1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27
28 #include "of_private.h"
29
30 static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
31 static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
32 static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
33 static int reserved_mem_count;
34
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)35 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
36 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
37 phys_addr_t *res_base)
38 {
39 phys_addr_t base;
40 int err = 0;
41
42 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
43 align = !align ? SMP_CACHE_BYTES : align;
44 base = memblock_phys_alloc_range(size, align, start, end);
45 if (!base)
46 return -ENOMEM;
47
48 *res_base = base;
49 if (nomap) {
50 err = memblock_mark_nomap(base, size);
51 if (err)
52 memblock_phys_free(base, size);
53 }
54
55 if (!err)
56 kmemleak_ignore_phys(base);
57
58 return err;
59 }
60
61 /*
62 * alloc_reserved_mem_array() - allocate memory for the reserved_mem
63 * array using memblock
64 *
65 * This function is used to allocate memory for the reserved_mem
66 * array according to the total number of reserved memory regions
67 * defined in the DT.
68 * After the new array is allocated, the information stored in
69 * the initial static array is copied over to this new array and
70 * the new array is used from this point on.
71 */
alloc_reserved_mem_array(void)72 static void __init alloc_reserved_mem_array(void)
73 {
74 struct reserved_mem *new_array;
75 size_t alloc_size, copy_size, memset_size;
76
77 alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
78 if (alloc_size == SIZE_MAX) {
79 pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
80 return;
81 }
82
83 new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
84 if (!new_array) {
85 pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
86 return;
87 }
88
89 copy_size = array_size(reserved_mem_count, sizeof(*new_array));
90 if (copy_size == SIZE_MAX) {
91 memblock_free(new_array, alloc_size);
92 total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
93 pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
94 return;
95 }
96
97 memset_size = alloc_size - copy_size;
98
99 memcpy(new_array, reserved_mem, copy_size);
100 memset(new_array + reserved_mem_count, 0, memset_size);
101
102 reserved_mem = new_array;
103 }
104
105 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
106 /*
107 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
108 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)109 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
110 phys_addr_t base, phys_addr_t size)
111 {
112 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
113
114 if (reserved_mem_count == total_reserved_mem_cnt) {
115 pr_err("not enough space for all defined regions.\n");
116 return;
117 }
118
119 rmem->fdt_node = node;
120 rmem->name = uname;
121 rmem->base = base;
122 rmem->size = size;
123
124 /* Call the region specific initialization function */
125 fdt_init_reserved_mem_node(rmem);
126
127 reserved_mem_count++;
128 return;
129 }
130
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)131 static int __init early_init_dt_reserve_memory(phys_addr_t base,
132 phys_addr_t size, bool nomap)
133 {
134 if (nomap) {
135 /*
136 * If the memory is already reserved (by another region), we
137 * should not allow it to be marked nomap, but don't worry
138 * if the region isn't memory as it won't be mapped.
139 */
140 if (memblock_overlaps_region(&memblock.memory, base, size) &&
141 memblock_is_region_reserved(base, size))
142 return -EBUSY;
143
144 return memblock_mark_nomap(base, size);
145 }
146 return memblock_reserve(base, size);
147 }
148
149 /*
150 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
151 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)152 static int __init __reserved_mem_reserve_reg(unsigned long node,
153 const char *uname)
154 {
155 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
156 phys_addr_t base, size;
157 int len;
158 const __be32 *prop;
159 bool nomap;
160
161 prop = of_get_flat_dt_prop(node, "reg", &len);
162 if (!prop)
163 return -ENOENT;
164
165 if (len && len % t_len != 0) {
166 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
167 uname);
168 return -EINVAL;
169 }
170
171 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
172
173 while (len >= t_len) {
174 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
175 size = dt_mem_next_cell(dt_root_size_cells, &prop);
176
177 if (size &&
178 early_init_dt_reserve_memory(base, size, nomap) == 0)
179 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
180 uname, &base, (unsigned long)(size / SZ_1M));
181 else
182 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
183 uname, &base, (unsigned long)(size / SZ_1M));
184
185 len -= t_len;
186 }
187 return 0;
188 }
189
190 /*
191 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
192 * in /reserved-memory matches the values supported by the current implementation,
193 * also check if ranges property has been provided
194 */
__reserved_mem_check_root(unsigned long node)195 static int __init __reserved_mem_check_root(unsigned long node)
196 {
197 const __be32 *prop;
198
199 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
200 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
201 return -EINVAL;
202
203 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
204 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
205 return -EINVAL;
206
207 prop = of_get_flat_dt_prop(node, "ranges", NULL);
208 if (!prop)
209 return -EINVAL;
210 return 0;
211 }
212
213 static void __init __rmem_check_for_overlap(void);
214
215 /**
216 * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
217 * reserved memory regions.
218 *
219 * This function is used to scan through the DT and store the
220 * information for the reserved memory regions that are defined using
221 * the "reg" property. The region node number, name, base address, and
222 * size are all stored in the reserved_mem array by calling the
223 * fdt_reserved_mem_save_node() function.
224 */
fdt_scan_reserved_mem_reg_nodes(void)225 void __init fdt_scan_reserved_mem_reg_nodes(void)
226 {
227 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
228 const void *fdt = initial_boot_params;
229 phys_addr_t base, size;
230 const __be32 *prop;
231 int node, child;
232 int len;
233
234 if (!fdt)
235 return;
236
237 node = fdt_path_offset(fdt, "/reserved-memory");
238 if (node < 0) {
239 pr_info("Reserved memory: No reserved-memory node in the DT\n");
240 return;
241 }
242
243 /* Attempt dynamic allocation of a new reserved_mem array */
244 alloc_reserved_mem_array();
245
246 if (__reserved_mem_check_root(node)) {
247 pr_err("Reserved memory: unsupported node format, ignoring\n");
248 return;
249 }
250
251 fdt_for_each_subnode(child, fdt, node) {
252 const char *uname;
253
254 prop = of_get_flat_dt_prop(child, "reg", &len);
255 if (!prop)
256 continue;
257 if (!of_fdt_device_is_available(fdt, child))
258 continue;
259
260 uname = fdt_get_name(fdt, child, NULL);
261 if (len && len % t_len != 0) {
262 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
263 uname);
264 continue;
265 }
266
267 if (len > t_len)
268 pr_warn("%s() ignores %d regions in node '%s'\n",
269 __func__, len / t_len - 1, uname);
270
271 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
272 size = dt_mem_next_cell(dt_root_size_cells, &prop);
273
274 if (size)
275 fdt_reserved_mem_save_node(child, uname, base, size);
276 }
277
278 /* check for overlapping reserved regions */
279 __rmem_check_for_overlap();
280 }
281
282 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
283
284 /*
285 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
286 */
fdt_scan_reserved_mem(void)287 int __init fdt_scan_reserved_mem(void)
288 {
289 int node, child;
290 int dynamic_nodes_cnt = 0, count = 0;
291 int dynamic_nodes[MAX_RESERVED_REGIONS];
292 const void *fdt = initial_boot_params;
293
294 node = fdt_path_offset(fdt, "/reserved-memory");
295 if (node < 0)
296 return -ENODEV;
297
298 if (__reserved_mem_check_root(node) != 0) {
299 pr_err("Reserved memory: unsupported node format, ignoring\n");
300 return -EINVAL;
301 }
302
303 fdt_for_each_subnode(child, fdt, node) {
304 const char *uname;
305 int err;
306
307 if (!of_fdt_device_is_available(fdt, child))
308 continue;
309
310 uname = fdt_get_name(fdt, child, NULL);
311
312 err = __reserved_mem_reserve_reg(child, uname);
313 if (!err)
314 count++;
315 /*
316 * Save the nodes for the dynamically-placed regions
317 * into an array which will be used for allocation right
318 * after all the statically-placed regions are reserved
319 * or marked as no-map. This is done to avoid dynamically
320 * allocating from one of the statically-placed regions.
321 */
322 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
323 dynamic_nodes[dynamic_nodes_cnt] = child;
324 dynamic_nodes_cnt++;
325 }
326 }
327 for (int i = 0; i < dynamic_nodes_cnt; i++) {
328 const char *uname;
329 int err;
330
331 child = dynamic_nodes[i];
332 uname = fdt_get_name(fdt, child, NULL);
333 err = __reserved_mem_alloc_size(child, uname);
334 if (!err)
335 count++;
336 }
337 total_reserved_mem_cnt = count;
338 return 0;
339 }
340
341 /*
342 * __reserved_mem_alloc_in_range() - allocate reserved memory described with
343 * 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
344 * reserved regions to keep the reserved memory contiguous if possible.
345 */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)346 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
347 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
348 phys_addr_t *res_base)
349 {
350 bool prev_bottom_up = memblock_bottom_up();
351 bool bottom_up = false, top_down = false;
352 int ret, i;
353
354 for (i = 0; i < reserved_mem_count; i++) {
355 struct reserved_mem *rmem = &reserved_mem[i];
356
357 /* Skip regions that were not reserved yet */
358 if (rmem->size == 0)
359 continue;
360
361 /*
362 * If range starts next to an existing reservation, use bottom-up:
363 * |....RRRR................RRRRRRRR..............|
364 * --RRRR------
365 */
366 if (start >= rmem->base && start <= (rmem->base + rmem->size))
367 bottom_up = true;
368
369 /*
370 * If range ends next to an existing reservation, use top-down:
371 * |....RRRR................RRRRRRRR..............|
372 * -------RRRR-----
373 */
374 if (end >= rmem->base && end <= (rmem->base + rmem->size))
375 top_down = true;
376 }
377
378 /* Change setting only if either bottom-up or top-down was selected */
379 if (bottom_up != top_down)
380 memblock_set_bottom_up(bottom_up);
381
382 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
383 start, end, nomap, res_base);
384
385 /* Restore old setting if needed */
386 if (bottom_up != top_down)
387 memblock_set_bottom_up(prev_bottom_up);
388
389 return ret;
390 }
391
392 /*
393 * __reserved_mem_alloc_size() - allocate reserved memory described by
394 * 'size', 'alignment' and 'alloc-ranges' properties.
395 */
__reserved_mem_alloc_size(unsigned long node,const char * uname)396 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
397 {
398 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
399 phys_addr_t start = 0, end = 0;
400 phys_addr_t base = 0, align = 0, size;
401 int len;
402 const __be32 *prop;
403 bool nomap;
404 int ret;
405
406 prop = of_get_flat_dt_prop(node, "size", &len);
407 if (!prop)
408 return -EINVAL;
409
410 if (len != dt_root_size_cells * sizeof(__be32)) {
411 pr_err("invalid size property in '%s' node.\n", uname);
412 return -EINVAL;
413 }
414 size = dt_mem_next_cell(dt_root_size_cells, &prop);
415
416 prop = of_get_flat_dt_prop(node, "alignment", &len);
417 if (prop) {
418 if (len != dt_root_addr_cells * sizeof(__be32)) {
419 pr_err("invalid alignment property in '%s' node.\n",
420 uname);
421 return -EINVAL;
422 }
423 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
424 }
425
426 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
427
428 /* Need adjust the alignment to satisfy the CMA requirement */
429 if (IS_ENABLED(CONFIG_CMA)
430 && of_flat_dt_is_compatible(node, "shared-dma-pool")
431 && of_get_flat_dt_prop(node, "reusable", NULL)
432 && !nomap)
433 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
434
435 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
436 if (prop) {
437
438 if (len % t_len != 0) {
439 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
440 uname);
441 return -EINVAL;
442 }
443
444 while (len > 0) {
445 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
446 end = start + dt_mem_next_cell(dt_root_size_cells,
447 &prop);
448
449 base = 0;
450 ret = __reserved_mem_alloc_in_range(size, align,
451 start, end, nomap, &base);
452 if (ret == 0) {
453 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
454 uname, &base,
455 (unsigned long)(size / SZ_1M));
456 break;
457 }
458 len -= t_len;
459 }
460
461 } else {
462 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
463 0, 0, nomap, &base);
464 if (ret == 0)
465 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
466 uname, &base, (unsigned long)(size / SZ_1M));
467 }
468
469 if (base == 0) {
470 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
471 uname, (unsigned long)(size / SZ_1M));
472 return -ENOMEM;
473 }
474
475 /* Save region in the reserved_mem array */
476 fdt_reserved_mem_save_node(node, uname, base, size);
477 return 0;
478 }
479
480 static const struct of_device_id __rmem_of_table_sentinel
481 __used __section("__reservedmem_of_table_end");
482
483 /*
484 * __reserved_mem_init_node() - call region specific reserved memory init code
485 */
__reserved_mem_init_node(struct reserved_mem * rmem)486 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
487 {
488 extern const struct of_device_id __reservedmem_of_table[];
489 const struct of_device_id *i;
490 int ret = -ENOENT;
491
492 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
493 reservedmem_of_init_fn initfn = i->data;
494 const char *compat = i->compatible;
495
496 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
497 continue;
498
499 ret = initfn(rmem);
500 if (ret == 0) {
501 pr_info("initialized node %s, compatible id %s\n",
502 rmem->name, compat);
503 break;
504 }
505 }
506 return ret;
507 }
508
__rmem_cmp(const void * a,const void * b)509 static int __init __rmem_cmp(const void *a, const void *b)
510 {
511 const struct reserved_mem *ra = a, *rb = b;
512
513 if (ra->base < rb->base)
514 return -1;
515
516 if (ra->base > rb->base)
517 return 1;
518
519 /*
520 * Put the dynamic allocations (address == 0, size == 0) before static
521 * allocations at address 0x0 so that overlap detection works
522 * correctly.
523 */
524 if (ra->size < rb->size)
525 return -1;
526 if (ra->size > rb->size)
527 return 1;
528
529 if (ra->fdt_node < rb->fdt_node)
530 return -1;
531 if (ra->fdt_node > rb->fdt_node)
532 return 1;
533
534 return 0;
535 }
536
__rmem_check_for_overlap(void)537 static void __init __rmem_check_for_overlap(void)
538 {
539 int i;
540
541 if (reserved_mem_count < 2)
542 return;
543
544 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
545 __rmem_cmp, NULL);
546 for (i = 0; i < reserved_mem_count - 1; i++) {
547 struct reserved_mem *this, *next;
548
549 this = &reserved_mem[i];
550 next = &reserved_mem[i + 1];
551
552 if (this->base + this->size > next->base) {
553 phys_addr_t this_end, next_end;
554
555 this_end = this->base + this->size;
556 next_end = next->base + next->size;
557 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
558 this->name, &this->base, &this_end,
559 next->name, &next->base, &next_end);
560 }
561 }
562 }
563
564 /**
565 * fdt_init_reserved_mem_node() - Initialize a reserved memory region
566 * @rmem: reserved_mem struct of the memory region to be initialized.
567 *
568 * This function is used to call the region specific initialization
569 * function for a reserved memory region.
570 */
fdt_init_reserved_mem_node(struct reserved_mem * rmem)571 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
572 {
573 unsigned long node = rmem->fdt_node;
574 int err = 0;
575 bool nomap;
576
577 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
578
579 err = __reserved_mem_init_node(rmem);
580 if (err != 0 && err != -ENOENT) {
581 pr_info("node %s compatible matching fail\n", rmem->name);
582 if (nomap)
583 memblock_clear_nomap(rmem->base, rmem->size);
584 else
585 memblock_phys_free(rmem->base, rmem->size);
586 } else {
587 phys_addr_t end = rmem->base + rmem->size - 1;
588 bool reusable =
589 (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
590
591 pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
592 &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
593 nomap ? "nomap" : "map",
594 reusable ? "reusable" : "non-reusable",
595 rmem->name ? rmem->name : "unknown");
596 }
597 }
598
599 struct rmem_assigned_device {
600 struct device *dev;
601 struct reserved_mem *rmem;
602 struct list_head list;
603 };
604
605 static LIST_HEAD(of_rmem_assigned_device_list);
606 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
607
608 /**
609 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
610 * given device
611 * @dev: Pointer to the device to configure
612 * @np: Pointer to the device_node with 'reserved-memory' property
613 * @idx: Index of selected region
614 *
615 * This function assigns respective DMA-mapping operations based on reserved
616 * memory region specified by 'memory-region' property in @np node to the @dev
617 * device. When driver needs to use more than one reserved memory region, it
618 * should allocate child devices and initialize regions by name for each of
619 * child device.
620 *
621 * Returns error code or zero on success.
622 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)623 int of_reserved_mem_device_init_by_idx(struct device *dev,
624 struct device_node *np, int idx)
625 {
626 struct rmem_assigned_device *rd;
627 struct device_node *target;
628 struct reserved_mem *rmem;
629 int ret;
630
631 if (!np || !dev)
632 return -EINVAL;
633
634 target = of_parse_phandle(np, "memory-region", idx);
635 if (!target)
636 return -ENODEV;
637
638 if (!of_device_is_available(target)) {
639 of_node_put(target);
640 return 0;
641 }
642
643 rmem = of_reserved_mem_lookup(target);
644 of_node_put(target);
645
646 if (!rmem || !rmem->ops || !rmem->ops->device_init)
647 return -EINVAL;
648
649 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
650 if (!rd)
651 return -ENOMEM;
652
653 ret = rmem->ops->device_init(rmem, dev);
654 if (ret == 0) {
655 rd->dev = dev;
656 rd->rmem = rmem;
657
658 mutex_lock(&of_rmem_assigned_device_mutex);
659 list_add(&rd->list, &of_rmem_assigned_device_list);
660 mutex_unlock(&of_rmem_assigned_device_mutex);
661
662 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
663 } else {
664 kfree(rd);
665 }
666
667 return ret;
668 }
669 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
670
671 /**
672 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
673 * to given device
674 * @dev: pointer to the device to configure
675 * @np: pointer to the device node with 'memory-region' property
676 * @name: name of the selected memory region
677 *
678 * Returns: 0 on success or a negative error-code on failure.
679 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)680 int of_reserved_mem_device_init_by_name(struct device *dev,
681 struct device_node *np,
682 const char *name)
683 {
684 int idx = of_property_match_string(np, "memory-region-names", name);
685
686 return of_reserved_mem_device_init_by_idx(dev, np, idx);
687 }
688 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
689
690 /**
691 * of_reserved_mem_device_release() - release reserved memory device structures
692 * @dev: Pointer to the device to deconfigure
693 *
694 * This function releases structures allocated for memory region handling for
695 * the given device.
696 */
of_reserved_mem_device_release(struct device * dev)697 void of_reserved_mem_device_release(struct device *dev)
698 {
699 struct rmem_assigned_device *rd, *tmp;
700 LIST_HEAD(release_list);
701
702 mutex_lock(&of_rmem_assigned_device_mutex);
703 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
704 if (rd->dev == dev)
705 list_move_tail(&rd->list, &release_list);
706 }
707 mutex_unlock(&of_rmem_assigned_device_mutex);
708
709 list_for_each_entry_safe(rd, tmp, &release_list, list) {
710 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
711 rd->rmem->ops->device_release(rd->rmem, dev);
712
713 kfree(rd);
714 }
715 }
716 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
717
718 /**
719 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
720 * @np: node pointer of the desired reserved-memory region
721 *
722 * This function allows drivers to acquire a reference to the reserved_mem
723 * struct based on a device node handle.
724 *
725 * Returns a reserved_mem reference, or NULL on error.
726 */
of_reserved_mem_lookup(struct device_node * np)727 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
728 {
729 const char *name;
730 int i;
731
732 if (!np->full_name)
733 return NULL;
734
735 name = kbasename(np->full_name);
736 for (i = 0; i < reserved_mem_count; i++)
737 if (!strcmp(reserved_mem[i].name, name))
738 return &reserved_mem[i];
739
740 return NULL;
741 }
742 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
743