1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "blk-rq-qos.h"
4
5 /*
6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7 * false if 'v' + 1 would be bigger than 'below'.
8 */
atomic_inc_below(atomic_t * v,unsigned int below)9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 {
11 unsigned int cur = atomic_read(v);
12
13 do {
14 if (cur >= below)
15 return false;
16 } while (!atomic_try_cmpxchg(v, &cur, cur + 1));
17
18 return true;
19 }
20
rq_wait_inc_below(struct rq_wait * rq_wait,unsigned int limit)21 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
22 {
23 return atomic_inc_below(&rq_wait->inflight, limit);
24 }
25
__rq_qos_cleanup(struct rq_qos * rqos,struct bio * bio)26 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
27 {
28 do {
29 if (rqos->ops->cleanup)
30 rqos->ops->cleanup(rqos, bio);
31 rqos = rqos->next;
32 } while (rqos);
33 }
34
__rq_qos_done(struct rq_qos * rqos,struct request * rq)35 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
36 {
37 do {
38 if (rqos->ops->done)
39 rqos->ops->done(rqos, rq);
40 rqos = rqos->next;
41 } while (rqos);
42 }
43
__rq_qos_issue(struct rq_qos * rqos,struct request * rq)44 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
45 {
46 do {
47 if (rqos->ops->issue)
48 rqos->ops->issue(rqos, rq);
49 rqos = rqos->next;
50 } while (rqos);
51 }
52
__rq_qos_requeue(struct rq_qos * rqos,struct request * rq)53 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
54 {
55 do {
56 if (rqos->ops->requeue)
57 rqos->ops->requeue(rqos, rq);
58 rqos = rqos->next;
59 } while (rqos);
60 }
61
__rq_qos_throttle(struct rq_qos * rqos,struct bio * bio)62 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
63 {
64 do {
65 if (rqos->ops->throttle)
66 rqos->ops->throttle(rqos, bio);
67 rqos = rqos->next;
68 } while (rqos);
69 }
70
__rq_qos_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)71 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
72 {
73 do {
74 if (rqos->ops->track)
75 rqos->ops->track(rqos, rq, bio);
76 rqos = rqos->next;
77 } while (rqos);
78 }
79
__rq_qos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)80 void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
81 {
82 do {
83 if (rqos->ops->merge)
84 rqos->ops->merge(rqos, rq, bio);
85 rqos = rqos->next;
86 } while (rqos);
87 }
88
__rq_qos_done_bio(struct rq_qos * rqos,struct bio * bio)89 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
90 {
91 do {
92 if (rqos->ops->done_bio)
93 rqos->ops->done_bio(rqos, bio);
94 rqos = rqos->next;
95 } while (rqos);
96 }
97
__rq_qos_queue_depth_changed(struct rq_qos * rqos)98 void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
99 {
100 do {
101 if (rqos->ops->queue_depth_changed)
102 rqos->ops->queue_depth_changed(rqos);
103 rqos = rqos->next;
104 } while (rqos);
105 }
106
107 /*
108 * Return true, if we can't increase the depth further by scaling
109 */
rq_depth_calc_max_depth(struct rq_depth * rqd)110 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
111 {
112 unsigned int depth;
113 bool ret = false;
114
115 /*
116 * For QD=1 devices, this is a special case. It's important for those
117 * to have one request ready when one completes, so force a depth of
118 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
119 * since the device can't have more than that in flight. If we're
120 * scaling down, then keep a setting of 1/1/1.
121 */
122 if (rqd->queue_depth == 1) {
123 if (rqd->scale_step > 0)
124 rqd->max_depth = 1;
125 else {
126 rqd->max_depth = 2;
127 ret = true;
128 }
129 } else {
130 /*
131 * scale_step == 0 is our default state. If we have suffered
132 * latency spikes, step will be > 0, and we shrink the
133 * allowed write depths. If step is < 0, we're only doing
134 * writes, and we allow a temporarily higher depth to
135 * increase performance.
136 */
137 depth = min_t(unsigned int, rqd->default_depth,
138 rqd->queue_depth);
139 if (rqd->scale_step > 0)
140 depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
141 else if (rqd->scale_step < 0) {
142 unsigned int maxd = 3 * rqd->queue_depth / 4;
143
144 depth = 1 + ((depth - 1) << -rqd->scale_step);
145 if (depth > maxd) {
146 depth = maxd;
147 ret = true;
148 }
149 }
150
151 rqd->max_depth = depth;
152 }
153
154 return ret;
155 }
156
157 /* Returns true on success and false if scaling up wasn't possible */
rq_depth_scale_up(struct rq_depth * rqd)158 bool rq_depth_scale_up(struct rq_depth *rqd)
159 {
160 /*
161 * Hit max in previous round, stop here
162 */
163 if (rqd->scaled_max)
164 return false;
165
166 rqd->scale_step--;
167
168 rqd->scaled_max = rq_depth_calc_max_depth(rqd);
169 return true;
170 }
171
172 /*
173 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
174 * had a latency violation. Returns true on success and returns false if
175 * scaling down wasn't possible.
176 */
rq_depth_scale_down(struct rq_depth * rqd,bool hard_throttle)177 bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
178 {
179 /*
180 * Stop scaling down when we've hit the limit. This also prevents
181 * ->scale_step from going to crazy values, if the device can't
182 * keep up.
183 */
184 if (rqd->max_depth == 1)
185 return false;
186
187 if (rqd->scale_step < 0 && hard_throttle)
188 rqd->scale_step = 0;
189 else
190 rqd->scale_step++;
191
192 rqd->scaled_max = false;
193 rq_depth_calc_max_depth(rqd);
194 return true;
195 }
196
197 struct rq_qos_wait_data {
198 struct wait_queue_entry wq;
199 struct rq_wait *rqw;
200 acquire_inflight_cb_t *cb;
201 void *private_data;
202 bool got_token;
203 };
204
rq_qos_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)205 static int rq_qos_wake_function(struct wait_queue_entry *curr,
206 unsigned int mode, int wake_flags, void *key)
207 {
208 struct rq_qos_wait_data *data = container_of(curr,
209 struct rq_qos_wait_data,
210 wq);
211
212 /*
213 * If we fail to get a budget, return -1 to interrupt the wake up loop
214 * in __wake_up_common.
215 */
216 if (!data->cb(data->rqw, data->private_data))
217 return -1;
218
219 data->got_token = true;
220 /*
221 * autoremove_wake_function() removes the wait entry only when it
222 * actually changed the task state. We want the wait always removed.
223 * Remove explicitly and use default_wake_function().
224 */
225 default_wake_function(curr, mode, wake_flags, key);
226 /*
227 * Note that the order of operations is important as finish_wait()
228 * tests whether @curr is removed without grabbing the lock. This
229 * should be the last thing to do to make sure we will not have a
230 * UAF access to @data. And the semantics of memory barrier in it
231 * also make sure the waiter will see the latest @data->got_token
232 * once list_empty_careful() in finish_wait() returns true.
233 */
234 list_del_init_careful(&curr->entry);
235 return 1;
236 }
237
238 /**
239 * rq_qos_wait - throttle on a rqw if we need to
240 * @rqw: rqw to throttle on
241 * @private_data: caller provided specific data
242 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
243 * @cleanup_cb: the callback to cleanup in case we race with a waker
244 *
245 * This provides a uniform place for the rq_qos users to do their throttling.
246 * Since you can end up with a lot of things sleeping at once, this manages the
247 * waking up based on the resources available. The acquire_inflight_cb should
248 * inc the rqw->inflight if we have the ability to do so, or return false if not
249 * and then we will sleep until the room becomes available.
250 *
251 * cleanup_cb is in case that we race with a waker and need to cleanup the
252 * inflight count accordingly.
253 */
rq_qos_wait(struct rq_wait * rqw,void * private_data,acquire_inflight_cb_t * acquire_inflight_cb,cleanup_cb_t * cleanup_cb)254 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
255 acquire_inflight_cb_t *acquire_inflight_cb,
256 cleanup_cb_t *cleanup_cb)
257 {
258 struct rq_qos_wait_data data = {
259 .rqw = rqw,
260 .cb = acquire_inflight_cb,
261 .private_data = private_data,
262 .got_token = false,
263 };
264 bool first_waiter;
265
266 /*
267 * If there are no waiters in the waiting queue, try to increase the
268 * inflight counter if we can. Otherwise, prepare for adding ourselves
269 * to the waiting queue.
270 */
271 if (!waitqueue_active(&rqw->wait) && acquire_inflight_cb(rqw, private_data))
272 return;
273
274 init_wait_func(&data.wq, rq_qos_wake_function);
275 first_waiter = prepare_to_wait_exclusive(&rqw->wait, &data.wq,
276 TASK_UNINTERRUPTIBLE);
277 /*
278 * Make sure there is at least one inflight process; otherwise, waiters
279 * will never be woken up. Since there may be no inflight process before
280 * adding ourselves to the waiting queue above, we need to try to
281 * increase the inflight counter for ourselves. And it is sufficient to
282 * guarantee that at least the first waiter to enter the waiting queue
283 * will re-check the waiting condition before going to sleep, thus
284 * ensuring forward progress.
285 */
286 if (!data.got_token && first_waiter && acquire_inflight_cb(rqw, private_data)) {
287 finish_wait(&rqw->wait, &data.wq);
288 /*
289 * We raced with rq_qos_wake_function() getting a token,
290 * which means we now have two. Put our local token
291 * and wake anyone else potentially waiting for one.
292 *
293 * Enough memory barrier in list_empty_careful() in
294 * finish_wait() is paired with list_del_init_careful()
295 * in rq_qos_wake_function() to make sure we will see
296 * the latest @data->got_token.
297 */
298 if (data.got_token)
299 cleanup_cb(rqw, private_data);
300 return;
301 }
302
303 /* we are now relying on the waker to increase our inflight counter. */
304 do {
305 if (data.got_token)
306 break;
307 io_schedule();
308 set_current_state(TASK_UNINTERRUPTIBLE);
309 } while (1);
310 finish_wait(&rqw->wait, &data.wq);
311 }
312
rq_qos_exit(struct request_queue * q)313 void rq_qos_exit(struct request_queue *q)
314 {
315 mutex_lock(&q->rq_qos_mutex);
316 while (q->rq_qos) {
317 struct rq_qos *rqos = q->rq_qos;
318 q->rq_qos = rqos->next;
319 rqos->ops->exit(rqos);
320 }
321 mutex_unlock(&q->rq_qos_mutex);
322 }
323
rq_qos_add(struct rq_qos * rqos,struct gendisk * disk,enum rq_qos_id id,const struct rq_qos_ops * ops)324 int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id,
325 const struct rq_qos_ops *ops)
326 {
327 struct request_queue *q = disk->queue;
328 unsigned int memflags;
329
330 lockdep_assert_held(&q->rq_qos_mutex);
331
332 rqos->disk = disk;
333 rqos->id = id;
334 rqos->ops = ops;
335
336 /*
337 * No IO can be in-flight when adding rqos, so freeze queue, which
338 * is fine since we only support rq_qos for blk-mq queue.
339 */
340 memflags = blk_mq_freeze_queue(q);
341
342 if (rq_qos_id(q, rqos->id))
343 goto ebusy;
344 rqos->next = q->rq_qos;
345 q->rq_qos = rqos;
346
347 blk_mq_unfreeze_queue(q, memflags);
348
349 if (rqos->ops->debugfs_attrs) {
350 mutex_lock(&q->debugfs_mutex);
351 blk_mq_debugfs_register_rqos(rqos);
352 mutex_unlock(&q->debugfs_mutex);
353 }
354
355 return 0;
356 ebusy:
357 blk_mq_unfreeze_queue(q, memflags);
358 return -EBUSY;
359 }
360
rq_qos_del(struct rq_qos * rqos)361 void rq_qos_del(struct rq_qos *rqos)
362 {
363 struct request_queue *q = rqos->disk->queue;
364 struct rq_qos **cur;
365 unsigned int memflags;
366
367 lockdep_assert_held(&q->rq_qos_mutex);
368
369 memflags = blk_mq_freeze_queue(q);
370 for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) {
371 if (*cur == rqos) {
372 *cur = rqos->next;
373 break;
374 }
375 }
376 blk_mq_unfreeze_queue(q, memflags);
377
378 mutex_lock(&q->debugfs_mutex);
379 blk_mq_debugfs_unregister_rqos(rqos);
380 mutex_unlock(&q->debugfs_mutex);
381 }
382