xref: /linux/drivers/of/of_reserved_mem.c (revision 48a5eed9ad584315c30ed35204510536235ce402)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27 
28 #include "of_private.h"
29 
30 static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
31 static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
32 static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
33 static int reserved_mem_count;
34 
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)35 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
36 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
37 	phys_addr_t *res_base)
38 {
39 	phys_addr_t base;
40 	int err = 0;
41 
42 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
43 	align = !align ? SMP_CACHE_BYTES : align;
44 	base = memblock_phys_alloc_range(size, align, start, end);
45 	if (!base)
46 		return -ENOMEM;
47 
48 	*res_base = base;
49 	if (nomap) {
50 		err = memblock_mark_nomap(base, size);
51 		if (err)
52 			memblock_phys_free(base, size);
53 	}
54 
55 	if (!err)
56 		kmemleak_ignore_phys(base);
57 
58 	return err;
59 }
60 
61 /*
62  * alloc_reserved_mem_array() - allocate memory for the reserved_mem
63  * array using memblock
64  *
65  * This function is used to allocate memory for the reserved_mem
66  * array according to the total number of reserved memory regions
67  * defined in the DT.
68  * After the new array is allocated, the information stored in
69  * the initial static array is copied over to this new array and
70  * the new array is used from this point on.
71  */
alloc_reserved_mem_array(void)72 static void __init alloc_reserved_mem_array(void)
73 {
74 	struct reserved_mem *new_array;
75 	size_t alloc_size, copy_size, memset_size;
76 
77 	alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
78 	if (alloc_size == SIZE_MAX) {
79 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
80 		return;
81 	}
82 
83 	new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
84 	if (!new_array) {
85 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
86 		return;
87 	}
88 
89 	copy_size = array_size(reserved_mem_count, sizeof(*new_array));
90 	if (copy_size == SIZE_MAX) {
91 		memblock_free(new_array, alloc_size);
92 		total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
93 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
94 		return;
95 	}
96 
97 	memset_size = alloc_size - copy_size;
98 
99 	memcpy(new_array, reserved_mem, copy_size);
100 	memset(new_array + reserved_mem_count, 0, memset_size);
101 
102 	reserved_mem = new_array;
103 }
104 
105 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
106 /*
107  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
108  */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)109 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
110 					      phys_addr_t base, phys_addr_t size)
111 {
112 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
113 
114 	if (reserved_mem_count == total_reserved_mem_cnt) {
115 		pr_err("not enough space for all defined regions.\n");
116 		return;
117 	}
118 
119 	rmem->fdt_node = node;
120 	rmem->name = uname;
121 	rmem->base = base;
122 	rmem->size = size;
123 
124 	/* Call the region specific initialization function */
125 	fdt_init_reserved_mem_node(rmem);
126 
127 	reserved_mem_count++;
128 	return;
129 }
130 
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)131 static int __init early_init_dt_reserve_memory(phys_addr_t base,
132 					       phys_addr_t size, bool nomap)
133 {
134 	if (nomap) {
135 		/*
136 		 * If the memory is already reserved (by another region), we
137 		 * should not allow it to be marked nomap, but don't worry
138 		 * if the region isn't memory as it won't be mapped.
139 		 */
140 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
141 		    memblock_is_region_reserved(base, size))
142 			return -EBUSY;
143 
144 		return memblock_mark_nomap(base, size);
145 	}
146 	return memblock_reserve(base, size);
147 }
148 
149 /*
150  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
151  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)152 static int __init __reserved_mem_reserve_reg(unsigned long node,
153 					     const char *uname)
154 {
155 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
156 	phys_addr_t base, size;
157 	int len;
158 	const __be32 *prop;
159 	bool nomap;
160 
161 	prop = of_get_flat_dt_prop(node, "reg", &len);
162 	if (!prop)
163 		return -ENOENT;
164 
165 	if (len && len % t_len != 0) {
166 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
167 		       uname);
168 		return -EINVAL;
169 	}
170 
171 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
172 
173 	while (len >= t_len) {
174 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
175 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
176 
177 		if (size &&
178 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
179 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
180 				uname, &base, (unsigned long)(size / SZ_1M));
181 		else
182 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
183 			       uname, &base, (unsigned long)(size / SZ_1M));
184 
185 		len -= t_len;
186 	}
187 	return 0;
188 }
189 
190 /*
191  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
192  * in /reserved-memory matches the values supported by the current implementation,
193  * also check if ranges property has been provided
194  */
__reserved_mem_check_root(unsigned long node)195 static int __init __reserved_mem_check_root(unsigned long node)
196 {
197 	const __be32 *prop;
198 
199 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
200 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
201 		return -EINVAL;
202 
203 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
204 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
205 		return -EINVAL;
206 
207 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
208 	if (!prop)
209 		return -EINVAL;
210 	return 0;
211 }
212 
213 static void __init __rmem_check_for_overlap(void);
214 
215 /**
216  * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
217  * reserved memory regions.
218  *
219  * This function is used to scan through the DT and store the
220  * information for the reserved memory regions that are defined using
221  * the "reg" property. The region node number, name, base address, and
222  * size are all stored in the reserved_mem array by calling the
223  * fdt_reserved_mem_save_node() function.
224  */
fdt_scan_reserved_mem_reg_nodes(void)225 void __init fdt_scan_reserved_mem_reg_nodes(void)
226 {
227 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
228 	const void *fdt = initial_boot_params;
229 	phys_addr_t base, size;
230 	const __be32 *prop;
231 	int node, child;
232 	int len;
233 
234 	if (!fdt)
235 		return;
236 
237 	node = fdt_path_offset(fdt, "/reserved-memory");
238 	if (node < 0) {
239 		pr_info("Reserved memory: No reserved-memory node in the DT\n");
240 		return;
241 	}
242 
243 	/* Attempt dynamic allocation of a new reserved_mem array */
244 	alloc_reserved_mem_array();
245 
246 	if (__reserved_mem_check_root(node)) {
247 		pr_err("Reserved memory: unsupported node format, ignoring\n");
248 		return;
249 	}
250 
251 	fdt_for_each_subnode(child, fdt, node) {
252 		const char *uname;
253 
254 		prop = of_get_flat_dt_prop(child, "reg", &len);
255 		if (!prop)
256 			continue;
257 		if (!of_fdt_device_is_available(fdt, child))
258 			continue;
259 
260 		uname = fdt_get_name(fdt, child, NULL);
261 		if (len && len % t_len != 0) {
262 			pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
263 			       uname);
264 			continue;
265 		}
266 
267 		if (len > t_len)
268 			pr_warn("%s() ignores %d regions in node '%s'\n",
269 				__func__, len / t_len - 1, uname);
270 
271 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
272 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
273 
274 		if (size)
275 			fdt_reserved_mem_save_node(child, uname, base, size);
276 	}
277 
278 	/* check for overlapping reserved regions */
279 	__rmem_check_for_overlap();
280 }
281 
282 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
283 
284 /*
285  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
286  */
fdt_scan_reserved_mem(void)287 int __init fdt_scan_reserved_mem(void)
288 {
289 	int node, child;
290 	int dynamic_nodes_cnt = 0, count = 0;
291 	int dynamic_nodes[MAX_RESERVED_REGIONS];
292 	const void *fdt = initial_boot_params;
293 
294 	node = fdt_path_offset(fdt, "/reserved-memory");
295 	if (node < 0)
296 		return -ENODEV;
297 
298 	if (__reserved_mem_check_root(node) != 0) {
299 		pr_err("Reserved memory: unsupported node format, ignoring\n");
300 		return -EINVAL;
301 	}
302 
303 	fdt_for_each_subnode(child, fdt, node) {
304 		const char *uname;
305 		int err;
306 
307 		if (!of_fdt_device_is_available(fdt, child))
308 			continue;
309 
310 		uname = fdt_get_name(fdt, child, NULL);
311 
312 		err = __reserved_mem_reserve_reg(child, uname);
313 		if (!err)
314 			count++;
315 		/*
316 		 * Save the nodes for the dynamically-placed regions
317 		 * into an array which will be used for allocation right
318 		 * after all the statically-placed regions are reserved
319 		 * or marked as no-map. This is done to avoid dynamically
320 		 * allocating from one of the statically-placed regions.
321 		 */
322 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
323 			dynamic_nodes[dynamic_nodes_cnt] = child;
324 			dynamic_nodes_cnt++;
325 		}
326 	}
327 	for (int i = 0; i < dynamic_nodes_cnt; i++) {
328 		const char *uname;
329 		int err;
330 
331 		child = dynamic_nodes[i];
332 		uname = fdt_get_name(fdt, child, NULL);
333 		err = __reserved_mem_alloc_size(child, uname);
334 		if (!err)
335 			count++;
336 	}
337 	total_reserved_mem_cnt = count;
338 	return 0;
339 }
340 
341 /*
342  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
343  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
344  *	reserved regions to keep the reserved memory contiguous if possible.
345  */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)346 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
347 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
348 	phys_addr_t *res_base)
349 {
350 	bool prev_bottom_up = memblock_bottom_up();
351 	bool bottom_up = false, top_down = false;
352 	int ret, i;
353 
354 	for (i = 0; i < reserved_mem_count; i++) {
355 		struct reserved_mem *rmem = &reserved_mem[i];
356 
357 		/* Skip regions that were not reserved yet */
358 		if (rmem->size == 0)
359 			continue;
360 
361 		/*
362 		 * If range starts next to an existing reservation, use bottom-up:
363 		 *	|....RRRR................RRRRRRRR..............|
364 		 *	       --RRRR------
365 		 */
366 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
367 			bottom_up = true;
368 
369 		/*
370 		 * If range ends next to an existing reservation, use top-down:
371 		 *	|....RRRR................RRRRRRRR..............|
372 		 *	              -------RRRR-----
373 		 */
374 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
375 			top_down = true;
376 	}
377 
378 	/* Change setting only if either bottom-up or top-down was selected */
379 	if (bottom_up != top_down)
380 		memblock_set_bottom_up(bottom_up);
381 
382 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
383 			start, end, nomap, res_base);
384 
385 	/* Restore old setting if needed */
386 	if (bottom_up != top_down)
387 		memblock_set_bottom_up(prev_bottom_up);
388 
389 	return ret;
390 }
391 
392 /*
393  * __reserved_mem_alloc_size() - allocate reserved memory described by
394  *	'size', 'alignment'  and 'alloc-ranges' properties.
395  */
__reserved_mem_alloc_size(unsigned long node,const char * uname)396 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
397 {
398 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
399 	phys_addr_t start = 0, end = 0;
400 	phys_addr_t base = 0, align = 0, size;
401 	int len;
402 	const __be32 *prop;
403 	bool nomap;
404 	int ret;
405 
406 	prop = of_get_flat_dt_prop(node, "size", &len);
407 	if (!prop)
408 		return -EINVAL;
409 
410 	if (len != dt_root_size_cells * sizeof(__be32)) {
411 		pr_err("invalid size property in '%s' node.\n", uname);
412 		return -EINVAL;
413 	}
414 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
415 
416 	prop = of_get_flat_dt_prop(node, "alignment", &len);
417 	if (prop) {
418 		if (len != dt_root_addr_cells * sizeof(__be32)) {
419 			pr_err("invalid alignment property in '%s' node.\n",
420 				uname);
421 			return -EINVAL;
422 		}
423 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
424 	}
425 
426 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
427 
428 	/* Need adjust the alignment to satisfy the CMA requirement */
429 	if (IS_ENABLED(CONFIG_CMA)
430 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
431 	    && of_get_flat_dt_prop(node, "reusable", NULL)
432 	    && !nomap)
433 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
434 
435 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
436 	if (prop) {
437 
438 		if (len % t_len != 0) {
439 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
440 			       uname);
441 			return -EINVAL;
442 		}
443 
444 		while (len > 0) {
445 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
446 			end = start + dt_mem_next_cell(dt_root_size_cells,
447 						       &prop);
448 
449 			base = 0;
450 			ret = __reserved_mem_alloc_in_range(size, align,
451 					start, end, nomap, &base);
452 			if (ret == 0) {
453 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
454 					uname, &base,
455 					(unsigned long)(size / SZ_1M));
456 				break;
457 			}
458 			len -= t_len;
459 		}
460 
461 	} else {
462 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
463 							0, 0, nomap, &base);
464 		if (ret == 0)
465 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
466 				uname, &base, (unsigned long)(size / SZ_1M));
467 	}
468 
469 	if (base == 0) {
470 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
471 		       uname, (unsigned long)(size / SZ_1M));
472 		return -ENOMEM;
473 	}
474 
475 	/* Save region in the reserved_mem array */
476 	fdt_reserved_mem_save_node(node, uname, base, size);
477 	return 0;
478 }
479 
480 static const struct of_device_id __rmem_of_table_sentinel
481 	__used __section("__reservedmem_of_table_end");
482 
483 /*
484  * __reserved_mem_init_node() - call region specific reserved memory init code
485  */
__reserved_mem_init_node(struct reserved_mem * rmem)486 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
487 {
488 	extern const struct of_device_id __reservedmem_of_table[];
489 	const struct of_device_id *i;
490 	int ret = -ENOENT;
491 
492 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
493 		reservedmem_of_init_fn initfn = i->data;
494 		const char *compat = i->compatible;
495 
496 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
497 			continue;
498 
499 		ret = initfn(rmem);
500 		if (ret == 0) {
501 			pr_info("initialized node %s, compatible id %s\n",
502 				rmem->name, compat);
503 			break;
504 		}
505 	}
506 	return ret;
507 }
508 
__rmem_cmp(const void * a,const void * b)509 static int __init __rmem_cmp(const void *a, const void *b)
510 {
511 	const struct reserved_mem *ra = a, *rb = b;
512 
513 	if (ra->base < rb->base)
514 		return -1;
515 
516 	if (ra->base > rb->base)
517 		return 1;
518 
519 	/*
520 	 * Put the dynamic allocations (address == 0, size == 0) before static
521 	 * allocations at address 0x0 so that overlap detection works
522 	 * correctly.
523 	 */
524 	if (ra->size < rb->size)
525 		return -1;
526 	if (ra->size > rb->size)
527 		return 1;
528 
529 	if (ra->fdt_node < rb->fdt_node)
530 		return -1;
531 	if (ra->fdt_node > rb->fdt_node)
532 		return 1;
533 
534 	return 0;
535 }
536 
__rmem_check_for_overlap(void)537 static void __init __rmem_check_for_overlap(void)
538 {
539 	int i;
540 
541 	if (reserved_mem_count < 2)
542 		return;
543 
544 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
545 	     __rmem_cmp, NULL);
546 	for (i = 0; i < reserved_mem_count - 1; i++) {
547 		struct reserved_mem *this, *next;
548 
549 		this = &reserved_mem[i];
550 		next = &reserved_mem[i + 1];
551 
552 		if (this->base + this->size > next->base) {
553 			phys_addr_t this_end, next_end;
554 
555 			this_end = this->base + this->size;
556 			next_end = next->base + next->size;
557 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
558 			       this->name, &this->base, &this_end,
559 			       next->name, &next->base, &next_end);
560 		}
561 	}
562 }
563 
564 /**
565  * fdt_init_reserved_mem_node() - Initialize a reserved memory region
566  * @rmem: reserved_mem struct of the memory region to be initialized.
567  *
568  * This function is used to call the region specific initialization
569  * function for a reserved memory region.
570  */
fdt_init_reserved_mem_node(struct reserved_mem * rmem)571 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
572 {
573 	unsigned long node = rmem->fdt_node;
574 	int err = 0;
575 	bool nomap;
576 
577 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
578 
579 	err = __reserved_mem_init_node(rmem);
580 	if (err != 0 && err != -ENOENT) {
581 		pr_info("node %s compatible matching fail\n", rmem->name);
582 		if (nomap)
583 			memblock_clear_nomap(rmem->base, rmem->size);
584 		else
585 			memblock_phys_free(rmem->base, rmem->size);
586 	} else {
587 		phys_addr_t end = rmem->base + rmem->size - 1;
588 		bool reusable =
589 			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
590 
591 		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
592 			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
593 			nomap ? "nomap" : "map",
594 			reusable ? "reusable" : "non-reusable",
595 			rmem->name ? rmem->name : "unknown");
596 	}
597 }
598 
599 struct rmem_assigned_device {
600 	struct device *dev;
601 	struct reserved_mem *rmem;
602 	struct list_head list;
603 };
604 
605 static LIST_HEAD(of_rmem_assigned_device_list);
606 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
607 
608 /**
609  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
610  *					  given device
611  * @dev:	Pointer to the device to configure
612  * @np:		Pointer to the device_node with 'reserved-memory' property
613  * @idx:	Index of selected region
614  *
615  * This function assigns respective DMA-mapping operations based on reserved
616  * memory region specified by 'memory-region' property in @np node to the @dev
617  * device. When driver needs to use more than one reserved memory region, it
618  * should allocate child devices and initialize regions by name for each of
619  * child device.
620  *
621  * Returns error code or zero on success.
622  */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)623 int of_reserved_mem_device_init_by_idx(struct device *dev,
624 				       struct device_node *np, int idx)
625 {
626 	struct rmem_assigned_device *rd;
627 	struct device_node *target;
628 	struct reserved_mem *rmem;
629 	int ret;
630 
631 	if (!np || !dev)
632 		return -EINVAL;
633 
634 	target = of_parse_phandle(np, "memory-region", idx);
635 	if (!target)
636 		return -ENODEV;
637 
638 	if (!of_device_is_available(target)) {
639 		of_node_put(target);
640 		return 0;
641 	}
642 
643 	rmem = of_reserved_mem_lookup(target);
644 	of_node_put(target);
645 
646 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
647 		return -EINVAL;
648 
649 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
650 	if (!rd)
651 		return -ENOMEM;
652 
653 	ret = rmem->ops->device_init(rmem, dev);
654 	if (ret == 0) {
655 		rd->dev = dev;
656 		rd->rmem = rmem;
657 
658 		mutex_lock(&of_rmem_assigned_device_mutex);
659 		list_add(&rd->list, &of_rmem_assigned_device_list);
660 		mutex_unlock(&of_rmem_assigned_device_mutex);
661 
662 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
663 	} else {
664 		kfree(rd);
665 	}
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
670 
671 /**
672  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
673  *					   to given device
674  * @dev: pointer to the device to configure
675  * @np: pointer to the device node with 'memory-region' property
676  * @name: name of the selected memory region
677  *
678  * Returns: 0 on success or a negative error-code on failure.
679  */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)680 int of_reserved_mem_device_init_by_name(struct device *dev,
681 					struct device_node *np,
682 					const char *name)
683 {
684 	int idx = of_property_match_string(np, "memory-region-names", name);
685 
686 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
687 }
688 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
689 
690 /**
691  * of_reserved_mem_device_release() - release reserved memory device structures
692  * @dev:	Pointer to the device to deconfigure
693  *
694  * This function releases structures allocated for memory region handling for
695  * the given device.
696  */
of_reserved_mem_device_release(struct device * dev)697 void of_reserved_mem_device_release(struct device *dev)
698 {
699 	struct rmem_assigned_device *rd, *tmp;
700 	LIST_HEAD(release_list);
701 
702 	mutex_lock(&of_rmem_assigned_device_mutex);
703 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
704 		if (rd->dev == dev)
705 			list_move_tail(&rd->list, &release_list);
706 	}
707 	mutex_unlock(&of_rmem_assigned_device_mutex);
708 
709 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
710 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
711 			rd->rmem->ops->device_release(rd->rmem, dev);
712 
713 		kfree(rd);
714 	}
715 }
716 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
717 
718 /**
719  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
720  * @np:		node pointer of the desired reserved-memory region
721  *
722  * This function allows drivers to acquire a reference to the reserved_mem
723  * struct based on a device node handle.
724  *
725  * Returns a reserved_mem reference, or NULL on error.
726  */
of_reserved_mem_lookup(struct device_node * np)727 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
728 {
729 	const char *name;
730 	int i;
731 
732 	if (!np->full_name)
733 		return NULL;
734 
735 	name = kbasename(np->full_name);
736 	for (i = 0; i < reserved_mem_count; i++)
737 		if (!strcmp(reserved_mem[i].name, name))
738 			return &reserved_mem[i];
739 
740 	return NULL;
741 }
742 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
743