xref: /linux/block/blk-rq-qos.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "blk-rq-qos.h"
4 
5 /*
6  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7  * false if 'v' + 1 would be bigger than 'below'.
8  */
atomic_inc_below(atomic_t * v,unsigned int below)9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 {
11 	unsigned int cur = atomic_read(v);
12 
13 	do {
14 		if (cur >= below)
15 			return false;
16 	} while (!atomic_try_cmpxchg(v, &cur, cur + 1));
17 
18 	return true;
19 }
20 
rq_wait_inc_below(struct rq_wait * rq_wait,unsigned int limit)21 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
22 {
23 	return atomic_inc_below(&rq_wait->inflight, limit);
24 }
25 
__rq_qos_cleanup(struct rq_qos * rqos,struct bio * bio)26 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
27 {
28 	do {
29 		if (rqos->ops->cleanup)
30 			rqos->ops->cleanup(rqos, bio);
31 		rqos = rqos->next;
32 	} while (rqos);
33 }
34 
__rq_qos_done(struct rq_qos * rqos,struct request * rq)35 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
36 {
37 	do {
38 		if (rqos->ops->done)
39 			rqos->ops->done(rqos, rq);
40 		rqos = rqos->next;
41 	} while (rqos);
42 }
43 
__rq_qos_issue(struct rq_qos * rqos,struct request * rq)44 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
45 {
46 	do {
47 		if (rqos->ops->issue)
48 			rqos->ops->issue(rqos, rq);
49 		rqos = rqos->next;
50 	} while (rqos);
51 }
52 
__rq_qos_requeue(struct rq_qos * rqos,struct request * rq)53 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
54 {
55 	do {
56 		if (rqos->ops->requeue)
57 			rqos->ops->requeue(rqos, rq);
58 		rqos = rqos->next;
59 	} while (rqos);
60 }
61 
__rq_qos_throttle(struct rq_qos * rqos,struct bio * bio)62 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
63 {
64 	do {
65 		if (rqos->ops->throttle)
66 			rqos->ops->throttle(rqos, bio);
67 		rqos = rqos->next;
68 	} while (rqos);
69 }
70 
__rq_qos_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)71 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
72 {
73 	do {
74 		if (rqos->ops->track)
75 			rqos->ops->track(rqos, rq, bio);
76 		rqos = rqos->next;
77 	} while (rqos);
78 }
79 
__rq_qos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)80 void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
81 {
82 	do {
83 		if (rqos->ops->merge)
84 			rqos->ops->merge(rqos, rq, bio);
85 		rqos = rqos->next;
86 	} while (rqos);
87 }
88 
__rq_qos_done_bio(struct rq_qos * rqos,struct bio * bio)89 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
90 {
91 	do {
92 		if (rqos->ops->done_bio)
93 			rqos->ops->done_bio(rqos, bio);
94 		rqos = rqos->next;
95 	} while (rqos);
96 }
97 
__rq_qos_queue_depth_changed(struct rq_qos * rqos)98 void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
99 {
100 	do {
101 		if (rqos->ops->queue_depth_changed)
102 			rqos->ops->queue_depth_changed(rqos);
103 		rqos = rqos->next;
104 	} while (rqos);
105 }
106 
107 /*
108  * Return true, if we can't increase the depth further by scaling
109  */
rq_depth_calc_max_depth(struct rq_depth * rqd)110 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
111 {
112 	unsigned int depth;
113 	bool ret = false;
114 
115 	/*
116 	 * For QD=1 devices, this is a special case. It's important for those
117 	 * to have one request ready when one completes, so force a depth of
118 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
119 	 * since the device can't have more than that in flight. If we're
120 	 * scaling down, then keep a setting of 1/1/1.
121 	 */
122 	if (rqd->queue_depth == 1) {
123 		if (rqd->scale_step > 0)
124 			rqd->max_depth = 1;
125 		else {
126 			rqd->max_depth = 2;
127 			ret = true;
128 		}
129 	} else {
130 		/*
131 		 * scale_step == 0 is our default state. If we have suffered
132 		 * latency spikes, step will be > 0, and we shrink the
133 		 * allowed write depths. If step is < 0, we're only doing
134 		 * writes, and we allow a temporarily higher depth to
135 		 * increase performance.
136 		 */
137 		depth = min_t(unsigned int, rqd->default_depth,
138 			      rqd->queue_depth);
139 		if (rqd->scale_step > 0)
140 			depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
141 		else if (rqd->scale_step < 0) {
142 			unsigned int maxd = 3 * rqd->queue_depth / 4;
143 
144 			depth = 1 + ((depth - 1) << -rqd->scale_step);
145 			if (depth > maxd) {
146 				depth = maxd;
147 				ret = true;
148 			}
149 		}
150 
151 		rqd->max_depth = depth;
152 	}
153 
154 	return ret;
155 }
156 
157 /* Returns true on success and false if scaling up wasn't possible */
rq_depth_scale_up(struct rq_depth * rqd)158 bool rq_depth_scale_up(struct rq_depth *rqd)
159 {
160 	/*
161 	 * Hit max in previous round, stop here
162 	 */
163 	if (rqd->scaled_max)
164 		return false;
165 
166 	rqd->scale_step--;
167 
168 	rqd->scaled_max = rq_depth_calc_max_depth(rqd);
169 	return true;
170 }
171 
172 /*
173  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
174  * had a latency violation. Returns true on success and returns false if
175  * scaling down wasn't possible.
176  */
rq_depth_scale_down(struct rq_depth * rqd,bool hard_throttle)177 bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
178 {
179 	/*
180 	 * Stop scaling down when we've hit the limit. This also prevents
181 	 * ->scale_step from going to crazy values, if the device can't
182 	 * keep up.
183 	 */
184 	if (rqd->max_depth == 1)
185 		return false;
186 
187 	if (rqd->scale_step < 0 && hard_throttle)
188 		rqd->scale_step = 0;
189 	else
190 		rqd->scale_step++;
191 
192 	rqd->scaled_max = false;
193 	rq_depth_calc_max_depth(rqd);
194 	return true;
195 }
196 
197 struct rq_qos_wait_data {
198 	struct wait_queue_entry wq;
199 	struct rq_wait *rqw;
200 	acquire_inflight_cb_t *cb;
201 	void *private_data;
202 	bool got_token;
203 };
204 
rq_qos_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)205 static int rq_qos_wake_function(struct wait_queue_entry *curr,
206 				unsigned int mode, int wake_flags, void *key)
207 {
208 	struct rq_qos_wait_data *data = container_of(curr,
209 						     struct rq_qos_wait_data,
210 						     wq);
211 
212 	/*
213 	 * If we fail to get a budget, return -1 to interrupt the wake up loop
214 	 * in __wake_up_common.
215 	 */
216 	if (!data->cb(data->rqw, data->private_data))
217 		return -1;
218 
219 	data->got_token = true;
220 	/*
221 	 * autoremove_wake_function() removes the wait entry only when it
222 	 * actually changed the task state. We want the wait always removed.
223 	 * Remove explicitly and use default_wake_function().
224 	 */
225 	default_wake_function(curr, mode, wake_flags, key);
226 	/*
227 	 * Note that the order of operations is important as finish_wait()
228 	 * tests whether @curr is removed without grabbing the lock. This
229 	 * should be the last thing to do to make sure we will not have a
230 	 * UAF access to @data. And the semantics of memory barrier in it
231 	 * also make sure the waiter will see the latest @data->got_token
232 	 * once list_empty_careful() in finish_wait() returns true.
233 	 */
234 	list_del_init_careful(&curr->entry);
235 	return 1;
236 }
237 
238 /**
239  * rq_qos_wait - throttle on a rqw if we need to
240  * @rqw: rqw to throttle on
241  * @private_data: caller provided specific data
242  * @acquire_inflight_cb: inc the rqw->inflight counter if we can
243  * @cleanup_cb: the callback to cleanup in case we race with a waker
244  *
245  * This provides a uniform place for the rq_qos users to do their throttling.
246  * Since you can end up with a lot of things sleeping at once, this manages the
247  * waking up based on the resources available.  The acquire_inflight_cb should
248  * inc the rqw->inflight if we have the ability to do so, or return false if not
249  * and then we will sleep until the room becomes available.
250  *
251  * cleanup_cb is in case that we race with a waker and need to cleanup the
252  * inflight count accordingly.
253  */
rq_qos_wait(struct rq_wait * rqw,void * private_data,acquire_inflight_cb_t * acquire_inflight_cb,cleanup_cb_t * cleanup_cb)254 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
255 		 acquire_inflight_cb_t *acquire_inflight_cb,
256 		 cleanup_cb_t *cleanup_cb)
257 {
258 	struct rq_qos_wait_data data = {
259 		.rqw		= rqw,
260 		.cb		= acquire_inflight_cb,
261 		.private_data	= private_data,
262 		.got_token	= false,
263 	};
264 	bool first_waiter;
265 
266 	/*
267 	 * If there are no waiters in the waiting queue, try to increase the
268 	 * inflight counter if we can. Otherwise, prepare for adding ourselves
269 	 * to the waiting queue.
270 	 */
271 	if (!waitqueue_active(&rqw->wait) && acquire_inflight_cb(rqw, private_data))
272 		return;
273 
274 	init_wait_func(&data.wq, rq_qos_wake_function);
275 	first_waiter = prepare_to_wait_exclusive(&rqw->wait, &data.wq,
276 						 TASK_UNINTERRUPTIBLE);
277 	/*
278 	 * Make sure there is at least one inflight process; otherwise, waiters
279 	 * will never be woken up. Since there may be no inflight process before
280 	 * adding ourselves to the waiting queue above, we need to try to
281 	 * increase the inflight counter for ourselves. And it is sufficient to
282 	 * guarantee that at least the first waiter to enter the waiting queue
283 	 * will re-check the waiting condition before going to sleep, thus
284 	 * ensuring forward progress.
285 	 */
286 	if (!data.got_token && first_waiter && acquire_inflight_cb(rqw, private_data)) {
287 		finish_wait(&rqw->wait, &data.wq);
288 		/*
289 		 * We raced with rq_qos_wake_function() getting a token,
290 		 * which means we now have two. Put our local token
291 		 * and wake anyone else potentially waiting for one.
292 		 *
293 		 * Enough memory barrier in list_empty_careful() in
294 		 * finish_wait() is paired with list_del_init_careful()
295 		 * in rq_qos_wake_function() to make sure we will see
296 		 * the latest @data->got_token.
297 		 */
298 		if (data.got_token)
299 			cleanup_cb(rqw, private_data);
300 		return;
301 	}
302 
303 	/* we are now relying on the waker to increase our inflight counter. */
304 	do {
305 		if (data.got_token)
306 			break;
307 		io_schedule();
308 		set_current_state(TASK_UNINTERRUPTIBLE);
309 	} while (1);
310 	finish_wait(&rqw->wait, &data.wq);
311 }
312 
rq_qos_exit(struct request_queue * q)313 void rq_qos_exit(struct request_queue *q)
314 {
315 	mutex_lock(&q->rq_qos_mutex);
316 	while (q->rq_qos) {
317 		struct rq_qos *rqos = q->rq_qos;
318 		q->rq_qos = rqos->next;
319 		rqos->ops->exit(rqos);
320 	}
321 	mutex_unlock(&q->rq_qos_mutex);
322 }
323 
rq_qos_add(struct rq_qos * rqos,struct gendisk * disk,enum rq_qos_id id,const struct rq_qos_ops * ops)324 int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id,
325 		const struct rq_qos_ops *ops)
326 {
327 	struct request_queue *q = disk->queue;
328 	unsigned int memflags;
329 
330 	lockdep_assert_held(&q->rq_qos_mutex);
331 
332 	rqos->disk = disk;
333 	rqos->id = id;
334 	rqos->ops = ops;
335 
336 	/*
337 	 * No IO can be in-flight when adding rqos, so freeze queue, which
338 	 * is fine since we only support rq_qos for blk-mq queue.
339 	 */
340 	memflags = blk_mq_freeze_queue(q);
341 
342 	if (rq_qos_id(q, rqos->id))
343 		goto ebusy;
344 	rqos->next = q->rq_qos;
345 	q->rq_qos = rqos;
346 
347 	blk_mq_unfreeze_queue(q, memflags);
348 
349 	if (rqos->ops->debugfs_attrs) {
350 		mutex_lock(&q->debugfs_mutex);
351 		blk_mq_debugfs_register_rqos(rqos);
352 		mutex_unlock(&q->debugfs_mutex);
353 	}
354 
355 	return 0;
356 ebusy:
357 	blk_mq_unfreeze_queue(q, memflags);
358 	return -EBUSY;
359 }
360 
rq_qos_del(struct rq_qos * rqos)361 void rq_qos_del(struct rq_qos *rqos)
362 {
363 	struct request_queue *q = rqos->disk->queue;
364 	struct rq_qos **cur;
365 	unsigned int memflags;
366 
367 	lockdep_assert_held(&q->rq_qos_mutex);
368 
369 	memflags = blk_mq_freeze_queue(q);
370 	for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) {
371 		if (*cur == rqos) {
372 			*cur = rqos->next;
373 			break;
374 		}
375 	}
376 	blk_mq_unfreeze_queue(q, memflags);
377 
378 	mutex_lock(&q->debugfs_mutex);
379 	blk_mq_debugfs_unregister_rqos(rqos);
380 	mutex_unlock(&q->debugfs_mutex);
381 }
382