1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long start, unsigned long end) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 flush_tlb_mm(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long start, unsigned long end) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /** 771 * page_address_in_vma - The virtual address of a page in this VMA. 772 * @folio: The folio containing the page. 773 * @page: The page within the folio. 774 * @vma: The VMA we need to know the address in. 775 * 776 * Calculates the user virtual address of this page in the specified VMA. 777 * It is the caller's responsibility to check the page is actually 778 * within the VMA. There may not currently be a PTE pointing at this 779 * page, but if a page fault occurs at this address, this is the page 780 * which will be accessed. 781 * 782 * Context: Caller should hold a reference to the folio. Caller should 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 784 * VMA from being altered. 785 * 786 * Return: The virtual address corresponding to this page in the VMA. 787 */ 788 unsigned long page_address_in_vma(const struct folio *folio, 789 const struct page *page, const struct vm_area_struct *vma) 790 { 791 if (folio_test_anon(folio)) { 792 struct anon_vma *anon_vma = folio_anon_vma(folio); 793 /* 794 * Note: swapoff's unuse_vma() is more efficient with this 795 * check, and needs it to match anon_vma when KSM is active. 796 */ 797 if (!vma->anon_vma || !anon_vma || 798 vma->anon_vma->root != anon_vma->root) 799 return -EFAULT; 800 } else if (!vma->vm_file) { 801 return -EFAULT; 802 } else if (vma->vm_file->f_mapping != folio->mapping) { 803 return -EFAULT; 804 } 805 806 /* KSM folios don't reach here because of the !anon_vma check */ 807 return vma_address(vma, page_pgoff(folio, page), 1); 808 } 809 810 /* 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 813 * represents. 814 */ 815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 816 { 817 pgd_t *pgd; 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd = NULL; 821 822 pgd = pgd_offset(mm, address); 823 if (!pgd_present(*pgd)) 824 goto out; 825 826 p4d = p4d_offset(pgd, address); 827 if (!p4d_present(*p4d)) 828 goto out; 829 830 pud = pud_offset(p4d, address); 831 if (!pud_present(*pud)) 832 goto out; 833 834 pmd = pmd_offset(pud, address); 835 out: 836 return pmd; 837 } 838 839 struct folio_referenced_arg { 840 int mapcount; 841 int referenced; 842 vm_flags_t vm_flags; 843 struct mem_cgroup *memcg; 844 }; 845 846 /* 847 * arg: folio_referenced_arg will be passed 848 */ 849 static bool folio_referenced_one(struct folio *folio, 850 struct vm_area_struct *vma, unsigned long address, void *arg) 851 { 852 struct folio_referenced_arg *pra = arg; 853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 854 int referenced = 0; 855 unsigned long start = address, ptes = 0; 856 857 while (page_vma_mapped_walk(&pvmw)) { 858 address = pvmw.address; 859 860 if (vma->vm_flags & VM_LOCKED) { 861 if (!folio_test_large(folio) || !pvmw.pte) { 862 /* Restore the mlock which got missed */ 863 mlock_vma_folio(folio, vma); 864 page_vma_mapped_walk_done(&pvmw); 865 pra->vm_flags |= VM_LOCKED; 866 return false; /* To break the loop */ 867 } 868 /* 869 * For large folio fully mapped to VMA, will 870 * be handled after the pvmw loop. 871 * 872 * For large folio cross VMA boundaries, it's 873 * expected to be picked by page reclaim. But 874 * should skip reference of pages which are in 875 * the range of VM_LOCKED vma. As page reclaim 876 * should just count the reference of pages out 877 * the range of VM_LOCKED vma. 878 */ 879 ptes++; 880 pra->mapcount--; 881 continue; 882 } 883 884 /* 885 * Skip the non-shared swapbacked folio mapped solely by 886 * the exiting or OOM-reaped process. This avoids redundant 887 * swap-out followed by an immediate unmap. 888 */ 889 if ((!atomic_read(&vma->vm_mm->mm_users) || 890 check_stable_address_space(vma->vm_mm)) && 891 folio_test_anon(folio) && folio_test_swapbacked(folio) && 892 !folio_maybe_mapped_shared(folio)) { 893 pra->referenced = -1; 894 page_vma_mapped_walk_done(&pvmw); 895 return false; 896 } 897 898 if (lru_gen_enabled() && pvmw.pte) { 899 if (lru_gen_look_around(&pvmw)) 900 referenced++; 901 } else if (pvmw.pte) { 902 if (ptep_clear_flush_young_notify(vma, address, 903 pvmw.pte)) 904 referenced++; 905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 906 if (pmdp_clear_flush_young_notify(vma, address, 907 pvmw.pmd)) 908 referenced++; 909 } else { 910 /* unexpected pmd-mapped folio? */ 911 WARN_ON_ONCE(1); 912 } 913 914 pra->mapcount--; 915 } 916 917 if ((vma->vm_flags & VM_LOCKED) && 918 folio_test_large(folio) && 919 folio_within_vma(folio, vma)) { 920 unsigned long s_align, e_align; 921 922 s_align = ALIGN_DOWN(start, PMD_SIZE); 923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 924 925 /* folio doesn't cross page table boundary and fully mapped */ 926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 927 /* Restore the mlock which got missed */ 928 mlock_vma_folio(folio, vma); 929 pra->vm_flags |= VM_LOCKED; 930 return false; /* To break the loop */ 931 } 932 } 933 934 if (referenced) 935 folio_clear_idle(folio); 936 if (folio_test_clear_young(folio)) 937 referenced++; 938 939 if (referenced) { 940 pra->referenced++; 941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 942 } 943 944 if (!pra->mapcount) 945 return false; /* To break the loop */ 946 947 return true; 948 } 949 950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 951 { 952 struct folio_referenced_arg *pra = arg; 953 struct mem_cgroup *memcg = pra->memcg; 954 955 /* 956 * Ignore references from this mapping if it has no recency. If the 957 * folio has been used in another mapping, we will catch it; if this 958 * other mapping is already gone, the unmap path will have set the 959 * referenced flag or activated the folio in zap_pte_range(). 960 */ 961 if (!vma_has_recency(vma)) 962 return true; 963 964 /* 965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 966 * of references from different cgroups. 967 */ 968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 969 return true; 970 971 return false; 972 } 973 974 /** 975 * folio_referenced() - Test if the folio was referenced. 976 * @folio: The folio to test. 977 * @is_locked: Caller holds lock on the folio. 978 * @memcg: target memory cgroup 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 980 * 981 * Quick test_and_clear_referenced for all mappings of a folio, 982 * 983 * Return: The number of mappings which referenced the folio. Return -1 if 984 * the function bailed out due to rmap lock contention. 985 */ 986 int folio_referenced(struct folio *folio, int is_locked, 987 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 988 { 989 bool we_locked = false; 990 struct folio_referenced_arg pra = { 991 .mapcount = folio_mapcount(folio), 992 .memcg = memcg, 993 }; 994 struct rmap_walk_control rwc = { 995 .rmap_one = folio_referenced_one, 996 .arg = (void *)&pra, 997 .anon_lock = folio_lock_anon_vma_read, 998 .try_lock = true, 999 .invalid_vma = invalid_folio_referenced_vma, 1000 }; 1001 1002 *vm_flags = 0; 1003 if (!pra.mapcount) 1004 return 0; 1005 1006 if (!folio_raw_mapping(folio)) 1007 return 0; 1008 1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1010 we_locked = folio_trylock(folio); 1011 if (!we_locked) 1012 return 1; 1013 } 1014 1015 rmap_walk(folio, &rwc); 1016 *vm_flags = pra.vm_flags; 1017 1018 if (we_locked) 1019 folio_unlock(folio); 1020 1021 return rwc.contended ? -1 : pra.referenced; 1022 } 1023 1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1025 { 1026 int cleaned = 0; 1027 struct vm_area_struct *vma = pvmw->vma; 1028 struct mmu_notifier_range range; 1029 unsigned long address = pvmw->address; 1030 1031 /* 1032 * We have to assume the worse case ie pmd for invalidation. Note that 1033 * the folio can not be freed from this function. 1034 */ 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1036 vma->vm_mm, address, vma_address_end(pvmw)); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 while (page_vma_mapped_walk(pvmw)) { 1040 int ret = 0; 1041 1042 address = pvmw->address; 1043 if (pvmw->pte) { 1044 pte_t *pte = pvmw->pte; 1045 pte_t entry = ptep_get(pte); 1046 1047 /* 1048 * PFN swap PTEs, such as device-exclusive ones, that 1049 * actually map pages are clean and not writable from a 1050 * CPU perspective. The MMU notifier takes care of any 1051 * device aspects. 1052 */ 1053 if (!pte_present(entry)) 1054 continue; 1055 if (!pte_dirty(entry) && !pte_write(entry)) 1056 continue; 1057 1058 flush_cache_page(vma, address, pte_pfn(entry)); 1059 entry = ptep_clear_flush(vma, address, pte); 1060 entry = pte_wrprotect(entry); 1061 entry = pte_mkclean(entry); 1062 set_pte_at(vma->vm_mm, address, pte, entry); 1063 ret = 1; 1064 } else { 1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1066 pmd_t *pmd = pvmw->pmd; 1067 pmd_t entry; 1068 1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1070 continue; 1071 1072 flush_cache_range(vma, address, 1073 address + HPAGE_PMD_SIZE); 1074 entry = pmdp_invalidate(vma, address, pmd); 1075 entry = pmd_wrprotect(entry); 1076 entry = pmd_mkclean(entry); 1077 set_pmd_at(vma->vm_mm, address, pmd, entry); 1078 ret = 1; 1079 #else 1080 /* unexpected pmd-mapped folio? */ 1081 WARN_ON_ONCE(1); 1082 #endif 1083 } 1084 1085 if (ret) 1086 cleaned++; 1087 } 1088 1089 mmu_notifier_invalidate_range_end(&range); 1090 1091 return cleaned; 1092 } 1093 1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1095 unsigned long address, void *arg) 1096 { 1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1098 int *cleaned = arg; 1099 1100 *cleaned += page_vma_mkclean_one(&pvmw); 1101 1102 return true; 1103 } 1104 1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1106 { 1107 if (vma->vm_flags & VM_SHARED) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 int folio_mkclean(struct folio *folio) 1114 { 1115 int cleaned = 0; 1116 struct address_space *mapping; 1117 struct rmap_walk_control rwc = { 1118 .arg = (void *)&cleaned, 1119 .rmap_one = page_mkclean_one, 1120 .invalid_vma = invalid_mkclean_vma, 1121 }; 1122 1123 BUG_ON(!folio_test_locked(folio)); 1124 1125 if (!folio_mapped(folio)) 1126 return 0; 1127 1128 mapping = folio_mapping(folio); 1129 if (!mapping) 1130 return 0; 1131 1132 rmap_walk(folio, &rwc); 1133 1134 return cleaned; 1135 } 1136 EXPORT_SYMBOL_GPL(folio_mkclean); 1137 1138 struct wrprotect_file_state { 1139 int cleaned; 1140 pgoff_t pgoff; 1141 unsigned long pfn; 1142 unsigned long nr_pages; 1143 }; 1144 1145 static bool mapping_wrprotect_range_one(struct folio *folio, 1146 struct vm_area_struct *vma, unsigned long address, void *arg) 1147 { 1148 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1149 struct page_vma_mapped_walk pvmw = { 1150 .pfn = state->pfn, 1151 .nr_pages = state->nr_pages, 1152 .pgoff = state->pgoff, 1153 .vma = vma, 1154 .address = address, 1155 .flags = PVMW_SYNC, 1156 }; 1157 1158 state->cleaned += page_vma_mkclean_one(&pvmw); 1159 1160 return true; 1161 } 1162 1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1164 pgoff_t pgoff_start, unsigned long nr_pages, 1165 struct rmap_walk_control *rwc, bool locked); 1166 1167 /** 1168 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1169 * 1170 * @mapping: The mapping whose reverse mapping should be traversed. 1171 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1172 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1173 * @nr_pages: The number of physically contiguous base pages spanned. 1174 * 1175 * Traverses the reverse mapping, finding all VMAs which contain a shared 1176 * mapping of the pages in the specified range in @mapping, and write-protects 1177 * them (that is, updates the page tables to mark the mappings read-only such 1178 * that a write protection fault arises when the mappings are written to). 1179 * 1180 * The @pfn value need not refer to a folio, but rather can reference a kernel 1181 * allocation which is mapped into userland. We therefore do not require that 1182 * the page maps to a folio with a valid mapping or index field, rather the 1183 * caller specifies these in @mapping and @pgoff. 1184 * 1185 * Return: the number of write-protected PTEs, or an error. 1186 */ 1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1188 unsigned long pfn, unsigned long nr_pages) 1189 { 1190 struct wrprotect_file_state state = { 1191 .cleaned = 0, 1192 .pgoff = pgoff, 1193 .pfn = pfn, 1194 .nr_pages = nr_pages, 1195 }; 1196 struct rmap_walk_control rwc = { 1197 .arg = (void *)&state, 1198 .rmap_one = mapping_wrprotect_range_one, 1199 .invalid_vma = invalid_mkclean_vma, 1200 }; 1201 1202 if (!mapping) 1203 return 0; 1204 1205 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1206 /* locked = */false); 1207 1208 return state.cleaned; 1209 } 1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1211 1212 /** 1213 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1214 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1215 * within the @vma of shared mappings. And since clean PTEs 1216 * should also be readonly, write protects them too. 1217 * @pfn: start pfn. 1218 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1219 * @pgoff: page offset that the @pfn mapped with. 1220 * @vma: vma that @pfn mapped within. 1221 * 1222 * Returns the number of cleaned PTEs (including PMDs). 1223 */ 1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1225 struct vm_area_struct *vma) 1226 { 1227 struct page_vma_mapped_walk pvmw = { 1228 .pfn = pfn, 1229 .nr_pages = nr_pages, 1230 .pgoff = pgoff, 1231 .vma = vma, 1232 .flags = PVMW_SYNC, 1233 }; 1234 1235 if (invalid_mkclean_vma(vma, NULL)) 1236 return 0; 1237 1238 pvmw.address = vma_address(vma, pgoff, nr_pages); 1239 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1240 1241 return page_vma_mkclean_one(&pvmw); 1242 } 1243 1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1245 struct page *page, int nr_pages, struct vm_area_struct *vma, 1246 enum rmap_level level, int *nr_pmdmapped) 1247 { 1248 atomic_t *mapped = &folio->_nr_pages_mapped; 1249 const int orig_nr_pages = nr_pages; 1250 int first = 0, nr = 0; 1251 1252 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1253 1254 switch (level) { 1255 case RMAP_LEVEL_PTE: 1256 if (!folio_test_large(folio)) { 1257 nr = atomic_inc_and_test(&folio->_mapcount); 1258 break; 1259 } 1260 1261 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1262 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1263 if (nr == orig_nr_pages) 1264 /* Was completely unmapped. */ 1265 nr = folio_large_nr_pages(folio); 1266 else 1267 nr = 0; 1268 break; 1269 } 1270 1271 do { 1272 first += atomic_inc_and_test(&page->_mapcount); 1273 } while (page++, --nr_pages > 0); 1274 1275 if (first && 1276 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1277 nr = first; 1278 1279 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1280 break; 1281 case RMAP_LEVEL_PMD: 1282 case RMAP_LEVEL_PUD: 1283 first = atomic_inc_and_test(&folio->_entire_mapcount); 1284 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1285 if (level == RMAP_LEVEL_PMD && first) 1286 *nr_pmdmapped = folio_large_nr_pages(folio); 1287 nr = folio_inc_return_large_mapcount(folio, vma); 1288 if (nr == 1) 1289 /* Was completely unmapped. */ 1290 nr = folio_large_nr_pages(folio); 1291 else 1292 nr = 0; 1293 break; 1294 } 1295 1296 if (first) { 1297 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1298 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1299 nr_pages = folio_large_nr_pages(folio); 1300 /* 1301 * We only track PMD mappings of PMD-sized 1302 * folios separately. 1303 */ 1304 if (level == RMAP_LEVEL_PMD) 1305 *nr_pmdmapped = nr_pages; 1306 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1307 /* Raced ahead of a remove and another add? */ 1308 if (unlikely(nr < 0)) 1309 nr = 0; 1310 } else { 1311 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1312 nr = 0; 1313 } 1314 } 1315 folio_inc_large_mapcount(folio, vma); 1316 break; 1317 } 1318 return nr; 1319 } 1320 1321 /** 1322 * folio_move_anon_rmap - move a folio to our anon_vma 1323 * @folio: The folio to move to our anon_vma 1324 * @vma: The vma the folio belongs to 1325 * 1326 * When a folio belongs exclusively to one process after a COW event, 1327 * that folio can be moved into the anon_vma that belongs to just that 1328 * process, so the rmap code will not search the parent or sibling processes. 1329 */ 1330 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1331 { 1332 void *anon_vma = vma->anon_vma; 1333 1334 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1335 VM_BUG_ON_VMA(!anon_vma, vma); 1336 1337 anon_vma += FOLIO_MAPPING_ANON; 1338 /* 1339 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1340 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1341 * folio_test_anon()) will not see one without the other. 1342 */ 1343 WRITE_ONCE(folio->mapping, anon_vma); 1344 } 1345 1346 /** 1347 * __folio_set_anon - set up a new anonymous rmap for a folio 1348 * @folio: The folio to set up the new anonymous rmap for. 1349 * @vma: VM area to add the folio to. 1350 * @address: User virtual address of the mapping 1351 * @exclusive: Whether the folio is exclusive to the process. 1352 */ 1353 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1354 unsigned long address, bool exclusive) 1355 { 1356 struct anon_vma *anon_vma = vma->anon_vma; 1357 1358 BUG_ON(!anon_vma); 1359 1360 /* 1361 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1362 * possible anon_vma for the folio mapping! 1363 */ 1364 if (!exclusive) 1365 anon_vma = anon_vma->root; 1366 1367 /* 1368 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1369 * Make sure the compiler doesn't split the stores of anon_vma and 1370 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1371 * could mistake the mapping for a struct address_space and crash. 1372 */ 1373 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1374 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1375 folio->index = linear_page_index(vma, address); 1376 } 1377 1378 /** 1379 * __page_check_anon_rmap - sanity check anonymous rmap addition 1380 * @folio: The folio containing @page. 1381 * @page: the page to check the mapping of 1382 * @vma: the vm area in which the mapping is added 1383 * @address: the user virtual address mapped 1384 */ 1385 static void __page_check_anon_rmap(const struct folio *folio, 1386 const struct page *page, struct vm_area_struct *vma, 1387 unsigned long address) 1388 { 1389 /* 1390 * The page's anon-rmap details (mapping and index) are guaranteed to 1391 * be set up correctly at this point. 1392 * 1393 * We have exclusion against folio_add_anon_rmap_*() because the caller 1394 * always holds the page locked. 1395 * 1396 * We have exclusion against folio_add_new_anon_rmap because those pages 1397 * are initially only visible via the pagetables, and the pte is locked 1398 * over the call to folio_add_new_anon_rmap. 1399 */ 1400 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1401 folio); 1402 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1403 page); 1404 } 1405 1406 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1407 { 1408 int idx; 1409 1410 if (nr) { 1411 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1412 __lruvec_stat_mod_folio(folio, idx, nr); 1413 } 1414 if (nr_pmdmapped) { 1415 if (folio_test_anon(folio)) { 1416 idx = NR_ANON_THPS; 1417 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1418 } else { 1419 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1420 idx = folio_test_swapbacked(folio) ? 1421 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1422 __mod_node_page_state(folio_pgdat(folio), idx, 1423 nr_pmdmapped); 1424 } 1425 } 1426 } 1427 1428 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1429 struct page *page, int nr_pages, struct vm_area_struct *vma, 1430 unsigned long address, rmap_t flags, enum rmap_level level) 1431 { 1432 int i, nr, nr_pmdmapped = 0; 1433 1434 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1435 1436 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped); 1437 1438 if (likely(!folio_test_ksm(folio))) 1439 __page_check_anon_rmap(folio, page, vma, address); 1440 1441 __folio_mod_stat(folio, nr, nr_pmdmapped); 1442 1443 if (flags & RMAP_EXCLUSIVE) { 1444 switch (level) { 1445 case RMAP_LEVEL_PTE: 1446 for (i = 0; i < nr_pages; i++) 1447 SetPageAnonExclusive(page + i); 1448 break; 1449 case RMAP_LEVEL_PMD: 1450 SetPageAnonExclusive(page); 1451 break; 1452 case RMAP_LEVEL_PUD: 1453 /* 1454 * Keep the compiler happy, we don't support anonymous 1455 * PUD mappings. 1456 */ 1457 WARN_ON_ONCE(1); 1458 break; 1459 } 1460 } 1461 1462 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1463 atomic_read(&folio->_mapcount) > 0, folio); 1464 for (i = 0; i < nr_pages; i++) { 1465 struct page *cur_page = page + i; 1466 1467 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1468 folio_entire_mapcount(folio) > 1 && 1469 PageAnonExclusive(cur_page), folio); 1470 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1471 continue; 1472 1473 /* 1474 * While PTE-mapping a THP we have a PMD and a PTE 1475 * mapping. 1476 */ 1477 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1478 PageAnonExclusive(cur_page), folio); 1479 } 1480 1481 /* 1482 * For large folio, only mlock it if it's fully mapped to VMA. It's 1483 * not easy to check whether the large folio is fully mapped to VMA 1484 * here. Only mlock normal 4K folio and leave page reclaim to handle 1485 * large folio. 1486 */ 1487 if (!folio_test_large(folio)) 1488 mlock_vma_folio(folio, vma); 1489 } 1490 1491 /** 1492 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1493 * @folio: The folio to add the mappings to 1494 * @page: The first page to add 1495 * @nr_pages: The number of pages which will be mapped 1496 * @vma: The vm area in which the mappings are added 1497 * @address: The user virtual address of the first page to map 1498 * @flags: The rmap flags 1499 * 1500 * The page range of folio is defined by [first_page, first_page + nr_pages) 1501 * 1502 * The caller needs to hold the page table lock, and the page must be locked in 1503 * the anon_vma case: to serialize mapping,index checking after setting, 1504 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1505 * (but KSM folios are never downgraded). 1506 */ 1507 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1508 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1509 rmap_t flags) 1510 { 1511 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1512 RMAP_LEVEL_PTE); 1513 } 1514 1515 /** 1516 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1517 * @folio: The folio to add the mapping to 1518 * @page: The first page to add 1519 * @vma: The vm area in which the mapping is added 1520 * @address: The user virtual address of the first page to map 1521 * @flags: The rmap flags 1522 * 1523 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1524 * 1525 * The caller needs to hold the page table lock, and the page must be locked in 1526 * the anon_vma case: to serialize mapping,index checking after setting. 1527 */ 1528 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1529 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1530 { 1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1532 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1533 RMAP_LEVEL_PMD); 1534 #else 1535 WARN_ON_ONCE(true); 1536 #endif 1537 } 1538 1539 /** 1540 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1541 * @folio: The folio to add the mapping to. 1542 * @vma: the vm area in which the mapping is added 1543 * @address: the user virtual address mapped 1544 * @flags: The rmap flags 1545 * 1546 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1547 * This means the inc-and-test can be bypassed. 1548 * The folio doesn't necessarily need to be locked while it's exclusive 1549 * unless two threads map it concurrently. However, the folio must be 1550 * locked if it's shared. 1551 * 1552 * If the folio is pmd-mappable, it is accounted as a THP. 1553 */ 1554 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1555 unsigned long address, rmap_t flags) 1556 { 1557 const bool exclusive = flags & RMAP_EXCLUSIVE; 1558 int nr = 1, nr_pmdmapped = 0; 1559 1560 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1561 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1562 1563 /* 1564 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1565 * under memory pressure. 1566 */ 1567 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1568 __folio_set_swapbacked(folio); 1569 __folio_set_anon(folio, vma, address, exclusive); 1570 1571 if (likely(!folio_test_large(folio))) { 1572 /* increment count (starts at -1) */ 1573 atomic_set(&folio->_mapcount, 0); 1574 if (exclusive) 1575 SetPageAnonExclusive(&folio->page); 1576 } else if (!folio_test_pmd_mappable(folio)) { 1577 int i; 1578 1579 nr = folio_large_nr_pages(folio); 1580 for (i = 0; i < nr; i++) { 1581 struct page *page = folio_page(folio, i); 1582 1583 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1584 /* increment count (starts at -1) */ 1585 atomic_set(&page->_mapcount, 0); 1586 if (exclusive) 1587 SetPageAnonExclusive(page); 1588 } 1589 1590 folio_set_large_mapcount(folio, nr, vma); 1591 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1592 atomic_set(&folio->_nr_pages_mapped, nr); 1593 } else { 1594 nr = folio_large_nr_pages(folio); 1595 /* increment count (starts at -1) */ 1596 atomic_set(&folio->_entire_mapcount, 0); 1597 folio_set_large_mapcount(folio, 1, vma); 1598 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1599 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1600 if (exclusive) 1601 SetPageAnonExclusive(&folio->page); 1602 nr_pmdmapped = nr; 1603 } 1604 1605 VM_WARN_ON_ONCE(address < vma->vm_start || 1606 address + (nr << PAGE_SHIFT) > vma->vm_end); 1607 1608 __folio_mod_stat(folio, nr, nr_pmdmapped); 1609 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1610 } 1611 1612 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1613 struct page *page, int nr_pages, struct vm_area_struct *vma, 1614 enum rmap_level level) 1615 { 1616 int nr, nr_pmdmapped = 0; 1617 1618 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1619 1620 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped); 1621 __folio_mod_stat(folio, nr, nr_pmdmapped); 1622 1623 /* See comments in folio_add_anon_rmap_*() */ 1624 if (!folio_test_large(folio)) 1625 mlock_vma_folio(folio, vma); 1626 } 1627 1628 /** 1629 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1630 * @folio: The folio to add the mappings to 1631 * @page: The first page to add 1632 * @nr_pages: The number of pages that will be mapped using PTEs 1633 * @vma: The vm area in which the mappings are added 1634 * 1635 * The page range of the folio is defined by [page, page + nr_pages) 1636 * 1637 * The caller needs to hold the page table lock. 1638 */ 1639 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1640 int nr_pages, struct vm_area_struct *vma) 1641 { 1642 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1643 } 1644 1645 /** 1646 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1647 * @folio: The folio to add the mapping to 1648 * @page: The first page to add 1649 * @vma: The vm area in which the mapping is added 1650 * 1651 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1652 * 1653 * The caller needs to hold the page table lock. 1654 */ 1655 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1656 struct vm_area_struct *vma) 1657 { 1658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1659 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1660 #else 1661 WARN_ON_ONCE(true); 1662 #endif 1663 } 1664 1665 /** 1666 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1667 * @folio: The folio to add the mapping to 1668 * @page: The first page to add 1669 * @vma: The vm area in which the mapping is added 1670 * 1671 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1672 * 1673 * The caller needs to hold the page table lock. 1674 */ 1675 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1676 struct vm_area_struct *vma) 1677 { 1678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1679 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1680 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD); 1681 #else 1682 WARN_ON_ONCE(true); 1683 #endif 1684 } 1685 1686 static __always_inline void __folio_remove_rmap(struct folio *folio, 1687 struct page *page, int nr_pages, struct vm_area_struct *vma, 1688 enum rmap_level level) 1689 { 1690 atomic_t *mapped = &folio->_nr_pages_mapped; 1691 int last = 0, nr = 0, nr_pmdmapped = 0; 1692 bool partially_mapped = false; 1693 1694 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1695 1696 switch (level) { 1697 case RMAP_LEVEL_PTE: 1698 if (!folio_test_large(folio)) { 1699 nr = atomic_add_negative(-1, &folio->_mapcount); 1700 break; 1701 } 1702 1703 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1704 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1705 if (!nr) { 1706 /* Now completely unmapped. */ 1707 nr = folio_nr_pages(folio); 1708 } else { 1709 partially_mapped = nr < folio_large_nr_pages(folio) && 1710 !folio_entire_mapcount(folio); 1711 nr = 0; 1712 } 1713 break; 1714 } 1715 1716 folio_sub_large_mapcount(folio, nr_pages, vma); 1717 do { 1718 last += atomic_add_negative(-1, &page->_mapcount); 1719 } while (page++, --nr_pages > 0); 1720 1721 if (last && 1722 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1723 nr = last; 1724 1725 partially_mapped = nr && atomic_read(mapped); 1726 break; 1727 case RMAP_LEVEL_PMD: 1728 case RMAP_LEVEL_PUD: 1729 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1730 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1731 if (level == RMAP_LEVEL_PMD && last) 1732 nr_pmdmapped = folio_large_nr_pages(folio); 1733 nr = folio_dec_return_large_mapcount(folio, vma); 1734 if (!nr) { 1735 /* Now completely unmapped. */ 1736 nr = folio_large_nr_pages(folio); 1737 } else { 1738 partially_mapped = last && 1739 nr < folio_large_nr_pages(folio); 1740 nr = 0; 1741 } 1742 break; 1743 } 1744 1745 folio_dec_large_mapcount(folio, vma); 1746 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1747 if (last) { 1748 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1749 if (likely(nr < ENTIRELY_MAPPED)) { 1750 nr_pages = folio_large_nr_pages(folio); 1751 if (level == RMAP_LEVEL_PMD) 1752 nr_pmdmapped = nr_pages; 1753 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1754 /* Raced ahead of another remove and an add? */ 1755 if (unlikely(nr < 0)) 1756 nr = 0; 1757 } else { 1758 /* An add of ENTIRELY_MAPPED raced ahead */ 1759 nr = 0; 1760 } 1761 } 1762 1763 partially_mapped = nr && nr < nr_pmdmapped; 1764 break; 1765 } 1766 1767 /* 1768 * Queue anon large folio for deferred split if at least one page of 1769 * the folio is unmapped and at least one page is still mapped. 1770 * 1771 * Check partially_mapped first to ensure it is a large folio. 1772 */ 1773 if (partially_mapped && folio_test_anon(folio) && 1774 !folio_test_partially_mapped(folio)) 1775 deferred_split_folio(folio, true); 1776 1777 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1778 1779 /* 1780 * It would be tidy to reset folio_test_anon mapping when fully 1781 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1782 * which increments mapcount after us but sets mapping before us: 1783 * so leave the reset to free_pages_prepare, and remember that 1784 * it's only reliable while mapped. 1785 */ 1786 1787 munlock_vma_folio(folio, vma); 1788 } 1789 1790 /** 1791 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1792 * @folio: The folio to remove the mappings from 1793 * @page: The first page to remove 1794 * @nr_pages: The number of pages that will be removed from the mapping 1795 * @vma: The vm area from which the mappings are removed 1796 * 1797 * The page range of the folio is defined by [page, page + nr_pages) 1798 * 1799 * The caller needs to hold the page table lock. 1800 */ 1801 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1802 int nr_pages, struct vm_area_struct *vma) 1803 { 1804 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1805 } 1806 1807 /** 1808 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1809 * @folio: The folio to remove the mapping from 1810 * @page: The first page to remove 1811 * @vma: The vm area from which the mapping is removed 1812 * 1813 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1814 * 1815 * The caller needs to hold the page table lock. 1816 */ 1817 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1818 struct vm_area_struct *vma) 1819 { 1820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1821 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1822 #else 1823 WARN_ON_ONCE(true); 1824 #endif 1825 } 1826 1827 /** 1828 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1829 * @folio: The folio to remove the mapping from 1830 * @page: The first page to remove 1831 * @vma: The vm area from which the mapping is removed 1832 * 1833 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1834 * 1835 * The caller needs to hold the page table lock. 1836 */ 1837 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1838 struct vm_area_struct *vma) 1839 { 1840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1841 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1842 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD); 1843 #else 1844 WARN_ON_ONCE(true); 1845 #endif 1846 } 1847 1848 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1849 struct page_vma_mapped_walk *pvmw, 1850 enum ttu_flags flags, pte_t pte) 1851 { 1852 unsigned long end_addr, addr = pvmw->address; 1853 struct vm_area_struct *vma = pvmw->vma; 1854 unsigned int max_nr; 1855 1856 if (flags & TTU_HWPOISON) 1857 return 1; 1858 if (!folio_test_large(folio)) 1859 return 1; 1860 1861 /* We may only batch within a single VMA and a single page table. */ 1862 end_addr = pmd_addr_end(addr, vma->vm_end); 1863 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1864 1865 /* We only support lazyfree batching for now ... */ 1866 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1867 return 1; 1868 if (pte_unused(pte)) 1869 return 1; 1870 1871 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1872 } 1873 1874 /* 1875 * @arg: enum ttu_flags will be passed to this argument 1876 */ 1877 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1878 unsigned long address, void *arg) 1879 { 1880 struct mm_struct *mm = vma->vm_mm; 1881 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1882 bool anon_exclusive, ret = true; 1883 pte_t pteval; 1884 struct page *subpage; 1885 struct mmu_notifier_range range; 1886 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1887 unsigned long nr_pages = 1, end_addr; 1888 unsigned long pfn; 1889 unsigned long hsz = 0; 1890 1891 /* 1892 * When racing against e.g. zap_pte_range() on another cpu, 1893 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1894 * try_to_unmap() may return before page_mapped() has become false, 1895 * if page table locking is skipped: use TTU_SYNC to wait for that. 1896 */ 1897 if (flags & TTU_SYNC) 1898 pvmw.flags = PVMW_SYNC; 1899 1900 /* 1901 * For THP, we have to assume the worse case ie pmd for invalidation. 1902 * For hugetlb, it could be much worse if we need to do pud 1903 * invalidation in the case of pmd sharing. 1904 * 1905 * Note that the folio can not be freed in this function as call of 1906 * try_to_unmap() must hold a reference on the folio. 1907 */ 1908 range.end = vma_address_end(&pvmw); 1909 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1910 address, range.end); 1911 if (folio_test_hugetlb(folio)) { 1912 /* 1913 * If sharing is possible, start and end will be adjusted 1914 * accordingly. 1915 */ 1916 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1917 &range.end); 1918 1919 /* We need the huge page size for set_huge_pte_at() */ 1920 hsz = huge_page_size(hstate_vma(vma)); 1921 } 1922 mmu_notifier_invalidate_range_start(&range); 1923 1924 while (page_vma_mapped_walk(&pvmw)) { 1925 /* 1926 * If the folio is in an mlock()d vma, we must not swap it out. 1927 */ 1928 if (!(flags & TTU_IGNORE_MLOCK) && 1929 (vma->vm_flags & VM_LOCKED)) { 1930 /* Restore the mlock which got missed */ 1931 if (!folio_test_large(folio)) 1932 mlock_vma_folio(folio, vma); 1933 goto walk_abort; 1934 } 1935 1936 if (!pvmw.pte) { 1937 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1938 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1939 goto walk_done; 1940 /* 1941 * unmap_huge_pmd_locked has either already marked 1942 * the folio as swap-backed or decided to retain it 1943 * due to GUP or speculative references. 1944 */ 1945 goto walk_abort; 1946 } 1947 1948 if (flags & TTU_SPLIT_HUGE_PMD) { 1949 /* 1950 * We temporarily have to drop the PTL and 1951 * restart so we can process the PTE-mapped THP. 1952 */ 1953 split_huge_pmd_locked(vma, pvmw.address, 1954 pvmw.pmd, false); 1955 flags &= ~TTU_SPLIT_HUGE_PMD; 1956 page_vma_mapped_walk_restart(&pvmw); 1957 continue; 1958 } 1959 } 1960 1961 /* Unexpected PMD-mapped THP? */ 1962 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1963 1964 /* 1965 * Handle PFN swap PTEs, such as device-exclusive ones, that 1966 * actually map pages. 1967 */ 1968 pteval = ptep_get(pvmw.pte); 1969 if (likely(pte_present(pteval))) { 1970 pfn = pte_pfn(pteval); 1971 } else { 1972 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1973 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1974 } 1975 1976 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1977 address = pvmw.address; 1978 anon_exclusive = folio_test_anon(folio) && 1979 PageAnonExclusive(subpage); 1980 1981 if (folio_test_hugetlb(folio)) { 1982 bool anon = folio_test_anon(folio); 1983 1984 /* 1985 * The try_to_unmap() is only passed a hugetlb page 1986 * in the case where the hugetlb page is poisoned. 1987 */ 1988 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1989 /* 1990 * huge_pmd_unshare may unmap an entire PMD page. 1991 * There is no way of knowing exactly which PMDs may 1992 * be cached for this mm, so we must flush them all. 1993 * start/end were already adjusted above to cover this 1994 * range. 1995 */ 1996 flush_cache_range(vma, range.start, range.end); 1997 1998 /* 1999 * To call huge_pmd_unshare, i_mmap_rwsem must be 2000 * held in write mode. Caller needs to explicitly 2001 * do this outside rmap routines. 2002 * 2003 * We also must hold hugetlb vma_lock in write mode. 2004 * Lock order dictates acquiring vma_lock BEFORE 2005 * i_mmap_rwsem. We can only try lock here and fail 2006 * if unsuccessful. 2007 */ 2008 if (!anon) { 2009 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2010 if (!hugetlb_vma_trylock_write(vma)) 2011 goto walk_abort; 2012 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2013 hugetlb_vma_unlock_write(vma); 2014 flush_tlb_range(vma, 2015 range.start, range.end); 2016 /* 2017 * The ref count of the PMD page was 2018 * dropped which is part of the way map 2019 * counting is done for shared PMDs. 2020 * Return 'true' here. When there is 2021 * no other sharing, huge_pmd_unshare 2022 * returns false and we will unmap the 2023 * actual page and drop map count 2024 * to zero. 2025 */ 2026 goto walk_done; 2027 } 2028 hugetlb_vma_unlock_write(vma); 2029 } 2030 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2031 if (pte_dirty(pteval)) 2032 folio_mark_dirty(folio); 2033 } else if (likely(pte_present(pteval))) { 2034 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2035 end_addr = address + nr_pages * PAGE_SIZE; 2036 flush_cache_range(vma, address, end_addr); 2037 2038 /* Nuke the page table entry. */ 2039 pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0); 2040 /* 2041 * We clear the PTE but do not flush so potentially 2042 * a remote CPU could still be writing to the folio. 2043 * If the entry was previously clean then the 2044 * architecture must guarantee that a clear->dirty 2045 * transition on a cached TLB entry is written through 2046 * and traps if the PTE is unmapped. 2047 */ 2048 if (should_defer_flush(mm, flags)) 2049 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2050 else 2051 flush_tlb_range(vma, address, end_addr); 2052 if (pte_dirty(pteval)) 2053 folio_mark_dirty(folio); 2054 } else { 2055 pte_clear(mm, address, pvmw.pte); 2056 } 2057 2058 /* 2059 * Now the pte is cleared. If this pte was uffd-wp armed, 2060 * we may want to replace a none pte with a marker pte if 2061 * it's file-backed, so we don't lose the tracking info. 2062 */ 2063 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2064 2065 /* Update high watermark before we lower rss */ 2066 update_hiwater_rss(mm); 2067 2068 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2069 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2070 if (folio_test_hugetlb(folio)) { 2071 hugetlb_count_sub(folio_nr_pages(folio), mm); 2072 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2073 hsz); 2074 } else { 2075 dec_mm_counter(mm, mm_counter(folio)); 2076 set_pte_at(mm, address, pvmw.pte, pteval); 2077 } 2078 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2079 !userfaultfd_armed(vma)) { 2080 /* 2081 * The guest indicated that the page content is of no 2082 * interest anymore. Simply discard the pte, vmscan 2083 * will take care of the rest. 2084 * A future reference will then fault in a new zero 2085 * page. When userfaultfd is active, we must not drop 2086 * this page though, as its main user (postcopy 2087 * migration) will not expect userfaults on already 2088 * copied pages. 2089 */ 2090 dec_mm_counter(mm, mm_counter(folio)); 2091 } else if (folio_test_anon(folio)) { 2092 swp_entry_t entry = page_swap_entry(subpage); 2093 pte_t swp_pte; 2094 /* 2095 * Store the swap location in the pte. 2096 * See handle_pte_fault() ... 2097 */ 2098 if (unlikely(folio_test_swapbacked(folio) != 2099 folio_test_swapcache(folio))) { 2100 WARN_ON_ONCE(1); 2101 goto walk_abort; 2102 } 2103 2104 /* MADV_FREE page check */ 2105 if (!folio_test_swapbacked(folio)) { 2106 int ref_count, map_count; 2107 2108 /* 2109 * Synchronize with gup_pte_range(): 2110 * - clear PTE; barrier; read refcount 2111 * - inc refcount; barrier; read PTE 2112 */ 2113 smp_mb(); 2114 2115 ref_count = folio_ref_count(folio); 2116 map_count = folio_mapcount(folio); 2117 2118 /* 2119 * Order reads for page refcount and dirty flag 2120 * (see comments in __remove_mapping()). 2121 */ 2122 smp_rmb(); 2123 2124 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2125 /* 2126 * redirtied either using the page table or a previously 2127 * obtained GUP reference. 2128 */ 2129 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2130 folio_set_swapbacked(folio); 2131 goto walk_abort; 2132 } else if (ref_count != 1 + map_count) { 2133 /* 2134 * Additional reference. Could be a GUP reference or any 2135 * speculative reference. GUP users must mark the folio 2136 * dirty if there was a modification. This folio cannot be 2137 * reclaimed right now either way, so act just like nothing 2138 * happened. 2139 * We'll come back here later and detect if the folio was 2140 * dirtied when the additional reference is gone. 2141 */ 2142 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2143 goto walk_abort; 2144 } 2145 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2146 goto discard; 2147 } 2148 2149 if (swap_duplicate(entry) < 0) { 2150 set_pte_at(mm, address, pvmw.pte, pteval); 2151 goto walk_abort; 2152 } 2153 2154 /* 2155 * arch_unmap_one() is expected to be a NOP on 2156 * architectures where we could have PFN swap PTEs, 2157 * so we'll not check/care. 2158 */ 2159 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2160 swap_free(entry); 2161 set_pte_at(mm, address, pvmw.pte, pteval); 2162 goto walk_abort; 2163 } 2164 2165 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2166 if (anon_exclusive && 2167 folio_try_share_anon_rmap_pte(folio, subpage)) { 2168 swap_free(entry); 2169 set_pte_at(mm, address, pvmw.pte, pteval); 2170 goto walk_abort; 2171 } 2172 if (list_empty(&mm->mmlist)) { 2173 spin_lock(&mmlist_lock); 2174 if (list_empty(&mm->mmlist)) 2175 list_add(&mm->mmlist, &init_mm.mmlist); 2176 spin_unlock(&mmlist_lock); 2177 } 2178 dec_mm_counter(mm, MM_ANONPAGES); 2179 inc_mm_counter(mm, MM_SWAPENTS); 2180 swp_pte = swp_entry_to_pte(entry); 2181 if (anon_exclusive) 2182 swp_pte = pte_swp_mkexclusive(swp_pte); 2183 if (likely(pte_present(pteval))) { 2184 if (pte_soft_dirty(pteval)) 2185 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2186 if (pte_uffd_wp(pteval)) 2187 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2188 } else { 2189 if (pte_swp_soft_dirty(pteval)) 2190 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2191 if (pte_swp_uffd_wp(pteval)) 2192 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2193 } 2194 set_pte_at(mm, address, pvmw.pte, swp_pte); 2195 } else { 2196 /* 2197 * This is a locked file-backed folio, 2198 * so it cannot be removed from the page 2199 * cache and replaced by a new folio before 2200 * mmu_notifier_invalidate_range_end, so no 2201 * concurrent thread might update its page table 2202 * to point at a new folio while a device is 2203 * still using this folio. 2204 * 2205 * See Documentation/mm/mmu_notifier.rst 2206 */ 2207 dec_mm_counter(mm, mm_counter_file(folio)); 2208 } 2209 discard: 2210 if (unlikely(folio_test_hugetlb(folio))) { 2211 hugetlb_remove_rmap(folio); 2212 } else { 2213 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2214 } 2215 if (vma->vm_flags & VM_LOCKED) 2216 mlock_drain_local(); 2217 folio_put_refs(folio, nr_pages); 2218 2219 /* 2220 * If we are sure that we batched the entire folio and cleared 2221 * all PTEs, we can just optimize and stop right here. 2222 */ 2223 if (nr_pages == folio_nr_pages(folio)) 2224 goto walk_done; 2225 continue; 2226 walk_abort: 2227 ret = false; 2228 walk_done: 2229 page_vma_mapped_walk_done(&pvmw); 2230 break; 2231 } 2232 2233 mmu_notifier_invalidate_range_end(&range); 2234 2235 return ret; 2236 } 2237 2238 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2239 { 2240 return vma_is_temporary_stack(vma); 2241 } 2242 2243 static int folio_not_mapped(struct folio *folio) 2244 { 2245 return !folio_mapped(folio); 2246 } 2247 2248 /** 2249 * try_to_unmap - Try to remove all page table mappings to a folio. 2250 * @folio: The folio to unmap. 2251 * @flags: action and flags 2252 * 2253 * Tries to remove all the page table entries which are mapping this 2254 * folio. It is the caller's responsibility to check if the folio is 2255 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2256 * 2257 * Context: Caller must hold the folio lock. 2258 */ 2259 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2260 { 2261 struct rmap_walk_control rwc = { 2262 .rmap_one = try_to_unmap_one, 2263 .arg = (void *)flags, 2264 .done = folio_not_mapped, 2265 .anon_lock = folio_lock_anon_vma_read, 2266 }; 2267 2268 if (flags & TTU_RMAP_LOCKED) 2269 rmap_walk_locked(folio, &rwc); 2270 else 2271 rmap_walk(folio, &rwc); 2272 } 2273 2274 /* 2275 * @arg: enum ttu_flags will be passed to this argument. 2276 * 2277 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2278 * containing migration entries. 2279 */ 2280 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2281 unsigned long address, void *arg) 2282 { 2283 struct mm_struct *mm = vma->vm_mm; 2284 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2285 bool anon_exclusive, writable, ret = true; 2286 pte_t pteval; 2287 struct page *subpage; 2288 struct mmu_notifier_range range; 2289 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2290 unsigned long pfn; 2291 unsigned long hsz = 0; 2292 2293 /* 2294 * When racing against e.g. zap_pte_range() on another cpu, 2295 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2296 * try_to_migrate() may return before page_mapped() has become false, 2297 * if page table locking is skipped: use TTU_SYNC to wait for that. 2298 */ 2299 if (flags & TTU_SYNC) 2300 pvmw.flags = PVMW_SYNC; 2301 2302 /* 2303 * For THP, we have to assume the worse case ie pmd for invalidation. 2304 * For hugetlb, it could be much worse if we need to do pud 2305 * invalidation in the case of pmd sharing. 2306 * 2307 * Note that the page can not be free in this function as call of 2308 * try_to_unmap() must hold a reference on the page. 2309 */ 2310 range.end = vma_address_end(&pvmw); 2311 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2312 address, range.end); 2313 if (folio_test_hugetlb(folio)) { 2314 /* 2315 * If sharing is possible, start and end will be adjusted 2316 * accordingly. 2317 */ 2318 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2319 &range.end); 2320 2321 /* We need the huge page size for set_huge_pte_at() */ 2322 hsz = huge_page_size(hstate_vma(vma)); 2323 } 2324 mmu_notifier_invalidate_range_start(&range); 2325 2326 while (page_vma_mapped_walk(&pvmw)) { 2327 /* PMD-mapped THP migration entry */ 2328 if (!pvmw.pte) { 2329 if (flags & TTU_SPLIT_HUGE_PMD) { 2330 split_huge_pmd_locked(vma, pvmw.address, 2331 pvmw.pmd, true); 2332 ret = false; 2333 page_vma_mapped_walk_done(&pvmw); 2334 break; 2335 } 2336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2337 subpage = folio_page(folio, 2338 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2339 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2340 !folio_test_pmd_mappable(folio), folio); 2341 2342 if (set_pmd_migration_entry(&pvmw, subpage)) { 2343 ret = false; 2344 page_vma_mapped_walk_done(&pvmw); 2345 break; 2346 } 2347 continue; 2348 #endif 2349 } 2350 2351 /* Unexpected PMD-mapped THP? */ 2352 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2353 2354 /* 2355 * Handle PFN swap PTEs, such as device-exclusive ones, that 2356 * actually map pages. 2357 */ 2358 pteval = ptep_get(pvmw.pte); 2359 if (likely(pte_present(pteval))) { 2360 pfn = pte_pfn(pteval); 2361 } else { 2362 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2363 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2364 } 2365 2366 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2367 address = pvmw.address; 2368 anon_exclusive = folio_test_anon(folio) && 2369 PageAnonExclusive(subpage); 2370 2371 if (folio_test_hugetlb(folio)) { 2372 bool anon = folio_test_anon(folio); 2373 2374 /* 2375 * huge_pmd_unshare may unmap an entire PMD page. 2376 * There is no way of knowing exactly which PMDs may 2377 * be cached for this mm, so we must flush them all. 2378 * start/end were already adjusted above to cover this 2379 * range. 2380 */ 2381 flush_cache_range(vma, range.start, range.end); 2382 2383 /* 2384 * To call huge_pmd_unshare, i_mmap_rwsem must be 2385 * held in write mode. Caller needs to explicitly 2386 * do this outside rmap routines. 2387 * 2388 * We also must hold hugetlb vma_lock in write mode. 2389 * Lock order dictates acquiring vma_lock BEFORE 2390 * i_mmap_rwsem. We can only try lock here and 2391 * fail if unsuccessful. 2392 */ 2393 if (!anon) { 2394 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2395 if (!hugetlb_vma_trylock_write(vma)) { 2396 page_vma_mapped_walk_done(&pvmw); 2397 ret = false; 2398 break; 2399 } 2400 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2401 hugetlb_vma_unlock_write(vma); 2402 flush_tlb_range(vma, 2403 range.start, range.end); 2404 2405 /* 2406 * The ref count of the PMD page was 2407 * dropped which is part of the way map 2408 * counting is done for shared PMDs. 2409 * Return 'true' here. When there is 2410 * no other sharing, huge_pmd_unshare 2411 * returns false and we will unmap the 2412 * actual page and drop map count 2413 * to zero. 2414 */ 2415 page_vma_mapped_walk_done(&pvmw); 2416 break; 2417 } 2418 hugetlb_vma_unlock_write(vma); 2419 } 2420 /* Nuke the hugetlb page table entry */ 2421 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2422 if (pte_dirty(pteval)) 2423 folio_mark_dirty(folio); 2424 writable = pte_write(pteval); 2425 } else if (likely(pte_present(pteval))) { 2426 flush_cache_page(vma, address, pfn); 2427 /* Nuke the page table entry. */ 2428 if (should_defer_flush(mm, flags)) { 2429 /* 2430 * We clear the PTE but do not flush so potentially 2431 * a remote CPU could still be writing to the folio. 2432 * If the entry was previously clean then the 2433 * architecture must guarantee that a clear->dirty 2434 * transition on a cached TLB entry is written through 2435 * and traps if the PTE is unmapped. 2436 */ 2437 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2438 2439 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2440 } else { 2441 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2442 } 2443 if (pte_dirty(pteval)) 2444 folio_mark_dirty(folio); 2445 writable = pte_write(pteval); 2446 } else { 2447 pte_clear(mm, address, pvmw.pte); 2448 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2449 } 2450 2451 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2452 !anon_exclusive, folio); 2453 2454 /* Update high watermark before we lower rss */ 2455 update_hiwater_rss(mm); 2456 2457 if (PageHWPoison(subpage)) { 2458 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2459 2460 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2461 if (folio_test_hugetlb(folio)) { 2462 hugetlb_count_sub(folio_nr_pages(folio), mm); 2463 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2464 hsz); 2465 } else { 2466 dec_mm_counter(mm, mm_counter(folio)); 2467 set_pte_at(mm, address, pvmw.pte, pteval); 2468 } 2469 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2470 !userfaultfd_armed(vma)) { 2471 /* 2472 * The guest indicated that the page content is of no 2473 * interest anymore. Simply discard the pte, vmscan 2474 * will take care of the rest. 2475 * A future reference will then fault in a new zero 2476 * page. When userfaultfd is active, we must not drop 2477 * this page though, as its main user (postcopy 2478 * migration) will not expect userfaults on already 2479 * copied pages. 2480 */ 2481 dec_mm_counter(mm, mm_counter(folio)); 2482 } else { 2483 swp_entry_t entry; 2484 pte_t swp_pte; 2485 2486 /* 2487 * arch_unmap_one() is expected to be a NOP on 2488 * architectures where we could have PFN swap PTEs, 2489 * so we'll not check/care. 2490 */ 2491 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2492 if (folio_test_hugetlb(folio)) 2493 set_huge_pte_at(mm, address, pvmw.pte, 2494 pteval, hsz); 2495 else 2496 set_pte_at(mm, address, pvmw.pte, pteval); 2497 ret = false; 2498 page_vma_mapped_walk_done(&pvmw); 2499 break; 2500 } 2501 2502 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2503 if (folio_test_hugetlb(folio)) { 2504 if (anon_exclusive && 2505 hugetlb_try_share_anon_rmap(folio)) { 2506 set_huge_pte_at(mm, address, pvmw.pte, 2507 pteval, hsz); 2508 ret = false; 2509 page_vma_mapped_walk_done(&pvmw); 2510 break; 2511 } 2512 } else if (anon_exclusive && 2513 folio_try_share_anon_rmap_pte(folio, subpage)) { 2514 set_pte_at(mm, address, pvmw.pte, pteval); 2515 ret = false; 2516 page_vma_mapped_walk_done(&pvmw); 2517 break; 2518 } 2519 2520 /* 2521 * Store the pfn of the page in a special migration 2522 * pte. do_swap_page() will wait until the migration 2523 * pte is removed and then restart fault handling. 2524 */ 2525 if (writable) 2526 entry = make_writable_migration_entry( 2527 page_to_pfn(subpage)); 2528 else if (anon_exclusive) 2529 entry = make_readable_exclusive_migration_entry( 2530 page_to_pfn(subpage)); 2531 else 2532 entry = make_readable_migration_entry( 2533 page_to_pfn(subpage)); 2534 if (likely(pte_present(pteval))) { 2535 if (pte_young(pteval)) 2536 entry = make_migration_entry_young(entry); 2537 if (pte_dirty(pteval)) 2538 entry = make_migration_entry_dirty(entry); 2539 swp_pte = swp_entry_to_pte(entry); 2540 if (pte_soft_dirty(pteval)) 2541 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2542 if (pte_uffd_wp(pteval)) 2543 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2544 } else { 2545 swp_pte = swp_entry_to_pte(entry); 2546 if (pte_swp_soft_dirty(pteval)) 2547 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2548 if (pte_swp_uffd_wp(pteval)) 2549 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2550 } 2551 if (folio_test_hugetlb(folio)) 2552 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2553 hsz); 2554 else 2555 set_pte_at(mm, address, pvmw.pte, swp_pte); 2556 trace_set_migration_pte(address, pte_val(swp_pte), 2557 folio_order(folio)); 2558 /* 2559 * No need to invalidate here it will synchronize on 2560 * against the special swap migration pte. 2561 */ 2562 } 2563 2564 if (unlikely(folio_test_hugetlb(folio))) 2565 hugetlb_remove_rmap(folio); 2566 else 2567 folio_remove_rmap_pte(folio, subpage, vma); 2568 if (vma->vm_flags & VM_LOCKED) 2569 mlock_drain_local(); 2570 folio_put(folio); 2571 } 2572 2573 mmu_notifier_invalidate_range_end(&range); 2574 2575 return ret; 2576 } 2577 2578 /** 2579 * try_to_migrate - try to replace all page table mappings with swap entries 2580 * @folio: the folio to replace page table entries for 2581 * @flags: action and flags 2582 * 2583 * Tries to remove all the page table entries which are mapping this folio and 2584 * replace them with special swap entries. Caller must hold the folio lock. 2585 */ 2586 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2587 { 2588 struct rmap_walk_control rwc = { 2589 .rmap_one = try_to_migrate_one, 2590 .arg = (void *)flags, 2591 .done = folio_not_mapped, 2592 .anon_lock = folio_lock_anon_vma_read, 2593 }; 2594 2595 /* 2596 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2597 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2598 */ 2599 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2600 TTU_SYNC | TTU_BATCH_FLUSH))) 2601 return; 2602 2603 if (folio_is_zone_device(folio) && 2604 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2605 return; 2606 2607 /* 2608 * During exec, a temporary VMA is setup and later moved. 2609 * The VMA is moved under the anon_vma lock but not the 2610 * page tables leading to a race where migration cannot 2611 * find the migration ptes. Rather than increasing the 2612 * locking requirements of exec(), migration skips 2613 * temporary VMAs until after exec() completes. 2614 */ 2615 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2616 rwc.invalid_vma = invalid_migration_vma; 2617 2618 if (flags & TTU_RMAP_LOCKED) 2619 rmap_walk_locked(folio, &rwc); 2620 else 2621 rmap_walk(folio, &rwc); 2622 } 2623 2624 #ifdef CONFIG_DEVICE_PRIVATE 2625 /** 2626 * make_device_exclusive() - Mark a page for exclusive use by a device 2627 * @mm: mm_struct of associated target process 2628 * @addr: the virtual address to mark for exclusive device access 2629 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2630 * @foliop: folio pointer will be stored here on success. 2631 * 2632 * This function looks up the page mapped at the given address, grabs a 2633 * folio reference, locks the folio and replaces the PTE with special 2634 * device-exclusive PFN swap entry, preventing access through the process 2635 * page tables. The function will return with the folio locked and referenced. 2636 * 2637 * On fault, the device-exclusive entries are replaced with the original PTE 2638 * under folio lock, after calling MMU notifiers. 2639 * 2640 * Only anonymous non-hugetlb folios are supported and the VMA must have 2641 * write permissions such that we can fault in the anonymous page writable 2642 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2643 * mode. 2644 * 2645 * A driver using this to program access from a device must use a mmu notifier 2646 * critical section to hold a device specific lock during programming. Once 2647 * programming is complete it should drop the folio lock and reference after 2648 * which point CPU access to the page will revoke the exclusive access. 2649 * 2650 * Notes: 2651 * #. This function always operates on individual PTEs mapping individual 2652 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2653 * the conversion happens on a single PTE corresponding to @addr. 2654 * #. While concurrent access through the process page tables is prevented, 2655 * concurrent access through other page references (e.g., earlier GUP 2656 * invocation) is not handled and not supported. 2657 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2658 * Device drivers must update the folio state when informed by MMU 2659 * notifiers. 2660 * 2661 * Returns: pointer to mapped page on success, otherwise a negative error. 2662 */ 2663 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2664 void *owner, struct folio **foliop) 2665 { 2666 struct mmu_notifier_range range; 2667 struct folio *folio, *fw_folio; 2668 struct vm_area_struct *vma; 2669 struct folio_walk fw; 2670 struct page *page; 2671 swp_entry_t entry; 2672 pte_t swp_pte; 2673 int ret; 2674 2675 mmap_assert_locked(mm); 2676 addr = PAGE_ALIGN_DOWN(addr); 2677 2678 /* 2679 * Fault in the page writable and try to lock it; note that if the 2680 * address would already be marked for exclusive use by a device, 2681 * the GUP call would undo that first by triggering a fault. 2682 * 2683 * If any other device would already map this page exclusively, the 2684 * fault will trigger a conversion to an ordinary 2685 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2686 */ 2687 retry: 2688 page = get_user_page_vma_remote(mm, addr, 2689 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2690 &vma); 2691 if (IS_ERR(page)) 2692 return page; 2693 folio = page_folio(page); 2694 2695 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2696 folio_put(folio); 2697 return ERR_PTR(-EOPNOTSUPP); 2698 } 2699 2700 ret = folio_lock_killable(folio); 2701 if (ret) { 2702 folio_put(folio); 2703 return ERR_PTR(ret); 2704 } 2705 2706 /* 2707 * Inform secondary MMUs that we are going to convert this PTE to 2708 * device-exclusive, such that they unmap it now. Note that the 2709 * caller must filter this event out to prevent livelocks. 2710 */ 2711 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2712 mm, addr, addr + PAGE_SIZE, owner); 2713 mmu_notifier_invalidate_range_start(&range); 2714 2715 /* 2716 * Let's do a second walk and make sure we still find the same page 2717 * mapped writable. Note that any page of an anonymous folio can 2718 * only be mapped writable using exactly one PTE ("exclusive"), so 2719 * there cannot be other mappings. 2720 */ 2721 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2722 if (fw_folio != folio || fw.page != page || 2723 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2724 if (fw_folio) 2725 folio_walk_end(&fw, vma); 2726 mmu_notifier_invalidate_range_end(&range); 2727 folio_unlock(folio); 2728 folio_put(folio); 2729 goto retry; 2730 } 2731 2732 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2733 flush_cache_page(vma, addr, page_to_pfn(page)); 2734 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2735 2736 /* Set the dirty flag on the folio now the PTE is gone. */ 2737 if (pte_dirty(fw.pte)) 2738 folio_mark_dirty(folio); 2739 2740 /* 2741 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2742 * do_swap_page() will trigger the conversion back while holding the 2743 * folio lock. 2744 */ 2745 entry = make_device_exclusive_entry(page_to_pfn(page)); 2746 swp_pte = swp_entry_to_pte(entry); 2747 if (pte_soft_dirty(fw.pte)) 2748 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2749 /* The pte is writable, uffd-wp does not apply. */ 2750 set_pte_at(mm, addr, fw.ptep, swp_pte); 2751 2752 folio_walk_end(&fw, vma); 2753 mmu_notifier_invalidate_range_end(&range); 2754 *foliop = folio; 2755 return page; 2756 } 2757 EXPORT_SYMBOL_GPL(make_device_exclusive); 2758 #endif 2759 2760 void __put_anon_vma(struct anon_vma *anon_vma) 2761 { 2762 struct anon_vma *root = anon_vma->root; 2763 2764 anon_vma_free(anon_vma); 2765 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2766 anon_vma_free(root); 2767 } 2768 2769 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2770 struct rmap_walk_control *rwc) 2771 { 2772 struct anon_vma *anon_vma; 2773 2774 if (rwc->anon_lock) 2775 return rwc->anon_lock(folio, rwc); 2776 2777 /* 2778 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2779 * because that depends on page_mapped(); but not all its usages 2780 * are holding mmap_lock. Users without mmap_lock are required to 2781 * take a reference count to prevent the anon_vma disappearing 2782 */ 2783 anon_vma = folio_anon_vma(folio); 2784 if (!anon_vma) 2785 return NULL; 2786 2787 if (anon_vma_trylock_read(anon_vma)) 2788 goto out; 2789 2790 if (rwc->try_lock) { 2791 anon_vma = NULL; 2792 rwc->contended = true; 2793 goto out; 2794 } 2795 2796 anon_vma_lock_read(anon_vma); 2797 out: 2798 return anon_vma; 2799 } 2800 2801 /* 2802 * rmap_walk_anon - do something to anonymous page using the object-based 2803 * rmap method 2804 * @folio: the folio to be handled 2805 * @rwc: control variable according to each walk type 2806 * @locked: caller holds relevant rmap lock 2807 * 2808 * Find all the mappings of a folio using the mapping pointer and the vma 2809 * chains contained in the anon_vma struct it points to. 2810 */ 2811 static void rmap_walk_anon(struct folio *folio, 2812 struct rmap_walk_control *rwc, bool locked) 2813 { 2814 struct anon_vma *anon_vma; 2815 pgoff_t pgoff_start, pgoff_end; 2816 struct anon_vma_chain *avc; 2817 2818 if (locked) { 2819 anon_vma = folio_anon_vma(folio); 2820 /* anon_vma disappear under us? */ 2821 VM_BUG_ON_FOLIO(!anon_vma, folio); 2822 } else { 2823 anon_vma = rmap_walk_anon_lock(folio, rwc); 2824 } 2825 if (!anon_vma) 2826 return; 2827 2828 pgoff_start = folio_pgoff(folio); 2829 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2830 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2831 pgoff_start, pgoff_end) { 2832 struct vm_area_struct *vma = avc->vma; 2833 unsigned long address = vma_address(vma, pgoff_start, 2834 folio_nr_pages(folio)); 2835 2836 VM_BUG_ON_VMA(address == -EFAULT, vma); 2837 cond_resched(); 2838 2839 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2840 continue; 2841 2842 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2843 break; 2844 if (rwc->done && rwc->done(folio)) 2845 break; 2846 } 2847 2848 if (!locked) 2849 anon_vma_unlock_read(anon_vma); 2850 } 2851 2852 /** 2853 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2854 * of a page mapped within a specified page cache object at a specified offset. 2855 * 2856 * @folio: Either the folio whose mappings to traverse, or if NULL, 2857 * the callbacks specified in @rwc will be configured such 2858 * as to be able to look up mappings correctly. 2859 * @mapping: The page cache object whose mapping VMAs we intend to 2860 * traverse. If @folio is non-NULL, this should be equal to 2861 * folio_mapping(folio). 2862 * @pgoff_start: The offset within @mapping of the page which we are 2863 * looking up. If @folio is non-NULL, this should be equal 2864 * to folio_pgoff(folio). 2865 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2866 * non-NULL, this should be equal to folio_nr_pages(folio). 2867 * @rwc: The reverse mapping walk control object describing how 2868 * the traversal should proceed. 2869 * @locked: Is the @mapping already locked? If not, we acquire the 2870 * lock. 2871 */ 2872 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2873 pgoff_t pgoff_start, unsigned long nr_pages, 2874 struct rmap_walk_control *rwc, bool locked) 2875 { 2876 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2877 struct vm_area_struct *vma; 2878 2879 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2880 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2881 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2882 2883 if (!locked) { 2884 if (i_mmap_trylock_read(mapping)) 2885 goto lookup; 2886 2887 if (rwc->try_lock) { 2888 rwc->contended = true; 2889 return; 2890 } 2891 2892 i_mmap_lock_read(mapping); 2893 } 2894 lookup: 2895 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2896 pgoff_start, pgoff_end) { 2897 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2898 2899 VM_BUG_ON_VMA(address == -EFAULT, vma); 2900 cond_resched(); 2901 2902 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2903 continue; 2904 2905 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2906 goto done; 2907 if (rwc->done && rwc->done(folio)) 2908 goto done; 2909 } 2910 done: 2911 if (!locked) 2912 i_mmap_unlock_read(mapping); 2913 } 2914 2915 /* 2916 * rmap_walk_file - do something to file page using the object-based rmap method 2917 * @folio: the folio to be handled 2918 * @rwc: control variable according to each walk type 2919 * @locked: caller holds relevant rmap lock 2920 * 2921 * Find all the mappings of a folio using the mapping pointer and the vma chains 2922 * contained in the address_space struct it points to. 2923 */ 2924 static void rmap_walk_file(struct folio *folio, 2925 struct rmap_walk_control *rwc, bool locked) 2926 { 2927 /* 2928 * The folio lock not only makes sure that folio->mapping cannot 2929 * suddenly be NULLified by truncation, it makes sure that the structure 2930 * at mapping cannot be freed and reused yet, so we can safely take 2931 * mapping->i_mmap_rwsem. 2932 */ 2933 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2934 2935 if (!folio->mapping) 2936 return; 2937 2938 __rmap_walk_file(folio, folio->mapping, folio->index, 2939 folio_nr_pages(folio), rwc, locked); 2940 } 2941 2942 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2943 { 2944 if (unlikely(folio_test_ksm(folio))) 2945 rmap_walk_ksm(folio, rwc); 2946 else if (folio_test_anon(folio)) 2947 rmap_walk_anon(folio, rwc, false); 2948 else 2949 rmap_walk_file(folio, rwc, false); 2950 } 2951 2952 /* Like rmap_walk, but caller holds relevant rmap lock */ 2953 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2954 { 2955 /* no ksm support for now */ 2956 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2957 if (folio_test_anon(folio)) 2958 rmap_walk_anon(folio, rwc, true); 2959 else 2960 rmap_walk_file(folio, rwc, true); 2961 } 2962 2963 #ifdef CONFIG_HUGETLB_PAGE 2964 /* 2965 * The following two functions are for anonymous (private mapped) hugepages. 2966 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2967 * and no lru code, because we handle hugepages differently from common pages. 2968 */ 2969 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2970 unsigned long address, rmap_t flags) 2971 { 2972 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2973 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2974 2975 atomic_inc(&folio->_entire_mapcount); 2976 atomic_inc(&folio->_large_mapcount); 2977 if (flags & RMAP_EXCLUSIVE) 2978 SetPageAnonExclusive(&folio->page); 2979 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2980 PageAnonExclusive(&folio->page), folio); 2981 } 2982 2983 void hugetlb_add_new_anon_rmap(struct folio *folio, 2984 struct vm_area_struct *vma, unsigned long address) 2985 { 2986 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2987 2988 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2989 /* increment count (starts at -1) */ 2990 atomic_set(&folio->_entire_mapcount, 0); 2991 atomic_set(&folio->_large_mapcount, 0); 2992 folio_clear_hugetlb_restore_reserve(folio); 2993 __folio_set_anon(folio, vma, address, true); 2994 SetPageAnonExclusive(&folio->page); 2995 } 2996 #endif /* CONFIG_HUGETLB_PAGE */ 2997