1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu.h>
88 #include <asm/mmu_context.h>
89 #include <asm/mte.h>
90 #include <asm/hypervisor.h>
91 #include <asm/processor.h>
92 #include <asm/smp.h>
93 #include <asm/sysreg.h>
94 #include <asm/traps.h>
95 #include <asm/vectors.h>
96 #include <asm/virt.h>
97
98 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
99 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
100
101 #ifdef CONFIG_COMPAT
102 #define COMPAT_ELF_HWCAP_DEFAULT \
103 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
104 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
105 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
106 COMPAT_HWCAP_LPAE)
107 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
108 unsigned int compat_elf_hwcap2 __read_mostly;
109 unsigned int compat_elf_hwcap3 __read_mostly;
110 #endif
111
112 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
113 EXPORT_SYMBOL(system_cpucaps);
114 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
115
116 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
117
118 /*
119 * arm64_use_ng_mappings must be placed in the .data section, otherwise it
120 * ends up in the .bss section where it is initialized in early_map_kernel()
121 * after the MMU (with the idmap) was enabled. create_init_idmap() - which
122 * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
123 * may end up generating an incorrect idmap page table attributes.
124 */
125 bool arm64_use_ng_mappings __read_mostly = false;
126 EXPORT_SYMBOL(arm64_use_ng_mappings);
127
128 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
129
130 /*
131 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
132 * support it?
133 */
134 static bool __read_mostly allow_mismatched_32bit_el0;
135
136 /*
137 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
138 * seen at least one CPU capable of 32-bit EL0.
139 */
140 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
141
142 /*
143 * Mask of CPUs supporting 32-bit EL0.
144 * Only valid if arm64_mismatched_32bit_el0 is enabled.
145 */
146 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
147
dump_cpu_features(void)148 void dump_cpu_features(void)
149 {
150 /* file-wide pr_fmt adds "CPU features: " prefix */
151 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
152 }
153
154 #define __ARM64_MAX_POSITIVE(reg, field) \
155 ((reg##_##field##_SIGNED ? \
156 BIT(reg##_##field##_WIDTH - 1) : \
157 BIT(reg##_##field##_WIDTH)) - 1)
158
159 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
160
161 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
162 .sys_reg = SYS_##reg, \
163 .field_pos = reg##_##field##_SHIFT, \
164 .field_width = reg##_##field##_WIDTH, \
165 .sign = reg##_##field##_SIGNED, \
166 .min_field_value = min_value, \
167 .max_field_value = max_value,
168
169 /*
170 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
171 * an implicit maximum that depends on the sign-ess of the field.
172 *
173 * An unsigned field will be capped at all ones, while a signed field
174 * will be limited to the positive half only.
175 */
176 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
177 __ARM64_CPUID_FIELDS(reg, field, \
178 SYS_FIELD_VALUE(reg, field, min_value), \
179 __ARM64_MAX_POSITIVE(reg, field))
180
181 /*
182 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
183 * implicit minimal value to max_value. This should be used when
184 * matching a non-implemented property.
185 */
186 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
187 __ARM64_CPUID_FIELDS(reg, field, \
188 __ARM64_MIN_NEGATIVE(reg, field), \
189 SYS_FIELD_VALUE(reg, field, max_value))
190
191 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
192 { \
193 .sign = SIGNED, \
194 .visible = VISIBLE, \
195 .strict = STRICT, \
196 .type = TYPE, \
197 .shift = SHIFT, \
198 .width = WIDTH, \
199 .safe_val = SAFE_VAL, \
200 }
201
202 /* Define a feature with unsigned values */
203 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
204 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
205
206 /* Define a feature with a signed value */
207 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
208 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
209
210 #define ARM64_FTR_END \
211 { \
212 .width = 0, \
213 }
214
215 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
216
217 static bool __system_matches_cap(unsigned int n);
218
219 /*
220 * NOTE: Any changes to the visibility of features should be kept in
221 * sync with the documentation of the CPU feature register ABI.
222 */
223 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
238 ARM64_FTR_END,
239 };
240
241 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
250 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
257 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
261 ARM64_FTR_END,
262 };
263
264 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
265 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
267 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
272 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
277 ARM64_FTR_END,
278 };
279
280 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
281 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
282 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
283 ARM64_FTR_END,
284 };
285
286 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
289 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
293 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
294 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
297 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
298 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
303 ARM64_FTR_END,
304 };
305
306 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
308 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
309 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
310 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
311 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
315 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
316 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
317 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
318 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
319 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
320 ARM64_FTR_END,
321 };
322
323 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
324 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
325 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
326 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
327 ARM64_FTR_END,
328 };
329
330 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
331 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
332 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
334 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
336 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
338 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
339 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
340 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
341 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
342 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
343 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
344 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
345 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
346 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
347 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
348 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
349 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
350 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
351 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
352 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
353 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
354 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
355 ARM64_FTR_END,
356 };
357
358 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
359 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
360 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
361 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
362 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
363 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
364 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
365 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
366 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
368 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
369 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
370 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
371 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
372 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
373 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
374 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
375 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
376 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
377 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
378 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
379 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
380 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
382 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
383 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
384 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
385 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
386 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
387 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
388 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
389 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
390 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
391 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
392 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
393 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
394 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
395 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
396 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
397 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
398 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
399 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
400 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
401 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
402 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
403 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
404 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
405 ARM64_FTR_END,
406 };
407
408 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
414 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
415 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
416 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
417 ARM64_FTR_END,
418 };
419
420 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
421 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
423 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
424 /*
425 * Page size not being supported at Stage-2 is not fatal. You
426 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
427 * your favourite nesting hypervisor.
428 *
429 * There is a small corner case where the hypervisor explicitly
430 * advertises a given granule size at Stage-2 (value 2) on some
431 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
432 * vCPUs. Although this is not forbidden by the architecture, it
433 * indicates that the hypervisor is being silly (or buggy).
434 *
435 * We make no effort to cope with this and pretend that if these
436 * fields are inconsistent across vCPUs, then it isn't worth
437 * trying to bring KVM up.
438 */
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
442 /*
443 * We already refuse to boot CPUs that don't support our configured
444 * page size, so we can only detect mismatches for a page size other
445 * than the one we're currently using. Unfortunately, SoCs like this
446 * exist in the wild so, even though we don't like it, we'll have to go
447 * along with it and treat them as non-strict.
448 */
449 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
450 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
452
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
454 /* Linux shouldn't care about secure memory */
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
458 /*
459 * Differing PARange is fine as long as all peripherals and memory are mapped
460 * within the minimum PARange of all CPUs
461 */
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
463 ARM64_FTR_END,
464 };
465
466 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
481 ARM64_FTR_END,
482 };
483
484 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
496 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
500 ARM64_FTR_END,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
504 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
505 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
509 ARM64_FTR_END,
510 };
511
512 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
513 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
515 ARM64_FTR_END,
516 };
517
518 static const struct arm64_ftr_bits ftr_ctr[] = {
519 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
520 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
521 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
522 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
523 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
524 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
525 /*
526 * Linux can handle differing I-cache policies. Userspace JITs will
527 * make use of *minLine.
528 * If we have differing I-cache policies, report it as the weakest - VIPT.
529 */
530 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
531 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
532 ARM64_FTR_END,
533 };
534
535 static struct arm64_ftr_override __ro_after_init no_override = { };
536
537 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
538 .name = "SYS_CTR_EL0",
539 .ftr_bits = ftr_ctr,
540 .override = &no_override,
541 };
542
543 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
544 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
549 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
550 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
551 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
552 ARM64_FTR_END,
553 };
554
555 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
556 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
557 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
560 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
561 /*
562 * We can instantiate multiple PMU instances with different levels
563 * of support.
564 */
565 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
566 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
567 ARM64_FTR_END,
568 };
569
570 static const struct arm64_ftr_bits ftr_mvfr0[] = {
571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
576 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
577 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
578 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
579 ARM64_FTR_END,
580 };
581
582 static const struct arm64_ftr_bits ftr_mvfr1[] = {
583 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
586 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
587 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
588 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
589 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
590 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
591 ARM64_FTR_END,
592 };
593
594 static const struct arm64_ftr_bits ftr_mvfr2[] = {
595 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
596 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
597 ARM64_FTR_END,
598 };
599
600 static const struct arm64_ftr_bits ftr_dczid[] = {
601 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
602 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
603 ARM64_FTR_END,
604 };
605
606 static const struct arm64_ftr_bits ftr_gmid[] = {
607 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
608 ARM64_FTR_END,
609 };
610
611 static const struct arm64_ftr_bits ftr_id_isar0[] = {
612 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
613 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
616 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
617 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
619 ARM64_FTR_END,
620 };
621
622 static const struct arm64_ftr_bits ftr_id_isar5[] = {
623 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
624 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
625 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
626 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
627 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
628 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
629 ARM64_FTR_END,
630 };
631
632 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
633 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
640
641 /*
642 * SpecSEI = 1 indicates that the PE might generate an SError on an
643 * external abort on speculative read. It is safe to assume that an
644 * SError might be generated than it will not be. Hence it has been
645 * classified as FTR_HIGHER_SAFE.
646 */
647 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
648 ARM64_FTR_END,
649 };
650
651 static const struct arm64_ftr_bits ftr_id_isar4[] = {
652 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
653 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
655 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
656 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
660 ARM64_FTR_END,
661 };
662
663 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
664 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
665 ARM64_FTR_END,
666 };
667
668 static const struct arm64_ftr_bits ftr_id_isar6[] = {
669 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
670 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
671 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
672 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
673 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
674 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
675 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
676 ARM64_FTR_END,
677 };
678
679 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
680 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
681 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
682 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
683 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
684 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
685 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
686 ARM64_FTR_END,
687 };
688
689 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
690 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
691 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
693 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
696 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
697 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
698 ARM64_FTR_END,
699 };
700
701 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
702 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
703 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
704 ARM64_FTR_END,
705 };
706
707 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
708 /* [31:28] TraceFilt */
709 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
710 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
711 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
712 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
713 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
714 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
715 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
716 ARM64_FTR_END,
717 };
718
719 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
720 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
721 ARM64_FTR_END,
722 };
723
724 static const struct arm64_ftr_bits ftr_mpamidr[] = {
725 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
726 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
727 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
728 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
729 ARM64_FTR_END,
730 };
731
732 /*
733 * Common ftr bits for a 32bit register with all hidden, strict
734 * attributes, with 4bit feature fields and a default safe value of
735 * 0. Covers the following 32bit registers:
736 * id_isar[1-3], id_mmfr[1-3]
737 */
738 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
739 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
740 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
741 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
742 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
743 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
744 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
745 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
746 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
747 ARM64_FTR_END,
748 };
749
750 /* Table for a single 32bit feature value */
751 static const struct arm64_ftr_bits ftr_single32[] = {
752 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
753 ARM64_FTR_END,
754 };
755
756 static const struct arm64_ftr_bits ftr_raz[] = {
757 ARM64_FTR_END,
758 };
759
760 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
761 .sys_id = id, \
762 .reg = &(struct arm64_ftr_reg){ \
763 .name = id_str, \
764 .override = (ovr), \
765 .ftr_bits = &((table)[0]), \
766 }}
767
768 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
769 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
770
771 #define ARM64_FTR_REG(id, table) \
772 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
773
774 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
775 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
776 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
777 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
778 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
779 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
780 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
781 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
782 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
783
784 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
785
786 static const struct __ftr_reg_entry {
787 u32 sys_id;
788 struct arm64_ftr_reg *reg;
789 } arm64_ftr_regs[] = {
790
791 /* Op1 = 0, CRn = 0, CRm = 1 */
792 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
793 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
794 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
795 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
796 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
797 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
798 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
799
800 /* Op1 = 0, CRn = 0, CRm = 2 */
801 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
802 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
803 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
804 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
805 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
806 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
807 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
808 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
809
810 /* Op1 = 0, CRn = 0, CRm = 3 */
811 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
812 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
813 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
814 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
815 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
816 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
817
818 /* Op1 = 0, CRn = 0, CRm = 4 */
819 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
820 &id_aa64pfr0_override),
821 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
822 &id_aa64pfr1_override),
823 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
824 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
825 &id_aa64zfr0_override),
826 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
827 &id_aa64smfr0_override),
828 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
829
830 /* Op1 = 0, CRn = 0, CRm = 5 */
831 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
832 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
833
834 /* Op1 = 0, CRn = 0, CRm = 6 */
835 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
836 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
837 &id_aa64isar1_override),
838 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
839 &id_aa64isar2_override),
840 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
841
842 /* Op1 = 0, CRn = 0, CRm = 7 */
843 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
844 &id_aa64mmfr0_override),
845 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
846 &id_aa64mmfr1_override),
847 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
848 &id_aa64mmfr2_override),
849 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
850 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
851
852 /* Op1 = 0, CRn = 10, CRm = 4 */
853 ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
854
855 /* Op1 = 1, CRn = 0, CRm = 0 */
856 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
857
858 /* Op1 = 3, CRn = 0, CRm = 0 */
859 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
860 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
861
862 /* Op1 = 3, CRn = 14, CRm = 0 */
863 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
864 };
865
search_cmp_ftr_reg(const void * id,const void * regp)866 static int search_cmp_ftr_reg(const void *id, const void *regp)
867 {
868 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
869 }
870
871 /*
872 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
873 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
874 * ascending order of sys_id, we use binary search to find a matching
875 * entry.
876 *
877 * returns - Upon success, matching ftr_reg entry for id.
878 * - NULL on failure. It is upto the caller to decide
879 * the impact of a failure.
880 */
get_arm64_ftr_reg_nowarn(u32 sys_id)881 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
882 {
883 const struct __ftr_reg_entry *ret;
884
885 ret = bsearch((const void *)(unsigned long)sys_id,
886 arm64_ftr_regs,
887 ARRAY_SIZE(arm64_ftr_regs),
888 sizeof(arm64_ftr_regs[0]),
889 search_cmp_ftr_reg);
890 if (ret)
891 return ret->reg;
892 return NULL;
893 }
894
895 /*
896 * get_arm64_ftr_reg - Looks up a feature register entry using
897 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
898 *
899 * returns - Upon success, matching ftr_reg entry for id.
900 * - NULL on failure but with an WARN_ON().
901 */
get_arm64_ftr_reg(u32 sys_id)902 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
903 {
904 struct arm64_ftr_reg *reg;
905
906 reg = get_arm64_ftr_reg_nowarn(sys_id);
907
908 /*
909 * Requesting a non-existent register search is an error. Warn
910 * and let the caller handle it.
911 */
912 WARN_ON(!reg);
913 return reg;
914 }
915
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)916 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
917 s64 ftr_val)
918 {
919 u64 mask = arm64_ftr_mask(ftrp);
920
921 reg &= ~mask;
922 reg |= (ftr_val << ftrp->shift) & mask;
923 return reg;
924 }
925
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)926 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
927 s64 cur)
928 {
929 s64 ret = 0;
930
931 switch (ftrp->type) {
932 case FTR_EXACT:
933 ret = ftrp->safe_val;
934 break;
935 case FTR_LOWER_SAFE:
936 ret = min(new, cur);
937 break;
938 case FTR_HIGHER_OR_ZERO_SAFE:
939 if (!cur || !new)
940 break;
941 fallthrough;
942 case FTR_HIGHER_SAFE:
943 ret = max(new, cur);
944 break;
945 default:
946 BUG();
947 }
948
949 return ret;
950 }
951
sort_ftr_regs(void)952 static void __init sort_ftr_regs(void)
953 {
954 unsigned int i;
955
956 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
957 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
958 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
959 unsigned int j = 0;
960
961 /*
962 * Features here must be sorted in descending order with respect
963 * to their shift values and should not overlap with each other.
964 */
965 for (; ftr_bits->width != 0; ftr_bits++, j++) {
966 unsigned int width = ftr_reg->ftr_bits[j].width;
967 unsigned int shift = ftr_reg->ftr_bits[j].shift;
968 unsigned int prev_shift;
969
970 WARN((shift + width) > 64,
971 "%s has invalid feature at shift %d\n",
972 ftr_reg->name, shift);
973
974 /*
975 * Skip the first feature. There is nothing to
976 * compare against for now.
977 */
978 if (j == 0)
979 continue;
980
981 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
982 WARN((shift + width) > prev_shift,
983 "%s has feature overlap at shift %d\n",
984 ftr_reg->name, shift);
985 }
986
987 /*
988 * Skip the first register. There is nothing to
989 * compare against for now.
990 */
991 if (i == 0)
992 continue;
993 /*
994 * Registers here must be sorted in ascending order with respect
995 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
996 * to work correctly.
997 */
998 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
999 }
1000 }
1001
1002 /*
1003 * Initialise the CPU feature register from Boot CPU values.
1004 * Also initiliases the strict_mask for the register.
1005 * Any bits that are not covered by an arm64_ftr_bits entry are considered
1006 * RES0 for the system-wide value, and must strictly match.
1007 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)1008 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1009 {
1010 u64 val = 0;
1011 u64 strict_mask = ~0x0ULL;
1012 u64 user_mask = 0;
1013 u64 valid_mask = 0;
1014
1015 const struct arm64_ftr_bits *ftrp;
1016 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1017
1018 if (!reg)
1019 return;
1020
1021 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1022 u64 ftr_mask = arm64_ftr_mask(ftrp);
1023 s64 ftr_new = arm64_ftr_value(ftrp, new);
1024 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1025
1026 if ((ftr_mask & reg->override->mask) == ftr_mask) {
1027 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1028 char *str = NULL;
1029
1030 if (ftr_ovr != tmp) {
1031 /* Unsafe, remove the override */
1032 reg->override->mask &= ~ftr_mask;
1033 reg->override->val &= ~ftr_mask;
1034 tmp = ftr_ovr;
1035 str = "ignoring override";
1036 } else if (ftr_new != tmp) {
1037 /* Override was valid */
1038 ftr_new = tmp;
1039 str = "forced";
1040 } else {
1041 /* Override was the safe value */
1042 str = "already set";
1043 }
1044
1045 pr_warn("%s[%d:%d]: %s to %llx\n",
1046 reg->name,
1047 ftrp->shift + ftrp->width - 1,
1048 ftrp->shift, str,
1049 tmp & (BIT(ftrp->width) - 1));
1050 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1051 reg->override->val &= ~ftr_mask;
1052 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1053 reg->name,
1054 ftrp->shift + ftrp->width - 1,
1055 ftrp->shift);
1056 }
1057
1058 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1059
1060 valid_mask |= ftr_mask;
1061 if (!ftrp->strict)
1062 strict_mask &= ~ftr_mask;
1063 if (ftrp->visible)
1064 user_mask |= ftr_mask;
1065 else
1066 reg->user_val = arm64_ftr_set_value(ftrp,
1067 reg->user_val,
1068 ftrp->safe_val);
1069 }
1070
1071 val &= valid_mask;
1072
1073 reg->sys_val = val;
1074 reg->strict_mask = strict_mask;
1075 reg->user_mask = user_mask;
1076 }
1077
1078 extern const struct arm64_cpu_capabilities arm64_errata[];
1079 static const struct arm64_cpu_capabilities arm64_features[];
1080
1081 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1082 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1083 {
1084 for (; caps->matches; caps++) {
1085 if (WARN(caps->capability >= ARM64_NCAPS,
1086 "Invalid capability %d\n", caps->capability))
1087 continue;
1088 if (WARN(cpucap_ptrs[caps->capability],
1089 "Duplicate entry for capability %d\n",
1090 caps->capability))
1091 continue;
1092 cpucap_ptrs[caps->capability] = caps;
1093 }
1094 }
1095
init_cpucap_indirect_list(void)1096 static void __init init_cpucap_indirect_list(void)
1097 {
1098 init_cpucap_indirect_list_from_array(arm64_features);
1099 init_cpucap_indirect_list_from_array(arm64_errata);
1100 }
1101
1102 static void __init setup_boot_cpu_capabilities(void);
1103
init_32bit_cpu_features(struct cpuinfo_32bit * info)1104 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1105 {
1106 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1107 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1108 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1109 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1110 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1111 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1112 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1113 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1114 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1115 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1116 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1117 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1118 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1119 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1120 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1121 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1122 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1123 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1124 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1125 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1126 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1127 }
1128
1129 #ifdef CONFIG_ARM64_PSEUDO_NMI
1130 static bool enable_pseudo_nmi;
1131
early_enable_pseudo_nmi(char * p)1132 static int __init early_enable_pseudo_nmi(char *p)
1133 {
1134 return kstrtobool(p, &enable_pseudo_nmi);
1135 }
1136 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1137
detect_system_supports_pseudo_nmi(void)1138 static __init void detect_system_supports_pseudo_nmi(void)
1139 {
1140 struct device_node *np;
1141
1142 if (!enable_pseudo_nmi)
1143 return;
1144
1145 /*
1146 * Detect broken MediaTek firmware that doesn't properly save and
1147 * restore GIC priorities.
1148 */
1149 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1150 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1151 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1152 enable_pseudo_nmi = false;
1153 }
1154 of_node_put(np);
1155 }
1156 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1157 static inline void detect_system_supports_pseudo_nmi(void) { }
1158 #endif
1159
init_cpu_features(struct cpuinfo_arm64 * info)1160 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1161 {
1162 /* Before we start using the tables, make sure it is sorted */
1163 sort_ftr_regs();
1164
1165 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1166 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1167 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1168 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1169 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1170 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1171 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1172 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1173 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1174 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1175 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1176 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1177 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1178 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1179 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1180 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1181 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1182 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1183 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1184 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1185
1186 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1187 init_32bit_cpu_features(&info->aarch32);
1188
1189 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1190 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1191 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1192
1193 vec_init_vq_map(ARM64_VEC_SVE);
1194
1195 cpacr_restore(cpacr);
1196 }
1197
1198 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1199 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1200 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1201
1202 vec_init_vq_map(ARM64_VEC_SME);
1203
1204 cpacr_restore(cpacr);
1205 }
1206
1207 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1208 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1209 init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1210 }
1211
1212 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1213 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1214 }
1215
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1216 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1217 {
1218 const struct arm64_ftr_bits *ftrp;
1219
1220 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1221 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1222 s64 ftr_new = arm64_ftr_value(ftrp, new);
1223
1224 if (ftr_cur == ftr_new)
1225 continue;
1226 /* Find a safe value */
1227 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1228 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1229 }
1230
1231 }
1232
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1233 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1234 {
1235 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1236
1237 if (!regp)
1238 return 0;
1239
1240 update_cpu_ftr_reg(regp, val);
1241 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1242 return 0;
1243 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1244 regp->name, boot, cpu, val);
1245 return 1;
1246 }
1247
relax_cpu_ftr_reg(u32 sys_id,int field)1248 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1249 {
1250 const struct arm64_ftr_bits *ftrp;
1251 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1252
1253 if (!regp)
1254 return;
1255
1256 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1257 if (ftrp->shift == field) {
1258 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1259 break;
1260 }
1261 }
1262
1263 /* Bogus field? */
1264 WARN_ON(!ftrp->width);
1265 }
1266
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1267 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1268 struct cpuinfo_arm64 *boot)
1269 {
1270 static bool boot_cpu_32bit_regs_overridden = false;
1271
1272 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1273 return;
1274
1275 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1276 return;
1277
1278 boot->aarch32 = info->aarch32;
1279 init_32bit_cpu_features(&boot->aarch32);
1280 boot_cpu_32bit_regs_overridden = true;
1281 }
1282
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1283 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1284 struct cpuinfo_32bit *boot)
1285 {
1286 int taint = 0;
1287 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1288
1289 /*
1290 * If we don't have AArch32 at EL1, then relax the strictness of
1291 * EL1-dependent register fields to avoid spurious sanity check fails.
1292 */
1293 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1294 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1295 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1296 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1297 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1298 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1299 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1300 }
1301
1302 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1303 info->reg_id_dfr0, boot->reg_id_dfr0);
1304 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1305 info->reg_id_dfr1, boot->reg_id_dfr1);
1306 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1307 info->reg_id_isar0, boot->reg_id_isar0);
1308 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1309 info->reg_id_isar1, boot->reg_id_isar1);
1310 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1311 info->reg_id_isar2, boot->reg_id_isar2);
1312 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1313 info->reg_id_isar3, boot->reg_id_isar3);
1314 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1315 info->reg_id_isar4, boot->reg_id_isar4);
1316 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1317 info->reg_id_isar5, boot->reg_id_isar5);
1318 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1319 info->reg_id_isar6, boot->reg_id_isar6);
1320
1321 /*
1322 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1323 * ACTLR formats could differ across CPUs and therefore would have to
1324 * be trapped for virtualization anyway.
1325 */
1326 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1327 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1328 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1329 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1330 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1331 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1332 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1333 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1334 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1335 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1336 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1337 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1338 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1339 info->reg_id_pfr0, boot->reg_id_pfr0);
1340 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1341 info->reg_id_pfr1, boot->reg_id_pfr1);
1342 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1343 info->reg_id_pfr2, boot->reg_id_pfr2);
1344 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1345 info->reg_mvfr0, boot->reg_mvfr0);
1346 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1347 info->reg_mvfr1, boot->reg_mvfr1);
1348 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1349 info->reg_mvfr2, boot->reg_mvfr2);
1350
1351 return taint;
1352 }
1353
1354 /*
1355 * Update system wide CPU feature registers with the values from a
1356 * non-boot CPU. Also performs SANITY checks to make sure that there
1357 * aren't any insane variations from that of the boot CPU.
1358 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1359 void update_cpu_features(int cpu,
1360 struct cpuinfo_arm64 *info,
1361 struct cpuinfo_arm64 *boot)
1362 {
1363 int taint = 0;
1364
1365 /*
1366 * The kernel can handle differing I-cache policies, but otherwise
1367 * caches should look identical. Userspace JITs will make use of
1368 * *minLine.
1369 */
1370 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1371 info->reg_ctr, boot->reg_ctr);
1372
1373 /*
1374 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1375 * could result in too much or too little memory being zeroed if a
1376 * process is preempted and migrated between CPUs.
1377 */
1378 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1379 info->reg_dczid, boot->reg_dczid);
1380
1381 /* If different, timekeeping will be broken (especially with KVM) */
1382 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1383 info->reg_cntfrq, boot->reg_cntfrq);
1384
1385 /*
1386 * The kernel uses self-hosted debug features and expects CPUs to
1387 * support identical debug features. We presently need CTX_CMPs, WRPs,
1388 * and BRPs to be identical.
1389 * ID_AA64DFR1 is currently RES0.
1390 */
1391 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1392 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1393 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1394 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1395 /*
1396 * Even in big.LITTLE, processors should be identical instruction-set
1397 * wise.
1398 */
1399 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1400 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1401 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1402 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1403 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1404 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1405 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1406 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1407
1408 /*
1409 * Differing PARange support is fine as long as all peripherals and
1410 * memory are mapped within the minimum PARange of all CPUs.
1411 * Linux should not care about secure memory.
1412 */
1413 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1414 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1415 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1416 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1417 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1418 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1419 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1420 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1421 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1422 info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1423
1424 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1425 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1426 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1427 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1428 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1429 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1430
1431 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1432 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1433
1434 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1435 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1436
1437 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1438 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1439
1440 /* Probe vector lengths */
1441 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1442 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1443 if (!system_capabilities_finalized()) {
1444 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1445
1446 vec_update_vq_map(ARM64_VEC_SVE);
1447
1448 cpacr_restore(cpacr);
1449 }
1450 }
1451
1452 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1453 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1454 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1455
1456 /* Probe vector lengths */
1457 if (!system_capabilities_finalized())
1458 vec_update_vq_map(ARM64_VEC_SME);
1459
1460 cpacr_restore(cpacr);
1461 }
1462
1463 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1464 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1465 taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1466 info->reg_mpamidr, boot->reg_mpamidr);
1467 }
1468
1469 /*
1470 * The kernel uses the LDGM/STGM instructions and the number of tags
1471 * they read/write depends on the GMID_EL1.BS field. Check that the
1472 * value is the same on all CPUs.
1473 */
1474 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1475 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1476 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1477 info->reg_gmid, boot->reg_gmid);
1478 }
1479
1480 /*
1481 * If we don't have AArch32 at all then skip the checks entirely
1482 * as the register values may be UNKNOWN and we're not going to be
1483 * using them for anything.
1484 *
1485 * This relies on a sanitised view of the AArch64 ID registers
1486 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1487 */
1488 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1489 lazy_init_32bit_cpu_features(info, boot);
1490 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1491 &boot->aarch32);
1492 }
1493
1494 /*
1495 * Mismatched CPU features are a recipe for disaster. Don't even
1496 * pretend to support them.
1497 */
1498 if (taint) {
1499 pr_warn_once("Unsupported CPU feature variation detected.\n");
1500 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1501 }
1502 }
1503
read_sanitised_ftr_reg(u32 id)1504 u64 read_sanitised_ftr_reg(u32 id)
1505 {
1506 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1507
1508 if (!regp)
1509 return 0;
1510 return regp->sys_val;
1511 }
1512 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1513
1514 #define read_sysreg_case(r) \
1515 case r: val = read_sysreg_s(r); break;
1516
1517 /*
1518 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1519 * Read the system register on the current CPU
1520 */
__read_sysreg_by_encoding(u32 sys_id)1521 u64 __read_sysreg_by_encoding(u32 sys_id)
1522 {
1523 struct arm64_ftr_reg *regp;
1524 u64 val;
1525
1526 switch (sys_id) {
1527 read_sysreg_case(SYS_ID_PFR0_EL1);
1528 read_sysreg_case(SYS_ID_PFR1_EL1);
1529 read_sysreg_case(SYS_ID_PFR2_EL1);
1530 read_sysreg_case(SYS_ID_DFR0_EL1);
1531 read_sysreg_case(SYS_ID_DFR1_EL1);
1532 read_sysreg_case(SYS_ID_MMFR0_EL1);
1533 read_sysreg_case(SYS_ID_MMFR1_EL1);
1534 read_sysreg_case(SYS_ID_MMFR2_EL1);
1535 read_sysreg_case(SYS_ID_MMFR3_EL1);
1536 read_sysreg_case(SYS_ID_MMFR4_EL1);
1537 read_sysreg_case(SYS_ID_MMFR5_EL1);
1538 read_sysreg_case(SYS_ID_ISAR0_EL1);
1539 read_sysreg_case(SYS_ID_ISAR1_EL1);
1540 read_sysreg_case(SYS_ID_ISAR2_EL1);
1541 read_sysreg_case(SYS_ID_ISAR3_EL1);
1542 read_sysreg_case(SYS_ID_ISAR4_EL1);
1543 read_sysreg_case(SYS_ID_ISAR5_EL1);
1544 read_sysreg_case(SYS_ID_ISAR6_EL1);
1545 read_sysreg_case(SYS_MVFR0_EL1);
1546 read_sysreg_case(SYS_MVFR1_EL1);
1547 read_sysreg_case(SYS_MVFR2_EL1);
1548
1549 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1550 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1551 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1552 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1553 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1554 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1555 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1556 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1557 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1558 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1559 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1560 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1561 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1562 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1563 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1564 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1565 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1566
1567 read_sysreg_case(SYS_CNTFRQ_EL0);
1568 read_sysreg_case(SYS_CTR_EL0);
1569 read_sysreg_case(SYS_DCZID_EL0);
1570
1571 default:
1572 BUG();
1573 return 0;
1574 }
1575
1576 regp = get_arm64_ftr_reg(sys_id);
1577 if (regp) {
1578 val &= ~regp->override->mask;
1579 val |= (regp->override->val & regp->override->mask);
1580 }
1581
1582 return val;
1583 }
1584
1585 #include <linux/irqchip/arm-gic-v3.h>
1586
1587 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1588 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1589 {
1590 return true;
1591 }
1592
1593 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1594 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1595 {
1596 int val, min, max;
1597 u64 tmp;
1598
1599 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1600 entry->field_width,
1601 entry->sign);
1602
1603 tmp = entry->min_field_value;
1604 tmp <<= entry->field_pos;
1605
1606 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1607 entry->field_width,
1608 entry->sign);
1609
1610 tmp = entry->max_field_value;
1611 tmp <<= entry->field_pos;
1612
1613 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1614 entry->field_width,
1615 entry->sign);
1616
1617 return val >= min && val <= max;
1618 }
1619
1620 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1621 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1622 {
1623 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1624 if (scope == SCOPE_SYSTEM)
1625 return read_sanitised_ftr_reg(entry->sys_reg);
1626 else
1627 return __read_sysreg_by_encoding(entry->sys_reg);
1628 }
1629
1630 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1631 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1632 {
1633 int mask;
1634 struct arm64_ftr_reg *regp;
1635 u64 val = read_scoped_sysreg(entry, scope);
1636
1637 regp = get_arm64_ftr_reg(entry->sys_reg);
1638 if (!regp)
1639 return false;
1640
1641 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1642 entry->field_pos,
1643 entry->field_width);
1644 if (!mask)
1645 return false;
1646
1647 return feature_matches(val, entry);
1648 }
1649
1650 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1651 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1652 {
1653 u64 val = read_scoped_sysreg(entry, scope);
1654 return feature_matches(val, entry);
1655 }
1656
system_32bit_el0_cpumask(void)1657 const struct cpumask *system_32bit_el0_cpumask(void)
1658 {
1659 if (!system_supports_32bit_el0())
1660 return cpu_none_mask;
1661
1662 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1663 return cpu_32bit_el0_mask;
1664
1665 return cpu_possible_mask;
1666 }
1667
task_cpu_fallback_mask(struct task_struct * p)1668 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1669 {
1670 return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1671 }
1672
parse_32bit_el0_param(char * str)1673 static int __init parse_32bit_el0_param(char *str)
1674 {
1675 allow_mismatched_32bit_el0 = true;
1676 return 0;
1677 }
1678 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1679
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1680 static ssize_t aarch32_el0_show(struct device *dev,
1681 struct device_attribute *attr, char *buf)
1682 {
1683 const struct cpumask *mask = system_32bit_el0_cpumask();
1684
1685 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1686 }
1687 static const DEVICE_ATTR_RO(aarch32_el0);
1688
aarch32_el0_sysfs_init(void)1689 static int __init aarch32_el0_sysfs_init(void)
1690 {
1691 struct device *dev_root;
1692 int ret = 0;
1693
1694 if (!allow_mismatched_32bit_el0)
1695 return 0;
1696
1697 dev_root = bus_get_dev_root(&cpu_subsys);
1698 if (dev_root) {
1699 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1700 put_device(dev_root);
1701 }
1702 return ret;
1703 }
1704 device_initcall(aarch32_el0_sysfs_init);
1705
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1706 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1707 {
1708 if (!has_cpuid_feature(entry, scope))
1709 return allow_mismatched_32bit_el0;
1710
1711 if (scope == SCOPE_SYSTEM)
1712 pr_info("detected: 32-bit EL0 Support\n");
1713
1714 return true;
1715 }
1716
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1717 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1718 {
1719 bool has_sre;
1720
1721 if (!has_cpuid_feature(entry, scope))
1722 return false;
1723
1724 has_sre = gic_enable_sre();
1725 if (!has_sre)
1726 pr_warn_once("%s present but disabled by higher exception level\n",
1727 entry->desc);
1728
1729 return has_sre;
1730 }
1731
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1732 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1733 int scope)
1734 {
1735 u64 ctr;
1736
1737 if (scope == SCOPE_SYSTEM)
1738 ctr = arm64_ftr_reg_ctrel0.sys_val;
1739 else
1740 ctr = read_cpuid_effective_cachetype();
1741
1742 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1743 }
1744
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1745 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1746 {
1747 /*
1748 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1749 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1750 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1751 * value.
1752 */
1753 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1754 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1755 }
1756
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1757 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1758 int scope)
1759 {
1760 u64 ctr;
1761
1762 if (scope == SCOPE_SYSTEM)
1763 ctr = arm64_ftr_reg_ctrel0.sys_val;
1764 else
1765 ctr = read_cpuid_cachetype();
1766
1767 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1768 }
1769
1770 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1771 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1772 {
1773 /*
1774 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1775 * may share TLB entries with a CPU stuck in the crashed
1776 * kernel.
1777 */
1778 if (is_kdump_kernel())
1779 return false;
1780
1781 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1782 return false;
1783
1784 return has_cpuid_feature(entry, scope);
1785 }
1786
1787 static bool __meltdown_safe = true;
1788 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1789
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1790 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1791 int scope)
1792 {
1793 /* List of CPUs that are not vulnerable and don't need KPTI */
1794 static const struct midr_range kpti_safe_list[] = {
1795 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1796 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1797 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1798 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1799 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1800 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1801 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1802 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1803 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1804 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1805 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1806 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1807 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1808 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1809 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1810 { /* sentinel */ }
1811 };
1812 char const *str = "kpti command line option";
1813 bool meltdown_safe;
1814
1815 meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1816
1817 /* Defer to CPU feature registers */
1818 if (has_cpuid_feature(entry, scope))
1819 meltdown_safe = true;
1820
1821 if (!meltdown_safe)
1822 __meltdown_safe = false;
1823
1824 /*
1825 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1826 * ThunderX leads to apparent I-cache corruption of kernel text, which
1827 * ends as well as you might imagine. Don't even try. We cannot rely
1828 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1829 * because cpucap detection order may change. However, since we know
1830 * affected CPUs are always in a homogeneous configuration, it is
1831 * safe to rely on this_cpu_has_cap() here.
1832 */
1833 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1834 str = "ARM64_WORKAROUND_CAVIUM_27456";
1835 __kpti_forced = -1;
1836 }
1837
1838 /* Useful for KASLR robustness */
1839 if (kaslr_enabled() && kaslr_requires_kpti()) {
1840 if (!__kpti_forced) {
1841 str = "KASLR";
1842 __kpti_forced = 1;
1843 }
1844 }
1845
1846 if (cpu_mitigations_off() && !__kpti_forced) {
1847 str = "mitigations=off";
1848 __kpti_forced = -1;
1849 }
1850
1851 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1852 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1853 return false;
1854 }
1855
1856 /* Forced? */
1857 if (__kpti_forced) {
1858 pr_info_once("kernel page table isolation forced %s by %s\n",
1859 __kpti_forced > 0 ? "ON" : "OFF", str);
1860 return __kpti_forced > 0;
1861 }
1862
1863 return !meltdown_safe;
1864 }
1865
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1866 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1867 {
1868 /*
1869 * Although the Apple M2 family appears to support NV1, the
1870 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1871 * that it doesn't support NV1 at all.
1872 */
1873 static const struct midr_range nv1_ni_list[] = {
1874 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1875 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1876 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1877 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1878 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1879 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1880 {}
1881 };
1882
1883 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1884 !(has_cpuid_feature(entry, scope) ||
1885 is_midr_in_range_list(nv1_ni_list)));
1886 }
1887
1888 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1889 static bool has_lpa2_at_stage1(u64 mmfr0)
1890 {
1891 unsigned int tgran;
1892
1893 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1894 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1895 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1896 }
1897
has_lpa2_at_stage2(u64 mmfr0)1898 static bool has_lpa2_at_stage2(u64 mmfr0)
1899 {
1900 unsigned int tgran;
1901
1902 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1903 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1904 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1905 }
1906
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1907 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1908 {
1909 u64 mmfr0;
1910
1911 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1912 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1913 }
1914 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1915 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1916 {
1917 return false;
1918 }
1919 #endif
1920
1921 #ifdef CONFIG_HW_PERF_EVENTS
has_pmuv3(const struct arm64_cpu_capabilities * entry,int scope)1922 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1923 {
1924 u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1925 unsigned int pmuver;
1926
1927 /*
1928 * PMUVer follows the standard ID scheme for an unsigned field with the
1929 * exception of 0xF (IMP_DEF) which is treated specially and implies
1930 * FEAT_PMUv3 is not implemented.
1931 *
1932 * See DDI0487L.a D24.1.3.2 for more details.
1933 */
1934 pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1935 ID_AA64DFR0_EL1_PMUVer_SHIFT);
1936 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1937 return false;
1938
1939 return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1940 }
1941 #endif
1942
1943 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1944 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1945
1946 extern
1947 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1948 phys_addr_t size, pgprot_t prot,
1949 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags);
1950
1951 static phys_addr_t __initdata kpti_ng_temp_alloc;
1952
kpti_ng_pgd_alloc(enum pgtable_type type)1953 static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1954 {
1955 kpti_ng_temp_alloc -= PAGE_SIZE;
1956 return kpti_ng_temp_alloc;
1957 }
1958
__kpti_install_ng_mappings(void * __unused)1959 static int __init __kpti_install_ng_mappings(void *__unused)
1960 {
1961 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1962 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1963 kpti_remap_fn *remap_fn;
1964
1965 int cpu = smp_processor_id();
1966 int levels = CONFIG_PGTABLE_LEVELS;
1967 int order = order_base_2(levels);
1968 u64 kpti_ng_temp_pgd_pa = 0;
1969 pgd_t *kpti_ng_temp_pgd;
1970 u64 alloc = 0;
1971
1972 if (levels == 5 && !pgtable_l5_enabled())
1973 levels = 4;
1974 else if (levels == 4 && !pgtable_l4_enabled())
1975 levels = 3;
1976
1977 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1978
1979 if (!cpu) {
1980 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1981 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1982 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1983
1984 //
1985 // Create a minimal page table hierarchy that permits us to map
1986 // the swapper page tables temporarily as we traverse them.
1987 //
1988 // The physical pages are laid out as follows:
1989 //
1990 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1991 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1992 // +--------+-\-------+-\------ +-\------ +-///--------+
1993 // ^
1994 // The first page is mapped into this hierarchy at a PMD_SHIFT
1995 // aligned virtual address, so that we can manipulate the PTE
1996 // level entries while the mapping is active. The first entry
1997 // covers the PTE[] page itself, the remaining entries are free
1998 // to be used as a ad-hoc fixmap.
1999 //
2000 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
2001 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
2002 kpti_ng_pgd_alloc, 0);
2003 }
2004
2005 cpu_install_idmap();
2006 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
2007 cpu_uninstall_idmap();
2008
2009 if (!cpu) {
2010 free_pages(alloc, order);
2011 arm64_use_ng_mappings = true;
2012 }
2013
2014 return 0;
2015 }
2016
kpti_install_ng_mappings(void)2017 static void __init kpti_install_ng_mappings(void)
2018 {
2019 /* Check whether KPTI is going to be used */
2020 if (!arm64_kernel_unmapped_at_el0())
2021 return;
2022
2023 /*
2024 * We don't need to rewrite the page-tables if either we've done
2025 * it already or we have KASLR enabled and therefore have not
2026 * created any global mappings at all.
2027 */
2028 if (arm64_use_ng_mappings)
2029 return;
2030
2031 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2032 }
2033
2034 #else
kpti_install_ng_mappings(void)2035 static inline void kpti_install_ng_mappings(void)
2036 {
2037 }
2038 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
2039
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)2040 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2041 {
2042 if (__this_cpu_read(this_cpu_vector) == vectors) {
2043 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2044
2045 __this_cpu_write(this_cpu_vector, v);
2046 }
2047
2048 }
2049
parse_kpti(char * str)2050 static int __init parse_kpti(char *str)
2051 {
2052 bool enabled;
2053 int ret = kstrtobool(str, &enabled);
2054
2055 if (ret)
2056 return ret;
2057
2058 __kpti_forced = enabled ? 1 : -1;
2059 return 0;
2060 }
2061 early_param("kpti", parse_kpti);
2062
2063 #ifdef CONFIG_ARM64_HW_AFDBM
2064 static struct cpumask dbm_cpus __read_mostly;
2065
__cpu_enable_hw_dbm(void)2066 static inline void __cpu_enable_hw_dbm(void)
2067 {
2068 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2069
2070 write_sysreg(tcr, tcr_el1);
2071 isb();
2072 local_flush_tlb_all();
2073 }
2074
cpu_has_broken_dbm(void)2075 static bool cpu_has_broken_dbm(void)
2076 {
2077 /* List of CPUs which have broken DBM support. */
2078 static const struct midr_range cpus[] = {
2079 #ifdef CONFIG_ARM64_ERRATUM_1024718
2080 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2081 /* Kryo4xx Silver (rdpe => r1p0) */
2082 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2083 #endif
2084 #ifdef CONFIG_ARM64_ERRATUM_2051678
2085 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2086 #endif
2087 {},
2088 };
2089
2090 return is_midr_in_range_list(cpus);
2091 }
2092
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)2093 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2094 {
2095 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2096 !cpu_has_broken_dbm();
2097 }
2098
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2099 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2100 {
2101 if (cpu_can_use_dbm(cap)) {
2102 __cpu_enable_hw_dbm();
2103 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2104 }
2105 }
2106
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2107 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2108 int __unused)
2109 {
2110 /*
2111 * DBM is a non-conflicting feature. i.e, the kernel can safely
2112 * run a mix of CPUs with and without the feature. So, we
2113 * unconditionally enable the capability to allow any late CPU
2114 * to use the feature. We only enable the control bits on the
2115 * CPU, if it is supported.
2116 */
2117
2118 return true;
2119 }
2120
2121 #endif
2122
2123 #ifdef CONFIG_ARM64_AMU_EXTN
2124
2125 /*
2126 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2127 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2128 * information regarding all the events that it supports. When a CPU bit is
2129 * set in the cpumask, the user of this feature can only rely on the presence
2130 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2131 * counters are enabled or access to these counters is enabled by code
2132 * executed at higher exception levels (firmware).
2133 */
2134 static struct cpumask amu_cpus __read_mostly;
2135
cpu_has_amu_feat(int cpu)2136 bool cpu_has_amu_feat(int cpu)
2137 {
2138 return cpumask_test_cpu(cpu, &amu_cpus);
2139 }
2140
get_cpu_with_amu_feat(void)2141 int get_cpu_with_amu_feat(void)
2142 {
2143 return cpumask_any(&amu_cpus);
2144 }
2145
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2146 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2147 {
2148 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2149 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2150
2151 /* 0 reference values signal broken/disabled counters */
2152 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2153 update_freq_counters_refs();
2154 }
2155 }
2156
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2157 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2158 int __unused)
2159 {
2160 /*
2161 * The AMU extension is a non-conflicting feature: the kernel can
2162 * safely run a mix of CPUs with and without support for the
2163 * activity monitors extension. Therefore, unconditionally enable
2164 * the capability to allow any late CPU to use the feature.
2165 *
2166 * With this feature unconditionally enabled, the cpu_enable
2167 * function will be called for all CPUs that match the criteria,
2168 * including secondary and hotplugged, marking this feature as
2169 * present on that respective CPU. The enable function will also
2170 * print a detection message.
2171 */
2172
2173 return true;
2174 }
2175 #else
get_cpu_with_amu_feat(void)2176 int get_cpu_with_amu_feat(void)
2177 {
2178 return nr_cpu_ids;
2179 }
2180 #endif
2181
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2182 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2183 {
2184 return is_kernel_in_hyp_mode();
2185 }
2186
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2187 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2188 {
2189 /*
2190 * Copy register values that aren't redirected by hardware.
2191 *
2192 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2193 * this value to tpidr_el2 before we patch the code. Once we've done
2194 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2195 * do anything here.
2196 */
2197 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2198 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2199 }
2200
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2201 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2202 int scope)
2203 {
2204 if (kvm_get_mode() != KVM_MODE_NV)
2205 return false;
2206
2207 if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2208 pr_warn("unavailable: %s\n", cap->desc);
2209 return false;
2210 }
2211
2212 return true;
2213 }
2214
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2215 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2216 int __unused)
2217 {
2218 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2219 }
2220
has_bbml2_noabort(const struct arm64_cpu_capabilities * caps,int scope)2221 static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2222 {
2223 /*
2224 * We want to allow usage of BBML2 in as wide a range of kernel contexts
2225 * as possible. This list is therefore an allow-list of known-good
2226 * implementations that both support BBML2 and additionally, fulfill the
2227 * extra constraint of never generating TLB conflict aborts when using
2228 * the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2229 * kernel contexts difficult to prove safe against recursive aborts).
2230 *
2231 * Note that implementations can only be considered "known-good" if their
2232 * implementors attest to the fact that the implementation never raises
2233 * TLB conflict aborts for BBML2 mapping granularity changes.
2234 */
2235 static const struct midr_range supports_bbml2_noabort_list[] = {
2236 MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2237 MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2238 {}
2239 };
2240
2241 /* Does our cpu guarantee to never raise TLB conflict aborts? */
2242 if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2243 return false;
2244
2245 /*
2246 * We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2247 * about whether the MIDR check passes.
2248 */
2249
2250 return true;
2251 }
2252
2253 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2254 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2255 {
2256 /*
2257 * We modify PSTATE. This won't work from irq context as the PSTATE
2258 * is discarded once we return from the exception.
2259 */
2260 WARN_ON_ONCE(in_interrupt());
2261
2262 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2263 set_pstate_pan(1);
2264 }
2265 #endif /* CONFIG_ARM64_PAN */
2266
2267 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2268 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2269 {
2270 /* Firmware may have left a deferred SError in this register. */
2271 write_sysreg_s(0, SYS_DISR_EL1);
2272 }
has_rasv1p1(const struct arm64_cpu_capabilities * __unused,int scope)2273 static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2274 {
2275 const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2276 {
2277 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2278 },
2279 {
2280 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2281 },
2282 {
2283 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2284 },
2285 };
2286
2287 return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2288 (has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2289 has_cpuid_feature(&rasv1p1_caps[2], scope)));
2290 }
2291 #endif /* CONFIG_ARM64_RAS_EXTN */
2292
2293 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2294 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2295 {
2296 int boot_val, sec_val;
2297
2298 /* We don't expect to be called with SCOPE_SYSTEM */
2299 WARN_ON(scope == SCOPE_SYSTEM);
2300 /*
2301 * The ptr-auth feature levels are not intercompatible with lower
2302 * levels. Hence we must match ptr-auth feature level of the secondary
2303 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2304 * from the sanitised register whereas direct register read is done for
2305 * the secondary CPUs.
2306 * The sanitised feature state is guaranteed to match that of the
2307 * boot CPU as a mismatched secondary CPU is parked before it gets
2308 * a chance to update the state, with the capability.
2309 */
2310 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2311 entry->field_pos, entry->sign);
2312 if (scope & SCOPE_BOOT_CPU)
2313 return boot_val >= entry->min_field_value;
2314 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2315 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2316 entry->field_pos, entry->sign);
2317 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2318 }
2319
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2320 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2321 int scope)
2322 {
2323 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2324 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2325 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2326
2327 return apa || apa3 || api;
2328 }
2329
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2330 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2331 int __unused)
2332 {
2333 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2334 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2335 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2336
2337 return gpa || gpa3 || gpi;
2338 }
2339 #endif /* CONFIG_ARM64_PTR_AUTH */
2340
2341 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2342 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2343 {
2344 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2345 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2346 }
2347 #endif /* CONFIG_ARM64_E0PD */
2348
2349 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2350 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2351 int scope)
2352 {
2353 /*
2354 * ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2355 * feature, so will be detected earlier.
2356 */
2357 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2358 if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2359 return false;
2360
2361 return enable_pseudo_nmi;
2362 }
2363
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2364 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2365 int scope)
2366 {
2367 /*
2368 * If we're not using priority masking then we won't be poking PMR_EL1,
2369 * and there's no need to relax synchronization of writes to it, and
2370 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2371 * that.
2372 *
2373 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2374 * feature, so will be detected earlier.
2375 */
2376 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2377 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2378 return false;
2379
2380 /*
2381 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2382 * hint for interrupt distribution, a DSB is not necessary when
2383 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2384 *
2385 * Linux itself doesn't use 1:N distribution, so has no need to
2386 * set PMHE. The only reason to have it set is if EL3 requires it
2387 * (and we can't change it).
2388 */
2389 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2390 }
2391 #endif
2392
2393 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2394 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2395 {
2396 /*
2397 * Use of X16/X17 for tail-calls and trampolines that jump to
2398 * function entry points using BR is a requirement for
2399 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2400 * So, be strict and forbid other BRs using other registers to
2401 * jump onto a PACIxSP instruction:
2402 */
2403 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2404 isb();
2405 }
2406 #endif /* CONFIG_ARM64_BTI */
2407
2408 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2409 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2410 {
2411 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2412
2413 mte_cpu_setup();
2414
2415 /*
2416 * Clear the tags in the zero page. This needs to be done via the
2417 * linear map which has the Tagged attribute.
2418 */
2419 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2420 mte_clear_page_tags(lm_alias(empty_zero_page));
2421 set_page_mte_tagged(ZERO_PAGE(0));
2422 }
2423
2424 kasan_init_hw_tags_cpu();
2425 }
2426 #endif /* CONFIG_ARM64_MTE */
2427
user_feature_fixup(void)2428 static void user_feature_fixup(void)
2429 {
2430 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2431 struct arm64_ftr_reg *regp;
2432
2433 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2434 if (regp)
2435 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2436 }
2437
2438 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2439 struct arm64_ftr_reg *regp;
2440
2441 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2442 if (regp)
2443 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2444 }
2445 }
2446
elf_hwcap_fixup(void)2447 static void elf_hwcap_fixup(void)
2448 {
2449 #ifdef CONFIG_COMPAT
2450 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2451 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2452 #endif /* CONFIG_COMPAT */
2453 }
2454
2455 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2456 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2457 {
2458 return kvm_get_mode() == KVM_MODE_PROTECTED;
2459 }
2460 #endif /* CONFIG_KVM */
2461
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2462 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2463 {
2464 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2465 }
2466
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2467 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2468 {
2469 set_pstate_dit(1);
2470 }
2471
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2472 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2473 {
2474 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2475 }
2476
2477 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2478 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2479 {
2480 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2481 sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2482 }
2483 #endif
2484
2485 #ifdef CONFIG_ARM64_GCS
cpu_enable_gcs(const struct arm64_cpu_capabilities * __unused)2486 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2487 {
2488 /* GCSPR_EL0 is always readable */
2489 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2490 }
2491 #endif
2492
2493 /* Internal helper functions to match cpu capability type */
2494 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2495 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2496 {
2497 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2498 }
2499
2500 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2501 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2502 {
2503 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2504 }
2505
2506 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2507 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2508 {
2509 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2510 }
2511
2512 static bool
test_has_mpam(const struct arm64_cpu_capabilities * entry,int scope)2513 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2514 {
2515 if (!has_cpuid_feature(entry, scope))
2516 return false;
2517
2518 /* Check firmware actually enabled MPAM on this cpu. */
2519 return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2520 }
2521
2522 static void
cpu_enable_mpam(const struct arm64_cpu_capabilities * entry)2523 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2524 {
2525 /*
2526 * Access by the kernel (at EL1) should use the reserved PARTID
2527 * which is configured unrestricted. This avoids priority-inversion
2528 * where latency sensitive tasks have to wait for a task that has
2529 * been throttled to release the lock.
2530 */
2531 write_sysreg_s(0, SYS_MPAM1_EL1);
2532 }
2533
2534 static bool
test_has_mpam_hcr(const struct arm64_cpu_capabilities * entry,int scope)2535 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2536 {
2537 u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2538
2539 return idr & MPAMIDR_EL1_HAS_HCR;
2540 }
2541
2542 static const struct arm64_cpu_capabilities arm64_features[] = {
2543 {
2544 .capability = ARM64_ALWAYS_BOOT,
2545 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2546 .matches = has_always,
2547 },
2548 {
2549 .capability = ARM64_ALWAYS_SYSTEM,
2550 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2551 .matches = has_always,
2552 },
2553 {
2554 .desc = "GICv3 CPU interface",
2555 .capability = ARM64_HAS_GICV3_CPUIF,
2556 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2557 .matches = has_useable_gicv3_cpuif,
2558 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2559 },
2560 {
2561 .desc = "Enhanced Counter Virtualization",
2562 .capability = ARM64_HAS_ECV,
2563 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2564 .matches = has_cpuid_feature,
2565 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2566 },
2567 {
2568 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2569 .capability = ARM64_HAS_ECV_CNTPOFF,
2570 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2571 .matches = has_cpuid_feature,
2572 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2573 },
2574 #ifdef CONFIG_ARM64_PAN
2575 {
2576 .desc = "Privileged Access Never",
2577 .capability = ARM64_HAS_PAN,
2578 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2579 .matches = has_cpuid_feature,
2580 .cpu_enable = cpu_enable_pan,
2581 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2582 },
2583 #endif /* CONFIG_ARM64_PAN */
2584 #ifdef CONFIG_ARM64_EPAN
2585 {
2586 .desc = "Enhanced Privileged Access Never",
2587 .capability = ARM64_HAS_EPAN,
2588 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2589 .matches = has_cpuid_feature,
2590 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2591 },
2592 #endif /* CONFIG_ARM64_EPAN */
2593 #ifdef CONFIG_ARM64_LSE_ATOMICS
2594 {
2595 .desc = "LSE atomic instructions",
2596 .capability = ARM64_HAS_LSE_ATOMICS,
2597 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2598 .matches = has_cpuid_feature,
2599 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2600 },
2601 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2602 {
2603 .desc = "Virtualization Host Extensions",
2604 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2605 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2606 .matches = runs_at_el2,
2607 .cpu_enable = cpu_copy_el2regs,
2608 },
2609 {
2610 .desc = "Nested Virtualization Support",
2611 .capability = ARM64_HAS_NESTED_VIRT,
2612 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613 .matches = has_nested_virt_support,
2614 .match_list = (const struct arm64_cpu_capabilities []){
2615 {
2616 .matches = has_cpuid_feature,
2617 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2618 },
2619 {
2620 .matches = has_cpuid_feature,
2621 ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2622 },
2623 { /* Sentinel */ }
2624 },
2625 },
2626 {
2627 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2628 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2629 .matches = has_32bit_el0,
2630 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2631 },
2632 #ifdef CONFIG_KVM
2633 {
2634 .desc = "32-bit EL1 Support",
2635 .capability = ARM64_HAS_32BIT_EL1,
2636 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2637 .matches = has_cpuid_feature,
2638 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2639 },
2640 {
2641 .desc = "Protected KVM",
2642 .capability = ARM64_KVM_PROTECTED_MODE,
2643 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2644 .matches = is_kvm_protected_mode,
2645 },
2646 {
2647 .desc = "HCRX_EL2 register",
2648 .capability = ARM64_HAS_HCX,
2649 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2650 .matches = has_cpuid_feature,
2651 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2652 },
2653 #endif
2654 {
2655 .desc = "Kernel page table isolation (KPTI)",
2656 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2657 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2658 .cpu_enable = cpu_enable_kpti,
2659 .matches = unmap_kernel_at_el0,
2660 /*
2661 * The ID feature fields below are used to indicate that
2662 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2663 * more details.
2664 */
2665 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2666 },
2667 {
2668 .capability = ARM64_HAS_FPSIMD,
2669 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670 .matches = has_cpuid_feature,
2671 .cpu_enable = cpu_enable_fpsimd,
2672 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2673 },
2674 #ifdef CONFIG_ARM64_PMEM
2675 {
2676 .desc = "Data cache clean to Point of Persistence",
2677 .capability = ARM64_HAS_DCPOP,
2678 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2679 .matches = has_cpuid_feature,
2680 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2681 },
2682 {
2683 .desc = "Data cache clean to Point of Deep Persistence",
2684 .capability = ARM64_HAS_DCPODP,
2685 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2686 .matches = has_cpuid_feature,
2687 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2688 },
2689 #endif
2690 #ifdef CONFIG_ARM64_SVE
2691 {
2692 .desc = "Scalable Vector Extension",
2693 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2694 .capability = ARM64_SVE,
2695 .cpu_enable = cpu_enable_sve,
2696 .matches = has_cpuid_feature,
2697 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2698 },
2699 #endif /* CONFIG_ARM64_SVE */
2700 #ifdef CONFIG_ARM64_RAS_EXTN
2701 {
2702 .desc = "RAS Extension Support",
2703 .capability = ARM64_HAS_RAS_EXTN,
2704 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2705 .matches = has_cpuid_feature,
2706 .cpu_enable = cpu_clear_disr,
2707 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2708 },
2709 {
2710 .desc = "RASv1p1 Extension Support",
2711 .capability = ARM64_HAS_RASV1P1_EXTN,
2712 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713 .matches = has_rasv1p1,
2714 },
2715 #endif /* CONFIG_ARM64_RAS_EXTN */
2716 #ifdef CONFIG_ARM64_AMU_EXTN
2717 {
2718 .desc = "Activity Monitors Unit (AMU)",
2719 .capability = ARM64_HAS_AMU_EXTN,
2720 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2721 .matches = has_amu,
2722 .cpu_enable = cpu_amu_enable,
2723 .cpus = &amu_cpus,
2724 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2725 },
2726 #endif /* CONFIG_ARM64_AMU_EXTN */
2727 {
2728 .desc = "Data cache clean to the PoU not required for I/D coherence",
2729 .capability = ARM64_HAS_CACHE_IDC,
2730 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2731 .matches = has_cache_idc,
2732 .cpu_enable = cpu_emulate_effective_ctr,
2733 },
2734 {
2735 .desc = "Instruction cache invalidation not required for I/D coherence",
2736 .capability = ARM64_HAS_CACHE_DIC,
2737 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2738 .matches = has_cache_dic,
2739 },
2740 {
2741 .desc = "Stage-2 Force Write-Back",
2742 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2743 .capability = ARM64_HAS_STAGE2_FWB,
2744 .matches = has_cpuid_feature,
2745 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2746 },
2747 {
2748 .desc = "ARMv8.4 Translation Table Level",
2749 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2750 .capability = ARM64_HAS_ARMv8_4_TTL,
2751 .matches = has_cpuid_feature,
2752 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2753 },
2754 {
2755 .desc = "TLB range maintenance instructions",
2756 .capability = ARM64_HAS_TLB_RANGE,
2757 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2758 .matches = has_cpuid_feature,
2759 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2760 },
2761 #ifdef CONFIG_ARM64_HW_AFDBM
2762 {
2763 .desc = "Hardware dirty bit management",
2764 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2765 .capability = ARM64_HW_DBM,
2766 .matches = has_hw_dbm,
2767 .cpu_enable = cpu_enable_hw_dbm,
2768 .cpus = &dbm_cpus,
2769 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2770 },
2771 #endif
2772 #ifdef CONFIG_ARM64_HAFT
2773 {
2774 .desc = "Hardware managed Access Flag for Table Descriptors",
2775 /*
2776 * Contrary to the page/block access flag, the table access flag
2777 * cannot be emulated in software (no access fault will occur).
2778 * Therefore this should be used only if it's supported system
2779 * wide.
2780 */
2781 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2782 .capability = ARM64_HAFT,
2783 .matches = has_cpuid_feature,
2784 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2785 },
2786 #endif
2787 {
2788 .desc = "CRC32 instructions",
2789 .capability = ARM64_HAS_CRC32,
2790 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2791 .matches = has_cpuid_feature,
2792 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2793 },
2794 {
2795 .desc = "Speculative Store Bypassing Safe (SSBS)",
2796 .capability = ARM64_SSBS,
2797 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2798 .matches = has_cpuid_feature,
2799 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2800 },
2801 #ifdef CONFIG_ARM64_CNP
2802 {
2803 .desc = "Common not Private translations",
2804 .capability = ARM64_HAS_CNP,
2805 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2806 .matches = has_useable_cnp,
2807 .cpu_enable = cpu_enable_cnp,
2808 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2809 },
2810 #endif
2811 {
2812 .desc = "Speculation barrier (SB)",
2813 .capability = ARM64_HAS_SB,
2814 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2815 .matches = has_cpuid_feature,
2816 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2817 },
2818 #ifdef CONFIG_ARM64_PTR_AUTH
2819 {
2820 .desc = "Address authentication (architected QARMA5 algorithm)",
2821 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2822 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2823 .matches = has_address_auth_cpucap,
2824 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2825 },
2826 {
2827 .desc = "Address authentication (architected QARMA3 algorithm)",
2828 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2829 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2830 .matches = has_address_auth_cpucap,
2831 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2832 },
2833 {
2834 .desc = "Address authentication (IMP DEF algorithm)",
2835 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2836 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2837 .matches = has_address_auth_cpucap,
2838 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2839 },
2840 {
2841 .capability = ARM64_HAS_ADDRESS_AUTH,
2842 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2843 .matches = has_address_auth_metacap,
2844 },
2845 {
2846 .desc = "Generic authentication (architected QARMA5 algorithm)",
2847 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2848 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2849 .matches = has_cpuid_feature,
2850 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2851 },
2852 {
2853 .desc = "Generic authentication (architected QARMA3 algorithm)",
2854 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2855 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2856 .matches = has_cpuid_feature,
2857 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2858 },
2859 {
2860 .desc = "Generic authentication (IMP DEF algorithm)",
2861 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2862 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2863 .matches = has_cpuid_feature,
2864 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2865 },
2866 {
2867 .capability = ARM64_HAS_GENERIC_AUTH,
2868 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2869 .matches = has_generic_auth,
2870 },
2871 #endif /* CONFIG_ARM64_PTR_AUTH */
2872 #ifdef CONFIG_ARM64_PSEUDO_NMI
2873 {
2874 /*
2875 * Depends on having GICv3
2876 */
2877 .desc = "IRQ priority masking",
2878 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2879 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2880 .matches = can_use_gic_priorities,
2881 },
2882 {
2883 /*
2884 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2885 */
2886 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2887 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2888 .matches = has_gic_prio_relaxed_sync,
2889 },
2890 #endif
2891 #ifdef CONFIG_ARM64_E0PD
2892 {
2893 .desc = "E0PD",
2894 .capability = ARM64_HAS_E0PD,
2895 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2896 .cpu_enable = cpu_enable_e0pd,
2897 .matches = has_cpuid_feature,
2898 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2899 },
2900 #endif
2901 {
2902 .desc = "Random Number Generator",
2903 .capability = ARM64_HAS_RNG,
2904 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2905 .matches = has_cpuid_feature,
2906 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2907 },
2908 #ifdef CONFIG_ARM64_BTI
2909 {
2910 .desc = "Branch Target Identification",
2911 .capability = ARM64_BTI,
2912 #ifdef CONFIG_ARM64_BTI_KERNEL
2913 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2914 #else
2915 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2916 #endif
2917 .matches = has_cpuid_feature,
2918 .cpu_enable = bti_enable,
2919 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2920 },
2921 #endif
2922 #ifdef CONFIG_ARM64_MTE
2923 {
2924 .desc = "Memory Tagging Extension",
2925 .capability = ARM64_MTE,
2926 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2927 .matches = has_cpuid_feature,
2928 .cpu_enable = cpu_enable_mte,
2929 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2930 },
2931 {
2932 .desc = "Asymmetric MTE Tag Check Fault",
2933 .capability = ARM64_MTE_ASYMM,
2934 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2935 .matches = has_cpuid_feature,
2936 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2937 },
2938 {
2939 .desc = "FAR on MTE Tag Check Fault",
2940 .capability = ARM64_MTE_FAR,
2941 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2942 .matches = has_cpuid_feature,
2943 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2944 },
2945 {
2946 .desc = "Store Only MTE Tag Check",
2947 .capability = ARM64_MTE_STORE_ONLY,
2948 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2949 .matches = has_cpuid_feature,
2950 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2951 },
2952 #endif /* CONFIG_ARM64_MTE */
2953 {
2954 .desc = "RCpc load-acquire (LDAPR)",
2955 .capability = ARM64_HAS_LDAPR,
2956 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2957 .matches = has_cpuid_feature,
2958 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2959 },
2960 {
2961 .desc = "Fine Grained Traps",
2962 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2963 .capability = ARM64_HAS_FGT,
2964 .matches = has_cpuid_feature,
2965 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2966 },
2967 {
2968 .desc = "Fine Grained Traps 2",
2969 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2970 .capability = ARM64_HAS_FGT2,
2971 .matches = has_cpuid_feature,
2972 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2973 },
2974 #ifdef CONFIG_ARM64_SME
2975 {
2976 .desc = "Scalable Matrix Extension",
2977 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2978 .capability = ARM64_SME,
2979 .matches = has_cpuid_feature,
2980 .cpu_enable = cpu_enable_sme,
2981 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2982 },
2983 /* FA64 should be sorted after the base SME capability */
2984 {
2985 .desc = "FA64",
2986 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2987 .capability = ARM64_SME_FA64,
2988 .matches = has_cpuid_feature,
2989 .cpu_enable = cpu_enable_fa64,
2990 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2991 },
2992 {
2993 .desc = "SME2",
2994 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2995 .capability = ARM64_SME2,
2996 .matches = has_cpuid_feature,
2997 .cpu_enable = cpu_enable_sme2,
2998 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2999 },
3000 #endif /* CONFIG_ARM64_SME */
3001 {
3002 .desc = "WFx with timeout",
3003 .capability = ARM64_HAS_WFXT,
3004 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3005 .matches = has_cpuid_feature,
3006 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
3007 },
3008 {
3009 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
3010 .capability = ARM64_HAS_TIDCP1,
3011 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3012 .matches = has_cpuid_feature,
3013 .cpu_enable = cpu_trap_el0_impdef,
3014 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
3015 },
3016 {
3017 .desc = "Data independent timing control (DIT)",
3018 .capability = ARM64_HAS_DIT,
3019 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3020 .matches = has_cpuid_feature,
3021 .cpu_enable = cpu_enable_dit,
3022 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3023 },
3024 {
3025 .desc = "Memory Copy and Memory Set instructions",
3026 .capability = ARM64_HAS_MOPS,
3027 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3028 .matches = has_cpuid_feature,
3029 .cpu_enable = cpu_enable_mops,
3030 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3031 },
3032 {
3033 .capability = ARM64_HAS_TCR2,
3034 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3035 .matches = has_cpuid_feature,
3036 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3037 },
3038 {
3039 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3040 .capability = ARM64_HAS_S1PIE,
3041 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3042 .matches = has_cpuid_feature,
3043 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3044 },
3045 {
3046 .desc = "VHE for hypervisor only",
3047 .capability = ARM64_KVM_HVHE,
3048 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3049 .matches = hvhe_possible,
3050 },
3051 {
3052 .desc = "Enhanced Virtualization Traps",
3053 .capability = ARM64_HAS_EVT,
3054 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3055 .matches = has_cpuid_feature,
3056 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3057 },
3058 {
3059 .desc = "BBM Level 2 without TLB conflict abort",
3060 .capability = ARM64_HAS_BBML2_NOABORT,
3061 .type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3062 .matches = has_bbml2_noabort,
3063 },
3064 {
3065 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
3066 .capability = ARM64_HAS_LPA2,
3067 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3068 .matches = has_lpa2,
3069 },
3070 {
3071 .desc = "FPMR",
3072 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3073 .capability = ARM64_HAS_FPMR,
3074 .matches = has_cpuid_feature,
3075 .cpu_enable = cpu_enable_fpmr,
3076 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3077 },
3078 #ifdef CONFIG_ARM64_VA_BITS_52
3079 {
3080 .capability = ARM64_HAS_VA52,
3081 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3082 .matches = has_cpuid_feature,
3083 #ifdef CONFIG_ARM64_64K_PAGES
3084 .desc = "52-bit Virtual Addressing (LVA)",
3085 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3086 #else
3087 .desc = "52-bit Virtual Addressing (LPA2)",
3088 #ifdef CONFIG_ARM64_4K_PAGES
3089 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3090 #else
3091 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3092 #endif
3093 #endif
3094 },
3095 #endif
3096 {
3097 .desc = "Memory Partitioning And Monitoring",
3098 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3099 .capability = ARM64_MPAM,
3100 .matches = test_has_mpam,
3101 .cpu_enable = cpu_enable_mpam,
3102 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3103 },
3104 {
3105 .desc = "Memory Partitioning And Monitoring Virtualisation",
3106 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3107 .capability = ARM64_MPAM_HCR,
3108 .matches = test_has_mpam_hcr,
3109 },
3110 {
3111 .desc = "NV1",
3112 .capability = ARM64_HAS_HCR_NV1,
3113 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3114 .matches = has_nv1,
3115 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3116 },
3117 #ifdef CONFIG_ARM64_POE
3118 {
3119 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
3120 .capability = ARM64_HAS_S1POE,
3121 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3122 .matches = has_cpuid_feature,
3123 .cpu_enable = cpu_enable_poe,
3124 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3125 },
3126 #endif
3127 #ifdef CONFIG_ARM64_GCS
3128 {
3129 .desc = "Guarded Control Stack (GCS)",
3130 .capability = ARM64_HAS_GCS,
3131 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3132 .cpu_enable = cpu_enable_gcs,
3133 .matches = has_cpuid_feature,
3134 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3135 },
3136 #endif
3137 #ifdef CONFIG_HW_PERF_EVENTS
3138 {
3139 .desc = "PMUv3",
3140 .capability = ARM64_HAS_PMUV3,
3141 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3142 .matches = has_pmuv3,
3143 },
3144 #endif
3145 {
3146 .desc = "SCTLR2",
3147 .capability = ARM64_HAS_SCTLR2,
3148 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3149 .matches = has_cpuid_feature,
3150 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3151 },
3152 {
3153 .desc = "GICv5 CPU interface",
3154 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3155 .capability = ARM64_HAS_GICV5_CPUIF,
3156 .matches = has_cpuid_feature,
3157 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3158 },
3159 {},
3160 };
3161
3162 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
3163 .matches = has_user_cpuid_feature, \
3164 ARM64_CPUID_FIELDS(reg, field, min_value)
3165
3166 #define __HWCAP_CAP(name, cap_type, cap) \
3167 .desc = name, \
3168 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3169 .hwcap_type = cap_type, \
3170 .hwcap = cap, \
3171
3172 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3173 { \
3174 __HWCAP_CAP(#cap, cap_type, cap) \
3175 HWCAP_CPUID_MATCH(reg, field, min_value) \
3176 }
3177
3178 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3179 { \
3180 __HWCAP_CAP(#cap, cap_type, cap) \
3181 .matches = cpucap_multi_entry_cap_matches, \
3182 .match_list = list, \
3183 }
3184
3185 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3186 { \
3187 __HWCAP_CAP(#cap, cap_type, cap) \
3188 .matches = match, \
3189 }
3190
3191 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3192 { \
3193 __HWCAP_CAP(#cap, cap_type, cap) \
3194 HWCAP_CPUID_MATCH(reg, field, min_value) \
3195 .matches = match, \
3196 }
3197
3198 #ifdef CONFIG_ARM64_PTR_AUTH
3199 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3200 {
3201 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3202 },
3203 {
3204 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3205 },
3206 {
3207 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3208 },
3209 {},
3210 };
3211
3212 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3213 {
3214 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3215 },
3216 {
3217 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3218 },
3219 {
3220 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3221 },
3222 {},
3223 };
3224 #endif
3225
3226 #ifdef CONFIG_ARM64_SVE
has_sve_feature(const struct arm64_cpu_capabilities * cap,int scope)3227 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3228 {
3229 return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3230 }
3231 #endif
3232
3233 #ifdef CONFIG_ARM64_SME
has_sme_feature(const struct arm64_cpu_capabilities * cap,int scope)3234 static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3235 {
3236 return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3237 }
3238 #endif
3239
3240 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3241 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3242 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3243 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3244 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3245 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3246 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3247 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3248 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3249 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3250 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3251 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3252 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3253 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3254 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3255 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3256 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3257 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3258 HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3259 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3260 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3261 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3262 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3263 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3264 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3265 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3266 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3267 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3268 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3269 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3270 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3271 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3272 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3273 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3274 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3275 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3276 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3277 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3278 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3279 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3280 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3281 #ifdef CONFIG_ARM64_SVE
3282 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3283 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3284 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3285 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3286 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3287 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3288 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3289 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3290 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3291 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3292 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3293 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3294 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3295 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3296 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3297 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3298 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3299 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3300 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3301 #endif
3302 #ifdef CONFIG_ARM64_GCS
3303 HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3304 #endif
3305 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3306 #ifdef CONFIG_ARM64_BTI
3307 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3308 #endif
3309 #ifdef CONFIG_ARM64_PTR_AUTH
3310 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3311 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3312 #endif
3313 #ifdef CONFIG_ARM64_MTE
3314 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3315 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3316 HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3317 HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3318 #endif /* CONFIG_ARM64_MTE */
3319 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3320 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3321 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3322 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3323 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3324 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3325 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3326 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3327 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3328 #ifdef CONFIG_ARM64_SME
3329 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3330 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3331 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3332 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3333 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3334 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3335 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3336 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3337 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3338 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3339 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3340 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3341 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3342 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3343 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3344 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3345 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3346 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3347 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3348 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3349 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3350 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3351 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3352 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3353 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3354 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3355 #endif /* CONFIG_ARM64_SME */
3356 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3357 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3358 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3359 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3360 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3361 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3362 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3363 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3364 #ifdef CONFIG_ARM64_POE
3365 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3366 #endif
3367 {},
3368 };
3369
3370 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3371 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3372 {
3373 /*
3374 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3375 * in line with that of arm32 as in vfp_init(). We make sure that the
3376 * check is future proof, by making sure value is non-zero.
3377 */
3378 u32 mvfr1;
3379
3380 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3381 if (scope == SCOPE_SYSTEM)
3382 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3383 else
3384 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3385
3386 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3387 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3388 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3389 }
3390 #endif
3391
3392 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3393 #ifdef CONFIG_COMPAT
3394 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3395 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3396 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3397 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3398 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3399 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3400 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3401 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3402 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3403 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3404 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3405 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3406 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3407 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3408 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3409 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3410 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3411 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3412 #endif
3413 {},
3414 };
3415
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3416 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3417 {
3418 switch (cap->hwcap_type) {
3419 case CAP_HWCAP:
3420 cpu_set_feature(cap->hwcap);
3421 break;
3422 #ifdef CONFIG_COMPAT
3423 case CAP_COMPAT_HWCAP:
3424 compat_elf_hwcap |= (u32)cap->hwcap;
3425 break;
3426 case CAP_COMPAT_HWCAP2:
3427 compat_elf_hwcap2 |= (u32)cap->hwcap;
3428 break;
3429 #endif
3430 default:
3431 WARN_ON(1);
3432 break;
3433 }
3434 }
3435
3436 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3437 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3438 {
3439 bool rc;
3440
3441 switch (cap->hwcap_type) {
3442 case CAP_HWCAP:
3443 rc = cpu_have_feature(cap->hwcap);
3444 break;
3445 #ifdef CONFIG_COMPAT
3446 case CAP_COMPAT_HWCAP:
3447 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3448 break;
3449 case CAP_COMPAT_HWCAP2:
3450 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3451 break;
3452 #endif
3453 default:
3454 WARN_ON(1);
3455 rc = false;
3456 }
3457
3458 return rc;
3459 }
3460
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3461 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3462 {
3463 /* We support emulation of accesses to CPU ID feature registers */
3464 cpu_set_named_feature(CPUID);
3465 for (; hwcaps->matches; hwcaps++)
3466 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3467 cap_set_elf_hwcap(hwcaps);
3468 }
3469
update_cpu_capabilities(u16 scope_mask)3470 static void update_cpu_capabilities(u16 scope_mask)
3471 {
3472 int i;
3473 const struct arm64_cpu_capabilities *caps;
3474
3475 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3476 for (i = 0; i < ARM64_NCAPS; i++) {
3477 bool match_all = false;
3478 bool caps_set = false;
3479 bool boot_cpu = false;
3480
3481 caps = cpucap_ptrs[i];
3482 if (!caps || !(caps->type & scope_mask))
3483 continue;
3484
3485 match_all = cpucap_match_all_early_cpus(caps);
3486 caps_set = cpus_have_cap(caps->capability);
3487 boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3488
3489 /*
3490 * Unless it's a match-all CPUs feature, avoid probing if
3491 * already detected.
3492 */
3493 if (!match_all && caps_set)
3494 continue;
3495
3496 /*
3497 * A match-all CPUs capability is only set when probing the
3498 * boot CPU. It may be cleared subsequently if not detected on
3499 * secondary ones.
3500 */
3501 if (match_all && !caps_set && !boot_cpu)
3502 continue;
3503
3504 if (!caps->matches(caps, cpucap_default_scope(caps))) {
3505 if (match_all)
3506 __clear_bit(caps->capability, system_cpucaps);
3507 continue;
3508 }
3509
3510 /*
3511 * Match-all CPUs capabilities are logged later when the
3512 * system capabilities are finalised.
3513 */
3514 if (!match_all && caps->desc && !caps->cpus)
3515 pr_info("detected: %s\n", caps->desc);
3516
3517 __set_bit(caps->capability, system_cpucaps);
3518
3519 if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3520 set_bit(caps->capability, boot_cpucaps);
3521 }
3522 }
3523
3524 /*
3525 * Enable all the available capabilities on this CPU. The capabilities
3526 * with BOOT_CPU scope are handled separately and hence skipped here.
3527 */
cpu_enable_non_boot_scope_capabilities(void * __unused)3528 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3529 {
3530 int i;
3531 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3532
3533 for_each_available_cap(i) {
3534 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3535
3536 if (WARN_ON(!cap))
3537 continue;
3538
3539 if (!(cap->type & non_boot_scope))
3540 continue;
3541
3542 if (cap->cpu_enable)
3543 cap->cpu_enable(cap);
3544 }
3545 return 0;
3546 }
3547
3548 /*
3549 * Run through the enabled capabilities and enable() it on all active
3550 * CPUs
3551 */
enable_cpu_capabilities(u16 scope_mask)3552 static void __init enable_cpu_capabilities(u16 scope_mask)
3553 {
3554 int i;
3555 const struct arm64_cpu_capabilities *caps;
3556 bool boot_scope;
3557
3558 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3559 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3560
3561 for (i = 0; i < ARM64_NCAPS; i++) {
3562 caps = cpucap_ptrs[i];
3563 if (!caps || !(caps->type & scope_mask) ||
3564 !cpus_have_cap(caps->capability))
3565 continue;
3566
3567 if (boot_scope && caps->cpu_enable)
3568 /*
3569 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3570 * before any secondary CPU boots. Thus, each secondary
3571 * will enable the capability as appropriate via
3572 * check_local_cpu_capabilities(). The only exception is
3573 * the boot CPU, for which the capability must be
3574 * enabled here. This approach avoids costly
3575 * stop_machine() calls for this case.
3576 */
3577 caps->cpu_enable(caps);
3578 }
3579
3580 /*
3581 * For all non-boot scope capabilities, use stop_machine()
3582 * as it schedules the work allowing us to modify PSTATE,
3583 * instead of on_each_cpu() which uses an IPI, giving us a
3584 * PSTATE that disappears when we return.
3585 */
3586 if (!boot_scope)
3587 stop_machine(cpu_enable_non_boot_scope_capabilities,
3588 NULL, cpu_online_mask);
3589 }
3590
3591 /*
3592 * Run through the list of capabilities to check for conflicts.
3593 * If the system has already detected a capability, take necessary
3594 * action on this CPU.
3595 */
verify_local_cpu_caps(u16 scope_mask)3596 static void verify_local_cpu_caps(u16 scope_mask)
3597 {
3598 int i;
3599 bool cpu_has_cap, system_has_cap;
3600 const struct arm64_cpu_capabilities *caps;
3601
3602 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3603
3604 for (i = 0; i < ARM64_NCAPS; i++) {
3605 caps = cpucap_ptrs[i];
3606 if (!caps || !(caps->type & scope_mask))
3607 continue;
3608
3609 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3610 system_has_cap = cpus_have_cap(caps->capability);
3611
3612 if (system_has_cap) {
3613 /*
3614 * Check if the new CPU misses an advertised feature,
3615 * which is not safe to miss.
3616 */
3617 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3618 break;
3619 /*
3620 * We have to issue cpu_enable() irrespective of
3621 * whether the CPU has it or not, as it is enabeld
3622 * system wide. It is upto the call back to take
3623 * appropriate action on this CPU.
3624 */
3625 if (caps->cpu_enable)
3626 caps->cpu_enable(caps);
3627 } else {
3628 /*
3629 * Check if the CPU has this capability if it isn't
3630 * safe to have when the system doesn't.
3631 */
3632 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3633 break;
3634 }
3635 }
3636
3637 if (i < ARM64_NCAPS) {
3638 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3639 smp_processor_id(), caps->capability,
3640 caps->desc, system_has_cap, cpu_has_cap);
3641
3642 if (cpucap_panic_on_conflict(caps))
3643 cpu_panic_kernel();
3644 else
3645 cpu_die_early();
3646 }
3647 }
3648
3649 /*
3650 * Check for CPU features that are used in early boot
3651 * based on the Boot CPU value.
3652 */
check_early_cpu_features(void)3653 static void check_early_cpu_features(void)
3654 {
3655 verify_cpu_asid_bits();
3656
3657 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3658 }
3659
3660 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3661 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3662 {
3663
3664 for (; caps->matches; caps++)
3665 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3666 pr_crit("CPU%d: missing HWCAP: %s\n",
3667 smp_processor_id(), caps->desc);
3668 cpu_die_early();
3669 }
3670 }
3671
verify_local_elf_hwcaps(void)3672 static void verify_local_elf_hwcaps(void)
3673 {
3674 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3675
3676 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3677 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3678 }
3679
verify_sve_features(void)3680 static void verify_sve_features(void)
3681 {
3682 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3683
3684 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3685 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3686 smp_processor_id());
3687 cpu_die_early();
3688 }
3689
3690 cpacr_restore(cpacr);
3691 }
3692
verify_sme_features(void)3693 static void verify_sme_features(void)
3694 {
3695 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3696
3697 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3698 pr_crit("CPU%d: SME: vector length support mismatch\n",
3699 smp_processor_id());
3700 cpu_die_early();
3701 }
3702
3703 cpacr_restore(cpacr);
3704 }
3705
verify_hyp_capabilities(void)3706 static void verify_hyp_capabilities(void)
3707 {
3708 u64 safe_mmfr1, mmfr0, mmfr1;
3709 int parange, ipa_max;
3710 unsigned int safe_vmid_bits, vmid_bits;
3711
3712 if (!IS_ENABLED(CONFIG_KVM))
3713 return;
3714
3715 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3716 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3717 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3718
3719 /* Verify VMID bits */
3720 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3721 vmid_bits = get_vmid_bits(mmfr1);
3722 if (vmid_bits < safe_vmid_bits) {
3723 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3724 cpu_die_early();
3725 }
3726
3727 /* Verify IPA range */
3728 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3729 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3730 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3731 if (ipa_max < get_kvm_ipa_limit()) {
3732 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3733 cpu_die_early();
3734 }
3735 }
3736
verify_mpam_capabilities(void)3737 static void verify_mpam_capabilities(void)
3738 {
3739 u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3740 u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3741 u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3742
3743 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3744 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3745 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3746 cpu_die_early();
3747 }
3748
3749 cpu_idr = read_cpuid(MPAMIDR_EL1);
3750 sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3751 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3752 FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3753 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3754 cpu_die_early();
3755 }
3756
3757 cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3758 cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3759 sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3760 sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3761 if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3762 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3763 cpu_die_early();
3764 }
3765 }
3766
3767 /*
3768 * Run through the enabled system capabilities and enable() it on this CPU.
3769 * The capabilities were decided based on the available CPUs at the boot time.
3770 * Any new CPU should match the system wide status of the capability. If the
3771 * new CPU doesn't have a capability which the system now has enabled, we
3772 * cannot do anything to fix it up and could cause unexpected failures. So
3773 * we park the CPU.
3774 */
verify_local_cpu_capabilities(void)3775 static void verify_local_cpu_capabilities(void)
3776 {
3777 /*
3778 * The capabilities with SCOPE_BOOT_CPU are checked from
3779 * check_early_cpu_features(), as they need to be verified
3780 * on all secondary CPUs.
3781 */
3782 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3783 verify_local_elf_hwcaps();
3784
3785 if (system_supports_sve())
3786 verify_sve_features();
3787
3788 if (system_supports_sme())
3789 verify_sme_features();
3790
3791 if (is_hyp_mode_available())
3792 verify_hyp_capabilities();
3793
3794 if (system_supports_mpam())
3795 verify_mpam_capabilities();
3796 }
3797
check_local_cpu_capabilities(void)3798 void check_local_cpu_capabilities(void)
3799 {
3800 /*
3801 * All secondary CPUs should conform to the early CPU features
3802 * in use by the kernel based on boot CPU.
3803 */
3804 check_early_cpu_features();
3805
3806 /*
3807 * If we haven't finalised the system capabilities, this CPU gets
3808 * a chance to update the errata work arounds and local features.
3809 * Otherwise, this CPU should verify that it has all the system
3810 * advertised capabilities.
3811 */
3812 if (!system_capabilities_finalized())
3813 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3814 else
3815 verify_local_cpu_capabilities();
3816 }
3817
this_cpu_has_cap(unsigned int n)3818 bool this_cpu_has_cap(unsigned int n)
3819 {
3820 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3821 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3822
3823 if (cap)
3824 return cap->matches(cap, SCOPE_LOCAL_CPU);
3825 }
3826
3827 return false;
3828 }
3829 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3830
3831 /*
3832 * This helper function is used in a narrow window when,
3833 * - The system wide safe registers are set with all the SMP CPUs and,
3834 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3835 */
__system_matches_cap(unsigned int n)3836 static bool __maybe_unused __system_matches_cap(unsigned int n)
3837 {
3838 if (n < ARM64_NCAPS) {
3839 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3840
3841 if (cap)
3842 return cap->matches(cap, SCOPE_SYSTEM);
3843 }
3844 return false;
3845 }
3846
cpu_set_feature(unsigned int num)3847 void cpu_set_feature(unsigned int num)
3848 {
3849 set_bit(num, elf_hwcap);
3850 }
3851
cpu_have_feature(unsigned int num)3852 bool cpu_have_feature(unsigned int num)
3853 {
3854 return test_bit(num, elf_hwcap);
3855 }
3856 EXPORT_SYMBOL_GPL(cpu_have_feature);
3857
cpu_get_elf_hwcap(void)3858 unsigned long cpu_get_elf_hwcap(void)
3859 {
3860 /*
3861 * We currently only populate the first 32 bits of AT_HWCAP. Please
3862 * note that for userspace compatibility we guarantee that bits 62
3863 * and 63 will always be returned as 0.
3864 */
3865 return elf_hwcap[0];
3866 }
3867
cpu_get_elf_hwcap2(void)3868 unsigned long cpu_get_elf_hwcap2(void)
3869 {
3870 return elf_hwcap[1];
3871 }
3872
cpu_get_elf_hwcap3(void)3873 unsigned long cpu_get_elf_hwcap3(void)
3874 {
3875 return elf_hwcap[2];
3876 }
3877
setup_boot_cpu_capabilities(void)3878 static void __init setup_boot_cpu_capabilities(void)
3879 {
3880 kvm_arm_target_impl_cpu_init();
3881 /*
3882 * The boot CPU's feature register values have been recorded. Detect
3883 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3884 * patch alternatives for the available boot cpucaps.
3885 */
3886 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3887 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3888 apply_boot_alternatives();
3889 }
3890
setup_boot_cpu_features(void)3891 void __init setup_boot_cpu_features(void)
3892 {
3893 /*
3894 * Initialize the indirect array of CPU capabilities pointers before we
3895 * handle the boot CPU.
3896 */
3897 init_cpucap_indirect_list();
3898
3899 /*
3900 * Detect broken pseudo-NMI. Must be called _before_ the call to
3901 * setup_boot_cpu_capabilities() since it interacts with
3902 * can_use_gic_priorities().
3903 */
3904 detect_system_supports_pseudo_nmi();
3905
3906 setup_boot_cpu_capabilities();
3907 }
3908
setup_system_capabilities(void)3909 static void __init setup_system_capabilities(void)
3910 {
3911 /*
3912 * The system-wide safe feature register values have been finalized.
3913 * Detect, enable, and patch alternatives for the available system
3914 * cpucaps.
3915 */
3916 update_cpu_capabilities(SCOPE_SYSTEM);
3917 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3918 apply_alternatives_all();
3919
3920 for (int i = 0; i < ARM64_NCAPS; i++) {
3921 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3922
3923 if (!caps || !caps->desc)
3924 continue;
3925
3926 /*
3927 * Log any cpucaps with a cpumask as these aren't logged by
3928 * update_cpu_capabilities().
3929 */
3930 if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3931 pr_info("detected: %s on CPU%*pbl\n",
3932 caps->desc, cpumask_pr_args(caps->cpus));
3933
3934 /* Log match-all CPUs capabilities */
3935 if (cpucap_match_all_early_cpus(caps) &&
3936 cpus_have_cap(caps->capability))
3937 pr_info("detected: %s\n", caps->desc);
3938 }
3939
3940 /*
3941 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3942 */
3943 if (system_uses_ttbr0_pan())
3944 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3945 }
3946
setup_system_features(void)3947 void __init setup_system_features(void)
3948 {
3949 setup_system_capabilities();
3950
3951 kpti_install_ng_mappings();
3952
3953 sve_setup();
3954 sme_setup();
3955
3956 /*
3957 * Check for sane CTR_EL0.CWG value.
3958 */
3959 if (!cache_type_cwg())
3960 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3961 ARCH_DMA_MINALIGN);
3962 }
3963
setup_user_features(void)3964 void __init setup_user_features(void)
3965 {
3966 user_feature_fixup();
3967
3968 setup_elf_hwcaps(arm64_elf_hwcaps);
3969
3970 if (system_supports_32bit_el0()) {
3971 setup_elf_hwcaps(compat_elf_hwcaps);
3972 elf_hwcap_fixup();
3973 }
3974
3975 minsigstksz_setup();
3976 }
3977
enable_mismatched_32bit_el0(unsigned int cpu)3978 static int enable_mismatched_32bit_el0(unsigned int cpu)
3979 {
3980 /*
3981 * The first 32-bit-capable CPU we detected and so can no longer
3982 * be offlined by userspace. -1 indicates we haven't yet onlined
3983 * a 32-bit-capable CPU.
3984 */
3985 static int lucky_winner = -1;
3986
3987 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3988 bool cpu_32bit = false;
3989
3990 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3991 if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3992 pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3993 else
3994 cpu_32bit = true;
3995 }
3996
3997 if (cpu_32bit) {
3998 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3999 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4000 }
4001
4002 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4003 return 0;
4004
4005 if (lucky_winner >= 0)
4006 return 0;
4007
4008 /*
4009 * We've detected a mismatch. We need to keep one of our CPUs with
4010 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4011 * every CPU in the system for a 32-bit task.
4012 */
4013 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4014 cpu_active_mask);
4015 get_cpu_device(lucky_winner)->offline_disabled = true;
4016 setup_elf_hwcaps(compat_elf_hwcaps);
4017 elf_hwcap_fixup();
4018 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4019 cpu, lucky_winner);
4020 return 0;
4021 }
4022
init_32bit_el0_mask(void)4023 static int __init init_32bit_el0_mask(void)
4024 {
4025 if (!allow_mismatched_32bit_el0)
4026 return 0;
4027
4028 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4029 return -ENOMEM;
4030
4031 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4032 "arm64/mismatched_32bit_el0:online",
4033 enable_mismatched_32bit_el0, NULL);
4034 }
4035 subsys_initcall_sync(init_32bit_el0_mask);
4036
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)4037 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4038 {
4039 cpu_enable_swapper_cnp();
4040 }
4041
4042 /*
4043 * We emulate only the following system register space.
4044 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4045 * See Table C5-6 System instruction encodings for System register accesses,
4046 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
4047 */
is_emulated(u32 id)4048 static inline bool __attribute_const__ is_emulated(u32 id)
4049 {
4050 return (sys_reg_Op0(id) == 0x3 &&
4051 sys_reg_CRn(id) == 0x0 &&
4052 sys_reg_Op1(id) == 0x0 &&
4053 (sys_reg_CRm(id) == 0 ||
4054 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4055 }
4056
4057 /*
4058 * With CRm == 0, reg should be one of :
4059 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4060 */
emulate_id_reg(u32 id,u64 * valp)4061 static inline int emulate_id_reg(u32 id, u64 *valp)
4062 {
4063 switch (id) {
4064 case SYS_MIDR_EL1:
4065 *valp = read_cpuid_id();
4066 break;
4067 case SYS_MPIDR_EL1:
4068 *valp = SYS_MPIDR_SAFE_VAL;
4069 break;
4070 case SYS_REVIDR_EL1:
4071 /* IMPLEMENTATION DEFINED values are emulated with 0 */
4072 *valp = 0;
4073 break;
4074 default:
4075 return -EINVAL;
4076 }
4077
4078 return 0;
4079 }
4080
emulate_sys_reg(u32 id,u64 * valp)4081 static int emulate_sys_reg(u32 id, u64 *valp)
4082 {
4083 struct arm64_ftr_reg *regp;
4084
4085 if (!is_emulated(id))
4086 return -EINVAL;
4087
4088 if (sys_reg_CRm(id) == 0)
4089 return emulate_id_reg(id, valp);
4090
4091 regp = get_arm64_ftr_reg_nowarn(id);
4092 if (regp)
4093 *valp = arm64_ftr_reg_user_value(regp);
4094 else
4095 /*
4096 * The untracked registers are either IMPLEMENTATION DEFINED
4097 * (e.g, ID_AFR0_EL1) or reserved RAZ.
4098 */
4099 *valp = 0;
4100 return 0;
4101 }
4102
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)4103 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4104 {
4105 int rc;
4106 u64 val;
4107
4108 rc = emulate_sys_reg(sys_reg, &val);
4109 if (!rc) {
4110 pt_regs_write_reg(regs, rt, val);
4111 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4112 }
4113 return rc;
4114 }
4115
try_emulate_mrs(struct pt_regs * regs,u32 insn)4116 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4117 {
4118 u32 sys_reg, rt;
4119
4120 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4121 return false;
4122
4123 /*
4124 * sys_reg values are defined as used in mrs/msr instruction.
4125 * shift the imm value to get the encoding.
4126 */
4127 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4128 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4129 return do_emulate_mrs(regs, sys_reg, rt) == 0;
4130 }
4131
arm64_get_meltdown_state(void)4132 enum mitigation_state arm64_get_meltdown_state(void)
4133 {
4134 if (__meltdown_safe)
4135 return SPECTRE_UNAFFECTED;
4136
4137 if (arm64_kernel_unmapped_at_el0())
4138 return SPECTRE_MITIGATED;
4139
4140 return SPECTRE_VULNERABLE;
4141 }
4142
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)4143 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4144 char *buf)
4145 {
4146 switch (arm64_get_meltdown_state()) {
4147 case SPECTRE_UNAFFECTED:
4148 return sprintf(buf, "Not affected\n");
4149
4150 case SPECTRE_MITIGATED:
4151 return sprintf(buf, "Mitigation: PTI\n");
4152
4153 default:
4154 return sprintf(buf, "Vulnerable\n");
4155 }
4156 }
4157