1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2025 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84 enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
get_cfg80211_regdom(void)140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
get_wiphy_regdom(struct wiphy * wiphy)150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171 }
172
reg_get_dfs_region(struct wiphy * wiphy)173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203 out:
204 rcu_read_unlock();
205
206 return dfs_region;
207 }
208
rcu_free_regdom(const struct ieee80211_regdomain * r)209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
get_last_request(void)216 static struct regulatory_request *get_last_request(void)
217 {
218 return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
reg_free_request(struct regulatory_request * request)294 static void reg_free_request(struct regulatory_request *request)
295 {
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(request);
301 }
302
reg_free_last_request(void)303 static void reg_free_last_request(void)
304 {
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309 }
310
reg_update_last_request(struct regulatory_request * request)311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321 }
322
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)323 static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325 {
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(&core_request_world);
350 }
351
352 /*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
update_world_regdomain(const struct ieee80211_regdomain * rd)356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(false, rd);
365
366 cfg80211_world_regdom = rd;
367 }
368
is_world_regdom(const char * alpha2)369 bool is_world_regdom(const char *alpha2)
370 {
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
is_alpha2_set(const char * alpha2)376 static bool is_alpha2_set(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381 }
382
is_unknown_alpha2(const char * alpha2)383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
is_intersected_alpha2(const char * alpha2)394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
is_an_alpha2(const char * alpha2)406 static bool is_an_alpha2(const char *alpha2)
407 {
408 if (!alpha2)
409 return false;
410 return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 isascii(alpha2[1]) && isalpha(alpha2[1]);
412 }
413
alpha2_equal(const char * alpha2_x,const char * alpha2_y)414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415 {
416 if (!alpha2_x || !alpha2_y)
417 return false;
418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419 }
420
regdom_changes(const char * alpha2)421 static bool regdom_changes(const char *alpha2)
422 {
423 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424
425 if (!r)
426 return true;
427 return !alpha2_equal(r->alpha2, alpha2);
428 }
429
430 /*
431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433 * has ever been issued.
434 */
is_user_regdom_saved(void)435 static bool is_user_regdom_saved(void)
436 {
437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 return false;
439
440 /* This would indicate a mistake on the design */
441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 "Unexpected user alpha2: %c%c\n",
443 user_alpha2[0], user_alpha2[1]))
444 return false;
445
446 return true;
447 }
448
449 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)450 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451 {
452 struct ieee80211_regdomain *regd;
453 unsigned int i;
454
455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 GFP_KERNEL);
457 if (!regd)
458 return ERR_PTR(-ENOMEM);
459
460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
461
462 for (i = 0; i < src_regd->n_reg_rules; i++)
463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
464 sizeof(struct ieee80211_reg_rule));
465
466 return regd;
467 }
468
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 {
471 ASSERT_RTNL();
472
473 if (!IS_ERR(cfg80211_user_regdom))
474 kfree(cfg80211_user_regdom);
475 cfg80211_user_regdom = reg_copy_regd(rd);
476 }
477
478 struct reg_regdb_apply_request {
479 struct list_head list;
480 const struct ieee80211_regdomain *regdom;
481 };
482
483 static LIST_HEAD(reg_regdb_apply_list);
484 static DEFINE_MUTEX(reg_regdb_apply_mutex);
485
reg_regdb_apply(struct work_struct * work)486 static void reg_regdb_apply(struct work_struct *work)
487 {
488 struct reg_regdb_apply_request *request;
489
490 rtnl_lock();
491
492 mutex_lock(®_regdb_apply_mutex);
493 while (!list_empty(®_regdb_apply_list)) {
494 request = list_first_entry(®_regdb_apply_list,
495 struct reg_regdb_apply_request,
496 list);
497 list_del(&request->list);
498
499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
500 kfree(request);
501 }
502 mutex_unlock(®_regdb_apply_mutex);
503
504 rtnl_unlock();
505 }
506
507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508
reg_schedule_apply(const struct ieee80211_regdomain * regdom)509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510 {
511 struct reg_regdb_apply_request *request;
512
513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 if (!request) {
515 kfree(regdom);
516 return -ENOMEM;
517 }
518
519 request->regdom = regdom;
520
521 mutex_lock(®_regdb_apply_mutex);
522 list_add_tail(&request->list, ®_regdb_apply_list);
523 mutex_unlock(®_regdb_apply_mutex);
524
525 schedule_work(®_regdb_work);
526 return 0;
527 }
528
529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
530 /* Max number of consecutive attempts to communicate with CRDA */
531 #define REG_MAX_CRDA_TIMEOUTS 10
532
533 static u32 reg_crda_timeouts;
534
535 static void crda_timeout_work(struct work_struct *work);
536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537
crda_timeout_work(struct work_struct * work)538 static void crda_timeout_work(struct work_struct *work)
539 {
540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 rtnl_lock();
542 reg_crda_timeouts++;
543 restore_regulatory_settings(true, false);
544 rtnl_unlock();
545 }
546
cancel_crda_timeout(void)547 static void cancel_crda_timeout(void)
548 {
549 cancel_delayed_work(&crda_timeout);
550 }
551
cancel_crda_timeout_sync(void)552 static void cancel_crda_timeout_sync(void)
553 {
554 cancel_delayed_work_sync(&crda_timeout);
555 }
556
reset_crda_timeouts(void)557 static void reset_crda_timeouts(void)
558 {
559 reg_crda_timeouts = 0;
560 }
561
562 /*
563 * This lets us keep regulatory code which is updated on a regulatory
564 * basis in userspace.
565 */
call_crda(const char * alpha2)566 static int call_crda(const char *alpha2)
567 {
568 char country[12];
569 char *env[] = { country, NULL };
570 int ret;
571
572 snprintf(country, sizeof(country), "COUNTRY=%c%c",
573 alpha2[0], alpha2[1]);
574
575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 return -EINVAL;
578 }
579
580 if (!is_world_regdom((char *) alpha2))
581 pr_debug("Calling CRDA for country: %c%c\n",
582 alpha2[0], alpha2[1]);
583 else
584 pr_debug("Calling CRDA to update world regulatory domain\n");
585
586 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
587 if (ret)
588 return ret;
589
590 queue_delayed_work(system_power_efficient_wq,
591 &crda_timeout, msecs_to_jiffies(3142));
592 return 0;
593 }
594 #else
cancel_crda_timeout(void)595 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)596 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)597 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)598 static inline int call_crda(const char *alpha2)
599 {
600 return -ENODATA;
601 }
602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603
604 /* code to directly load a firmware database through request_firmware */
605 static const struct fwdb_header *regdb;
606
607 struct fwdb_country {
608 u8 alpha2[2];
609 __be16 coll_ptr;
610 /* this struct cannot be extended */
611 } __packed __aligned(4);
612
613 struct fwdb_collection {
614 u8 len;
615 u8 n_rules;
616 u8 dfs_region;
617 /* no optional data yet */
618 /* aligned to 2, then followed by __be16 array of rule pointers */
619 } __packed __aligned(4);
620
621 enum fwdb_flags {
622 FWDB_FLAG_NO_OFDM = BIT(0),
623 FWDB_FLAG_NO_OUTDOOR = BIT(1),
624 FWDB_FLAG_DFS = BIT(2),
625 FWDB_FLAG_NO_IR = BIT(3),
626 FWDB_FLAG_AUTO_BW = BIT(4),
627 };
628
629 struct fwdb_wmm_ac {
630 u8 ecw;
631 u8 aifsn;
632 __be16 cot;
633 } __packed;
634
635 struct fwdb_wmm_rule {
636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638 } __packed;
639
640 struct fwdb_rule {
641 u8 len;
642 u8 flags;
643 __be16 max_eirp;
644 __be32 start, end, max_bw;
645 /* start of optional data */
646 __be16 cac_timeout;
647 __be16 wmm_ptr;
648 } __packed __aligned(4);
649
650 #define FWDB_MAGIC 0x52474442
651 #define FWDB_VERSION 20
652
653 struct fwdb_header {
654 __be32 magic;
655 __be32 version;
656 struct fwdb_country country[];
657 } __packed __aligned(4);
658
ecw2cw(int ecw)659 static int ecw2cw(int ecw)
660 {
661 return (1 << ecw) - 1;
662 }
663
valid_wmm(struct fwdb_wmm_rule * rule)664 static bool valid_wmm(struct fwdb_wmm_rule *rule)
665 {
666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 int i;
668
669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
672 u8 aifsn = ac[i].aifsn;
673
674 if (cw_min >= cw_max)
675 return false;
676
677 if (aifsn < 1)
678 return false;
679 }
680
681 return true;
682 }
683
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685 {
686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687
688 if ((u8 *)rule + sizeof(rule->len) > data + size)
689 return false;
690
691 /* mandatory fields */
692 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 return false;
694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 struct fwdb_wmm_rule *wmm;
697
698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 return false;
700
701 wmm = (void *)(data + wmm_ptr);
702
703 if (!valid_wmm(wmm))
704 return false;
705 }
706 return true;
707 }
708
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)709 static bool valid_country(const u8 *data, unsigned int size,
710 const struct fwdb_country *country)
711 {
712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 struct fwdb_collection *coll = (void *)(data + ptr);
714 __be16 *rules_ptr;
715 unsigned int i;
716
717 /* make sure we can read len/n_rules */
718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 return false;
720
721 /* make sure base struct and all rules fit */
722 if ((u8 *)coll + ALIGN(coll->len, 2) +
723 (coll->n_rules * 2) > data + size)
724 return false;
725
726 /* mandatory fields must exist */
727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 return false;
729
730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731
732 for (i = 0; i < coll->n_rules; i++) {
733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734
735 if (!valid_rule(data, size, rule_ptr))
736 return false;
737 }
738
739 return true;
740 }
741
742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743 #include <keys/asymmetric-type.h>
744
745 static struct key *builtin_regdb_keys;
746
load_builtin_regdb_keys(void)747 static int __init load_builtin_regdb_keys(void)
748 {
749 builtin_regdb_keys =
750 keyring_alloc(".builtin_regdb_keys",
751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 if (IS_ERR(builtin_regdb_keys))
756 return PTR_ERR(builtin_regdb_keys);
757
758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759
760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 x509_load_certificate_list(shipped_regdb_certs,
762 shipped_regdb_certs_len,
763 builtin_regdb_keys);
764 #endif
765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 x509_load_certificate_list(extra_regdb_certs,
768 extra_regdb_certs_len,
769 builtin_regdb_keys);
770 #endif
771
772 return 0;
773 }
774
775 MODULE_FIRMWARE("regulatory.db.p7s");
776
regdb_has_valid_signature(const u8 * data,unsigned int size)777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778 {
779 const struct firmware *sig;
780 bool result;
781
782 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
783 return false;
784
785 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
786 builtin_regdb_keys,
787 VERIFYING_UNSPECIFIED_SIGNATURE,
788 NULL, NULL) == 0;
789
790 release_firmware(sig);
791
792 return result;
793 }
794
free_regdb_keyring(void)795 static void free_regdb_keyring(void)
796 {
797 key_put(builtin_regdb_keys);
798 }
799 #else
load_builtin_regdb_keys(void)800 static int load_builtin_regdb_keys(void)
801 {
802 return 0;
803 }
804
regdb_has_valid_signature(const u8 * data,unsigned int size)805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806 {
807 return true;
808 }
809
free_regdb_keyring(void)810 static void free_regdb_keyring(void)
811 {
812 }
813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814
valid_regdb(const u8 * data,unsigned int size)815 static bool valid_regdb(const u8 *data, unsigned int size)
816 {
817 const struct fwdb_header *hdr = (void *)data;
818 const struct fwdb_country *country;
819
820 if (size < sizeof(*hdr))
821 return false;
822
823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 return false;
825
826 if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 return false;
828
829 if (!regdb_has_valid_signature(data, size))
830 return false;
831
832 country = &hdr->country[0];
833 while ((u8 *)(country + 1) <= data + size) {
834 if (!country->coll_ptr)
835 break;
836 if (!valid_country(data, size, country))
837 return false;
838 country++;
839 }
840
841 return true;
842 }
843
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)844 static void set_wmm_rule(const struct fwdb_header *db,
845 const struct fwdb_country *country,
846 const struct fwdb_rule *rule,
847 struct ieee80211_reg_rule *rrule)
848 {
849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 struct fwdb_wmm_rule *wmm;
851 unsigned int i, wmm_ptr;
852
853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 wmm = (void *)((u8 *)db + wmm_ptr);
855
856 if (!valid_wmm(wmm)) {
857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 country->alpha2[0], country->alpha2[1]);
860 return;
861 }
862
863 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 wmm_rule->client[i].cw_min =
865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
868 wmm_rule->client[i].cot =
869 1000 * be16_to_cpu(wmm->client[i].cot);
870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 }
875
876 rrule->has_wmm = true;
877 }
878
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)879 static int __regdb_query_wmm(const struct fwdb_header *db,
880 const struct fwdb_country *country, int freq,
881 struct ieee80211_reg_rule *rrule)
882 {
883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 int i;
886
887 for (i = 0; i < coll->n_rules; i++) {
888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891
892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 continue;
894
895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 set_wmm_rule(db, country, rule, rrule);
898 return 0;
899 }
900 }
901
902 return -ENODATA;
903 }
904
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906 {
907 const struct fwdb_header *hdr = regdb;
908 const struct fwdb_country *country;
909
910 if (!regdb)
911 return -ENODATA;
912
913 if (IS_ERR(regdb))
914 return PTR_ERR(regdb);
915
916 country = &hdr->country[0];
917 while (country->coll_ptr) {
918 if (alpha2_equal(alpha2, country->alpha2))
919 return __regdb_query_wmm(regdb, country, freq, rule);
920
921 country++;
922 }
923
924 return -ENODATA;
925 }
926 EXPORT_SYMBOL(reg_query_regdb_wmm);
927
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)928 static int regdb_query_country(const struct fwdb_header *db,
929 const struct fwdb_country *country)
930 {
931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 struct ieee80211_regdomain *regdom;
934 unsigned int i;
935
936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 GFP_KERNEL);
938 if (!regdom)
939 return -ENOMEM;
940
941 regdom->n_reg_rules = coll->n_rules;
942 regdom->alpha2[0] = country->alpha2[0];
943 regdom->alpha2[1] = country->alpha2[1];
944 regdom->dfs_region = coll->dfs_region;
945
946 for (i = 0; i < regdom->n_reg_rules; i++) {
947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
951
952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955
956 rrule->power_rule.max_antenna_gain = 0;
957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958
959 rrule->flags = 0;
960 if (rule->flags & FWDB_FLAG_NO_OFDM)
961 rrule->flags |= NL80211_RRF_NO_OFDM;
962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 if (rule->flags & FWDB_FLAG_DFS)
965 rrule->flags |= NL80211_RRF_DFS;
966 if (rule->flags & FWDB_FLAG_NO_IR)
967 rrule->flags |= NL80211_RRF_NO_IR;
968 if (rule->flags & FWDB_FLAG_AUTO_BW)
969 rrule->flags |= NL80211_RRF_AUTO_BW;
970
971 rrule->dfs_cac_ms = 0;
972
973 /* handle optional data */
974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 rrule->dfs_cac_ms =
976 1000 * be16_to_cpu(rule->cac_timeout);
977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 set_wmm_rule(db, country, rule, rrule);
979 }
980
981 return reg_schedule_apply(regdom);
982 }
983
query_regdb(const char * alpha2)984 static int query_regdb(const char *alpha2)
985 {
986 const struct fwdb_header *hdr = regdb;
987 const struct fwdb_country *country;
988
989 ASSERT_RTNL();
990
991 if (IS_ERR(regdb))
992 return PTR_ERR(regdb);
993
994 country = &hdr->country[0];
995 while (country->coll_ptr) {
996 if (alpha2_equal(alpha2, country->alpha2))
997 return regdb_query_country(regdb, country);
998 country++;
999 }
1000
1001 return -ENODATA;
1002 }
1003
regdb_fw_cb(const struct firmware * fw,void * context)1004 static void regdb_fw_cb(const struct firmware *fw, void *context)
1005 {
1006 int set_error = 0;
1007 bool restore = true;
1008 void *db;
1009
1010 if (!fw) {
1011 pr_info("failed to load regulatory.db\n");
1012 set_error = -ENODATA;
1013 } else if (!valid_regdb(fw->data, fw->size)) {
1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 set_error = -EINVAL;
1016 }
1017
1018 rtnl_lock();
1019 if (regdb && !IS_ERR(regdb)) {
1020 /* negative case - a bug
1021 * positive case - can happen due to race in case of multiple cb's in
1022 * queue, due to usage of asynchronous callback
1023 *
1024 * Either case, just restore and free new db.
1025 */
1026 } else if (set_error) {
1027 regdb = ERR_PTR(set_error);
1028 } else if (fw) {
1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 if (db) {
1031 regdb = db;
1032 restore = context && query_regdb(context);
1033 } else {
1034 restore = true;
1035 }
1036 }
1037
1038 if (restore)
1039 restore_regulatory_settings(true, false);
1040
1041 rtnl_unlock();
1042
1043 kfree(context);
1044
1045 release_firmware(fw);
1046 }
1047
1048 MODULE_FIRMWARE("regulatory.db");
1049
query_regdb_file(const char * alpha2)1050 static int query_regdb_file(const char *alpha2)
1051 {
1052 int err;
1053
1054 ASSERT_RTNL();
1055
1056 if (regdb)
1057 return query_regdb(alpha2);
1058
1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 if (!alpha2)
1061 return -ENOMEM;
1062
1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1064 ®_pdev->dev, GFP_KERNEL,
1065 (void *)alpha2, regdb_fw_cb);
1066 if (err)
1067 kfree(alpha2);
1068
1069 return err;
1070 }
1071
reg_reload_regdb(void)1072 int reg_reload_regdb(void)
1073 {
1074 const struct firmware *fw;
1075 void *db;
1076 int err;
1077 const struct ieee80211_regdomain *current_regdomain;
1078 struct regulatory_request *request;
1079
1080 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1081 if (err)
1082 return err;
1083
1084 if (!valid_regdb(fw->data, fw->size)) {
1085 err = -ENODATA;
1086 goto out;
1087 }
1088
1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 if (!db) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094
1095 rtnl_lock();
1096 if (!IS_ERR_OR_NULL(regdb))
1097 kfree(regdb);
1098 regdb = db;
1099
1100 /* reset regulatory domain */
1101 current_regdomain = get_cfg80211_regdom();
1102
1103 request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 if (!request) {
1105 err = -ENOMEM;
1106 goto out_unlock;
1107 }
1108
1109 request->wiphy_idx = WIPHY_IDX_INVALID;
1110 request->alpha2[0] = current_regdomain->alpha2[0];
1111 request->alpha2[1] = current_regdomain->alpha2[1];
1112 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114
1115 reg_process_hint(request);
1116
1117 out_unlock:
1118 rtnl_unlock();
1119 out:
1120 release_firmware(fw);
1121 return err;
1122 }
1123
reg_query_database(struct regulatory_request * request)1124 static bool reg_query_database(struct regulatory_request *request)
1125 {
1126 if (query_regdb_file(request->alpha2) == 0)
1127 return true;
1128
1129 if (call_crda(request->alpha2) == 0)
1130 return true;
1131
1132 return false;
1133 }
1134
reg_is_valid_request(const char * alpha2)1135 bool reg_is_valid_request(const char *alpha2)
1136 {
1137 struct regulatory_request *lr = get_last_request();
1138
1139 if (!lr || lr->processed)
1140 return false;
1141
1142 return alpha2_equal(lr->alpha2, alpha2);
1143 }
1144
reg_get_regdomain(struct wiphy * wiphy)1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146 {
1147 struct regulatory_request *lr = get_last_request();
1148
1149 /*
1150 * Follow the driver's regulatory domain, if present, unless a country
1151 * IE has been processed or a user wants to help compliance further
1152 */
1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 wiphy->regd)
1156 return get_wiphy_regdom(wiphy);
1157
1158 return get_cfg80211_regdom();
1159 }
1160
1161 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 const struct ieee80211_reg_rule *rule)
1164 {
1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 const struct ieee80211_freq_range *freq_range_tmp;
1167 const struct ieee80211_reg_rule *tmp;
1168 u32 start_freq, end_freq, idx, no;
1169
1170 for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 if (rule == &rd->reg_rules[idx])
1172 break;
1173
1174 if (idx == rd->n_reg_rules)
1175 return 0;
1176
1177 /* get start_freq */
1178 no = idx;
1179
1180 while (no) {
1181 tmp = &rd->reg_rules[--no];
1182 freq_range_tmp = &tmp->freq_range;
1183
1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 break;
1186
1187 freq_range = freq_range_tmp;
1188 }
1189
1190 start_freq = freq_range->start_freq_khz;
1191
1192 /* get end_freq */
1193 freq_range = &rule->freq_range;
1194 no = idx;
1195
1196 while (no < rd->n_reg_rules - 1) {
1197 tmp = &rd->reg_rules[++no];
1198 freq_range_tmp = &tmp->freq_range;
1199
1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 break;
1202
1203 freq_range = freq_range_tmp;
1204 }
1205
1206 end_freq = freq_range->end_freq_khz;
1207
1208 return end_freq - start_freq;
1209 }
1210
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 const struct ieee80211_reg_rule *rule)
1213 {
1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215
1216 if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222
1223 /*
1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 * are not allowed.
1226 */
1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230
1231 return bw;
1232 }
1233
1234 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236 {
1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 u32 freq_diff;
1239
1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 return false;
1242
1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 return false;
1245
1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247
1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 freq_range->max_bandwidth_khz > freq_diff)
1250 return false;
1251
1252 return true;
1253 }
1254
is_valid_rd(const struct ieee80211_regdomain * rd)1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256 {
1257 const struct ieee80211_reg_rule *reg_rule = NULL;
1258 unsigned int i;
1259
1260 if (!rd->n_reg_rules)
1261 return false;
1262
1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 return false;
1265
1266 for (i = 0; i < rd->n_reg_rules; i++) {
1267 reg_rule = &rd->reg_rules[i];
1268 if (!is_valid_reg_rule(reg_rule))
1269 return false;
1270 }
1271
1272 return true;
1273 }
1274
1275 /**
1276 * freq_in_rule_band - tells us if a frequency is in a frequency band
1277 * @freq_range: frequency rule we want to query
1278 * @freq_khz: frequency we are inquiring about
1279 *
1280 * This lets us know if a specific frequency rule is or is not relevant to
1281 * a specific frequency's band. Bands are device specific and artificial
1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283 * however it is safe for now to assume that a frequency rule should not be
1284 * part of a frequency's band if the start freq or end freq are off by more
1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286 * 60 GHz band.
1287 * This resolution can be lowered and should be considered as we add
1288 * regulatory rule support for other "bands".
1289 *
1290 * Returns: whether or not the frequency is in the range
1291 */
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 u32 freq_khz)
1294 {
1295 /*
1296 * From 802.11ad: directional multi-gigabit (DMG):
1297 * Pertaining to operation in a frequency band containing a channel
1298 * with the Channel starting frequency above 45 GHz.
1299 */
1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 return true;
1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 return true;
1305 return false;
1306 }
1307
1308 /*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320 }
1321
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325 {
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331
1332 /*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 &wmm_rule2->client[ac],
1411 &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 &wmm_rule2->ap[ac],
1414 &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432 }
1433
1434 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437 {
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459 }
1460
1461 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = ®_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(tmp_rule, rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(rule, tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483 }
1484
1485 /**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503 {
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(&intersected_rule, rd->reg_rules,
1553 &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 rd2->dfs_region);
1561
1562 return rd;
1563 }
1564
1565 /*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
map_regdom_flags(u32 rd_flags)1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY)
1607 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1608 return channel_flags;
1609 }
1610
1611 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1612 freq_reg_info_regd(u32 center_freq,
1613 const struct ieee80211_regdomain *regd, u32 bw)
1614 {
1615 int i;
1616 bool band_rule_found = false;
1617 bool bw_fits = false;
1618
1619 if (!regd)
1620 return ERR_PTR(-EINVAL);
1621
1622 for (i = 0; i < regd->n_reg_rules; i++) {
1623 const struct ieee80211_reg_rule *rr;
1624 const struct ieee80211_freq_range *fr = NULL;
1625
1626 rr = ®d->reg_rules[i];
1627 fr = &rr->freq_range;
1628
1629 /*
1630 * We only need to know if one frequency rule was
1631 * in center_freq's band, that's enough, so let's
1632 * not overwrite it once found
1633 */
1634 if (!band_rule_found)
1635 band_rule_found = freq_in_rule_band(fr, center_freq);
1636
1637 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1638
1639 if (band_rule_found && bw_fits)
1640 return rr;
1641 }
1642
1643 if (!band_rule_found)
1644 return ERR_PTR(-ERANGE);
1645
1646 return ERR_PTR(-EINVAL);
1647 }
1648
1649 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1650 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1651 {
1652 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1653 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1654 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1655 int i = ARRAY_SIZE(bws) - 1;
1656 u32 bw;
1657
1658 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1659 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1660 if (!IS_ERR(reg_rule))
1661 return reg_rule;
1662 }
1663
1664 return reg_rule;
1665 }
1666
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1667 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1668 u32 center_freq)
1669 {
1670 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1671
1672 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1673 }
1674 EXPORT_SYMBOL(freq_reg_info);
1675
reg_initiator_name(enum nl80211_reg_initiator initiator)1676 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1677 {
1678 switch (initiator) {
1679 case NL80211_REGDOM_SET_BY_CORE:
1680 return "core";
1681 case NL80211_REGDOM_SET_BY_USER:
1682 return "user";
1683 case NL80211_REGDOM_SET_BY_DRIVER:
1684 return "driver";
1685 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1686 return "country element";
1687 default:
1688 WARN_ON(1);
1689 return "bug";
1690 }
1691 }
1692 EXPORT_SYMBOL(reg_initiator_name);
1693
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1694 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1695 const struct ieee80211_reg_rule *reg_rule,
1696 const struct ieee80211_channel *chan)
1697 {
1698 const struct ieee80211_freq_range *freq_range = NULL;
1699 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1700 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1701
1702 freq_range = ®_rule->freq_range;
1703
1704 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1705 center_freq_khz = ieee80211_channel_to_khz(chan);
1706 /* Check if auto calculation requested */
1707 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1708 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1709
1710 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1711 if (!cfg80211_does_bw_fit_range(freq_range,
1712 center_freq_khz,
1713 MHZ_TO_KHZ(10)))
1714 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1715 if (!cfg80211_does_bw_fit_range(freq_range,
1716 center_freq_khz,
1717 MHZ_TO_KHZ(20)))
1718 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1719
1720 if (is_s1g) {
1721 /* S1G is strict about non overlapping channels. We can
1722 * calculate which bandwidth is allowed per channel by finding
1723 * the largest bandwidth which cleanly divides the freq_range.
1724 */
1725 int edge_offset;
1726 int ch_bw = max_bandwidth_khz;
1727
1728 while (ch_bw) {
1729 edge_offset = (center_freq_khz - ch_bw / 2) -
1730 freq_range->start_freq_khz;
1731 if (edge_offset % ch_bw == 0) {
1732 switch (KHZ_TO_MHZ(ch_bw)) {
1733 case 1:
1734 bw_flags |= IEEE80211_CHAN_1MHZ;
1735 break;
1736 case 2:
1737 bw_flags |= IEEE80211_CHAN_2MHZ;
1738 break;
1739 case 4:
1740 bw_flags |= IEEE80211_CHAN_4MHZ;
1741 break;
1742 case 8:
1743 bw_flags |= IEEE80211_CHAN_8MHZ;
1744 break;
1745 case 16:
1746 bw_flags |= IEEE80211_CHAN_16MHZ;
1747 break;
1748 default:
1749 /* If we got here, no bandwidths fit on
1750 * this frequency, ie. band edge.
1751 */
1752 bw_flags |= IEEE80211_CHAN_DISABLED;
1753 break;
1754 }
1755 break;
1756 }
1757 ch_bw /= 2;
1758 }
1759 } else {
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1761 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1763 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1765 bw_flags |= IEEE80211_CHAN_NO_HT40;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1767 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1769 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1771 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1772 }
1773 return bw_flags;
1774 }
1775
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1776 static void handle_channel_single_rule(struct wiphy *wiphy,
1777 enum nl80211_reg_initiator initiator,
1778 struct ieee80211_channel *chan,
1779 u32 flags,
1780 struct regulatory_request *lr,
1781 struct wiphy *request_wiphy,
1782 const struct ieee80211_reg_rule *reg_rule)
1783 {
1784 u32 bw_flags = 0;
1785 const struct ieee80211_power_rule *power_rule = NULL;
1786 const struct ieee80211_regdomain *regd;
1787
1788 regd = reg_get_regdomain(wiphy);
1789
1790 power_rule = ®_rule->power_rule;
1791 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1792
1793 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1794 request_wiphy && request_wiphy == wiphy &&
1795 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1796 /*
1797 * This guarantees the driver's requested regulatory domain
1798 * will always be used as a base for further regulatory
1799 * settings
1800 */
1801 chan->flags = chan->orig_flags =
1802 map_regdom_flags(reg_rule->flags) | bw_flags;
1803 chan->max_antenna_gain = chan->orig_mag =
1804 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1805 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1806 (int) MBM_TO_DBM(power_rule->max_eirp);
1807
1808 if (chan->flags & IEEE80211_CHAN_RADAR) {
1809 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1810 if (reg_rule->dfs_cac_ms)
1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812 }
1813
1814 if (chan->flags & IEEE80211_CHAN_PSD)
1815 chan->psd = reg_rule->psd;
1816
1817 return;
1818 }
1819
1820 chan->dfs_state = NL80211_DFS_USABLE;
1821 chan->dfs_state_entered = jiffies;
1822
1823 chan->beacon_found = false;
1824 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1825 chan->max_antenna_gain =
1826 min_t(int, chan->orig_mag,
1827 MBI_TO_DBI(power_rule->max_antenna_gain));
1828 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1829
1830 if (chan->flags & IEEE80211_CHAN_RADAR) {
1831 if (reg_rule->dfs_cac_ms)
1832 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1833 else
1834 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1835 }
1836
1837 if (chan->flags & IEEE80211_CHAN_PSD)
1838 chan->psd = reg_rule->psd;
1839
1840 if (chan->orig_mpwr) {
1841 /*
1842 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1843 * will always follow the passed country IE power settings.
1844 */
1845 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1847 chan->max_power = chan->max_reg_power;
1848 else
1849 chan->max_power = min(chan->orig_mpwr,
1850 chan->max_reg_power);
1851 } else
1852 chan->max_power = chan->max_reg_power;
1853 }
1854
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1855 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1856 enum nl80211_reg_initiator initiator,
1857 struct ieee80211_channel *chan,
1858 u32 flags,
1859 struct regulatory_request *lr,
1860 struct wiphy *request_wiphy,
1861 const struct ieee80211_reg_rule *rrule1,
1862 const struct ieee80211_reg_rule *rrule2,
1863 struct ieee80211_freq_range *comb_range)
1864 {
1865 u32 bw_flags1 = 0;
1866 u32 bw_flags2 = 0;
1867 const struct ieee80211_power_rule *power_rule1 = NULL;
1868 const struct ieee80211_power_rule *power_rule2 = NULL;
1869 const struct ieee80211_regdomain *regd;
1870
1871 regd = reg_get_regdomain(wiphy);
1872
1873 power_rule1 = &rrule1->power_rule;
1874 power_rule2 = &rrule2->power_rule;
1875 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1876 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1877
1878 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1879 request_wiphy && request_wiphy == wiphy &&
1880 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1881 /* This guarantees the driver's requested regulatory domain
1882 * will always be used as a base for further regulatory
1883 * settings
1884 */
1885 chan->flags =
1886 map_regdom_flags(rrule1->flags) |
1887 map_regdom_flags(rrule2->flags) |
1888 bw_flags1 |
1889 bw_flags2;
1890 chan->orig_flags = chan->flags;
1891 chan->max_antenna_gain =
1892 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1893 MBI_TO_DBI(power_rule2->max_antenna_gain));
1894 chan->orig_mag = chan->max_antenna_gain;
1895 chan->max_reg_power =
1896 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1897 MBM_TO_DBM(power_rule2->max_eirp));
1898 chan->max_power = chan->max_reg_power;
1899 chan->orig_mpwr = chan->max_reg_power;
1900
1901 if (chan->flags & IEEE80211_CHAN_RADAR) {
1902 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1903 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1904 chan->dfs_cac_ms = max_t(unsigned int,
1905 rrule1->dfs_cac_ms,
1906 rrule2->dfs_cac_ms);
1907 }
1908
1909 if ((rrule1->flags & NL80211_RRF_PSD) &&
1910 (rrule2->flags & NL80211_RRF_PSD))
1911 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1912 else
1913 chan->flags &= ~NL80211_RRF_PSD;
1914
1915 return;
1916 }
1917
1918 chan->dfs_state = NL80211_DFS_USABLE;
1919 chan->dfs_state_entered = jiffies;
1920
1921 chan->beacon_found = false;
1922 chan->flags = flags | bw_flags1 | bw_flags2 |
1923 map_regdom_flags(rrule1->flags) |
1924 map_regdom_flags(rrule2->flags);
1925
1926 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1927 * (otherwise no adj. rule case), recheck therefore
1928 */
1929 if (cfg80211_does_bw_fit_range(comb_range,
1930 ieee80211_channel_to_khz(chan),
1931 MHZ_TO_KHZ(10)))
1932 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1933 if (cfg80211_does_bw_fit_range(comb_range,
1934 ieee80211_channel_to_khz(chan),
1935 MHZ_TO_KHZ(20)))
1936 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1937
1938 chan->max_antenna_gain =
1939 min_t(int, chan->orig_mag,
1940 min_t(int,
1941 MBI_TO_DBI(power_rule1->max_antenna_gain),
1942 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1943 chan->max_reg_power = min_t(int,
1944 MBM_TO_DBM(power_rule1->max_eirp),
1945 MBM_TO_DBM(power_rule2->max_eirp));
1946
1947 if (chan->flags & IEEE80211_CHAN_RADAR) {
1948 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1949 chan->dfs_cac_ms = max_t(unsigned int,
1950 rrule1->dfs_cac_ms,
1951 rrule2->dfs_cac_ms);
1952 else
1953 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1954 }
1955
1956 if (chan->orig_mpwr) {
1957 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1958 * will always follow the passed country IE power settings.
1959 */
1960 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1961 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1962 chan->max_power = chan->max_reg_power;
1963 else
1964 chan->max_power = min(chan->orig_mpwr,
1965 chan->max_reg_power);
1966 } else {
1967 chan->max_power = chan->max_reg_power;
1968 }
1969 }
1970
1971 /* Note that right now we assume the desired channel bandwidth
1972 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1973 * per channel, the primary and the extension channel).
1974 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1975 static void handle_channel(struct wiphy *wiphy,
1976 enum nl80211_reg_initiator initiator,
1977 struct ieee80211_channel *chan)
1978 {
1979 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1980 struct regulatory_request *lr = get_last_request();
1981 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1982 const struct ieee80211_reg_rule *rrule = NULL;
1983 const struct ieee80211_reg_rule *rrule1 = NULL;
1984 const struct ieee80211_reg_rule *rrule2 = NULL;
1985
1986 u32 flags = chan->orig_flags;
1987
1988 rrule = freq_reg_info(wiphy, orig_chan_freq);
1989 if (IS_ERR(rrule)) {
1990 /* check for adjacent match, therefore get rules for
1991 * chan - 20 MHz and chan + 20 MHz and test
1992 * if reg rules are adjacent
1993 */
1994 rrule1 = freq_reg_info(wiphy,
1995 orig_chan_freq - MHZ_TO_KHZ(20));
1996 rrule2 = freq_reg_info(wiphy,
1997 orig_chan_freq + MHZ_TO_KHZ(20));
1998 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1999 struct ieee80211_freq_range comb_range;
2000
2001 if (rrule1->freq_range.end_freq_khz !=
2002 rrule2->freq_range.start_freq_khz)
2003 goto disable_chan;
2004
2005 comb_range.start_freq_khz =
2006 rrule1->freq_range.start_freq_khz;
2007 comb_range.end_freq_khz =
2008 rrule2->freq_range.end_freq_khz;
2009 comb_range.max_bandwidth_khz =
2010 min_t(u32,
2011 rrule1->freq_range.max_bandwidth_khz,
2012 rrule2->freq_range.max_bandwidth_khz);
2013
2014 if (!cfg80211_does_bw_fit_range(&comb_range,
2015 orig_chan_freq,
2016 MHZ_TO_KHZ(20)))
2017 goto disable_chan;
2018
2019 handle_channel_adjacent_rules(wiphy, initiator, chan,
2020 flags, lr, request_wiphy,
2021 rrule1, rrule2,
2022 &comb_range);
2023 return;
2024 }
2025
2026 disable_chan:
2027 /* We will disable all channels that do not match our
2028 * received regulatory rule unless the hint is coming
2029 * from a Country IE and the Country IE had no information
2030 * about a band. The IEEE 802.11 spec allows for an AP
2031 * to send only a subset of the regulatory rules allowed,
2032 * so an AP in the US that only supports 2.4 GHz may only send
2033 * a country IE with information for the 2.4 GHz band
2034 * while 5 GHz is still supported.
2035 */
2036 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2037 PTR_ERR(rrule) == -ERANGE)
2038 return;
2039
2040 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2041 request_wiphy && request_wiphy == wiphy &&
2042 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2043 pr_debug("Disabling freq %d.%03d MHz for good\n",
2044 chan->center_freq, chan->freq_offset);
2045 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2046 chan->flags = chan->orig_flags;
2047 } else {
2048 pr_debug("Disabling freq %d.%03d MHz\n",
2049 chan->center_freq, chan->freq_offset);
2050 chan->flags |= IEEE80211_CHAN_DISABLED;
2051 }
2052 return;
2053 }
2054
2055 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2056 request_wiphy, rrule);
2057 }
2058
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2059 static void handle_band(struct wiphy *wiphy,
2060 enum nl80211_reg_initiator initiator,
2061 struct ieee80211_supported_band *sband)
2062 {
2063 unsigned int i;
2064
2065 if (!sband)
2066 return;
2067
2068 for (i = 0; i < sband->n_channels; i++)
2069 handle_channel(wiphy, initiator, &sband->channels[i]);
2070 }
2071
reg_request_cell_base(struct regulatory_request * request)2072 static bool reg_request_cell_base(struct regulatory_request *request)
2073 {
2074 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2075 return false;
2076 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2077 }
2078
reg_last_request_cell_base(void)2079 bool reg_last_request_cell_base(void)
2080 {
2081 return reg_request_cell_base(get_last_request());
2082 }
2083
2084 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2085 /* Core specific check */
2086 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2087 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2088 {
2089 struct regulatory_request *lr = get_last_request();
2090
2091 if (!reg_num_devs_support_basehint)
2092 return REG_REQ_IGNORE;
2093
2094 if (reg_request_cell_base(lr) &&
2095 !regdom_changes(pending_request->alpha2))
2096 return REG_REQ_ALREADY_SET;
2097
2098 return REG_REQ_OK;
2099 }
2100
2101 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2102 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2103 {
2104 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2105 }
2106 #else
2107 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2108 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2109 {
2110 return REG_REQ_IGNORE;
2111 }
2112
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2113 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2114 {
2115 return true;
2116 }
2117 #endif
2118
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2119 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2120 {
2121 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2122 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2123 return true;
2124 return false;
2125 }
2126
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2127 static bool ignore_reg_update(struct wiphy *wiphy,
2128 enum nl80211_reg_initiator initiator)
2129 {
2130 struct regulatory_request *lr = get_last_request();
2131
2132 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2133 return true;
2134
2135 if (!lr) {
2136 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2137 reg_initiator_name(initiator));
2138 return true;
2139 }
2140
2141 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2142 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2143 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2144 reg_initiator_name(initiator));
2145 return true;
2146 }
2147
2148 /*
2149 * wiphy->regd will be set once the device has its own
2150 * desired regulatory domain set
2151 */
2152 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2153 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2154 !is_world_regdom(lr->alpha2)) {
2155 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2156 reg_initiator_name(initiator));
2157 return true;
2158 }
2159
2160 if (reg_request_cell_base(lr))
2161 return reg_dev_ignore_cell_hint(wiphy);
2162
2163 return false;
2164 }
2165
reg_is_world_roaming(struct wiphy * wiphy)2166 static bool reg_is_world_roaming(struct wiphy *wiphy)
2167 {
2168 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2169 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2170 struct regulatory_request *lr = get_last_request();
2171
2172 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2173 return true;
2174
2175 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2176 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2177 return true;
2178
2179 return false;
2180 }
2181
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2182 static void reg_call_notifier(struct wiphy *wiphy,
2183 struct regulatory_request *request)
2184 {
2185 if (wiphy->reg_notifier)
2186 wiphy->reg_notifier(wiphy, request);
2187 }
2188
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2189 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2190 struct reg_beacon *reg_beacon)
2191 {
2192 struct ieee80211_supported_band *sband;
2193 struct ieee80211_channel *chan;
2194 bool channel_changed = false;
2195 struct ieee80211_channel chan_before;
2196 struct regulatory_request *lr = get_last_request();
2197
2198 sband = wiphy->bands[reg_beacon->chan.band];
2199 chan = &sband->channels[chan_idx];
2200
2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2202 return;
2203
2204 if (chan->beacon_found)
2205 return;
2206
2207 chan->beacon_found = true;
2208
2209 if (!reg_is_world_roaming(wiphy))
2210 return;
2211
2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 return;
2214
2215 chan_before = *chan;
2216
2217 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 channel_changed = true;
2220 }
2221
2222 if (channel_changed) {
2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2225 reg_call_notifier(wiphy, lr);
2226 }
2227 }
2228
2229 /*
2230 * Called when a scan on a wiphy finds a beacon on
2231 * new channel
2232 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2233 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2234 struct reg_beacon *reg_beacon)
2235 {
2236 unsigned int i;
2237 struct ieee80211_supported_band *sband;
2238
2239 if (!wiphy->bands[reg_beacon->chan.band])
2240 return;
2241
2242 sband = wiphy->bands[reg_beacon->chan.band];
2243
2244 for (i = 0; i < sband->n_channels; i++)
2245 handle_reg_beacon(wiphy, i, reg_beacon);
2246 }
2247
2248 /*
2249 * Called upon reg changes or a new wiphy is added
2250 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2251 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2252 {
2253 unsigned int i;
2254 struct ieee80211_supported_band *sband;
2255 struct reg_beacon *reg_beacon;
2256
2257 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2258 if (!wiphy->bands[reg_beacon->chan.band])
2259 continue;
2260 sband = wiphy->bands[reg_beacon->chan.band];
2261 for (i = 0; i < sband->n_channels; i++)
2262 handle_reg_beacon(wiphy, i, reg_beacon);
2263 }
2264 }
2265
2266 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2267 static void reg_process_beacons(struct wiphy *wiphy)
2268 {
2269 /*
2270 * Means we are just firing up cfg80211, so no beacons would
2271 * have been processed yet.
2272 */
2273 if (!last_request)
2274 return;
2275 wiphy_update_beacon_reg(wiphy);
2276 }
2277
is_ht40_allowed(struct ieee80211_channel * chan)2278 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2279 {
2280 if (!chan)
2281 return false;
2282 if (chan->flags & IEEE80211_CHAN_DISABLED)
2283 return false;
2284 /* This would happen when regulatory rules disallow HT40 completely */
2285 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2286 return false;
2287 return true;
2288 }
2289
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2290 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2291 struct ieee80211_channel *channel)
2292 {
2293 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2294 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2295 const struct ieee80211_regdomain *regd;
2296 unsigned int i;
2297 u32 flags;
2298
2299 if (!is_ht40_allowed(channel)) {
2300 channel->flags |= IEEE80211_CHAN_NO_HT40;
2301 return;
2302 }
2303
2304 /*
2305 * We need to ensure the extension channels exist to
2306 * be able to use HT40- or HT40+, this finds them (or not)
2307 */
2308 for (i = 0; i < sband->n_channels; i++) {
2309 struct ieee80211_channel *c = &sband->channels[i];
2310
2311 if (c->center_freq == (channel->center_freq - 20))
2312 channel_before = c;
2313 if (c->center_freq == (channel->center_freq + 20))
2314 channel_after = c;
2315 }
2316
2317 flags = 0;
2318 regd = get_wiphy_regdom(wiphy);
2319 if (regd) {
2320 const struct ieee80211_reg_rule *reg_rule =
2321 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2322 regd, MHZ_TO_KHZ(20));
2323
2324 if (!IS_ERR(reg_rule))
2325 flags = reg_rule->flags;
2326 }
2327
2328 /*
2329 * Please note that this assumes target bandwidth is 20 MHz,
2330 * if that ever changes we also need to change the below logic
2331 * to include that as well.
2332 */
2333 if (!is_ht40_allowed(channel_before) ||
2334 flags & NL80211_RRF_NO_HT40MINUS)
2335 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2336 else
2337 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2338
2339 if (!is_ht40_allowed(channel_after) ||
2340 flags & NL80211_RRF_NO_HT40PLUS)
2341 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2342 else
2343 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2344 }
2345
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2346 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2347 struct ieee80211_supported_band *sband)
2348 {
2349 unsigned int i;
2350
2351 if (!sband)
2352 return;
2353
2354 for (i = 0; i < sband->n_channels; i++)
2355 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2356 }
2357
reg_process_ht_flags(struct wiphy * wiphy)2358 static void reg_process_ht_flags(struct wiphy *wiphy)
2359 {
2360 enum nl80211_band band;
2361
2362 if (!wiphy)
2363 return;
2364
2365 for (band = 0; band < NUM_NL80211_BANDS; band++)
2366 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2367 }
2368
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2369 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2370 {
2371 struct cfg80211_chan_def chandef = {};
2372 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2373 enum nl80211_iftype iftype;
2374 bool ret;
2375 int link;
2376
2377 iftype = wdev->iftype;
2378
2379 /* make sure the interface is active */
2380 if (!wdev->netdev || !netif_running(wdev->netdev))
2381 return true;
2382
2383 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2384 struct ieee80211_channel *chan;
2385
2386 if (!wdev->valid_links && link > 0)
2387 break;
2388 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2389 continue;
2390 switch (iftype) {
2391 case NL80211_IFTYPE_AP:
2392 case NL80211_IFTYPE_P2P_GO:
2393 if (!wdev->links[link].ap.beacon_interval)
2394 continue;
2395 chandef = wdev->links[link].ap.chandef;
2396 break;
2397 case NL80211_IFTYPE_MESH_POINT:
2398 if (!wdev->u.mesh.beacon_interval)
2399 continue;
2400 chandef = wdev->u.mesh.chandef;
2401 break;
2402 case NL80211_IFTYPE_ADHOC:
2403 if (!wdev->u.ibss.ssid_len)
2404 continue;
2405 chandef = wdev->u.ibss.chandef;
2406 break;
2407 case NL80211_IFTYPE_STATION:
2408 case NL80211_IFTYPE_P2P_CLIENT:
2409 /* Maybe we could consider disabling that link only? */
2410 if (!wdev->links[link].client.current_bss)
2411 continue;
2412
2413 chan = wdev->links[link].client.current_bss->pub.channel;
2414 if (!chan)
2415 continue;
2416
2417 if (!rdev->ops->get_channel ||
2418 rdev_get_channel(rdev, wdev, link, &chandef))
2419 cfg80211_chandef_create(&chandef, chan,
2420 NL80211_CHAN_NO_HT);
2421 break;
2422 case NL80211_IFTYPE_MONITOR:
2423 case NL80211_IFTYPE_AP_VLAN:
2424 case NL80211_IFTYPE_P2P_DEVICE:
2425 /* no enforcement required */
2426 break;
2427 case NL80211_IFTYPE_OCB:
2428 if (!wdev->u.ocb.chandef.chan)
2429 continue;
2430 chandef = wdev->u.ocb.chandef;
2431 break;
2432 case NL80211_IFTYPE_NAN:
2433 /* we have no info, but NAN is also pretty universal */
2434 continue;
2435 default:
2436 /* others not implemented for now */
2437 WARN_ON_ONCE(1);
2438 break;
2439 }
2440
2441 switch (iftype) {
2442 case NL80211_IFTYPE_AP:
2443 case NL80211_IFTYPE_P2P_GO:
2444 case NL80211_IFTYPE_ADHOC:
2445 case NL80211_IFTYPE_MESH_POINT:
2446 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2447 iftype);
2448 if (!ret)
2449 return ret;
2450 break;
2451 case NL80211_IFTYPE_STATION:
2452 case NL80211_IFTYPE_P2P_CLIENT:
2453 ret = cfg80211_chandef_usable(wiphy, &chandef,
2454 IEEE80211_CHAN_DISABLED);
2455 if (!ret)
2456 return ret;
2457 break;
2458 default:
2459 break;
2460 }
2461 }
2462
2463 return true;
2464 }
2465
reg_leave_invalid_chans(struct wiphy * wiphy)2466 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2467 {
2468 struct wireless_dev *wdev;
2469 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2470
2471 guard(wiphy)(wiphy);
2472
2473 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2474 if (!reg_wdev_chan_valid(wiphy, wdev))
2475 cfg80211_leave(rdev, wdev);
2476 }
2477
reg_check_chans_work(struct work_struct * work)2478 static void reg_check_chans_work(struct work_struct *work)
2479 {
2480 struct cfg80211_registered_device *rdev;
2481
2482 pr_debug("Verifying active interfaces after reg change\n");
2483 rtnl_lock();
2484
2485 for_each_rdev(rdev)
2486 reg_leave_invalid_chans(&rdev->wiphy);
2487
2488 rtnl_unlock();
2489 }
2490
reg_check_channels(void)2491 void reg_check_channels(void)
2492 {
2493 /*
2494 * Give usermode a chance to do something nicer (move to another
2495 * channel, orderly disconnection), before forcing a disconnection.
2496 */
2497 mod_delayed_work(system_power_efficient_wq,
2498 ®_check_chans,
2499 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2500 }
2501
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2502 static void wiphy_update_regulatory(struct wiphy *wiphy,
2503 enum nl80211_reg_initiator initiator)
2504 {
2505 enum nl80211_band band;
2506 struct regulatory_request *lr = get_last_request();
2507
2508 if (ignore_reg_update(wiphy, initiator)) {
2509 /*
2510 * Regulatory updates set by CORE are ignored for custom
2511 * regulatory cards. Let us notify the changes to the driver,
2512 * as some drivers used this to restore its orig_* reg domain.
2513 */
2514 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2515 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2516 !(wiphy->regulatory_flags &
2517 REGULATORY_WIPHY_SELF_MANAGED))
2518 reg_call_notifier(wiphy, lr);
2519 return;
2520 }
2521
2522 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2523
2524 for (band = 0; band < NUM_NL80211_BANDS; band++)
2525 handle_band(wiphy, initiator, wiphy->bands[band]);
2526
2527 reg_process_beacons(wiphy);
2528 reg_process_ht_flags(wiphy);
2529 reg_call_notifier(wiphy, lr);
2530 }
2531
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2532 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2533 {
2534 struct cfg80211_registered_device *rdev;
2535 struct wiphy *wiphy;
2536
2537 ASSERT_RTNL();
2538
2539 for_each_rdev(rdev) {
2540 wiphy = &rdev->wiphy;
2541 wiphy_update_regulatory(wiphy, initiator);
2542 }
2543
2544 reg_check_channels();
2545 }
2546
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2547 static void handle_channel_custom(struct wiphy *wiphy,
2548 struct ieee80211_channel *chan,
2549 const struct ieee80211_regdomain *regd,
2550 u32 min_bw)
2551 {
2552 u32 bw_flags = 0;
2553 const struct ieee80211_reg_rule *reg_rule = NULL;
2554 const struct ieee80211_power_rule *power_rule = NULL;
2555 u32 bw, center_freq_khz;
2556
2557 center_freq_khz = ieee80211_channel_to_khz(chan);
2558 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2559 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2560 if (!IS_ERR(reg_rule))
2561 break;
2562 }
2563
2564 if (IS_ERR_OR_NULL(reg_rule)) {
2565 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2566 chan->center_freq, chan->freq_offset);
2567 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2568 chan->flags |= IEEE80211_CHAN_DISABLED;
2569 } else {
2570 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2571 chan->flags = chan->orig_flags;
2572 }
2573 return;
2574 }
2575
2576 power_rule = ®_rule->power_rule;
2577 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2578
2579 chan->dfs_state_entered = jiffies;
2580 chan->dfs_state = NL80211_DFS_USABLE;
2581
2582 chan->beacon_found = false;
2583
2584 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2585 chan->flags = chan->orig_flags | bw_flags |
2586 map_regdom_flags(reg_rule->flags);
2587 else
2588 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2589
2590 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2591 chan->max_reg_power = chan->max_power =
2592 (int) MBM_TO_DBM(power_rule->max_eirp);
2593
2594 if (chan->flags & IEEE80211_CHAN_RADAR) {
2595 if (reg_rule->dfs_cac_ms)
2596 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2597 else
2598 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2599 }
2600
2601 if (chan->flags & IEEE80211_CHAN_PSD)
2602 chan->psd = reg_rule->psd;
2603
2604 chan->max_power = chan->max_reg_power;
2605 }
2606
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2607 static void handle_band_custom(struct wiphy *wiphy,
2608 struct ieee80211_supported_band *sband,
2609 const struct ieee80211_regdomain *regd)
2610 {
2611 unsigned int i;
2612
2613 if (!sband)
2614 return;
2615
2616 /*
2617 * We currently assume that you always want at least 20 MHz,
2618 * otherwise channel 12 might get enabled if this rule is
2619 * compatible to US, which permits 2402 - 2472 MHz.
2620 */
2621 for (i = 0; i < sband->n_channels; i++)
2622 handle_channel_custom(wiphy, &sband->channels[i], regd,
2623 MHZ_TO_KHZ(20));
2624 }
2625
2626 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2627 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2628 const struct ieee80211_regdomain *regd)
2629 {
2630 const struct ieee80211_regdomain *new_regd, *tmp;
2631 enum nl80211_band band;
2632 unsigned int bands_set = 0;
2633
2634 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2635 "wiphy should have REGULATORY_CUSTOM_REG\n");
2636 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2637
2638 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2639 if (!wiphy->bands[band])
2640 continue;
2641 handle_band_custom(wiphy, wiphy->bands[band], regd);
2642 bands_set++;
2643 }
2644
2645 /*
2646 * no point in calling this if it won't have any effect
2647 * on your device's supported bands.
2648 */
2649 WARN_ON(!bands_set);
2650 new_regd = reg_copy_regd(regd);
2651 if (IS_ERR(new_regd))
2652 return;
2653
2654 rtnl_lock();
2655 scoped_guard(wiphy, wiphy) {
2656 tmp = get_wiphy_regdom(wiphy);
2657 rcu_assign_pointer(wiphy->regd, new_regd);
2658 rcu_free_regdom(tmp);
2659 }
2660 rtnl_unlock();
2661 }
2662 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2663
reg_set_request_processed(void)2664 static void reg_set_request_processed(void)
2665 {
2666 bool need_more_processing = false;
2667 struct regulatory_request *lr = get_last_request();
2668
2669 lr->processed = true;
2670
2671 spin_lock(®_requests_lock);
2672 if (!list_empty(®_requests_list))
2673 need_more_processing = true;
2674 spin_unlock(®_requests_lock);
2675
2676 cancel_crda_timeout();
2677
2678 if (need_more_processing)
2679 schedule_work(®_work);
2680 }
2681
2682 /**
2683 * reg_process_hint_core - process core regulatory requests
2684 * @core_request: a pending core regulatory request
2685 *
2686 * The wireless subsystem can use this function to process
2687 * a regulatory request issued by the regulatory core.
2688 *
2689 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2690 * hint was processed or ignored
2691 */
2692 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2693 reg_process_hint_core(struct regulatory_request *core_request)
2694 {
2695 if (reg_query_database(core_request)) {
2696 core_request->intersect = false;
2697 core_request->processed = false;
2698 reg_update_last_request(core_request);
2699 return REG_REQ_OK;
2700 }
2701
2702 return REG_REQ_IGNORE;
2703 }
2704
2705 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2706 __reg_process_hint_user(struct regulatory_request *user_request)
2707 {
2708 struct regulatory_request *lr = get_last_request();
2709
2710 if (reg_request_cell_base(user_request))
2711 return reg_ignore_cell_hint(user_request);
2712
2713 if (reg_request_cell_base(lr))
2714 return REG_REQ_IGNORE;
2715
2716 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2717 return REG_REQ_INTERSECT;
2718 /*
2719 * If the user knows better the user should set the regdom
2720 * to their country before the IE is picked up
2721 */
2722 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2723 lr->intersect)
2724 return REG_REQ_IGNORE;
2725 /*
2726 * Process user requests only after previous user/driver/core
2727 * requests have been processed
2728 */
2729 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2730 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2731 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2732 regdom_changes(lr->alpha2))
2733 return REG_REQ_IGNORE;
2734
2735 if (!regdom_changes(user_request->alpha2))
2736 return REG_REQ_ALREADY_SET;
2737
2738 return REG_REQ_OK;
2739 }
2740
2741 /**
2742 * reg_process_hint_user - process user regulatory requests
2743 * @user_request: a pending user regulatory request
2744 *
2745 * The wireless subsystem can use this function to process
2746 * a regulatory request initiated by userspace.
2747 *
2748 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2749 * hint was processed or ignored
2750 */
2751 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2752 reg_process_hint_user(struct regulatory_request *user_request)
2753 {
2754 enum reg_request_treatment treatment;
2755
2756 treatment = __reg_process_hint_user(user_request);
2757 if (treatment == REG_REQ_IGNORE ||
2758 treatment == REG_REQ_ALREADY_SET)
2759 return REG_REQ_IGNORE;
2760
2761 user_request->intersect = treatment == REG_REQ_INTERSECT;
2762 user_request->processed = false;
2763
2764 if (reg_query_database(user_request)) {
2765 reg_update_last_request(user_request);
2766 user_alpha2[0] = user_request->alpha2[0];
2767 user_alpha2[1] = user_request->alpha2[1];
2768 return REG_REQ_OK;
2769 }
2770
2771 return REG_REQ_IGNORE;
2772 }
2773
2774 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2775 __reg_process_hint_driver(struct regulatory_request *driver_request)
2776 {
2777 struct regulatory_request *lr = get_last_request();
2778
2779 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2780 if (regdom_changes(driver_request->alpha2))
2781 return REG_REQ_OK;
2782 return REG_REQ_ALREADY_SET;
2783 }
2784
2785 /*
2786 * This would happen if you unplug and plug your card
2787 * back in or if you add a new device for which the previously
2788 * loaded card also agrees on the regulatory domain.
2789 */
2790 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2791 !regdom_changes(driver_request->alpha2))
2792 return REG_REQ_ALREADY_SET;
2793
2794 return REG_REQ_INTERSECT;
2795 }
2796
2797 /**
2798 * reg_process_hint_driver - process driver regulatory requests
2799 * @wiphy: the wireless device for the regulatory request
2800 * @driver_request: a pending driver regulatory request
2801 *
2802 * The wireless subsystem can use this function to process
2803 * a regulatory request issued by an 802.11 driver.
2804 *
2805 * Returns: one of the different reg request treatment values.
2806 */
2807 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2808 reg_process_hint_driver(struct wiphy *wiphy,
2809 struct regulatory_request *driver_request)
2810 {
2811 const struct ieee80211_regdomain *regd, *tmp;
2812 enum reg_request_treatment treatment;
2813
2814 treatment = __reg_process_hint_driver(driver_request);
2815
2816 switch (treatment) {
2817 case REG_REQ_OK:
2818 break;
2819 case REG_REQ_IGNORE:
2820 return REG_REQ_IGNORE;
2821 case REG_REQ_INTERSECT:
2822 case REG_REQ_ALREADY_SET:
2823 regd = reg_copy_regd(get_cfg80211_regdom());
2824 if (IS_ERR(regd))
2825 return REG_REQ_IGNORE;
2826
2827 tmp = get_wiphy_regdom(wiphy);
2828 ASSERT_RTNL();
2829 scoped_guard(wiphy, wiphy) {
2830 rcu_assign_pointer(wiphy->regd, regd);
2831 }
2832 rcu_free_regdom(tmp);
2833 }
2834
2835
2836 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2837 driver_request->processed = false;
2838
2839 /*
2840 * Since CRDA will not be called in this case as we already
2841 * have applied the requested regulatory domain before we just
2842 * inform userspace we have processed the request
2843 */
2844 if (treatment == REG_REQ_ALREADY_SET) {
2845 nl80211_send_reg_change_event(driver_request);
2846 reg_update_last_request(driver_request);
2847 reg_set_request_processed();
2848 return REG_REQ_ALREADY_SET;
2849 }
2850
2851 if (reg_query_database(driver_request)) {
2852 reg_update_last_request(driver_request);
2853 return REG_REQ_OK;
2854 }
2855
2856 return REG_REQ_IGNORE;
2857 }
2858
2859 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2860 __reg_process_hint_country_ie(struct wiphy *wiphy,
2861 struct regulatory_request *country_ie_request)
2862 {
2863 struct wiphy *last_wiphy = NULL;
2864 struct regulatory_request *lr = get_last_request();
2865
2866 if (reg_request_cell_base(lr)) {
2867 /* Trust a Cell base station over the AP's country IE */
2868 if (regdom_changes(country_ie_request->alpha2))
2869 return REG_REQ_IGNORE;
2870 return REG_REQ_ALREADY_SET;
2871 } else {
2872 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2873 return REG_REQ_IGNORE;
2874 }
2875
2876 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2877 return -EINVAL;
2878
2879 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2880 return REG_REQ_OK;
2881
2882 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2883
2884 if (last_wiphy != wiphy) {
2885 /*
2886 * Two cards with two APs claiming different
2887 * Country IE alpha2s. We could
2888 * intersect them, but that seems unlikely
2889 * to be correct. Reject second one for now.
2890 */
2891 if (regdom_changes(country_ie_request->alpha2))
2892 return REG_REQ_IGNORE;
2893 return REG_REQ_ALREADY_SET;
2894 }
2895
2896 if (regdom_changes(country_ie_request->alpha2))
2897 return REG_REQ_OK;
2898 return REG_REQ_ALREADY_SET;
2899 }
2900
2901 /**
2902 * reg_process_hint_country_ie - process regulatory requests from country IEs
2903 * @wiphy: the wireless device for the regulatory request
2904 * @country_ie_request: a regulatory request from a country IE
2905 *
2906 * The wireless subsystem can use this function to process
2907 * a regulatory request issued by a country Information Element.
2908 *
2909 * Returns: one of the different reg request treatment values.
2910 */
2911 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2912 reg_process_hint_country_ie(struct wiphy *wiphy,
2913 struct regulatory_request *country_ie_request)
2914 {
2915 enum reg_request_treatment treatment;
2916
2917 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2918
2919 switch (treatment) {
2920 case REG_REQ_OK:
2921 break;
2922 case REG_REQ_IGNORE:
2923 return REG_REQ_IGNORE;
2924 case REG_REQ_ALREADY_SET:
2925 reg_free_request(country_ie_request);
2926 return REG_REQ_ALREADY_SET;
2927 case REG_REQ_INTERSECT:
2928 /*
2929 * This doesn't happen yet, not sure we
2930 * ever want to support it for this case.
2931 */
2932 WARN_ONCE(1, "Unexpected intersection for country elements");
2933 return REG_REQ_IGNORE;
2934 }
2935
2936 country_ie_request->intersect = false;
2937 country_ie_request->processed = false;
2938
2939 if (reg_query_database(country_ie_request)) {
2940 reg_update_last_request(country_ie_request);
2941 return REG_REQ_OK;
2942 }
2943
2944 return REG_REQ_IGNORE;
2945 }
2946
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2947 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2948 {
2949 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2950 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2951 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2952 bool dfs_domain_same;
2953
2954 rcu_read_lock();
2955
2956 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2957 wiphy1_regd = rcu_dereference(wiphy1->regd);
2958 if (!wiphy1_regd)
2959 wiphy1_regd = cfg80211_regd;
2960
2961 wiphy2_regd = rcu_dereference(wiphy2->regd);
2962 if (!wiphy2_regd)
2963 wiphy2_regd = cfg80211_regd;
2964
2965 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2966
2967 rcu_read_unlock();
2968
2969 return dfs_domain_same;
2970 }
2971
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2972 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2973 struct ieee80211_channel *src_chan)
2974 {
2975 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2976 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2977 return;
2978
2979 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2980 src_chan->flags & IEEE80211_CHAN_DISABLED)
2981 return;
2982
2983 if (src_chan->center_freq == dst_chan->center_freq &&
2984 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2985 dst_chan->dfs_state = src_chan->dfs_state;
2986 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2987 }
2988 }
2989
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2990 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2991 struct wiphy *src_wiphy)
2992 {
2993 struct ieee80211_supported_band *src_sband, *dst_sband;
2994 struct ieee80211_channel *src_chan, *dst_chan;
2995 int i, j, band;
2996
2997 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2998 return;
2999
3000 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3001 dst_sband = dst_wiphy->bands[band];
3002 src_sband = src_wiphy->bands[band];
3003 if (!dst_sband || !src_sband)
3004 continue;
3005
3006 for (i = 0; i < dst_sband->n_channels; i++) {
3007 dst_chan = &dst_sband->channels[i];
3008 for (j = 0; j < src_sband->n_channels; j++) {
3009 src_chan = &src_sband->channels[j];
3010 reg_copy_dfs_chan_state(dst_chan, src_chan);
3011 }
3012 }
3013 }
3014 }
3015
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3016 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3017 {
3018 struct cfg80211_registered_device *rdev;
3019
3020 ASSERT_RTNL();
3021
3022 for_each_rdev(rdev) {
3023 if (wiphy == &rdev->wiphy)
3024 continue;
3025 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3026 }
3027 }
3028
3029 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3030 static void reg_process_hint(struct regulatory_request *reg_request)
3031 {
3032 struct wiphy *wiphy = NULL;
3033 enum reg_request_treatment treatment;
3034 enum nl80211_reg_initiator initiator = reg_request->initiator;
3035
3036 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3037 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3038
3039 switch (initiator) {
3040 case NL80211_REGDOM_SET_BY_CORE:
3041 treatment = reg_process_hint_core(reg_request);
3042 break;
3043 case NL80211_REGDOM_SET_BY_USER:
3044 treatment = reg_process_hint_user(reg_request);
3045 break;
3046 case NL80211_REGDOM_SET_BY_DRIVER:
3047 if (!wiphy)
3048 goto out_free;
3049 treatment = reg_process_hint_driver(wiphy, reg_request);
3050 break;
3051 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3052 if (!wiphy)
3053 goto out_free;
3054 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3055 break;
3056 default:
3057 WARN(1, "invalid initiator %d\n", initiator);
3058 goto out_free;
3059 }
3060
3061 if (treatment == REG_REQ_IGNORE)
3062 goto out_free;
3063
3064 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3065 "unexpected treatment value %d\n", treatment);
3066
3067 /* This is required so that the orig_* parameters are saved.
3068 * NOTE: treatment must be set for any case that reaches here!
3069 */
3070 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3071 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3072 wiphy_update_regulatory(wiphy, initiator);
3073 wiphy_all_share_dfs_chan_state(wiphy);
3074 reg_check_channels();
3075 }
3076
3077 return;
3078
3079 out_free:
3080 reg_free_request(reg_request);
3081 }
3082
notify_self_managed_wiphys(struct regulatory_request * request)3083 static void notify_self_managed_wiphys(struct regulatory_request *request)
3084 {
3085 struct cfg80211_registered_device *rdev;
3086 struct wiphy *wiphy;
3087
3088 for_each_rdev(rdev) {
3089 wiphy = &rdev->wiphy;
3090 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3091 request->initiator == NL80211_REGDOM_SET_BY_USER)
3092 reg_call_notifier(wiphy, request);
3093 }
3094 }
3095
3096 /*
3097 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3098 * Regulatory hints come on a first come first serve basis and we
3099 * must process each one atomically.
3100 */
reg_process_pending_hints(void)3101 static void reg_process_pending_hints(void)
3102 {
3103 struct regulatory_request *reg_request, *lr;
3104
3105 lr = get_last_request();
3106
3107 /* When last_request->processed becomes true this will be rescheduled */
3108 if (lr && !lr->processed) {
3109 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3110 return;
3111 }
3112
3113 spin_lock(®_requests_lock);
3114
3115 if (list_empty(®_requests_list)) {
3116 spin_unlock(®_requests_lock);
3117 return;
3118 }
3119
3120 reg_request = list_first_entry(®_requests_list,
3121 struct regulatory_request,
3122 list);
3123 list_del_init(®_request->list);
3124
3125 spin_unlock(®_requests_lock);
3126
3127 notify_self_managed_wiphys(reg_request);
3128
3129 reg_process_hint(reg_request);
3130
3131 lr = get_last_request();
3132
3133 spin_lock(®_requests_lock);
3134 if (!list_empty(®_requests_list) && lr && lr->processed)
3135 schedule_work(®_work);
3136 spin_unlock(®_requests_lock);
3137 }
3138
3139 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3140 static void reg_process_pending_beacon_hints(void)
3141 {
3142 struct cfg80211_registered_device *rdev;
3143 struct reg_beacon *pending_beacon, *tmp;
3144
3145 /* This goes through the _pending_ beacon list */
3146 spin_lock_bh(®_pending_beacons_lock);
3147
3148 list_for_each_entry_safe(pending_beacon, tmp,
3149 ®_pending_beacons, list) {
3150 list_del_init(&pending_beacon->list);
3151
3152 /* Applies the beacon hint to current wiphys */
3153 for_each_rdev(rdev)
3154 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3155
3156 /* Remembers the beacon hint for new wiphys or reg changes */
3157 list_add_tail(&pending_beacon->list, ®_beacon_list);
3158 }
3159
3160 spin_unlock_bh(®_pending_beacons_lock);
3161 }
3162
reg_process_self_managed_hint(struct wiphy * wiphy)3163 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3164 {
3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166 const struct ieee80211_regdomain *tmp;
3167 const struct ieee80211_regdomain *regd;
3168 enum nl80211_band band;
3169 struct regulatory_request request = {};
3170
3171 ASSERT_RTNL();
3172 lockdep_assert_wiphy(wiphy);
3173
3174 spin_lock(®_requests_lock);
3175 regd = rdev->requested_regd;
3176 rdev->requested_regd = NULL;
3177 spin_unlock(®_requests_lock);
3178
3179 if (!regd)
3180 return;
3181
3182 tmp = get_wiphy_regdom(wiphy);
3183 rcu_assign_pointer(wiphy->regd, regd);
3184 rcu_free_regdom(tmp);
3185
3186 for (band = 0; band < NUM_NL80211_BANDS; band++)
3187 handle_band_custom(wiphy, wiphy->bands[band], regd);
3188
3189 reg_process_ht_flags(wiphy);
3190
3191 request.wiphy_idx = get_wiphy_idx(wiphy);
3192 request.alpha2[0] = regd->alpha2[0];
3193 request.alpha2[1] = regd->alpha2[1];
3194 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3195
3196 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3197 reg_call_notifier(wiphy, &request);
3198
3199 nl80211_send_wiphy_reg_change_event(&request);
3200 }
3201
reg_process_self_managed_hints(void)3202 static void reg_process_self_managed_hints(void)
3203 {
3204 struct cfg80211_registered_device *rdev;
3205
3206 ASSERT_RTNL();
3207
3208 for_each_rdev(rdev) {
3209 guard(wiphy)(&rdev->wiphy);
3210
3211 reg_process_self_managed_hint(&rdev->wiphy);
3212 }
3213
3214 reg_check_channels();
3215 }
3216
reg_todo(struct work_struct * work)3217 static void reg_todo(struct work_struct *work)
3218 {
3219 rtnl_lock();
3220 reg_process_pending_hints();
3221 reg_process_pending_beacon_hints();
3222 reg_process_self_managed_hints();
3223 rtnl_unlock();
3224 }
3225
queue_regulatory_request(struct regulatory_request * request)3226 static void queue_regulatory_request(struct regulatory_request *request)
3227 {
3228 request->alpha2[0] = toupper(request->alpha2[0]);
3229 request->alpha2[1] = toupper(request->alpha2[1]);
3230
3231 spin_lock(®_requests_lock);
3232 list_add_tail(&request->list, ®_requests_list);
3233 spin_unlock(®_requests_lock);
3234
3235 schedule_work(®_work);
3236 }
3237
3238 /*
3239 * Core regulatory hint -- happens during cfg80211_init()
3240 * and when we restore regulatory settings.
3241 */
regulatory_hint_core(const char * alpha2)3242 static int regulatory_hint_core(const char *alpha2)
3243 {
3244 struct regulatory_request *request;
3245
3246 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3247 if (!request)
3248 return -ENOMEM;
3249
3250 request->alpha2[0] = alpha2[0];
3251 request->alpha2[1] = alpha2[1];
3252 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3253 request->wiphy_idx = WIPHY_IDX_INVALID;
3254
3255 queue_regulatory_request(request);
3256
3257 return 0;
3258 }
3259
3260 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3261 int regulatory_hint_user(const char *alpha2,
3262 enum nl80211_user_reg_hint_type user_reg_hint_type)
3263 {
3264 struct regulatory_request *request;
3265
3266 if (WARN_ON(!alpha2))
3267 return -EINVAL;
3268
3269 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3270 return -EINVAL;
3271
3272 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3273 if (!request)
3274 return -ENOMEM;
3275
3276 request->wiphy_idx = WIPHY_IDX_INVALID;
3277 request->alpha2[0] = alpha2[0];
3278 request->alpha2[1] = alpha2[1];
3279 request->initiator = NL80211_REGDOM_SET_BY_USER;
3280 request->user_reg_hint_type = user_reg_hint_type;
3281
3282 /* Allow calling CRDA again */
3283 reset_crda_timeouts();
3284
3285 queue_regulatory_request(request);
3286
3287 return 0;
3288 }
3289
regulatory_hint_indoor(bool is_indoor,u32 portid)3290 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3291 {
3292 spin_lock(®_indoor_lock);
3293
3294 /* It is possible that more than one user space process is trying to
3295 * configure the indoor setting. To handle such cases, clear the indoor
3296 * setting in case that some process does not think that the device
3297 * is operating in an indoor environment. In addition, if a user space
3298 * process indicates that it is controlling the indoor setting, save its
3299 * portid, i.e., make it the owner.
3300 */
3301 reg_is_indoor = is_indoor;
3302 if (reg_is_indoor) {
3303 if (!reg_is_indoor_portid)
3304 reg_is_indoor_portid = portid;
3305 } else {
3306 reg_is_indoor_portid = 0;
3307 }
3308
3309 spin_unlock(®_indoor_lock);
3310
3311 if (!is_indoor)
3312 reg_check_channels();
3313 }
3314
regulatory_netlink_notify(u32 portid)3315 void regulatory_netlink_notify(u32 portid)
3316 {
3317 spin_lock(®_indoor_lock);
3318
3319 if (reg_is_indoor_portid != portid) {
3320 spin_unlock(®_indoor_lock);
3321 return;
3322 }
3323
3324 reg_is_indoor = false;
3325 reg_is_indoor_portid = 0;
3326
3327 spin_unlock(®_indoor_lock);
3328
3329 reg_check_channels();
3330 }
3331
3332 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3333 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334 {
3335 struct regulatory_request *request;
3336
3337 if (WARN_ON(!alpha2 || !wiphy))
3338 return -EINVAL;
3339
3340 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343 if (!request)
3344 return -ENOMEM;
3345
3346 request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348 request->alpha2[0] = alpha2[0];
3349 request->alpha2[1] = alpha2[1];
3350 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352 /* Allow calling CRDA again */
3353 reset_crda_timeouts();
3354
3355 queue_regulatory_request(request);
3356
3357 return 0;
3358 }
3359 EXPORT_SYMBOL(regulatory_hint);
3360
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3361 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362 const u8 *country_ie, u8 country_ie_len)
3363 {
3364 char alpha2[2];
3365 enum environment_cap env = ENVIRON_ANY;
3366 struct regulatory_request *request = NULL, *lr;
3367
3368 /* IE len must be evenly divisible by 2 */
3369 if (country_ie_len & 0x01)
3370 return;
3371
3372 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373 return;
3374
3375 request = kzalloc(sizeof(*request), GFP_KERNEL);
3376 if (!request)
3377 return;
3378
3379 alpha2[0] = country_ie[0];
3380 alpha2[1] = country_ie[1];
3381
3382 if (country_ie[2] == 'I')
3383 env = ENVIRON_INDOOR;
3384 else if (country_ie[2] == 'O')
3385 env = ENVIRON_OUTDOOR;
3386
3387 rcu_read_lock();
3388 lr = get_last_request();
3389
3390 if (unlikely(!lr))
3391 goto out;
3392
3393 /*
3394 * We will run this only upon a successful connection on cfg80211.
3395 * We leave conflict resolution to the workqueue, where can hold
3396 * the RTNL.
3397 */
3398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399 lr->wiphy_idx != WIPHY_IDX_INVALID)
3400 goto out;
3401
3402 request->wiphy_idx = get_wiphy_idx(wiphy);
3403 request->alpha2[0] = alpha2[0];
3404 request->alpha2[1] = alpha2[1];
3405 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406 request->country_ie_env = env;
3407
3408 /* Allow calling CRDA again */
3409 reset_crda_timeouts();
3410
3411 queue_regulatory_request(request);
3412 request = NULL;
3413 out:
3414 kfree(request);
3415 rcu_read_unlock();
3416 }
3417
restore_alpha2(char * alpha2,bool reset_user)3418 static void restore_alpha2(char *alpha2, bool reset_user)
3419 {
3420 /* indicates there is no alpha2 to consider for restoration */
3421 alpha2[0] = '9';
3422 alpha2[1] = '7';
3423
3424 /* The user setting has precedence over the module parameter */
3425 if (is_user_regdom_saved()) {
3426 /* Unless we're asked to ignore it and reset it */
3427 if (reset_user) {
3428 pr_debug("Restoring regulatory settings including user preference\n");
3429 user_alpha2[0] = '9';
3430 user_alpha2[1] = '7';
3431
3432 /*
3433 * If we're ignoring user settings, we still need to
3434 * check the module parameter to ensure we put things
3435 * back as they were for a full restore.
3436 */
3437 if (!is_world_regdom(ieee80211_regdom)) {
3438 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439 ieee80211_regdom[0], ieee80211_regdom[1]);
3440 alpha2[0] = ieee80211_regdom[0];
3441 alpha2[1] = ieee80211_regdom[1];
3442 }
3443 } else {
3444 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445 user_alpha2[0], user_alpha2[1]);
3446 alpha2[0] = user_alpha2[0];
3447 alpha2[1] = user_alpha2[1];
3448 }
3449 } else if (!is_world_regdom(ieee80211_regdom)) {
3450 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451 ieee80211_regdom[0], ieee80211_regdom[1]);
3452 alpha2[0] = ieee80211_regdom[0];
3453 alpha2[1] = ieee80211_regdom[1];
3454 } else
3455 pr_debug("Restoring regulatory settings\n");
3456 }
3457
restore_custom_reg_settings(struct wiphy * wiphy)3458 static void restore_custom_reg_settings(struct wiphy *wiphy)
3459 {
3460 struct ieee80211_supported_band *sband;
3461 enum nl80211_band band;
3462 struct ieee80211_channel *chan;
3463 int i;
3464
3465 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466 sband = wiphy->bands[band];
3467 if (!sband)
3468 continue;
3469 for (i = 0; i < sband->n_channels; i++) {
3470 chan = &sband->channels[i];
3471 chan->flags = chan->orig_flags;
3472 chan->max_antenna_gain = chan->orig_mag;
3473 chan->max_power = chan->orig_mpwr;
3474 chan->beacon_found = false;
3475 }
3476 }
3477 }
3478
3479 /*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 * - send a core regulatory hint
3488 * - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
restore_regulatory_settings(bool reset_user,bool cached)3494 static void restore_regulatory_settings(bool reset_user, bool cached)
3495 {
3496 char alpha2[2];
3497 char world_alpha2[2];
3498 struct reg_beacon *reg_beacon, *btmp;
3499 LIST_HEAD(tmp_reg_req_list);
3500 struct cfg80211_registered_device *rdev;
3501
3502 ASSERT_RTNL();
3503
3504 /*
3505 * Clear the indoor setting in case that it is not controlled by user
3506 * space, as otherwise there is no guarantee that the device is still
3507 * operating in an indoor environment.
3508 */
3509 spin_lock(®_indoor_lock);
3510 if (reg_is_indoor && !reg_is_indoor_portid) {
3511 reg_is_indoor = false;
3512 reg_check_channels();
3513 }
3514 spin_unlock(®_indoor_lock);
3515
3516 reset_regdomains(true, &world_regdom);
3517 restore_alpha2(alpha2, reset_user);
3518
3519 /*
3520 * If there's any pending requests we simply
3521 * stash them to a temporary pending queue and
3522 * add then after we've restored regulatory
3523 * settings.
3524 */
3525 spin_lock(®_requests_lock);
3526 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3527 spin_unlock(®_requests_lock);
3528
3529 /* Clear beacon hints */
3530 spin_lock_bh(®_pending_beacons_lock);
3531 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3532 list_del(®_beacon->list);
3533 kfree(reg_beacon);
3534 }
3535 spin_unlock_bh(®_pending_beacons_lock);
3536
3537 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3538 list_del(®_beacon->list);
3539 kfree(reg_beacon);
3540 }
3541
3542 /* First restore to the basic regulatory settings */
3543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546 for_each_rdev(rdev) {
3547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548 continue;
3549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550 restore_custom_reg_settings(&rdev->wiphy);
3551 }
3552
3553 if (cached && (!is_an_alpha2(alpha2) ||
3554 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555 reset_regdomains(false, cfg80211_world_regdom);
3556 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557 print_regdomain(get_cfg80211_regdom());
3558 nl80211_send_reg_change_event(&core_request_world);
3559 reg_set_request_processed();
3560
3561 if (is_an_alpha2(alpha2) &&
3562 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563 struct regulatory_request *ureq;
3564
3565 spin_lock(®_requests_lock);
3566 ureq = list_last_entry(®_requests_list,
3567 struct regulatory_request,
3568 list);
3569 list_del(&ureq->list);
3570 spin_unlock(®_requests_lock);
3571
3572 notify_self_managed_wiphys(ureq);
3573 reg_update_last_request(ureq);
3574 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575 REGD_SOURCE_CACHED);
3576 }
3577 } else {
3578 regulatory_hint_core(world_alpha2);
3579
3580 /*
3581 * This restores the ieee80211_regdom module parameter
3582 * preference or the last user requested regulatory
3583 * settings, user regulatory settings takes precedence.
3584 */
3585 if (is_an_alpha2(alpha2))
3586 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587 }
3588
3589 spin_lock(®_requests_lock);
3590 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3591 spin_unlock(®_requests_lock);
3592
3593 pr_debug("Kicking the queue\n");
3594
3595 schedule_work(®_work);
3596 }
3597
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3598 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599 {
3600 struct cfg80211_registered_device *rdev;
3601 struct wireless_dev *wdev;
3602
3603 for_each_rdev(rdev) {
3604 guard(wiphy)(&rdev->wiphy);
3605
3606 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3607 if (!(wdev->wiphy->regulatory_flags & flag))
3608 return false;
3609 }
3610 }
3611
3612 return true;
3613 }
3614
regulatory_hint_disconnect(void)3615 void regulatory_hint_disconnect(void)
3616 {
3617 /* Restore of regulatory settings is not required when wiphy(s)
3618 * ignore IE from connected access point but clearance of beacon hints
3619 * is required when wiphy(s) supports beacon hints.
3620 */
3621 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3622 struct reg_beacon *reg_beacon, *btmp;
3623
3624 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3625 return;
3626
3627 spin_lock_bh(®_pending_beacons_lock);
3628 list_for_each_entry_safe(reg_beacon, btmp,
3629 ®_pending_beacons, list) {
3630 list_del(®_beacon->list);
3631 kfree(reg_beacon);
3632 }
3633 spin_unlock_bh(®_pending_beacons_lock);
3634
3635 list_for_each_entry_safe(reg_beacon, btmp,
3636 ®_beacon_list, list) {
3637 list_del(®_beacon->list);
3638 kfree(reg_beacon);
3639 }
3640
3641 return;
3642 }
3643
3644 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3645 restore_regulatory_settings(false, true);
3646 }
3647
freq_is_chan_12_13_14(u32 freq)3648 static bool freq_is_chan_12_13_14(u32 freq)
3649 {
3650 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3651 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3652 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3653 return true;
3654 return false;
3655 }
3656
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3657 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3658 {
3659 struct reg_beacon *pending_beacon;
3660
3661 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3662 if (ieee80211_channel_equal(beacon_chan,
3663 &pending_beacon->chan))
3664 return true;
3665 return false;
3666 }
3667
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3668 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3669 struct ieee80211_channel *beacon_chan,
3670 gfp_t gfp)
3671 {
3672 struct reg_beacon *reg_beacon;
3673 bool processing;
3674
3675 if (beacon_chan->beacon_found ||
3676 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3677 (beacon_chan->band == NL80211_BAND_2GHZ &&
3678 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3679 return;
3680
3681 spin_lock_bh(®_pending_beacons_lock);
3682 processing = pending_reg_beacon(beacon_chan);
3683 spin_unlock_bh(®_pending_beacons_lock);
3684
3685 if (processing)
3686 return;
3687
3688 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3689 if (!reg_beacon)
3690 return;
3691
3692 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3693 beacon_chan->center_freq, beacon_chan->freq_offset,
3694 ieee80211_freq_khz_to_channel(
3695 ieee80211_channel_to_khz(beacon_chan)),
3696 wiphy_name(wiphy));
3697
3698 memcpy(®_beacon->chan, beacon_chan,
3699 sizeof(struct ieee80211_channel));
3700
3701 /*
3702 * Since we can be called from BH or and non-BH context
3703 * we must use spin_lock_bh()
3704 */
3705 spin_lock_bh(®_pending_beacons_lock);
3706 list_add_tail(®_beacon->list, ®_pending_beacons);
3707 spin_unlock_bh(®_pending_beacons_lock);
3708
3709 schedule_work(®_work);
3710 }
3711
print_rd_rules(const struct ieee80211_regdomain * rd)3712 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3713 {
3714 unsigned int i;
3715 const struct ieee80211_reg_rule *reg_rule = NULL;
3716 const struct ieee80211_freq_range *freq_range = NULL;
3717 const struct ieee80211_power_rule *power_rule = NULL;
3718 char bw[32], cac_time[32];
3719
3720 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3721
3722 for (i = 0; i < rd->n_reg_rules; i++) {
3723 reg_rule = &rd->reg_rules[i];
3724 freq_range = ®_rule->freq_range;
3725 power_rule = ®_rule->power_rule;
3726
3727 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3728 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3729 freq_range->max_bandwidth_khz,
3730 reg_get_max_bandwidth(rd, reg_rule));
3731 else
3732 snprintf(bw, sizeof(bw), "%d KHz",
3733 freq_range->max_bandwidth_khz);
3734
3735 if (reg_rule->flags & NL80211_RRF_DFS)
3736 scnprintf(cac_time, sizeof(cac_time), "%u s",
3737 reg_rule->dfs_cac_ms/1000);
3738 else
3739 scnprintf(cac_time, sizeof(cac_time), "N/A");
3740
3741
3742 /*
3743 * There may not be documentation for max antenna gain
3744 * in certain regions
3745 */
3746 if (power_rule->max_antenna_gain)
3747 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3748 freq_range->start_freq_khz,
3749 freq_range->end_freq_khz,
3750 bw,
3751 power_rule->max_antenna_gain,
3752 power_rule->max_eirp,
3753 cac_time);
3754 else
3755 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3756 freq_range->start_freq_khz,
3757 freq_range->end_freq_khz,
3758 bw,
3759 power_rule->max_eirp,
3760 cac_time);
3761 }
3762 }
3763
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3764 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3765 {
3766 switch (dfs_region) {
3767 case NL80211_DFS_UNSET:
3768 case NL80211_DFS_FCC:
3769 case NL80211_DFS_ETSI:
3770 case NL80211_DFS_JP:
3771 return true;
3772 default:
3773 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3774 return false;
3775 }
3776 }
3777
print_regdomain(const struct ieee80211_regdomain * rd)3778 static void print_regdomain(const struct ieee80211_regdomain *rd)
3779 {
3780 struct regulatory_request *lr = get_last_request();
3781
3782 if (is_intersected_alpha2(rd->alpha2)) {
3783 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3784 struct cfg80211_registered_device *rdev;
3785 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3786 if (rdev) {
3787 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3788 rdev->country_ie_alpha2[0],
3789 rdev->country_ie_alpha2[1]);
3790 } else
3791 pr_debug("Current regulatory domain intersected:\n");
3792 } else
3793 pr_debug("Current regulatory domain intersected:\n");
3794 } else if (is_world_regdom(rd->alpha2)) {
3795 pr_debug("World regulatory domain updated:\n");
3796 } else {
3797 if (is_unknown_alpha2(rd->alpha2))
3798 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3799 else {
3800 if (reg_request_cell_base(lr))
3801 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3802 rd->alpha2[0], rd->alpha2[1]);
3803 else
3804 pr_debug("Regulatory domain changed to country: %c%c\n",
3805 rd->alpha2[0], rd->alpha2[1]);
3806 }
3807 }
3808
3809 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3810 print_rd_rules(rd);
3811 }
3812
print_regdomain_info(const struct ieee80211_regdomain * rd)3813 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3814 {
3815 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3816 print_rd_rules(rd);
3817 }
3818
reg_set_rd_core(const struct ieee80211_regdomain * rd)3819 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3820 {
3821 if (!is_world_regdom(rd->alpha2))
3822 return -EINVAL;
3823 update_world_regdomain(rd);
3824 return 0;
3825 }
3826
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3827 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3828 struct regulatory_request *user_request)
3829 {
3830 const struct ieee80211_regdomain *intersected_rd = NULL;
3831
3832 if (!regdom_changes(rd->alpha2))
3833 return -EALREADY;
3834
3835 if (!is_valid_rd(rd)) {
3836 pr_err("Invalid regulatory domain detected: %c%c\n",
3837 rd->alpha2[0], rd->alpha2[1]);
3838 print_regdomain_info(rd);
3839 return -EINVAL;
3840 }
3841
3842 if (!user_request->intersect) {
3843 reset_regdomains(false, rd);
3844 return 0;
3845 }
3846
3847 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3848 if (!intersected_rd)
3849 return -EINVAL;
3850
3851 kfree(rd);
3852 rd = NULL;
3853 reset_regdomains(false, intersected_rd);
3854
3855 return 0;
3856 }
3857
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3858 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3859 struct regulatory_request *driver_request)
3860 {
3861 const struct ieee80211_regdomain *regd;
3862 const struct ieee80211_regdomain *intersected_rd = NULL;
3863 const struct ieee80211_regdomain *tmp = NULL;
3864 struct wiphy *request_wiphy;
3865
3866 if (is_world_regdom(rd->alpha2))
3867 return -EINVAL;
3868
3869 if (!regdom_changes(rd->alpha2))
3870 return -EALREADY;
3871
3872 if (!is_valid_rd(rd)) {
3873 pr_err("Invalid regulatory domain detected: %c%c\n",
3874 rd->alpha2[0], rd->alpha2[1]);
3875 print_regdomain_info(rd);
3876 return -EINVAL;
3877 }
3878
3879 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3880 if (!request_wiphy)
3881 return -ENODEV;
3882
3883 if (!driver_request->intersect) {
3884 ASSERT_RTNL();
3885 scoped_guard(wiphy, request_wiphy) {
3886 if (request_wiphy->regd)
3887 tmp = get_wiphy_regdom(request_wiphy);
3888
3889 regd = reg_copy_regd(rd);
3890 if (IS_ERR(regd))
3891 return PTR_ERR(regd);
3892
3893 rcu_assign_pointer(request_wiphy->regd, regd);
3894 rcu_free_regdom(tmp);
3895 }
3896
3897 reset_regdomains(false, rd);
3898 return 0;
3899 }
3900
3901 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3902 if (!intersected_rd)
3903 return -EINVAL;
3904
3905 /*
3906 * We can trash what CRDA provided now.
3907 * However if a driver requested this specific regulatory
3908 * domain we keep it for its private use
3909 */
3910 tmp = get_wiphy_regdom(request_wiphy);
3911 rcu_assign_pointer(request_wiphy->regd, rd);
3912 rcu_free_regdom(tmp);
3913
3914 rd = NULL;
3915
3916 reset_regdomains(false, intersected_rd);
3917
3918 return 0;
3919 }
3920
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3921 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3922 struct regulatory_request *country_ie_request)
3923 {
3924 struct wiphy *request_wiphy;
3925
3926 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3927 !is_unknown_alpha2(rd->alpha2))
3928 return -EINVAL;
3929
3930 /*
3931 * Lets only bother proceeding on the same alpha2 if the current
3932 * rd is non static (it means CRDA was present and was used last)
3933 * and the pending request came in from a country IE
3934 */
3935
3936 if (!is_valid_rd(rd)) {
3937 pr_err("Invalid regulatory domain detected: %c%c\n",
3938 rd->alpha2[0], rd->alpha2[1]);
3939 print_regdomain_info(rd);
3940 return -EINVAL;
3941 }
3942
3943 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3944 if (!request_wiphy)
3945 return -ENODEV;
3946
3947 if (country_ie_request->intersect)
3948 return -EINVAL;
3949
3950 reset_regdomains(false, rd);
3951 return 0;
3952 }
3953
3954 /*
3955 * Use this call to set the current regulatory domain. Conflicts with
3956 * multiple drivers can be ironed out later. Caller must've already
3957 * kmalloc'd the rd structure.
3958 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3959 int set_regdom(const struct ieee80211_regdomain *rd,
3960 enum ieee80211_regd_source regd_src)
3961 {
3962 struct regulatory_request *lr;
3963 bool user_reset = false;
3964 int r;
3965
3966 if (IS_ERR_OR_NULL(rd))
3967 return -ENODATA;
3968
3969 if (!reg_is_valid_request(rd->alpha2)) {
3970 kfree(rd);
3971 return -EINVAL;
3972 }
3973
3974 if (regd_src == REGD_SOURCE_CRDA)
3975 reset_crda_timeouts();
3976
3977 lr = get_last_request();
3978
3979 /* Note that this doesn't update the wiphys, this is done below */
3980 switch (lr->initiator) {
3981 case NL80211_REGDOM_SET_BY_CORE:
3982 r = reg_set_rd_core(rd);
3983 break;
3984 case NL80211_REGDOM_SET_BY_USER:
3985 cfg80211_save_user_regdom(rd);
3986 r = reg_set_rd_user(rd, lr);
3987 user_reset = true;
3988 break;
3989 case NL80211_REGDOM_SET_BY_DRIVER:
3990 r = reg_set_rd_driver(rd, lr);
3991 break;
3992 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3993 r = reg_set_rd_country_ie(rd, lr);
3994 break;
3995 default:
3996 WARN(1, "invalid initiator %d\n", lr->initiator);
3997 kfree(rd);
3998 return -EINVAL;
3999 }
4000
4001 if (r) {
4002 switch (r) {
4003 case -EALREADY:
4004 reg_set_request_processed();
4005 break;
4006 default:
4007 /* Back to world regulatory in case of errors */
4008 restore_regulatory_settings(user_reset, false);
4009 }
4010
4011 kfree(rd);
4012 return r;
4013 }
4014
4015 /* This would make this whole thing pointless */
4016 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4017 return -EINVAL;
4018
4019 /* update all wiphys now with the new established regulatory domain */
4020 update_all_wiphy_regulatory(lr->initiator);
4021
4022 print_regdomain(get_cfg80211_regdom());
4023
4024 nl80211_send_reg_change_event(lr);
4025
4026 reg_set_request_processed();
4027
4028 return 0;
4029 }
4030
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4031 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4032 struct ieee80211_regdomain *rd)
4033 {
4034 const struct ieee80211_regdomain *regd;
4035 const struct ieee80211_regdomain *prev_regd;
4036 struct cfg80211_registered_device *rdev;
4037
4038 if (WARN_ON(!wiphy || !rd))
4039 return -EINVAL;
4040
4041 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4042 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4043 return -EPERM;
4044
4045 if (WARN(!is_valid_rd(rd),
4046 "Invalid regulatory domain detected: %c%c\n",
4047 rd->alpha2[0], rd->alpha2[1])) {
4048 print_regdomain_info(rd);
4049 return -EINVAL;
4050 }
4051
4052 regd = reg_copy_regd(rd);
4053 if (IS_ERR(regd))
4054 return PTR_ERR(regd);
4055
4056 rdev = wiphy_to_rdev(wiphy);
4057
4058 spin_lock(®_requests_lock);
4059 prev_regd = rdev->requested_regd;
4060 rdev->requested_regd = regd;
4061 spin_unlock(®_requests_lock);
4062
4063 kfree(prev_regd);
4064 return 0;
4065 }
4066
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4067 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4068 struct ieee80211_regdomain *rd)
4069 {
4070 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4071
4072 if (ret)
4073 return ret;
4074
4075 schedule_work(®_work);
4076 return 0;
4077 }
4078 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4079
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4080 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4081 struct ieee80211_regdomain *rd)
4082 {
4083 int ret;
4084
4085 ASSERT_RTNL();
4086
4087 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4088 if (ret)
4089 return ret;
4090
4091 /* process the request immediately */
4092 reg_process_self_managed_hint(wiphy);
4093 reg_check_channels();
4094 return 0;
4095 }
4096 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4097
wiphy_regulatory_register(struct wiphy * wiphy)4098 void wiphy_regulatory_register(struct wiphy *wiphy)
4099 {
4100 struct regulatory_request *lr = get_last_request();
4101
4102 /* self-managed devices ignore beacon hints and country IE */
4103 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4104 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4105 REGULATORY_COUNTRY_IE_IGNORE;
4106
4107 /*
4108 * The last request may have been received before this
4109 * registration call. Call the driver notifier if
4110 * initiator is USER.
4111 */
4112 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4113 reg_call_notifier(wiphy, lr);
4114 }
4115
4116 if (!reg_dev_ignore_cell_hint(wiphy))
4117 reg_num_devs_support_basehint++;
4118
4119 wiphy_update_regulatory(wiphy, lr->initiator);
4120 wiphy_all_share_dfs_chan_state(wiphy);
4121 reg_process_self_managed_hints();
4122 }
4123
wiphy_regulatory_deregister(struct wiphy * wiphy)4124 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4125 {
4126 struct wiphy *request_wiphy = NULL;
4127 struct regulatory_request *lr;
4128
4129 lr = get_last_request();
4130
4131 if (!reg_dev_ignore_cell_hint(wiphy))
4132 reg_num_devs_support_basehint--;
4133
4134 rcu_free_regdom(get_wiphy_regdom(wiphy));
4135 RCU_INIT_POINTER(wiphy->regd, NULL);
4136
4137 if (lr)
4138 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4139
4140 if (!request_wiphy || request_wiphy != wiphy)
4141 return;
4142
4143 lr->wiphy_idx = WIPHY_IDX_INVALID;
4144 lr->country_ie_env = ENVIRON_ANY;
4145 }
4146
4147 /*
4148 * See FCC notices for UNII band definitions
4149 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4150 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4151 */
cfg80211_get_unii(int freq)4152 int cfg80211_get_unii(int freq)
4153 {
4154 /* UNII-1 */
4155 if (freq >= 5150 && freq <= 5250)
4156 return 0;
4157
4158 /* UNII-2A */
4159 if (freq > 5250 && freq <= 5350)
4160 return 1;
4161
4162 /* UNII-2B */
4163 if (freq > 5350 && freq <= 5470)
4164 return 2;
4165
4166 /* UNII-2C */
4167 if (freq > 5470 && freq <= 5725)
4168 return 3;
4169
4170 /* UNII-3 */
4171 if (freq > 5725 && freq <= 5825)
4172 return 4;
4173
4174 /* UNII-5 */
4175 if (freq > 5925 && freq <= 6425)
4176 return 5;
4177
4178 /* UNII-6 */
4179 if (freq > 6425 && freq <= 6525)
4180 return 6;
4181
4182 /* UNII-7 */
4183 if (freq > 6525 && freq <= 6875)
4184 return 7;
4185
4186 /* UNII-8 */
4187 if (freq > 6875 && freq <= 7125)
4188 return 8;
4189
4190 return -EINVAL;
4191 }
4192
regulatory_indoor_allowed(void)4193 bool regulatory_indoor_allowed(void)
4194 {
4195 return reg_is_indoor;
4196 }
4197
regulatory_pre_cac_allowed(struct wiphy * wiphy)4198 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4199 {
4200 const struct ieee80211_regdomain *regd = NULL;
4201 const struct ieee80211_regdomain *wiphy_regd = NULL;
4202 bool pre_cac_allowed = false;
4203
4204 rcu_read_lock();
4205
4206 regd = rcu_dereference(cfg80211_regdomain);
4207 wiphy_regd = rcu_dereference(wiphy->regd);
4208 if (!wiphy_regd) {
4209 if (regd->dfs_region == NL80211_DFS_ETSI)
4210 pre_cac_allowed = true;
4211
4212 rcu_read_unlock();
4213
4214 return pre_cac_allowed;
4215 }
4216
4217 if (regd->dfs_region == wiphy_regd->dfs_region &&
4218 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4219 pre_cac_allowed = true;
4220
4221 rcu_read_unlock();
4222
4223 return pre_cac_allowed;
4224 }
4225 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4226
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4227 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4228 {
4229 struct wireless_dev *wdev;
4230 unsigned int link_id;
4231
4232 /* If we finished CAC or received radar, we should end any
4233 * CAC running on the same channels.
4234 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4235 * either all channels are available - those the CAC_FINISHED
4236 * event has effected another wdev state, or there is a channel
4237 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4238 * event has effected another wdev state.
4239 * In both cases we should end the CAC on the wdev.
4240 */
4241 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4242 struct cfg80211_chan_def *chandef;
4243
4244 for_each_valid_link(wdev, link_id) {
4245 if (!wdev->links[link_id].cac_started)
4246 continue;
4247
4248 chandef = wdev_chandef(wdev, link_id);
4249 if (!chandef)
4250 continue;
4251
4252 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4253 rdev_end_cac(rdev, wdev->netdev, link_id);
4254 }
4255 }
4256 }
4257
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4258 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4259 struct cfg80211_chan_def *chandef,
4260 enum nl80211_dfs_state dfs_state,
4261 enum nl80211_radar_event event)
4262 {
4263 struct cfg80211_registered_device *rdev;
4264
4265 ASSERT_RTNL();
4266
4267 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4268 return;
4269
4270 for_each_rdev(rdev) {
4271 if (wiphy == &rdev->wiphy)
4272 continue;
4273
4274 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4275 continue;
4276
4277 if (!ieee80211_get_channel(&rdev->wiphy,
4278 chandef->chan->center_freq))
4279 continue;
4280
4281 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4282
4283 if (event == NL80211_RADAR_DETECTED ||
4284 event == NL80211_RADAR_CAC_FINISHED) {
4285 cfg80211_sched_dfs_chan_update(rdev);
4286 cfg80211_check_and_end_cac(rdev);
4287 }
4288
4289 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4290 }
4291 }
4292
regulatory_init_db(void)4293 static int __init regulatory_init_db(void)
4294 {
4295 int err;
4296
4297 /*
4298 * It's possible that - due to other bugs/issues - cfg80211
4299 * never called regulatory_init() below, or that it failed;
4300 * in that case, don't try to do any further work here as
4301 * it's doomed to lead to crashes.
4302 */
4303 if (IS_ERR_OR_NULL(reg_pdev))
4304 return -EINVAL;
4305
4306 err = load_builtin_regdb_keys();
4307 if (err) {
4308 platform_device_unregister(reg_pdev);
4309 return err;
4310 }
4311
4312 /* We always try to get an update for the static regdomain */
4313 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4314 if (err) {
4315 if (err == -ENOMEM) {
4316 platform_device_unregister(reg_pdev);
4317 return err;
4318 }
4319 /*
4320 * N.B. kobject_uevent_env() can fail mainly for when we're out
4321 * memory which is handled and propagated appropriately above
4322 * but it can also fail during a netlink_broadcast() or during
4323 * early boot for call_usermodehelper(). For now treat these
4324 * errors as non-fatal.
4325 */
4326 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4327 }
4328
4329 /*
4330 * Finally, if the user set the module parameter treat it
4331 * as a user hint.
4332 */
4333 if (!is_world_regdom(ieee80211_regdom))
4334 regulatory_hint_user(ieee80211_regdom,
4335 NL80211_USER_REG_HINT_USER);
4336
4337 return 0;
4338 }
4339 #ifndef MODULE
4340 late_initcall(regulatory_init_db);
4341 #endif
4342
regulatory_init(void)4343 int __init regulatory_init(void)
4344 {
4345 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4346 if (IS_ERR(reg_pdev))
4347 return PTR_ERR(reg_pdev);
4348
4349 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4350
4351 user_alpha2[0] = '9';
4352 user_alpha2[1] = '7';
4353
4354 #ifdef MODULE
4355 return regulatory_init_db();
4356 #else
4357 return 0;
4358 #endif
4359 }
4360
regulatory_exit(void)4361 void regulatory_exit(void)
4362 {
4363 struct regulatory_request *reg_request, *tmp;
4364 struct reg_beacon *reg_beacon, *btmp;
4365
4366 cancel_work_sync(®_work);
4367 cancel_crda_timeout_sync();
4368 cancel_delayed_work_sync(®_check_chans);
4369
4370 /* Lock to suppress warnings */
4371 rtnl_lock();
4372 reset_regdomains(true, NULL);
4373 rtnl_unlock();
4374
4375 dev_set_uevent_suppress(®_pdev->dev, true);
4376
4377 platform_device_unregister(reg_pdev);
4378
4379 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4380 list_del(®_beacon->list);
4381 kfree(reg_beacon);
4382 }
4383
4384 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4385 list_del(®_beacon->list);
4386 kfree(reg_beacon);
4387 }
4388
4389 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4390 list_del(®_request->list);
4391 kfree(reg_request);
4392 }
4393
4394 if (!IS_ERR_OR_NULL(regdb))
4395 kfree(regdb);
4396 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4397 kfree(cfg80211_user_regdom);
4398
4399 free_regdb_keyring();
4400 }
4401