest after
3778 * validation, so take care to only use validated copies of values used
3779 * for things like array indexing.
3780 */
3781 idx_start = hdr->cur_entry;
3782 idx_end = hdr->end_entry;
3783
3784 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3785 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3786 return 1;
3787 }
3788
3789 /* Find the start of the next range which needs processing. */
3790 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3791 entry_start = entries[idx];
3792
3793 gfn = entry_start.gfn;
3794 huge = entry_start.pagesize;
3795 npages = huge ? 512 : 1;
3796
3797 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3798 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3799 return 1;
3800 }
3801
3802 if (entry_start.cur_page) {
3803 /*
3804 * If this is a partially-completed 2M range, force 4K handling
3805 * for the remaining pages since they're effectively split at
3806 * this point. Subsequent code should ensure this doesn't get
3807 * combined with adjacent PSC entries where 2M handling is still
3808 * possible.
3809 */
3810 npages -= entry_start.cur_page;
3811 gfn += entry_start.cur_page;
3812 huge = false;
3813 }
3814
3815 if (npages)
3816 break;
3817 }
3818
3819 if (idx > idx_end) {
3820 /* Nothing more to process. */
3821 snp_complete_psc(svm, 0);
3822 return 1;
3823 }
3824
3825 svm->sev_es.psc_2m = huge;
3826 svm->sev_es.psc_idx = idx;
3827 svm->sev_es.psc_inflight = 1;
3828
3829 /*
3830 * Find all subsequent PSC entries that contain adjacent GPA
3831 * ranges/operations and can be combined into a single
3832 * KVM_HC_MAP_GPA_RANGE exit.
3833 */
3834 while (++idx <= idx_end) {
3835 struct psc_entry entry = entries[idx];
3836
3837 if (entry.operation != entry_start.operation ||
3838 entry.gfn != entry_start.gfn + npages ||
3839 entry.cur_page || !!entry.pagesize != huge)
3840 break;
3841
3842 svm->sev_es.psc_inflight++;
3843 npages += huge ? 512 : 1;
3844 }
3845
3846 switch (entry_start.operation) {
3847 case VMGEXIT_PSC_OP_PRIVATE:
3848 case VMGEXIT_PSC_OP_SHARED:
3849 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3850 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3851 /*
3852 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3853 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3854 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3855 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3856 */
3857 vcpu->run->hypercall.ret = 0;
3858 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3859 vcpu->run->hypercall.args[1] = npages;
3860 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3861 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3862 : KVM_MAP_GPA_RANGE_DECRYPTED;
3863 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3864 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3865 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3866 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3867 return 0; /* forward request to userspace */
3868 default:
3869 /*
3870 * Only shared/private PSC operations are currently supported, so if the
3871 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3872 * then consider the entire range completed and avoid exiting to
3873 * userspace. In theory snp_complete_psc() can always be called directly
3874 * at this point to complete the current range and start the next one,
3875 * but that could lead to unexpected levels of recursion.
3876 */
3877 __snp_complete_one_psc(svm);
3878 goto next_range;
3879 }
3880
3881 BUG();
3882 }
3883
3884 /*
3885 * Invoked as part of svm_vcpu_reset() processing of an init event.
3886 */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3887 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3888 {
3889 struct vcpu_svm *svm = to_svm(vcpu);
3890 struct kvm_memory_slot *slot;
3891 struct page *page;
3892 kvm_pfn_t pfn;
3893 gfn_t gfn;
3894
3895 if (!sev_snp_guest(vcpu->kvm))
3896 return;
3897
3898 guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3899
3900 if (!svm->sev_es.snp_ap_waiting_for_reset)
3901 return;
3902
3903 svm->sev_es.snp_ap_waiting_for_reset = false;
3904
3905 /* Mark the vCPU as offline and not runnable */
3906 vcpu->arch.pv.pv_unhalted = false;
3907 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3908
3909 /* Clear use of the VMSA */
3910 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3911
3912 /*
3913 * When replacing the VMSA during SEV-SNP AP creation,
3914 * mark the VMCB dirty so that full state is always reloaded.
3915 */
3916 vmcb_mark_all_dirty(svm->vmcb);
3917
3918 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3919 return;
3920
3921 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3922 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3923
3924 slot = gfn_to_memslot(vcpu->kvm, gfn);
3925 if (!slot)
3926 return;
3927
3928 /*
3929 * The new VMSA will be private memory guest memory, so retrieve the
3930 * PFN from the gmem backend.
3931 */
3932 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3933 return;
3934
3935 /*
3936 * From this point forward, the VMSA will always be a guest-mapped page
3937 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
3938 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
3939 * that involves cleanups like flushing caches, which would ideally be
3940 * handled during teardown rather than guest boot. Deferring that also
3941 * allows the existing logic for SEV-ES VMSAs to be re-used with
3942 * minimal SNP-specific changes.
3943 */
3944 svm->sev_es.snp_has_guest_vmsa = true;
3945
3946 /* Use the new VMSA */
3947 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3948
3949 /* Mark the vCPU as runnable */
3950 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3951
3952 /*
3953 * gmem pages aren't currently migratable, but if this ever changes
3954 * then care should be taken to ensure svm->sev_es.vmsa is pinned
3955 * through some other means.
3956 */
3957 kvm_release_page_clean(page);
3958 }
3959
sev_snp_ap_creation(struct vcpu_svm * svm)3960 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3961 {
3962 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
3963 struct kvm_vcpu *vcpu = &svm->vcpu;
3964 struct kvm_vcpu *target_vcpu;
3965 struct vcpu_svm *target_svm;
3966 unsigned int request;
3967 unsigned int apic_id;
3968
3969 request = lower_32_bits(svm->vmcb->control.exit_info_1);
3970 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3971
3972 /* Validate the APIC ID */
3973 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3974 if (!target_vcpu) {
3975 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3976 apic_id);
3977 return -EINVAL;
3978 }
3979
3980 target_svm = to_svm(target_vcpu);
3981
3982 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
3983
3984 switch (request) {
3985 case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3986 case SVM_VMGEXIT_AP_CREATE:
3987 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
3988 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
3989 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
3990 return -EINVAL;
3991 }
3992
3993 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3994 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3995 svm->vmcb->control.exit_info_2);
3996 return -EINVAL;
3997 }
3998
3999 /*
4000 * Malicious guest can RMPADJUST a large page into VMSA which
4001 * will hit the SNP erratum where the CPU will incorrectly signal
4002 * an RMP violation #PF if a hugepage collides with the RMP entry
4003 * of VMSA page, reject the AP CREATE request if VMSA address from
4004 * guest is 2M aligned.
4005 */
4006 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4007 vcpu_unimpl(vcpu,
4008 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4009 svm->vmcb->control.exit_info_2);
4010 return -EINVAL;
4011 }
4012
4013 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4014 break;
4015 case SVM_VMGEXIT_AP_DESTROY:
4016 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4017 break;
4018 default:
4019 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4020 request);
4021 return -EINVAL;
4022 }
4023
4024 target_svm->sev_es.snp_ap_waiting_for_reset = true;
4025
4026 /*
4027 * Unless Creation is deferred until INIT, signal the vCPU to update
4028 * its state.
4029 */
4030 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4031 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4032
4033 return 0;
4034 }
4035
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4036 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4037 {
4038 struct sev_data_snp_guest_request data = {0};
4039 struct kvm *kvm = svm->vcpu.kvm;
4040 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4041 sev_ret_code fw_err = 0;
4042 int ret;
4043
4044 if (!sev_snp_guest(kvm))
4045 return -EINVAL;
4046
4047 mutex_lock(&sev->guest_req_mutex);
4048
4049 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4050 ret = -EIO;
4051 goto out_unlock;
4052 }
4053
4054 data.gctx_paddr = __psp_pa(sev->snp_context);
4055 data.req_paddr = __psp_pa(sev->guest_req_buf);
4056 data.res_paddr = __psp_pa(sev->guest_resp_buf);
4057
4058 /*
4059 * Firmware failures are propagated on to guest, but any other failure
4060 * condition along the way should be reported to userspace. E.g. if
4061 * the PSP is dead and commands are timing out.
4062 */
4063 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4064 if (ret && !fw_err)
4065 goto out_unlock;
4066
4067 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4068 ret = -EIO;
4069 goto out_unlock;
4070 }
4071
4072 /* No action is requested *from KVM* if there was a firmware error. */
4073 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4074
4075 ret = 1; /* resume guest */
4076
4077 out_unlock:
4078 mutex_unlock(&sev->guest_req_mutex);
4079 return ret;
4080 }
4081
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4082 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4083 {
4084 struct kvm *kvm = svm->vcpu.kvm;
4085 u8 msg_type;
4086
4087 if (!sev_snp_guest(kvm))
4088 return -EINVAL;
4089
4090 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4091 &msg_type, 1))
4092 return -EIO;
4093
4094 /*
4095 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4096 * additional certificate data to be provided alongside the attestation
4097 * report via the guest-provided data pages indicated by RAX/RBX. The
4098 * certificate data is optional and requires additional KVM enablement
4099 * to provide an interface for userspace to provide it, but KVM still
4100 * needs to be able to handle extended guest requests either way. So
4101 * provide a stub implementation that will always return an empty
4102 * certificate table in the guest-provided data pages.
4103 */
4104 if (msg_type == SNP_MSG_REPORT_REQ) {
4105 struct kvm_vcpu *vcpu = &svm->vcpu;
4106 u64 data_npages;
4107 gpa_t data_gpa;
4108
4109 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4110 goto request_invalid;
4111
4112 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4113 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4114
4115 if (!PAGE_ALIGNED(data_gpa))
4116 goto request_invalid;
4117
4118 /*
4119 * As per GHCB spec (see "SNP Extended Guest Request"), the
4120 * certificate table is terminated by 24-bytes of zeroes.
4121 */
4122 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4123 return -EIO;
4124 }
4125
4126 return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4127
4128 request_invalid:
4129 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4130 return 1; /* resume guest */
4131 }
4132
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4133 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4134 {
4135 struct vmcb_control_area *control = &svm->vmcb->control;
4136 struct kvm_vcpu *vcpu = &svm->vcpu;
4137 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4138 u64 ghcb_info;
4139 int ret = 1;
4140
4141 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4142
4143 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4144 control->ghcb_gpa);
4145
4146 switch (ghcb_info) {
4147 case GHCB_MSR_SEV_INFO_REQ:
4148 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4149 GHCB_VERSION_MIN,
4150 sev_enc_bit));
4151 break;
4152 case GHCB_MSR_CPUID_REQ: {
4153 u64 cpuid_fn, cpuid_reg, cpuid_value;
4154
4155 cpuid_fn = get_ghcb_msr_bits(svm,
4156 GHCB_MSR_CPUID_FUNC_MASK,
4157 GHCB_MSR_CPUID_FUNC_POS);
4158
4159 /* Initialize the registers needed by the CPUID intercept */
4160 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4161 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4162
4163 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4164 if (!ret) {
4165 /* Error, keep GHCB MSR value as-is */
4166 break;
4167 }
4168
4169 cpuid_reg = get_ghcb_msr_bits(svm,
4170 GHCB_MSR_CPUID_REG_MASK,
4171 GHCB_MSR_CPUID_REG_POS);
4172 if (cpuid_reg == 0)
4173 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4174 else if (cpuid_reg == 1)
4175 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4176 else if (cpuid_reg == 2)
4177 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4178 else
4179 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4180
4181 set_ghcb_msr_bits(svm, cpuid_value,
4182 GHCB_MSR_CPUID_VALUE_MASK,
4183 GHCB_MSR_CPUID_VALUE_POS);
4184
4185 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4186 GHCB_MSR_INFO_MASK,
4187 GHCB_MSR_INFO_POS);
4188 break;
4189 }
4190 case GHCB_MSR_AP_RESET_HOLD_REQ:
4191 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4192 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4193
4194 /*
4195 * Preset the result to a non-SIPI return and then only set
4196 * the result to non-zero when delivering a SIPI.
4197 */
4198 set_ghcb_msr_bits(svm, 0,
4199 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4200 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4201
4202 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4203 GHCB_MSR_INFO_MASK,
4204 GHCB_MSR_INFO_POS);
4205 break;
4206 case GHCB_MSR_HV_FT_REQ:
4207 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4208 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4209 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4210 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4211 break;
4212 case GHCB_MSR_PREF_GPA_REQ:
4213 if (!sev_snp_guest(vcpu->kvm))
4214 goto out_terminate;
4215
4216 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4217 GHCB_MSR_GPA_VALUE_POS);
4218 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4219 GHCB_MSR_INFO_POS);
4220 break;
4221 case GHCB_MSR_REG_GPA_REQ: {
4222 u64 gfn;
4223
4224 if (!sev_snp_guest(vcpu->kvm))
4225 goto out_terminate;
4226
4227 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4228 GHCB_MSR_GPA_VALUE_POS);
4229
4230 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4231
4232 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4233 GHCB_MSR_GPA_VALUE_POS);
4234 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4235 GHCB_MSR_INFO_POS);
4236 break;
4237 }
4238 case GHCB_MSR_PSC_REQ:
4239 if (!sev_snp_guest(vcpu->kvm))
4240 goto out_terminate;
4241
4242 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4243 break;
4244 case GHCB_MSR_TERM_REQ: {
4245 u64 reason_set, reason_code;
4246
4247 reason_set = get_ghcb_msr_bits(svm,
4248 GHCB_MSR_TERM_REASON_SET_MASK,
4249 GHCB_MSR_TERM_REASON_SET_POS);
4250 reason_code = get_ghcb_msr_bits(svm,
4251 GHCB_MSR_TERM_REASON_MASK,
4252 GHCB_MSR_TERM_REASON_POS);
4253 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4254 reason_set, reason_code);
4255
4256 goto out_terminate;
4257 }
4258 default:
4259 /* Error, keep GHCB MSR value as-is */
4260 break;
4261 }
4262
4263 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4264 control->ghcb_gpa, ret);
4265
4266 return ret;
4267
4268 out_terminate:
4269 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4270 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4271 vcpu->run->system_event.ndata = 1;
4272 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4273
4274 return 0;
4275 }
4276
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4277 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4278 {
4279 struct vcpu_svm *svm = to_svm(vcpu);
4280 struct vmcb_control_area *control = &svm->vmcb->control;
4281 u64 ghcb_gpa, exit_code;
4282 int ret;
4283
4284 /* Validate the GHCB */
4285 ghcb_gpa = control->ghcb_gpa;
4286 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4287 return sev_handle_vmgexit_msr_protocol(svm);
4288
4289 if (!ghcb_gpa) {
4290 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4291
4292 /* Without a GHCB, just return right back to the guest */
4293 return 1;
4294 }
4295
4296 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4297 /* Unable to map GHCB from guest */
4298 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4299 ghcb_gpa);
4300
4301 /* Without a GHCB, just return right back to the guest */
4302 return 1;
4303 }
4304
4305 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4306
4307 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4308
4309 sev_es_sync_from_ghcb(svm);
4310
4311 /* SEV-SNP guest requires that the GHCB GPA must be registered */
4312 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4313 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4314 return -EINVAL;
4315 }
4316
4317 ret = sev_es_validate_vmgexit(svm);
4318 if (ret)
4319 return ret;
4320
4321 svm_vmgexit_success(svm, 0);
4322
4323 exit_code = kvm_ghcb_get_sw_exit_code(control);
4324 switch (exit_code) {
4325 case SVM_VMGEXIT_MMIO_READ:
4326 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4327 if (ret)
4328 break;
4329
4330 ret = kvm_sev_es_mmio_read(vcpu,
4331 control->exit_info_1,
4332 control->exit_info_2,
4333 svm->sev_es.ghcb_sa);
4334 break;
4335 case SVM_VMGEXIT_MMIO_WRITE:
4336 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4337 if (ret)
4338 break;
4339
4340 ret = kvm_sev_es_mmio_write(vcpu,
4341 control->exit_info_1,
4342 control->exit_info_2,
4343 svm->sev_es.ghcb_sa);
4344 break;
4345 case SVM_VMGEXIT_NMI_COMPLETE:
4346 ++vcpu->stat.nmi_window_exits;
4347 svm->nmi_masked = false;
4348 kvm_make_request(KVM_REQ_EVENT, vcpu);
4349 ret = 1;
4350 break;
4351 case SVM_VMGEXIT_AP_HLT_LOOP:
4352 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4353 ret = kvm_emulate_ap_reset_hold(vcpu);
4354 break;
4355 case SVM_VMGEXIT_AP_JUMP_TABLE: {
4356 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4357
4358 switch (control->exit_info_1) {
4359 case 0:
4360 /* Set AP jump table address */
4361 sev->ap_jump_table = control->exit_info_2;
4362 break;
4363 case 1:
4364 /* Get AP jump table address */
4365 svm_vmgexit_success(svm, sev->ap_jump_table);
4366 break;
4367 default:
4368 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4369 control->exit_info_1);
4370 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4371 }
4372
4373 ret = 1;
4374 break;
4375 }
4376 case SVM_VMGEXIT_HV_FEATURES:
4377 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4378 ret = 1;
4379 break;
4380 case SVM_VMGEXIT_TERM_REQUEST:
4381 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4382 control->exit_info_1, control->exit_info_2);
4383 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4384 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4385 vcpu->run->system_event.ndata = 1;
4386 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4387 break;
4388 case SVM_VMGEXIT_PSC:
4389 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4390 if (ret)
4391 break;
4392
4393 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4394 break;
4395 case SVM_VMGEXIT_AP_CREATION:
4396 ret = sev_snp_ap_creation(svm);
4397 if (ret) {
4398 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4399 }
4400
4401 ret = 1;
4402 break;
4403 case SVM_VMGEXIT_GUEST_REQUEST:
4404 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4405 break;
4406 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4407 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4408 break;
4409 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4410 vcpu_unimpl(vcpu,
4411 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4412 control->exit_info_1, control->exit_info_2);
4413 ret = -EINVAL;
4414 break;
4415 default:
4416 ret = svm_invoke_exit_handler(vcpu, exit_code);
4417 }
4418
4419 return ret;
4420 }
4421
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4422 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4423 {
4424 int count;
4425 int bytes;
4426 int r;
4427
4428 if (svm->vmcb->control.exit_info_2 > INT_MAX)
4429 return -EINVAL;
4430
4431 count = svm->vmcb->control.exit_info_2;
4432 if (unlikely(check_mul_overflow(count, size, &bytes)))
4433 return -EINVAL;
4434
4435 r = setup_vmgexit_scratch(svm, in, bytes);
4436 if (r)
4437 return r;
4438
4439 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4440 count, in);
4441 }
4442
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4443 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4444 {
4445 /* Clear intercepts on MSRs that are context switched by hardware. */
4446 svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4447 svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4448 svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4449
4450 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4451 svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4452 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4453 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4454
4455 /*
4456 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4457 * the host/guest supports its use.
4458 *
4459 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4460 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4461 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4462 * exposed to the guest and XSAVES is supported in hardware. Condition
4463 * full XSS passthrough on the guest being able to use XSAVES *and*
4464 * XSAVES being exposed to the guest so that KVM can at least honor
4465 * guest CPUID for RDMSR and WRMSR.
4466 */
4467 svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4468 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4469 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4470 }
4471
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4472 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4473 {
4474 struct kvm_vcpu *vcpu = &svm->vcpu;
4475 struct kvm_cpuid_entry2 *best;
4476
4477 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4478 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4479 if (best)
4480 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4481 }
4482
sev_es_init_vmcb(struct vcpu_svm * svm)4483 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4484 {
4485 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4486 struct vmcb *vmcb = svm->vmcb01.ptr;
4487
4488 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4489
4490 /*
4491 * An SEV-ES guest requires a VMSA area that is a separate from the
4492 * VMCB page. Do not include the encryption mask on the VMSA physical
4493 * address since hardware will access it using the guest key. Note,
4494 * the VMSA will be NULL if this vCPU is the destination for intrahost
4495 * migration, and will be copied later.
4496 */
4497 if (!svm->sev_es.snp_has_guest_vmsa) {
4498 if (svm->sev_es.vmsa)
4499 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4500 else
4501 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4502 }
4503
4504 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4505 svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4506 VMCB_ALLOWED_SEV_FEATURES_VALID;
4507
4508 /* Can't intercept CR register access, HV can't modify CR registers */
4509 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4510 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4511 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4512 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4513 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4514 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4515
4516 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4517
4518 /* Track EFER/CR register changes */
4519 svm_set_intercept(svm, TRAP_EFER_WRITE);
4520 svm_set_intercept(svm, TRAP_CR0_WRITE);
4521 svm_set_intercept(svm, TRAP_CR4_WRITE);
4522 svm_set_intercept(svm, TRAP_CR8_WRITE);
4523
4524 vmcb->control.intercepts[INTERCEPT_DR] = 0;
4525 if (!sev_vcpu_has_debug_swap(svm)) {
4526 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4527 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4528 recalc_intercepts(svm);
4529 } else {
4530 /*
4531 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
4532 * allow debugging SEV-ES guests, and enables DebugSwap iff
4533 * NO_NESTED_DATA_BP is supported, so there's no reason to
4534 * intercept #DB when DebugSwap is enabled. For simplicity
4535 * with respect to guest debug, intercept #DB for other VMs
4536 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4537 * guest can't DoS the CPU with infinite #DB vectoring.
4538 */
4539 clr_exception_intercept(svm, DB_VECTOR);
4540 }
4541
4542 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4543 svm_clr_intercept(svm, INTERCEPT_XSETBV);
4544 }
4545
sev_init_vmcb(struct vcpu_svm * svm)4546 void sev_init_vmcb(struct vcpu_svm *svm)
4547 {
4548 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4549 clr_exception_intercept(svm, UD_VECTOR);
4550
4551 /*
4552 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4553 * KVM can't decrypt guest memory to decode the faulting instruction.
4554 */
4555 clr_exception_intercept(svm, GP_VECTOR);
4556
4557 if (sev_es_guest(svm->vcpu.kvm))
4558 sev_es_init_vmcb(svm);
4559 }
4560
sev_es_vcpu_reset(struct vcpu_svm * svm)4561 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4562 {
4563 struct kvm_vcpu *vcpu = &svm->vcpu;
4564 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4565
4566 /*
4567 * Set the GHCB MSR value as per the GHCB specification when emulating
4568 * vCPU RESET for an SEV-ES guest.
4569 */
4570 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4571 GHCB_VERSION_MIN,
4572 sev_enc_bit));
4573
4574 mutex_init(&svm->sev_es.snp_vmsa_mutex);
4575 }
4576
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4577 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4578 {
4579 struct kvm *kvm = svm->vcpu.kvm;
4580
4581 /*
4582 * All host state for SEV-ES guests is categorized into three swap types
4583 * based on how it is handled by hardware during a world switch:
4584 *
4585 * A: VMRUN: Host state saved in host save area
4586 * VMEXIT: Host state loaded from host save area
4587 *
4588 * B: VMRUN: Host state _NOT_ saved in host save area
4589 * VMEXIT: Host state loaded from host save area
4590 *
4591 * C: VMRUN: Host state _NOT_ saved in host save area
4592 * VMEXIT: Host state initialized to default(reset) values
4593 *
4594 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4595 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4596 * by common SVM code).
4597 */
4598 hostsa->xcr0 = kvm_host.xcr0;
4599 hostsa->pkru = read_pkru();
4600 hostsa->xss = kvm_host.xss;
4601
4602 /*
4603 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4604 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4605 * not save or load debug registers. Sadly, KVM can't prevent SNP
4606 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4607 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4608 * the guest has actually enabled (or not!) in the VMSA.
4609 *
4610 * If DebugSwap is *possible*, save the masks so that they're restored
4611 * if the guest enables DebugSwap. But for the DRs themselves, do NOT
4612 * rely on the CPU to restore the host values; KVM will restore them as
4613 * needed in common code, via hw_breakpoint_restore(). Note, KVM does
4614 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4615 * don't need to be restored per se, KVM just needs to ensure they are
4616 * loaded with the correct values *if* the CPU writes the MSRs.
4617 */
4618 if (sev_vcpu_has_debug_swap(svm) ||
4619 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4620 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4621 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4622 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4623 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4624 }
4625 }
4626
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4627 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4628 {
4629 struct vcpu_svm *svm = to_svm(vcpu);
4630
4631 /* First SIPI: Use the values as initially set by the VMM */
4632 if (!svm->sev_es.received_first_sipi) {
4633 svm->sev_es.received_first_sipi = true;
4634 return;
4635 }
4636
4637 /* Subsequent SIPI */
4638 switch (svm->sev_es.ap_reset_hold_type) {
4639 case AP_RESET_HOLD_NAE_EVENT:
4640 /*
4641 * Return from an AP Reset Hold VMGEXIT, where the guest will
4642 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4643 */
4644 svm_vmgexit_success(svm, 1);
4645 break;
4646 case AP_RESET_HOLD_MSR_PROTO:
4647 /*
4648 * Return from an AP Reset Hold VMGEXIT, where the guest will
4649 * set the CS and RIP. Set GHCB data field to a non-zero value.
4650 */
4651 set_ghcb_msr_bits(svm, 1,
4652 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4653 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4654
4655 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4656 GHCB_MSR_INFO_MASK,
4657 GHCB_MSR_INFO_POS);
4658 break;
4659 default:
4660 break;
4661 }
4662 }
4663
snp_safe_alloc_page_node(int node,gfp_t gfp)4664 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4665 {
4666 unsigned long pfn;
4667 struct page *p;
4668
4669 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4670 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4671
4672 /*
4673 * Allocate an SNP-safe page to workaround the SNP erratum where
4674 * the CPU will incorrectly signal an RMP violation #PF if a
4675 * hugepage (2MB or 1GB) collides with the RMP entry of a
4676 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4677 *
4678 * Allocate one extra page, choose a page which is not
4679 * 2MB-aligned, and free the other.
4680 */
4681 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4682 if (!p)
4683 return NULL;
4684
4685 split_page(p, 1);
4686
4687 pfn = page_to_pfn(p);
4688 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4689 __free_page(p++);
4690 else
4691 __free_page(p + 1);
4692
4693 return p;
4694 }
4695
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4696 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4697 {
4698 struct kvm_memory_slot *slot;
4699 struct kvm *kvm = vcpu->kvm;
4700 int order, rmp_level, ret;
4701 struct page *page;
4702 bool assigned;
4703 kvm_pfn_t pfn;
4704 gfn_t gfn;
4705
4706 gfn = gpa >> PAGE_SHIFT;
4707
4708 /*
4709 * The only time RMP faults occur for shared pages is when the guest is
4710 * triggering an RMP fault for an implicit page-state change from
4711 * shared->private. Implicit page-state changes are forwarded to
4712 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4713 * for shared pages should not end up here.
4714 */
4715 if (!kvm_mem_is_private(kvm, gfn)) {
4716 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4717 gpa);
4718 return;
4719 }
4720
4721 slot = gfn_to_memslot(kvm, gfn);
4722 if (!kvm_slot_can_be_private(slot)) {
4723 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4724 gpa);
4725 return;
4726 }
4727
4728 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4729 if (ret) {
4730 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4731 gpa);
4732 return;
4733 }
4734
4735 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4736 if (ret || !assigned) {
4737 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4738 gpa, pfn, ret);
4739 goto out_no_trace;
4740 }
4741
4742 /*
4743 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4744 * with PFERR_GUEST_RMP_BIT set:
4745 *
4746 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4747 * bit set if the guest issues them with a smaller granularity than
4748 * what is indicated by the page-size bit in the 2MB RMP entry for
4749 * the PFN that backs the GPA.
4750 *
4751 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4752 * smaller than what is indicated by the 2MB RMP entry for the PFN
4753 * that backs the GPA.
4754 *
4755 * In both these cases, the corresponding 2M RMP entry needs to
4756 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already
4757 * split into 4K RMP entries, then this is likely a spurious case which
4758 * can occur when there are concurrent accesses by the guest to a 2MB
4759 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4760 * the process of being PMASH'd into 4K entries. These cases should
4761 * resolve automatically on subsequent accesses, so just ignore them
4762 * here.
4763 */
4764 if (rmp_level == PG_LEVEL_4K)
4765 goto out;
4766
4767 ret = snp_rmptable_psmash(pfn);
4768 if (ret) {
4769 /*
4770 * Look it up again. If it's 4K now then the PSMASH may have
4771 * raced with another process and the issue has already resolved
4772 * itself.
4773 */
4774 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4775 assigned && rmp_level == PG_LEVEL_4K)
4776 goto out;
4777
4778 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4779 gpa, pfn, ret);
4780 }
4781
4782 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4783 out:
4784 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4785 out_no_trace:
4786 kvm_release_page_unused(page);
4787 }
4788
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4789 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4790 {
4791 kvm_pfn_t pfn = start;
4792
4793 while (pfn < end) {
4794 int ret, rmp_level;
4795 bool assigned;
4796
4797 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4798 if (ret) {
4799 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4800 pfn, start, end, rmp_level, ret);
4801 return false;
4802 }
4803
4804 if (assigned) {
4805 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4806 __func__, pfn, start, end, rmp_level);
4807 return false;
4808 }
4809
4810 pfn++;
4811 }
4812
4813 return true;
4814 }
4815
max_level_for_order(int order)4816 static u8 max_level_for_order(int order)
4817 {
4818 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4819 return PG_LEVEL_2M;
4820
4821 return PG_LEVEL_4K;
4822 }
4823
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4824 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4825 {
4826 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4827
4828 /*
4829 * If this is a large folio, and the entire 2M range containing the
4830 * PFN is currently shared, then the entire 2M-aligned range can be
4831 * set to private via a single 2M RMP entry.
4832 */
4833 if (max_level_for_order(order) > PG_LEVEL_4K &&
4834 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4835 return true;
4836
4837 return false;
4838 }
4839
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4840 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4841 {
4842 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4843 kvm_pfn_t pfn_aligned;
4844 gfn_t gfn_aligned;
4845 int level, rc;
4846 bool assigned;
4847
4848 if (!sev_snp_guest(kvm))
4849 return 0;
4850
4851 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4852 if (rc) {
4853 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4854 gfn, pfn, rc);
4855 return -ENOENT;
4856 }
4857
4858 if (assigned) {
4859 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4860 __func__, gfn, pfn, max_order, level);
4861 return 0;
4862 }
4863
4864 if (is_large_rmp_possible(kvm, pfn, max_order)) {
4865 level = PG_LEVEL_2M;
4866 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4867 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4868 } else {
4869 level = PG_LEVEL_4K;
4870 pfn_aligned = pfn;
4871 gfn_aligned = gfn;
4872 }
4873
4874 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4875 if (rc) {
4876 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4877 gfn, pfn, level, rc);
4878 return -EINVAL;
4879 }
4880
4881 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4882 __func__, gfn, pfn, pfn_aligned, max_order, level);
4883
4884 return 0;
4885 }
4886
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4887 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4888 {
4889 kvm_pfn_t pfn;
4890
4891 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4892 return;
4893
4894 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4895
4896 for (pfn = start; pfn < end;) {
4897 bool use_2m_update = false;
4898 int rc, rmp_level;
4899 bool assigned;
4900
4901 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4902 if (rc || !assigned)
4903 goto next_pfn;
4904
4905 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4906 end >= (pfn + PTRS_PER_PMD) &&
4907 rmp_level > PG_LEVEL_4K;
4908
4909 /*
4910 * If an unaligned PFN corresponds to a 2M region assigned as a
4911 * large page in the RMP table, PSMASH the region into individual
4912 * 4K RMP entries before attempting to convert a 4K sub-page.
4913 */
4914 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4915 /*
4916 * This shouldn't fail, but if it does, report it, but
4917 * still try to update RMP entry to shared and pray this
4918 * was a spurious error that can be addressed later.
4919 */
4920 rc = snp_rmptable_psmash(pfn);
4921 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4922 pfn, rc);
4923 }
4924
4925 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4926 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4927 pfn, rc))
4928 goto next_pfn;
4929
4930 /*
4931 * SEV-ES avoids host/guest cache coherency issues through
4932 * WBNOINVD hooks issued via MMU notifiers during run-time, and
4933 * KVM's VM destroy path at shutdown. Those MMU notifier events
4934 * don't cover gmem since there is no requirement to map pages
4935 * to a HVA in order to use them for a running guest. While the
4936 * shutdown path would still likely cover things for SNP guests,
4937 * userspace may also free gmem pages during run-time via
4938 * hole-punching operations on the guest_memfd, so flush the
4939 * cache entries for these pages before free'ing them back to
4940 * the host.
4941 */
4942 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4943 use_2m_update ? PMD_SIZE : PAGE_SIZE);
4944 next_pfn:
4945 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4946 cond_resched();
4947 }
4948 }
4949
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4950 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4951 {
4952 int level, rc;
4953 bool assigned;
4954
4955 if (!sev_snp_guest(kvm))
4956 return 0;
4957
4958 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4959 if (rc || !assigned)
4960 return PG_LEVEL_4K;
4961
4962 return level;
4963 }
4964
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)4965 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
4966 {
4967 struct vcpu_svm *svm = to_svm(vcpu);
4968 struct vmcb_save_area *vmsa;
4969 struct kvm_sev_info *sev;
4970 int error = 0;
4971 int ret;
4972
4973 if (!sev_es_guest(vcpu->kvm))
4974 return NULL;
4975
4976 /*
4977 * If the VMSA has not yet been encrypted, return a pointer to the
4978 * current un-encrypted VMSA.
4979 */
4980 if (!vcpu->arch.guest_state_protected)
4981 return (struct vmcb_save_area *)svm->sev_es.vmsa;
4982
4983 sev = to_kvm_sev_info(vcpu->kvm);
4984
4985 /* Check if the SEV policy allows debugging */
4986 if (sev_snp_guest(vcpu->kvm)) {
4987 if (!(sev->policy & SNP_POLICY_DEBUG))
4988 return NULL;
4989 } else {
4990 if (sev->policy & SEV_POLICY_NODBG)
4991 return NULL;
4992 }
4993
4994 if (sev_snp_guest(vcpu->kvm)) {
4995 struct sev_data_snp_dbg dbg = {0};
4996
4997 vmsa = snp_alloc_firmware_page(__GFP_ZERO);
4998 if (!vmsa)
4999 return NULL;
5000
5001 dbg.gctx_paddr = __psp_pa(sev->snp_context);
5002 dbg.src_addr = svm->vmcb->control.vmsa_pa;
5003 dbg.dst_addr = __psp_pa(vmsa);
5004
5005 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5006
5007 /*
5008 * Return the target page to a hypervisor page no matter what.
5009 * If this fails, the page can't be used, so leak it and don't
5010 * try to use it.
5011 */
5012 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5013 return NULL;
5014
5015 if (ret) {
5016 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5017 ret, error, error);
5018 free_page((unsigned long)vmsa);
5019
5020 return NULL;
5021 }
5022 } else {
5023 struct sev_data_dbg dbg = {0};
5024 struct page *vmsa_page;
5025
5026 vmsa_page = alloc_page(GFP_KERNEL);
5027 if (!vmsa_page)
5028 return NULL;
5029
5030 vmsa = page_address(vmsa_page);
5031
5032 dbg.handle = sev->handle;
5033 dbg.src_addr = svm->vmcb->control.vmsa_pa;
5034 dbg.dst_addr = __psp_pa(vmsa);
5035 dbg.len = PAGE_SIZE;
5036
5037 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5038 if (ret) {
5039 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5040 ret, error, error);
5041 __free_page(vmsa_page);
5042
5043 return NULL;
5044 }
5045 }
5046
5047 return vmsa;
5048 }
5049
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5050 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5051 {
5052 /* If the VMSA has not yet been encrypted, nothing was allocated */
5053 if (!vcpu->arch.guest_state_protected || !vmsa)
5054 return;
5055
5056 free_page((unsigned long)vmsa);
5057 }
5058