1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
39
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42 struct irq_data *irqd = irq_desc_get_irq_data(desc);
43 bool inprogress;
44
45 do {
46 unsigned long flags;
47
48 /*
49 * Wait until we're out of the critical section. This might
50 * give the wrong answer due to the lack of memory barriers.
51 */
52 while (irqd_irq_inprogress(&desc->irq_data))
53 cpu_relax();
54
55 /* Ok, that indicated we're done: double-check carefully. */
56 raw_spin_lock_irqsave(&desc->lock, flags);
57 inprogress = irqd_irq_inprogress(&desc->irq_data);
58
59 /*
60 * If requested and supported, check at the chip whether it
61 * is in flight at the hardware level, i.e. already pending
62 * in a CPU and waiting for service and acknowledge.
63 */
64 if (!inprogress && sync_chip) {
65 /*
66 * Ignore the return code. inprogress is only updated
67 * when the chip supports it.
68 */
69 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
70 &inprogress);
71 }
72 raw_spin_unlock_irqrestore(&desc->lock, flags);
73
74 /* Oops, that failed? */
75 } while (inprogress);
76 }
77
78 /**
79 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
80 * @irq: interrupt number to wait for
81 *
82 * This function waits for any pending hard IRQ handlers for this
83 * interrupt to complete before returning. If you use this
84 * function while holding a resource the IRQ handler may need you
85 * will deadlock. It does not take associated threaded handlers
86 * into account.
87 *
88 * Do not use this for shutdown scenarios where you must be sure
89 * that all parts (hardirq and threaded handler) have completed.
90 *
91 * Returns: false if a threaded handler is active.
92 *
93 * This function may be called - with care - from IRQ context.
94 *
95 * It does not check whether there is an interrupt in flight at the
96 * hardware level, but not serviced yet, as this might deadlock when
97 * called with interrupts disabled and the target CPU of the interrupt
98 * is the current CPU.
99 */
synchronize_hardirq(unsigned int irq)100 bool synchronize_hardirq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc, false);
106 return !atomic_read(&desc->threads_active);
107 }
108
109 return true;
110 }
111 EXPORT_SYMBOL(synchronize_hardirq);
112
__synchronize_irq(struct irq_desc * desc)113 static void __synchronize_irq(struct irq_desc *desc)
114 {
115 __synchronize_hardirq(desc, true);
116 /*
117 * We made sure that no hardirq handler is running. Now verify that no
118 * threaded handlers are active.
119 */
120 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
121 }
122
123 /**
124 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
125 * @irq: interrupt number to wait for
126 *
127 * This function waits for any pending IRQ handlers for this interrupt
128 * to complete before returning. If you use this function while
129 * holding a resource the IRQ handler may need you will deadlock.
130 *
131 * Can only be called from preemptible code as it might sleep when
132 * an interrupt thread is associated to @irq.
133 *
134 * It optionally makes sure (when the irq chip supports that method)
135 * that the interrupt is not pending in any CPU and waiting for
136 * service.
137 */
synchronize_irq(unsigned int irq)138 void synchronize_irq(unsigned int irq)
139 {
140 struct irq_desc *desc = irq_to_desc(irq);
141
142 if (desc)
143 __synchronize_irq(desc);
144 }
145 EXPORT_SYMBOL(synchronize_irq);
146
147 #ifdef CONFIG_SMP
148 cpumask_var_t irq_default_affinity;
149
__irq_can_set_affinity(struct irq_desc * desc)150 static bool __irq_can_set_affinity(struct irq_desc *desc)
151 {
152 if (!desc || !irqd_can_balance(&desc->irq_data) ||
153 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
154 return false;
155 return true;
156 }
157
158 /**
159 * irq_can_set_affinity - Check if the affinity of a given irq can be set
160 * @irq: Interrupt to check
161 *
162 */
irq_can_set_affinity(unsigned int irq)163 int irq_can_set_affinity(unsigned int irq)
164 {
165 return __irq_can_set_affinity(irq_to_desc(irq));
166 }
167
168 /**
169 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
170 * @irq: Interrupt to check
171 *
172 * Like irq_can_set_affinity() above, but additionally checks for the
173 * AFFINITY_MANAGED flag.
174 */
irq_can_set_affinity_usr(unsigned int irq)175 bool irq_can_set_affinity_usr(unsigned int irq)
176 {
177 struct irq_desc *desc = irq_to_desc(irq);
178
179 return __irq_can_set_affinity(desc) &&
180 !irqd_affinity_is_managed(&desc->irq_data);
181 }
182
183 /**
184 * irq_set_thread_affinity - Notify irq threads to adjust affinity
185 * @desc: irq descriptor which has affinity changed
186 *
187 * We just set IRQTF_AFFINITY and delegate the affinity setting
188 * to the interrupt thread itself. We can not call
189 * set_cpus_allowed_ptr() here as we hold desc->lock and this
190 * code can be called from hard interrupt context.
191 */
irq_set_thread_affinity(struct irq_desc * desc)192 static void irq_set_thread_affinity(struct irq_desc *desc)
193 {
194 struct irqaction *action;
195
196 for_each_action_of_desc(desc, action) {
197 if (action->thread) {
198 set_bit(IRQTF_AFFINITY, &action->thread_flags);
199 wake_up_process(action->thread);
200 }
201 if (action->secondary && action->secondary->thread) {
202 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
203 wake_up_process(action->secondary->thread);
204 }
205 }
206 }
207
208 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)209 static void irq_validate_effective_affinity(struct irq_data *data)
210 {
211 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
212 struct irq_chip *chip = irq_data_get_irq_chip(data);
213
214 if (!cpumask_empty(m))
215 return;
216 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
217 chip->name, data->irq);
218 }
219 #else
irq_validate_effective_affinity(struct irq_data * data)220 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
221 #endif
222
223 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
224
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)225 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
226 bool force)
227 {
228 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
229 struct irq_desc *desc = irq_data_to_desc(data);
230 struct irq_chip *chip = irq_data_get_irq_chip(data);
231 const struct cpumask *prog_mask;
232 int ret;
233
234 if (!chip || !chip->irq_set_affinity)
235 return -EINVAL;
236
237 /*
238 * If this is a managed interrupt and housekeeping is enabled on
239 * it check whether the requested affinity mask intersects with
240 * a housekeeping CPU. If so, then remove the isolated CPUs from
241 * the mask and just keep the housekeeping CPU(s). This prevents
242 * the affinity setter from routing the interrupt to an isolated
243 * CPU to avoid that I/O submitted from a housekeeping CPU causes
244 * interrupts on an isolated one.
245 *
246 * If the masks do not intersect or include online CPU(s) then
247 * keep the requested mask. The isolated target CPUs are only
248 * receiving interrupts when the I/O operation was submitted
249 * directly from them.
250 *
251 * If all housekeeping CPUs in the affinity mask are offline, the
252 * interrupt will be migrated by the CPU hotplug code once a
253 * housekeeping CPU which belongs to the affinity mask comes
254 * online.
255 */
256 if (irqd_affinity_is_managed(data) &&
257 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
258 const struct cpumask *hk_mask;
259
260 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
261
262 cpumask_and(tmp_mask, mask, hk_mask);
263 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
264 prog_mask = mask;
265 else
266 prog_mask = tmp_mask;
267 } else {
268 prog_mask = mask;
269 }
270
271 /*
272 * Make sure we only provide online CPUs to the irqchip,
273 * unless we are being asked to force the affinity (in which
274 * case we do as we are told).
275 */
276 cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
277 if (!force && !cpumask_empty(tmp_mask))
278 ret = chip->irq_set_affinity(data, tmp_mask, force);
279 else if (force)
280 ret = chip->irq_set_affinity(data, mask, force);
281 else
282 ret = -EINVAL;
283
284 switch (ret) {
285 case IRQ_SET_MASK_OK:
286 case IRQ_SET_MASK_OK_DONE:
287 cpumask_copy(desc->irq_common_data.affinity, mask);
288 fallthrough;
289 case IRQ_SET_MASK_OK_NOCOPY:
290 irq_validate_effective_affinity(data);
291 irq_set_thread_affinity(desc);
292 ret = 0;
293 }
294
295 return ret;
296 }
297
298 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)299 static inline int irq_set_affinity_pending(struct irq_data *data,
300 const struct cpumask *dest)
301 {
302 struct irq_desc *desc = irq_data_to_desc(data);
303
304 irqd_set_move_pending(data);
305 irq_copy_pending(desc, dest);
306 return 0;
307 }
308 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)309 static inline int irq_set_affinity_pending(struct irq_data *data,
310 const struct cpumask *dest)
311 {
312 return -EBUSY;
313 }
314 #endif
315
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)316 static int irq_try_set_affinity(struct irq_data *data,
317 const struct cpumask *dest, bool force)
318 {
319 int ret = irq_do_set_affinity(data, dest, force);
320
321 /*
322 * In case that the underlying vector management is busy and the
323 * architecture supports the generic pending mechanism then utilize
324 * this to avoid returning an error to user space.
325 */
326 if (ret == -EBUSY && !force)
327 ret = irq_set_affinity_pending(data, dest);
328 return ret;
329 }
330
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)331 static bool irq_set_affinity_deactivated(struct irq_data *data,
332 const struct cpumask *mask)
333 {
334 struct irq_desc *desc = irq_data_to_desc(data);
335
336 /*
337 * Handle irq chips which can handle affinity only in activated
338 * state correctly
339 *
340 * If the interrupt is not yet activated, just store the affinity
341 * mask and do not call the chip driver at all. On activation the
342 * driver has to make sure anyway that the interrupt is in a
343 * usable state so startup works.
344 */
345 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
346 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
347 return false;
348
349 cpumask_copy(desc->irq_common_data.affinity, mask);
350 irq_data_update_effective_affinity(data, mask);
351 irqd_set(data, IRQD_AFFINITY_SET);
352 return true;
353 }
354
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)355 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
356 bool force)
357 {
358 struct irq_chip *chip = irq_data_get_irq_chip(data);
359 struct irq_desc *desc = irq_data_to_desc(data);
360 int ret = 0;
361
362 if (!chip || !chip->irq_set_affinity)
363 return -EINVAL;
364
365 if (irq_set_affinity_deactivated(data, mask))
366 return 0;
367
368 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
369 ret = irq_try_set_affinity(data, mask, force);
370 } else {
371 irqd_set_move_pending(data);
372 irq_copy_pending(desc, mask);
373 }
374
375 if (desc->affinity_notify) {
376 kref_get(&desc->affinity_notify->kref);
377 if (!schedule_work(&desc->affinity_notify->work)) {
378 /* Work was already scheduled, drop our extra ref */
379 kref_put(&desc->affinity_notify->kref,
380 desc->affinity_notify->release);
381 }
382 }
383 irqd_set(data, IRQD_AFFINITY_SET);
384
385 return ret;
386 }
387
388 /**
389 * irq_update_affinity_desc - Update affinity management for an interrupt
390 * @irq: The interrupt number to update
391 * @affinity: Pointer to the affinity descriptor
392 *
393 * This interface can be used to configure the affinity management of
394 * interrupts which have been allocated already.
395 *
396 * There are certain limitations on when it may be used - attempts to use it
397 * for when the kernel is configured for generic IRQ reservation mode (in
398 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
399 * managed/non-managed interrupt accounting. In addition, attempts to use it on
400 * an interrupt which is already started or which has already been configured
401 * as managed will also fail, as these mean invalid init state or double init.
402 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)403 int irq_update_affinity_desc(unsigned int irq,
404 struct irq_affinity_desc *affinity)
405 {
406 struct irq_desc *desc;
407 unsigned long flags;
408 bool activated;
409 int ret = 0;
410
411 /*
412 * Supporting this with the reservation scheme used by x86 needs
413 * some more thought. Fail it for now.
414 */
415 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
416 return -EOPNOTSUPP;
417
418 desc = irq_get_desc_buslock(irq, &flags, 0);
419 if (!desc)
420 return -EINVAL;
421
422 /* Requires the interrupt to be shut down */
423 if (irqd_is_started(&desc->irq_data)) {
424 ret = -EBUSY;
425 goto out_unlock;
426 }
427
428 /* Interrupts which are already managed cannot be modified */
429 if (irqd_affinity_is_managed(&desc->irq_data)) {
430 ret = -EBUSY;
431 goto out_unlock;
432 }
433
434 /*
435 * Deactivate the interrupt. That's required to undo
436 * anything an earlier activation has established.
437 */
438 activated = irqd_is_activated(&desc->irq_data);
439 if (activated)
440 irq_domain_deactivate_irq(&desc->irq_data);
441
442 if (affinity->is_managed) {
443 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
444 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
445 }
446
447 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
448
449 /* Restore the activation state */
450 if (activated)
451 irq_domain_activate_irq(&desc->irq_data, false);
452
453 out_unlock:
454 irq_put_desc_busunlock(desc, flags);
455 return ret;
456 }
457
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)458 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
459 bool force)
460 {
461 struct irq_desc *desc = irq_to_desc(irq);
462 unsigned long flags;
463 int ret;
464
465 if (!desc)
466 return -EINVAL;
467
468 raw_spin_lock_irqsave(&desc->lock, flags);
469 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
470 raw_spin_unlock_irqrestore(&desc->lock, flags);
471 return ret;
472 }
473
474 /**
475 * irq_set_affinity - Set the irq affinity of a given irq
476 * @irq: Interrupt to set affinity
477 * @cpumask: cpumask
478 *
479 * Fails if cpumask does not contain an online CPU
480 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)481 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
482 {
483 return __irq_set_affinity(irq, cpumask, false);
484 }
485 EXPORT_SYMBOL_GPL(irq_set_affinity);
486
487 /**
488 * irq_force_affinity - Force the irq affinity of a given irq
489 * @irq: Interrupt to set affinity
490 * @cpumask: cpumask
491 *
492 * Same as irq_set_affinity, but without checking the mask against
493 * online cpus.
494 *
495 * Solely for low level cpu hotplug code, where we need to make per
496 * cpu interrupts affine before the cpu becomes online.
497 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)498 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
499 {
500 return __irq_set_affinity(irq, cpumask, true);
501 }
502 EXPORT_SYMBOL_GPL(irq_force_affinity);
503
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)504 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
505 bool setaffinity)
506 {
507 unsigned long flags;
508 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
509
510 if (!desc)
511 return -EINVAL;
512 desc->affinity_hint = m;
513 irq_put_desc_unlock(desc, flags);
514 if (m && setaffinity)
515 __irq_set_affinity(irq, m, false);
516 return 0;
517 }
518 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
519
irq_affinity_notify(struct work_struct * work)520 static void irq_affinity_notify(struct work_struct *work)
521 {
522 struct irq_affinity_notify *notify =
523 container_of(work, struct irq_affinity_notify, work);
524 struct irq_desc *desc = irq_to_desc(notify->irq);
525 cpumask_var_t cpumask;
526 unsigned long flags;
527
528 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
529 goto out;
530
531 raw_spin_lock_irqsave(&desc->lock, flags);
532 if (irq_move_pending(&desc->irq_data))
533 irq_get_pending(cpumask, desc);
534 else
535 cpumask_copy(cpumask, desc->irq_common_data.affinity);
536 raw_spin_unlock_irqrestore(&desc->lock, flags);
537
538 notify->notify(notify, cpumask);
539
540 free_cpumask_var(cpumask);
541 out:
542 kref_put(¬ify->kref, notify->release);
543 }
544
545 /**
546 * irq_set_affinity_notifier - control notification of IRQ affinity changes
547 * @irq: Interrupt for which to enable/disable notification
548 * @notify: Context for notification, or %NULL to disable
549 * notification. Function pointers must be initialised;
550 * the other fields will be initialised by this function.
551 *
552 * Must be called in process context. Notification may only be enabled
553 * after the IRQ is allocated and must be disabled before the IRQ is
554 * freed using free_irq().
555 */
556 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)557 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
558 {
559 struct irq_desc *desc = irq_to_desc(irq);
560 struct irq_affinity_notify *old_notify;
561 unsigned long flags;
562
563 /* The release function is promised process context */
564 might_sleep();
565
566 if (!desc || irq_is_nmi(desc))
567 return -EINVAL;
568
569 /* Complete initialisation of *notify */
570 if (notify) {
571 notify->irq = irq;
572 kref_init(¬ify->kref);
573 INIT_WORK(¬ify->work, irq_affinity_notify);
574 }
575
576 raw_spin_lock_irqsave(&desc->lock, flags);
577 old_notify = desc->affinity_notify;
578 desc->affinity_notify = notify;
579 raw_spin_unlock_irqrestore(&desc->lock, flags);
580
581 if (old_notify) {
582 if (cancel_work_sync(&old_notify->work)) {
583 /* Pending work had a ref, put that one too */
584 kref_put(&old_notify->kref, old_notify->release);
585 }
586 kref_put(&old_notify->kref, old_notify->release);
587 }
588
589 return 0;
590 }
591 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
592
593 #ifndef CONFIG_AUTO_IRQ_AFFINITY
594 /*
595 * Generic version of the affinity autoselector.
596 */
irq_setup_affinity(struct irq_desc * desc)597 int irq_setup_affinity(struct irq_desc *desc)
598 {
599 struct cpumask *set = irq_default_affinity;
600 int ret, node = irq_desc_get_node(desc);
601 static DEFINE_RAW_SPINLOCK(mask_lock);
602 static struct cpumask mask;
603
604 /* Excludes PER_CPU and NO_BALANCE interrupts */
605 if (!__irq_can_set_affinity(desc))
606 return 0;
607
608 raw_spin_lock(&mask_lock);
609 /*
610 * Preserve the managed affinity setting and a userspace affinity
611 * setup, but make sure that one of the targets is online.
612 */
613 if (irqd_affinity_is_managed(&desc->irq_data) ||
614 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
615 if (cpumask_intersects(desc->irq_common_data.affinity,
616 cpu_online_mask))
617 set = desc->irq_common_data.affinity;
618 else
619 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
620 }
621
622 cpumask_and(&mask, cpu_online_mask, set);
623 if (cpumask_empty(&mask))
624 cpumask_copy(&mask, cpu_online_mask);
625
626 if (node != NUMA_NO_NODE) {
627 const struct cpumask *nodemask = cpumask_of_node(node);
628
629 /* make sure at least one of the cpus in nodemask is online */
630 if (cpumask_intersects(&mask, nodemask))
631 cpumask_and(&mask, &mask, nodemask);
632 }
633 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
634 raw_spin_unlock(&mask_lock);
635 return ret;
636 }
637 #else
638 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)639 int irq_setup_affinity(struct irq_desc *desc)
640 {
641 return irq_select_affinity(irq_desc_get_irq(desc));
642 }
643 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
644 #endif /* CONFIG_SMP */
645
646
647 /**
648 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
649 * @irq: interrupt number to set affinity
650 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
651 * specific data for percpu_devid interrupts
652 *
653 * This function uses the vCPU specific data to set the vCPU
654 * affinity for an irq. The vCPU specific data is passed from
655 * outside, such as KVM. One example code path is as below:
656 * KVM -> IOMMU -> irq_set_vcpu_affinity().
657 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)658 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
659 {
660 unsigned long flags;
661 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
662 struct irq_data *data;
663 struct irq_chip *chip;
664 int ret = -ENOSYS;
665
666 if (!desc)
667 return -EINVAL;
668
669 data = irq_desc_get_irq_data(desc);
670 do {
671 chip = irq_data_get_irq_chip(data);
672 if (chip && chip->irq_set_vcpu_affinity)
673 break;
674 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
675 data = data->parent_data;
676 #else
677 data = NULL;
678 #endif
679 } while (data);
680
681 if (data)
682 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
683 irq_put_desc_unlock(desc, flags);
684
685 return ret;
686 }
687 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
688
__disable_irq(struct irq_desc * desc)689 void __disable_irq(struct irq_desc *desc)
690 {
691 if (!desc->depth++)
692 irq_disable(desc);
693 }
694
__disable_irq_nosync(unsigned int irq)695 static int __disable_irq_nosync(unsigned int irq)
696 {
697 unsigned long flags;
698 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
699
700 if (!desc)
701 return -EINVAL;
702 __disable_irq(desc);
703 irq_put_desc_busunlock(desc, flags);
704 return 0;
705 }
706
707 /**
708 * disable_irq_nosync - disable an irq without waiting
709 * @irq: Interrupt to disable
710 *
711 * Disable the selected interrupt line. Disables and Enables are
712 * nested.
713 * Unlike disable_irq(), this function does not ensure existing
714 * instances of the IRQ handler have completed before returning.
715 *
716 * This function may be called from IRQ context.
717 */
disable_irq_nosync(unsigned int irq)718 void disable_irq_nosync(unsigned int irq)
719 {
720 __disable_irq_nosync(irq);
721 }
722 EXPORT_SYMBOL(disable_irq_nosync);
723
724 /**
725 * disable_irq - disable an irq and wait for completion
726 * @irq: Interrupt to disable
727 *
728 * Disable the selected interrupt line. Enables and Disables are
729 * nested.
730 * This function waits for any pending IRQ handlers for this interrupt
731 * to complete before returning. If you use this function while
732 * holding a resource the IRQ handler may need you will deadlock.
733 *
734 * Can only be called from preemptible code as it might sleep when
735 * an interrupt thread is associated to @irq.
736 *
737 */
disable_irq(unsigned int irq)738 void disable_irq(unsigned int irq)
739 {
740 might_sleep();
741 if (!__disable_irq_nosync(irq))
742 synchronize_irq(irq);
743 }
744 EXPORT_SYMBOL(disable_irq);
745
746 /**
747 * disable_hardirq - disables an irq and waits for hardirq completion
748 * @irq: Interrupt to disable
749 *
750 * Disable the selected interrupt line. Enables and Disables are
751 * nested.
752 * This function waits for any pending hard IRQ handlers for this
753 * interrupt to complete before returning. If you use this function while
754 * holding a resource the hard IRQ handler may need you will deadlock.
755 *
756 * When used to optimistically disable an interrupt from atomic context
757 * the return value must be checked.
758 *
759 * Returns: false if a threaded handler is active.
760 *
761 * This function may be called - with care - from IRQ context.
762 */
disable_hardirq(unsigned int irq)763 bool disable_hardirq(unsigned int irq)
764 {
765 if (!__disable_irq_nosync(irq))
766 return synchronize_hardirq(irq);
767
768 return false;
769 }
770 EXPORT_SYMBOL_GPL(disable_hardirq);
771
772 /**
773 * disable_nmi_nosync - disable an nmi without waiting
774 * @irq: Interrupt to disable
775 *
776 * Disable the selected interrupt line. Disables and enables are
777 * nested.
778 * The interrupt to disable must have been requested through request_nmi.
779 * Unlike disable_nmi(), this function does not ensure existing
780 * instances of the IRQ handler have completed before returning.
781 */
disable_nmi_nosync(unsigned int irq)782 void disable_nmi_nosync(unsigned int irq)
783 {
784 disable_irq_nosync(irq);
785 }
786
__enable_irq(struct irq_desc * desc)787 void __enable_irq(struct irq_desc *desc)
788 {
789 switch (desc->depth) {
790 case 0:
791 err_out:
792 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
793 irq_desc_get_irq(desc));
794 break;
795 case 1: {
796 if (desc->istate & IRQS_SUSPENDED)
797 goto err_out;
798 /* Prevent probing on this irq: */
799 irq_settings_set_noprobe(desc);
800 /*
801 * Call irq_startup() not irq_enable() here because the
802 * interrupt might be marked NOAUTOEN so irq_startup()
803 * needs to be invoked when it gets enabled the first time.
804 * This is also required when __enable_irq() is invoked for
805 * a managed and shutdown interrupt from the S3 resume
806 * path.
807 *
808 * If it was already started up, then irq_startup() will
809 * invoke irq_enable() under the hood.
810 */
811 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
812 break;
813 }
814 default:
815 desc->depth--;
816 }
817 }
818
819 /**
820 * enable_irq - enable handling of an irq
821 * @irq: Interrupt to enable
822 *
823 * Undoes the effect of one call to disable_irq(). If this
824 * matches the last disable, processing of interrupts on this
825 * IRQ line is re-enabled.
826 *
827 * This function may be called from IRQ context only when
828 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
829 */
enable_irq(unsigned int irq)830 void enable_irq(unsigned int irq)
831 {
832 unsigned long flags;
833 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
834
835 if (!desc)
836 return;
837 if (WARN(!desc->irq_data.chip,
838 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
839 goto out;
840
841 __enable_irq(desc);
842 out:
843 irq_put_desc_busunlock(desc, flags);
844 }
845 EXPORT_SYMBOL(enable_irq);
846
847 /**
848 * enable_nmi - enable handling of an nmi
849 * @irq: Interrupt to enable
850 *
851 * The interrupt to enable must have been requested through request_nmi.
852 * Undoes the effect of one call to disable_nmi(). If this
853 * matches the last disable, processing of interrupts on this
854 * IRQ line is re-enabled.
855 */
enable_nmi(unsigned int irq)856 void enable_nmi(unsigned int irq)
857 {
858 enable_irq(irq);
859 }
860
set_irq_wake_real(unsigned int irq,unsigned int on)861 static int set_irq_wake_real(unsigned int irq, unsigned int on)
862 {
863 struct irq_desc *desc = irq_to_desc(irq);
864 int ret = -ENXIO;
865
866 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
867 return 0;
868
869 if (desc->irq_data.chip->irq_set_wake)
870 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
871
872 return ret;
873 }
874
875 /**
876 * irq_set_irq_wake - control irq power management wakeup
877 * @irq: interrupt to control
878 * @on: enable/disable power management wakeup
879 *
880 * Enable/disable power management wakeup mode, which is
881 * disabled by default. Enables and disables must match,
882 * just as they match for non-wakeup mode support.
883 *
884 * Wakeup mode lets this IRQ wake the system from sleep
885 * states like "suspend to RAM".
886 *
887 * Note: irq enable/disable state is completely orthogonal
888 * to the enable/disable state of irq wake. An irq can be
889 * disabled with disable_irq() and still wake the system as
890 * long as the irq has wake enabled. If this does not hold,
891 * then the underlying irq chip and the related driver need
892 * to be investigated.
893 */
irq_set_irq_wake(unsigned int irq,unsigned int on)894 int irq_set_irq_wake(unsigned int irq, unsigned int on)
895 {
896 unsigned long flags;
897 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
898 int ret = 0;
899
900 if (!desc)
901 return -EINVAL;
902
903 /* Don't use NMIs as wake up interrupts please */
904 if (irq_is_nmi(desc)) {
905 ret = -EINVAL;
906 goto out_unlock;
907 }
908
909 /* wakeup-capable irqs can be shared between drivers that
910 * don't need to have the same sleep mode behaviors.
911 */
912 if (on) {
913 if (desc->wake_depth++ == 0) {
914 ret = set_irq_wake_real(irq, on);
915 if (ret)
916 desc->wake_depth = 0;
917 else
918 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
919 }
920 } else {
921 if (desc->wake_depth == 0) {
922 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
923 } else if (--desc->wake_depth == 0) {
924 ret = set_irq_wake_real(irq, on);
925 if (ret)
926 desc->wake_depth = 1;
927 else
928 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
929 }
930 }
931
932 out_unlock:
933 irq_put_desc_busunlock(desc, flags);
934 return ret;
935 }
936 EXPORT_SYMBOL(irq_set_irq_wake);
937
938 /*
939 * Internal function that tells the architecture code whether a
940 * particular irq has been exclusively allocated or is available
941 * for driver use.
942 */
can_request_irq(unsigned int irq,unsigned long irqflags)943 int can_request_irq(unsigned int irq, unsigned long irqflags)
944 {
945 unsigned long flags;
946 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
947 int canrequest = 0;
948
949 if (!desc)
950 return 0;
951
952 if (irq_settings_can_request(desc)) {
953 if (!desc->action ||
954 irqflags & desc->action->flags & IRQF_SHARED)
955 canrequest = 1;
956 }
957 irq_put_desc_unlock(desc, flags);
958 return canrequest;
959 }
960
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)961 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
962 {
963 struct irq_chip *chip = desc->irq_data.chip;
964 int ret, unmask = 0;
965
966 if (!chip || !chip->irq_set_type) {
967 /*
968 * IRQF_TRIGGER_* but the PIC does not support multiple
969 * flow-types?
970 */
971 pr_debug("No set_type function for IRQ %d (%s)\n",
972 irq_desc_get_irq(desc),
973 chip ? (chip->name ? : "unknown") : "unknown");
974 return 0;
975 }
976
977 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
978 if (!irqd_irq_masked(&desc->irq_data))
979 mask_irq(desc);
980 if (!irqd_irq_disabled(&desc->irq_data))
981 unmask = 1;
982 }
983
984 /* Mask all flags except trigger mode */
985 flags &= IRQ_TYPE_SENSE_MASK;
986 ret = chip->irq_set_type(&desc->irq_data, flags);
987
988 switch (ret) {
989 case IRQ_SET_MASK_OK:
990 case IRQ_SET_MASK_OK_DONE:
991 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
992 irqd_set(&desc->irq_data, flags);
993 fallthrough;
994
995 case IRQ_SET_MASK_OK_NOCOPY:
996 flags = irqd_get_trigger_type(&desc->irq_data);
997 irq_settings_set_trigger_mask(desc, flags);
998 irqd_clear(&desc->irq_data, IRQD_LEVEL);
999 irq_settings_clr_level(desc);
1000 if (flags & IRQ_TYPE_LEVEL_MASK) {
1001 irq_settings_set_level(desc);
1002 irqd_set(&desc->irq_data, IRQD_LEVEL);
1003 }
1004
1005 ret = 0;
1006 break;
1007 default:
1008 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1009 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1010 }
1011 if (unmask)
1012 unmask_irq(desc);
1013 return ret;
1014 }
1015
1016 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1017 int irq_set_parent(int irq, int parent_irq)
1018 {
1019 unsigned long flags;
1020 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1021
1022 if (!desc)
1023 return -EINVAL;
1024
1025 desc->parent_irq = parent_irq;
1026
1027 irq_put_desc_unlock(desc, flags);
1028 return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(irq_set_parent);
1031 #endif
1032
1033 /*
1034 * Default primary interrupt handler for threaded interrupts. Is
1035 * assigned as primary handler when request_threaded_irq is called
1036 * with handler == NULL. Useful for oneshot interrupts.
1037 */
irq_default_primary_handler(int irq,void * dev_id)1038 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1039 {
1040 return IRQ_WAKE_THREAD;
1041 }
1042
1043 /*
1044 * Primary handler for nested threaded interrupts. Should never be
1045 * called.
1046 */
irq_nested_primary_handler(int irq,void * dev_id)1047 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1048 {
1049 WARN(1, "Primary handler called for nested irq %d\n", irq);
1050 return IRQ_NONE;
1051 }
1052
irq_forced_secondary_handler(int irq,void * dev_id)1053 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1054 {
1055 WARN(1, "Secondary action handler called for irq %d\n", irq);
1056 return IRQ_NONE;
1057 }
1058
1059 #ifdef CONFIG_SMP
1060 /*
1061 * Check whether we need to change the affinity of the interrupt thread.
1062 */
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1063 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1064 {
1065 cpumask_var_t mask;
1066 bool valid = false;
1067
1068 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1069 return;
1070
1071 __set_current_state(TASK_RUNNING);
1072
1073 /*
1074 * In case we are out of memory we set IRQTF_AFFINITY again and
1075 * try again next time
1076 */
1077 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1078 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1079 return;
1080 }
1081
1082 raw_spin_lock_irq(&desc->lock);
1083 /*
1084 * This code is triggered unconditionally. Check the affinity
1085 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1086 */
1087 if (cpumask_available(desc->irq_common_data.affinity)) {
1088 const struct cpumask *m;
1089
1090 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1091 cpumask_copy(mask, m);
1092 valid = true;
1093 }
1094 raw_spin_unlock_irq(&desc->lock);
1095
1096 if (valid)
1097 set_cpus_allowed_ptr(current, mask);
1098 free_cpumask_var(mask);
1099 }
1100 #else
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1101 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1102 #endif
1103
irq_wait_for_interrupt(struct irq_desc * desc,struct irqaction * action)1104 static int irq_wait_for_interrupt(struct irq_desc *desc,
1105 struct irqaction *action)
1106 {
1107 for (;;) {
1108 set_current_state(TASK_INTERRUPTIBLE);
1109 irq_thread_check_affinity(desc, action);
1110
1111 if (kthread_should_stop()) {
1112 /* may need to run one last time */
1113 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1114 &action->thread_flags)) {
1115 __set_current_state(TASK_RUNNING);
1116 return 0;
1117 }
1118 __set_current_state(TASK_RUNNING);
1119 return -1;
1120 }
1121
1122 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1123 &action->thread_flags)) {
1124 __set_current_state(TASK_RUNNING);
1125 return 0;
1126 }
1127 schedule();
1128 }
1129 }
1130
1131 /*
1132 * Oneshot interrupts keep the irq line masked until the threaded
1133 * handler finished. unmask if the interrupt has not been disabled and
1134 * is marked MASKED.
1135 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1136 static void irq_finalize_oneshot(struct irq_desc *desc,
1137 struct irqaction *action)
1138 {
1139 if (!(desc->istate & IRQS_ONESHOT) ||
1140 action->handler == irq_forced_secondary_handler)
1141 return;
1142 again:
1143 chip_bus_lock(desc);
1144 raw_spin_lock_irq(&desc->lock);
1145
1146 /*
1147 * Implausible though it may be we need to protect us against
1148 * the following scenario:
1149 *
1150 * The thread is faster done than the hard interrupt handler
1151 * on the other CPU. If we unmask the irq line then the
1152 * interrupt can come in again and masks the line, leaves due
1153 * to IRQS_INPROGRESS and the irq line is masked forever.
1154 *
1155 * This also serializes the state of shared oneshot handlers
1156 * versus "desc->threads_oneshot |= action->thread_mask;" in
1157 * irq_wake_thread(). See the comment there which explains the
1158 * serialization.
1159 */
1160 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1161 raw_spin_unlock_irq(&desc->lock);
1162 chip_bus_sync_unlock(desc);
1163 cpu_relax();
1164 goto again;
1165 }
1166
1167 /*
1168 * Now check again, whether the thread should run. Otherwise
1169 * we would clear the threads_oneshot bit of this thread which
1170 * was just set.
1171 */
1172 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1173 goto out_unlock;
1174
1175 desc->threads_oneshot &= ~action->thread_mask;
1176
1177 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1178 irqd_irq_masked(&desc->irq_data))
1179 unmask_threaded_irq(desc);
1180
1181 out_unlock:
1182 raw_spin_unlock_irq(&desc->lock);
1183 chip_bus_sync_unlock(desc);
1184 }
1185
1186 /*
1187 * Interrupts explicitly requested as threaded interrupts want to be
1188 * preemptible - many of them need to sleep and wait for slow busses to
1189 * complete.
1190 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1191 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action)
1192 {
1193 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1194
1195 if (ret == IRQ_HANDLED)
1196 atomic_inc(&desc->threads_handled);
1197
1198 irq_finalize_oneshot(desc, action);
1199 return ret;
1200 }
1201
1202 /*
1203 * Interrupts which are not explicitly requested as threaded
1204 * interrupts rely on the implicit bh/preempt disable of the hard irq
1205 * context. So we need to disable bh here to avoid deadlocks and other
1206 * side effects.
1207 */
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1208 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1209 {
1210 irqreturn_t ret;
1211
1212 local_bh_disable();
1213 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1214 local_irq_disable();
1215 ret = irq_thread_fn(desc, action);
1216 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1217 local_irq_enable();
1218 local_bh_enable();
1219 return ret;
1220 }
1221
wake_threads_waitq(struct irq_desc * desc)1222 void wake_threads_waitq(struct irq_desc *desc)
1223 {
1224 if (atomic_dec_and_test(&desc->threads_active))
1225 wake_up(&desc->wait_for_threads);
1226 }
1227
irq_thread_dtor(struct callback_head * unused)1228 static void irq_thread_dtor(struct callback_head *unused)
1229 {
1230 struct task_struct *tsk = current;
1231 struct irq_desc *desc;
1232 struct irqaction *action;
1233
1234 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1235 return;
1236
1237 action = kthread_data(tsk);
1238
1239 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1240 tsk->comm, tsk->pid, action->irq);
1241
1242
1243 desc = irq_to_desc(action->irq);
1244 /*
1245 * If IRQTF_RUNTHREAD is set, we need to decrement
1246 * desc->threads_active and wake possible waiters.
1247 */
1248 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1249 wake_threads_waitq(desc);
1250
1251 /* Prevent a stale desc->threads_oneshot */
1252 irq_finalize_oneshot(desc, action);
1253 }
1254
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1255 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1256 {
1257 struct irqaction *secondary = action->secondary;
1258
1259 if (WARN_ON_ONCE(!secondary))
1260 return;
1261
1262 raw_spin_lock_irq(&desc->lock);
1263 __irq_wake_thread(desc, secondary);
1264 raw_spin_unlock_irq(&desc->lock);
1265 }
1266
1267 /*
1268 * Internal function to notify that a interrupt thread is ready.
1269 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1270 static void irq_thread_set_ready(struct irq_desc *desc,
1271 struct irqaction *action)
1272 {
1273 set_bit(IRQTF_READY, &action->thread_flags);
1274 wake_up(&desc->wait_for_threads);
1275 }
1276
1277 /*
1278 * Internal function to wake up a interrupt thread and wait until it is
1279 * ready.
1280 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1281 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1282 struct irqaction *action)
1283 {
1284 if (!action || !action->thread)
1285 return;
1286
1287 wake_up_process(action->thread);
1288 wait_event(desc->wait_for_threads,
1289 test_bit(IRQTF_READY, &action->thread_flags));
1290 }
1291
1292 /*
1293 * Interrupt handler thread
1294 */
irq_thread(void * data)1295 static int irq_thread(void *data)
1296 {
1297 struct callback_head on_exit_work;
1298 struct irqaction *action = data;
1299 struct irq_desc *desc = irq_to_desc(action->irq);
1300 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1301 struct irqaction *action);
1302
1303 irq_thread_set_ready(desc, action);
1304
1305 sched_set_fifo(current);
1306
1307 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1308 &action->thread_flags))
1309 handler_fn = irq_forced_thread_fn;
1310 else
1311 handler_fn = irq_thread_fn;
1312
1313 init_task_work(&on_exit_work, irq_thread_dtor);
1314 task_work_add(current, &on_exit_work, TWA_NONE);
1315
1316 while (!irq_wait_for_interrupt(desc, action)) {
1317 irqreturn_t action_ret;
1318
1319 action_ret = handler_fn(desc, action);
1320 if (action_ret == IRQ_WAKE_THREAD)
1321 irq_wake_secondary(desc, action);
1322
1323 wake_threads_waitq(desc);
1324 }
1325
1326 /*
1327 * This is the regular exit path. __free_irq() is stopping the
1328 * thread via kthread_stop() after calling
1329 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1330 * oneshot mask bit can be set.
1331 */
1332 task_work_cancel_func(current, irq_thread_dtor);
1333 return 0;
1334 }
1335
1336 /**
1337 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1338 * @irq: Interrupt line
1339 * @dev_id: Device identity for which the thread should be woken
1340 *
1341 */
irq_wake_thread(unsigned int irq,void * dev_id)1342 void irq_wake_thread(unsigned int irq, void *dev_id)
1343 {
1344 struct irq_desc *desc = irq_to_desc(irq);
1345 struct irqaction *action;
1346 unsigned long flags;
1347
1348 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1349 return;
1350
1351 raw_spin_lock_irqsave(&desc->lock, flags);
1352 for_each_action_of_desc(desc, action) {
1353 if (action->dev_id == dev_id) {
1354 if (action->thread)
1355 __irq_wake_thread(desc, action);
1356 break;
1357 }
1358 }
1359 raw_spin_unlock_irqrestore(&desc->lock, flags);
1360 }
1361 EXPORT_SYMBOL_GPL(irq_wake_thread);
1362
irq_setup_forced_threading(struct irqaction * new)1363 static int irq_setup_forced_threading(struct irqaction *new)
1364 {
1365 if (!force_irqthreads())
1366 return 0;
1367 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1368 return 0;
1369
1370 /*
1371 * No further action required for interrupts which are requested as
1372 * threaded interrupts already
1373 */
1374 if (new->handler == irq_default_primary_handler)
1375 return 0;
1376
1377 new->flags |= IRQF_ONESHOT;
1378
1379 /*
1380 * Handle the case where we have a real primary handler and a
1381 * thread handler. We force thread them as well by creating a
1382 * secondary action.
1383 */
1384 if (new->handler && new->thread_fn) {
1385 /* Allocate the secondary action */
1386 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1387 if (!new->secondary)
1388 return -ENOMEM;
1389 new->secondary->handler = irq_forced_secondary_handler;
1390 new->secondary->thread_fn = new->thread_fn;
1391 new->secondary->dev_id = new->dev_id;
1392 new->secondary->irq = new->irq;
1393 new->secondary->name = new->name;
1394 }
1395 /* Deal with the primary handler */
1396 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1397 new->thread_fn = new->handler;
1398 new->handler = irq_default_primary_handler;
1399 return 0;
1400 }
1401
irq_request_resources(struct irq_desc * desc)1402 static int irq_request_resources(struct irq_desc *desc)
1403 {
1404 struct irq_data *d = &desc->irq_data;
1405 struct irq_chip *c = d->chip;
1406
1407 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1408 }
1409
irq_release_resources(struct irq_desc * desc)1410 static void irq_release_resources(struct irq_desc *desc)
1411 {
1412 struct irq_data *d = &desc->irq_data;
1413 struct irq_chip *c = d->chip;
1414
1415 if (c->irq_release_resources)
1416 c->irq_release_resources(d);
1417 }
1418
irq_supports_nmi(struct irq_desc * desc)1419 static bool irq_supports_nmi(struct irq_desc *desc)
1420 {
1421 struct irq_data *d = irq_desc_get_irq_data(desc);
1422
1423 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1424 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1425 if (d->parent_data)
1426 return false;
1427 #endif
1428 /* Don't support NMIs for chips behind a slow bus */
1429 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1430 return false;
1431
1432 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1433 }
1434
irq_nmi_setup(struct irq_desc * desc)1435 static int irq_nmi_setup(struct irq_desc *desc)
1436 {
1437 struct irq_data *d = irq_desc_get_irq_data(desc);
1438 struct irq_chip *c = d->chip;
1439
1440 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1441 }
1442
irq_nmi_teardown(struct irq_desc * desc)1443 static void irq_nmi_teardown(struct irq_desc *desc)
1444 {
1445 struct irq_data *d = irq_desc_get_irq_data(desc);
1446 struct irq_chip *c = d->chip;
1447
1448 if (c->irq_nmi_teardown)
1449 c->irq_nmi_teardown(d);
1450 }
1451
1452 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1453 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1454 {
1455 struct task_struct *t;
1456
1457 if (!secondary) {
1458 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1459 new->name);
1460 } else {
1461 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1462 new->name);
1463 }
1464
1465 if (IS_ERR(t))
1466 return PTR_ERR(t);
1467
1468 /*
1469 * We keep the reference to the task struct even if
1470 * the thread dies to avoid that the interrupt code
1471 * references an already freed task_struct.
1472 */
1473 new->thread = get_task_struct(t);
1474 /*
1475 * Tell the thread to set its affinity. This is
1476 * important for shared interrupt handlers as we do
1477 * not invoke setup_affinity() for the secondary
1478 * handlers as everything is already set up. Even for
1479 * interrupts marked with IRQF_NO_BALANCE this is
1480 * correct as we want the thread to move to the cpu(s)
1481 * on which the requesting code placed the interrupt.
1482 */
1483 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1484 return 0;
1485 }
1486
1487 /*
1488 * Internal function to register an irqaction - typically used to
1489 * allocate special interrupts that are part of the architecture.
1490 *
1491 * Locking rules:
1492 *
1493 * desc->request_mutex Provides serialization against a concurrent free_irq()
1494 * chip_bus_lock Provides serialization for slow bus operations
1495 * desc->lock Provides serialization against hard interrupts
1496 *
1497 * chip_bus_lock and desc->lock are sufficient for all other management and
1498 * interrupt related functions. desc->request_mutex solely serializes
1499 * request/free_irq().
1500 */
1501 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1502 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1503 {
1504 struct irqaction *old, **old_ptr;
1505 unsigned long flags, thread_mask = 0;
1506 int ret, nested, shared = 0;
1507
1508 if (!desc)
1509 return -EINVAL;
1510
1511 if (desc->irq_data.chip == &no_irq_chip)
1512 return -ENOSYS;
1513 if (!try_module_get(desc->owner))
1514 return -ENODEV;
1515
1516 new->irq = irq;
1517
1518 /*
1519 * If the trigger type is not specified by the caller,
1520 * then use the default for this interrupt.
1521 */
1522 if (!(new->flags & IRQF_TRIGGER_MASK))
1523 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1524
1525 /*
1526 * Check whether the interrupt nests into another interrupt
1527 * thread.
1528 */
1529 nested = irq_settings_is_nested_thread(desc);
1530 if (nested) {
1531 if (!new->thread_fn) {
1532 ret = -EINVAL;
1533 goto out_mput;
1534 }
1535 /*
1536 * Replace the primary handler which was provided from
1537 * the driver for non nested interrupt handling by the
1538 * dummy function which warns when called.
1539 */
1540 new->handler = irq_nested_primary_handler;
1541 } else {
1542 if (irq_settings_can_thread(desc)) {
1543 ret = irq_setup_forced_threading(new);
1544 if (ret)
1545 goto out_mput;
1546 }
1547 }
1548
1549 /*
1550 * Create a handler thread when a thread function is supplied
1551 * and the interrupt does not nest into another interrupt
1552 * thread.
1553 */
1554 if (new->thread_fn && !nested) {
1555 ret = setup_irq_thread(new, irq, false);
1556 if (ret)
1557 goto out_mput;
1558 if (new->secondary) {
1559 ret = setup_irq_thread(new->secondary, irq, true);
1560 if (ret)
1561 goto out_thread;
1562 }
1563 }
1564
1565 /*
1566 * Drivers are often written to work w/o knowledge about the
1567 * underlying irq chip implementation, so a request for a
1568 * threaded irq without a primary hard irq context handler
1569 * requires the ONESHOT flag to be set. Some irq chips like
1570 * MSI based interrupts are per se one shot safe. Check the
1571 * chip flags, so we can avoid the unmask dance at the end of
1572 * the threaded handler for those.
1573 */
1574 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1575 new->flags &= ~IRQF_ONESHOT;
1576
1577 /*
1578 * Protects against a concurrent __free_irq() call which might wait
1579 * for synchronize_hardirq() to complete without holding the optional
1580 * chip bus lock and desc->lock. Also protects against handing out
1581 * a recycled oneshot thread_mask bit while it's still in use by
1582 * its previous owner.
1583 */
1584 mutex_lock(&desc->request_mutex);
1585
1586 /*
1587 * Acquire bus lock as the irq_request_resources() callback below
1588 * might rely on the serialization or the magic power management
1589 * functions which are abusing the irq_bus_lock() callback,
1590 */
1591 chip_bus_lock(desc);
1592
1593 /* First installed action requests resources. */
1594 if (!desc->action) {
1595 ret = irq_request_resources(desc);
1596 if (ret) {
1597 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1598 new->name, irq, desc->irq_data.chip->name);
1599 goto out_bus_unlock;
1600 }
1601 }
1602
1603 /*
1604 * The following block of code has to be executed atomically
1605 * protected against a concurrent interrupt and any of the other
1606 * management calls which are not serialized via
1607 * desc->request_mutex or the optional bus lock.
1608 */
1609 raw_spin_lock_irqsave(&desc->lock, flags);
1610 old_ptr = &desc->action;
1611 old = *old_ptr;
1612 if (old) {
1613 /*
1614 * Can't share interrupts unless both agree to and are
1615 * the same type (level, edge, polarity). So both flag
1616 * fields must have IRQF_SHARED set and the bits which
1617 * set the trigger type must match. Also all must
1618 * agree on ONESHOT.
1619 * Interrupt lines used for NMIs cannot be shared.
1620 */
1621 unsigned int oldtype;
1622
1623 if (irq_is_nmi(desc)) {
1624 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1625 new->name, irq, desc->irq_data.chip->name);
1626 ret = -EINVAL;
1627 goto out_unlock;
1628 }
1629
1630 /*
1631 * If nobody did set the configuration before, inherit
1632 * the one provided by the requester.
1633 */
1634 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1635 oldtype = irqd_get_trigger_type(&desc->irq_data);
1636 } else {
1637 oldtype = new->flags & IRQF_TRIGGER_MASK;
1638 irqd_set_trigger_type(&desc->irq_data, oldtype);
1639 }
1640
1641 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1642 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1643 goto mismatch;
1644
1645 if ((old->flags & IRQF_ONESHOT) &&
1646 (new->flags & IRQF_COND_ONESHOT))
1647 new->flags |= IRQF_ONESHOT;
1648 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1649 goto mismatch;
1650
1651 /* All handlers must agree on per-cpuness */
1652 if ((old->flags & IRQF_PERCPU) !=
1653 (new->flags & IRQF_PERCPU))
1654 goto mismatch;
1655
1656 /* add new interrupt at end of irq queue */
1657 do {
1658 /*
1659 * Or all existing action->thread_mask bits,
1660 * so we can find the next zero bit for this
1661 * new action.
1662 */
1663 thread_mask |= old->thread_mask;
1664 old_ptr = &old->next;
1665 old = *old_ptr;
1666 } while (old);
1667 shared = 1;
1668 }
1669
1670 /*
1671 * Setup the thread mask for this irqaction for ONESHOT. For
1672 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1673 * conditional in irq_wake_thread().
1674 */
1675 if (new->flags & IRQF_ONESHOT) {
1676 /*
1677 * Unlikely to have 32 resp 64 irqs sharing one line,
1678 * but who knows.
1679 */
1680 if (thread_mask == ~0UL) {
1681 ret = -EBUSY;
1682 goto out_unlock;
1683 }
1684 /*
1685 * The thread_mask for the action is or'ed to
1686 * desc->thread_active to indicate that the
1687 * IRQF_ONESHOT thread handler has been woken, but not
1688 * yet finished. The bit is cleared when a thread
1689 * completes. When all threads of a shared interrupt
1690 * line have completed desc->threads_active becomes
1691 * zero and the interrupt line is unmasked. See
1692 * handle.c:irq_wake_thread() for further information.
1693 *
1694 * If no thread is woken by primary (hard irq context)
1695 * interrupt handlers, then desc->threads_active is
1696 * also checked for zero to unmask the irq line in the
1697 * affected hard irq flow handlers
1698 * (handle_[fasteoi|level]_irq).
1699 *
1700 * The new action gets the first zero bit of
1701 * thread_mask assigned. See the loop above which or's
1702 * all existing action->thread_mask bits.
1703 */
1704 new->thread_mask = 1UL << ffz(thread_mask);
1705
1706 } else if (new->handler == irq_default_primary_handler &&
1707 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1708 /*
1709 * The interrupt was requested with handler = NULL, so
1710 * we use the default primary handler for it. But it
1711 * does not have the oneshot flag set. In combination
1712 * with level interrupts this is deadly, because the
1713 * default primary handler just wakes the thread, then
1714 * the irq lines is reenabled, but the device still
1715 * has the level irq asserted. Rinse and repeat....
1716 *
1717 * While this works for edge type interrupts, we play
1718 * it safe and reject unconditionally because we can't
1719 * say for sure which type this interrupt really
1720 * has. The type flags are unreliable as the
1721 * underlying chip implementation can override them.
1722 */
1723 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1724 new->name, irq);
1725 ret = -EINVAL;
1726 goto out_unlock;
1727 }
1728
1729 if (!shared) {
1730 /* Setup the type (level, edge polarity) if configured: */
1731 if (new->flags & IRQF_TRIGGER_MASK) {
1732 ret = __irq_set_trigger(desc,
1733 new->flags & IRQF_TRIGGER_MASK);
1734
1735 if (ret)
1736 goto out_unlock;
1737 }
1738
1739 /*
1740 * Activate the interrupt. That activation must happen
1741 * independently of IRQ_NOAUTOEN. request_irq() can fail
1742 * and the callers are supposed to handle
1743 * that. enable_irq() of an interrupt requested with
1744 * IRQ_NOAUTOEN is not supposed to fail. The activation
1745 * keeps it in shutdown mode, it merily associates
1746 * resources if necessary and if that's not possible it
1747 * fails. Interrupts which are in managed shutdown mode
1748 * will simply ignore that activation request.
1749 */
1750 ret = irq_activate(desc);
1751 if (ret)
1752 goto out_unlock;
1753
1754 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1755 IRQS_ONESHOT | IRQS_WAITING);
1756 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1757
1758 if (new->flags & IRQF_PERCPU) {
1759 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1760 irq_settings_set_per_cpu(desc);
1761 if (new->flags & IRQF_NO_DEBUG)
1762 irq_settings_set_no_debug(desc);
1763 }
1764
1765 if (noirqdebug)
1766 irq_settings_set_no_debug(desc);
1767
1768 if (new->flags & IRQF_ONESHOT)
1769 desc->istate |= IRQS_ONESHOT;
1770
1771 /* Exclude IRQ from balancing if requested */
1772 if (new->flags & IRQF_NOBALANCING) {
1773 irq_settings_set_no_balancing(desc);
1774 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1775 }
1776
1777 if (!(new->flags & IRQF_NO_AUTOEN) &&
1778 irq_settings_can_autoenable(desc)) {
1779 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1780 } else {
1781 /*
1782 * Shared interrupts do not go well with disabling
1783 * auto enable. The sharing interrupt might request
1784 * it while it's still disabled and then wait for
1785 * interrupts forever.
1786 */
1787 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1788 /* Undo nested disables: */
1789 desc->depth = 1;
1790 }
1791
1792 } else if (new->flags & IRQF_TRIGGER_MASK) {
1793 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1794 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1795
1796 if (nmsk != omsk)
1797 /* hope the handler works with current trigger mode */
1798 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1799 irq, omsk, nmsk);
1800 }
1801
1802 *old_ptr = new;
1803
1804 irq_pm_install_action(desc, new);
1805
1806 /* Reset broken irq detection when installing new handler */
1807 desc->irq_count = 0;
1808 desc->irqs_unhandled = 0;
1809
1810 /*
1811 * Check whether we disabled the irq via the spurious handler
1812 * before. Reenable it and give it another chance.
1813 */
1814 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1815 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1816 __enable_irq(desc);
1817 }
1818
1819 raw_spin_unlock_irqrestore(&desc->lock, flags);
1820 chip_bus_sync_unlock(desc);
1821 mutex_unlock(&desc->request_mutex);
1822
1823 irq_setup_timings(desc, new);
1824
1825 wake_up_and_wait_for_irq_thread_ready(desc, new);
1826 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1827
1828 register_irq_proc(irq, desc);
1829 new->dir = NULL;
1830 register_handler_proc(irq, new);
1831 return 0;
1832
1833 mismatch:
1834 if (!(new->flags & IRQF_PROBE_SHARED)) {
1835 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1836 irq, new->flags, new->name, old->flags, old->name);
1837 #ifdef CONFIG_DEBUG_SHIRQ
1838 dump_stack();
1839 #endif
1840 }
1841 ret = -EBUSY;
1842
1843 out_unlock:
1844 raw_spin_unlock_irqrestore(&desc->lock, flags);
1845
1846 if (!desc->action)
1847 irq_release_resources(desc);
1848 out_bus_unlock:
1849 chip_bus_sync_unlock(desc);
1850 mutex_unlock(&desc->request_mutex);
1851
1852 out_thread:
1853 if (new->thread) {
1854 struct task_struct *t = new->thread;
1855
1856 new->thread = NULL;
1857 kthread_stop_put(t);
1858 }
1859 if (new->secondary && new->secondary->thread) {
1860 struct task_struct *t = new->secondary->thread;
1861
1862 new->secondary->thread = NULL;
1863 kthread_stop_put(t);
1864 }
1865 out_mput:
1866 module_put(desc->owner);
1867 return ret;
1868 }
1869
1870 /*
1871 * Internal function to unregister an irqaction - used to free
1872 * regular and special interrupts that are part of the architecture.
1873 */
__free_irq(struct irq_desc * desc,void * dev_id)1874 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1875 {
1876 unsigned irq = desc->irq_data.irq;
1877 struct irqaction *action, **action_ptr;
1878 unsigned long flags;
1879
1880 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1881
1882 mutex_lock(&desc->request_mutex);
1883 chip_bus_lock(desc);
1884 raw_spin_lock_irqsave(&desc->lock, flags);
1885
1886 /*
1887 * There can be multiple actions per IRQ descriptor, find the right
1888 * one based on the dev_id:
1889 */
1890 action_ptr = &desc->action;
1891 for (;;) {
1892 action = *action_ptr;
1893
1894 if (!action) {
1895 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1896 raw_spin_unlock_irqrestore(&desc->lock, flags);
1897 chip_bus_sync_unlock(desc);
1898 mutex_unlock(&desc->request_mutex);
1899 return NULL;
1900 }
1901
1902 if (action->dev_id == dev_id)
1903 break;
1904 action_ptr = &action->next;
1905 }
1906
1907 /* Found it - now remove it from the list of entries: */
1908 *action_ptr = action->next;
1909
1910 irq_pm_remove_action(desc, action);
1911
1912 /* If this was the last handler, shut down the IRQ line: */
1913 if (!desc->action) {
1914 irq_settings_clr_disable_unlazy(desc);
1915 /* Only shutdown. Deactivate after synchronize_hardirq() */
1916 irq_shutdown(desc);
1917 }
1918
1919 #ifdef CONFIG_SMP
1920 /* make sure affinity_hint is cleaned up */
1921 if (WARN_ON_ONCE(desc->affinity_hint))
1922 desc->affinity_hint = NULL;
1923 #endif
1924
1925 raw_spin_unlock_irqrestore(&desc->lock, flags);
1926 /*
1927 * Drop bus_lock here so the changes which were done in the chip
1928 * callbacks above are synced out to the irq chips which hang
1929 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1930 *
1931 * Aside of that the bus_lock can also be taken from the threaded
1932 * handler in irq_finalize_oneshot() which results in a deadlock
1933 * because kthread_stop() would wait forever for the thread to
1934 * complete, which is blocked on the bus lock.
1935 *
1936 * The still held desc->request_mutex() protects against a
1937 * concurrent request_irq() of this irq so the release of resources
1938 * and timing data is properly serialized.
1939 */
1940 chip_bus_sync_unlock(desc);
1941
1942 unregister_handler_proc(irq, action);
1943
1944 /*
1945 * Make sure it's not being used on another CPU and if the chip
1946 * supports it also make sure that there is no (not yet serviced)
1947 * interrupt in flight at the hardware level.
1948 */
1949 __synchronize_irq(desc);
1950
1951 #ifdef CONFIG_DEBUG_SHIRQ
1952 /*
1953 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1954 * event to happen even now it's being freed, so let's make sure that
1955 * is so by doing an extra call to the handler ....
1956 *
1957 * ( We do this after actually deregistering it, to make sure that a
1958 * 'real' IRQ doesn't run in parallel with our fake. )
1959 */
1960 if (action->flags & IRQF_SHARED) {
1961 local_irq_save(flags);
1962 action->handler(irq, dev_id);
1963 local_irq_restore(flags);
1964 }
1965 #endif
1966
1967 /*
1968 * The action has already been removed above, but the thread writes
1969 * its oneshot mask bit when it completes. Though request_mutex is
1970 * held across this which prevents __setup_irq() from handing out
1971 * the same bit to a newly requested action.
1972 */
1973 if (action->thread) {
1974 kthread_stop_put(action->thread);
1975 if (action->secondary && action->secondary->thread)
1976 kthread_stop_put(action->secondary->thread);
1977 }
1978
1979 /* Last action releases resources */
1980 if (!desc->action) {
1981 /*
1982 * Reacquire bus lock as irq_release_resources() might
1983 * require it to deallocate resources over the slow bus.
1984 */
1985 chip_bus_lock(desc);
1986 /*
1987 * There is no interrupt on the fly anymore. Deactivate it
1988 * completely.
1989 */
1990 raw_spin_lock_irqsave(&desc->lock, flags);
1991 irq_domain_deactivate_irq(&desc->irq_data);
1992 raw_spin_unlock_irqrestore(&desc->lock, flags);
1993
1994 irq_release_resources(desc);
1995 chip_bus_sync_unlock(desc);
1996 irq_remove_timings(desc);
1997 }
1998
1999 mutex_unlock(&desc->request_mutex);
2000
2001 irq_chip_pm_put(&desc->irq_data);
2002 module_put(desc->owner);
2003 kfree(action->secondary);
2004 return action;
2005 }
2006
2007 /**
2008 * free_irq - free an interrupt allocated with request_irq
2009 * @irq: Interrupt line to free
2010 * @dev_id: Device identity to free
2011 *
2012 * Remove an interrupt handler. The handler is removed and if the
2013 * interrupt line is no longer in use by any driver it is disabled.
2014 * On a shared IRQ the caller must ensure the interrupt is disabled
2015 * on the card it drives before calling this function. The function
2016 * does not return until any executing interrupts for this IRQ
2017 * have completed.
2018 *
2019 * This function must not be called from interrupt context.
2020 *
2021 * Returns the devname argument passed to request_irq.
2022 */
free_irq(unsigned int irq,void * dev_id)2023 const void *free_irq(unsigned int irq, void *dev_id)
2024 {
2025 struct irq_desc *desc = irq_to_desc(irq);
2026 struct irqaction *action;
2027 const char *devname;
2028
2029 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2030 return NULL;
2031
2032 #ifdef CONFIG_SMP
2033 if (WARN_ON(desc->affinity_notify))
2034 desc->affinity_notify = NULL;
2035 #endif
2036
2037 action = __free_irq(desc, dev_id);
2038
2039 if (!action)
2040 return NULL;
2041
2042 devname = action->name;
2043 kfree(action);
2044 return devname;
2045 }
2046 EXPORT_SYMBOL(free_irq);
2047
2048 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2049 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2050 {
2051 const char *devname = NULL;
2052
2053 desc->istate &= ~IRQS_NMI;
2054
2055 if (!WARN_ON(desc->action == NULL)) {
2056 irq_pm_remove_action(desc, desc->action);
2057 devname = desc->action->name;
2058 unregister_handler_proc(irq, desc->action);
2059
2060 kfree(desc->action);
2061 desc->action = NULL;
2062 }
2063
2064 irq_settings_clr_disable_unlazy(desc);
2065 irq_shutdown_and_deactivate(desc);
2066
2067 irq_release_resources(desc);
2068
2069 irq_chip_pm_put(&desc->irq_data);
2070 module_put(desc->owner);
2071
2072 return devname;
2073 }
2074
free_nmi(unsigned int irq,void * dev_id)2075 const void *free_nmi(unsigned int irq, void *dev_id)
2076 {
2077 struct irq_desc *desc = irq_to_desc(irq);
2078 unsigned long flags;
2079 const void *devname;
2080
2081 if (!desc || WARN_ON(!irq_is_nmi(desc)))
2082 return NULL;
2083
2084 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2085 return NULL;
2086
2087 /* NMI still enabled */
2088 if (WARN_ON(desc->depth == 0))
2089 disable_nmi_nosync(irq);
2090
2091 raw_spin_lock_irqsave(&desc->lock, flags);
2092
2093 irq_nmi_teardown(desc);
2094 devname = __cleanup_nmi(irq, desc);
2095
2096 raw_spin_unlock_irqrestore(&desc->lock, flags);
2097
2098 return devname;
2099 }
2100
2101 /**
2102 * request_threaded_irq - allocate an interrupt line
2103 * @irq: Interrupt line to allocate
2104 * @handler: Function to be called when the IRQ occurs.
2105 * Primary handler for threaded interrupts.
2106 * If handler is NULL and thread_fn != NULL
2107 * the default primary handler is installed.
2108 * @thread_fn: Function called from the irq handler thread
2109 * If NULL, no irq thread is created
2110 * @irqflags: Interrupt type flags
2111 * @devname: An ascii name for the claiming device
2112 * @dev_id: A cookie passed back to the handler function
2113 *
2114 * This call allocates interrupt resources and enables the
2115 * interrupt line and IRQ handling. From the point this
2116 * call is made your handler function may be invoked. Since
2117 * your handler function must clear any interrupt the board
2118 * raises, you must take care both to initialise your hardware
2119 * and to set up the interrupt handler in the right order.
2120 *
2121 * If you want to set up a threaded irq handler for your device
2122 * then you need to supply @handler and @thread_fn. @handler is
2123 * still called in hard interrupt context and has to check
2124 * whether the interrupt originates from the device. If yes it
2125 * needs to disable the interrupt on the device and return
2126 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2127 * @thread_fn. This split handler design is necessary to support
2128 * shared interrupts.
2129 *
2130 * Dev_id must be globally unique. Normally the address of the
2131 * device data structure is used as the cookie. Since the handler
2132 * receives this value it makes sense to use it.
2133 *
2134 * If your interrupt is shared you must pass a non NULL dev_id
2135 * as this is required when freeing the interrupt.
2136 *
2137 * Flags:
2138 *
2139 * IRQF_SHARED Interrupt is shared
2140 * IRQF_TRIGGER_* Specify active edge(s) or level
2141 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2142 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2143 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2144 irq_handler_t thread_fn, unsigned long irqflags,
2145 const char *devname, void *dev_id)
2146 {
2147 struct irqaction *action;
2148 struct irq_desc *desc;
2149 int retval;
2150
2151 if (irq == IRQ_NOTCONNECTED)
2152 return -ENOTCONN;
2153
2154 /*
2155 * Sanity-check: shared interrupts must pass in a real dev-ID,
2156 * otherwise we'll have trouble later trying to figure out
2157 * which interrupt is which (messes up the interrupt freeing
2158 * logic etc).
2159 *
2160 * Also shared interrupts do not go well with disabling auto enable.
2161 * The sharing interrupt might request it while it's still disabled
2162 * and then wait for interrupts forever.
2163 *
2164 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2165 * it cannot be set along with IRQF_NO_SUSPEND.
2166 */
2167 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2168 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2169 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2170 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2171 return -EINVAL;
2172
2173 desc = irq_to_desc(irq);
2174 if (!desc)
2175 return -EINVAL;
2176
2177 if (!irq_settings_can_request(desc) ||
2178 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2179 return -EINVAL;
2180
2181 if (!handler) {
2182 if (!thread_fn)
2183 return -EINVAL;
2184 handler = irq_default_primary_handler;
2185 }
2186
2187 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2188 if (!action)
2189 return -ENOMEM;
2190
2191 action->handler = handler;
2192 action->thread_fn = thread_fn;
2193 action->flags = irqflags;
2194 action->name = devname;
2195 action->dev_id = dev_id;
2196
2197 retval = irq_chip_pm_get(&desc->irq_data);
2198 if (retval < 0) {
2199 kfree(action);
2200 return retval;
2201 }
2202
2203 retval = __setup_irq(irq, desc, action);
2204
2205 if (retval) {
2206 irq_chip_pm_put(&desc->irq_data);
2207 kfree(action->secondary);
2208 kfree(action);
2209 }
2210
2211 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2212 if (!retval && (irqflags & IRQF_SHARED)) {
2213 /*
2214 * It's a shared IRQ -- the driver ought to be prepared for it
2215 * to happen immediately, so let's make sure....
2216 * We disable the irq to make sure that a 'real' IRQ doesn't
2217 * run in parallel with our fake.
2218 */
2219 unsigned long flags;
2220
2221 disable_irq(irq);
2222 local_irq_save(flags);
2223
2224 handler(irq, dev_id);
2225
2226 local_irq_restore(flags);
2227 enable_irq(irq);
2228 }
2229 #endif
2230 return retval;
2231 }
2232 EXPORT_SYMBOL(request_threaded_irq);
2233
2234 /**
2235 * request_any_context_irq - allocate an interrupt line
2236 * @irq: Interrupt line to allocate
2237 * @handler: Function to be called when the IRQ occurs.
2238 * Threaded handler for threaded interrupts.
2239 * @flags: Interrupt type flags
2240 * @name: An ascii name for the claiming device
2241 * @dev_id: A cookie passed back to the handler function
2242 *
2243 * This call allocates interrupt resources and enables the
2244 * interrupt line and IRQ handling. It selects either a
2245 * hardirq or threaded handling method depending on the
2246 * context.
2247 *
2248 * On failure, it returns a negative value. On success,
2249 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2250 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2251 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2252 unsigned long flags, const char *name, void *dev_id)
2253 {
2254 struct irq_desc *desc;
2255 int ret;
2256
2257 if (irq == IRQ_NOTCONNECTED)
2258 return -ENOTCONN;
2259
2260 desc = irq_to_desc(irq);
2261 if (!desc)
2262 return -EINVAL;
2263
2264 if (irq_settings_is_nested_thread(desc)) {
2265 ret = request_threaded_irq(irq, NULL, handler,
2266 flags, name, dev_id);
2267 return !ret ? IRQC_IS_NESTED : ret;
2268 }
2269
2270 ret = request_irq(irq, handler, flags, name, dev_id);
2271 return !ret ? IRQC_IS_HARDIRQ : ret;
2272 }
2273 EXPORT_SYMBOL_GPL(request_any_context_irq);
2274
2275 /**
2276 * request_nmi - allocate an interrupt line for NMI delivery
2277 * @irq: Interrupt line to allocate
2278 * @handler: Function to be called when the IRQ occurs.
2279 * Threaded handler for threaded interrupts.
2280 * @irqflags: Interrupt type flags
2281 * @name: An ascii name for the claiming device
2282 * @dev_id: A cookie passed back to the handler function
2283 *
2284 * This call allocates interrupt resources and enables the
2285 * interrupt line and IRQ handling. It sets up the IRQ line
2286 * to be handled as an NMI.
2287 *
2288 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2289 * cannot be threaded.
2290 *
2291 * Interrupt lines requested for NMI delivering must produce per cpu
2292 * interrupts and have auto enabling setting disabled.
2293 *
2294 * Dev_id must be globally unique. Normally the address of the
2295 * device data structure is used as the cookie. Since the handler
2296 * receives this value it makes sense to use it.
2297 *
2298 * If the interrupt line cannot be used to deliver NMIs, function
2299 * will fail and return a negative value.
2300 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2301 int request_nmi(unsigned int irq, irq_handler_t handler,
2302 unsigned long irqflags, const char *name, void *dev_id)
2303 {
2304 struct irqaction *action;
2305 struct irq_desc *desc;
2306 unsigned long flags;
2307 int retval;
2308
2309 if (irq == IRQ_NOTCONNECTED)
2310 return -ENOTCONN;
2311
2312 /* NMI cannot be shared, used for Polling */
2313 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2314 return -EINVAL;
2315
2316 if (!(irqflags & IRQF_PERCPU))
2317 return -EINVAL;
2318
2319 if (!handler)
2320 return -EINVAL;
2321
2322 desc = irq_to_desc(irq);
2323
2324 if (!desc || (irq_settings_can_autoenable(desc) &&
2325 !(irqflags & IRQF_NO_AUTOEN)) ||
2326 !irq_settings_can_request(desc) ||
2327 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2328 !irq_supports_nmi(desc))
2329 return -EINVAL;
2330
2331 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2332 if (!action)
2333 return -ENOMEM;
2334
2335 action->handler = handler;
2336 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2337 action->name = name;
2338 action->dev_id = dev_id;
2339
2340 retval = irq_chip_pm_get(&desc->irq_data);
2341 if (retval < 0)
2342 goto err_out;
2343
2344 retval = __setup_irq(irq, desc, action);
2345 if (retval)
2346 goto err_irq_setup;
2347
2348 raw_spin_lock_irqsave(&desc->lock, flags);
2349
2350 /* Setup NMI state */
2351 desc->istate |= IRQS_NMI;
2352 retval = irq_nmi_setup(desc);
2353 if (retval) {
2354 __cleanup_nmi(irq, desc);
2355 raw_spin_unlock_irqrestore(&desc->lock, flags);
2356 return -EINVAL;
2357 }
2358
2359 raw_spin_unlock_irqrestore(&desc->lock, flags);
2360
2361 return 0;
2362
2363 err_irq_setup:
2364 irq_chip_pm_put(&desc->irq_data);
2365 err_out:
2366 kfree(action);
2367
2368 return retval;
2369 }
2370
enable_percpu_irq(unsigned int irq,unsigned int type)2371 void enable_percpu_irq(unsigned int irq, unsigned int type)
2372 {
2373 unsigned int cpu = smp_processor_id();
2374 unsigned long flags;
2375 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2376
2377 if (!desc)
2378 return;
2379
2380 /*
2381 * If the trigger type is not specified by the caller, then
2382 * use the default for this interrupt.
2383 */
2384 type &= IRQ_TYPE_SENSE_MASK;
2385 if (type == IRQ_TYPE_NONE)
2386 type = irqd_get_trigger_type(&desc->irq_data);
2387
2388 if (type != IRQ_TYPE_NONE) {
2389 int ret;
2390
2391 ret = __irq_set_trigger(desc, type);
2392
2393 if (ret) {
2394 WARN(1, "failed to set type for IRQ%d\n", irq);
2395 goto out;
2396 }
2397 }
2398
2399 irq_percpu_enable(desc, cpu);
2400 out:
2401 irq_put_desc_unlock(desc, flags);
2402 }
2403 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2404
enable_percpu_nmi(unsigned int irq,unsigned int type)2405 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2406 {
2407 enable_percpu_irq(irq, type);
2408 }
2409
2410 /**
2411 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2412 * @irq: Linux irq number to check for
2413 *
2414 * Must be called from a non migratable context. Returns the enable
2415 * state of a per cpu interrupt on the current cpu.
2416 */
irq_percpu_is_enabled(unsigned int irq)2417 bool irq_percpu_is_enabled(unsigned int irq)
2418 {
2419 unsigned int cpu = smp_processor_id();
2420 struct irq_desc *desc;
2421 unsigned long flags;
2422 bool is_enabled;
2423
2424 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2425 if (!desc)
2426 return false;
2427
2428 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2429 irq_put_desc_unlock(desc, flags);
2430
2431 return is_enabled;
2432 }
2433 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2434
disable_percpu_irq(unsigned int irq)2435 void disable_percpu_irq(unsigned int irq)
2436 {
2437 unsigned int cpu = smp_processor_id();
2438 unsigned long flags;
2439 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2440
2441 if (!desc)
2442 return;
2443
2444 irq_percpu_disable(desc, cpu);
2445 irq_put_desc_unlock(desc, flags);
2446 }
2447 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2448
disable_percpu_nmi(unsigned int irq)2449 void disable_percpu_nmi(unsigned int irq)
2450 {
2451 disable_percpu_irq(irq);
2452 }
2453
2454 /*
2455 * Internal function to unregister a percpu irqaction.
2456 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2457 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2458 {
2459 struct irq_desc *desc = irq_to_desc(irq);
2460 struct irqaction *action;
2461 unsigned long flags;
2462
2463 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2464
2465 if (!desc)
2466 return NULL;
2467
2468 raw_spin_lock_irqsave(&desc->lock, flags);
2469
2470 action = desc->action;
2471 if (!action || action->percpu_dev_id != dev_id) {
2472 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2473 goto bad;
2474 }
2475
2476 if (!cpumask_empty(desc->percpu_enabled)) {
2477 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2478 irq, cpumask_first(desc->percpu_enabled));
2479 goto bad;
2480 }
2481
2482 /* Found it - now remove it from the list of entries: */
2483 desc->action = NULL;
2484
2485 desc->istate &= ~IRQS_NMI;
2486
2487 raw_spin_unlock_irqrestore(&desc->lock, flags);
2488
2489 unregister_handler_proc(irq, action);
2490
2491 irq_chip_pm_put(&desc->irq_data);
2492 module_put(desc->owner);
2493 return action;
2494
2495 bad:
2496 raw_spin_unlock_irqrestore(&desc->lock, flags);
2497 return NULL;
2498 }
2499
2500 /**
2501 * remove_percpu_irq - free a per-cpu interrupt
2502 * @irq: Interrupt line to free
2503 * @act: irqaction for the interrupt
2504 *
2505 * Used to remove interrupts statically setup by the early boot process.
2506 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2507 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2508 {
2509 struct irq_desc *desc = irq_to_desc(irq);
2510
2511 if (desc && irq_settings_is_per_cpu_devid(desc))
2512 __free_percpu_irq(irq, act->percpu_dev_id);
2513 }
2514
2515 /**
2516 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2517 * @irq: Interrupt line to free
2518 * @dev_id: Device identity to free
2519 *
2520 * Remove a percpu interrupt handler. The handler is removed, but
2521 * the interrupt line is not disabled. This must be done on each
2522 * CPU before calling this function. The function does not return
2523 * until any executing interrupts for this IRQ have completed.
2524 *
2525 * This function must not be called from interrupt context.
2526 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2527 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2528 {
2529 struct irq_desc *desc = irq_to_desc(irq);
2530
2531 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2532 return;
2533
2534 chip_bus_lock(desc);
2535 kfree(__free_percpu_irq(irq, dev_id));
2536 chip_bus_sync_unlock(desc);
2537 }
2538 EXPORT_SYMBOL_GPL(free_percpu_irq);
2539
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2540 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2541 {
2542 struct irq_desc *desc = irq_to_desc(irq);
2543
2544 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2545 return;
2546
2547 if (WARN_ON(!irq_is_nmi(desc)))
2548 return;
2549
2550 kfree(__free_percpu_irq(irq, dev_id));
2551 }
2552
2553 /**
2554 * setup_percpu_irq - setup a per-cpu interrupt
2555 * @irq: Interrupt line to setup
2556 * @act: irqaction for the interrupt
2557 *
2558 * Used to statically setup per-cpu interrupts in the early boot process.
2559 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2560 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2561 {
2562 struct irq_desc *desc = irq_to_desc(irq);
2563 int retval;
2564
2565 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2566 return -EINVAL;
2567
2568 retval = irq_chip_pm_get(&desc->irq_data);
2569 if (retval < 0)
2570 return retval;
2571
2572 retval = __setup_irq(irq, desc, act);
2573
2574 if (retval)
2575 irq_chip_pm_put(&desc->irq_data);
2576
2577 return retval;
2578 }
2579
2580 /**
2581 * __request_percpu_irq - allocate a percpu interrupt line
2582 * @irq: Interrupt line to allocate
2583 * @handler: Function to be called when the IRQ occurs.
2584 * @flags: Interrupt type flags (IRQF_TIMER only)
2585 * @devname: An ascii name for the claiming device
2586 * @dev_id: A percpu cookie passed back to the handler function
2587 *
2588 * This call allocates interrupt resources and enables the
2589 * interrupt on the local CPU. If the interrupt is supposed to be
2590 * enabled on other CPUs, it has to be done on each CPU using
2591 * enable_percpu_irq().
2592 *
2593 * Dev_id must be globally unique. It is a per-cpu variable, and
2594 * the handler gets called with the interrupted CPU's instance of
2595 * that variable.
2596 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2597 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2598 unsigned long flags, const char *devname,
2599 void __percpu *dev_id)
2600 {
2601 struct irqaction *action;
2602 struct irq_desc *desc;
2603 int retval;
2604
2605 if (!dev_id)
2606 return -EINVAL;
2607
2608 desc = irq_to_desc(irq);
2609 if (!desc || !irq_settings_can_request(desc) ||
2610 !irq_settings_is_per_cpu_devid(desc))
2611 return -EINVAL;
2612
2613 if (flags && flags != IRQF_TIMER)
2614 return -EINVAL;
2615
2616 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2617 if (!action)
2618 return -ENOMEM;
2619
2620 action->handler = handler;
2621 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2622 action->name = devname;
2623 action->percpu_dev_id = dev_id;
2624
2625 retval = irq_chip_pm_get(&desc->irq_data);
2626 if (retval < 0) {
2627 kfree(action);
2628 return retval;
2629 }
2630
2631 retval = __setup_irq(irq, desc, action);
2632
2633 if (retval) {
2634 irq_chip_pm_put(&desc->irq_data);
2635 kfree(action);
2636 }
2637
2638 return retval;
2639 }
2640 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2641
2642 /**
2643 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2644 * @irq: Interrupt line to allocate
2645 * @handler: Function to be called when the IRQ occurs.
2646 * @name: An ascii name for the claiming device
2647 * @dev_id: A percpu cookie passed back to the handler function
2648 *
2649 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2650 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2651 * being enabled on the same CPU by using enable_percpu_nmi().
2652 *
2653 * Dev_id must be globally unique. It is a per-cpu variable, and
2654 * the handler gets called with the interrupted CPU's instance of
2655 * that variable.
2656 *
2657 * Interrupt lines requested for NMI delivering should have auto enabling
2658 * setting disabled.
2659 *
2660 * If the interrupt line cannot be used to deliver NMIs, function
2661 * will fail returning a negative value.
2662 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2663 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2664 const char *name, void __percpu *dev_id)
2665 {
2666 struct irqaction *action;
2667 struct irq_desc *desc;
2668 unsigned long flags;
2669 int retval;
2670
2671 if (!handler)
2672 return -EINVAL;
2673
2674 desc = irq_to_desc(irq);
2675
2676 if (!desc || !irq_settings_can_request(desc) ||
2677 !irq_settings_is_per_cpu_devid(desc) ||
2678 irq_settings_can_autoenable(desc) ||
2679 !irq_supports_nmi(desc))
2680 return -EINVAL;
2681
2682 /* The line cannot already be NMI */
2683 if (irq_is_nmi(desc))
2684 return -EINVAL;
2685
2686 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2687 if (!action)
2688 return -ENOMEM;
2689
2690 action->handler = handler;
2691 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2692 | IRQF_NOBALANCING;
2693 action->name = name;
2694 action->percpu_dev_id = dev_id;
2695
2696 retval = irq_chip_pm_get(&desc->irq_data);
2697 if (retval < 0)
2698 goto err_out;
2699
2700 retval = __setup_irq(irq, desc, action);
2701 if (retval)
2702 goto err_irq_setup;
2703
2704 raw_spin_lock_irqsave(&desc->lock, flags);
2705 desc->istate |= IRQS_NMI;
2706 raw_spin_unlock_irqrestore(&desc->lock, flags);
2707
2708 return 0;
2709
2710 err_irq_setup:
2711 irq_chip_pm_put(&desc->irq_data);
2712 err_out:
2713 kfree(action);
2714
2715 return retval;
2716 }
2717
2718 /**
2719 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2720 * @irq: Interrupt line to prepare for NMI delivery
2721 *
2722 * This call prepares an interrupt line to deliver NMI on the current CPU,
2723 * before that interrupt line gets enabled with enable_percpu_nmi().
2724 *
2725 * As a CPU local operation, this should be called from non-preemptible
2726 * context.
2727 *
2728 * If the interrupt line cannot be used to deliver NMIs, function
2729 * will fail returning a negative value.
2730 */
prepare_percpu_nmi(unsigned int irq)2731 int prepare_percpu_nmi(unsigned int irq)
2732 {
2733 unsigned long flags;
2734 struct irq_desc *desc;
2735 int ret = 0;
2736
2737 WARN_ON(preemptible());
2738
2739 desc = irq_get_desc_lock(irq, &flags,
2740 IRQ_GET_DESC_CHECK_PERCPU);
2741 if (!desc)
2742 return -EINVAL;
2743
2744 if (WARN(!irq_is_nmi(desc),
2745 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2746 irq)) {
2747 ret = -EINVAL;
2748 goto out;
2749 }
2750
2751 ret = irq_nmi_setup(desc);
2752 if (ret) {
2753 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2754 goto out;
2755 }
2756
2757 out:
2758 irq_put_desc_unlock(desc, flags);
2759 return ret;
2760 }
2761
2762 /**
2763 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2764 * @irq: Interrupt line from which CPU local NMI configuration should be
2765 * removed
2766 *
2767 * This call undoes the setup done by prepare_percpu_nmi().
2768 *
2769 * IRQ line should not be enabled for the current CPU.
2770 *
2771 * As a CPU local operation, this should be called from non-preemptible
2772 * context.
2773 */
teardown_percpu_nmi(unsigned int irq)2774 void teardown_percpu_nmi(unsigned int irq)
2775 {
2776 unsigned long flags;
2777 struct irq_desc *desc;
2778
2779 WARN_ON(preemptible());
2780
2781 desc = irq_get_desc_lock(irq, &flags,
2782 IRQ_GET_DESC_CHECK_PERCPU);
2783 if (!desc)
2784 return;
2785
2786 if (WARN_ON(!irq_is_nmi(desc)))
2787 goto out;
2788
2789 irq_nmi_teardown(desc);
2790 out:
2791 irq_put_desc_unlock(desc, flags);
2792 }
2793
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2794 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2795 {
2796 struct irq_chip *chip;
2797 int err = -EINVAL;
2798
2799 do {
2800 chip = irq_data_get_irq_chip(data);
2801 if (WARN_ON_ONCE(!chip))
2802 return -ENODEV;
2803 if (chip->irq_get_irqchip_state)
2804 break;
2805 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2806 data = data->parent_data;
2807 #else
2808 data = NULL;
2809 #endif
2810 } while (data);
2811
2812 if (data)
2813 err = chip->irq_get_irqchip_state(data, which, state);
2814 return err;
2815 }
2816
2817 /**
2818 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2819 * @irq: Interrupt line that is forwarded to a VM
2820 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2821 * @state: a pointer to a boolean where the state is to be stored
2822 *
2823 * This call snapshots the internal irqchip state of an
2824 * interrupt, returning into @state the bit corresponding to
2825 * stage @which
2826 *
2827 * This function should be called with preemption disabled if the
2828 * interrupt controller has per-cpu registers.
2829 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2830 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2831 bool *state)
2832 {
2833 struct irq_desc *desc;
2834 struct irq_data *data;
2835 unsigned long flags;
2836 int err = -EINVAL;
2837
2838 desc = irq_get_desc_buslock(irq, &flags, 0);
2839 if (!desc)
2840 return err;
2841
2842 data = irq_desc_get_irq_data(desc);
2843
2844 err = __irq_get_irqchip_state(data, which, state);
2845
2846 irq_put_desc_busunlock(desc, flags);
2847 return err;
2848 }
2849 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2850
2851 /**
2852 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2853 * @irq: Interrupt line that is forwarded to a VM
2854 * @which: State to be restored (one of IRQCHIP_STATE_*)
2855 * @val: Value corresponding to @which
2856 *
2857 * This call sets the internal irqchip state of an interrupt,
2858 * depending on the value of @which.
2859 *
2860 * This function should be called with migration disabled if the
2861 * interrupt controller has per-cpu registers.
2862 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2863 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2864 bool val)
2865 {
2866 struct irq_desc *desc;
2867 struct irq_data *data;
2868 struct irq_chip *chip;
2869 unsigned long flags;
2870 int err = -EINVAL;
2871
2872 desc = irq_get_desc_buslock(irq, &flags, 0);
2873 if (!desc)
2874 return err;
2875
2876 data = irq_desc_get_irq_data(desc);
2877
2878 do {
2879 chip = irq_data_get_irq_chip(data);
2880 if (WARN_ON_ONCE(!chip)) {
2881 err = -ENODEV;
2882 goto out_unlock;
2883 }
2884 if (chip->irq_set_irqchip_state)
2885 break;
2886 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2887 data = data->parent_data;
2888 #else
2889 data = NULL;
2890 #endif
2891 } while (data);
2892
2893 if (data)
2894 err = chip->irq_set_irqchip_state(data, which, val);
2895
2896 out_unlock:
2897 irq_put_desc_busunlock(desc, flags);
2898 return err;
2899 }
2900 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2901
2902 /**
2903 * irq_has_action - Check whether an interrupt is requested
2904 * @irq: The linux irq number
2905 *
2906 * Returns: A snapshot of the current state
2907 */
irq_has_action(unsigned int irq)2908 bool irq_has_action(unsigned int irq)
2909 {
2910 bool res;
2911
2912 rcu_read_lock();
2913 res = irq_desc_has_action(irq_to_desc(irq));
2914 rcu_read_unlock();
2915 return res;
2916 }
2917 EXPORT_SYMBOL_GPL(irq_has_action);
2918
2919 /**
2920 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2921 * @irq: The linux irq number
2922 * @bitmask: The bitmask to evaluate
2923 *
2924 * Returns: True if one of the bits in @bitmask is set
2925 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2926 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2927 {
2928 struct irq_desc *desc;
2929 bool res = false;
2930
2931 rcu_read_lock();
2932 desc = irq_to_desc(irq);
2933 if (desc)
2934 res = !!(desc->status_use_accessors & bitmask);
2935 rcu_read_unlock();
2936 return res;
2937 }
2938 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2939