xref: /linux/arch/x86/kvm/svm/sev.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23 
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31 
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38 
39 #define GHCB_VERSION_MAX	2ULL
40 #define GHCB_VERSION_DEFAULT	2ULL
41 #define GHCB_VERSION_MIN	1ULL
42 
43 #define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
44 
45 /* enable/disable SEV support */
46 static bool sev_enabled = true;
47 module_param_named(sev, sev_enabled, bool, 0444);
48 
49 /* enable/disable SEV-ES support */
50 static bool sev_es_enabled = true;
51 module_param_named(sev_es, sev_es_enabled, bool, 0444);
52 
53 /* enable/disable SEV-SNP support */
54 static bool sev_snp_enabled = true;
55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
56 
57 /* enable/disable SEV-ES DebugSwap support */
58 static bool sev_es_debug_swap_enabled = true;
59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
60 static u64 sev_supported_vmsa_features;
61 
62 #define AP_RESET_HOLD_NONE		0
63 #define AP_RESET_HOLD_NAE_EVENT		1
64 #define AP_RESET_HOLD_MSR_PROTO		2
65 
66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
67 #define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
68 #define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
69 #define SNP_POLICY_MASK_SMT		BIT_ULL(16)
70 #define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
71 #define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
72 #define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)
73 
74 #define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
75 					 SNP_POLICY_MASK_API_MAJOR	| \
76 					 SNP_POLICY_MASK_SMT		| \
77 					 SNP_POLICY_MASK_RSVD_MBO	| \
78 					 SNP_POLICY_MASK_DEBUG		| \
79 					 SNP_POLICY_MASK_SINGLE_SOCKET)
80 
81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
82 
83 static u8 sev_enc_bit;
84 static DECLARE_RWSEM(sev_deactivate_lock);
85 static DEFINE_MUTEX(sev_bitmap_lock);
86 unsigned int max_sev_asid;
87 static unsigned int min_sev_asid;
88 static unsigned long sev_me_mask;
89 static unsigned int nr_asids;
90 static unsigned long *sev_asid_bitmap;
91 static unsigned long *sev_reclaim_asid_bitmap;
92 
93 static int snp_decommission_context(struct kvm *kvm);
94 
95 struct enc_region {
96 	struct list_head list;
97 	unsigned long npages;
98 	struct page **pages;
99 	unsigned long uaddr;
100 	unsigned long size;
101 };
102 
103 /* Called with the sev_bitmap_lock held, or on shutdown  */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
105 {
106 	int ret, error = 0;
107 	unsigned int asid;
108 
109 	/* Check if there are any ASIDs to reclaim before performing a flush */
110 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
111 	if (asid > max_asid)
112 		return -EBUSY;
113 
114 	/*
115 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
116 	 * so it must be guarded.
117 	 */
118 	down_write(&sev_deactivate_lock);
119 
120 	/* SNP firmware requires use of WBINVD for ASID recycling. */
121 	wbinvd_on_all_cpus();
122 
123 	if (sev_snp_enabled)
124 		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
125 	else
126 		ret = sev_guest_df_flush(&error);
127 
128 	up_write(&sev_deactivate_lock);
129 
130 	if (ret)
131 		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
132 		       sev_snp_enabled ? "-SNP" : "", ret, error);
133 
134 	return ret;
135 }
136 
is_mirroring_enc_context(struct kvm * kvm)137 static inline bool is_mirroring_enc_context(struct kvm *kvm)
138 {
139 	return !!to_kvm_sev_info(kvm)->enc_context_owner;
140 }
141 
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)142 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
143 {
144 	struct kvm_vcpu *vcpu = &svm->vcpu;
145 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
146 
147 	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
148 }
149 
150 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)151 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
152 {
153 	if (sev_flush_asids(min_asid, max_asid))
154 		return false;
155 
156 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
157 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
158 		   nr_asids);
159 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
160 
161 	return true;
162 }
163 
sev_misc_cg_try_charge(struct kvm_sev_info * sev)164 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
165 {
166 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
167 	return misc_cg_try_charge(type, sev->misc_cg, 1);
168 }
169 
sev_misc_cg_uncharge(struct kvm_sev_info * sev)170 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
171 {
172 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
173 	misc_cg_uncharge(type, sev->misc_cg, 1);
174 }
175 
sev_asid_new(struct kvm_sev_info * sev)176 static int sev_asid_new(struct kvm_sev_info *sev)
177 {
178 	/*
179 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
180 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
181 	 * Note: min ASID can end up larger than the max if basic SEV support is
182 	 * effectively disabled by disallowing use of ASIDs for SEV guests.
183 	 */
184 	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
185 	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
186 	unsigned int asid;
187 	bool retry = true;
188 	int ret;
189 
190 	if (min_asid > max_asid)
191 		return -ENOTTY;
192 
193 	WARN_ON(sev->misc_cg);
194 	sev->misc_cg = get_current_misc_cg();
195 	ret = sev_misc_cg_try_charge(sev);
196 	if (ret) {
197 		put_misc_cg(sev->misc_cg);
198 		sev->misc_cg = NULL;
199 		return ret;
200 	}
201 
202 	mutex_lock(&sev_bitmap_lock);
203 
204 again:
205 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
206 	if (asid > max_asid) {
207 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
208 			retry = false;
209 			goto again;
210 		}
211 		mutex_unlock(&sev_bitmap_lock);
212 		ret = -EBUSY;
213 		goto e_uncharge;
214 	}
215 
216 	__set_bit(asid, sev_asid_bitmap);
217 
218 	mutex_unlock(&sev_bitmap_lock);
219 
220 	sev->asid = asid;
221 	return 0;
222 e_uncharge:
223 	sev_misc_cg_uncharge(sev);
224 	put_misc_cg(sev->misc_cg);
225 	sev->misc_cg = NULL;
226 	return ret;
227 }
228 
sev_get_asid(struct kvm * kvm)229 static unsigned int sev_get_asid(struct kvm *kvm)
230 {
231 	return to_kvm_sev_info(kvm)->asid;
232 }
233 
sev_asid_free(struct kvm_sev_info * sev)234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236 	struct svm_cpu_data *sd;
237 	int cpu;
238 
239 	mutex_lock(&sev_bitmap_lock);
240 
241 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
242 
243 	for_each_possible_cpu(cpu) {
244 		sd = per_cpu_ptr(&svm_data, cpu);
245 		sd->sev_vmcbs[sev->asid] = NULL;
246 	}
247 
248 	mutex_unlock(&sev_bitmap_lock);
249 
250 	sev_misc_cg_uncharge(sev);
251 	put_misc_cg(sev->misc_cg);
252 	sev->misc_cg = NULL;
253 }
254 
sev_decommission(unsigned int handle)255 static void sev_decommission(unsigned int handle)
256 {
257 	struct sev_data_decommission decommission;
258 
259 	if (!handle)
260 		return;
261 
262 	decommission.handle = handle;
263 	sev_guest_decommission(&decommission, NULL);
264 }
265 
266 /*
267  * Transition a page to hypervisor-owned/shared state in the RMP table. This
268  * should not fail under normal conditions, but leak the page should that
269  * happen since it will no longer be usable by the host due to RMP protections.
270  */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273 	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 		return -EIO;
276 	}
277 
278 	return 0;
279 }
280 
281 /*
282  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285  * unless they are reclaimed first.
286  *
287  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288  * might not be usable by the host due to being set as immutable or still
289  * being associated with a guest ASID.
290  *
291  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292  * converted back to shared, as the page is no longer usable due to RMP
293  * protections, and it's infeasible for the guest to continue on.
294  */
snp_page_reclaim(struct kvm * kvm,u64 pfn)295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297 	struct sev_data_snp_page_reclaim data = {0};
298 	int fw_err, rc;
299 
300 	data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 		snp_leak_pages(pfn, 1);
304 		return -EIO;
305 	}
306 
307 	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 		return -EIO;
309 
310 	return rc;
311 }
312 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315 	struct sev_data_deactivate deactivate;
316 
317 	if (!handle)
318 		return;
319 
320 	deactivate.handle = handle;
321 
322 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 	down_read(&sev_deactivate_lock);
324 	sev_guest_deactivate(&deactivate, NULL);
325 	up_read(&sev_deactivate_lock);
326 
327 	sev_decommission(handle);
328 }
329 
330 /*
331  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333  * 2.0 specification for more details.
334  *
335  * Technically, when an SNP Guest Request is issued, the guest will provide its
336  * own request/response pages, which could in theory be passed along directly
337  * to firmware rather than using bounce pages. However, these pages would need
338  * special care:
339  *
340  *   - Both pages are from shared guest memory, so they need to be protected
341  *     from migration/etc. occurring while firmware reads/writes to them. At a
342  *     minimum, this requires elevating the ref counts and potentially needing
343  *     an explicit pinning of the memory. This places additional restrictions
344  *     on what type of memory backends userspace can use for shared guest
345  *     memory since there is some reliance on using refcounted pages.
346  *
347  *   - The response page needs to be switched to Firmware-owned[1] state
348  *     before the firmware can write to it, which can lead to potential
349  *     host RMP #PFs if the guest is misbehaved and hands the host a
350  *     guest page that KVM might write to for other reasons (e.g. virtio
351  *     buffers/etc.).
352  *
353  * Both of these issues can be avoided completely by using separately-allocated
354  * bounce pages for both the request/response pages and passing those to
355  * firmware instead. So that's what is being set up here.
356  *
357  * Guest requests rely on message sequence numbers to ensure requests are
358  * issued to firmware in the order the guest issues them, so concurrent guest
359  * requests generally shouldn't happen. But a misbehaved guest could issue
360  * concurrent guest requests in theory, so a mutex is used to serialize
361  * access to the bounce buffers.
362  *
363  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365  *     in the APM for details on the related RMP restrictions.
366  */
snp_guest_req_init(struct kvm * kvm)367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 	struct page *req_page;
371 
372 	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 	if (!req_page)
374 		return -ENOMEM;
375 
376 	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 	if (!sev->guest_resp_buf) {
378 		__free_page(req_page);
379 		return -EIO;
380 	}
381 
382 	sev->guest_req_buf = page_address(req_page);
383 	mutex_init(&sev->guest_req_mutex);
384 
385 	return 0;
386 }
387 
snp_guest_req_cleanup(struct kvm * kvm)388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391 
392 	if (sev->guest_resp_buf)
393 		snp_free_firmware_page(sev->guest_resp_buf);
394 
395 	if (sev->guest_req_buf)
396 		__free_page(virt_to_page(sev->guest_req_buf));
397 
398 	sev->guest_req_buf = NULL;
399 	sev->guest_resp_buf = NULL;
400 }
401 
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 			    struct kvm_sev_init *data,
404 			    unsigned long vm_type)
405 {
406 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
407 	struct sev_platform_init_args init_args = {0};
408 	bool es_active = vm_type != KVM_X86_SEV_VM;
409 	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 	int ret;
411 
412 	if (kvm->created_vcpus)
413 		return -EINVAL;
414 
415 	if (data->flags)
416 		return -EINVAL;
417 
418 	if (data->vmsa_features & ~valid_vmsa_features)
419 		return -EINVAL;
420 
421 	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 		return -EINVAL;
423 
424 	if (unlikely(sev->active))
425 		return -EINVAL;
426 
427 	sev->active = true;
428 	sev->es_active = es_active;
429 	sev->vmsa_features = data->vmsa_features;
430 	sev->ghcb_version = data->ghcb_version;
431 
432 	/*
433 	 * Currently KVM supports the full range of mandatory features defined
434 	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 	 * guests created via KVM_SEV_INIT2.
436 	 */
437 	if (sev->es_active && !sev->ghcb_version)
438 		sev->ghcb_version = GHCB_VERSION_DEFAULT;
439 
440 	if (vm_type == KVM_X86_SNP_VM)
441 		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442 
443 	ret = sev_asid_new(sev);
444 	if (ret)
445 		goto e_no_asid;
446 
447 	init_args.probe = false;
448 	ret = sev_platform_init(&init_args);
449 	if (ret)
450 		goto e_free_asid;
451 
452 	if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
453 		ret = -ENOMEM;
454 		goto e_free_asid;
455 	}
456 
457 	/* This needs to happen after SEV/SNP firmware initialization. */
458 	if (vm_type == KVM_X86_SNP_VM) {
459 		ret = snp_guest_req_init(kvm);
460 		if (ret)
461 			goto e_free;
462 	}
463 
464 	INIT_LIST_HEAD(&sev->regions_list);
465 	INIT_LIST_HEAD(&sev->mirror_vms);
466 	sev->need_init = false;
467 
468 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
469 
470 	return 0;
471 
472 e_free:
473 	free_cpumask_var(sev->have_run_cpus);
474 e_free_asid:
475 	argp->error = init_args.error;
476 	sev_asid_free(sev);
477 	sev->asid = 0;
478 e_no_asid:
479 	sev->vmsa_features = 0;
480 	sev->es_active = false;
481 	sev->active = false;
482 	return ret;
483 }
484 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)485 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
486 {
487 	struct kvm_sev_init data = {
488 		.vmsa_features = 0,
489 		.ghcb_version = 0,
490 	};
491 	unsigned long vm_type;
492 
493 	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
494 		return -EINVAL;
495 
496 	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
497 
498 	/*
499 	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
500 	 * continue to only ever support the minimal GHCB protocol version.
501 	 */
502 	if (vm_type == KVM_X86_SEV_ES_VM)
503 		data.ghcb_version = GHCB_VERSION_MIN;
504 
505 	return __sev_guest_init(kvm, argp, &data, vm_type);
506 }
507 
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)508 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
509 {
510 	struct kvm_sev_init data;
511 
512 	if (!to_kvm_sev_info(kvm)->need_init)
513 		return -EINVAL;
514 
515 	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
516 	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
517 	    kvm->arch.vm_type != KVM_X86_SNP_VM)
518 		return -EINVAL;
519 
520 	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
521 		return -EFAULT;
522 
523 	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
524 }
525 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)526 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
527 {
528 	unsigned int asid = sev_get_asid(kvm);
529 	struct sev_data_activate activate;
530 	int ret;
531 
532 	/* activate ASID on the given handle */
533 	activate.handle = handle;
534 	activate.asid   = asid;
535 	ret = sev_guest_activate(&activate, error);
536 
537 	return ret;
538 }
539 
__sev_issue_cmd(int fd,int id,void * data,int * error)540 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
541 {
542 	CLASS(fd, f)(fd);
543 
544 	if (fd_empty(f))
545 		return -EBADF;
546 
547 	return sev_issue_cmd_external_user(fd_file(f), id, data, error);
548 }
549 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)550 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
551 {
552 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
553 
554 	return __sev_issue_cmd(sev->fd, id, data, error);
555 }
556 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)557 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
558 {
559 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
560 	struct sev_data_launch_start start;
561 	struct kvm_sev_launch_start params;
562 	void *dh_blob, *session_blob;
563 	int *error = &argp->error;
564 	int ret;
565 
566 	if (!sev_guest(kvm))
567 		return -ENOTTY;
568 
569 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
570 		return -EFAULT;
571 
572 	sev->policy = params.policy;
573 
574 	memset(&start, 0, sizeof(start));
575 
576 	dh_blob = NULL;
577 	if (params.dh_uaddr) {
578 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
579 		if (IS_ERR(dh_blob))
580 			return PTR_ERR(dh_blob);
581 
582 		start.dh_cert_address = __sme_set(__pa(dh_blob));
583 		start.dh_cert_len = params.dh_len;
584 	}
585 
586 	session_blob = NULL;
587 	if (params.session_uaddr) {
588 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
589 		if (IS_ERR(session_blob)) {
590 			ret = PTR_ERR(session_blob);
591 			goto e_free_dh;
592 		}
593 
594 		start.session_address = __sme_set(__pa(session_blob));
595 		start.session_len = params.session_len;
596 	}
597 
598 	start.handle = params.handle;
599 	start.policy = params.policy;
600 
601 	/* create memory encryption context */
602 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
603 	if (ret)
604 		goto e_free_session;
605 
606 	/* Bind ASID to this guest */
607 	ret = sev_bind_asid(kvm, start.handle, error);
608 	if (ret) {
609 		sev_decommission(start.handle);
610 		goto e_free_session;
611 	}
612 
613 	/* return handle to userspace */
614 	params.handle = start.handle;
615 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
616 		sev_unbind_asid(kvm, start.handle);
617 		ret = -EFAULT;
618 		goto e_free_session;
619 	}
620 
621 	sev->handle = start.handle;
622 	sev->fd = argp->sev_fd;
623 
624 e_free_session:
625 	kfree(session_blob);
626 e_free_dh:
627 	kfree(dh_blob);
628 	return ret;
629 }
630 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)631 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
632 				    unsigned long ulen, unsigned long *n,
633 				    unsigned int flags)
634 {
635 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
636 	unsigned long npages, size;
637 	int npinned;
638 	unsigned long locked, lock_limit;
639 	struct page **pages;
640 	unsigned long first, last;
641 	int ret;
642 
643 	lockdep_assert_held(&kvm->lock);
644 
645 	if (ulen == 0 || uaddr + ulen < uaddr)
646 		return ERR_PTR(-EINVAL);
647 
648 	/* Calculate number of pages. */
649 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
650 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
651 	npages = (last - first + 1);
652 
653 	locked = sev->pages_locked + npages;
654 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
655 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
656 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
657 		return ERR_PTR(-ENOMEM);
658 	}
659 
660 	if (WARN_ON_ONCE(npages > INT_MAX))
661 		return ERR_PTR(-EINVAL);
662 
663 	/* Avoid using vmalloc for smaller buffers. */
664 	size = npages * sizeof(struct page *);
665 	if (size > PAGE_SIZE)
666 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
667 	else
668 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
669 
670 	if (!pages)
671 		return ERR_PTR(-ENOMEM);
672 
673 	/* Pin the user virtual address. */
674 	npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
675 	if (npinned != npages) {
676 		pr_err("SEV: Failure locking %lu pages.\n", npages);
677 		ret = -ENOMEM;
678 		goto err;
679 	}
680 
681 	*n = npages;
682 	sev->pages_locked = locked;
683 
684 	return pages;
685 
686 err:
687 	if (npinned > 0)
688 		unpin_user_pages(pages, npinned);
689 
690 	kvfree(pages);
691 	return ERR_PTR(ret);
692 }
693 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)694 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
695 			     unsigned long npages)
696 {
697 	unpin_user_pages(pages, npages);
698 	kvfree(pages);
699 	to_kvm_sev_info(kvm)->pages_locked -= npages;
700 }
701 
sev_clflush_pages(struct page * pages[],unsigned long npages)702 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
703 {
704 	uint8_t *page_virtual;
705 	unsigned long i;
706 
707 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
708 	    pages == NULL)
709 		return;
710 
711 	for (i = 0; i < npages; i++) {
712 		page_virtual = kmap_local_page(pages[i]);
713 		clflush_cache_range(page_virtual, PAGE_SIZE);
714 		kunmap_local(page_virtual);
715 		cond_resched();
716 	}
717 }
718 
sev_writeback_caches(struct kvm * kvm)719 static void sev_writeback_caches(struct kvm *kvm)
720 {
721 	/*
722 	 * Note, the caller is responsible for ensuring correctness if the mask
723 	 * can be modified, e.g. if a CPU could be doing VMRUN.
724 	 */
725 	if (cpumask_empty(to_kvm_sev_info(kvm)->have_run_cpus))
726 		return;
727 
728 	/*
729 	 * Ensure that all dirty guest tagged cache entries are written back
730 	 * before releasing the pages back to the system for use.  CLFLUSH will
731 	 * not do this without SME_COHERENT, and flushing many cache lines
732 	 * individually is slower than blasting WBINVD for large VMs, so issue
733 	 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
734 	 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
735 	 * VM's ASID.
736 	 *
737 	 * For simplicity, never remove CPUs from the bitmap.  Ideally, KVM
738 	 * would clear the mask when flushing caches, but doing so requires
739 	 * serializing multiple calls and having responding CPUs (to the IPI)
740 	 * mark themselves as still running if they are running (or about to
741 	 * run) a vCPU for the VM.
742 	 */
743 	wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
744 }
745 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)746 static unsigned long get_num_contig_pages(unsigned long idx,
747 				struct page **inpages, unsigned long npages)
748 {
749 	unsigned long paddr, next_paddr;
750 	unsigned long i = idx + 1, pages = 1;
751 
752 	/* find the number of contiguous pages starting from idx */
753 	paddr = __sme_page_pa(inpages[idx]);
754 	while (i < npages) {
755 		next_paddr = __sme_page_pa(inpages[i++]);
756 		if ((paddr + PAGE_SIZE) == next_paddr) {
757 			pages++;
758 			paddr = next_paddr;
759 			continue;
760 		}
761 		break;
762 	}
763 
764 	return pages;
765 }
766 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)767 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
768 {
769 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
770 	struct kvm_sev_launch_update_data params;
771 	struct sev_data_launch_update_data data;
772 	struct page **inpages;
773 	int ret;
774 
775 	if (!sev_guest(kvm))
776 		return -ENOTTY;
777 
778 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
779 		return -EFAULT;
780 
781 	vaddr = params.uaddr;
782 	size = params.len;
783 	vaddr_end = vaddr + size;
784 
785 	/* Lock the user memory. */
786 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
787 	if (IS_ERR(inpages))
788 		return PTR_ERR(inpages);
789 
790 	/*
791 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
792 	 * place; the cache may contain the data that was written unencrypted.
793 	 */
794 	sev_clflush_pages(inpages, npages);
795 
796 	data.reserved = 0;
797 	data.handle = to_kvm_sev_info(kvm)->handle;
798 
799 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
800 		int offset, len;
801 
802 		/*
803 		 * If the user buffer is not page-aligned, calculate the offset
804 		 * within the page.
805 		 */
806 		offset = vaddr & (PAGE_SIZE - 1);
807 
808 		/* Calculate the number of pages that can be encrypted in one go. */
809 		pages = get_num_contig_pages(i, inpages, npages);
810 
811 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
812 
813 		data.len = len;
814 		data.address = __sme_page_pa(inpages[i]) + offset;
815 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
816 		if (ret)
817 			goto e_unpin;
818 
819 		size -= len;
820 		next_vaddr = vaddr + len;
821 	}
822 
823 e_unpin:
824 	/* content of memory is updated, mark pages dirty */
825 	for (i = 0; i < npages; i++) {
826 		set_page_dirty_lock(inpages[i]);
827 		mark_page_accessed(inpages[i]);
828 	}
829 	/* unlock the user pages */
830 	sev_unpin_memory(kvm, inpages, npages);
831 	return ret;
832 }
833 
sev_es_sync_vmsa(struct vcpu_svm * svm)834 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
835 {
836 	struct kvm_vcpu *vcpu = &svm->vcpu;
837 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
838 	struct sev_es_save_area *save = svm->sev_es.vmsa;
839 	struct xregs_state *xsave;
840 	const u8 *s;
841 	u8 *d;
842 	int i;
843 
844 	/* Check some debug related fields before encrypting the VMSA */
845 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
846 		return -EINVAL;
847 
848 	/*
849 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
850 	 * the traditional VMSA that is part of the VMCB. Copy the
851 	 * traditional VMSA as it has been built so far (in prep
852 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
853 	 */
854 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
855 
856 	/* Sync registgers */
857 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
858 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
859 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
860 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
861 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
862 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
863 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
864 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
865 #ifdef CONFIG_X86_64
866 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
867 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
868 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
869 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
870 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
871 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
872 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
873 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
874 #endif
875 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
876 
877 	/* Sync some non-GPR registers before encrypting */
878 	save->xcr0 = svm->vcpu.arch.xcr0;
879 	save->pkru = svm->vcpu.arch.pkru;
880 	save->xss  = svm->vcpu.arch.ia32_xss;
881 	save->dr6  = svm->vcpu.arch.dr6;
882 
883 	save->sev_features = sev->vmsa_features;
884 
885 	/*
886 	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
887 	 * breaking older measurements.
888 	 */
889 	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
890 		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
891 		save->x87_dp = xsave->i387.rdp;
892 		save->mxcsr = xsave->i387.mxcsr;
893 		save->x87_ftw = xsave->i387.twd;
894 		save->x87_fsw = xsave->i387.swd;
895 		save->x87_fcw = xsave->i387.cwd;
896 		save->x87_fop = xsave->i387.fop;
897 		save->x87_ds = 0;
898 		save->x87_cs = 0;
899 		save->x87_rip = xsave->i387.rip;
900 
901 		for (i = 0; i < 8; i++) {
902 			/*
903 			 * The format of the x87 save area is undocumented and
904 			 * definitely not what you would expect.  It consists of
905 			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
906 			 * area with bytes 8-9 of each register.
907 			 */
908 			d = save->fpreg_x87 + i * 8;
909 			s = ((u8 *)xsave->i387.st_space) + i * 16;
910 			memcpy(d, s, 8);
911 			save->fpreg_x87[64 + i * 2] = s[8];
912 			save->fpreg_x87[64 + i * 2 + 1] = s[9];
913 		}
914 		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
915 
916 		s = get_xsave_addr(xsave, XFEATURE_YMM);
917 		if (s)
918 			memcpy(save->fpreg_ymm, s, 256);
919 		else
920 			memset(save->fpreg_ymm, 0, 256);
921 	}
922 
923 	pr_debug("Virtual Machine Save Area (VMSA):\n");
924 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
925 
926 	return 0;
927 }
928 
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)929 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
930 				    int *error)
931 {
932 	struct sev_data_launch_update_vmsa vmsa;
933 	struct vcpu_svm *svm = to_svm(vcpu);
934 	int ret;
935 
936 	if (vcpu->guest_debug) {
937 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
938 		return -EINVAL;
939 	}
940 
941 	/* Perform some pre-encryption checks against the VMSA */
942 	ret = sev_es_sync_vmsa(svm);
943 	if (ret)
944 		return ret;
945 
946 	/*
947 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
948 	 * the VMSA memory content (i.e it will write the same memory region
949 	 * with the guest's key), so invalidate it first.
950 	 */
951 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
952 
953 	vmsa.reserved = 0;
954 	vmsa.handle = to_kvm_sev_info(kvm)->handle;
955 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
956 	vmsa.len = PAGE_SIZE;
957 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
958 	if (ret)
959 	  return ret;
960 
961 	/*
962 	 * SEV-ES guests maintain an encrypted version of their FPU
963 	 * state which is restored and saved on VMRUN and VMEXIT.
964 	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
965 	 * do xsave/xrstor on it.
966 	 */
967 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
968 	vcpu->arch.guest_state_protected = true;
969 
970 	/*
971 	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
972 	 * only after setting guest_state_protected because KVM_SET_MSRS allows
973 	 * dynamic toggling of LBRV (for performance reason) on write access to
974 	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
975 	 */
976 	svm_enable_lbrv(vcpu);
977 	return 0;
978 }
979 
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)980 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
981 {
982 	struct kvm_vcpu *vcpu;
983 	unsigned long i;
984 	int ret;
985 
986 	if (!sev_es_guest(kvm))
987 		return -ENOTTY;
988 
989 	kvm_for_each_vcpu(i, vcpu, kvm) {
990 		ret = mutex_lock_killable(&vcpu->mutex);
991 		if (ret)
992 			return ret;
993 
994 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
995 
996 		mutex_unlock(&vcpu->mutex);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	return 0;
1002 }
1003 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1004 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1005 {
1006 	void __user *measure = u64_to_user_ptr(argp->data);
1007 	struct sev_data_launch_measure data;
1008 	struct kvm_sev_launch_measure params;
1009 	void __user *p = NULL;
1010 	void *blob = NULL;
1011 	int ret;
1012 
1013 	if (!sev_guest(kvm))
1014 		return -ENOTTY;
1015 
1016 	if (copy_from_user(&params, measure, sizeof(params)))
1017 		return -EFAULT;
1018 
1019 	memset(&data, 0, sizeof(data));
1020 
1021 	/* User wants to query the blob length */
1022 	if (!params.len)
1023 		goto cmd;
1024 
1025 	p = u64_to_user_ptr(params.uaddr);
1026 	if (p) {
1027 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1028 			return -EINVAL;
1029 
1030 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1031 		if (!blob)
1032 			return -ENOMEM;
1033 
1034 		data.address = __psp_pa(blob);
1035 		data.len = params.len;
1036 	}
1037 
1038 cmd:
1039 	data.handle = to_kvm_sev_info(kvm)->handle;
1040 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1041 
1042 	/*
1043 	 * If we query the session length, FW responded with expected data.
1044 	 */
1045 	if (!params.len)
1046 		goto done;
1047 
1048 	if (ret)
1049 		goto e_free_blob;
1050 
1051 	if (blob) {
1052 		if (copy_to_user(p, blob, params.len))
1053 			ret = -EFAULT;
1054 	}
1055 
1056 done:
1057 	params.len = data.len;
1058 	if (copy_to_user(measure, &params, sizeof(params)))
1059 		ret = -EFAULT;
1060 e_free_blob:
1061 	kfree(blob);
1062 	return ret;
1063 }
1064 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1065 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1066 {
1067 	struct sev_data_launch_finish data;
1068 
1069 	if (!sev_guest(kvm))
1070 		return -ENOTTY;
1071 
1072 	data.handle = to_kvm_sev_info(kvm)->handle;
1073 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1074 }
1075 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1076 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1077 {
1078 	struct kvm_sev_guest_status params;
1079 	struct sev_data_guest_status data;
1080 	int ret;
1081 
1082 	if (!sev_guest(kvm))
1083 		return -ENOTTY;
1084 
1085 	memset(&data, 0, sizeof(data));
1086 
1087 	data.handle = to_kvm_sev_info(kvm)->handle;
1088 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1089 	if (ret)
1090 		return ret;
1091 
1092 	params.policy = data.policy;
1093 	params.state = data.state;
1094 	params.handle = data.handle;
1095 
1096 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1097 		ret = -EFAULT;
1098 
1099 	return ret;
1100 }
1101 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1102 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1103 			       unsigned long dst, int size,
1104 			       int *error, bool enc)
1105 {
1106 	struct sev_data_dbg data;
1107 
1108 	data.reserved = 0;
1109 	data.handle = to_kvm_sev_info(kvm)->handle;
1110 	data.dst_addr = dst;
1111 	data.src_addr = src;
1112 	data.len = size;
1113 
1114 	return sev_issue_cmd(kvm,
1115 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1116 			     &data, error);
1117 }
1118 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1119 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1120 			     unsigned long dst_paddr, int sz, int *err)
1121 {
1122 	int offset;
1123 
1124 	/*
1125 	 * Its safe to read more than we are asked, caller should ensure that
1126 	 * destination has enough space.
1127 	 */
1128 	offset = src_paddr & 15;
1129 	src_paddr = round_down(src_paddr, 16);
1130 	sz = round_up(sz + offset, 16);
1131 
1132 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1133 }
1134 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1135 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1136 				  void __user *dst_uaddr,
1137 				  unsigned long dst_paddr,
1138 				  int size, int *err)
1139 {
1140 	struct page *tpage = NULL;
1141 	int ret, offset;
1142 
1143 	/* if inputs are not 16-byte then use intermediate buffer */
1144 	if (!IS_ALIGNED(dst_paddr, 16) ||
1145 	    !IS_ALIGNED(paddr,     16) ||
1146 	    !IS_ALIGNED(size,      16)) {
1147 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1148 		if (!tpage)
1149 			return -ENOMEM;
1150 
1151 		dst_paddr = __sme_page_pa(tpage);
1152 	}
1153 
1154 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1155 	if (ret)
1156 		goto e_free;
1157 
1158 	if (tpage) {
1159 		offset = paddr & 15;
1160 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1161 			ret = -EFAULT;
1162 	}
1163 
1164 e_free:
1165 	if (tpage)
1166 		__free_page(tpage);
1167 
1168 	return ret;
1169 }
1170 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1171 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1172 				  void __user *vaddr,
1173 				  unsigned long dst_paddr,
1174 				  void __user *dst_vaddr,
1175 				  int size, int *error)
1176 {
1177 	struct page *src_tpage = NULL;
1178 	struct page *dst_tpage = NULL;
1179 	int ret, len = size;
1180 
1181 	/* If source buffer is not aligned then use an intermediate buffer */
1182 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1183 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1184 		if (!src_tpage)
1185 			return -ENOMEM;
1186 
1187 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1188 			__free_page(src_tpage);
1189 			return -EFAULT;
1190 		}
1191 
1192 		paddr = __sme_page_pa(src_tpage);
1193 	}
1194 
1195 	/*
1196 	 *  If destination buffer or length is not aligned then do read-modify-write:
1197 	 *   - decrypt destination in an intermediate buffer
1198 	 *   - copy the source buffer in an intermediate buffer
1199 	 *   - use the intermediate buffer as source buffer
1200 	 */
1201 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1202 		int dst_offset;
1203 
1204 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1205 		if (!dst_tpage) {
1206 			ret = -ENOMEM;
1207 			goto e_free;
1208 		}
1209 
1210 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1211 					__sme_page_pa(dst_tpage), size, error);
1212 		if (ret)
1213 			goto e_free;
1214 
1215 		/*
1216 		 *  If source is kernel buffer then use memcpy() otherwise
1217 		 *  copy_from_user().
1218 		 */
1219 		dst_offset = dst_paddr & 15;
1220 
1221 		if (src_tpage)
1222 			memcpy(page_address(dst_tpage) + dst_offset,
1223 			       page_address(src_tpage), size);
1224 		else {
1225 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1226 					   vaddr, size)) {
1227 				ret = -EFAULT;
1228 				goto e_free;
1229 			}
1230 		}
1231 
1232 		paddr = __sme_page_pa(dst_tpage);
1233 		dst_paddr = round_down(dst_paddr, 16);
1234 		len = round_up(size, 16);
1235 	}
1236 
1237 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1238 
1239 e_free:
1240 	if (src_tpage)
1241 		__free_page(src_tpage);
1242 	if (dst_tpage)
1243 		__free_page(dst_tpage);
1244 	return ret;
1245 }
1246 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1247 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1248 {
1249 	unsigned long vaddr, vaddr_end, next_vaddr;
1250 	unsigned long dst_vaddr;
1251 	struct page **src_p, **dst_p;
1252 	struct kvm_sev_dbg debug;
1253 	unsigned long n;
1254 	unsigned int size;
1255 	int ret;
1256 
1257 	if (!sev_guest(kvm))
1258 		return -ENOTTY;
1259 
1260 	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1261 		return -EFAULT;
1262 
1263 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1264 		return -EINVAL;
1265 	if (!debug.dst_uaddr)
1266 		return -EINVAL;
1267 
1268 	vaddr = debug.src_uaddr;
1269 	size = debug.len;
1270 	vaddr_end = vaddr + size;
1271 	dst_vaddr = debug.dst_uaddr;
1272 
1273 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1274 		int len, s_off, d_off;
1275 
1276 		/* lock userspace source and destination page */
1277 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1278 		if (IS_ERR(src_p))
1279 			return PTR_ERR(src_p);
1280 
1281 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1282 		if (IS_ERR(dst_p)) {
1283 			sev_unpin_memory(kvm, src_p, n);
1284 			return PTR_ERR(dst_p);
1285 		}
1286 
1287 		/*
1288 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1289 		 * the pages; flush the destination too so that future accesses do not
1290 		 * see stale data.
1291 		 */
1292 		sev_clflush_pages(src_p, 1);
1293 		sev_clflush_pages(dst_p, 1);
1294 
1295 		/*
1296 		 * Since user buffer may not be page aligned, calculate the
1297 		 * offset within the page.
1298 		 */
1299 		s_off = vaddr & ~PAGE_MASK;
1300 		d_off = dst_vaddr & ~PAGE_MASK;
1301 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1302 
1303 		if (dec)
1304 			ret = __sev_dbg_decrypt_user(kvm,
1305 						     __sme_page_pa(src_p[0]) + s_off,
1306 						     (void __user *)dst_vaddr,
1307 						     __sme_page_pa(dst_p[0]) + d_off,
1308 						     len, &argp->error);
1309 		else
1310 			ret = __sev_dbg_encrypt_user(kvm,
1311 						     __sme_page_pa(src_p[0]) + s_off,
1312 						     (void __user *)vaddr,
1313 						     __sme_page_pa(dst_p[0]) + d_off,
1314 						     (void __user *)dst_vaddr,
1315 						     len, &argp->error);
1316 
1317 		sev_unpin_memory(kvm, src_p, n);
1318 		sev_unpin_memory(kvm, dst_p, n);
1319 
1320 		if (ret)
1321 			goto err;
1322 
1323 		next_vaddr = vaddr + len;
1324 		dst_vaddr = dst_vaddr + len;
1325 		size -= len;
1326 	}
1327 err:
1328 	return ret;
1329 }
1330 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1331 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1332 {
1333 	struct sev_data_launch_secret data;
1334 	struct kvm_sev_launch_secret params;
1335 	struct page **pages;
1336 	void *blob, *hdr;
1337 	unsigned long n, i;
1338 	int ret, offset;
1339 
1340 	if (!sev_guest(kvm))
1341 		return -ENOTTY;
1342 
1343 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1344 		return -EFAULT;
1345 
1346 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1347 	if (IS_ERR(pages))
1348 		return PTR_ERR(pages);
1349 
1350 	/*
1351 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1352 	 * place; the cache may contain the data that was written unencrypted.
1353 	 */
1354 	sev_clflush_pages(pages, n);
1355 
1356 	/*
1357 	 * The secret must be copied into contiguous memory region, lets verify
1358 	 * that userspace memory pages are contiguous before we issue command.
1359 	 */
1360 	if (get_num_contig_pages(0, pages, n) != n) {
1361 		ret = -EINVAL;
1362 		goto e_unpin_memory;
1363 	}
1364 
1365 	memset(&data, 0, sizeof(data));
1366 
1367 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1368 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1369 	data.guest_len = params.guest_len;
1370 
1371 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1372 	if (IS_ERR(blob)) {
1373 		ret = PTR_ERR(blob);
1374 		goto e_unpin_memory;
1375 	}
1376 
1377 	data.trans_address = __psp_pa(blob);
1378 	data.trans_len = params.trans_len;
1379 
1380 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1381 	if (IS_ERR(hdr)) {
1382 		ret = PTR_ERR(hdr);
1383 		goto e_free_blob;
1384 	}
1385 	data.hdr_address = __psp_pa(hdr);
1386 	data.hdr_len = params.hdr_len;
1387 
1388 	data.handle = to_kvm_sev_info(kvm)->handle;
1389 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1390 
1391 	kfree(hdr);
1392 
1393 e_free_blob:
1394 	kfree(blob);
1395 e_unpin_memory:
1396 	/* content of memory is updated, mark pages dirty */
1397 	for (i = 0; i < n; i++) {
1398 		set_page_dirty_lock(pages[i]);
1399 		mark_page_accessed(pages[i]);
1400 	}
1401 	sev_unpin_memory(kvm, pages, n);
1402 	return ret;
1403 }
1404 
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1405 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1406 {
1407 	void __user *report = u64_to_user_ptr(argp->data);
1408 	struct sev_data_attestation_report data;
1409 	struct kvm_sev_attestation_report params;
1410 	void __user *p;
1411 	void *blob = NULL;
1412 	int ret;
1413 
1414 	if (!sev_guest(kvm))
1415 		return -ENOTTY;
1416 
1417 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1418 		return -EFAULT;
1419 
1420 	memset(&data, 0, sizeof(data));
1421 
1422 	/* User wants to query the blob length */
1423 	if (!params.len)
1424 		goto cmd;
1425 
1426 	p = u64_to_user_ptr(params.uaddr);
1427 	if (p) {
1428 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1429 			return -EINVAL;
1430 
1431 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1432 		if (!blob)
1433 			return -ENOMEM;
1434 
1435 		data.address = __psp_pa(blob);
1436 		data.len = params.len;
1437 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1438 	}
1439 cmd:
1440 	data.handle = to_kvm_sev_info(kvm)->handle;
1441 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1442 	/*
1443 	 * If we query the session length, FW responded with expected data.
1444 	 */
1445 	if (!params.len)
1446 		goto done;
1447 
1448 	if (ret)
1449 		goto e_free_blob;
1450 
1451 	if (blob) {
1452 		if (copy_to_user(p, blob, params.len))
1453 			ret = -EFAULT;
1454 	}
1455 
1456 done:
1457 	params.len = data.len;
1458 	if (copy_to_user(report, &params, sizeof(params)))
1459 		ret = -EFAULT;
1460 e_free_blob:
1461 	kfree(blob);
1462 	return ret;
1463 }
1464 
1465 /* Userspace wants to query session length. */
1466 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1467 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1468 				      struct kvm_sev_send_start *params)
1469 {
1470 	struct sev_data_send_start data;
1471 	int ret;
1472 
1473 	memset(&data, 0, sizeof(data));
1474 	data.handle = to_kvm_sev_info(kvm)->handle;
1475 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1476 
1477 	params->session_len = data.session_len;
1478 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1479 				sizeof(struct kvm_sev_send_start)))
1480 		ret = -EFAULT;
1481 
1482 	return ret;
1483 }
1484 
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1485 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1486 {
1487 	struct sev_data_send_start data;
1488 	struct kvm_sev_send_start params;
1489 	void *amd_certs, *session_data;
1490 	void *pdh_cert, *plat_certs;
1491 	int ret;
1492 
1493 	if (!sev_guest(kvm))
1494 		return -ENOTTY;
1495 
1496 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1497 				sizeof(struct kvm_sev_send_start)))
1498 		return -EFAULT;
1499 
1500 	/* if session_len is zero, userspace wants to query the session length */
1501 	if (!params.session_len)
1502 		return __sev_send_start_query_session_length(kvm, argp,
1503 				&params);
1504 
1505 	/* some sanity checks */
1506 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1507 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1508 		return -EINVAL;
1509 
1510 	/* allocate the memory to hold the session data blob */
1511 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1512 	if (!session_data)
1513 		return -ENOMEM;
1514 
1515 	/* copy the certificate blobs from userspace */
1516 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1517 				params.pdh_cert_len);
1518 	if (IS_ERR(pdh_cert)) {
1519 		ret = PTR_ERR(pdh_cert);
1520 		goto e_free_session;
1521 	}
1522 
1523 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1524 				params.plat_certs_len);
1525 	if (IS_ERR(plat_certs)) {
1526 		ret = PTR_ERR(plat_certs);
1527 		goto e_free_pdh;
1528 	}
1529 
1530 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1531 				params.amd_certs_len);
1532 	if (IS_ERR(amd_certs)) {
1533 		ret = PTR_ERR(amd_certs);
1534 		goto e_free_plat_cert;
1535 	}
1536 
1537 	/* populate the FW SEND_START field with system physical address */
1538 	memset(&data, 0, sizeof(data));
1539 	data.pdh_cert_address = __psp_pa(pdh_cert);
1540 	data.pdh_cert_len = params.pdh_cert_len;
1541 	data.plat_certs_address = __psp_pa(plat_certs);
1542 	data.plat_certs_len = params.plat_certs_len;
1543 	data.amd_certs_address = __psp_pa(amd_certs);
1544 	data.amd_certs_len = params.amd_certs_len;
1545 	data.session_address = __psp_pa(session_data);
1546 	data.session_len = params.session_len;
1547 	data.handle = to_kvm_sev_info(kvm)->handle;
1548 
1549 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1550 
1551 	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1552 			session_data, params.session_len)) {
1553 		ret = -EFAULT;
1554 		goto e_free_amd_cert;
1555 	}
1556 
1557 	params.policy = data.policy;
1558 	params.session_len = data.session_len;
1559 	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1560 				sizeof(struct kvm_sev_send_start)))
1561 		ret = -EFAULT;
1562 
1563 e_free_amd_cert:
1564 	kfree(amd_certs);
1565 e_free_plat_cert:
1566 	kfree(plat_certs);
1567 e_free_pdh:
1568 	kfree(pdh_cert);
1569 e_free_session:
1570 	kfree(session_data);
1571 	return ret;
1572 }
1573 
1574 /* Userspace wants to query either header or trans length. */
1575 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1576 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1577 				     struct kvm_sev_send_update_data *params)
1578 {
1579 	struct sev_data_send_update_data data;
1580 	int ret;
1581 
1582 	memset(&data, 0, sizeof(data));
1583 	data.handle = to_kvm_sev_info(kvm)->handle;
1584 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1585 
1586 	params->hdr_len = data.hdr_len;
1587 	params->trans_len = data.trans_len;
1588 
1589 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1590 			 sizeof(struct kvm_sev_send_update_data)))
1591 		ret = -EFAULT;
1592 
1593 	return ret;
1594 }
1595 
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1596 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1597 {
1598 	struct sev_data_send_update_data data;
1599 	struct kvm_sev_send_update_data params;
1600 	void *hdr, *trans_data;
1601 	struct page **guest_page;
1602 	unsigned long n;
1603 	int ret, offset;
1604 
1605 	if (!sev_guest(kvm))
1606 		return -ENOTTY;
1607 
1608 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1609 			sizeof(struct kvm_sev_send_update_data)))
1610 		return -EFAULT;
1611 
1612 	/* userspace wants to query either header or trans length */
1613 	if (!params.trans_len || !params.hdr_len)
1614 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1615 
1616 	if (!params.trans_uaddr || !params.guest_uaddr ||
1617 	    !params.guest_len || !params.hdr_uaddr)
1618 		return -EINVAL;
1619 
1620 	/* Check if we are crossing the page boundary */
1621 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1622 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1623 		return -EINVAL;
1624 
1625 	/* Pin guest memory */
1626 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1627 				    PAGE_SIZE, &n, 0);
1628 	if (IS_ERR(guest_page))
1629 		return PTR_ERR(guest_page);
1630 
1631 	/* allocate memory for header and transport buffer */
1632 	ret = -ENOMEM;
1633 	hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1634 	if (!hdr)
1635 		goto e_unpin;
1636 
1637 	trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1638 	if (!trans_data)
1639 		goto e_free_hdr;
1640 
1641 	memset(&data, 0, sizeof(data));
1642 	data.hdr_address = __psp_pa(hdr);
1643 	data.hdr_len = params.hdr_len;
1644 	data.trans_address = __psp_pa(trans_data);
1645 	data.trans_len = params.trans_len;
1646 
1647 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1648 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1649 	data.guest_address |= sev_me_mask;
1650 	data.guest_len = params.guest_len;
1651 	data.handle = to_kvm_sev_info(kvm)->handle;
1652 
1653 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1654 
1655 	if (ret)
1656 		goto e_free_trans_data;
1657 
1658 	/* copy transport buffer to user space */
1659 	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1660 			 trans_data, params.trans_len)) {
1661 		ret = -EFAULT;
1662 		goto e_free_trans_data;
1663 	}
1664 
1665 	/* Copy packet header to userspace. */
1666 	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1667 			 params.hdr_len))
1668 		ret = -EFAULT;
1669 
1670 e_free_trans_data:
1671 	kfree(trans_data);
1672 e_free_hdr:
1673 	kfree(hdr);
1674 e_unpin:
1675 	sev_unpin_memory(kvm, guest_page, n);
1676 
1677 	return ret;
1678 }
1679 
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1680 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1681 {
1682 	struct sev_data_send_finish data;
1683 
1684 	if (!sev_guest(kvm))
1685 		return -ENOTTY;
1686 
1687 	data.handle = to_kvm_sev_info(kvm)->handle;
1688 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1689 }
1690 
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1691 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1692 {
1693 	struct sev_data_send_cancel data;
1694 
1695 	if (!sev_guest(kvm))
1696 		return -ENOTTY;
1697 
1698 	data.handle = to_kvm_sev_info(kvm)->handle;
1699 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1700 }
1701 
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1702 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1703 {
1704 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1705 	struct sev_data_receive_start start;
1706 	struct kvm_sev_receive_start params;
1707 	int *error = &argp->error;
1708 	void *session_data;
1709 	void *pdh_data;
1710 	int ret;
1711 
1712 	if (!sev_guest(kvm))
1713 		return -ENOTTY;
1714 
1715 	/* Get parameter from the userspace */
1716 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1717 			sizeof(struct kvm_sev_receive_start)))
1718 		return -EFAULT;
1719 
1720 	/* some sanity checks */
1721 	if (!params.pdh_uaddr || !params.pdh_len ||
1722 	    !params.session_uaddr || !params.session_len)
1723 		return -EINVAL;
1724 
1725 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1726 	if (IS_ERR(pdh_data))
1727 		return PTR_ERR(pdh_data);
1728 
1729 	session_data = psp_copy_user_blob(params.session_uaddr,
1730 			params.session_len);
1731 	if (IS_ERR(session_data)) {
1732 		ret = PTR_ERR(session_data);
1733 		goto e_free_pdh;
1734 	}
1735 
1736 	memset(&start, 0, sizeof(start));
1737 	start.handle = params.handle;
1738 	start.policy = params.policy;
1739 	start.pdh_cert_address = __psp_pa(pdh_data);
1740 	start.pdh_cert_len = params.pdh_len;
1741 	start.session_address = __psp_pa(session_data);
1742 	start.session_len = params.session_len;
1743 
1744 	/* create memory encryption context */
1745 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1746 				error);
1747 	if (ret)
1748 		goto e_free_session;
1749 
1750 	/* Bind ASID to this guest */
1751 	ret = sev_bind_asid(kvm, start.handle, error);
1752 	if (ret) {
1753 		sev_decommission(start.handle);
1754 		goto e_free_session;
1755 	}
1756 
1757 	params.handle = start.handle;
1758 	if (copy_to_user(u64_to_user_ptr(argp->data),
1759 			 &params, sizeof(struct kvm_sev_receive_start))) {
1760 		ret = -EFAULT;
1761 		sev_unbind_asid(kvm, start.handle);
1762 		goto e_free_session;
1763 	}
1764 
1765     	sev->handle = start.handle;
1766 	sev->fd = argp->sev_fd;
1767 
1768 e_free_session:
1769 	kfree(session_data);
1770 e_free_pdh:
1771 	kfree(pdh_data);
1772 
1773 	return ret;
1774 }
1775 
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1776 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1777 {
1778 	struct kvm_sev_receive_update_data params;
1779 	struct sev_data_receive_update_data data;
1780 	void *hdr = NULL, *trans = NULL;
1781 	struct page **guest_page;
1782 	unsigned long n;
1783 	int ret, offset;
1784 
1785 	if (!sev_guest(kvm))
1786 		return -EINVAL;
1787 
1788 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1789 			sizeof(struct kvm_sev_receive_update_data)))
1790 		return -EFAULT;
1791 
1792 	if (!params.hdr_uaddr || !params.hdr_len ||
1793 	    !params.guest_uaddr || !params.guest_len ||
1794 	    !params.trans_uaddr || !params.trans_len)
1795 		return -EINVAL;
1796 
1797 	/* Check if we are crossing the page boundary */
1798 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1799 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1800 		return -EINVAL;
1801 
1802 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1803 	if (IS_ERR(hdr))
1804 		return PTR_ERR(hdr);
1805 
1806 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1807 	if (IS_ERR(trans)) {
1808 		ret = PTR_ERR(trans);
1809 		goto e_free_hdr;
1810 	}
1811 
1812 	memset(&data, 0, sizeof(data));
1813 	data.hdr_address = __psp_pa(hdr);
1814 	data.hdr_len = params.hdr_len;
1815 	data.trans_address = __psp_pa(trans);
1816 	data.trans_len = params.trans_len;
1817 
1818 	/* Pin guest memory */
1819 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1820 				    PAGE_SIZE, &n, FOLL_WRITE);
1821 	if (IS_ERR(guest_page)) {
1822 		ret = PTR_ERR(guest_page);
1823 		goto e_free_trans;
1824 	}
1825 
1826 	/*
1827 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1828 	 * encrypts the written data with the guest's key, and the cache may
1829 	 * contain dirty, unencrypted data.
1830 	 */
1831 	sev_clflush_pages(guest_page, n);
1832 
1833 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1834 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1835 	data.guest_address |= sev_me_mask;
1836 	data.guest_len = params.guest_len;
1837 	data.handle = to_kvm_sev_info(kvm)->handle;
1838 
1839 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1840 				&argp->error);
1841 
1842 	sev_unpin_memory(kvm, guest_page, n);
1843 
1844 e_free_trans:
1845 	kfree(trans);
1846 e_free_hdr:
1847 	kfree(hdr);
1848 
1849 	return ret;
1850 }
1851 
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1852 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1853 {
1854 	struct sev_data_receive_finish data;
1855 
1856 	if (!sev_guest(kvm))
1857 		return -ENOTTY;
1858 
1859 	data.handle = to_kvm_sev_info(kvm)->handle;
1860 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1861 }
1862 
is_cmd_allowed_from_mirror(u32 cmd_id)1863 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1864 {
1865 	/*
1866 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1867 	 * active mirror VMs. Also allow the debugging and status commands.
1868 	 */
1869 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1870 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1871 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1872 		return true;
1873 
1874 	return false;
1875 }
1876 
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1877 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1878 {
1879 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1880 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1881 	int r = -EBUSY;
1882 
1883 	if (dst_kvm == src_kvm)
1884 		return -EINVAL;
1885 
1886 	/*
1887 	 * Bail if these VMs are already involved in a migration to avoid
1888 	 * deadlock between two VMs trying to migrate to/from each other.
1889 	 */
1890 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1891 		return -EBUSY;
1892 
1893 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1894 		goto release_dst;
1895 
1896 	r = -EINTR;
1897 	if (mutex_lock_killable(&dst_kvm->lock))
1898 		goto release_src;
1899 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1900 		goto unlock_dst;
1901 	return 0;
1902 
1903 unlock_dst:
1904 	mutex_unlock(&dst_kvm->lock);
1905 release_src:
1906 	atomic_set_release(&src_sev->migration_in_progress, 0);
1907 release_dst:
1908 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1909 	return r;
1910 }
1911 
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1912 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1913 {
1914 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1915 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1916 
1917 	mutex_unlock(&dst_kvm->lock);
1918 	mutex_unlock(&src_kvm->lock);
1919 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1920 	atomic_set_release(&src_sev->migration_in_progress, 0);
1921 }
1922 
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1923 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1924 {
1925 	struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1926 	struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1927 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1928 	struct vcpu_svm *dst_svm, *src_svm;
1929 	struct kvm_sev_info *mirror;
1930 	unsigned long i;
1931 
1932 	dst->active = true;
1933 	dst->asid = src->asid;
1934 	dst->handle = src->handle;
1935 	dst->pages_locked = src->pages_locked;
1936 	dst->enc_context_owner = src->enc_context_owner;
1937 	dst->es_active = src->es_active;
1938 	dst->vmsa_features = src->vmsa_features;
1939 
1940 	src->asid = 0;
1941 	src->active = false;
1942 	src->handle = 0;
1943 	src->pages_locked = 0;
1944 	src->enc_context_owner = NULL;
1945 	src->es_active = false;
1946 
1947 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1948 
1949 	/*
1950 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1951 	 * source to the destination (this KVM).  The caller holds a reference
1952 	 * to the source, so there's no danger of use-after-free.
1953 	 */
1954 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1955 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1956 		kvm_get_kvm(dst_kvm);
1957 		kvm_put_kvm(src_kvm);
1958 		mirror->enc_context_owner = dst_kvm;
1959 	}
1960 
1961 	/*
1962 	 * If this VM is a mirror, remove the old mirror from the owners list
1963 	 * and add the new mirror to the list.
1964 	 */
1965 	if (is_mirroring_enc_context(dst_kvm)) {
1966 		struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1967 
1968 		list_del(&src->mirror_entry);
1969 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1970 	}
1971 
1972 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1973 		dst_svm = to_svm(dst_vcpu);
1974 
1975 		sev_init_vmcb(dst_svm);
1976 
1977 		if (!dst->es_active)
1978 			continue;
1979 
1980 		/*
1981 		 * Note, the source is not required to have the same number of
1982 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1983 		 */
1984 		src_vcpu = kvm_get_vcpu(src_kvm, i);
1985 		src_svm = to_svm(src_vcpu);
1986 
1987 		/*
1988 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1989 		 * clear source fields as appropriate, the state now belongs to
1990 		 * the destination.
1991 		 */
1992 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1993 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1994 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1995 		dst_vcpu->arch.guest_state_protected = true;
1996 
1997 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1998 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1999 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2000 		src_vcpu->arch.guest_state_protected = false;
2001 	}
2002 }
2003 
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2004 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2005 {
2006 	struct kvm_vcpu *src_vcpu;
2007 	unsigned long i;
2008 
2009 	if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2010 	    dst->created_vcpus != atomic_read(&dst->online_vcpus))
2011 		return -EBUSY;
2012 
2013 	if (!sev_es_guest(src))
2014 		return 0;
2015 
2016 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2017 		return -EINVAL;
2018 
2019 	kvm_for_each_vcpu(i, src_vcpu, src) {
2020 		if (!src_vcpu->arch.guest_state_protected)
2021 			return -EINVAL;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2027 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2028 {
2029 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2030 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2031 	CLASS(fd, f)(source_fd);
2032 	struct kvm *source_kvm;
2033 	bool charged = false;
2034 	int ret;
2035 
2036 	if (fd_empty(f))
2037 		return -EBADF;
2038 
2039 	if (!file_is_kvm(fd_file(f)))
2040 		return -EBADF;
2041 
2042 	source_kvm = fd_file(f)->private_data;
2043 	ret = sev_lock_two_vms(kvm, source_kvm);
2044 	if (ret)
2045 		return ret;
2046 
2047 	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2048 	    sev_guest(kvm) || !sev_guest(source_kvm)) {
2049 		ret = -EINVAL;
2050 		goto out_unlock;
2051 	}
2052 
2053 	src_sev = to_kvm_sev_info(source_kvm);
2054 
2055 	dst_sev->misc_cg = get_current_misc_cg();
2056 	cg_cleanup_sev = dst_sev;
2057 	if (dst_sev->misc_cg != src_sev->misc_cg) {
2058 		ret = sev_misc_cg_try_charge(dst_sev);
2059 		if (ret)
2060 			goto out_dst_cgroup;
2061 		charged = true;
2062 	}
2063 
2064 	ret = kvm_lock_all_vcpus(kvm);
2065 	if (ret)
2066 		goto out_dst_cgroup;
2067 	ret = kvm_lock_all_vcpus(source_kvm);
2068 	if (ret)
2069 		goto out_dst_vcpu;
2070 
2071 	ret = sev_check_source_vcpus(kvm, source_kvm);
2072 	if (ret)
2073 		goto out_source_vcpu;
2074 
2075 	/*
2076 	 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2077 	 * the set of CPUs from the source.  If a CPU was used to run a vCPU in
2078 	 * the source VM but is never used for the destination VM, then the CPU
2079 	 * can only have cached memory that was accessible to the source VM.
2080 	 */
2081 	if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2082 		ret = -ENOMEM;
2083 		goto out_source_vcpu;
2084 	}
2085 
2086 	sev_migrate_from(kvm, source_kvm);
2087 	kvm_vm_dead(source_kvm);
2088 	cg_cleanup_sev = src_sev;
2089 	ret = 0;
2090 
2091 out_source_vcpu:
2092 	kvm_unlock_all_vcpus(source_kvm);
2093 out_dst_vcpu:
2094 	kvm_unlock_all_vcpus(kvm);
2095 out_dst_cgroup:
2096 	/* Operates on the source on success, on the destination on failure.  */
2097 	if (charged)
2098 		sev_misc_cg_uncharge(cg_cleanup_sev);
2099 	put_misc_cg(cg_cleanup_sev->misc_cg);
2100 	cg_cleanup_sev->misc_cg = NULL;
2101 out_unlock:
2102 	sev_unlock_two_vms(kvm, source_kvm);
2103 	return ret;
2104 }
2105 
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2106 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2107 {
2108 	if (group != KVM_X86_GRP_SEV)
2109 		return -ENXIO;
2110 
2111 	switch (attr) {
2112 	case KVM_X86_SEV_VMSA_FEATURES:
2113 		*val = sev_supported_vmsa_features;
2114 		return 0;
2115 
2116 	default:
2117 		return -ENXIO;
2118 	}
2119 }
2120 
2121 /*
2122  * The guest context contains all the information, keys and metadata
2123  * associated with the guest that the firmware tracks to implement SEV
2124  * and SNP features. The firmware stores the guest context in hypervisor
2125  * provide page via the SNP_GCTX_CREATE command.
2126  */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2127 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2128 {
2129 	struct sev_data_snp_addr data = {};
2130 	void *context;
2131 	int rc;
2132 
2133 	/* Allocate memory for context page */
2134 	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2135 	if (!context)
2136 		return NULL;
2137 
2138 	data.address = __psp_pa(context);
2139 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2140 	if (rc) {
2141 		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2142 			rc, argp->error);
2143 		snp_free_firmware_page(context);
2144 		return NULL;
2145 	}
2146 
2147 	return context;
2148 }
2149 
snp_bind_asid(struct kvm * kvm,int * error)2150 static int snp_bind_asid(struct kvm *kvm, int *error)
2151 {
2152 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2153 	struct sev_data_snp_activate data = {0};
2154 
2155 	data.gctx_paddr = __psp_pa(sev->snp_context);
2156 	data.asid = sev_get_asid(kvm);
2157 	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2158 }
2159 
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2160 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2161 {
2162 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2163 	struct sev_data_snp_launch_start start = {0};
2164 	struct kvm_sev_snp_launch_start params;
2165 	int rc;
2166 
2167 	if (!sev_snp_guest(kvm))
2168 		return -ENOTTY;
2169 
2170 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2171 		return -EFAULT;
2172 
2173 	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
2174 	if (sev->snp_context)
2175 		return -EINVAL;
2176 
2177 	if (params.flags)
2178 		return -EINVAL;
2179 
2180 	if (params.policy & ~SNP_POLICY_MASK_VALID)
2181 		return -EINVAL;
2182 
2183 	/* Check for policy bits that must be set */
2184 	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2185 		return -EINVAL;
2186 
2187 	sev->policy = params.policy;
2188 
2189 	sev->snp_context = snp_context_create(kvm, argp);
2190 	if (!sev->snp_context)
2191 		return -ENOTTY;
2192 
2193 	start.gctx_paddr = __psp_pa(sev->snp_context);
2194 	start.policy = params.policy;
2195 	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2196 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2197 	if (rc) {
2198 		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2199 			 __func__, rc);
2200 		goto e_free_context;
2201 	}
2202 
2203 	sev->fd = argp->sev_fd;
2204 	rc = snp_bind_asid(kvm, &argp->error);
2205 	if (rc) {
2206 		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2207 			 __func__, rc);
2208 		goto e_free_context;
2209 	}
2210 
2211 	return 0;
2212 
2213 e_free_context:
2214 	snp_decommission_context(kvm);
2215 
2216 	return rc;
2217 }
2218 
2219 struct sev_gmem_populate_args {
2220 	__u8 type;
2221 	int sev_fd;
2222 	int fw_error;
2223 };
2224 
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2225 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2226 				  void __user *src, int order, void *opaque)
2227 {
2228 	struct sev_gmem_populate_args *sev_populate_args = opaque;
2229 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2230 	int n_private = 0, ret, i;
2231 	int npages = (1 << order);
2232 	gfn_t gfn;
2233 
2234 	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2235 		return -EINVAL;
2236 
2237 	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2238 		struct sev_data_snp_launch_update fw_args = {0};
2239 		bool assigned = false;
2240 		int level;
2241 
2242 		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2243 		if (ret || assigned) {
2244 			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2245 				 __func__, gfn, ret, assigned);
2246 			ret = ret ? -EINVAL : -EEXIST;
2247 			goto err;
2248 		}
2249 
2250 		if (src) {
2251 			void *vaddr = kmap_local_pfn(pfn + i);
2252 
2253 			if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2254 				ret = -EFAULT;
2255 				goto err;
2256 			}
2257 			kunmap_local(vaddr);
2258 		}
2259 
2260 		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2261 				       sev_get_asid(kvm), true);
2262 		if (ret)
2263 			goto err;
2264 
2265 		n_private++;
2266 
2267 		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2268 		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2269 		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2270 		fw_args.page_type = sev_populate_args->type;
2271 
2272 		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2273 				      &fw_args, &sev_populate_args->fw_error);
2274 		if (ret)
2275 			goto fw_err;
2276 	}
2277 
2278 	return 0;
2279 
2280 fw_err:
2281 	/*
2282 	 * If the firmware command failed handle the reclaim and cleanup of that
2283 	 * PFN specially vs. prior pages which can be cleaned up below without
2284 	 * needing to reclaim in advance.
2285 	 *
2286 	 * Additionally, when invalid CPUID function entries are detected,
2287 	 * firmware writes the expected values into the page and leaves it
2288 	 * unencrypted so it can be used for debugging and error-reporting.
2289 	 *
2290 	 * Copy this page back into the source buffer so userspace can use this
2291 	 * information to provide information on which CPUID leaves/fields
2292 	 * failed CPUID validation.
2293 	 */
2294 	if (!snp_page_reclaim(kvm, pfn + i) &&
2295 	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2296 	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2297 		void *vaddr = kmap_local_pfn(pfn + i);
2298 
2299 		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2300 			pr_debug("Failed to write CPUID page back to userspace\n");
2301 
2302 		kunmap_local(vaddr);
2303 	}
2304 
2305 	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2306 	n_private--;
2307 
2308 err:
2309 	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2310 		 __func__, ret, sev_populate_args->fw_error, n_private);
2311 	for (i = 0; i < n_private; i++)
2312 		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2313 
2314 	return ret;
2315 }
2316 
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2317 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2318 {
2319 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2320 	struct sev_gmem_populate_args sev_populate_args = {0};
2321 	struct kvm_sev_snp_launch_update params;
2322 	struct kvm_memory_slot *memslot;
2323 	long npages, count;
2324 	void __user *src;
2325 	int ret = 0;
2326 
2327 	if (!sev_snp_guest(kvm) || !sev->snp_context)
2328 		return -EINVAL;
2329 
2330 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2331 		return -EFAULT;
2332 
2333 	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2334 		 params.gfn_start, params.len, params.type, params.flags);
2335 
2336 	if (!PAGE_ALIGNED(params.len) || params.flags ||
2337 	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2338 	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2339 	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2340 	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2341 	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2342 		return -EINVAL;
2343 
2344 	npages = params.len / PAGE_SIZE;
2345 
2346 	/*
2347 	 * For each GFN that's being prepared as part of the initial guest
2348 	 * state, the following pre-conditions are verified:
2349 	 *
2350 	 *   1) The backing memslot is a valid private memslot.
2351 	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2352 	 *      beforehand.
2353 	 *   3) The PFN of the guest_memfd has not already been set to private
2354 	 *      in the RMP table.
2355 	 *
2356 	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2357 	 * faults if there's a race between a fault and an attribute update via
2358 	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2359 	 * here. However, kvm->slots_lock guards against both this as well as
2360 	 * concurrent memslot updates occurring while these checks are being
2361 	 * performed, so use that here to make it easier to reason about the
2362 	 * initial expected state and better guard against unexpected
2363 	 * situations.
2364 	 */
2365 	mutex_lock(&kvm->slots_lock);
2366 
2367 	memslot = gfn_to_memslot(kvm, params.gfn_start);
2368 	if (!kvm_slot_can_be_private(memslot)) {
2369 		ret = -EINVAL;
2370 		goto out;
2371 	}
2372 
2373 	sev_populate_args.sev_fd = argp->sev_fd;
2374 	sev_populate_args.type = params.type;
2375 	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2376 
2377 	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2378 				  sev_gmem_post_populate, &sev_populate_args);
2379 	if (count < 0) {
2380 		argp->error = sev_populate_args.fw_error;
2381 		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2382 			 __func__, count, argp->error);
2383 		ret = -EIO;
2384 	} else {
2385 		params.gfn_start += count;
2386 		params.len -= count * PAGE_SIZE;
2387 		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2388 			params.uaddr += count * PAGE_SIZE;
2389 
2390 		ret = 0;
2391 		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2392 			ret = -EFAULT;
2393 	}
2394 
2395 out:
2396 	mutex_unlock(&kvm->slots_lock);
2397 
2398 	return ret;
2399 }
2400 
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2401 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2402 {
2403 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2404 	struct sev_data_snp_launch_update data = {};
2405 	struct kvm_vcpu *vcpu;
2406 	unsigned long i;
2407 	int ret;
2408 
2409 	data.gctx_paddr = __psp_pa(sev->snp_context);
2410 	data.page_type = SNP_PAGE_TYPE_VMSA;
2411 
2412 	kvm_for_each_vcpu(i, vcpu, kvm) {
2413 		struct vcpu_svm *svm = to_svm(vcpu);
2414 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2415 
2416 		ret = sev_es_sync_vmsa(svm);
2417 		if (ret)
2418 			return ret;
2419 
2420 		/* Transition the VMSA page to a firmware state. */
2421 		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2422 		if (ret)
2423 			return ret;
2424 
2425 		/* Issue the SNP command to encrypt the VMSA */
2426 		data.address = __sme_pa(svm->sev_es.vmsa);
2427 		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2428 				      &data, &argp->error);
2429 		if (ret) {
2430 			snp_page_reclaim(kvm, pfn);
2431 
2432 			return ret;
2433 		}
2434 
2435 		svm->vcpu.arch.guest_state_protected = true;
2436 		/*
2437 		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2438 		 * be _always_ ON. Enable it only after setting
2439 		 * guest_state_protected because KVM_SET_MSRS allows dynamic
2440 		 * toggling of LBRV (for performance reason) on write access to
2441 		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2442 		 */
2443 		svm_enable_lbrv(vcpu);
2444 	}
2445 
2446 	return 0;
2447 }
2448 
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2449 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2450 {
2451 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2452 	struct kvm_sev_snp_launch_finish params;
2453 	struct sev_data_snp_launch_finish *data;
2454 	void *id_block = NULL, *id_auth = NULL;
2455 	int ret;
2456 
2457 	if (!sev_snp_guest(kvm))
2458 		return -ENOTTY;
2459 
2460 	if (!sev->snp_context)
2461 		return -EINVAL;
2462 
2463 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2464 		return -EFAULT;
2465 
2466 	if (params.flags)
2467 		return -EINVAL;
2468 
2469 	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2470 	ret = snp_launch_update_vmsa(kvm, argp);
2471 	if (ret)
2472 		return ret;
2473 
2474 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2475 	if (!data)
2476 		return -ENOMEM;
2477 
2478 	if (params.id_block_en) {
2479 		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2480 		if (IS_ERR(id_block)) {
2481 			ret = PTR_ERR(id_block);
2482 			goto e_free;
2483 		}
2484 
2485 		data->id_block_en = 1;
2486 		data->id_block_paddr = __sme_pa(id_block);
2487 
2488 		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2489 		if (IS_ERR(id_auth)) {
2490 			ret = PTR_ERR(id_auth);
2491 			goto e_free_id_block;
2492 		}
2493 
2494 		data->id_auth_paddr = __sme_pa(id_auth);
2495 
2496 		if (params.auth_key_en)
2497 			data->auth_key_en = 1;
2498 	}
2499 
2500 	data->vcek_disabled = params.vcek_disabled;
2501 
2502 	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2503 	data->gctx_paddr = __psp_pa(sev->snp_context);
2504 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2505 
2506 	/*
2507 	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2508 	 * can be given to the guest simply by marking the RMP entry as private.
2509 	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2510 	 */
2511 	if (!ret)
2512 		kvm->arch.pre_fault_allowed = true;
2513 
2514 	kfree(id_auth);
2515 
2516 e_free_id_block:
2517 	kfree(id_block);
2518 
2519 e_free:
2520 	kfree(data);
2521 
2522 	return ret;
2523 }
2524 
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2525 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2526 {
2527 	struct kvm_sev_cmd sev_cmd;
2528 	int r;
2529 
2530 	if (!sev_enabled)
2531 		return -ENOTTY;
2532 
2533 	if (!argp)
2534 		return 0;
2535 
2536 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2537 		return -EFAULT;
2538 
2539 	mutex_lock(&kvm->lock);
2540 
2541 	/* Only the enc_context_owner handles some memory enc operations. */
2542 	if (is_mirroring_enc_context(kvm) &&
2543 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2544 		r = -EINVAL;
2545 		goto out;
2546 	}
2547 
2548 	/*
2549 	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2550 	 * allow the use of SNP-specific commands.
2551 	 */
2552 	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2553 		r = -EPERM;
2554 		goto out;
2555 	}
2556 
2557 	switch (sev_cmd.id) {
2558 	case KVM_SEV_ES_INIT:
2559 		if (!sev_es_enabled) {
2560 			r = -ENOTTY;
2561 			goto out;
2562 		}
2563 		fallthrough;
2564 	case KVM_SEV_INIT:
2565 		r = sev_guest_init(kvm, &sev_cmd);
2566 		break;
2567 	case KVM_SEV_INIT2:
2568 		r = sev_guest_init2(kvm, &sev_cmd);
2569 		break;
2570 	case KVM_SEV_LAUNCH_START:
2571 		r = sev_launch_start(kvm, &sev_cmd);
2572 		break;
2573 	case KVM_SEV_LAUNCH_UPDATE_DATA:
2574 		r = sev_launch_update_data(kvm, &sev_cmd);
2575 		break;
2576 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2577 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2578 		break;
2579 	case KVM_SEV_LAUNCH_MEASURE:
2580 		r = sev_launch_measure(kvm, &sev_cmd);
2581 		break;
2582 	case KVM_SEV_LAUNCH_FINISH:
2583 		r = sev_launch_finish(kvm, &sev_cmd);
2584 		break;
2585 	case KVM_SEV_GUEST_STATUS:
2586 		r = sev_guest_status(kvm, &sev_cmd);
2587 		break;
2588 	case KVM_SEV_DBG_DECRYPT:
2589 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2590 		break;
2591 	case KVM_SEV_DBG_ENCRYPT:
2592 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2593 		break;
2594 	case KVM_SEV_LAUNCH_SECRET:
2595 		r = sev_launch_secret(kvm, &sev_cmd);
2596 		break;
2597 	case KVM_SEV_GET_ATTESTATION_REPORT:
2598 		r = sev_get_attestation_report(kvm, &sev_cmd);
2599 		break;
2600 	case KVM_SEV_SEND_START:
2601 		r = sev_send_start(kvm, &sev_cmd);
2602 		break;
2603 	case KVM_SEV_SEND_UPDATE_DATA:
2604 		r = sev_send_update_data(kvm, &sev_cmd);
2605 		break;
2606 	case KVM_SEV_SEND_FINISH:
2607 		r = sev_send_finish(kvm, &sev_cmd);
2608 		break;
2609 	case KVM_SEV_SEND_CANCEL:
2610 		r = sev_send_cancel(kvm, &sev_cmd);
2611 		break;
2612 	case KVM_SEV_RECEIVE_START:
2613 		r = sev_receive_start(kvm, &sev_cmd);
2614 		break;
2615 	case KVM_SEV_RECEIVE_UPDATE_DATA:
2616 		r = sev_receive_update_data(kvm, &sev_cmd);
2617 		break;
2618 	case KVM_SEV_RECEIVE_FINISH:
2619 		r = sev_receive_finish(kvm, &sev_cmd);
2620 		break;
2621 	case KVM_SEV_SNP_LAUNCH_START:
2622 		r = snp_launch_start(kvm, &sev_cmd);
2623 		break;
2624 	case KVM_SEV_SNP_LAUNCH_UPDATE:
2625 		r = snp_launch_update(kvm, &sev_cmd);
2626 		break;
2627 	case KVM_SEV_SNP_LAUNCH_FINISH:
2628 		r = snp_launch_finish(kvm, &sev_cmd);
2629 		break;
2630 	default:
2631 		r = -EINVAL;
2632 		goto out;
2633 	}
2634 
2635 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2636 		r = -EFAULT;
2637 
2638 out:
2639 	mutex_unlock(&kvm->lock);
2640 	return r;
2641 }
2642 
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2643 int sev_mem_enc_register_region(struct kvm *kvm,
2644 				struct kvm_enc_region *range)
2645 {
2646 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2647 	struct enc_region *region;
2648 	int ret = 0;
2649 
2650 	if (!sev_guest(kvm))
2651 		return -ENOTTY;
2652 
2653 	/* If kvm is mirroring encryption context it isn't responsible for it */
2654 	if (is_mirroring_enc_context(kvm))
2655 		return -EINVAL;
2656 
2657 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2658 		return -EINVAL;
2659 
2660 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2661 	if (!region)
2662 		return -ENOMEM;
2663 
2664 	mutex_lock(&kvm->lock);
2665 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages,
2666 				       FOLL_WRITE | FOLL_LONGTERM);
2667 	if (IS_ERR(region->pages)) {
2668 		ret = PTR_ERR(region->pages);
2669 		mutex_unlock(&kvm->lock);
2670 		goto e_free;
2671 	}
2672 
2673 	/*
2674 	 * The guest may change the memory encryption attribute from C=0 -> C=1
2675 	 * or vice versa for this memory range. Lets make sure caches are
2676 	 * flushed to ensure that guest data gets written into memory with
2677 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2678 	 * as region and its array of pages can be freed by a different task
2679 	 * once kvm->lock is released.
2680 	 */
2681 	sev_clflush_pages(region->pages, region->npages);
2682 
2683 	region->uaddr = range->addr;
2684 	region->size = range->size;
2685 
2686 	list_add_tail(&region->list, &sev->regions_list);
2687 	mutex_unlock(&kvm->lock);
2688 
2689 	return ret;
2690 
2691 e_free:
2692 	kfree(region);
2693 	return ret;
2694 }
2695 
2696 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2697 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2698 {
2699 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2700 	struct list_head *head = &sev->regions_list;
2701 	struct enc_region *i;
2702 
2703 	list_for_each_entry(i, head, list) {
2704 		if (i->uaddr == range->addr &&
2705 		    i->size == range->size)
2706 			return i;
2707 	}
2708 
2709 	return NULL;
2710 }
2711 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2712 static void __unregister_enc_region_locked(struct kvm *kvm,
2713 					   struct enc_region *region)
2714 {
2715 	sev_unpin_memory(kvm, region->pages, region->npages);
2716 	list_del(&region->list);
2717 	kfree(region);
2718 }
2719 
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2720 int sev_mem_enc_unregister_region(struct kvm *kvm,
2721 				  struct kvm_enc_region *range)
2722 {
2723 	struct enc_region *region;
2724 	int ret;
2725 
2726 	/* If kvm is mirroring encryption context it isn't responsible for it */
2727 	if (is_mirroring_enc_context(kvm))
2728 		return -EINVAL;
2729 
2730 	mutex_lock(&kvm->lock);
2731 
2732 	if (!sev_guest(kvm)) {
2733 		ret = -ENOTTY;
2734 		goto failed;
2735 	}
2736 
2737 	region = find_enc_region(kvm, range);
2738 	if (!region) {
2739 		ret = -EINVAL;
2740 		goto failed;
2741 	}
2742 
2743 	sev_writeback_caches(kvm);
2744 
2745 	__unregister_enc_region_locked(kvm, region);
2746 
2747 	mutex_unlock(&kvm->lock);
2748 	return 0;
2749 
2750 failed:
2751 	mutex_unlock(&kvm->lock);
2752 	return ret;
2753 }
2754 
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2755 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2756 {
2757 	CLASS(fd, f)(source_fd);
2758 	struct kvm *source_kvm;
2759 	struct kvm_sev_info *source_sev, *mirror_sev;
2760 	int ret;
2761 
2762 	if (fd_empty(f))
2763 		return -EBADF;
2764 
2765 	if (!file_is_kvm(fd_file(f)))
2766 		return -EBADF;
2767 
2768 	source_kvm = fd_file(f)->private_data;
2769 	ret = sev_lock_two_vms(kvm, source_kvm);
2770 	if (ret)
2771 		return ret;
2772 
2773 	/*
2774 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2775 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2776 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2777 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2778 	 */
2779 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2780 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2781 		ret = -EINVAL;
2782 		goto e_unlock;
2783 	}
2784 
2785 	mirror_sev = to_kvm_sev_info(kvm);
2786 	if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2787 		ret = -ENOMEM;
2788 		goto e_unlock;
2789 	}
2790 
2791 	/*
2792 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2793 	 * disappear until we're done with it
2794 	 */
2795 	source_sev = to_kvm_sev_info(source_kvm);
2796 	kvm_get_kvm(source_kvm);
2797 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2798 
2799 	/* Set enc_context_owner and copy its encryption context over */
2800 	mirror_sev->enc_context_owner = source_kvm;
2801 	mirror_sev->active = true;
2802 	mirror_sev->asid = source_sev->asid;
2803 	mirror_sev->fd = source_sev->fd;
2804 	mirror_sev->es_active = source_sev->es_active;
2805 	mirror_sev->need_init = false;
2806 	mirror_sev->handle = source_sev->handle;
2807 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2808 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2809 	ret = 0;
2810 
2811 	/*
2812 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2813 	 * KVM contexts as the original, and they may have different
2814 	 * memory-views.
2815 	 */
2816 
2817 e_unlock:
2818 	sev_unlock_two_vms(kvm, source_kvm);
2819 	return ret;
2820 }
2821 
snp_decommission_context(struct kvm * kvm)2822 static int snp_decommission_context(struct kvm *kvm)
2823 {
2824 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2825 	struct sev_data_snp_addr data = {};
2826 	int ret;
2827 
2828 	/* If context is not created then do nothing */
2829 	if (!sev->snp_context)
2830 		return 0;
2831 
2832 	/* Do the decommision, which will unbind the ASID from the SNP context */
2833 	data.address = __sme_pa(sev->snp_context);
2834 	down_write(&sev_deactivate_lock);
2835 	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2836 	up_write(&sev_deactivate_lock);
2837 
2838 	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2839 		return ret;
2840 
2841 	snp_free_firmware_page(sev->snp_context);
2842 	sev->snp_context = NULL;
2843 
2844 	return 0;
2845 }
2846 
sev_vm_destroy(struct kvm * kvm)2847 void sev_vm_destroy(struct kvm *kvm)
2848 {
2849 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2850 	struct list_head *head = &sev->regions_list;
2851 	struct list_head *pos, *q;
2852 
2853 	if (!sev_guest(kvm))
2854 		return;
2855 
2856 	WARN_ON(!list_empty(&sev->mirror_vms));
2857 
2858 	free_cpumask_var(sev->have_run_cpus);
2859 
2860 	/*
2861 	 * If this is a mirror VM, remove it from the owner's list of a mirrors
2862 	 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2863 	 * Note, mirror VMs don't support registering encrypted regions.
2864 	 */
2865 	if (is_mirroring_enc_context(kvm)) {
2866 		struct kvm *owner_kvm = sev->enc_context_owner;
2867 
2868 		mutex_lock(&owner_kvm->lock);
2869 		list_del(&sev->mirror_entry);
2870 		mutex_unlock(&owner_kvm->lock);
2871 		kvm_put_kvm(owner_kvm);
2872 		return;
2873 	}
2874 
2875 
2876 	/*
2877 	 * if userspace was terminated before unregistering the memory regions
2878 	 * then lets unpin all the registered memory.
2879 	 */
2880 	if (!list_empty(head)) {
2881 		list_for_each_safe(pos, q, head) {
2882 			__unregister_enc_region_locked(kvm,
2883 				list_entry(pos, struct enc_region, list));
2884 			cond_resched();
2885 		}
2886 	}
2887 
2888 	if (sev_snp_guest(kvm)) {
2889 		snp_guest_req_cleanup(kvm);
2890 
2891 		/*
2892 		 * Decomission handles unbinding of the ASID. If it fails for
2893 		 * some unexpected reason, just leak the ASID.
2894 		 */
2895 		if (snp_decommission_context(kvm))
2896 			return;
2897 	} else {
2898 		sev_unbind_asid(kvm, sev->handle);
2899 	}
2900 
2901 	sev_asid_free(sev);
2902 }
2903 
sev_set_cpu_caps(void)2904 void __init sev_set_cpu_caps(void)
2905 {
2906 	if (sev_enabled) {
2907 		kvm_cpu_cap_set(X86_FEATURE_SEV);
2908 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2909 	}
2910 	if (sev_es_enabled) {
2911 		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2912 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2913 	}
2914 	if (sev_snp_enabled) {
2915 		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2916 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2917 	}
2918 }
2919 
is_sev_snp_initialized(void)2920 static bool is_sev_snp_initialized(void)
2921 {
2922 	struct sev_user_data_snp_status *status;
2923 	struct sev_data_snp_addr buf;
2924 	bool initialized = false;
2925 	int ret, error = 0;
2926 
2927 	status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2928 	if (!status)
2929 		return false;
2930 
2931 	buf.address = __psp_pa(status);
2932 	ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2933 	if (ret) {
2934 		pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2935 		       ret, error, error);
2936 		goto out;
2937 	}
2938 
2939 	initialized = !!status->state;
2940 
2941 out:
2942 	snp_free_firmware_page(status);
2943 
2944 	return initialized;
2945 }
2946 
sev_hardware_setup(void)2947 void __init sev_hardware_setup(void)
2948 {
2949 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2950 	struct sev_platform_init_args init_args = {0};
2951 	bool sev_snp_supported = false;
2952 	bool sev_es_supported = false;
2953 	bool sev_supported = false;
2954 
2955 	if (!sev_enabled || !npt_enabled || !nrips)
2956 		goto out;
2957 
2958 	/*
2959 	 * SEV must obviously be supported in hardware.  Sanity check that the
2960 	 * CPU supports decode assists, which is mandatory for SEV guests to
2961 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2962 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2963 	 * ASID to effect a TLB flush.
2964 	 */
2965 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2966 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2967 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2968 		goto out;
2969 
2970 	/*
2971 	 * The kernel's initcall infrastructure lacks the ability to express
2972 	 * dependencies between initcalls, whereas the modules infrastructure
2973 	 * automatically handles dependencies via symbol loading.  Ensure the
2974 	 * PSP SEV driver is initialized before proceeding if KVM is built-in,
2975 	 * as the dependency isn't handled by the initcall infrastructure.
2976 	 */
2977 	if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
2978 		goto out;
2979 
2980 	/* Retrieve SEV CPUID information */
2981 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2982 
2983 	/* Set encryption bit location for SEV-ES guests */
2984 	sev_enc_bit = ebx & 0x3f;
2985 
2986 	/* Maximum number of encrypted guests supported simultaneously */
2987 	max_sev_asid = ecx;
2988 	if (!max_sev_asid)
2989 		goto out;
2990 
2991 	/* Minimum ASID value that should be used for SEV guest */
2992 	min_sev_asid = edx;
2993 	sev_me_mask = 1UL << (ebx & 0x3f);
2994 
2995 	/*
2996 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2997 	 * even though it's never used, so that the bitmap is indexed by the
2998 	 * actual ASID.
2999 	 */
3000 	nr_asids = max_sev_asid + 1;
3001 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3002 	if (!sev_asid_bitmap)
3003 		goto out;
3004 
3005 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3006 	if (!sev_reclaim_asid_bitmap) {
3007 		bitmap_free(sev_asid_bitmap);
3008 		sev_asid_bitmap = NULL;
3009 		goto out;
3010 	}
3011 
3012 	if (min_sev_asid <= max_sev_asid) {
3013 		sev_asid_count = max_sev_asid - min_sev_asid + 1;
3014 		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3015 	}
3016 	sev_supported = true;
3017 
3018 	/* SEV-ES support requested? */
3019 	if (!sev_es_enabled)
3020 		goto out;
3021 
3022 	/*
3023 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3024 	 * instruction stream, i.e. can't emulate in response to a #NPF and
3025 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3026 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3027 	 */
3028 	if (!enable_mmio_caching)
3029 		goto out;
3030 
3031 	/* Does the CPU support SEV-ES? */
3032 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3033 		goto out;
3034 
3035 	if (!lbrv) {
3036 		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3037 			  "LBRV must be present for SEV-ES support");
3038 		goto out;
3039 	}
3040 
3041 	/* Has the system been allocated ASIDs for SEV-ES? */
3042 	if (min_sev_asid == 1)
3043 		goto out;
3044 
3045 	sev_es_asid_count = min_sev_asid - 1;
3046 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3047 	sev_es_supported = true;
3048 	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3049 
3050 out:
3051 	if (sev_enabled) {
3052 		init_args.probe = true;
3053 		if (sev_platform_init(&init_args))
3054 			sev_supported = sev_es_supported = sev_snp_supported = false;
3055 		else if (sev_snp_supported)
3056 			sev_snp_supported = is_sev_snp_initialized();
3057 	}
3058 
3059 	if (boot_cpu_has(X86_FEATURE_SEV))
3060 		pr_info("SEV %s (ASIDs %u - %u)\n",
3061 			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3062 								       "unusable" :
3063 								       "disabled",
3064 			min_sev_asid, max_sev_asid);
3065 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
3066 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3067 			str_enabled_disabled(sev_es_supported),
3068 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3069 	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3070 		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3071 			str_enabled_disabled(sev_snp_supported),
3072 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3073 
3074 	sev_enabled = sev_supported;
3075 	sev_es_enabled = sev_es_supported;
3076 	sev_snp_enabled = sev_snp_supported;
3077 
3078 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3079 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3080 		sev_es_debug_swap_enabled = false;
3081 
3082 	sev_supported_vmsa_features = 0;
3083 	if (sev_es_debug_swap_enabled)
3084 		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3085 }
3086 
sev_hardware_unsetup(void)3087 void sev_hardware_unsetup(void)
3088 {
3089 	if (!sev_enabled)
3090 		return;
3091 
3092 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3093 	sev_flush_asids(1, max_sev_asid);
3094 
3095 	bitmap_free(sev_asid_bitmap);
3096 	bitmap_free(sev_reclaim_asid_bitmap);
3097 
3098 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3099 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3100 
3101 	sev_platform_shutdown();
3102 }
3103 
sev_cpu_init(struct svm_cpu_data * sd)3104 int sev_cpu_init(struct svm_cpu_data *sd)
3105 {
3106 	if (!sev_enabled)
3107 		return 0;
3108 
3109 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3110 	if (!sd->sev_vmcbs)
3111 		return -ENOMEM;
3112 
3113 	return 0;
3114 }
3115 
3116 /*
3117  * Pages used by hardware to hold guest encrypted state must be flushed before
3118  * returning them to the system.
3119  */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3120 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3121 {
3122 	unsigned int asid = sev_get_asid(vcpu->kvm);
3123 
3124 	/*
3125 	 * Note!  The address must be a kernel address, as regular page walk
3126 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3127 	 * address is non-deterministic and unsafe.  This function deliberately
3128 	 * takes a pointer to deter passing in a user address.
3129 	 */
3130 	unsigned long addr = (unsigned long)va;
3131 
3132 	/*
3133 	 * If CPU enforced cache coherency for encrypted mappings of the
3134 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3135 	 * flush is still needed in order to work properly with DMA devices.
3136 	 */
3137 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3138 		clflush_cache_range(va, PAGE_SIZE);
3139 		return;
3140 	}
3141 
3142 	/*
3143 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3144 	 * back to full writeback of caches if this faults so as not to make
3145 	 * any problems worse by leaving stale encrypted data in the cache.
3146 	 */
3147 	if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3148 		goto do_sev_writeback_caches;
3149 
3150 	return;
3151 
3152 do_sev_writeback_caches:
3153 	sev_writeback_caches(vcpu->kvm);
3154 }
3155 
sev_guest_memory_reclaimed(struct kvm * kvm)3156 void sev_guest_memory_reclaimed(struct kvm *kvm)
3157 {
3158 	/*
3159 	 * With SNP+gmem, private/encrypted memory is unreachable via the
3160 	 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3161 	 * shared pages, where there's no need to flush caches.
3162 	 */
3163 	if (!sev_guest(kvm) || sev_snp_guest(kvm))
3164 		return;
3165 
3166 	sev_writeback_caches(kvm);
3167 }
3168 
sev_free_vcpu(struct kvm_vcpu * vcpu)3169 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3170 {
3171 	struct vcpu_svm *svm;
3172 
3173 	if (!sev_es_guest(vcpu->kvm))
3174 		return;
3175 
3176 	svm = to_svm(vcpu);
3177 
3178 	/*
3179 	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3180 	 * a guest-owned page. Transition the page to hypervisor state before
3181 	 * releasing it back to the system.
3182 	 */
3183 	if (sev_snp_guest(vcpu->kvm)) {
3184 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3185 
3186 		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3187 			goto skip_vmsa_free;
3188 	}
3189 
3190 	if (vcpu->arch.guest_state_protected)
3191 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3192 
3193 	__free_page(virt_to_page(svm->sev_es.vmsa));
3194 
3195 skip_vmsa_free:
3196 	if (svm->sev_es.ghcb_sa_free)
3197 		kvfree(svm->sev_es.ghcb_sa);
3198 }
3199 
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3200 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3201 {
3202 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3203 }
3204 
dump_ghcb(struct vcpu_svm * svm)3205 static void dump_ghcb(struct vcpu_svm *svm)
3206 {
3207 	struct vmcb_control_area *control = &svm->vmcb->control;
3208 	unsigned int nbits;
3209 
3210 	/* Re-use the dump_invalid_vmcb module parameter */
3211 	if (!dump_invalid_vmcb) {
3212 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3213 		return;
3214 	}
3215 
3216 	nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3217 
3218 	/*
3219 	 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3220 	 * used to handle the exit.  If the guest has since modified the GHCB
3221 	 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3222 	 * handle the VMGEXIT that KVM observed.
3223 	 */
3224 	pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3225 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3226 	       kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3227 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3228 	       control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3229 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3230 	       control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3231 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3232 	       svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3233 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3234 }
3235 
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3236 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3237 {
3238 	struct kvm_vcpu *vcpu = &svm->vcpu;
3239 	struct ghcb *ghcb = svm->sev_es.ghcb;
3240 
3241 	/*
3242 	 * The GHCB protocol so far allows for the following data
3243 	 * to be returned:
3244 	 *   GPRs RAX, RBX, RCX, RDX
3245 	 *
3246 	 * Copy their values, even if they may not have been written during the
3247 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
3248 	 */
3249 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3250 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3251 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3252 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3253 }
3254 
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3255 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3256 {
3257 	struct vmcb_control_area *control = &svm->vmcb->control;
3258 	struct kvm_vcpu *vcpu = &svm->vcpu;
3259 	struct ghcb *ghcb = svm->sev_es.ghcb;
3260 	u64 exit_code;
3261 
3262 	/*
3263 	 * The GHCB protocol so far allows for the following data
3264 	 * to be supplied:
3265 	 *   GPRs RAX, RBX, RCX, RDX
3266 	 *   XCR0
3267 	 *   CPL
3268 	 *
3269 	 * VMMCALL allows the guest to provide extra registers. KVM also
3270 	 * expects RSI for hypercalls, so include that, too.
3271 	 *
3272 	 * Copy their values to the appropriate location if supplied.
3273 	 */
3274 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3275 
3276 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3277 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3278 
3279 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3280 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3281 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3282 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3283 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3284 
3285 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3286 
3287 	if (kvm_ghcb_xcr0_is_valid(svm)) {
3288 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3289 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3290 	}
3291 
3292 	/* Copy the GHCB exit information into the VMCB fields */
3293 	exit_code = ghcb_get_sw_exit_code(ghcb);
3294 	control->exit_code = lower_32_bits(exit_code);
3295 	control->exit_code_hi = upper_32_bits(exit_code);
3296 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3297 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3298 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3299 
3300 	/* Clear the valid entries fields */
3301 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3302 }
3303 
sev_es_validate_vmgexit(struct vcpu_svm * svm)3304 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3305 {
3306 	struct vmcb_control_area *control = &svm->vmcb->control;
3307 	struct kvm_vcpu *vcpu = &svm->vcpu;
3308 	u64 exit_code;
3309 	u64 reason;
3310 
3311 	/*
3312 	 * Retrieve the exit code now even though it may not be marked valid
3313 	 * as it could help with debugging.
3314 	 */
3315 	exit_code = kvm_ghcb_get_sw_exit_code(control);
3316 
3317 	/* Only GHCB Usage code 0 is supported */
3318 	if (svm->sev_es.ghcb->ghcb_usage) {
3319 		reason = GHCB_ERR_INVALID_USAGE;
3320 		goto vmgexit_err;
3321 	}
3322 
3323 	reason = GHCB_ERR_MISSING_INPUT;
3324 
3325 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3326 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3327 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3328 		goto vmgexit_err;
3329 
3330 	switch (exit_code) {
3331 	case SVM_EXIT_READ_DR7:
3332 		break;
3333 	case SVM_EXIT_WRITE_DR7:
3334 		if (!kvm_ghcb_rax_is_valid(svm))
3335 			goto vmgexit_err;
3336 		break;
3337 	case SVM_EXIT_RDTSC:
3338 		break;
3339 	case SVM_EXIT_RDPMC:
3340 		if (!kvm_ghcb_rcx_is_valid(svm))
3341 			goto vmgexit_err;
3342 		break;
3343 	case SVM_EXIT_CPUID:
3344 		if (!kvm_ghcb_rax_is_valid(svm) ||
3345 		    !kvm_ghcb_rcx_is_valid(svm))
3346 			goto vmgexit_err;
3347 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3348 			if (!kvm_ghcb_xcr0_is_valid(svm))
3349 				goto vmgexit_err;
3350 		break;
3351 	case SVM_EXIT_INVD:
3352 		break;
3353 	case SVM_EXIT_IOIO:
3354 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3355 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
3356 				goto vmgexit_err;
3357 		} else {
3358 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3359 				if (!kvm_ghcb_rax_is_valid(svm))
3360 					goto vmgexit_err;
3361 		}
3362 		break;
3363 	case SVM_EXIT_MSR:
3364 		if (!kvm_ghcb_rcx_is_valid(svm))
3365 			goto vmgexit_err;
3366 		if (control->exit_info_1) {
3367 			if (!kvm_ghcb_rax_is_valid(svm) ||
3368 			    !kvm_ghcb_rdx_is_valid(svm))
3369 				goto vmgexit_err;
3370 		}
3371 		break;
3372 	case SVM_EXIT_VMMCALL:
3373 		if (!kvm_ghcb_rax_is_valid(svm) ||
3374 		    !kvm_ghcb_cpl_is_valid(svm))
3375 			goto vmgexit_err;
3376 		break;
3377 	case SVM_EXIT_RDTSCP:
3378 		break;
3379 	case SVM_EXIT_WBINVD:
3380 		break;
3381 	case SVM_EXIT_MONITOR:
3382 		if (!kvm_ghcb_rax_is_valid(svm) ||
3383 		    !kvm_ghcb_rcx_is_valid(svm) ||
3384 		    !kvm_ghcb_rdx_is_valid(svm))
3385 			goto vmgexit_err;
3386 		break;
3387 	case SVM_EXIT_MWAIT:
3388 		if (!kvm_ghcb_rax_is_valid(svm) ||
3389 		    !kvm_ghcb_rcx_is_valid(svm))
3390 			goto vmgexit_err;
3391 		break;
3392 	case SVM_VMGEXIT_MMIO_READ:
3393 	case SVM_VMGEXIT_MMIO_WRITE:
3394 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
3395 			goto vmgexit_err;
3396 		break;
3397 	case SVM_VMGEXIT_AP_CREATION:
3398 		if (!sev_snp_guest(vcpu->kvm))
3399 			goto vmgexit_err;
3400 		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3401 			if (!kvm_ghcb_rax_is_valid(svm))
3402 				goto vmgexit_err;
3403 		break;
3404 	case SVM_VMGEXIT_NMI_COMPLETE:
3405 	case SVM_VMGEXIT_AP_HLT_LOOP:
3406 	case SVM_VMGEXIT_AP_JUMP_TABLE:
3407 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3408 	case SVM_VMGEXIT_HV_FEATURES:
3409 	case SVM_VMGEXIT_TERM_REQUEST:
3410 		break;
3411 	case SVM_VMGEXIT_PSC:
3412 		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3413 			goto vmgexit_err;
3414 		break;
3415 	case SVM_VMGEXIT_GUEST_REQUEST:
3416 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3417 		if (!sev_snp_guest(vcpu->kvm) ||
3418 		    !PAGE_ALIGNED(control->exit_info_1) ||
3419 		    !PAGE_ALIGNED(control->exit_info_2) ||
3420 		    control->exit_info_1 == control->exit_info_2)
3421 			goto vmgexit_err;
3422 		break;
3423 	default:
3424 		reason = GHCB_ERR_INVALID_EVENT;
3425 		goto vmgexit_err;
3426 	}
3427 
3428 	return 0;
3429 
3430 vmgexit_err:
3431 	if (reason == GHCB_ERR_INVALID_USAGE) {
3432 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3433 			    svm->sev_es.ghcb->ghcb_usage);
3434 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
3435 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3436 			    exit_code);
3437 	} else {
3438 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3439 			    exit_code);
3440 		dump_ghcb(svm);
3441 	}
3442 
3443 	svm_vmgexit_bad_input(svm, reason);
3444 
3445 	/* Resume the guest to "return" the error code. */
3446 	return 1;
3447 }
3448 
sev_es_unmap_ghcb(struct vcpu_svm * svm)3449 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3450 {
3451 	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
3452 	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3453 
3454 	if (!svm->sev_es.ghcb)
3455 		return;
3456 
3457 	if (svm->sev_es.ghcb_sa_free) {
3458 		/*
3459 		 * The scratch area lives outside the GHCB, so there is a
3460 		 * buffer that, depending on the operation performed, may
3461 		 * need to be synced, then freed.
3462 		 */
3463 		if (svm->sev_es.ghcb_sa_sync) {
3464 			kvm_write_guest(svm->vcpu.kvm,
3465 					svm->sev_es.sw_scratch,
3466 					svm->sev_es.ghcb_sa,
3467 					svm->sev_es.ghcb_sa_len);
3468 			svm->sev_es.ghcb_sa_sync = false;
3469 		}
3470 
3471 		kvfree(svm->sev_es.ghcb_sa);
3472 		svm->sev_es.ghcb_sa = NULL;
3473 		svm->sev_es.ghcb_sa_free = false;
3474 	}
3475 
3476 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3477 
3478 	sev_es_sync_to_ghcb(svm);
3479 
3480 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3481 	svm->sev_es.ghcb = NULL;
3482 }
3483 
pre_sev_run(struct vcpu_svm * svm,int cpu)3484 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3485 {
3486 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3487 	struct kvm *kvm = svm->vcpu.kvm;
3488 	unsigned int asid = sev_get_asid(kvm);
3489 
3490 	/*
3491 	 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3492 	 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3493 	 * AP Destroy event.
3494 	 */
3495 	if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3496 		return -EINVAL;
3497 
3498 	/*
3499 	 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3500 	 * track physical CPUs that enter the guest for SEV VMs and thus can
3501 	 * have encrypted, dirty data in the cache, and flush caches only for
3502 	 * CPUs that have entered the guest.
3503 	 */
3504 	if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3505 		cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3506 
3507 	/* Assign the asid allocated with this SEV guest */
3508 	svm->asid = asid;
3509 
3510 	/*
3511 	 * Flush guest TLB:
3512 	 *
3513 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3514 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3515 	 */
3516 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
3517 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
3518 		return 0;
3519 
3520 	sd->sev_vmcbs[asid] = svm->vmcb;
3521 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3522 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3523 	return 0;
3524 }
3525 
3526 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3527 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3528 {
3529 	struct vmcb_control_area *control = &svm->vmcb->control;
3530 	u64 ghcb_scratch_beg, ghcb_scratch_end;
3531 	u64 scratch_gpa_beg, scratch_gpa_end;
3532 	void *scratch_va;
3533 
3534 	scratch_gpa_beg = svm->sev_es.sw_scratch;
3535 	if (!scratch_gpa_beg) {
3536 		pr_err("vmgexit: scratch gpa not provided\n");
3537 		goto e_scratch;
3538 	}
3539 
3540 	scratch_gpa_end = scratch_gpa_beg + len;
3541 	if (scratch_gpa_end < scratch_gpa_beg) {
3542 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3543 		       len, scratch_gpa_beg);
3544 		goto e_scratch;
3545 	}
3546 
3547 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3548 		/* Scratch area begins within GHCB */
3549 		ghcb_scratch_beg = control->ghcb_gpa +
3550 				   offsetof(struct ghcb, shared_buffer);
3551 		ghcb_scratch_end = control->ghcb_gpa +
3552 				   offsetof(struct ghcb, reserved_0xff0);
3553 
3554 		/*
3555 		 * If the scratch area begins within the GHCB, it must be
3556 		 * completely contained in the GHCB shared buffer area.
3557 		 */
3558 		if (scratch_gpa_beg < ghcb_scratch_beg ||
3559 		    scratch_gpa_end > ghcb_scratch_end) {
3560 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3561 			       scratch_gpa_beg, scratch_gpa_end);
3562 			goto e_scratch;
3563 		}
3564 
3565 		scratch_va = (void *)svm->sev_es.ghcb;
3566 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3567 	} else {
3568 		/*
3569 		 * The guest memory must be read into a kernel buffer, so
3570 		 * limit the size
3571 		 */
3572 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
3573 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3574 			       len, GHCB_SCRATCH_AREA_LIMIT);
3575 			goto e_scratch;
3576 		}
3577 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3578 		if (!scratch_va)
3579 			return -ENOMEM;
3580 
3581 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3582 			/* Unable to copy scratch area from guest */
3583 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3584 
3585 			kvfree(scratch_va);
3586 			return -EFAULT;
3587 		}
3588 
3589 		/*
3590 		 * The scratch area is outside the GHCB. The operation will
3591 		 * dictate whether the buffer needs to be synced before running
3592 		 * the vCPU next time (i.e. a read was requested so the data
3593 		 * must be written back to the guest memory).
3594 		 */
3595 		svm->sev_es.ghcb_sa_sync = sync;
3596 		svm->sev_es.ghcb_sa_free = true;
3597 	}
3598 
3599 	svm->sev_es.ghcb_sa = scratch_va;
3600 	svm->sev_es.ghcb_sa_len = len;
3601 
3602 	return 0;
3603 
3604 e_scratch:
3605 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3606 
3607 	return 1;
3608 }
3609 
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3610 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3611 			      unsigned int pos)
3612 {
3613 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3614 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3615 }
3616 
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3617 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3618 {
3619 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3620 }
3621 
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3622 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3623 {
3624 	svm->vmcb->control.ghcb_gpa = value;
3625 }
3626 
snp_rmptable_psmash(kvm_pfn_t pfn)3627 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3628 {
3629 	int ret;
3630 
3631 	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3632 
3633 	/*
3634 	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3635 	 * entry, so retry until that's no longer the case.
3636 	 */
3637 	do {
3638 		ret = psmash(pfn);
3639 	} while (ret == PSMASH_FAIL_INUSE);
3640 
3641 	return ret;
3642 }
3643 
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3644 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3645 {
3646 	struct vcpu_svm *svm = to_svm(vcpu);
3647 
3648 	if (vcpu->run->hypercall.ret)
3649 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3650 	else
3651 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3652 
3653 	return 1; /* resume guest */
3654 }
3655 
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3656 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3657 {
3658 	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3659 	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3660 	struct kvm_vcpu *vcpu = &svm->vcpu;
3661 
3662 	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3663 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3664 		return 1; /* resume guest */
3665 	}
3666 
3667 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3668 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3669 		return 1; /* resume guest */
3670 	}
3671 
3672 	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3673 	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3674 	/*
3675 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3676 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3677 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3678 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3679 	 */
3680 	vcpu->run->hypercall.ret = 0;
3681 	vcpu->run->hypercall.args[0] = gpa;
3682 	vcpu->run->hypercall.args[1] = 1;
3683 	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3684 				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3685 				       : KVM_MAP_GPA_RANGE_DECRYPTED;
3686 	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3687 
3688 	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3689 
3690 	return 0; /* forward request to userspace */
3691 }
3692 
3693 struct psc_buffer {
3694 	struct psc_hdr hdr;
3695 	struct psc_entry entries[];
3696 } __packed;
3697 
3698 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3699 
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3700 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3701 {
3702 	svm->sev_es.psc_inflight = 0;
3703 	svm->sev_es.psc_idx = 0;
3704 	svm->sev_es.psc_2m = false;
3705 
3706 	/*
3707 	 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3708 	 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3709 	 * return code.  E.g. if the PSC request was interrupted, the need to
3710 	 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3711 	 */
3712 	svm_vmgexit_no_action(svm, psc_ret);
3713 }
3714 
__snp_complete_one_psc(struct vcpu_svm * svm)3715 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3716 {
3717 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3718 	struct psc_entry *entries = psc->entries;
3719 	struct psc_hdr *hdr = &psc->hdr;
3720 	__u16 idx;
3721 
3722 	/*
3723 	 * Everything in-flight has been processed successfully. Update the
3724 	 * corresponding entries in the guest's PSC buffer and zero out the
3725 	 * count of in-flight PSC entries.
3726 	 */
3727 	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3728 	     svm->sev_es.psc_inflight--, idx++) {
3729 		struct psc_entry *entry = &entries[idx];
3730 
3731 		entry->cur_page = entry->pagesize ? 512 : 1;
3732 	}
3733 
3734 	hdr->cur_entry = idx;
3735 }
3736 
snp_complete_one_psc(struct kvm_vcpu * vcpu)3737 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3738 {
3739 	struct vcpu_svm *svm = to_svm(vcpu);
3740 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3741 
3742 	if (vcpu->run->hypercall.ret) {
3743 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3744 		return 1; /* resume guest */
3745 	}
3746 
3747 	__snp_complete_one_psc(svm);
3748 
3749 	/* Handle the next range (if any). */
3750 	return snp_begin_psc(svm, psc);
3751 }
3752 
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3753 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3754 {
3755 	struct psc_entry *entries = psc->entries;
3756 	struct kvm_vcpu *vcpu = &svm->vcpu;
3757 	struct psc_hdr *hdr = &psc->hdr;
3758 	struct psc_entry entry_start;
3759 	u16 idx, idx_start, idx_end;
3760 	int npages;
3761 	bool huge;
3762 	u64 gfn;
3763 
3764 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3765 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3766 		return 1;
3767 	}
3768 
3769 next_range:
3770 	/* There should be no other PSCs in-flight at this point. */
3771 	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3772 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3773 		return 1;
3774 	}
3775 
3776 	/*
3777 	 * The PSC descriptor buffer can be modified by a misbehaved guest after
3778 	 * validation, so take care to only use validated copies of values used
3779 	 * for things like array indexing.
3780 	 */
3781 	idx_start = hdr->cur_entry;
3782 	idx_end = hdr->end_entry;
3783 
3784 	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3785 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3786 		return 1;
3787 	}
3788 
3789 	/* Find the start of the next range which needs processing. */
3790 	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3791 		entry_start = entries[idx];
3792 
3793 		gfn = entry_start.gfn;
3794 		huge = entry_start.pagesize;
3795 		npages = huge ? 512 : 1;
3796 
3797 		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3798 			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3799 			return 1;
3800 		}
3801 
3802 		if (entry_start.cur_page) {
3803 			/*
3804 			 * If this is a partially-completed 2M range, force 4K handling
3805 			 * for the remaining pages since they're effectively split at
3806 			 * this point. Subsequent code should ensure this doesn't get
3807 			 * combined with adjacent PSC entries where 2M handling is still
3808 			 * possible.
3809 			 */
3810 			npages -= entry_start.cur_page;
3811 			gfn += entry_start.cur_page;
3812 			huge = false;
3813 		}
3814 
3815 		if (npages)
3816 			break;
3817 	}
3818 
3819 	if (idx > idx_end) {
3820 		/* Nothing more to process. */
3821 		snp_complete_psc(svm, 0);
3822 		return 1;
3823 	}
3824 
3825 	svm->sev_es.psc_2m = huge;
3826 	svm->sev_es.psc_idx = idx;
3827 	svm->sev_es.psc_inflight = 1;
3828 
3829 	/*
3830 	 * Find all subsequent PSC entries that contain adjacent GPA
3831 	 * ranges/operations and can be combined into a single
3832 	 * KVM_HC_MAP_GPA_RANGE exit.
3833 	 */
3834 	while (++idx <= idx_end) {
3835 		struct psc_entry entry = entries[idx];
3836 
3837 		if (entry.operation != entry_start.operation ||
3838 		    entry.gfn != entry_start.gfn + npages ||
3839 		    entry.cur_page || !!entry.pagesize != huge)
3840 			break;
3841 
3842 		svm->sev_es.psc_inflight++;
3843 		npages += huge ? 512 : 1;
3844 	}
3845 
3846 	switch (entry_start.operation) {
3847 	case VMGEXIT_PSC_OP_PRIVATE:
3848 	case VMGEXIT_PSC_OP_SHARED:
3849 		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3850 		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3851 		/*
3852 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3853 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3854 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3855 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3856 		 */
3857 		vcpu->run->hypercall.ret = 0;
3858 		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3859 		vcpu->run->hypercall.args[1] = npages;
3860 		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3861 					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3862 					       : KVM_MAP_GPA_RANGE_DECRYPTED;
3863 		vcpu->run->hypercall.args[2] |= entry_start.pagesize
3864 						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3865 						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3866 		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3867 		return 0; /* forward request to userspace */
3868 	default:
3869 		/*
3870 		 * Only shared/private PSC operations are currently supported, so if the
3871 		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3872 		 * then consider the entire range completed and avoid exiting to
3873 		 * userspace. In theory snp_complete_psc() can always be called directly
3874 		 * at this point to complete the current range and start the next one,
3875 		 * but that could lead to unexpected levels of recursion.
3876 		 */
3877 		__snp_complete_one_psc(svm);
3878 		goto next_range;
3879 	}
3880 
3881 	BUG();
3882 }
3883 
3884 /*
3885  * Invoked as part of svm_vcpu_reset() processing of an init event.
3886  */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3887 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3888 {
3889 	struct vcpu_svm *svm = to_svm(vcpu);
3890 	struct kvm_memory_slot *slot;
3891 	struct page *page;
3892 	kvm_pfn_t pfn;
3893 	gfn_t gfn;
3894 
3895 	if (!sev_snp_guest(vcpu->kvm))
3896 		return;
3897 
3898 	guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3899 
3900 	if (!svm->sev_es.snp_ap_waiting_for_reset)
3901 		return;
3902 
3903 	svm->sev_es.snp_ap_waiting_for_reset = false;
3904 
3905 	/* Mark the vCPU as offline and not runnable */
3906 	vcpu->arch.pv.pv_unhalted = false;
3907 	kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3908 
3909 	/* Clear use of the VMSA */
3910 	svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3911 
3912 	/*
3913 	 * When replacing the VMSA during SEV-SNP AP creation,
3914 	 * mark the VMCB dirty so that full state is always reloaded.
3915 	 */
3916 	vmcb_mark_all_dirty(svm->vmcb);
3917 
3918 	if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3919 		return;
3920 
3921 	gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3922 	svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3923 
3924 	slot = gfn_to_memslot(vcpu->kvm, gfn);
3925 	if (!slot)
3926 		return;
3927 
3928 	/*
3929 	 * The new VMSA will be private memory guest memory, so retrieve the
3930 	 * PFN from the gmem backend.
3931 	 */
3932 	if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3933 		return;
3934 
3935 	/*
3936 	 * From this point forward, the VMSA will always be a guest-mapped page
3937 	 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
3938 	 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
3939 	 * that involves cleanups like flushing caches, which would ideally be
3940 	 * handled during teardown rather than guest boot.  Deferring that also
3941 	 * allows the existing logic for SEV-ES VMSAs to be re-used with
3942 	 * minimal SNP-specific changes.
3943 	 */
3944 	svm->sev_es.snp_has_guest_vmsa = true;
3945 
3946 	/* Use the new VMSA */
3947 	svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3948 
3949 	/* Mark the vCPU as runnable */
3950 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3951 
3952 	/*
3953 	 * gmem pages aren't currently migratable, but if this ever changes
3954 	 * then care should be taken to ensure svm->sev_es.vmsa is pinned
3955 	 * through some other means.
3956 	 */
3957 	kvm_release_page_clean(page);
3958 }
3959 
sev_snp_ap_creation(struct vcpu_svm * svm)3960 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3961 {
3962 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
3963 	struct kvm_vcpu *vcpu = &svm->vcpu;
3964 	struct kvm_vcpu *target_vcpu;
3965 	struct vcpu_svm *target_svm;
3966 	unsigned int request;
3967 	unsigned int apic_id;
3968 
3969 	request = lower_32_bits(svm->vmcb->control.exit_info_1);
3970 	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3971 
3972 	/* Validate the APIC ID */
3973 	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3974 	if (!target_vcpu) {
3975 		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3976 			    apic_id);
3977 		return -EINVAL;
3978 	}
3979 
3980 	target_svm = to_svm(target_vcpu);
3981 
3982 	guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
3983 
3984 	switch (request) {
3985 	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3986 	case SVM_VMGEXIT_AP_CREATE:
3987 		if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
3988 			vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
3989 				    vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
3990 			return -EINVAL;
3991 		}
3992 
3993 		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3994 			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3995 				    svm->vmcb->control.exit_info_2);
3996 			return -EINVAL;
3997 		}
3998 
3999 		/*
4000 		 * Malicious guest can RMPADJUST a large page into VMSA which
4001 		 * will hit the SNP erratum where the CPU will incorrectly signal
4002 		 * an RMP violation #PF if a hugepage collides with the RMP entry
4003 		 * of VMSA page, reject the AP CREATE request if VMSA address from
4004 		 * guest is 2M aligned.
4005 		 */
4006 		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4007 			vcpu_unimpl(vcpu,
4008 				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4009 				    svm->vmcb->control.exit_info_2);
4010 			return -EINVAL;
4011 		}
4012 
4013 		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4014 		break;
4015 	case SVM_VMGEXIT_AP_DESTROY:
4016 		target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4017 		break;
4018 	default:
4019 		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4020 			    request);
4021 		return -EINVAL;
4022 	}
4023 
4024 	target_svm->sev_es.snp_ap_waiting_for_reset = true;
4025 
4026 	/*
4027 	 * Unless Creation is deferred until INIT, signal the vCPU to update
4028 	 * its state.
4029 	 */
4030 	if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4031 		kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4032 
4033 	return 0;
4034 }
4035 
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4036 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4037 {
4038 	struct sev_data_snp_guest_request data = {0};
4039 	struct kvm *kvm = svm->vcpu.kvm;
4040 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4041 	sev_ret_code fw_err = 0;
4042 	int ret;
4043 
4044 	if (!sev_snp_guest(kvm))
4045 		return -EINVAL;
4046 
4047 	mutex_lock(&sev->guest_req_mutex);
4048 
4049 	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4050 		ret = -EIO;
4051 		goto out_unlock;
4052 	}
4053 
4054 	data.gctx_paddr = __psp_pa(sev->snp_context);
4055 	data.req_paddr = __psp_pa(sev->guest_req_buf);
4056 	data.res_paddr = __psp_pa(sev->guest_resp_buf);
4057 
4058 	/*
4059 	 * Firmware failures are propagated on to guest, but any other failure
4060 	 * condition along the way should be reported to userspace. E.g. if
4061 	 * the PSP is dead and commands are timing out.
4062 	 */
4063 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4064 	if (ret && !fw_err)
4065 		goto out_unlock;
4066 
4067 	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4068 		ret = -EIO;
4069 		goto out_unlock;
4070 	}
4071 
4072 	/* No action is requested *from KVM* if there was a firmware error. */
4073 	svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4074 
4075 	ret = 1; /* resume guest */
4076 
4077 out_unlock:
4078 	mutex_unlock(&sev->guest_req_mutex);
4079 	return ret;
4080 }
4081 
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4082 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4083 {
4084 	struct kvm *kvm = svm->vcpu.kvm;
4085 	u8 msg_type;
4086 
4087 	if (!sev_snp_guest(kvm))
4088 		return -EINVAL;
4089 
4090 	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4091 			   &msg_type, 1))
4092 		return -EIO;
4093 
4094 	/*
4095 	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4096 	 * additional certificate data to be provided alongside the attestation
4097 	 * report via the guest-provided data pages indicated by RAX/RBX. The
4098 	 * certificate data is optional and requires additional KVM enablement
4099 	 * to provide an interface for userspace to provide it, but KVM still
4100 	 * needs to be able to handle extended guest requests either way. So
4101 	 * provide a stub implementation that will always return an empty
4102 	 * certificate table in the guest-provided data pages.
4103 	 */
4104 	if (msg_type == SNP_MSG_REPORT_REQ) {
4105 		struct kvm_vcpu *vcpu = &svm->vcpu;
4106 		u64 data_npages;
4107 		gpa_t data_gpa;
4108 
4109 		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4110 			goto request_invalid;
4111 
4112 		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4113 		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4114 
4115 		if (!PAGE_ALIGNED(data_gpa))
4116 			goto request_invalid;
4117 
4118 		/*
4119 		 * As per GHCB spec (see "SNP Extended Guest Request"), the
4120 		 * certificate table is terminated by 24-bytes of zeroes.
4121 		 */
4122 		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4123 			return -EIO;
4124 	}
4125 
4126 	return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4127 
4128 request_invalid:
4129 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4130 	return 1; /* resume guest */
4131 }
4132 
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4133 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4134 {
4135 	struct vmcb_control_area *control = &svm->vmcb->control;
4136 	struct kvm_vcpu *vcpu = &svm->vcpu;
4137 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4138 	u64 ghcb_info;
4139 	int ret = 1;
4140 
4141 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4142 
4143 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4144 					     control->ghcb_gpa);
4145 
4146 	switch (ghcb_info) {
4147 	case GHCB_MSR_SEV_INFO_REQ:
4148 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4149 						    GHCB_VERSION_MIN,
4150 						    sev_enc_bit));
4151 		break;
4152 	case GHCB_MSR_CPUID_REQ: {
4153 		u64 cpuid_fn, cpuid_reg, cpuid_value;
4154 
4155 		cpuid_fn = get_ghcb_msr_bits(svm,
4156 					     GHCB_MSR_CPUID_FUNC_MASK,
4157 					     GHCB_MSR_CPUID_FUNC_POS);
4158 
4159 		/* Initialize the registers needed by the CPUID intercept */
4160 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4161 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4162 
4163 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4164 		if (!ret) {
4165 			/* Error, keep GHCB MSR value as-is */
4166 			break;
4167 		}
4168 
4169 		cpuid_reg = get_ghcb_msr_bits(svm,
4170 					      GHCB_MSR_CPUID_REG_MASK,
4171 					      GHCB_MSR_CPUID_REG_POS);
4172 		if (cpuid_reg == 0)
4173 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4174 		else if (cpuid_reg == 1)
4175 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4176 		else if (cpuid_reg == 2)
4177 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4178 		else
4179 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4180 
4181 		set_ghcb_msr_bits(svm, cpuid_value,
4182 				  GHCB_MSR_CPUID_VALUE_MASK,
4183 				  GHCB_MSR_CPUID_VALUE_POS);
4184 
4185 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4186 				  GHCB_MSR_INFO_MASK,
4187 				  GHCB_MSR_INFO_POS);
4188 		break;
4189 	}
4190 	case GHCB_MSR_AP_RESET_HOLD_REQ:
4191 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4192 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4193 
4194 		/*
4195 		 * Preset the result to a non-SIPI return and then only set
4196 		 * the result to non-zero when delivering a SIPI.
4197 		 */
4198 		set_ghcb_msr_bits(svm, 0,
4199 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4200 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4201 
4202 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4203 				  GHCB_MSR_INFO_MASK,
4204 				  GHCB_MSR_INFO_POS);
4205 		break;
4206 	case GHCB_MSR_HV_FT_REQ:
4207 		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4208 				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4209 		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4210 				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4211 		break;
4212 	case GHCB_MSR_PREF_GPA_REQ:
4213 		if (!sev_snp_guest(vcpu->kvm))
4214 			goto out_terminate;
4215 
4216 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4217 				  GHCB_MSR_GPA_VALUE_POS);
4218 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4219 				  GHCB_MSR_INFO_POS);
4220 		break;
4221 	case GHCB_MSR_REG_GPA_REQ: {
4222 		u64 gfn;
4223 
4224 		if (!sev_snp_guest(vcpu->kvm))
4225 			goto out_terminate;
4226 
4227 		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4228 					GHCB_MSR_GPA_VALUE_POS);
4229 
4230 		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4231 
4232 		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4233 				  GHCB_MSR_GPA_VALUE_POS);
4234 		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4235 				  GHCB_MSR_INFO_POS);
4236 		break;
4237 	}
4238 	case GHCB_MSR_PSC_REQ:
4239 		if (!sev_snp_guest(vcpu->kvm))
4240 			goto out_terminate;
4241 
4242 		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4243 		break;
4244 	case GHCB_MSR_TERM_REQ: {
4245 		u64 reason_set, reason_code;
4246 
4247 		reason_set = get_ghcb_msr_bits(svm,
4248 					       GHCB_MSR_TERM_REASON_SET_MASK,
4249 					       GHCB_MSR_TERM_REASON_SET_POS);
4250 		reason_code = get_ghcb_msr_bits(svm,
4251 						GHCB_MSR_TERM_REASON_MASK,
4252 						GHCB_MSR_TERM_REASON_POS);
4253 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4254 			reason_set, reason_code);
4255 
4256 		goto out_terminate;
4257 	}
4258 	default:
4259 		/* Error, keep GHCB MSR value as-is */
4260 		break;
4261 	}
4262 
4263 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4264 					    control->ghcb_gpa, ret);
4265 
4266 	return ret;
4267 
4268 out_terminate:
4269 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4270 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4271 	vcpu->run->system_event.ndata = 1;
4272 	vcpu->run->system_event.data[0] = control->ghcb_gpa;
4273 
4274 	return 0;
4275 }
4276 
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4277 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4278 {
4279 	struct vcpu_svm *svm = to_svm(vcpu);
4280 	struct vmcb_control_area *control = &svm->vmcb->control;
4281 	u64 ghcb_gpa, exit_code;
4282 	int ret;
4283 
4284 	/* Validate the GHCB */
4285 	ghcb_gpa = control->ghcb_gpa;
4286 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4287 		return sev_handle_vmgexit_msr_protocol(svm);
4288 
4289 	if (!ghcb_gpa) {
4290 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4291 
4292 		/* Without a GHCB, just return right back to the guest */
4293 		return 1;
4294 	}
4295 
4296 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4297 		/* Unable to map GHCB from guest */
4298 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4299 			    ghcb_gpa);
4300 
4301 		/* Without a GHCB, just return right back to the guest */
4302 		return 1;
4303 	}
4304 
4305 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4306 
4307 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4308 
4309 	sev_es_sync_from_ghcb(svm);
4310 
4311 	/* SEV-SNP guest requires that the GHCB GPA must be registered */
4312 	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4313 		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4314 		return -EINVAL;
4315 	}
4316 
4317 	ret = sev_es_validate_vmgexit(svm);
4318 	if (ret)
4319 		return ret;
4320 
4321 	svm_vmgexit_success(svm, 0);
4322 
4323 	exit_code = kvm_ghcb_get_sw_exit_code(control);
4324 	switch (exit_code) {
4325 	case SVM_VMGEXIT_MMIO_READ:
4326 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4327 		if (ret)
4328 			break;
4329 
4330 		ret = kvm_sev_es_mmio_read(vcpu,
4331 					   control->exit_info_1,
4332 					   control->exit_info_2,
4333 					   svm->sev_es.ghcb_sa);
4334 		break;
4335 	case SVM_VMGEXIT_MMIO_WRITE:
4336 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4337 		if (ret)
4338 			break;
4339 
4340 		ret = kvm_sev_es_mmio_write(vcpu,
4341 					    control->exit_info_1,
4342 					    control->exit_info_2,
4343 					    svm->sev_es.ghcb_sa);
4344 		break;
4345 	case SVM_VMGEXIT_NMI_COMPLETE:
4346 		++vcpu->stat.nmi_window_exits;
4347 		svm->nmi_masked = false;
4348 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4349 		ret = 1;
4350 		break;
4351 	case SVM_VMGEXIT_AP_HLT_LOOP:
4352 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4353 		ret = kvm_emulate_ap_reset_hold(vcpu);
4354 		break;
4355 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
4356 		struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4357 
4358 		switch (control->exit_info_1) {
4359 		case 0:
4360 			/* Set AP jump table address */
4361 			sev->ap_jump_table = control->exit_info_2;
4362 			break;
4363 		case 1:
4364 			/* Get AP jump table address */
4365 			svm_vmgexit_success(svm, sev->ap_jump_table);
4366 			break;
4367 		default:
4368 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4369 			       control->exit_info_1);
4370 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4371 		}
4372 
4373 		ret = 1;
4374 		break;
4375 	}
4376 	case SVM_VMGEXIT_HV_FEATURES:
4377 		svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4378 		ret = 1;
4379 		break;
4380 	case SVM_VMGEXIT_TERM_REQUEST:
4381 		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4382 			control->exit_info_1, control->exit_info_2);
4383 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4384 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4385 		vcpu->run->system_event.ndata = 1;
4386 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
4387 		break;
4388 	case SVM_VMGEXIT_PSC:
4389 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4390 		if (ret)
4391 			break;
4392 
4393 		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4394 		break;
4395 	case SVM_VMGEXIT_AP_CREATION:
4396 		ret = sev_snp_ap_creation(svm);
4397 		if (ret) {
4398 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4399 		}
4400 
4401 		ret = 1;
4402 		break;
4403 	case SVM_VMGEXIT_GUEST_REQUEST:
4404 		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4405 		break;
4406 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4407 		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4408 		break;
4409 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4410 		vcpu_unimpl(vcpu,
4411 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4412 			    control->exit_info_1, control->exit_info_2);
4413 		ret = -EINVAL;
4414 		break;
4415 	default:
4416 		ret = svm_invoke_exit_handler(vcpu, exit_code);
4417 	}
4418 
4419 	return ret;
4420 }
4421 
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4422 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4423 {
4424 	int count;
4425 	int bytes;
4426 	int r;
4427 
4428 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
4429 		return -EINVAL;
4430 
4431 	count = svm->vmcb->control.exit_info_2;
4432 	if (unlikely(check_mul_overflow(count, size, &bytes)))
4433 		return -EINVAL;
4434 
4435 	r = setup_vmgexit_scratch(svm, in, bytes);
4436 	if (r)
4437 		return r;
4438 
4439 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4440 				    count, in);
4441 }
4442 
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4443 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4444 {
4445 	/* Clear intercepts on MSRs that are context switched by hardware. */
4446 	svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4447 	svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4448 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4449 
4450 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4451 		svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4452 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4453 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4454 
4455 	/*
4456 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4457 	 * the host/guest supports its use.
4458 	 *
4459 	 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4460 	 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4461 	 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4462 	 * exposed to the guest and XSAVES is supported in hardware.  Condition
4463 	 * full XSS passthrough on the guest being able to use XSAVES *and*
4464 	 * XSAVES being exposed to the guest so that KVM can at least honor
4465 	 * guest CPUID for RDMSR and WRMSR.
4466 	 */
4467 	svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4468 				  !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4469 				  !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4470 }
4471 
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4472 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4473 {
4474 	struct kvm_vcpu *vcpu = &svm->vcpu;
4475 	struct kvm_cpuid_entry2 *best;
4476 
4477 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4478 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4479 	if (best)
4480 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4481 }
4482 
sev_es_init_vmcb(struct vcpu_svm * svm)4483 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4484 {
4485 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4486 	struct vmcb *vmcb = svm->vmcb01.ptr;
4487 
4488 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4489 
4490 	/*
4491 	 * An SEV-ES guest requires a VMSA area that is a separate from the
4492 	 * VMCB page. Do not include the encryption mask on the VMSA physical
4493 	 * address since hardware will access it using the guest key.  Note,
4494 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
4495 	 * migration, and will be copied later.
4496 	 */
4497 	if (!svm->sev_es.snp_has_guest_vmsa) {
4498 		if (svm->sev_es.vmsa)
4499 			svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4500 		else
4501 			svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4502 	}
4503 
4504 	if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4505 		svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4506 							  VMCB_ALLOWED_SEV_FEATURES_VALID;
4507 
4508 	/* Can't intercept CR register access, HV can't modify CR registers */
4509 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4510 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4511 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4512 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4513 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4514 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4515 
4516 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4517 
4518 	/* Track EFER/CR register changes */
4519 	svm_set_intercept(svm, TRAP_EFER_WRITE);
4520 	svm_set_intercept(svm, TRAP_CR0_WRITE);
4521 	svm_set_intercept(svm, TRAP_CR4_WRITE);
4522 	svm_set_intercept(svm, TRAP_CR8_WRITE);
4523 
4524 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
4525 	if (!sev_vcpu_has_debug_swap(svm)) {
4526 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4527 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4528 		recalc_intercepts(svm);
4529 	} else {
4530 		/*
4531 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4532 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
4533 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
4534 		 * intercept #DB when DebugSwap is enabled.  For simplicity
4535 		 * with respect to guest debug, intercept #DB for other VMs
4536 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4537 		 * guest can't DoS the CPU with infinite #DB vectoring.
4538 		 */
4539 		clr_exception_intercept(svm, DB_VECTOR);
4540 	}
4541 
4542 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
4543 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
4544 }
4545 
sev_init_vmcb(struct vcpu_svm * svm)4546 void sev_init_vmcb(struct vcpu_svm *svm)
4547 {
4548 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4549 	clr_exception_intercept(svm, UD_VECTOR);
4550 
4551 	/*
4552 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4553 	 * KVM can't decrypt guest memory to decode the faulting instruction.
4554 	 */
4555 	clr_exception_intercept(svm, GP_VECTOR);
4556 
4557 	if (sev_es_guest(svm->vcpu.kvm))
4558 		sev_es_init_vmcb(svm);
4559 }
4560 
sev_es_vcpu_reset(struct vcpu_svm * svm)4561 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4562 {
4563 	struct kvm_vcpu *vcpu = &svm->vcpu;
4564 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4565 
4566 	/*
4567 	 * Set the GHCB MSR value as per the GHCB specification when emulating
4568 	 * vCPU RESET for an SEV-ES guest.
4569 	 */
4570 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4571 					    GHCB_VERSION_MIN,
4572 					    sev_enc_bit));
4573 
4574 	mutex_init(&svm->sev_es.snp_vmsa_mutex);
4575 }
4576 
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4577 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4578 {
4579 	struct kvm *kvm = svm->vcpu.kvm;
4580 
4581 	/*
4582 	 * All host state for SEV-ES guests is categorized into three swap types
4583 	 * based on how it is handled by hardware during a world switch:
4584 	 *
4585 	 * A: VMRUN:   Host state saved in host save area
4586 	 *    VMEXIT:  Host state loaded from host save area
4587 	 *
4588 	 * B: VMRUN:   Host state _NOT_ saved in host save area
4589 	 *    VMEXIT:  Host state loaded from host save area
4590 	 *
4591 	 * C: VMRUN:   Host state _NOT_ saved in host save area
4592 	 *    VMEXIT:  Host state initialized to default(reset) values
4593 	 *
4594 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4595 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4596 	 * by common SVM code).
4597 	 */
4598 	hostsa->xcr0 = kvm_host.xcr0;
4599 	hostsa->pkru = read_pkru();
4600 	hostsa->xss = kvm_host.xss;
4601 
4602 	/*
4603 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4604 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4605 	 * not save or load debug registers.  Sadly, KVM can't prevent SNP
4606 	 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4607 	 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4608 	 * the guest has actually enabled (or not!) in the VMSA.
4609 	 *
4610 	 * If DebugSwap is *possible*, save the masks so that they're restored
4611 	 * if the guest enables DebugSwap.  But for the DRs themselves, do NOT
4612 	 * rely on the CPU to restore the host values; KVM will restore them as
4613 	 * needed in common code, via hw_breakpoint_restore().  Note, KVM does
4614 	 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4615 	 * don't need to be restored per se, KVM just needs to ensure they are
4616 	 * loaded with the correct values *if* the CPU writes the MSRs.
4617 	 */
4618 	if (sev_vcpu_has_debug_swap(svm) ||
4619 	    (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4620 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4621 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4622 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4623 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4624 	}
4625 }
4626 
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4627 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4628 {
4629 	struct vcpu_svm *svm = to_svm(vcpu);
4630 
4631 	/* First SIPI: Use the values as initially set by the VMM */
4632 	if (!svm->sev_es.received_first_sipi) {
4633 		svm->sev_es.received_first_sipi = true;
4634 		return;
4635 	}
4636 
4637 	/* Subsequent SIPI */
4638 	switch (svm->sev_es.ap_reset_hold_type) {
4639 	case AP_RESET_HOLD_NAE_EVENT:
4640 		/*
4641 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4642 		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4643 		 */
4644 		svm_vmgexit_success(svm, 1);
4645 		break;
4646 	case AP_RESET_HOLD_MSR_PROTO:
4647 		/*
4648 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4649 		 * set the CS and RIP. Set GHCB data field to a non-zero value.
4650 		 */
4651 		set_ghcb_msr_bits(svm, 1,
4652 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4653 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4654 
4655 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4656 				  GHCB_MSR_INFO_MASK,
4657 				  GHCB_MSR_INFO_POS);
4658 		break;
4659 	default:
4660 		break;
4661 	}
4662 }
4663 
snp_safe_alloc_page_node(int node,gfp_t gfp)4664 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4665 {
4666 	unsigned long pfn;
4667 	struct page *p;
4668 
4669 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4670 		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4671 
4672 	/*
4673 	 * Allocate an SNP-safe page to workaround the SNP erratum where
4674 	 * the CPU will incorrectly signal an RMP violation #PF if a
4675 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
4676 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4677 	 *
4678 	 * Allocate one extra page, choose a page which is not
4679 	 * 2MB-aligned, and free the other.
4680 	 */
4681 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4682 	if (!p)
4683 		return NULL;
4684 
4685 	split_page(p, 1);
4686 
4687 	pfn = page_to_pfn(p);
4688 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4689 		__free_page(p++);
4690 	else
4691 		__free_page(p + 1);
4692 
4693 	return p;
4694 }
4695 
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4696 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4697 {
4698 	struct kvm_memory_slot *slot;
4699 	struct kvm *kvm = vcpu->kvm;
4700 	int order, rmp_level, ret;
4701 	struct page *page;
4702 	bool assigned;
4703 	kvm_pfn_t pfn;
4704 	gfn_t gfn;
4705 
4706 	gfn = gpa >> PAGE_SHIFT;
4707 
4708 	/*
4709 	 * The only time RMP faults occur for shared pages is when the guest is
4710 	 * triggering an RMP fault for an implicit page-state change from
4711 	 * shared->private. Implicit page-state changes are forwarded to
4712 	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4713 	 * for shared pages should not end up here.
4714 	 */
4715 	if (!kvm_mem_is_private(kvm, gfn)) {
4716 		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4717 				    gpa);
4718 		return;
4719 	}
4720 
4721 	slot = gfn_to_memslot(kvm, gfn);
4722 	if (!kvm_slot_can_be_private(slot)) {
4723 		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4724 				    gpa);
4725 		return;
4726 	}
4727 
4728 	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4729 	if (ret) {
4730 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4731 				    gpa);
4732 		return;
4733 	}
4734 
4735 	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4736 	if (ret || !assigned) {
4737 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4738 				    gpa, pfn, ret);
4739 		goto out_no_trace;
4740 	}
4741 
4742 	/*
4743 	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4744 	 * with PFERR_GUEST_RMP_BIT set:
4745 	 *
4746 	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4747 	 *    bit set if the guest issues them with a smaller granularity than
4748 	 *    what is indicated by the page-size bit in the 2MB RMP entry for
4749 	 *    the PFN that backs the GPA.
4750 	 *
4751 	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4752 	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
4753 	 *    that backs the GPA.
4754 	 *
4755 	 * In both these cases, the corresponding 2M RMP entry needs to
4756 	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4757 	 * split into 4K RMP entries, then this is likely a spurious case which
4758 	 * can occur when there are concurrent accesses by the guest to a 2MB
4759 	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4760 	 * the process of being PMASH'd into 4K entries. These cases should
4761 	 * resolve automatically on subsequent accesses, so just ignore them
4762 	 * here.
4763 	 */
4764 	if (rmp_level == PG_LEVEL_4K)
4765 		goto out;
4766 
4767 	ret = snp_rmptable_psmash(pfn);
4768 	if (ret) {
4769 		/*
4770 		 * Look it up again. If it's 4K now then the PSMASH may have
4771 		 * raced with another process and the issue has already resolved
4772 		 * itself.
4773 		 */
4774 		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4775 		    assigned && rmp_level == PG_LEVEL_4K)
4776 			goto out;
4777 
4778 		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4779 				    gpa, pfn, ret);
4780 	}
4781 
4782 	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4783 out:
4784 	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4785 out_no_trace:
4786 	kvm_release_page_unused(page);
4787 }
4788 
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4789 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4790 {
4791 	kvm_pfn_t pfn = start;
4792 
4793 	while (pfn < end) {
4794 		int ret, rmp_level;
4795 		bool assigned;
4796 
4797 		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4798 		if (ret) {
4799 			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4800 					    pfn, start, end, rmp_level, ret);
4801 			return false;
4802 		}
4803 
4804 		if (assigned) {
4805 			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4806 				 __func__, pfn, start, end, rmp_level);
4807 			return false;
4808 		}
4809 
4810 		pfn++;
4811 	}
4812 
4813 	return true;
4814 }
4815 
max_level_for_order(int order)4816 static u8 max_level_for_order(int order)
4817 {
4818 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4819 		return PG_LEVEL_2M;
4820 
4821 	return PG_LEVEL_4K;
4822 }
4823 
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4824 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4825 {
4826 	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4827 
4828 	/*
4829 	 * If this is a large folio, and the entire 2M range containing the
4830 	 * PFN is currently shared, then the entire 2M-aligned range can be
4831 	 * set to private via a single 2M RMP entry.
4832 	 */
4833 	if (max_level_for_order(order) > PG_LEVEL_4K &&
4834 	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4835 		return true;
4836 
4837 	return false;
4838 }
4839 
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4840 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4841 {
4842 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4843 	kvm_pfn_t pfn_aligned;
4844 	gfn_t gfn_aligned;
4845 	int level, rc;
4846 	bool assigned;
4847 
4848 	if (!sev_snp_guest(kvm))
4849 		return 0;
4850 
4851 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4852 	if (rc) {
4853 		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4854 				   gfn, pfn, rc);
4855 		return -ENOENT;
4856 	}
4857 
4858 	if (assigned) {
4859 		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4860 			 __func__, gfn, pfn, max_order, level);
4861 		return 0;
4862 	}
4863 
4864 	if (is_large_rmp_possible(kvm, pfn, max_order)) {
4865 		level = PG_LEVEL_2M;
4866 		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4867 		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4868 	} else {
4869 		level = PG_LEVEL_4K;
4870 		pfn_aligned = pfn;
4871 		gfn_aligned = gfn;
4872 	}
4873 
4874 	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4875 	if (rc) {
4876 		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4877 				   gfn, pfn, level, rc);
4878 		return -EINVAL;
4879 	}
4880 
4881 	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4882 		 __func__, gfn, pfn, pfn_aligned, max_order, level);
4883 
4884 	return 0;
4885 }
4886 
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4887 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4888 {
4889 	kvm_pfn_t pfn;
4890 
4891 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4892 		return;
4893 
4894 	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4895 
4896 	for (pfn = start; pfn < end;) {
4897 		bool use_2m_update = false;
4898 		int rc, rmp_level;
4899 		bool assigned;
4900 
4901 		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4902 		if (rc || !assigned)
4903 			goto next_pfn;
4904 
4905 		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4906 				end >= (pfn + PTRS_PER_PMD) &&
4907 				rmp_level > PG_LEVEL_4K;
4908 
4909 		/*
4910 		 * If an unaligned PFN corresponds to a 2M region assigned as a
4911 		 * large page in the RMP table, PSMASH the region into individual
4912 		 * 4K RMP entries before attempting to convert a 4K sub-page.
4913 		 */
4914 		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4915 			/*
4916 			 * This shouldn't fail, but if it does, report it, but
4917 			 * still try to update RMP entry to shared and pray this
4918 			 * was a spurious error that can be addressed later.
4919 			 */
4920 			rc = snp_rmptable_psmash(pfn);
4921 			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4922 				  pfn, rc);
4923 		}
4924 
4925 		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4926 		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4927 			      pfn, rc))
4928 			goto next_pfn;
4929 
4930 		/*
4931 		 * SEV-ES avoids host/guest cache coherency issues through
4932 		 * WBNOINVD hooks issued via MMU notifiers during run-time, and
4933 		 * KVM's VM destroy path at shutdown. Those MMU notifier events
4934 		 * don't cover gmem since there is no requirement to map pages
4935 		 * to a HVA in order to use them for a running guest. While the
4936 		 * shutdown path would still likely cover things for SNP guests,
4937 		 * userspace may also free gmem pages during run-time via
4938 		 * hole-punching operations on the guest_memfd, so flush the
4939 		 * cache entries for these pages before free'ing them back to
4940 		 * the host.
4941 		 */
4942 		clflush_cache_range(__va(pfn_to_hpa(pfn)),
4943 				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
4944 next_pfn:
4945 		pfn += use_2m_update ? PTRS_PER_PMD : 1;
4946 		cond_resched();
4947 	}
4948 }
4949 
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4950 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4951 {
4952 	int level, rc;
4953 	bool assigned;
4954 
4955 	if (!sev_snp_guest(kvm))
4956 		return 0;
4957 
4958 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4959 	if (rc || !assigned)
4960 		return PG_LEVEL_4K;
4961 
4962 	return level;
4963 }
4964 
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)4965 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
4966 {
4967 	struct vcpu_svm *svm = to_svm(vcpu);
4968 	struct vmcb_save_area *vmsa;
4969 	struct kvm_sev_info *sev;
4970 	int error = 0;
4971 	int ret;
4972 
4973 	if (!sev_es_guest(vcpu->kvm))
4974 		return NULL;
4975 
4976 	/*
4977 	 * If the VMSA has not yet been encrypted, return a pointer to the
4978 	 * current un-encrypted VMSA.
4979 	 */
4980 	if (!vcpu->arch.guest_state_protected)
4981 		return (struct vmcb_save_area *)svm->sev_es.vmsa;
4982 
4983 	sev = to_kvm_sev_info(vcpu->kvm);
4984 
4985 	/* Check if the SEV policy allows debugging */
4986 	if (sev_snp_guest(vcpu->kvm)) {
4987 		if (!(sev->policy & SNP_POLICY_DEBUG))
4988 			return NULL;
4989 	} else {
4990 		if (sev->policy & SEV_POLICY_NODBG)
4991 			return NULL;
4992 	}
4993 
4994 	if (sev_snp_guest(vcpu->kvm)) {
4995 		struct sev_data_snp_dbg dbg = {0};
4996 
4997 		vmsa = snp_alloc_firmware_page(__GFP_ZERO);
4998 		if (!vmsa)
4999 			return NULL;
5000 
5001 		dbg.gctx_paddr = __psp_pa(sev->snp_context);
5002 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
5003 		dbg.dst_addr = __psp_pa(vmsa);
5004 
5005 		ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5006 
5007 		/*
5008 		 * Return the target page to a hypervisor page no matter what.
5009 		 * If this fails, the page can't be used, so leak it and don't
5010 		 * try to use it.
5011 		 */
5012 		if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5013 			return NULL;
5014 
5015 		if (ret) {
5016 			pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5017 			       ret, error, error);
5018 			free_page((unsigned long)vmsa);
5019 
5020 			return NULL;
5021 		}
5022 	} else {
5023 		struct sev_data_dbg dbg = {0};
5024 		struct page *vmsa_page;
5025 
5026 		vmsa_page = alloc_page(GFP_KERNEL);
5027 		if (!vmsa_page)
5028 			return NULL;
5029 
5030 		vmsa = page_address(vmsa_page);
5031 
5032 		dbg.handle = sev->handle;
5033 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
5034 		dbg.dst_addr = __psp_pa(vmsa);
5035 		dbg.len = PAGE_SIZE;
5036 
5037 		ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5038 		if (ret) {
5039 			pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5040 			       ret, error, error);
5041 			__free_page(vmsa_page);
5042 
5043 			return NULL;
5044 		}
5045 	}
5046 
5047 	return vmsa;
5048 }
5049 
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5050 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5051 {
5052 	/* If the VMSA has not yet been encrypted, nothing was allocated */
5053 	if (!vcpu->arch.guest_state_protected || !vmsa)
5054 		return;
5055 
5056 	free_page((unsigned long)vmsa);
5057 }
5058